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ABSTRACT 

This thesis addresses the problem of target image processing. The thesis presents a 

noise-tolerant procedure for classifying targets based on fractal analysis of three-view (top, 

side, and front) projections. The boundary of aircraft has been shown to have fractional 

Brownian motion behavior. A set of fractal features has been extracted. These features are 

fractal Dimension, and noise-tolerant fractal signature feature vector. Fractal dimension 

and fractal signature are considered invariant under rotation, translation, and scaling. 

Fractal dimension provides a good feature for discriminating classes that have different 

roughness (e.g. mountains and aircraft), but in the case of close roughness levels (e.g. 

aircraft types), fractal signature is used. The fractal signature has also been abstracted in 

terms of five features to overcome the problem of sensitivity to noise. The classification 

stage has been achieved using neural networks. The training of the neural network is 

performed using five types of aircraft and three viewing angles (top, side, and front) per 

each one. Three-view targets at arbitrary viewing angles and range have been presented to 

a three-layer back propagation neural net classifier. A comparative study between fractal 

based features and moment invariants is developed under clean and noisy conditions. 

Classification results have indicated superior performance of fractal features over moment 

invariant features. Under normal noise effect of zero mean and standard deviation equal 

two, the average percentage of correct recognition has been about 90% for the proposed 

system compared to 40% for the traditional moment invariants method. 
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CHAPTER 1  

INTRODUCTION 

1.1. Overview 

One of the key components of present and future defense weapon systems to be used on 

autonomous vehicle missions is the Automatic Target Recognition (ATR) system. Multi-

sensor ATR system effectively removes man from the process of target acquisition and 

recognition. This is desirable since the system with a man in the loop is generally slow, 

unreliable, and may limit the performance of the overall system or mission in real 

situations [1] [2]. 

The algorithmic components of an ATR system can be decomposed into preprocessing, 

detection, segmentation, feature computation, selection and classification, prioritization, 

tracking, and aim point selection as shown in Figure ‎0-1 [1]. The main focus of this thesis 

is the target feature computation and classification based on target processing as shown in 

Figure ‎0-1. 

 

 

 

Figure  0-1: Block diagram of typical ATR system 

1.2. Problems of Interest 

This thesis is essentially concerned with three-view target image processing. Targets 

have been recognized based on the fractal analysis of their three-view (Top, Side, and 

Front). Target classification has been performed through the study and analysis of the 

following main items: 

I. The fractional Brownian motion behavior of three-views (Top, Side, Front) of 

five types of aircraft (Mirage 2000, B57, Beech Craft, F15, TU-160), with total 

of fifteen images. 
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II. Fractal feature extraction with focus on: fractal Dimension (D) and fractal 

signature. 

III. The computation of an improved Noise-Tolerant Fractal Signature (NTFS) 

IV. The application of neural net for classification of aircraft views based on the 

abstracted noise-tolerant fractal signature feature vector. 

V. A comparative study among the following: The abstracted noise-tolerant fractal 

signature, fractal signature & Fourier Descriptors (FD), and moment invariant in 

the classification robustness, especially under different levels of noise. 

1.3. Fractal Geometry Application Directions 

Many problems in the analysis of natural surface shapes and the construction of terrain 

maps to model them remain unsolved. One reason is that the familiar Euclidean geometry 

of regular shapes, such as surfaces of revolution, does not capture well irregular and less 

structured shapes. 

Hongteng in [2] proposed a single image super resolution and enhancement algorithm 

using local fractal analysis. According to the scale invariance (a special case of bi-

Lipschitz invariance) feature of fractal dimension, the gradient of a high-resolution image 

from that of a low-resolution one, was estimated. A regularization term based on the scale 

invariance of fractal dimension and length was shown to be effective in recovering details 

of the high-resolution image. Analysis was provided on the relation and difference among 

the proposed approach and some other state of the art interpolation methods. Experimental 

results showed that the proposed method has superior super-resolution and enhancement 

results as compared to other competitors. 

In [3], Wenhui searched for a method of developing fractal analysis module in ArcGIS 

software, calculating fractal-dimension by box-counting and processing some elementary 

research on fractal characteristics of rivers with this module. 

Another application of fractal geometry is image compression. Image compression 

using fractal geometry has received great attention in recent years. Fractal compression is 

quite controversial, with some people claiming it does not work well, and others claiming 

it works wonderfully. The basic idea behind fractal image compression is to express the 

image as an Iterated Function System (IFS). The image can then be displayed quickly and 

zooming will generate infinite levels of (synthetic) fractal detail. The problem is how to 
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efficiently generate the IFS from the image. Barnsley, who invented fractal image 

compression, has a patent on fractal compression techniques [4] [5] [6] [7]. 

Madelbrot proposed fractals as a family of mathematical functions to describe natural 

phenomena such as coastlines, mountains, branch patterns of trees and rivers, clouds, and 

earthquakes [8]. Since Mandelbrot introduced them, fractal sets and functions have been 

found to describe many other environmental properties, and have received a great deal of 

attention from scientists, artists, and others.  

Researchers in computer graphics and image understanding have applied fractal theory 

to a variety of problems. In computer graphics, fractals have been used to synthesis models 

of complex natural objects such as trees, mountain ranges, and clouds. The rendered 

images and models exhibit a high level of realism compared to previous efforts. In image 

understanding, fractals have been employed to analyse projections of natural scenes. For 

modelling shapes of natural objects, Pentland in [9] presented a method to estimate fractal 

dimension from the "second-order statistics" of image intensifies. He showed that 

measurements of fractal dimension might be used to measure perspective gradient, thus 

providing an independent check on estimates of surface orientation derived from analysis 

of foreshortening.  

Keller in [10] estimated the fractal dimension using a least-square linear fit, and used it 

to distinguish silhouettes of trees from silhouettes of mountains.  

For segmenting textured surfaces, Pentland in [9] computed a self-similarity parameter 

and used it to segment real images of scenes of urban areas, mountains, and deserts. He 

reported classification accuracy of 84 and 88% on Brodatz texture patterns.  

Yasumoto reported that fractal dimension alone does not provide sufficient 

discriminatory power to classify natural textures [11]. His results are confirmed by Keller 

[12], who used estimates of fractal dimension together with features based on the concept 

of lacunarity as global signatures of texture and as local measurements of texture for 

segmentation purposes. They presented segmentation results for eight Brodatz texture 

patterns, an outdoor scene, and a variety of artificial patterns. 

For interpolating natural surfaces, Yokoya adopted a recursive midpoint displacement 

scheme using four neighbours to interpolate natural surfaces [13]. They computed two 

features, a self-similarity parameter, and the standard deviation of the distribution function; 

and use them for stochastic interpolation in order to preserve the statistical characteristics 
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of the true surface. The work on modelling natural shapes, segmenting textured surfaces, 

and interpolating natural surfaces represents significant advances. 

1.4. Thesis Outline 

Fractal geometry has been played an important role in a variety of applications. In this 

thesis,‎our‎approach‎is‎using‎fractal‎features‎in‎the‎classification‎of‎aircraft’s‎three-views. 

All classifiers have been implemented using neural net classifiers. 

In‎chapter‎2,‎“Fractal‎Geometry:‎An‎Overview”,‎a‎theoretical‎background‎and‎concepts‎

of all topics used in this thesis are presented.  

In‎ chapter‎ 3,‎ “Fractal‎ Feature‎ Extraction”,‎ the‎ role‎ of‎ feature‎ extraction‎ stage‎ in‎

automatic target recognition is explained.  

In‎chapter‎4,‎“Fractal-Based‎Approach‎for‎Target‎Recognition”, addresses the problem 

of three-view ATR.  

In‎chapter‎5,‎“Conclusions”,‎a‎summary‎and‎Conclusions of research effort in the thesis 

are provided along with potential future research directions. 
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CHAPTER 2 

BACKGROUND 

This chapter begins with an introduction to shape analysis in Section 2.1. A definition 

of fractals, and a brief history of the fractal geometry science, and the role of Mandelbrot, 

who is considered the father of the fractal geometry, is presented in Section 2.2. A method 

to generate the Koch curve, as an example to a fractal pattern, is presented in the Section. 

The role of fractal geometry in image recognition is discussed. Image recognition 

techniques based on fractal features like D, AHC, and fractal signature are presented. 

Fractal geometry is considered a new geometrical science that deals with the natural 

phenomena, which cannot be represented or analyzed using classical geometry. The 

concepts of exact self-similarity and statistical self-similarity, the backbone of fractal 

geometry are discussed. The Brownian motion, which has been observed by Robert Brown 

in 1827, is stated and analyzed, and then the fractional Brownian motion and its 

mathematics are introduced in Section 2.3. The classification tests in this thesis are 

performed using neural nets. The structure of the back propagation neural net classifier and 

its learning algorithm are generally discussed in Section 2.4. The moment theory, the 

definition of moment in 2-D, and the central moment are discussed in Section 2.5. The 

SDP plots are discussed, and its applications in signal processing and visual classification 

tests are identified in Section 2.6. 

2.1. Shape Analysis 

The interaction between light and surrounding objects provides an important means for 

humans to understand the world. This is clear if we consider that 50% of our brain is 

involved in visual information processing. Giving the machine the ability to automate 

dangerous or repetitive human activities requires effective machine vision systems. 

 The birth of computer vision started very early in computer history. There is a great 

deal of machine vision application in biology, security, robotics, industry, and physics. For 

humans‎“seeing”‎appears‎to‎be‎a‎trivial‎task,‎but‎designing‎robust‎machine‎vision‎systems‎

has been difficult. This is because machine vision systems require real-time processing of a 

huge data set (including shape, color, spatial orientation, motion, texture, etc.). 
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More difficulties with the analysis of visual information arise from distortions, 

occlusion, and noise, besides the requirement to map image from 3-D space onto 2-D space 

which lead to information loss.  

Shapes analysis can be thought as being the alphabet of the visual language. 2D-object 

object has enough information allowing the recognition of the original object. 

Dealing with 3D representation of objects is computationally expensive, so the 

importance of 2D image analysis arises to solve this problem. 

2.2. Fractal Geometry 

A fractal shape is a rough geometric shape that can be divided into smaller parts, each 

part is an exact reduced copy of the original shape or at least approximately similar to the 

original shape. 

Fractals are generally self-similar and independent of scale. There are many 

mathematical structures that are fractals; e.g. Sierpinski triangle, Koch snowflake, Peano 

curve, Mandelbrot set, and Lorenz attractor, as shown in Figure 2-1. Fractals also describe 

many real-world objects, such as clouds, mountains, coastlines, roots, branches of trees, 

blood vessels, and lungs of animals that do not correspond to simple geometric shapes. 

Benoit B. Mandelbrot gives a mathematical definition of a fractal as a set of which the 

Hausdorff Besicovich dimension strictly exceeds the topological dimension. The 

corresponding‎Latin‎verb‎“frangere”‎means‎"to‎break:"‎to‎create‎irregular‎fragment‎[8] 

 

Figure 2-1: Some fractal structures 

Mandelbrot is often characterized as the father of fractal geometry. Mandelbrot 

demonstrated that these early mathematical fractals have many features in common with 
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shapes found in nature. The best way to describe his contribution is to say that, indeed, 

some characters, such as the Cantor set, were already there but he went on to develop the 

language into which the characters could be embedded [14]. An algorithm of generating a 

fractal shape, Koch curve, is shown in Section ‎2.2.1. 

2.2.1. Generating Koch curve 

 To produce the geometric construction of Koch curve, begin with a straight line, which 

is called the initiator. Partition it into three equal parts. Then replace the middle third by 

equilateral triangle and take away its base. This completes the basic construction step. A 

reduction of this figure, made of four parts, will be reused in the following stages. It is 

called the generator. Thus, we now repeat, taking each of the resulting line segments, 

partitioning them into their equal parts, and so on. Figure 2-2 illustrates the first five steps. 

Self-similarity is built into the construction process, i.e. each part of the 4 parts in the thK  

step is again a scaled down version by a factor of 3 of the entire curve in the previous 

st1)(K   steps [14]. 

 

Figure 2-2: Von Koch curve at different iterations. 
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2.2.2. Object segmentation based on fractal features 

For segmentation and recognition of objects in natural scenes, there is always a need for 

features that are invariant to scale, rotation, and translation of the object. Fractal geometry 

provides fractal features that can be computed from image. Fractal dimension is the 

primary fractal feature that can be computed from images. Fractal dimension is scale, 

rotation, and translation invariant, so it is convenient as a feature for target recognition 

applications. There are several methods to estimate fractal dimension of a fractal surface. 

Some of these methods and its implementations will be discussed in chapter 3. Some rely 

on a specific fractal model, such as fractional Brownian motion, whereas others are 

applicable to a wider class of fractals, such as box counting method [15] 

 Another fractal feature related to fractal dimension but sensitive to scale is the Average 

Holder Constant (AHC). AHC can give an estimate to scale as well as range of an object. 

A technique for implementing AHC will be discussed in chapter 3.  

 A three fractal features that is scale, rotation, and translation invariant is the fractal 

signature. While fractal dimension is suitable for classifying objects with different 

roughness measure (H), it is not capable for classifying objects with the same roughness 

measure. Fractal signature, however, can classify objects which have the same roughness 

measure with the same fractal dimension. More depicted analysis and test results for the 

three fractal features will be presented through this thesis. The concept of fractal dimension 

is always related to the self-similarity property of a fractal shape. There are two types of 

fractal self-similarity, exact self-similarity in Section ‎2.2.3, and statistical self-similarity in 

Section ‎2.2.4. 

2.2.3. Exact self-similarity 

Self-similarity extends one of the most fruitful notions of elementary geometry: 

similarity. Two objects are similar if they have the same shape, regardless of their size. 

Corresponding angles, however, must be equal, and corresponding line segments must all 

have the same factor of proportionality. For example, when a photo is enlarged, it is 

enlarged by the same factor in both horizontal and vertical directions. Even an oblique, i.e. 

non-horizontal, non-vertical, line segment between points in the original will be enlarged 

by the same factor as shown in in Figure 2-3. We call this enlargement factor-scaling 

factor. The transformation between the objects is called similarity transformation [14]. 
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Figure 2-3: Self similarity of reduced objects and the original object. 

2.2.4. Statistical self-similarity 

 The exact self-similarity of Von Koch curve may be considered a crude model for a 

coastline, but it differs from the coastline in one significant aspect, upon magnification 

segments of the coastline look like, but never exactly like, segments at different scales. The 

concept of fractal dimension, however, can be also applied to such statistical self-similarity 

object. In a measurement of the length of a coastline, the more carefully one follows the 

smaller wiggles, the longer it becomes. Walking along a beach is longer than driving along 

corresponding coast highway. Moreover, each small section of a coastline looks like (but 

not exactly like) a larger portion. When‎ using‎ a‎ ruler‎ of‎ size‎ r‎ to‎measure‎ a‎ coastline’s‎

length, the total length equals the ruler size r times the number of steps of size r, N( r ), 

taken in tracing the coast Length. 

As with the snowflake, N(r) varies on the average as 
 

  
  and 

Length ∝ r ×
 

  
                   (2.1) 

Where D is the fractal dimension. With D > 1, as the size of the ruler, used to measure a 

coast, decreases, the length increases. The variation of apparent coast length with ruler size 

has been studied by Richardson as summarized in [8]. Real coastlines can, in fact, be 

characterized by fractal dimension D of about 1.5 to 1.25, close to that of Von Koch curve. 

The property that objects can look statistically similar while at the same time different 

in detail at different length scales, is the central feature of fractals in nature [16]. 
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2.3. Fractional Brownian motion (fBm) 

2.3.1. Brownian motion  

 Brownian motion is named after Botanist Robert Brown, who first observed the 

phenomena in 1827. Brownian motion is the motion of small particles caused by continual 

bombardment by other neighboring particles. We can see Brownian motion by observing a 

drop of water through a microscope. Small particles of dust and dirt in the water droplet 

always appear to be in constant random motion. The dust particles are constantly 

bombarded by millions of surrounding water molecules. The water molecules are always 

moving because of the thermal agitation caused by the water being room temperature. Due 

to the huge numbers of molecules in the water drop that are moving in virtually all 

directions, the average position of the dust particles remains the same. The dust particles 

are simply agitated back and forth as they are struck repeatedly. 

 To‎analyze‎the‎structure‎of‎Brownian‎motion,‎let’s‎consider‎what‎happens‎if‎we‎restrict 

the motion to one dimension. In other words, the particle can only move along the x-axis 

and can only be struck from the left or right. As a further simplification, assume that each 

impact moves the particle a fixed distance, known as l , to the left or right (each water 

molecule transfers the same momentum to the particle) and that only one impact occurs at 

a time. The particle starts at position 0 on the x-axis. Because the particle can be struck 

from the left or right with equal probability, we would expect the particle to remain at 0 

generally. We will probably find the average deviation of the particle position from the 

origin of greater interest. The most common way to measure the deviation is to measure 

the square of the distance of the particle position from its initial position. In probabilistic 

terms, the square of this distance is the variance of the particle position. You can easily 

show that the variance of particle position is simply n l l* * , where n is the number of 

times the particle is struck while it is being observed and l  is the distance of the particle 

from the origin. Assuming that the particle is bombarded at a constant rate (meaning n is 

proportional to the length of time you observe the particle), and then the variance of the 

particle from its initial position is proportional to t l l* *  where t is the observation time. 

So, the longer we observe the particle, the more likely the particle moves away from its 

initial position. Because the variance is a measure of the square of the particle-position 

change, the absolute value of the change in particle position is the square root of the 
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variance. In this case, the standard deviation of the particle position is equal to t l* . 

More formally, we can represent the position of the particle as a random variable X. A 

water molecule striking the particle can be considered as a sample of a random variable L, 

where L can take on only one of two possible values, either +l (struck from the left) or -l 

(struck from the right). So, we can write X as the sum of Li, where the Li are summed over 

all instances of the particle being struck. This results in equation (2.2). 

 ( )   ∑  ( ) 
                   (2.2) 

Where i=1, 2, 3,‎…,‎ n. 

Each L(i) is independent and identically distributed. It will take on the value +l or -l 

with equal probability. From equation (2.2), it can be seen that the mean value for X(n) is 0 

because the mean value of each Li is 0. Furthermore, the variance of each Li is (l*l). So, 

the variance of X is n*l*l, as explained earlier. Finally, for large n, the central-limit 

theorem of probability states that the distribution of X will be Gaussian because X is the 

sum of independent, identically distributed random variables. The assumption of large n is 

quite valid for any reasonable length of time.  

 Perhaps the most interesting feature of Brownian motion is the property that the 

variance in particle position increases linearly over the time of observation. Furthermore, 

this property holds, no matter when you start the observation. It is therefore independent of 

any particular starting time for the measurement. The distribution of particle position is 

always Gaussian, with a variance dependent solely on the length of your observation. 

Given an initial measurement of the variable X at a particular starting time, the position at 

any subsequent time is a random variable whose mean is the initial position, and whose 

variance is proportional to the difference in time from the initial position. Mathematically, 

this property reduces to the condition specified by equation (2.2), where Var(X) is the 

variance of the random variable X. 

Var X t X t K t t l l( ( ) ( )) * * *2 1 2 1    

                 t t Q Q2 1 * *        (2.2) 

Where k is proportionality constant. 

In (2.2), the number of particle strikes has been replaced by the observation time t 

because n is assumed to be proportional to t. The proportionality constant k simply 

provides the proper scaling between time measurements and particle strikes. In general, the 

factor k is simply absorbed into the l*l factor and denoted by a single constant Q*Q. It can 
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be easily verify (2.2) by substituting in the definition for X(t2) and X(t1), making the 

appropriate substitutions of time t for particle strikes [17]. 

2.3.2. Mathematical concept of fractional Brownian motion 

One of the most useful models for the random fractal found in nature (such as mountain 

terrain and clouds) has been the fractional Brownian motion of Mandelbrot and Van Ness 

[8]. It is an extension of the concept of Brownian motion that has played an important role 

in both physics and mathematics. Almost all natural computer graphics fractal simulations 

are based on an extension of fBm to higher dimension [16]. As can be seen from the sample 

traces of fBm in Figure 2-4, a fractional Brownian motion, 
HV t( ) , is a single valued 

function of one variable, t (usually time). In appearance, it is reminiscent of a mountain 

horizon or fluctuations of an economic variable. The scaling behavior of the different 

traces in Figure 2-4 is characterized by a parameter H in the range 0< H <1, when H is 

close to 0 the traces are roughest while those with H close to 1 are relatively smooth. H 

relates the typical change in V, )
12

( ttVV  , to the time difference 12 ttt   by the 

simple scaling law:  

 V t
H

      (2.3) 

 

Figure 2-4: Samples of fractional Brownian motion traces vs. t for different values of 

H and D from up to bottom. 

V
(t

) 

t, time 

H=0.2, D=0.8

H=0.5, D=1.5

H=0.9, D=1.1
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In the usual Brownian motion or random walk, the sum of independent increments or 

steps leads to a variation that scales as the square of the number of steps. Thus, H=1/2 

corresponds to a trace of Brownian motion. 

A generation of one dimensional fractal Brownian motion signals with different 

roughness measure (H) using the algorithm discussed before is shown in Figure 2-5. 

 

Figure 2-5: Fractal Brownian motion (fBm) signals with different H values. 

2.4. Neural Network (NN) Classifiers  

Artificial Neural Net is a network of many simple processors ("units"), each possibly 

having a small amount of local memory. Communication channels ("connections"), which 

usually carry numeric (as opposed to symbolic) data, encoded by any of various means 

connect the units. The units operate only on their local data and on the inputs they receive 

via the connections. The restriction to local operations is often relaxed during training [18] 

[19] [20]. 

Some NNs are models of biological neural networks and some are not. But historically, 

much of the inspiration for the field of NNs came from the desire to produce artificial 

systems capable of sophisticated, perhaps "intelligent", computations similar to those that 

the human brain routinely performs, and thereby possibly to enhance our understanding of 

the human brain.  
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 Most NNs have some sort of "training" rule, whereby the weights of connections are 

adjusted on the basis of data. In other words, NNs "learn" from examples (as children learn 

to recognize dogs from examples of dogs) and exhibit some capability for generalization 

beyond the training data.  

 NNs normally have great potential for parallelism, since the computations of the 

components are largely independent of each other. 

There are many kinds of NNs. Nobody knows exactly how many. New ones (or at least 

variations of existing ones) are invented every week. The main categorization of these 

methods is the distinction between supervised and unsupervised learning. In supervised 

learning, there is a "teacher" who in the learning phase “tells” the net how well it performs 

("reinforcement learning") or what the correct behavior would have been. In unsupervised 

learning the net is autonomous: it just looks at the data, it is presented with, finds out about 

some of the properties of the data set and learns to reflect these properties in its output. 

What exactly these properties are, that the network can learn to recognize, depends on the 

particular network model and learning method. Usually, the net learns some compressed 

representation of the data. Many of these learning methods are closely connected with a 

certain network topology. Some unsupervised learning NNs existing now are Additive 

Grasberg, Shunting Grasberg, Binary Adaptive Resonance, Discrete Hopfield, Continuous 

Hopfield, Discrete Bi-directional Associative Memory, Temporal Associative Memory, 

Kohonen Self-organizing, Competitive Learning, Learning Matrix, Linear Associative 

Memory  Optimal Linear Associative Memory, Sparse Distributed Associative Memory, 

Fuzzy Associative Memory, and Counter Propagation. Some supervised learning NNs are 

Boltzmann Machine, Perceptron, Back-Propagation, and Learning Vector Quantization. 

The work in this thesis is built on back-propagation supervised learning algorithm [10] 

[19] [20]. 

 A back-propagation NN in its basic form is composed of several layers of neurons; an 

input layer, one or more hidden layers, and an output layer. Each layer of neurons receives 

its input from the previous layer or from the network input. The output of each neuron 

feeds the next layer or the output the network. This is illustrated in Figure 2-6, which 

shows 3 layers NN. The first layer is an input layer that distributes the inputs to the hidden 

layer and does not have any activation function. 
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Figure 2-6: A simple 2x3x1 NN. 

The lines connecting the neurons represent the weights. Also shown are the bias nodes 

used to shift the neuron transfer function and improves the network performance. 

Mathematically the network computes: 

1. The output of the hidden layer (treating the bias as another input): 

   ( )  ∑( (   )   ( )      ) 

   ( )   ( ( )) 

2. For the output layer calculate: 

    ( )  ∑(  (   )   ( )      ) 

   ( )   (  ( )) 

Where: 

  ( ) - are the network inputs, 

O (k) - are the network outputs, 

W (i, j) - represents the weight connecting neutron i in layer 1 to neutron j in layer 2, 

W' (j, k) - represents the weight connecting neutron j in layer 2 to neutron k in layer 3, 

f(x) - is the neuron transfer function. For example a sigmoid: f (x)=1/(1+exp (-x)). 
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Training such a network involves using a database of examples which are values for the 

input and output of the NN. The NN would learn by adjusting the weights to minimize the 

error of the outputs. The error function is the objective of the minimization procedure and 

defined as: 

  ∑ ∑ √ (   )   (   )
     

   
    
                                   (2.6) 

Where: 

O(p,k) - is the NN output k for pattern p. 

t(p,k) - is the output training pattern p for output k. 

The reported RMS Error is calculated as:     √        

2.5. Moment Theory 

In general, moments describe numeric quantities at some distance from a reference 

point or axis. Moments are commonly used in statistics to characterize the distribution of 

random variables, and, similarly, in mechanics to characterize bodies by their spatial 

distribution of mass. The use of moments for image analysis is straightforward if we 

consider a binary or gray image segment as a two-dimensional density distribution 

function. In this way, moments may be used to characterize image segment and extract 

properties that have analogies in statistics and mechanics [21]. The two-dimensional 

Cartesian moment, order (p+q), of a density distribution function, f(x, y), is defined as  

m x y f x ypq

p q








 ( , )  dx dy     (2.7)  

The two-dimensional moment for a (N × M) discretized image, g(x, y), is 

m x ypq

p q

x

N

y

M











0

1

0

1

 g(x,y)      (2.8) 

A complete moment set of order n consists of all moments mpq  such as p q   n  and 

consists of (½)(n+1)(n+2) elements [21]. The use of moments for image analysis and 

object representation was inspired by [22]. Hu’s‎uniqueness‎theorem‎states that if f(x, y) is 

piecewise continuous and has no zero values only in the finite region of the (x, y) plane, 

then the moments of all orders exist. It can then be shown that the moment set { mpq } is 

uniquely determined by f(x, y) and conversely, f(x, y) is uniquely determined by { mpq }. 
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Since an image segment has finite area and, in the worst case, is piecewise continuous, 

moments of all orders exist and a moment set can be computed that will uniquely describe 

the information contained in the image segment. To characterize all of the information 

contained in the image segment, potentially infinite number of moment values is required. 

The goal is to select a meaningful subset of moment values that contain sufficient 

information to uniquely characterize the image for a specific application.  

 The low-order moment values represent well-known, fundamental geometric properties 

of a distribution or body. To illustrate these properties and show the applicability to object 

representation, we can consider the moment values of a distribution function that is binary 

and contiguous, i.e. a silhouette image of a segmented object. The moment values for this 

distribution may be easily explained in terms of simple shape characteristics of the object. 

 The definition of the zeroth order moment, { m00 }, of the distribution, f (x, y) 

m f x ypq 








 ( , )  dx dy     (2.9) 

represents the total mass of the given distribution function or image. When computes 

for a silhouette images for a segmented object, the zeroth moment represents the total 

object area. 

The two first order moments, { m10 , m01 }, are used to locate the Center Of Mass (COM) 

of the object. The coordinates of the COM, ( x y, ), is the intersection of the lines, x = x and 

y = y , parallel to the x and y axis respectively, about which the first order moment is zero. 

Alternatively, x = x  and y = y  represent lines where all the mass may concentrated 

without change to the first order moments about the x and y axes, respectively. In terms of 

moment values, the coordinates of the COM are 

00

10

m

m
x   and 

00

01

m

m
y  . 

The COM defines a unique location with respect to the object that may be used as a 

reference point to describe the position of the object within the field of the view. If an 

object is positioned such that its COM is coincident with the origin of the field of view, i.e. 

( x =0) and ( y =0), then the moments computed for that object are referred to as the central 

moments and are designated by pq  [21]. 
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Several techniques have been demonstrated that derives invariant features from 

moments for object representation. Their moment definition, the type of image data 

exploited, and the methods for deriving invariant values from the image moments 

distinguish these techniques. Various moment definitions are characterized by the choice 

of basic functions, which may be orthogonal or non-orthogonal polynomials, and the 

sampling of the image, which may be rectangular or polar. Most invariant characterization 

achieves object scale and translation invariance through feature normalization since this is 

easily accomplished based on the low-order moments. The difficulty in achieving object 

rotation invariance has inspired much of the moment research. 

 Five principle moment-based invariant feature techniques may be identified from the 

research to date. The earliest method, Moment Invariants, is based on non-linear 

combination of low-order two-dimensional Cartesian moments that remain invariant under 

rotation. Alternative moment definitions based on polar image representations, Rotational 

moments, were also proposed as a solution for their simple rotation properties. Moment 

definitions, utilizing uncorrected basis functions and orthogonal moments, were developed 

to reduce the information redundancy that existed with conventional moments. 

Furthermore, orthogonal moments have more simply defined inverse transform, and may 

be used to determine the minimum number of moments requires adequately reconstructing, 

and thus uniquely characterizing, a given image. Related to orthogonal moments, Complex 

Moments provide straightforward computation on invariant moments of an arbitrary order. 

Finally, Standard Moments are unique in a way they achieve invariance completely 

through image feature normalization in moment domain rather than relying on algebraic 

invariance. 
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CHAPTER 3  

FRACTAL FEATURE EXTRACTION 

3.1. Introduction 

The extracted feature vector should satisfy certain conditions to be a reliable feature 

vector. The fractal features are fractal signature (D), and NTFS. The concept of fractal 

dimension and its two versions are explained in details in Section 3.2. These dimensions 

are self-similarity dimension (Section 3.2.1) and compass dimension (Section 3.2.2). 

Algorithms for computing fractal dimension are explained in Section 3.3. The invariance 

behavior of fractal dimension under scale, rotation, and translation is provided in Section 

3.3.1. While fractal dimension is considered a good feature used in classification, it suffers 

from some drawbacks. Fractal dimension, alone, cannot discriminate between targets of 

close roughness measures. Fractal signature has a better capability than fractal dimension 

in classification tests. However, it suffers from sensitivity to noise and high dimensionality 

(feature vector has 180 elements). In this chapter, a NTFS is presented. The NTFS feature 

vector is composed of only five elements. 

As mentioned, earlier, in chapter 1, after segmentation stage, a set of features is 

computed for each object. The reliability of these features is essential for target 

classification. Most of the features used by researchers are geometric, topological, and 

spectral. Hu’s‎ moments‎ are‎ most‎ extensively‎ used‎ for‎ classification‎ of‎ aircraft,‎ ships,‎

ground targets, bridges, buildings, etc. In addition to the specific restrictions imposed by 

the classification techniques, the desirable properties of the features are invariance to the 

geometry (rotation, scale, and translation), computational efficiency, and extract ability 

under adverse conditions. The primary goal of feature selection stage is to obtain features 

which maximize the similarity of objects in the same class while minimize the similarity of 

objects in different classes. Features should meet computational efficiency requirements 

and reduce memory requirements of the classifier. Classification has been mostly done by 

a K-Nearest Neighbor algorithm, using projections, linear and quadratic classifiers, 

structural classifiers, tree-based classifiers, clustering techniques [1], and recently by using 

neural net classifiers and genetics [18] [20].  
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 The features used in this thesis are mostly based on fractal geometry such as fractal 

dimension and fractal signature. Moments invariant have also been used for performance 

evaluation purposes. A complete discussion and analysis for these features will be 

presented in the following subsections. 

3.2. Fractal Dimension Concept 

It has been found that the question of length; and likewise in other cases, of area or 

volume; can be ill posed. Curves, surfaces, and volumes can be so complex that these 

ordinary measurements become meaningless. However, there is a way to measure the 

degree of complexity by evaluating how fast length, or surface, or volume increases with 

respect to smaller and smaller scales. The fundamental idea is to assume that the two 

quantities length, or surface, or volume on the one hand, and scale on the other hand do not 

vary arbitrarily but rather are related by a law, which allows to compute one quantity from 

the other. The kind of law which seems to be relevant is a power law of the form (  ∝    ) 

that turns out to be very useful for the discussion of dimension. Dimension is not easy to 

understand. At the turn of the century it was one of the major problems in mathematics to 

determine what dimension means and which properties it possesses. Mathematicians have 

come up with some 10 different notions of dimension: topological dimension, Hausdroff 

dimension, fractal dimension, self-similarity dimension, box-counting dimension, capacity 

dimension, information dimension, Euclidean dimension, and more [16]. They are all 

related. Some of them, however, make sense in certain situations, but not at all in others, 

where alternative definitions are more helpful. Sometimes they all make sense and are the 

same. Sometimes several make sense but do not agree. The details can be confusing, even 

for a mathematician. Thus we will restrict ourselves to an elementary discussion of three of 

these‎ dimensions‎ which‎ are‎ special‎ forms‎ of‎ Mandelbrot’s‎ fractal‎ dimension.‎ These‎

dimensions are, self-similarity dimension, compass dimension, and box-counting 

dimension [14]. 

3.2.1. Self-similarity dimension 

 A structure is said to be (strictly) self-similar if it can be broken down into arbitrarily 

small pieces, each of which is a small replica of the entire structure. Here it is important 

that small pieces can in fact be obtained from entire structure by a similarity 
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transformation. The best way to think of such a transformation is what we obtain from 

photocopier with a reduction feature. For example, if we take a Koch curve and put it on a 

copying machine, set the reduction to 1/3 and produce four copies, then the four copies can 

be pasted together to give back the Koch curve. It then follows that if we copy each of the 

four reduced copies by a reduction factor of 1/3 four times, i.e. produce 16 copies which 

are reduced by a factor of 1/9 compared to the original. With an ideal copier, this process 

could be repeated infinitely often. Figure 3-1 displays a photocopier with reduction factor 

of 1/3. 

 

Figure 3-1: A special photocopy machine with reduction factor of 1/3. 

If a structure is self-similar, it would not necessary be fractal. Example include a line 

segment, a square, or a cube. Each can be broken into small copies, which are obtained by 

similarity transformations as in Figure 3-2. These structure, however, are not fractals. 

 Here we see that the reduction factor is 1/3, which is, of course, arbitrary. We could as 

well have chosen 1/2, 1/7, or 1/354. In the latter the reduction factors (if any exist) are 

characteristic. For example, the Koch curve only admits 1/3, 1/9, 1/27, etc. The point, 

however, is common to all strictly self-similar structures (fractal or not). There is a relation 

between the reduction factor and the number of scaled down pieces into which the 

structure is divided. Apparently, for the line, square, and cube there is a nice power law 

relation between the numbers of pieces “a”‎and the reduction factor “s”. This is the law 

a
s

D
1

,       (3.1) 

Where D=1 for the line, D=2 for the square, and D=3 for the cube. In other words, the 

exponent in the power law agrees exactly with those numbers, which are known as 
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topological dimensions of the line, square, and cube. If we look at the Koch curve, 

however, the relation of a=4 to s=1/3 and a=16 to s=1/9 is not so obvious. 

 

Figure 3-2: Self-similarity of line, square, and cube. 

We postulate that equation (3.1) holds any way. In other words, 4 3
D

. Taking 

logarithm on both sides, we get 

           , 

or equivalently 

D  
log

log
. .

4

3
12619  

If we take smaller pieces, as with a reduction factor of 1/9, we would postulate that

16 9
D

, or  

           , 

Or   D     
log

log

log

log

log

log

log

log
. .

16

9

4

3

2 4

2 3

4

3
12619

2

2  

And as a general rule, D

K

K
log

log

4

3
 for the Koch curve. 

Hence the power law relation between the number of pieces and the reduction factor 

gives the same number D, regardless of the scale we use for the evaluation. D is a number 

between 1 and 2, that we call the self-similarity dimension of the Koch curve. More 

generally, given a self-similar structure, there is a relation between the reduction factor s 

and the number of pieces a into which the structure can be divided; and that is  
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a
sD
1

 

or equivalently 

D
a

s


log

log 1
       (3.2) 

D is called the self-similarity dimension [16]. 

3.2.2. Compass dimension 

Mandelbrot‎in‎1961‎came‎across‎measurements‎for‎determining‎the‎length‎of‎Britain’s‎

west coast and the Spanish-Portuguese land frontier. Based on that results Richardson had 

noticed that the results depended heavily on the scale of the map used. A map with 1 cm 

corresponding to 100 km (scale 1:10 000 000) simply shows less detail than a hiking map, 

in which 1 cm corresponds to 1 km (scale 1: 100 000). As we see more detail, the coastline 

gets longer. The same phenomenon can also be expressed by considering one map only, on 

which all detail can be seen, but measuring a smaller measuring unit each time. We could 

make a first rough estimate with a measuring unit of 100 km, and then scale this down by a 

factor of 10 each time. Of course the choice of a factor is rather arbitrary. The measuring 

unit could be reduced just as well by a factor of 2 or 3 each time. Figure 3-3 shows what 

Richardson actually found. In the figure, the measuring unit is plotted horizontally on a 

logarithm scale. We will indicate it by a. As we move to the left, a value decreases. The 

measured length s has been plotted vertically, also in a logarithm scale. The resulting 

lengths are indicated by small circles. The fact that the result turns out to be roughly on a 

straight line is very remarkable. For the west coast of Britain this can be expressed by the 

formula 

                      

   being the length when using a measuring unit of 1 km. The number 0.22 measures the 

slop of the line of results. 

The formula defines a linear relationship between the logarithm of the measuring unit 

and the resulting length of the coastline. Without logarithms, this can be expressed as 

22.0

1

1










a
ss  
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This shows what happens when we reduce a. If a is reduced by a factor of 32, s will 

double. In our mind we can continue reducing further and further. Eventually this would 

lead us to conclude that the west coast of Britain is infinitely long [8]. 

 

Figure 3-3: Results of Richardson’s experiment 

The third and final version of Mandelbrot's fractal dimension is the box-counting 

dimension. This concept is related to the self-similarity dimension. It gives the same 

numbers in many cases, but also different numbers in some others. So far, we have seen 

that we can characterize structures, which have some very special properties such as self-

similarity, or structures like coastlines, where we can work with compass of various 

settings. But a problem is when a structure is not at all self-similar and as irregular as in 

Figure 3-4. In such case, there is no curve which can be measured with compasses; and 

there is no self-similarity, though there are some scaling properties. The box-counting 

dimension proposes a systematic measurement, which applies to any structure in the plane 

and can be readily adapted for structures in space. The idea is very much related to the 

coastline measurements. We put the structure onto a regular mesh with mesh size s, and 

simply count the number of grid boxes which contain some of the structure. This gives a 

number denoted by N. Of course, the number will depend on our choice of s. Therefore, we 

write N(s). Now change s to progressively smaller sizes and count the corresponding 

number N(s). Next we make a 
   ( ( ))

   (
 

 
)
   diagram as in figure 3-3. We then try to fit a 

straight line to the plotted points of the diagram and measure its slope D. This number is 

the box-counting dimension [14].  
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Figure 3-4: An irregular structure with some scaling properties. 

3.3. Fractal dimension computation  

As discussed in chapter 2, a fractal Brownian function VH (t) is a single valued function 

of one variable, where t is usually a time. A parameter H is in the range 0<H<1, and if H is 

close to 0, the traces are roughest, while those with H close to 1 are relatively smooth. H 

relates the typical change in V, 

)()( 12 tVtVV  ,  

to the time difference 12 ttt   by the simple scaling law  

 V t
H

        (3.3) 

Whereas the self-similar shapes repeat (statistically or exactly) under a magnification, 

the fBm traces repeat statistically only when the t and V directions are magnified by 

different amounts. If t is magnified by a factor r (t becomes rt), then V must be magnified 

by a factor  r H  (V becomes r VH  ). The variance of variations is proportional to the 

increment value as:  


2 2

( ) ( ) V t
H

  . 

The variations of a fBm V t V tH i H i( () )  1  has a Gaussian distribution each with variance: 

        2
1 1

2( ( ) ( )) ( )V
H it V

H it it it
H     .     

then the standard deviation of the variations is 
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 ( ( ) ( )) ( )V
H it V

H it it it
H    1 1     (3.4) 

This relation is known as T
H

 law where  

T
H

it it
H

  ( )1   

The fractal dimension D, is a real value greater than the topological dimension E. The 

relationship between D, E and the roughness measure H is given by: D = E+1-H. 

For 1-D, E=1 and D=2-H. For 2-D, E=2 and D=3-H, [8] . The fractal dimension is scale-, 

rotation-, and translation-invariant. 

The fitted line between the logarithm of the standard deviation, of the differences in 

gray levels, between pixels separated by specified vectors, and the logarithm of the vector 

lengths, gives H. 

According to equation (3.4), we compute the standard deviation of the fractal curve 

variations using specified point spacing. The logarithm of the standard deviation is given 

by equation 3.5. 

)log()log()log( i iH THC        (3.5) 

By fitting the relation between the logarithm of the point spacing and the logarithm of 

its corresponding standard deviation, we get D [9] [10].  

The signal in Figure 3-6 shows a random variable representing the radii profile of the 

aircraft viewed in Figure 3-5, and the graph in Figure 3-7 shows the              relation 

which depends on (3.5). The slope of the line represent the roughness measure (H), the 

fractal dimension D=2-H. In our case (Figure 3-5), H=0.9 and D=1.1 

 

 

Figure 3-5: The front view of Mirage 2000. 
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Figure 3-6: The Radii profile of the front view of Mirage 2000. 
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Figure 3-7: Law verification and calculation of fractal dimension (D). 

Fractal dimension D is scale, translation, and rotation invariant. 

3.3.1 Invariance of fractal dimension 

3.3.1.1 Scale invariant 

 To prove that fractal dimension is scale invariant, for a fractional Brownian motion 

functionV tH ( ) . Let V tH



( )  be the scaled version of V tH ( ) by scale factor  . From an 

elementary geometry construction  

 V t T V t V t V tH H H H( ) ( ) ( ( )         + T  ) -      (3.6) 

Then, from equation (3-4) and equation (3-5) 

        CHV t T V t T C TH H

H H

H

H( ) ( ) ( )    1   (3.7) 

By fitting the relation between the standard deviation of the variations of the scaled 

fBm, against the points spacing, the slope of the fitted line is H, remains the same for the 
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original version. This means that, the fractal dimension D is unchanged, i.e., scale 

invariant. 

3.3.1.2 Translation invariant 

 The roughness measure H is estimated by the slope of the best fitted line of the relation 

between the logarithm of the point spacing values and the logarithm of the standard 

deviation of the variation of the signal corresponding to the point spacing value. When the 

signal is shifted or translated, the variations are still the same, and then the standard 

deviation values remains unchanged, so the estimated value of H remains constant for the 

original and the shifted signals. This means that D is translation invariant. 

3.3.1.3 Rotation invariant 

 The signal that is rotated by a specified angle is the same as multiplying the variations 

values between signal amplitudes by a constant value. From the standard deviation 

properties, the value of the standard deviation of the rotated signal is the value of the 

original signal multiplied by a constant value. So the slope of the best fitted line between 

the logarithm of the point spacing values and the logarithm of the standard deviation of the 

variations remains unchanged. This means that the fractal dimension D is also rotation 

invariant. 

Figure 3-8 and Figure 3-9 show a computed fractal dimension using the variance scaling 

method for different scaling and rotation angles for the front view of Mirage 2000 shown 

before. 
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Figure 3-8: Fractal dimension at different scale percentage. 
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Figure 3-9: Fractal dimension at different rotational angles. 

It’s‎clear‎that‎the‎fractal‎dimension‎is‎invariant under rotation, translation, and scaling. 

3.4. Fractal Signature 

 Fractal dimension is a good feature for discriminating classes that have different 

roughness but in the cases of the nearly same roughness measure, fractal dimension is not 

enough. Another fractal feature called fractal signature, which has a better capability for 

classifying signals with the same fractal dimension, has been used. 2-D shape boundary 

may be modeled as an fBm. If we consider the Boundary B (see Figure 3-10), then a 

function: 

   (B, ) E[ r(G ) r( ) ]        

where E[ r( ) r( ) ]     is the expected value of the difference in radius (from 

centroid c) for any two points separated by an angle , where E denotes the expectation 

operator [23]. 
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Figure 3-10: Radii profile for a boundary of a shape. 

When a region is extracted from an image, we get a boundary that is made up of a list of 

discrete points. Then we can scan the list and generate a list of polar coordinates  

  Ninr
ii

,....,2,1),,(
min

  

where in  is an integer, and min
  is constant. Then 

min
/2 N .                                                    

We can then calculate ),(  B  for integral multiples k of 
min

  by scanning the polar list.  

 
ji

ji
rrkB

,

),(
min

        

Where knn ji  . 

Clearly ),(  B will have a period 2  and ),(),(   BB , so we need 

only to look at values of   between 0 and   to get a complete signature [23].  

Figure 3-11 shows the signature of 3 different shapes. These three curves are clearly 

distinct. 

Since ),(  B  is measured relative to the centroid of the shape, the fractal signature is 

invariant under translation. The measure used involves the difference of radii, so the 

signature is both rotation and reflection invariant.  

Scaling of the shape would result in a similar scaling of the   values and thus a 

constant offset in the graph. In order to overcome this, the signature can be normalized by 

dividing by the mean radius i.e.  

      ( , ) E[ r( ) r( ) ] / E(r( ))      

Then the fractal signature is translation, rotation and scale invariant. 
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Figure 3-11: Fractal signatures for simple shapes. 
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CHAPTER 4  

FRACTAL-BASED APPROACH FOR TARGET 

RECOGNITION 

This chapter addresses the problem of three-view target classification. A procedure for 

using noise-tolerant fractal feature vector to identify a 3-D object from a 2-D image 

recorded at an arbitrary viewing angles and scale is presented in Section 4.3. Our approach 

is based on extraction of global image information from one view using regular moments 

in Section 4.4. 

A procedure for using noise-tolerant fractal feature vector to identify a 3-D object from a 

2-D image recorded at an arbitrary viewing angles and scale is presented. Three-view 

targets at arbitrary viewing angles and range are presented to a three-layer back 

propagation neural net classifier in Section 4.5. The proposed procedure is used to classify 

five different aircraft types. The five class types under study are Mirage 2000, B 57, Beech 

craft, F 15, and Tu-160. Each class type is represented by three views (front, side, top). 

This results in fifteen subclasses. A comparative study between the proposed fractal based 

classification scheme and a conventional classification scheme, the moment invariants with 

its 7 invariant nonlinear combinations, is performed. The classification results under 

normal noise effect have shown superior performance of the proposed scheme. 

4.1. Three-View Fractal Target Recognition  

A set of five class type of aircraft (Mirage 2000, B 57, Beech craft, F15, and Tu-160) is 

used in this study. Each class type is represented by three views (front, side, top). The 

results in fifteen subclasses are shown in Figure 4-1. The boundary of each aircraft has 

been shown to have fractional Brownian motion behavior. The verification of this property 

for Mirage 2000 side view (for example) is shown in Figure 4-2, and Figure 4-3. Three-

view targets at arbitrary viewing angles and range have been presented to a three-layer 

back propagation neural net classifier. 
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Figure 4-1: The views of the five classes of aircraft under study. 
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Figure 4-2: T
H

verification for Mirage 2000 side view, RMSE=0.02. 
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Figure 4-3: Histogram for mirage 2000 side view boundary. 

4.2. Noise-tolerant fractal signature 

The fractal signature feature suffers from two disadvantages. The first disadvantage is 

the length of the feature vector, about 180 elements. The second disadvantage is its 

sensitivity to noise. Figure 4-4 is adapted from [23], and shows the noise effect on the 

fractal signature compared to Fourier descriptors. The effect of noise on fractal signature is 

more than the noise effect on Fourier descriptor. 

To overcome these disadvantages, a polynomial fit for the fractal signature is 

performed, to produce an abstracted fractal signature. Figure 4-5 and Figure 4-6 show the 

effect of noise on the fractal signature, and the abstracted fractal signature. If we compare 

Figure 4-5 and Figure 4-6 we will find that the abstracted fractal signature curves  is more 

compact and have less deviation that the fractal signature. This can be easily interpreted as 

the abstracted fractal signature is more robust under noise than the fractal signature. The 

graph in Figure 4-6 is the fractal signature in the form 

y a x a x a x a x a    4

4

3

3

2

2

1 0 . 

For example, the parameters of the fractal signature of some aircraft views are shown in 

Table 4-1 
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Table 4-1: Fractal abstracted signature of some aircraft views. 

Aircraft view a4 a3 a2 a1 a0 

Mirage 2000 Side View 0.000001 -0.00019 -0.02596 5.866685 8.525139 

B 57 Side View 0 -0.00004 -0.04343 6.642889 0.190537 

Beech Craft Side View 0.000001 -0.00022 -0.01257 4.519167 8.822295 

F 15 Side View 0.000001 -0.00019 -0.02612 6.031808 6.341545 

TU 160 Side View 0 0.000014 -0.04658 6.462349 2.879691 

 

 

Figure 4-4: Robustness of signature and Fourier descriptors. 
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Figure 4-5: Fractal signature with different noise values. 
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Figure 4-6: Abstracted fractal signature with different noise values. 

4.3. Moments invariant 

 The first significant work considering moments for pattern recognition was performed 

by [22]. HU derived relative and absolute combinations of moments values that are 

invariant with respect to scale, position, and orientation; based on theories of invariant 

algebra. Size invariant moments are derived from algebraic invariant but can be shown to 

be the result of simple size normalization. Translation invariance is achieved by computing 

moments that have been translated by negative distance to the centroid. The set of absolute 

moment invariant consists of a set of non-linear combinations of central moment values 

that remain invariant under rotation. Hu defines seven values, computed from central 

moments through order three, that are invariant to object scale, position, and orientation 

[21]. 

For a digital image stored in a two-dimensional array, the moment of order (p+q) is 

given by: 

mpq
p

x
y

N

x

M q
y f x y











0

1

0

1
( , ) , p, q=0,1,…….,   (4.11) 

Where M and N are the horizontal and vertical dimensions of the image, respectively; 

and f(x, y) is the intensity (gray level) at a point (x, y) in the image. 

From equation (3.8), the zero-order moment 
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
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is the sum of pixel values of an image. If f(x, y) is a binary image, then its zero-order 

moment represents its area. The centroid, called the center of gravity, is computed as:

00

10

m

m
x  , 

00

01

m

m
y        

The centroid is the balance point of the image function f(x, y) such that the mass of f(x, 

y) left and right of x ; and above and below y , is equal. The central moments of order (p + 

q) are defined as follows: 

pq
p

x x
y

N

x

M q
y y f x y 









 ( ) ( ) ( , )

0

1

0

1
    (4.12) 

Hu defines seven values, computed from central moments through order three, that are 

invariant to object scale, position, and orientation. In terms of the central moments, the 

seven moment invariant are given by 

M
1 20 02    
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2 4 2
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Figure 4-7 and Figure 4-8 show moment invariants parameters for Mirage 2000 front 

view for different scaling and rotational angles, respectively. 
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Figure 4-7: Moments invariant parameters for different scaling values. 
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Figure 4-8: Moments invariant parameters for different rotational angles. 

4.4. Classification results and discussion 

Classifier performance evaluation has been performed with 40 samples for each 

subclass in the presence of noise. The classification results have been tabulated in a 

confusion matrix format. The average percentage of the correct recognition is about 98%. 

A comparative study between the proposed fractal based classification and a classical 

classification, the moments invariant with its 7 invariant nonlinear combination of central 

moments is performed [24] [25] [21]. The classification results using moment invariants 

has been performed using 30 samples from each class with total of 450 samples from the 

same set (shown in Table 4-2). The average percentage of correct recognition is about 

95%. The performance of the two classifiers has been evaluated under noise effect.  
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A‎normal‎noise‎with‎zero‎mean‎and‎variable‎variance‎is‎added‎to‎the‎aircraft’s‎views. 

Figure 4-9 depicts aircraft view with different noise levels. A representative set of clean 

and noisy aircraft images is shown in Figure 4-10. Classification results under noise effect 

are depicted in Figure 4-11. The proposed noise-tolerant fractal signature provided superior 

performance over moment invariants method. Under noise effect of standard deviation 

equal two, the percentage of correct recognition has been about 90% for the proposed 

system, and about 40% for the moment invariants method.  

 

Figure 4-9: B57 front view with normal noise of zero mean and standard deviation 

values: 1, 2, 3, 4, 5 from left to right respectively. 

 

Figure 4-10: Representative example of clean and noisy test images. 
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Table 4-2: Confusion matrix of the results of neural net classifier with abstracted 

fractal signature input. 

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Recognition 

Rate 

1 40 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 

2 0 38 0 0 0 0 0 0 0 0 0 0 0 0 0 0.95 

3 0 0 40 0 0 0 0 0 0 0 0 0 0 0 0 1 

4 0 0 0 40 0 0 0 0 0 0 0 0 0 0 0 1 

5 0 0 0 0 40 0 0 0 0 0 0 0 0 3 0 1.075 

6 0 0 0 0 0 40 0 0 0 0 0 0 0 0 0 1 

7 0 0 0 0 0 0 40 0 0 0 0 0 0 0 0 1 

8 0 0 0 0 0 0 0 40 0 0 0 0 0 0 0 1 

9 0 0 0 0 0 0 0 0 40 0 0 0 0 0 0 1 

10 0 0 0 0 0 0 0 0 0 40 0 0 0 0 0 1 

11 0 2 0 0 0 0 0 0 0 0 39 0 0 2 0 1.075 

12 0 0 0 0 0 0 0 0 0 0 0 40 0 0 0 1 

13 0 0 0 0 0 0 0 0 0 0 0 0 40 0 0 1 

14 0 0 0 0 0 0 0 0 0 0 0 0 0 35 0 0.875 

15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 40 1 

% 

Correct 

Recog. 

100 95 100 100 100 100 100 100 100 100 98 100 100 87.5 100  
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Figure 4-11: Classification results of abstracted fractal signature and moments 

invariant under different degrees of noise. 

The system performance has been evaluated according to the set of training and learning 

three-view samples shown in Figure 4-1, and the system has achieved the percentage of 

correct recognition as shown in Table 4-2. The system has shown tolerant and reliable 

performance under noise effect and other arbitrary views derived and resulted from the 

original general views (translation, rotation, scaling). 

The system can be extended to accommodate other intermediate views between the 

basic three-view samples to cover all target maneuver resulted in a 3-D shape specific 

views. The same concept and approach will be applied, except that the target will be 

defined by n views instead of 3 views.  

 The system has been tested against new views generated from 3-D rotation (pitching, 

rolling) as shown in Figure 4-12. Table 4-3 shows the result of recognition for different 

pitching, and rolling. 
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Table 4-3: Recognition results for tilt and yew operations. 

No Roll Pitch Result Of Recognition 

1 20 0 TRUE 

2 40 0 FALSE 

3 60 0 FALSE 

4 0 20 TRUE 

5 0 40 TRUE 

6 0 60 TRUE 

7 20 0 TRUE 

8 40 0 TRUE 

9 60 0 TRUE 

10 0 20 TRUE 

11 0 40 TRUE 

12 0 60 FALSE 

 

 

Figure 4-12: Aircraft views samples at different orientations. 
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CHAPTER 5  

CONCLUSIONS 

5.1. Conclusions  

In this thesis the problem of automatic target recognition based on fractal geometry has 

been addressed. The following main problems have been researched:  

 (a) Study of the fractional Brownian motion behavior of three-view (Top, Side, Front) 

of five types of aircraft (Mirage-2000, B57, Beech Craft, F15, TU-160), with total of 

fifteen images, as well as the background objects (mountain, and tree lines), 

(b) Fractal feature extraction with focus on: fractal dimension and noise-tolerant fractal 

signature, 

 (c) Application of neural net for classification of aircraft views based on the noise-

tolerant fractal signature feature vector, 

(d) A comparative study among the following: The abstracted noise-tolerant fractal 

signature, fractal signature & Fourier descriptors, and moments invariant in the 

classification robustness, especially under different levels of noise. 

5.2. Future Research Plan 

One major potential research area is the extension of the three-view target recognition to 

cover 3-D Aircraft images, and respond with the target class in an animated and simulated 

flight-maneuvering scenario.  
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