
i

Use Authorization

In presenting this dissertation in partial fulfillment of the requirements for an advanced degree at

Idaho State University, I agree that the Library shall make it freely available for inspection. I

further state that permission to download and/or print my dissertation for scholarly purposes may

be granted by the Dean of the Graduate School, Dean of my academic division, or by the University

Librarian. It is understood that any copying or publication of this dissertation for financial gain

shall not be allowed without my written permission.

 Signature: ________________________________

 Date: ____________________________________

ii

DEVELOPMENT OF A REAL – TIME,

 ARTIFICIAL NEURAL NETWORK BASED SEMG CLASSIFICATION ALGORITHM

FOR MOTION IDENTIFICATION

By

Asib Mahmud

A thesis

submitted in partial fulfillment

of the requirements for the degree of

Master of Science in the Department of

Measurement and Control Engineering

Idaho State University

May 2018

iii

Committee Approval

To the Graduate Faculty:

The members of the committee appointed to examine the thesis of Asib Mahmud find it

satisfactory and recommend that it be accepted.

 Dr. Marco P. Schoen,

 Major Advisor

 Dr. Alba Perez Gracia,

 Committee Member

 Dr. Steve C. Chiu,

 Graduate Faculty Representative

iv

Acknowledgment

Behind the scene of this achievement, there stand several people who made my success possible.

I felt very privileged and humbled to have their support for this work. First, my most profound

acknowledgment to my family, without their support, love, and motivation this accomplishment

wouldn’t be possible for me. No matter how hard I try, it seems impossible for me to see a way to

return the favor to them. My mother, she never stopped me from chasing my goals with her warm

wishes and beautiful smile for a long life of full of success even how hard the situation is. My

father, he has never stopped me providing the support and guidance I needed to get through this

stage of my life. My parents never failed to demonstrate an example of strength, dedication, and

fondness. Also, I would like to express my love to my sister and brother in law whose support is

always an encouragement to me.

My deepest gratitude to my major advisor, Professor Marco Schoen. Despite his busy schedule, he

never hesitated me to provide guidance. In any of my stressful situations, I found him always

encouraging, motivating and leading me throughout the degree. Here I am writing my thesis with

great happiness because of his guidance and support. Dr. Schoen isn’t only my major advisor; he

is instead a role model and a good friend. I am honored to work under his supervision, without that

I would not have learned the knowledge which is making me feel proud today.

I would like to extend special thanks to my committee members, Dr. Steve Chiu and Dr. Alba

Perez. As I remember, from the beginning of my graduate school, I found Dr. Steve very friendly

and inspiration while studying and working. He is one of the first guys who make me feel

comfortable in the new environment. Besides, I cannot wrap up my acknowledgments, without

thanking Dr. Alba Perez. The mechatronics course which I have taken under her helps me to give

the knowledges which help me many ways while doing my thesis. Also, I would like to thank both

v

for providing me financial support through CPI. I also appreciate the help and co – operation of

other graduate students and office staff at College of Science and Engineering, Idaho State

University for this accomplishment.

vi

TABLE OF CONTENTS

LIST OF FIGURES .. IX

ABSTRACT ... XII

CHAPTER 1: INTRODUCTION ... 1

1.1PROBLEM STATEMENT .. 1

1.2 LITERATURE REVIEW ... 1

1.3 THESIS GOAL .. 3

1.4 ORGANIZATION OF THE THESIS ... 5

CHAPTER 2: BIOLOGICAL BACKGROUND ... 6

2.1 INTRODUCTION OF AN EMG SIGNAL: ... 6

2.2 SIGNAL ORIGIN .. 7

2.3 EMG ELECTRODES AND THEIR CATEGORIES: ... 8

2.3.1 Needle electrodes .. 9

2.3.2 Fine Wire Electrode .. 9

2.3.3 Surface EMG Electrode .. 10

2.3.3.1 Gelled EMG Electrodes ... 10

2.3.3.2 Dry EMG Electrodes.. 11

2.4 EMG ELECTRODE PLACEMENT .. 12

2.5 EMG SIGNAL ACQUISITION CIRCUITRY ... 14

2.5.1 Monopolar configuration ... 14

2.5.2 Bipolar Configuration .. 15

2.5.3 Multipolar Configurations .. 15

2.6 RAW EMG SIGNAL ... 16

CHAPTER 3: NEURAL NETWORK .. 17

3.1 OVERVIEW .. 17

3.2 ARTIFICIAL NEURAL NETWORK ... 17

3.3 BIOLOGICAL INSPIRATION .. 19

3.4 NEURON MODEL .. 20

vii

3.5 Backpropagation Neural Network ... 23

3.5.1 Levenberg – Marquardt Backpropagation ... 24

3.5.2 Bayesian Regularization Backpropagation .. 32

3.5.3 Scaled Conjugate Gradient Backpropagation .. 36

CHAPTER 4: EXPERIMENTAL SETUP ... 39

4.1 SURFACE EMG CIRCUIT DESIGN .. 39

4.1.1 The first stage ... 39

4.1.2 Second Stage ... 40

4.1.3 Third Stage ... 42

4.2 SHORTCOMINGS OF PCB AND THE POWER SUPPLY ... 45

4.3 ELECTRODES PLACEMENT AND ESTABLISHING SEMG SIGNAL ... 48

CHAPTER 5: IMPLEMENTATION AND VALIDATION OF ANN .. 50

5.1 IMPLEMENTATION OF REAL – TIME CLASSIFICATION SIMULINK™ MODEL 50

5.1.1 Connecting Arduino to Simulink™ through serial port: .. 52

5.1.2 Overlapping Sliding Window: .. 54

5.1.3 Checking the Buffer blocks for creating delays: .. 54

5.1.4 Classification .. 56

5.1.4.1 Integrated EMG (IEMG).. 56

5.1.4.2 Mean Absolute Value (MAV) ... 57

5.1.4.3 Mean Absolute Value Slope (MAVSLP) .. 57

5.1.4.4 Simple Square Integral (SSI) ... 57

5.1.4.5 Root Mean Square (RMS) ... 57

5.1.4.6 Wavelength Length (WL) .. 58

5.1.4.8 Slope Sign Change (SSC) .. 58

5.1.4.9 Willison Amplitude (WAMP).. 59

5.1.4.10 Mean .. 59

5.2 CONFIGURATION PARAMETERS FOR RUNNING THE MODEL IN SIMULINK: 60

5.3 TRAINING ARTIFICIAL NEURAL NETWORK (ANN): .. 60

5.4 REAL – TIME IDENTIFICATION ... 69

CHAPTER 6: DISCUSSION AND RESULT .. 71

viii

6.1 BUILDING REAL – TIME RANDOM OUTPUT VALUES ... 72

6.2 CLASSIFICATIONS ... 73

6.3 TRAINING ARTIFICIAL NEURAL NETWORK(ANN) ... 77

6.4 IDENTIFICATION AND RESULT ... 85

CHAPTER 7: CONCLUSION AND FUTURE WORKS .. 90

7.1 CONCLUSION .. 90

7.2 FUTURE WORK ... 91

REFERENCES ... 93

APPENDIX ... 97

SENSOR – BASED LED EXAMPLE EXPERIMENTATION SETUP ... 97

CLASSIFICATIONS ... 100

REAL – TIME SEMG IDENTIFICATION EXPERIMENTAL SETUP .. 109

ARDUINO CODE: ... 110

MATLAB®
 CODE TO TRAIN THE ANN:.. 111

ix

LIST OF FIGURES

FIGURE 2.1: A SCHEMATIC IMAGE OF PRIMARY MOTOR CONTROL MECHANISMS, MOTOR UNIT AND

ITS COMPONENTS [11] ... 8

FIGURE 2.2: A NEEDLE EMG ELECTRODE [14] ... 9

FIGURE 2.3: A FINE WIRE EMG ELECTRODE [15] ... 10

FIGURE 2.4: GELLED EMG ELECTRODES [15] ... 11

FIGURE 2.5: AN EXAMPLE OF DRY EMG ELECTRODE [15] .. 11

FIGURE 2.6: FRONTAL VIEW OF ANATOMICAL POSITIONS OF SELECTED SITES [17] 13

FIGURE 2.7: MONOPOLAR SIGNAL ACQUISITION TECHNIQUE [15] ... 14

FIGURE 2.8: BIPOLAR CONFIGURATION [15] .. 15

FIGURE 2.9: THE RAW EMG SIGNAL OF THREE CONSTRUCTION BURST OF THE BICEPS [17] 16

FIGURE 3.1: THE BASIC WORKING PRINCIPLE OF AN ANN [18] .. 18

FIGURE 3.2: SCHEMATIC DIAGRAM OF TWO BIOLOGICAL NEURONS [19] .. 19

FIGURE 3.3: SINGLE – INPUT NEURON MODEL [19] ... 20

FIGURE 3.4: MULTIPLE – INPUT NEURON [2] .. 21

FIGURE 3.5: A LAYER OF NEURONS EACH WITH MULTIPLE INPUTS AND ONE OUTPUT [19]. 21

FIGURE 3.6: MULTIPLE – LAYERS OF NEURON MODEL [19]. HERE ONLY THREE LAYERS ARE SHOWN.

HOWEVER, THE NUMBER OF LAYERS CAN BE EXTENDED AS DESIRED...................................... 22

FIGURE 3.7: AN EXAMPLE OF A RECURRENT NEURAL NETWORK(RNN) [19] 22

FIGURE 3.8: MECHANISM CHART OF BACKPROPAGATION [21]. HERE, AN ERROR VALUE IS CREATED

BASED ON ‘N’ INPUT NEURONS AND ‘M’ OUTPUT NEURONS AND THEN BACKPROPAGATE(S)

THROUGH THE HIDDEN LAYER. THROUGH THIS PROCESS, THE ERROR IS MINIMIZED BY

UPDATING THE WEIGHTS OF THE HIDDEN AND OUTPUT NEURONS .. 23

FIGURE 4.1: INSTRUMENTATION AMPLIFIER [27] ... 39

FIGURE 4.2: UAF42 CIRCUIT [28] .. 40

FIGURE 4.3: A NOTCH FILTER [27] ... 41

FIGURE 4.4: HIGH – PASS FILTER [27] .. 42

FIGURE 4.5: LOW – PASS FILTER [27] ... 43

FIGURE 4.6: BUFFER AMPLIFIER ALONG VOLTAGE SHIFT CIRCUIT [27] ... 43

FIGURE 4.7: FINAL IMPLEMENTATION OF A PCB MODEL [27] .. 44

file:///E:/Final%20Copy.docx%23_Toc512900580
file:///E:/Final%20Copy.docx%23_Toc512900580
file:///E:/Final%20Copy.docx%23_Toc512900581
file:///E:/Final%20Copy.docx%23_Toc512900582
file:///E:/Final%20Copy.docx%23_Toc512900583
file:///E:/Final%20Copy.docx%23_Toc512900584
file:///E:/Final%20Copy.docx%23_Toc512900585
file:///E:/Final%20Copy.docx%23_Toc512900586
file:///E:/Final%20Copy.docx%23_Toc512900587
file:///E:/Final%20Copy.docx%23_Toc512900588
file:///E:/Final%20Copy.docx%23_Toc512900589
file:///E:/Final%20Copy.docx%23_Toc512900590
file:///E:/Final%20Copy.docx%23_Toc512900591
file:///E:/Final%20Copy.docx%23_Toc512900592
file:///E:/Final%20Copy.docx%23_Toc512900593
file:///E:/Final%20Copy.docx%23_Toc512900594
file:///E:/Final%20Copy.docx%23_Toc512900594
file:///E:/Final%20Copy.docx%23_Toc512900595
file:///E:/Final%20Copy.docx%23_Toc512900596
file:///E:/Final%20Copy.docx%23_Toc512900596
file:///E:/Final%20Copy.docx%23_Toc512900596
file:///E:/Final%20Copy.docx%23_Toc512900596
file:///E:/Final%20Copy.docx%23_Toc512900597
file:///E:/Final%20Copy.docx%23_Toc512900598
file:///E:/Final%20Copy.docx%23_Toc512900599
file:///E:/Final%20Copy.docx%23_Toc512900600
file:///E:/Final%20Copy.docx%23_Toc512900601
file:///E:/Final%20Copy.docx%23_Toc512900602
file:///E:/Final%20Copy.docx%23_Toc512900603

x

FIGURE 4.8: POWER SUPPLY DIAGRAM ... 45

FIGURE 4.9: POWER SUPPLY CIRCUIT CONNECTION .. 45

FIGURE 4.10: SEMG CHANNEL BOX CONTAINS TEN CHANNELS [29] .. 45

FIGURE 4.11: NEW POWER SUPPLY CONNECTION USING THE SOLDERABLE BOARD 46

FIGURE 4.12: NEW SEMG CHANNEL BOX SETUP .. 47

FIGURE 4.13: INNER FOREARM MUSCLE MOVEMENT POSITION ... 48

FIGURE 4.14: OUTER FOREARM MUSCLE MOVEMENT POSITION .. 48

FIGURE 4.15: SEMG SIGNAL FOR INNER FOREARM MUSCLE MOVEMENT .. 49

FIGURE 4.16: SEMG SIGNAL FOR OUTER FOREARM MUSCLE MOVEMENT 49

FIGURE 5.1:REAL – TIME CLASSIFICATION SIMULINK™ BLOCK MODEL ... 51

FIGURE 5.2: 4 BITS OF VALUE FROM THE SERIAL MONITOR ... 52

FIGURE 5.3: PARAMETERS SELECTION FOR (A) SERIAL RECEIVE BLOCK AND (B) SERIAL

CONFIGURATION ... 53

FIGURE 5.4: CHECKING DELAYS USING BUFFER BLOCK .. 54

FIGURE 5.5: OUTPUT OF BUFFER DELAY BLOCK ... 54

FIGURE 5.6: CHECKING OVERLAPS USING BUFFER BLOCK .. 55

FIGURE 5.7: OUTPUT RESULTS OF BUFFER OVERLAPPING CALCULATION 55

FIGURE 5.8: SIMULINK™ DIAGRAM FOR STORING THE SIGNAL VALUES INTO THE MATLAB®

WORKSPACE ... 61

FIGURE 5.9: CIRCUIT CONNECTION FOR A PHOTORESISTOR LED SENSOR .. 62

FIGURE 5.10: TARGETED OUTPUT VALUE ... 63

FIGURE 5.11: ANALOG OUTPUT FROM THE CHANNEL ... 63

FIGURE 5.12: TRAINING RESULT FOR NN TOOLBOX ... 66

FIGURE 5.13: COMPARING RESULT BETWEEN TARGETED OUTPUT AND PREDICTED OUTPUT 66

FIGURE 5.14: OBSERVING THE ERROR BETWEEN TWO OUTPUTS ... 67

FIGURE 5.15: SIMULINK™ MODEL FOR REAL – TIME IMPLEMENTATION... 68

FIGURE 5.16: REAL – TIME IDENTIFICATION FROM TRAINED NN SIMULINK™ BLOCK. NUMBER

THREE REPRESENTING FLASHING LIGHT ON RESISTORS, NUMBER ONE FOR NORMAL CONDITION

AND NUMBER TWO FOR SHADOWING THE PHOTORESISTOR. .. 69

FIGURE 6.1: PUSHBUTTON VALUES AFFECTING THE NATURAL CHARACTERISTIC OF SEMG SIGNAL72

FIGURE 6.2: ON/OFF SIMULINK BUTTONS AND THEIR CORRESPONDING OUTPUT VALUES 73

file:///E:/Final%20Copy.docx%23_Toc512900604
file:///E:/Final%20Copy.docx%23_Toc512900605
file:///E:/Final%20Copy.docx%23_Toc512900606
file:///E:/Final%20Copy.docx%23_Toc512900607
file:///E:/Final%20Copy.docx%23_Toc512900608
file:///E:/Final%20Copy.docx%23_Toc512900609
file:///E:/Final%20Copy.docx%23_Toc512900610
file:///E:/Final%20Copy.docx%23_Toc512900611
file:///E:/Final%20Copy.docx%23_Toc512900612
file:///E:/Final%20Copy.docx%23_Toc512900613
file:///E:/Final%20Copy.docx%23_Toc512900616
file:///E:/Final%20Copy.docx%23_Toc512900617
file:///E:/Final%20Copy.docx%23_Toc512900618
file:///E:/Final%20Copy.docx%23_Toc512900619
file:///E:/Final%20Copy.docx%23_Toc512900620
file:///E:/Final%20Copy.docx%23_Toc512900620
file:///E:/Final%20Copy.docx%23_Toc512900621
file:///E:/Final%20Copy.docx%23_Toc512900622
file:///E:/Final%20Copy.docx%23_Toc512900623
file:///E:/Final%20Copy.docx%23_Toc512900624
file:///E:/Final%20Copy.docx%23_Toc512900625
file:///E:/Final%20Copy.docx%23_Toc512900626
file:///E:/Final%20Copy.docx%23_Toc512900627
file:///E:/Final%20Copy.docx%23_Toc512900628
file:///E:/Final%20Copy.docx%23_Toc512900628
file:///E:/Final%20Copy.docx%23_Toc512900628
file:///E:/Final%20Copy.docx%23_Toc512900629
file:///E:/Final%20Copy.docx%23_Toc512900630

xi

FIGURE 6.3: THE FIRST GRAPH IS SEMG SIGNAL, SECOND IEMG, THIRD MAV, FOURTH MAVSLP,

FIFTH SSI, SIXTH RMS, SEVENTH WL CLASSIFICATIONS OUTPUTS ... 75

FIGURE 6.4: THE FIRST GRAPH IS SSI, SECOND RMS, THIRD WL, FOURTH ZC, FIFTH SSC, SIXTH

WAMP AND THE LAST ONE IS MEAN CLASSIFICATIONS OUTPUTS. .. 76

FIGURE 6.5: FOUR DIFFERENT CLASSIFICATIONS SIMULINK™ BLOCK .. 78

FIGURE 6.6:SEMG SIGNAL FOR INNER FOREARM MUSCLE MOVEMENT .. 79

FIGURE 6.7:SEMG SIGNAL FOR OUTER FOREARM MUSCLE MOVEMENT.. 79

FIGURE 6.8:REAL – TIME PUSHBUTTON OUTPUT CONSIDERED AS A TARGETED OUTPUT 79

FIGURE 6.9: TRAINING RESULTS FOR NN TOOLBOX. (A) SLOPE SIGN CHANGE (SSC) (B)

WAVEFORM LENGTH (WL) (C) ZERO CROSSING (ZC) (D) WILSON AMPLITUDE (WAMP). ... 82

FIGURE 6.10: FOUR DIFFERENT CLASSIFICATION SSC, WL, ZC AND WAMP TRAINED OUTPUT

GRAPHS ... 83

FIGURE 6.11: ERROR DIFFERENCE BETWEEN TARGETED AND PREDICTED OUTPUTS FOR SSC AND

WL ... 83

FIGURE 6.12: ERROR DIFFERENCE BETWEEN TARGETED AND PREDICTED OUTPUTS FOR ZC AND

WAMP ... 84

FIGURE 6.13: TRAINED ANN SIMULINK™ BLOCK IMPLEMENTATION FOR REAL – TIME

IDENTIFICATION .. 86

FIGURE 6.14: IDENTIFICATION USING SSC CLASSIFICATION .. 87

FIGURE 6.15: IDENTIFICATION USING WL CLASSIFICATION ... 87

FIGURE 6.16: IDENTIFICATION USING ZC CLASSIFICATION .. 88

FIGURE 6.17: IDENTIFICATION USING WAMP CLASSIFICATION ... 88

FIGURE 0.1: SIMULINK™ RUN TIME MODE SELECTED AS NORMAL ... 99

FIGURE 0.2: ARDUINO MEGA 2560 SETUP FOR SIMULINK™ MODEL .. 99

FIGURE 0.3: BUFFER BLOCK PARAMETER. HERE,50 OVERLAPPING IS CHOSEN 100

FIGURE 0.4: TARGETED OUTPUT SIMULINK BLOCK AND ITS CONFIGURATION. 105

FIGURE 0.5: GENERATED SIMULINK™ BLOCK FROM THE TRAINED NN 108

FIGURE 0.6: SATURATION BLOCK CONFIGURATION PARAMETERS .. 112

file:///E:/Final%20Copy.docx%23_Toc512900631
file:///E:/Final%20Copy.docx%23_Toc512900631
file:///E:/Final%20Copy.docx%23_Toc512900632
file:///E:/Final%20Copy.docx%23_Toc512900632
file:///E:/Final%20Copy.docx%23_Toc512900633
file:///E:/Final%20Copy.docx%23_Toc512900634
file:///E:/Final%20Copy.docx%23_Toc512900635
file:///E:/Final%20Copy.docx%23_Toc512900636
file:///E:/Final%20Copy.docx%23_Toc512900637
file:///E:/Final%20Copy.docx%23_Toc512900637
file:///E:/Final%20Copy.docx%23_Toc512900638
file:///E:/Final%20Copy.docx%23_Toc512900638
file:///E:/Final%20Copy.docx%23_Toc512900639
file:///E:/Final%20Copy.docx%23_Toc512900639
file:///E:/Final%20Copy.docx%23_Toc512900640
file:///E:/Final%20Copy.docx%23_Toc512900640
file:///E:/Final%20Copy.docx%23_Toc512900642
file:///E:/Final%20Copy.docx%23_Toc512900643
file:///E:/Final%20Copy.docx%23_Toc512900644
file:///E:/Final%20Copy.docx%23_Toc512900645
file:///E:/Final%20Copy.docx%23_Toc512900646
file:///E:/Final%20Copy.docx%23_Toc512900647
file:///E:/Final%20Copy.docx%23_Toc512900648
file:///E:/Final%20Copy.docx%23_Toc512900649
file:///E:/Final%20Copy.docx%23_Toc512900650
file:///E:/Final%20Copy.docx%23_Toc512900651

xii

ABSTRACT

Development of a Real – Time, Artificial Neural Network based sEMG Classification Algorithm

for Motion Identification

Thesis Abstract--Idaho State University (2018)

This work deals with aiding and developing upper body rehabilitation engineering methods for

stroke victims. In most rehabilitation cases, only partial success is accomplished after long training

sessions, and the patient is left with a limited range of motion. The aim of this research is to develop

a training tool utilizing an augmented reality device (ARWED) that addresses the rehabilitation of

human hand and forearm motion. For this purpose, the research is accomplished in three steps.

The first step focuses on the development of real – time sEMG classification methods where ten

classification methods have been chosen based on their different characteristics. The second step

explains the development of real – time Artificial Neural Network (ANN) models based on the

signal classifications. This part consists of training the ANN model based on real – time

classification. The third step discusses the development of identification algorithms for identifying

motion intend using real – time ANN models by using Simulink™ block model.The results

indicate preferences for the preferred classifier: Slope Sign Change (SSC), Waveform Length

(WL), Zero Crossing (ZC), and Wilson Amplitude (WAMP) which can help in the design of the

signal processing for real – time ANN implementation.

Key Words: Rehabilitation, surface Electromyography (sEMG) classification, real – time

Artificial Neural Network (ANN), Backpropagation, Levenberg – Marquardt(LM), Arduino Mega

2560, Simulink™, MATLAB®, Motion identification, Slope Sign Change (SSC), Waveform

Length (WL), Zero Crossing (ZC), and Wilson Amplitude (WAMP), Neural Network training.

1

CHAPTER 1: INTRODUCTION

1.1 Problem Statement

According to the Archives of Physical Medicine and Rehabilitation, nearly two million people are

living in the United States with limb loss [1]. Current research shows that one in 190 Americans

is living with the loss of limbs. This number has been increasing due to military engagements and

vascular disease like strokes. It is estimated that the number of people living with limbs loss will

be more than double to 3.6 million by 2050. There are many efforts to deal and improve with the

advancement of prosthetic devices to help victims. Nonetheless, currently, there are no prosthetic

devices available which can mimic the functionality of a human hand. Also, the available

prosthetic devices are costly. Recent scientific and commercial advances in the man-machine

interface field are promising and suggest that naturally controlled and simultaneous robotics

prostheses can be a reality in the future for amputees. However, the framework of the situation in

the market and the scientific ground is complicated, and the direction to naturally controlled

prostheses still needs many improvements.

1.2 Literature Review

Upper – limb deficiency severely affects the ability to perform daily living activities. Myoelectric

hand prostheses with many degrees of freedom are commercially available. Recent advances in

rehabilitation robotics propose that their natural control can be performed in real life. These

naturally controlled robotic prostheses can become a reality in everyday life. However, the path

still needs many steps. In 2015, Atrzori et al.[2] proposed an overview of the advancements both

in commercial and scientific domains to outline the current and future changes in this field.

2

Moreover, for upper limb amputees, the prosthesis control training is suggested before and after

fitting. For functional monitoring, there are many different tests available. However, none can be

used in the early phase of training. In 2015, Sturma et al. [3] proposed a tool for pre – evaluation

of trainable voluntary muscle – activation skills before prosthetic fitting. The proposed tool

supports planning of rehabilitation procedures for further monitoring where essential

considerations for system development and the main features of the developed prototype are

presented.

A human can learn new movements through imitation and other learning techniques. There are

some structured rehabilitation methods, which includes imitation, repetition, and reinforcement

learning to improve multifunctional prosthetic control. For this purpose, in 2015, Roche et al.[4]

suggests a structured training protocol of imitation, repetition and supporting role in learning to

control of a new prosthetic hand. While considering the repetitive movements for rehabilitation,

video – game based therapies can increase patient motivation, effort, and performance. For this

purpose, a clinically feasible and entertaining virtual rehabilitation intervention is established and

evaluated for short – term improvement of EMG control engaging gameplay elements [5].

Furthermore, to improve upper – limb deficiency for independence and quality of life, surface

Electromyography (sEMG) based control systems have been widely researched for several decades

[6], [7]. However, advanced myoelectric prosthetic hands are limited due to the lack of real – time

control performance and weak signal sources on amputation residual muscles. A novel human –

machine interface is done for prosthesis manipulation which combines the advantages of surface

Electromyography(sEMG) and near – infrared spectroscopy (NIRS) to conquer the limitations of

myoelectric control.[8] This experiment in [8] evaluates both offline classification accuracy (CA)

and online performance of the forearm motion recognition system based on three types of sensors:

3

EMG, NIRS, and hybrid EMG – NIRS where the result shows that combining EMG and NIRS

signals gives better real – time performance. Considering sEMG signal is extensively studied and

applied in clinic and engineering. However, the major drawback of sEMG pattern recognition is

the poor recognition results because of the presence of noise. Thus, methods of reducing the noise

influence become the most significant in EMG signal analysis. In 2009, Phinyomark et al. [9]

presented a novel feature that can tolerate with White Gaussian Noise (WGN) without using a

noise removal algorithm. As a result, the experiment result shows better recognition result in a

noisy environment than other success feature candidates.

1.3 Thesis Goal

From the literature reviews, it can be said that natural and proficient controls of robotic hand

prostheses have been studied for a long time by the scientific community. Among them, most of

the methods rely on the use of sEMG signals and pattern recognition, imitating or different learning

techniques. Nonetheless, the control robustness offered by the researchers is still not sufficient for

many real – life applications. In the recent years, deep learning transformed several fields of

machine learning, including speech and computer vision. The aim of this research to develop a

real – time Artificial Neural Network (ANN) for motion identification. This base can then be

extended to Deep learning. The primary concept of this research to make better upper body

prosthetic devices and develop methods that facilitate stroke victim rehabilitation.

There are multiple types of hand prostheses. One of them is based on surface Electromyographic

(sEMG) signals to initiate the actuation of the robotic hand [2]. sEMG signals are spatially

distributed which pick up signals from other motor units stemming from different muscle groups.

4

The content of sEMG signal can be identified based on amplitude, frequency, and amplitude

frequency.

The first objective of this research is to develop a real – time sEMG signal classification. Ten

different types of classifications are chosen based on their different characteristics. The hypothesis

is that using more classifications can extract a significant amount of information which are going

to be used for training the ANN. Each of the classifications designed as a sliding window with a

0.067 sampling time (seconds). The classification and the size of the sliding window are picked

randomly. All the real – time classifications are done in Simulink™.

The second objective of this work is to establish an ANN based on real – time signal classifications.

For training purpose, two movements have chosen – inner and outer forearm movements. This part

is done by extracting the signal values which are collected from the real – time Simulink™

classifications model and applied to ANN for offline training using a developed MATLAB® code.

Backpropagation algorithm is used to train the proposed ANN. By following this method, the error

can eventually be minimized, and the algorithm adjoined with an optimization result.

Backpropagation has different training approaches which can optimize output results. In this part,

the Levenberg-Marquardt, Scaled Conjugate Gradient and Bayesian Regularization methods are

used for better optimization technique. However, for training and prediction, the Levenberg-

Marquardt backpropagation method gives the better result compared to the others. Thus,

Levenberg – Marquardt is chosen for observing the finals results.

Moreover, the third objective is to build motion identification intend using real – time ANN

models. In this part, a Simulink™ block is built from the offline trained ANN model. Afterwards,

5

that block is placed to a Simulink™ model where all the classifications are used for extracting the

sEMG signals in real – time.

1.4 Organization of the thesis

The thesis is organized as follows. Chapter 1 discusses the theme of the thesis and literature review.

Chapter 2 provides the biological background of sEMG signals and its different categories.

Chapter 3 focuses on the mathematical background of Artificial Neural Network (ANN), its

different algorithm followed by an example of implementation of a real – time classification based

ANN for motion identification. In Chapter 4, the experimental setup for the observation of sEMG

signal is discussed. Chapter 5 focuses on the results and discussion based on the comprehensive

sEMG example. Chapter 6 represents the conclusion and future works.

6

CHAPTER 2: BIOLOGICAL BACKGROUND

2.1 Introduction of an EMG signal:

Electromyography (EMG) is considered an experimental technique involving establishing,

recording, and investigating of myoelectric signals. It is a study of muscle function through the

analysis of the electrical signals originated during muscular contractions. There is a wide range of

benefits for using EMG signal. It establishes evaluation tool for applied research, rehabilitation,

sports science, and ergonomics. Besides EMG signals also have some common benefits which

allow investigating the muscle directly, permit measurement of muscular performance, help

patients to find and train their muscle, concede analysis to improve sports activities, and document

treatment and training regimes.

There are two main types of EMG signals – clinical and kinesiological EMG. Clinical EMG,

typically done by neurologists and physiatrists. Kinesiological EMG is the most preferred in the

literature considering movement analysis. Again, kinesiological EMG is divided into two

categories – surface and fine wire. Surface EMG determines muscle function by recording the

muscle activity on the skin surface. It requires surface electrodes which provide a limited

assessment of the muscle activity. Surface EMG can be recorded by using a pair of electrodes

because EMG recordings display the potential difference between two separate electrodes. The

advantages of using surface EMG are that they are easy to apply, cause minimal pain with the

application, and the process is perfect for movement application. The disadvantage of sEMG is

that it requires a significant pickup area. Therefore, it increases the possibility for crosstalk from

adjacent muscles. On the other hand, fine wire EMG requires insertion of needles into the muscle.

The advantages of using fine wire EMG are the ability to test deep muscle, separation of specific

7

muscle parts of large muscles, and capable of testing small muscles which might be difficult to

detect with surface EMG, due to crosstalk. The disadvantages of wire EMG are the insertion of

the needle may cause discomfort, can increase the tightness in the muscle, and the electrodes are

less repeatable because it is difficult to place the needle in the same area of muscle for every

research. For this research, surface EMG signals have been chosen because it is easy to apply,

electrodes can be used for several times, and it is without much discomfort compared to fine wire

EMG process.

2.2 Signal Origin

Electromyography measures the electrical signal correlated with voluntary or involuntary muscle

contraction. This muscle contraction is related to tension for the EMG activity. The functional unit

of the muscle contraction is called a motor unit (MU). An MU consist of an alpha motoneuron in

the spinal cord and the muscle fibers it innervates. The alpha motoneuron is the final point of

addition for all the descending and reflexing inputs. Various synaptic innervation sites determine

the discharge pattern of the motor unit by inducing a current in the motoneuron. The number of

MUs per muscle in a human body may range from 100 to 1,000 depending upon small hand muscle

or large limb muscles [10]. This different number of MUs changes significantly based force

generating capacity. Figure 2.1 represents the schematic of the basic motor control mechanisms,

motor units, and its components.

8

If there is an individual activity where the muscles of the body are to be recruited, the brain sends

excitation signals through the Central Nervous System (CNS). In scientific terms, when there is a

need for greater forces, the excitation from the CNS increases, which leads the motor units to

increase activation level and of the firing rate. As a result, EMG signal shows up with high signal

amplitudes [12,13].

2.3 EMG Electrodes and their categories:

EMG electrodes help to detect the bioelectrical activity inside the muscle of a human body. There

are mainly two types of EMG electrodes – Surface and Inserted electrodes. Inserted electrodes are

Figure 2.1: A schematic image of primary motor control mechanisms, motor unit and its

components [11]

9

also categorized into two different electrode types: needle and fine wire electrodes. However, since

sEMG electrodes are exclusively used in this work, they are discussed separately.

2.3.1 Needle electrodes

Needle electrodes are commonly used in clinical procedure particularly in neuromuscular

evaluations. The tip of the needle is called core which is bare and used for detection of a surface.

There is an insulated wire in the cannula which is comparatively improved from another available

category. It has relatively small pickup area and enables the electrodes to detect low force

contractions. Figure 2.2 shows some details about the Needle electrodes.

2.3.2 Fine Wire Electrode

This kind of electrode is made of an alloy of platinum, silver, nickel, and chromium, which has a

small diameter, is highly non-oxidizing, and constitutes a stiff wire with insulation. Fine wire

electrodes are easily implanted and withdrawn from the muscle. They are less painful compared

to needle electrodes. A fine wire electrode is shown in Figure 2.3.

Figure 2.2: A Needle EMG Electrode [14]

10

2.3.3 Surface EMG Electrode

Surface EMG electrodes implement a non-invasive process for measurement and detection of

EMG signals. This technique increasingly used to detect activity to control device extensions to

accomplish prosthesis for physically disabled and a population with amputations. There are two

types of surface EMG Electrodes-Gelled and Dry EMG electrode. However, in categories, it is

two types-Passive EMG electrodes and Active EMG electrodes. Passive electrodes should connect

to an external amplification circuitry for proper acquisition of the EMG signal. On the other hand,

active EMG electrodes consist of pre-amplifier attachment for surface electrodes.

2.3.3.1 Gelled EMG Electrodes

These types of electrodes contain a gelled electrolytic material as an interface between skin and

electrodes. Oxidation and reduction reactions occur at the metal electrode junction. Silver-silver

chloride (Ag-AgCl) is most by used for the metallic part of the gelled electrodes. It allows current

from the muscle to pass freely across the intersection between the electrode and the electrolyte.

Almost around 80% of Surface EMG applications use Ag – Agcl electrodes. Gelled electrodes

Figure 2.3: A fine wire EMG electrode [15]

11

require special skin preparation [16] and precautions such as hair removal, prevention of sweat

accumulation, proper gel concentration, etc. Gelled EMG electrodes are shown in Figure 2.4.

2.3.3.2 Dry EMG Electrodes

As it is a Dry Electrode, it does not require a gel interface between skin and the detecting surface.

Figure 2.5 shows an example of dry EMG electrode. It might contain more than one surface. They

are usually heavier (>20g) compared to gelled electrodes (<1g) which cause for electrode fixation.

Thus, a material for the stability of the electrode with the skin is needed

Figure 2.4: Gelled EMG Electrodes [15]

Figure 2.5: An Example of Dry EMG Electrode [15]

12

2.4 EMG Electrode Placement

Application of surface EMG electrodes needs proper skin preparation to obtain quality EMG

signal. The skin’s electrical resistance must be reduced. For this purpose, hair must be removed,

and it is advisable to use an abrasive gel to reduce the dry layer of skin where EMG electrodes are

to be placed. The surface EMG (sEMG) electrodes should be attached between the motor unit and

the tendinous insertion of the muscle. The distance between the center electrodes should be only

1-2cm. It is essential to have a proper understanding of the particular muscles from where the EMG

signal is being extracted in order to get the best result from sEMG. Crucial limb and trunk muscles

activity can be investigated by using sEMG signals. For more in-depth, smaller or overlaid

muscles, a fine wire application is required in order to safely and selectively detected the

corresponding sEMG signals. Figure 2.6 shows a muscle map, a selection of muscles that

commonly are investigated in kinesiological studies, where the two yellow dots of the surface

muscles point out the orientation of the electrode.

13

Figure 2.6: Frontal view of anatomical positions of selected sites [17]

14

2.5 EMG Signal Acquisition Circuitry

The method of differential amplification is utilized to acquire sEMG signals. This setup should

have high input impedance and very low output impedance, which can be achieved with the help

of instrumentation amplifiers. This instrumentation amplification accomplishes differential

amplification by subtracting the voltages V1 and V2 (see Figure 2.7 and 2.8). By this way, the noise

signal, which is common at V1 and V2 are eliminated. The habit of a differential amplification to

reject signal is common to both inputs is regulated by common mode rejection ratio (CMRR) of

90dB. The placement of the sEMG and detecting surfaces are categorized in three different

configurations: monopolar, bipolar, and multipolar.

2.5.1 Monopolar configuration

This configuration is carried out using only a single electrode on the skin against a reference

electrode as shown in Figure 2.7. Though this method is used for its simplicity, however, it is not

recommended as it detects all the electrical signals in the proximity of the detecting surface.

Figure 2.7: Monopolar Signal Acquisition technique [15]

15

2.5.2 Bipolar Configuration

This configuration is used to acquire sEMG signal using two EMG detecting surfaces with the

support of a reference electrode. The two sEMG surfaces are placed only 1-2cm from each other

and they are connected to a differential amplifier. The differential amplifier reduces the common

noise signals to both inputs and amplifies the difference. It is the most commonly used electrode

configuration which is also followed in this research work because it gives less noisy output

compared to monopolar configuration and less circuit implementation method compared to

multipolar configuration.

2.5.3 Multipolar Configurations

This method uses more than two detecting surfaces to achieve the EMG signal with the support of

a reference electrode. Three or more EMG detecting surfaces can be used, and they are placed

from 1 to 2cm apart. This configuration needs to pass through more than two stages of differential

amplification. By this way; it reduces crosstalk and noise concerns.

Figure 2.8: Bipolar Configuration [15]

16

2.6 Raw EMG Signal

An unprocessed and unfiltered signal detecting the Motor Unit Action Potential called as a raw

sEMG signal. Figure 2.9 shows a raw surface EMG recording for the three static contractions of

the biceps brachii muscle.

The raw EMG baseline noise depends upon the environmental noise and the quality of the given

detection. Usually, the average baseline noise considered not higher than 3-5 microvolts. By

nature, raw sEMG spikes are of random shapes which cannot be reproduced in exact shape. The

reason is the actual set of recruited motor units continually changes within the diameter of available

motor units. Before the sEMG signal displayed and analyzed in the computer, it needs to be

converted from analog to digital conversion (A/D). The resolution of an A/D board should be

converted into the amplitude range of +/-5 volts. In this research work, an Arduino board is used

which has 210=1024 bits. The range of bits starts from 0 to 1023.Thus for this purpose the bits

value is converted into the range +/- 5 volts by computing (5/1023)voltage.

Figure 2.9: The raw EMG signal of three construction burst of the biceps [17]

17

CHAPTER 3: NEURAL NETWORK

3.1 Overview

In the beginning of this chapter, mathematical background of Artificial Neural Network (ANN)

and its different algorithm is explained. Furthermore, an example of implementation of a real –

time classification – based ANN for motion identification is showed. For this purpose,

implementation of Simulink ™ is discussed further which explains all the steps from Arduino to

real – time ANN motion identification by showing a LED sensor light experimentation.

3.2 Artificial Neural Network

An Artificial Neural Network (ANN) is an analytical model based on the neural structure of the

brain. The essential structure of every ANN is given by a simple mathematical model or function

which has three simple sets of rules – multiplication, summation, and activation. At the beginning

of artificial neuron, the inputs are weighted that means the individual weights multiplies every

input value. The middle section of the model is a summing function that sums all weighted inputs

and bias. At the end of an artificial neuron is the sum of previously weighted inputs and bias which

is then passing through the activation function which is called a transfer function. Figure 3.1 shows

the working principle of ANN.

18

Animal brains are capable of functions which are currently impossible for computers. Computers

can do routine things well such as keeping ledgers or performing complicated math computations

method. However, computers have trouble recognizing even simple patterns. Therefore, this

biologically inspired method of computing is a significant advancement for computing. Research

shows that brains can store information as a pattern. Some of these patterns are very convoluted

and permits us the ability to recognize individual faces from many different angles. The process

of storing information as patterns, utilizing them, and afterward solving problems introduces a new

field of computing which is ANN. This field does not utilize traditional programming, however,

involves the creation of mostly parallel networks and the training of those networks to solve any

specific problems.

Figure 3.1: The Basic working principle of an ANN [18]

19

3.3 Biological Inspiration

The brain consists of approximately 1011 of highly connected elements called neurons [19]. These

neurons have three components – the dendrites, the cell body and the axon. From Figure 3.2 tree

– like receptive networks are called dendrites which carry electrical signals into the cell body. The

cell body efficiently sums and thresholds the incoming signals. A single long fiber that carries the

signal from the cell body towards other neurons called the axon. The point of connection where an

axon from one cell and a dendrite of another cell come together is called synapse. The whole

process is determined by a complicated chemical process with the arrangement of neurons and the

strength of the individual synapses, establishes the function of the neural network.

Some of the neural structure is defined at birth while other parts developed through learning [19].

By this process, neural structures continue to change throughout life. These changes contribute to

the strengthening or weakening of synaptic junctions. Artificial neural networks do not follow the

complexity of the brain. However, there are two similarities between biological and artificial

neural networks. First, the highly connected building blocks of both networks are simple

Figure 3.2: Schematic diagram of two biological neurons [19]

20

computational devices. Second, the connections between neurons regulate the function of the

network. The further discussion will introduce primary artificial neuron and will analyze how the

combination of such neurons form networks.

3.4 Neuron Model

Figure 3.3 shows the fundamental building block of the single – input neuron for neural networks.

In the building block, the scalar input p is multiplied by the scalar weight w to form the product

wp . Afterward, the weighted input wp added to the scalar bias b which creates a net input n .

Finally, the net input passed through the transfer function f to produce a scalar output a. These

three processes are named as – the weight function, the net function, and the transfer function.

A single – input neuron can be extended to a multiple – input neuron (Figure 3.4), where the input

and the weights become vectors instead of scalars. For a single R – element input vector where the

individual inputs are considered
1 2, , Rp p p multiplied by weights, the weighted values delivered

to the summing junction is Wp . The bias b of the neuron is summed with the weighted inputs to

form the net input n .

 1,1 1 1,2 2 1,R Rn w p w p w p b= + + + + (1)

Figure 3.3: Single – input neuron model [19]

21

which can be expressed as follows:

 *n w p b= + (2)

A multiple – input can also extend to a single layer of neurons with multiple inputs (Figure 3.5).

Furthermore, a single layer can be extended to multiple layers (see Figure 3.6). The ANN can be

built up to perform more complicated tasks. However, too complicated structures can be

troublesome in the training which might lead to a poor generalization on test data.

Figure 3.4: Multiple – input neuron [2]

Figure 3.5: A layer of neurons each with multiple inputs and one output [19].

22

There are two major types of neural networks: feedforward and recurrent. All the examples are

explained so far are feedforward networks. In this process, the input is piped all the way until the

end where the values do not get reused at any stage of the process. On the other hand, recurrent

Neural Network(RNN) are ones with feedback, where some of the outputs get connected to inputs

throughout the process. Figure 3.7 represents an example of an RNN. In comparison, RNNs are

more potent than feedforward NNs, because they acquire the ability to deal with dynamic systems

while feedforward NN can only implement static input–output mapping. Feedforward NN,

however, has been the focus of much research, resulting in a massive amount of literature.

Figure 3.7: An example of a Recurrent neural network(RNN) [19]

Figure 3.6: Multiple – layers of neuron model [19]. Here only three layers are shown. However,

the number of layers can be extended as desired.

23

3.5 Backpropagation Neural Network

Backpropagation is a learning algorithm of a multilayer neural network with a fixed architecture.

It is an abbreviation of ‘Backpropagation Propagation Error’ [20] which is used to train ANN. It

executes to minimize the sum squared error between the given target values and the network output

values. Backpropagation training associates with two phases – the feedforward and the feedback

propagation. In the first phase, the input values are fed to a network assembled with random

weights. In this phase, the weights of each neuron remain unchanged. The output values produced

by the hidden layer. In the second phase, the error is calculated by subtracting the network

predicted output from the input values. Afterward, the error is back – propagated through the

hidden layer(s) and minimized which results in updating the weights of the network. This is a

repeated process until a satisfactory result is achieved. Figure 3.8 shows the mechanism chart of a

backpropagation method.

Figure 3.8: Mechanism chart of backpropagation [21]. Here, an error value is created based on

‘n’ input neurons and ‘m’ output neurons and then backpropagate(s) through the hidden layer.

Through this process, the error is minimized by updating the weights of the hidden and output

neurons

24

As explained in section 3.5, the backpropagation algorithm is used to train ANN. Backpropagation

has different training processes to minimize the error : Levenberg – Marquardt (LM), Bayesian

Regularization (BR), and Scaled Conjugate Gradient (SCG) backpropagations are nothing but

different methods used for the optimization technique. Thus, LM, BR, and SCG are explained

further in the following sections.

3.5.1 Levenberg – Marquardt Backpropagation

Levenberg – Marquardt(LM) is an optimization algorithm which solves the problem of minimizing

non – linear functions [22]. It is also known as the Damped Least Square (DLS) algorithm [23].

LM merges the error backpropagation (EBP) and Gauss – Newton (GN) method. The features of

both algorithms i.e. the speed of GN and the stability of EPB help to improve the performance. By

comparison, LM is more robust than GN as well faster than the EBP. In this section, the LM

algorithm is derived from the EBP and the GN methods. The following derivation is adopted from

[22] where p represents the number of patterns i.e. multiple inputs or single inputs, m shows the

number of outputs, i and j are weight indices, and k is the index iterations

Equation (3) is defined as the sum of square error which generalizes to all training patterns and

network outputs

 2.
1 1

1
(,)

2

P M

p m
P m

E x w e
= =

=  (3)

In here, x is the input vector , w is the weight vector and ,p me is the training error which is

defined as Equation (4)

 . . .p m p m p me d o= − (4)

where d is the target output and o is the predicted output vector from the NN.

25

The steepest descent algorithm uses a gradient g . For this, it uses the first – order derivative of

the error function which is defined by Equation (5)

2

1 2

(,)
...

N

E x w E E E
g

w w w w

 
 
  

   
= =

   
 (5)

The value from g can updates the weights by following:

1k k k

w w g
+
= − (6)

Equation (6) shows the weighted equation where a is the learning constant. The gradient vector

will have minimum values around the minimum point. Therefore, very tiny weight change will be

completed.

All the gradient components
1, , Ng g are functions of weights where all of them are linearly

independent.

1 1 1 2

2 2 1 2

1 2

(, ,...,)

(, ,...,)

 .

 .

 .

(, ,...,)

N

N

N N N

g F w w w

g F w w w

g F w w w













=

=

=

 (7)

In Equation (7),
1, , NF F are nonlinear weights corresponding to the grading components.

Expanding each component using the Taylor series and taking the first-order approximation yields

Equation (8).

26

1 1 1
1 1,0 1 2

1 2

2 2 2
2 2,0 1 2

2 2

,0

...

...

 .

 .

 .

N
N

N
N

N N

g g g
g g w w w

w w w

g g g
g g w w w

w w w

g g

  
 +  +  + + 

  

  
 +  +  + + 

  


1 2

1 2

...N N N
N

N

g g g
w w w

w w w

















  
+  +  + + 
  

 (8)

From Equation (5) it can be written as:

2ji

j j i j

E
wg E

w w w w

 
 
 
 



 

= =
   

 (9)

Combining Equation (8) and Equation (9) can produce:

2 2 2

2

2 1

2 2

1 2

2

22
2

1 1,0 1 2
1 1

2 2,0 2
2

...

 .

 .

...

N
N

N
N

E E E

E EE
w

w

g g w w w
w w w w w

g g w w
w w w w

+ +





  
 +  +  + + 

    

 
  + + 

   

2 2 2

2,0 1 22
1 2

 .

...N NN
N NN

E E E
g g w w w

w w ww w

















  
 +  +  + + 

   

 (10)

For finding the minimum of a total error function E , each element of the gradient vector is

equalized to zero value:

27

2 2 2

2

2 1

2 2

1 2

2

22
2

1,0 1 2
1 1

2,0 2
2

0 ...

0

 .

 .

...

N
N

N
N

E E E

E EE
w

w

g w w w
w w w w w

g w w
w w w w

+ +





  
 +  +  + + 

    

 
  + + 

   

2 2 2

2,0 1 22
1 2

 .

0 ... NN
N NN

E E E
g w w w

w w ww w

















  
 +  +  + + 

   

 (11)

Combining Equation (5) and Equation (11) can be written as:

2 2 2

2

2 1

2 2

1 2

2

22
2

1,0 1 2
1 1 1

2,0 2
2 2

...

 .

 .

...

N
N

N
N

E E E

E EE
w

w

E
g w w w

w w w w w w

E
g w w

w w w w w



 +

= −


= − 



   
−  +  + + 
     

  
−  + + 
    

2 2 2

2,0 1 22
1 2

 .

... NN
N N NN

E E EE
g w w w

w w w ww w













 



= −
   

−  +  + + 
    

 (12)

There are N equations for N parameters. Thus, all the iw can be calculated, and the weights can

be updated iteratively. Equation (12) can be written as:

2 2 2

2
1 2 111

1 2 2 2

2 2
2 2 1 22

 ...

 ...

 .
 . .

 .
 .

 .
 .

N

N

N

N

E E EE
w w w www

g
E E E E

g
w w w w ww

g
E

w

 
 
  
  
  
  
  
  
  
  
  
  
 
  

  
−    

−
   

−−
    

= =

−


−


1

2

2 2 2

2 2
1 2

 .

 .
 .

 .
 .

 ...
N

N N N

w

w

w
E E E

w w w w w

 
 
 

  
  
  
  
  
  
  
  
  
  

 
  








  

    

 (13)

28

The square matrix in Equation (13) is called the Hessian matrix:

2 2 2

2
1 2 11

2 2 2

2
2 1 22

2 2 2

2 2
1 2

 ...

 ...

 .

 .

 .

 ...

N

N

N N N

E E E
w w w ww

E E E
w w w ww

H

E E E
w w w w w

 
 
 
 
 
 
 
 
 





 

  
   

  
   

=

  
    








 (14)

From the above equations, one can get

 g H w− =  (15)

and

 1
gw H − =− (16)

Thus, the weights can be uploaded using Equation (17)

1

1k k k k
w w H g−

+
= − (17)

This method needs computation of the second order derivative for every component which might

be complicated. Therefore, the Gauss – Newton Algorithm simplifies the steps by introducing the

Jacobian matrix J , which is shown as:

29

1,1 1,1 1,1

1 2

1,2 1,2 1,2

1 2

1, 1,

1 2

 ...

 ...

 ...

N

N

M M

e e e

w w w

e e e

w w w

e e

w w

J

  

  

  

  

 

 

=

1,

,1 ,1 ,1

1 2

,2 ,2 ,2

1 2

 ...

 ...

 . .

M

N

P P P

N

P P P

N

e

w

e e e

w w w

e e e

w w w





  

  

  

  

, , ,

1 2

 . .

 ... P M P M P M

N

e e e

w w w

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

  

  

 (18)

By integrating Equations (3) and (5) the following equation can be found:

()

,

2
,1 ,

1 1

1
1

2

i i

p m

p M
P Mp mp p m

p m i

m e e

w
e

E
g

w w
= =

=

= =

=  
   


=
 

 
  (19)

By combining Equations (18) and (19) one can produce the relationship between the gradient

matrix and the Jacobian matrix.

 g Je= (20)

In Equation (20), e is the error vector which is given by the following equation:

30

1,1

1,2

1,

,1

,2

,

 .

 .

 .

 .

 .

 .

M

P

P

P M

e

e

e

e

e

e

e

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

= (21)

By subtracting Equations (3) and (4), the Hessian matrix can be formed. The equation is described

by Equation (22)

()2

2

, ,

2
,1 1 , ,

1 1

1

2

i j i j

i j i j

p M
p mp m P M

p m p m

p m i j

e e e
S

w w

E
h

w w w w
= =

= =

= =

 
 
 
 

 
+

 


=
   

 
  (22)

In here, ,i jS is:

 ,
, ,

1 1
i j

P M
p m p m

p m i j

e e
S

w w= =

 
 
 
 

 

 
=   (23)

,i jS is very small in the basic assumption of Newton’s method. That is why the relationship

between the Hessian matrix H and the Jacobian matrix J is:

 T JH J (24)

31

Comparing Equations (17), (20), and (24), the updated weighted formula is given by:

1

1
()T

k k k k k k
w J J J ew −

+
= − (25)

The Levenberg – Marquardt algorithm proposes a new approximation to the Hessian matrix. In

Equation (26), the approximation makes sure that TJ J is always invertible, where  is the

combination coefficient and I is the identity matrix. The new approximation makes sure that the

main diagonal of the Equation (26) is positive. Therefore, the approximation matrix will always

be invertible.

 T J IH J + (26)

Combining Equations (25) and (26) produces the updated weights for the Levenberg –Marquardt

method.

1

1
()T

k k kk k k
J I J ew w J  −

+
− += (27)

As it is already mentioned in this section, LM method blends both GN and EBP methods, this

process can be observed when the combination coefficient is varied from very small to large

values. If  is close to zero, then Equations (27) turns into (25) which is the Gauss – Newton’s

algorithm. On the other hand, if  is very large it becomes the learning coefficient of the steepest

descent method.

LM is a fast and stable training method. It uses the Jacobian matrix; performance is a Mean of

Squared Errors (MSE) or a Sum of Squared Errors (SSE). It limits the performance function which

may not lead to the best generalization. In the following, the Bayesian regularization

backpropagation method is explained.

32

3.5.2 Bayesian Regularization Backpropagation

Overfitting is one of the most significant issues of training neural networks. For NN’s, there should

be fewer parameters than there are data points in order to train a network [19]. Therefore, the

concept is that if the network is too complicated, it might learn unnecessary patterns which might

not be able to generalize. There are many approaches to this problem. However, the author of [19]

suggests two methods for robust terms in practicality – early stopping and regularization. These

two approaches restrict the complexity of the network by reducing the magnitude of the weights.

Among them, regularization is the kind where Bayesian algorithm lie.

Thomas Bayes is the founder of the concept of the Bayesian Regularization (BR) algorithm. His

famous Bayes’ theorem computes the conditional probability of an event ‘A’ given a condition ‘B’

has occurred. The formula can recall as follows:

(|) ()

()
(|)

P B A P A

P B
P A B = (28)

In 1992, David MacKay developed an approach to use the Bayes’ theorem for neural network

training [24]. This approach brings neural network training to the probability framework. Beale,

Demuth and Hagan divides this framework into two levels.The analysis described in the following

section is adapted from [19].

Level I calculation starts with the assumption that the weights of an artificial neural network are

random variables. Then the conditional probability of the weights form the data points. In the end,

the weights which maximize the formula are found and chosen.

33

This probabilistic relation can be described as follows:

(| , ,) (| ,)

(| , ,)
(| , , ,)

P D x M P x M

P D M
P x D M

 

 
  = (29)

In Equation (29), x represents the vector containing all the weights and biases in the network, 

and  are the parameters related with the density functions (| , ,)P D x M and (| ,)P x M , D is

the input/output, and M is the architecture of the designed network.

To clarify this concept, each term in Equation (29) is further described. The probability density of

the data (| , ,)P D x M , given the weight vector x , the parameter  and the network model M

can be represented as given in Equation (30).

1

()
(| , ,) DE

D

e
Z

P D x M 


 −= (30)

where

2

1

2 
 = (31)

 Here,
2

 is the variance of the noise source, DE is the squared error and

2 2 2() (2 ())

N N

D
Z 

 


= = (32)

The weights are selected to maximize because maximizing the function requires minimizing the

squared error DE .

34

The second term in Equation (29) is (| ,)P x M . It consists of the knowledge of the weights before

collecting the data. This term is known as prior density. If the weights consider very small (close

to zero), a zero – mean prior density function can be selected:

1

()
(| ,) wE

w

e
Z

P x M 


 −= (33)

where

2

1

2 w
 = (34)

Here,
2

w is the variance of the weights, wE is the sum squared of the weights and :

2

22() (2)

n
n

wwz 
 


 
 
 

= = (35)

where n is the number of weights and biases in the network.

The last term in Equation (29) is called the evidence (| , ,)P D M  which does not involve the

weights vector x . However, the goal is to maximize Equation (28). Thus, it is not concerned at

this point.

Putting Equations (29), (30) and (33) together, the density function can be rewritten as:

 

(())exp

1 1
exp ()

() ()

 =
1

(,)

(| , , ,)
D w

w D

w

F x

E E
Z Z

Normalizing factor

Z

P x D M

 
 

 

 

−

− +

=
 (36)

35

Where (,)FZ   is the function  and  . ()F x is the regularization performance index which

can be defined as () D wF x E E = + .

Level II of the framework estimates the parameter  and  from the data for analysis. The level

II framework equation can be written as:

(| , ,) (, |)

(|)

(, | ,)
P D M P M

P D M
P D M

   
  =

 (37)

This formula is almost the same as Equation (29). Following the same logic, Equation (36) can be

maximized by maximizing (| , ,)P D M  .However, this term is identical to the normalizing

factor of Equation (29). Thus, (| , ,)P D M  can be solved as:

()

() ()

1 1
exp() exp()

() ()

1
exp(())

(,)

,
 =

(| , ,)
D w

D W

F

F

D w

E E
Z Z

F x
Z

Z

Z Z

P D M

 
 

 

 

 

 

  
− −  

   

−

=

 (38)

From Equations (32) and (35) ()DZ  and ()wZ  can be found. However, (,)FZ   can be

expressed utilizing the Taylor series expansion:

 () ()
1

2
()() MP

T
MP MP MP

x x x H x xF x F + − − (39)

Here, MPH is the Hessian matrix of ()F x which is evaluated at MPx . Substituting Equation (39)

into Equation (36) yields the following equation:

36

1

12 2(,) (2) (det(())) exp(())
n

MP MP
F H F xZ    − − (40)

Also, substituting Equations (40) and (38) brings the optimum solution for  and  at the

minimum point:

()

2 2 ()MP

w

MP MP
MP

D

and
E x

N

E x
 

 
= =

−
 (41)

where n is the total number of parameters in the network (weights and biases) and

12 ()MP MPn tr H  −= − is the efficient number performance.

3.5.3 Scaled Conjugate Gradient Backpropagation

The Scaled Conjugate Gradient (SCG) algorithm is based on ‘conjugate gradient methods’ where

the large – scale problem is handled by a group of optimization techniques. SCG is similar to the

LM method in the sense that it provides quadratic termination without computing the Hessian.

Considering the mathematical calculation, a set of vectors { }kp is mutually conjugate with regards

to a positive definite Hessian Matrix H, if :

 0 T
jk

p Hp k j=  (42)

Identical to orthogonal vectors, there are an infinite number of conjugate vectors, includes the

Hessian Matrix spanning an n-dimensional space. Thus, the conjugacy condition in Equation (42)

must be stated without H . Recalling that for quadratic functions:

 ()F x Hx d = + (43)

 2 ()F x H = (44)

By combining the formulas the change in gradient at iteration 1k + :

37

1 1

() ()
k k k k k k

Hx d Hx d H xg g g
+ +

= + − + =  = − (45)

 ()1k k k k k
x x px 

+
== − (46)

Here, ka is minimizing ()F x in the direction
kp .

The equation for conjugacy condition can be related as:

 0 T T T
j j jk k k k

p Hp x Hp g p k ja = = =  (47)

Equation (47) represents the conjugacy condition with respect to change in the gradient at

successive iterations. There are infinite number of conjugate vectors because
0p is arbitrary and

1p can be any vector that is orthogonal to 0g .The equation can be expressed in the steepest decent

direction:

 0 0p g= − (48)

Next, a vector
kp that is orthogonal to

0 0 1{ , ,......, }kg g g −   can be simplified to iterations of the

form [25]:

 1k k k k
p g p

−
= − + (49)

Here,
k is scalar which produce equivalent results when it comes to quadratic functions [25].

The most common methods are [25]:

 1

1 1
k

T
k k

T
k k

g g

g p
 −

− −

=



 (50)

38

1 1
k

T
k k
T

k k

g g

g g


− −

=



 (51)

 1

1 1
k

T
k k

T
k k

g g

g g
 −

− −

=



 (52)

39

CHAPTER 4: EXPERIMENTAL SETUP

4.1 Surface EMG Circuit Design

This chapter describes building a circuit board to detect surface EMG (sEMG) signals. The circuit

board consists of three different stages. All the stages are explained in the following

documentation.

4.1.1 The first stage

This stage feeds the sEMG signal to the non–inverting terminal of the LM324 instrumentation

amplifier. It compares two inputs and multiplies the difference 100 to increase the strength of the

sEMG signal. Figure 4.1 shows the circuit diagram of the instrumentation amplifier. The figure

contains four resistors which suggested values are R1 – 2KΩ, R2 – 100KΩ, R3, and R4 –

10KΩ.The quad-operational amplifier model is a LM324NFS – ND. The output values from the

first stage vary from ± 0.01 𝑡𝑜 ± 0.09 𝑚𝑉. The signal from the instrumentation amplifier is

afterwards feed to the notch filter.

Figure 4.1: Instrumentation Amplifier [27]

40

4.1.2 Second Stage

The second stage consists of a notch filter which eliminates interference caused by the

environment, i.e., electronic components using a power supply at 60Hz. A UAF42 circuit is used

to build a notch filter by adding a set of corresponding resistors to tune the filter to a 60Hz

frequency. The calculation of the resistor values shown below-

 𝑓𝑁𝑜𝑡𝑐ℎ =√(
𝐴𝐿𝑃

𝐴𝐻𝑃
.

𝑅𝑍2

𝑅𝑍1
) *𝑓𝑜 (53)

In the equation ALP represents the gain from the input to the low-pass filter, AHP indicates the gain

from the input to high – pass filter and 𝑓𝑜 is the fundamental frequency. 𝑅𝑍1 𝑎𝑛𝑑 𝑅𝑍2 are the

resistor values which are each 2KΩ. Consistently, the product of (
𝐴𝐿𝑃

𝐴𝐻𝑃
∗

𝑅𝑍2

𝑅𝑍1
) value is one, thus the

notch filter frequency is equal to the fundamental frequency. Figure 4.2 reparents a UAF42 circuit

diagram.

Figure 4.2: UAF42 circuit [28]

41

The -3dB drop-off occurs at the cut off frequency of the filter which correlates to half power level

and the attenuation. The -3dB drop-off estimated as:

 3
notch

dB

f
BW

Q
− = (54)

Here, Q represents the quality factor which can be adjusted by

1

Q

R

Q
R =

−
 (55)

 Figure 4.3 shows the notch filter with the combination of resistors Rq – 4.99KΩ, RF1 and RF2 –

2.65 MΩ, RZ3 – 12.1KΩ and UAF42AP – ND – the universal active filter used for 60Hz

compensation. The output from the notch filter is then feed to the bandpass filter, which encompass

the next stage of the suggested design.

Figure 4.3: A notch filter [27]

42

4.1.3 Third Stage

A Chebyshev type II 0.1dB passband is used in this stage. It is an active filter for roll off used to

describe the steepness of a transmission function with the frequency. This filter has a unique

feature in eliminating the error between the idealized and the actual filter. The Chebyshev type II

represents the stopband ripple which consists of low-pass and high-pass filter. Figure 4.4 shows a

design frequency of 450Hz high – pass filter.

The output from the High – pass filter is passed through a 4Hz low – pass filter. The outputs of the

low – pass filter range from ±0.01𝑉 − ±0.09𝑉. Figure 4.5 represents the suggested low-pass

filter. The resistors values and the operational amplifier model is shown in the figure.

Figure 4.4: High – pass filter [27]

43

The output from the lowpass filter is the final process to achieve sEMG signal. The output value

from the low pass filter is not being able to measure regulate voltage because of Arduino. Therefore

amplification of the signal is required. For this, a buffer amplifier is used in combination with

voltage shift circuit to make suitable with a typical microcontroller. Figure 4.6 represents the buffer

and voltage shift circuit where R1 & R3 – 2KΩ, R2 – 27KΩ, R4 & R5 – 33KΩ, R6 is a

potentiometer range of 10KΩ and LM324NFS – ND is quad – operational amplifier.

Figure 4.5: Low – pass filter [27]

Figure 4.6: Buffer amplifier along voltage shift circuit [27]

44

The final implementation is achieved by doing a compact design of a PCB (Printed Circuit Board).

This PCB design is small and portable for using mobile application. Figure 4.7 shows a final

implementation of a PCB design for achieving sEMG signal.

The implemented PCB design needs ± 5𝑉 of battery supply to power the circuit. A power supply

circuit diagram and connection are shown in Figure 4.8 and Figure 4.9. The power supply

employed three regulators, U3 is a 10V regulator, U1 and U2 are +/-5V regulators. The battery

from an old laptop lithium – ion batteries supplies approximately 23V.

Figure 4.7: Final implementation of a PCB model [27]

45

4.2 Shortcomings of PCB and the power supply

Through testing the sEMG channel box some shortcomings were noted. The sEMG sensor box has

ten channel connections as shown in Figure 4.10.

Figure 4.10: sEMG channel box contains ten channels [29]

Figure 4.8: Power supply diagram

 Figure 4.9: Power supply circuit connection

46

However, not all the times the sEMG signals appeared in perfection. Most of the times the channel

box showed some noisy output. Therefore, some additional tasks were made to acquire the desired

sEMG signal. At first, there was only one power supply for the ten channels which is changed by

adding a second two power supply resulting in one power supply for the right side five channels

and the other one is connected to left side five channels. With the proposed change in power

supplies, however, the output seemed to be the same as previously noted, which is a noisy signal.

After investigating the circuit wire connections and the electrode connections, it was discovered

that the channel box has ground connection issues. The breadboard ground connection might get

loose while experimenting. Besides of that, it is also observed that the electrodes which are

connected to the PCB through poles, are also creating signals that are noisy. Thus, for this purpose,

a new power supply was built by using the solderable breadboard, which can provide for a robust

ground connection. Figure 4.11 shows a new power supply using the solderable board. On the

other hand, the poles on the sensor board have been removed and the electrodes were soldered

directly to the PCB. Figure 4.12 represents the new set – up for achieving ideal sEMG signals

without much noise.

Figure 4.11: New power supply connection using the solderable board

47

The left side of the box contains five channels which has a separated solderable (red color) power

supply box. Also, on the left side in Figure 4.12 shows the poles being removed and the electrodes

being directly soldered on the PCB. On the other side, the right side which has another five

channels connected to a breadboard (white color) power supply box. There wasn’t any ground

issue on the right side channels, thus the poles and power supply box did not change.

 Figure 4.12: New sEMG channel box setup

48

4.3 Electrodes Placement and establishing sEMG signal

Once the circuit setup is completed, the electrodes are confirmed working and wired correctly, the

sEMG signal can be produced by controlling the hand muscles. Figure 4.13 and Figure 4.14 shows

how the two hand motions should perform to activate the inside and outside forearm muscles with

the least amount of effort. In standard muscle control method, it will be either open or close. As

an example, if the outer forearm muscle is tensed the hand should open and when the inner forearm

muscle has tensed the hand should close.

By following the steps for Simulink™ setup which is discussed in chapter 3, the sEMG signals

can easily observed. Figure 4.15 and Figure 4.16 show the output from two channels for two

 Figure 4.14: Outer forearm muscle movement position

 Figure 4.13: Inner forearm muscle movement position

49

different motions. Figure 4.15 represents the inner forearm muscle movements when the hand is

open. However, Figure 4.16 represents the outer forearm muscle movements while the hand close.

By observing the Figure 4.15 and Figure 4.16, it is noticeable the two sEMG signals have opposite

pattern. The reason for this, the inner forearm muscle movement, and the outer forearm muscle

movement contradicts each other movement positions. That is why in Figure 4.15 has the peak

value at one instance in time in Figure 4.16 it does not show any changes.

Figure 4.16: sEMG signal for outer forearm muscle movement

Figure 4.15: sEMG signal for inner forearm muscle movement

50

CHAPTER 5: IMPLEMENTATION AND VALIDATION OF ANN

Chapter 3 gives the idea about the mathematical background of an Artificial Neural Network

(ANN). In this chapter, ANN algorithm is going to be used for training of the network. For this

purpose, implementation of Simulink™ models are explained, which is given in the following

three parts: -

1. Implementation of real – time classification Simulink™ model.

2. Training the ANN model based on real – time classification.

3. Development of identification algorithm for identifying motion intend using real – time ANN

models.

5.1 Implementation of real – time classification Simulink™ model

Figure 5.1 represents the real – time classification Simulink™ block model. Figure 5.1 consists of

several implementation of the presented methods. The first part contains the connection from

receiving the signal from Arduino to Simulink™ through serial port including the convertion of

the ASCII code into a bit number between 0 to 1023 and afterward in the range of 0 to 5V. The

second part shows the buffer blocks for calculating the overlapping sliding window. The third part

in the block represents the different classification algorithms and their finals outputs. All the parts

are explained elaborately in the further sections.

51

Figure 5.1:Real – time classification Simulink™ block model

52

5.1.1 Connecting Arduino to Simulink™ through serial port:

 Instead of using traditional Arduino analog input Simulink™ block, an Arduino code has been

created to consider the Arduino controls as a data acquisition system. By uploading the code,

Arduino can pass the signal through serial communication to feed the Simulink™ block running

on the PC. Usually, Arduino does not have much AVR memory, and because of its lower processor

speed, it is tough to send a lot of data at average speed to the Simulink™ block running on the

Arduino. Also, it seems impossible to pass the signal of average speed when the overlapping has

increased. However, connecting the Arduino through the serial port helps with the system to speed

up the signal processing. Thus, for this reason, at first, an Arduino code has been created. The code

is made to read the 1024 bit from the one analog input. The analog input will show four bits which

can be seen (Figure 5.2) in the serial monitor.

 Figure 5.2: 4 bits of value from the serial monitor

53

The universal serial receive block has been chosen instead of the Arduino Serial receive block to

receive the signal. Otherwise, the standard Simulink™ block will force to use the Arduino

processor which makes the output slow and impossible to process the signals. For configuring the

serial receiver block, the corresponding has been selected as [4 1] because there is a total of four

bits which are coming through serial communication. These four bits considered for the bit range

of 0 to 1023.The sampling time is selected as 0.067 to adjust the speed between Arduino and

Simulink™ communication. Besides, another serial configuration has been added where the baud

rate is selected as 115,200 and the number of data bits has been chosen as four bits. Figure 5.3

represents the configuration parameters for serial receive and serial configuration parameters.

Afterwards, data type conversion block is used to convert the value. However, the output of real

values can be observed when the ASCII code is converted into 0 to 1023 – bit values. Thus, for

this, the values have been passed through a MATLAB® code to convert the ASCII value into bit

values. Then those bit values are fed to a gain block to convert this signal into a voltage value

which ranges from 0 to 5V. Through this process, the analog input signal can be achieved by a

Simulink™ block running on the PC without using Arduino processor.

 Figure 5.3: Parameters selection for (a) serial receive block and (b) serial configuration

54

5.1.2 Overlapping Sliding Window:

Before the classification process has begun, 50 blocks of delays are built with an overlapping

sliding window. For doing so, a buffer block is used which will create 50 blocks of delay with

overlapping sliding window. However, before doing that, the buffer block has been checked to

confirm that it is working as a delay block and overlapping with each other. The examination of

buffer block and overlapping calculation is described in further explanations.

5.1.3 Checking the Buffer blocks for creating delays:

For checking the buffer blocks, a triangular signal has been created with a sampling time of

.01seconds. To observe the delays the output buffer size is selected as 100.Thus, this system can

assume that after one second the buffer will start showing its output signal. The Simulink™ block

& its output signal are shown in Figure 5.4 and Figure 5.5.

Figure 5.5: Output of buffer delay block

Figure 5.4: Checking delays using buffer block

55

Now, for checking the overlaps, a ramp signal is being used. The signal is passed through the

buffer block where the output buffer size is 100 and overlapping is 99. By observing the output

signal, it can be easily seen that the output always shows the mean value by calculating its present

value with the previous values which act as overlapping sliding window. For clearer concept,

referred to Figure 5.6 and 5.7 which represent the block diagram & its output.

Figure 5.7: Output results of Buffer overlapping calculation

Figure 5.6: Checking overlaps using buffer block

56

From Figure 5.7, the lower graph shows the overlapping result. For example, if the second value

is observed one could notice that the output value is .03 at 2 seconds (circled as blue), which means

that at first it counts 98 values as zeros for its previous values and then counts the two values for

its present values which are 1 and 2 respectively.

As the Buffer block is used for creating delays and overlapping one needs an Unbuffer block before

getting the outputs. After each classification, the Unbuffer block is being used. Thus, this way the

analog signals can be passed through from Arduino to Simulink™ running on the PC without being

interrupted or slowed down.

5.1.4 Classification

After creating buffer blocks for overlapping, the analog signals will be processed for classifications

purposes. A numbers of different classification algorithms have been used in this work most of

which are in the time domain. The hypothesis is that with more classifications, a larger amount of

information can be extracted which is then used for training of ANNs. Each classification is

designed as a sliding window with a width of 50 data points. The equations, and the Simulink™

Block diagram of the classifications are listed below.

5.1.4.1 Integrated EMG (IEMG)

Integrated EMG (IEMG) is the summation of the absolute values of the amplitude of sEMG signal.

It is used as an onset index to detect the muscle activity which can be related to the sEMG signal

sequence firing point [26]. IEMG can be expressed as

1

| |
N

i
i

IEMG X
=

= (56)

where N represents the length of the signal and iX denotes the segment of sEMG signal.

57

5.1.4.2 Mean Absolute Value (MAV)

MAV calculates the average value of sEMG signal which is denoted as
iX . It is one of the popular

classification used in myoelectric control application because of its simplicity [26]. It can be

denoted as

1

1
||

N

i

iN
MAV X

=

=  (57)

5.1.4.3 Mean Absolute Value Slope (MAVSLP)

MAVSLP is an altered version of MAV. The contrast between them is that MAVs of adjacent

segments are determined [9]. The equation for this classification is

 1i iiMAV MAVMAVSLP += − (58)

5.1.4.4 Simple Square Integral (SSI)

This classification uses the energy of the sEMG signal as a feature [26]. The equation for SSI

represents as

 2

1

| |
N

i
i

SSI X
=

= (59)

5.1.4.5 Root Mean Square (RMS)

RMS uses the square root mean value signal which power raised to second. It is also called the

quadratic mean. RMS is modeled as amplitude modulated Gaussian random process whose RMS

is relevant to constant force and non – fatiguing contraction [9]. It associates to standard deviation,

which can be expressed as:

2

1

1 N

i
i

RMS X
N =

=  (60)

58

5.1.4.6 Wavelength Length (WL)

It is related to the waveform frequency, amplitude and time. WL is the increasing length of the

waveform over time segment [9]. It can be defined as:

1

1
1

| |
N

nn
n

WL X X
−

+
=

= − (61)

5.1.4.7 Zero Crossing (ZC)

ZC represents the number of times when the amplitude value of the sEMG signal crosses the zero

y – axis. For EMG feature extraction, the threshold condition is used to refrain from the

background noise or white noise. It provides an approximate estimation of frequency domain

properties which can be formulated as:

 1
1

[sgn | |]
N

i i
i

ZC x x threshold+
=

= −  (62)

where
sgn() {0.5,

 0 ,

x if x threshold

otherwise

= 

5.1.4.8 Slope Sign Change (SSC)

SSC is similar to zero crossing. SSC is another way to represent the frequency information of

sEMG signal. This method is an indicator of the slope sign change over three consecutive

segments. This classification of sEMG signal is used for previous research [9]. SSC is described

as follows:

1

1 1
2

{ [()()]}
N

i ii i
i

SSC f X X X X
−

− +
=

− −= (63)

59

where,

() { 0.1,

 0,

f x if x threshold

otherwise

= 

5.1.4.9 Willison Amplitude (WAMP)

Willison amplitude detects the difference of the number of times between sEMG signal amplitude

among two adjacent segment that crosses a predefined threshold to eliminate noise effects same as

ZC and SSC. It is defined as:

1

1
1

|(|)
N

i i
i

WAMP f X X
−

−
=

−= (64)

where,

() { 0.5,

 0,

f x if x threshold

otherwise

= 

5.1.4.10 Mean

It is the most common classification for measuring the central tendency of a random variable. It

can denote by:

1

1 N

i
iN

Mean X
=

=  (65)

60

5.2 Configuration parameters for running the model in Simulink:

At first, the Arduino code must be uploaded. Then the Simulink™ model can be run. However,

before running the Simulink™ model, some parameters need to be changed for running this model.

The runtime option should be selected as normal mode, and in the options, tab target hardware

should be chosen as Arduino Mega 2650. Enable overrun detection option should be a checked on

in the same tab. Also, the baud rate should be changed to 115,200 for Serial 0 & Serial 1 baud rate

option. The reason behind changing the baud rate is because in the Arduino code the baud rate has

been chosen as 115,200 for better speed.

5.3 Training Artificial Neural Network (ANN):

One channel of classified signal values are stored in the MATLAB® workspace by using

Simulink™ blocks. Those stored classified values then processed by MATLAB® code for training

the ANN. The corresponding Simulink™ block diagram for training the ANN is shown below.

61

Figure 5.8: Simulink™ Diagram for storing the signal values into the MATLAB® Workspace

62

In this section, the classified signals from Channel 1 has been fed to the MATLAB® workspace.

Afterwards, those classified signal values are processed for training the ANN. A different example

is used, i.e. a photoresistor led sensor is tested before processing surface

electromyography (sEMG) signals (see Figure 5.9).

The photoresistor acts like a sensor. If there put some shadow it shows the lowest output values,

in normal room light conditions it shows the highest value and if there is flashing an extra light it

shows middle of the range value (see Figure 5.10). For experiment purpose, total thirty seconds

time duration is chosen, where first ten seconds for shadow on photoresistor, next ten seconds for

normal room light condition and last ten seconds selected as extra flashing light on photoresistor.

For three different stages, three different target number is selected: first ten seconds is trained as

number 3, next ten seconds is trained as number 1 and last ten seconds is trained as number 2 (see

Figure 5.11).

 Figure 5.9: Circuit connection for a photoresistor led sensor

63

 For better training result, the value between changing the conditions are ignored.Because, there

are some addition noise can be found while changing the conditions. That is why, after each nine

seconds, one second values are ignored. Also, intial and last one second value is ignored for the

same purpose. For making the gap, a function named stitch is built by using the MATLAB® code.

function[x] = stitch (x,t, i, j, k, l)

 mask = ~(((t>=i(1)) & (t<=i(2))) | ((t>=j(1)) & (t<=j(2))) | ((t>=k(1)) & (t<=k(2))) | ((t>=l(1)) &

(t<=l(2))));

x = x+1;

 Figure 5.11: Analog output from the channel

Figure 5.10: Targeted output value

64

x = x.*mask;

x(x==0) = [];

x = x - 1;

Here, i, j, k, and l define the parameters of gap about how much values should be ignored. And t

represents the time duration of the experiment These values are selected in the main MATLAB®

as follows.

i= [0 1];

j= [10 11];

k= [20 21];

l= [29 30];

In the Simulink™ model, there is one channel which has ten classifications. These values are

collected from the MATLAB® workspace. At first, all the obtained values are being squeezed to

remove the singleton dimensions. Afterwards transposed the values, because for further

calculations all values should be in one row. Also, the targeted output is collected from the signal

builder blocks and transposed in order to make the same dimensions as inputs. Because, without

the same dimensions of input values and targeted output ANN will show errors and as a result it

cannot run.

Furthermore, all the processed values are trained through ANN network toolbox. Thus, for this

feedforward neural network has been used. It consists a series of layers. The first layer shows the

connection from the network inputs where the inputs are the classified values from the channels.

And the final layer produces the network’s output which follows some predetermined outputs.

Inside the network each subsequent layer has a connection from the previous layer. There are forty

65

hidden layers, and for training function, ‘trainlm’ which is Levenberg Marquardt algorithm has

been chosen. Total epochs are selected as 8000, and targeted performance is chosen as 1e-25.

% Training the ANN

net=newff(minmax(Channel1), [40,1], {'logsig','purelin','trainlm'});

net.performFcn='msereg';

net.performParam.ratio=0.5;

net.trainparam.epochs=8000;

net.trainparam.goal=1e-25;

net.trainparam.lr=.067;

net=train (net, Channel1, o_);

v1=net ([x1; x2; x3; x4; x5; x6; x7; x8; x9; x10]);

error=o-v1;

After training the NN, the output is plotted to compare the results between targeted output and

trained output. Besides that, an error plot is also shown to observe the error difference between the

two outputs. Figure 5.12 is shown the NN training toolbox to observe the number of epochs,

targeted performance and gradient to achieve the training values for targeted output

66

And the figures for the outputs and error difference between the two outputs are shown in Figure

5.13 and 5.14.

Figure 5.12: Training result for NN toolbox

Figure 5.13: Comparing result between targeted output and predicted output

67

Afterward, Simulink™ block created by using command genism(net). The newly created trained

ANN block then placed to the Simulink™ model to observe the identification of the targeted output

signal. Figure 5.15 shows the Simulink ™ implementation for real – time identification.

Figure 5.14: Observing the error between two outputs

68

Figure 5.15: Simulink™ model for real – time implementation

69

5.4 Real – time identification

After running the Simulink™ in real – time, three different kinds of output can be observed. Figure

5.16 shows the output for real – time identifications. As already discussed a snitch function is used

for reducing the additional noise values while changing the conditions. Though this function makes

the training result much smoother than normal, however, for ignoring the gap still has some effects

which is visible in the Figure 5.16. From the figure, it is noticeable that there are some extra noises

while changing its real – time identification positions.

Figure 5.16: Real – time identification from trained NN Simulink™ block. Number three

representing flashing light on resistors, number one for normal condition and number two for

shadowing the photoresistor.

70

This implementation method gives the idea that the built-up Simulink™ models and all the

followed steps can lead a fruitful result for real – time identification of any signal. This experiment

is just a test before approaching the primary purpose of this research which is building real – time

classifications and identifications for sEMG signal.

71

CHAPTER 6: DISCUSSION AND RESULT

This chapter consists of the discussion of the experiments using sEMG signal in real – time for

training and identifications purpose. Implementation of Simulink™ models, Arduino code, and

MATLAB® codes are introduced and discussed in Chapter 5. Experimenting with the sEMG

signals for training the Artificial Neural Network (ANN) gives better training output, however, for

real – time identification the output does not show the satisfying result as obtained with the

experiments using the LED sensor lights. Therefore, some different approaches were followed for

improving the identification results. As we know, sEMG is a complex signal which always gives

random values based the subject’s different movement. As a human being our movement are not

exactly same as the previous movement even if we are doing the same activities in a repeated way.

Subject’s different muscle movement and activities can imply a lot affect the quality of the outputs

while experimenting in real – time identification. Because in this research it is found that if the

sEMG is trained for a specified period for different motions, the ANN can train unnecessary

motion movement. For example, if motion one is trained for three seconds then directly move to

action two and train for another four seconds without placing any gap, this will lead the ANN to

train the random values. As a result, real – time identification will give some random noise signals

which are not related to the identifier of the motion executed. That is why instead of using some

continuous training pattern, random output numbers are chosen with random period gaps. This

training pattern can help ANN to separate the additional movement values apart from the needed

movement values.

72

6.1 Building real – time random output values

For this purpose, at first, a physical pushbutton is used to correlated motion initiation with the

collected sEMG data. However, we know that pushbutton has some debouncing effect. Even if the

debouncing impact is solved, the implementation of a pushbutton in Simulink™ faces some

problems. First, it is not possible to use an Arduino analog input block because of the use of

Arduino serial communication through USB for faster processing speed. Thus, the Arduino code

needs to change in order to send the pushbutton values along with sEMG signal values to the PC.

Nonetheless, the pushbutton values also affect the sEMG values as these values pass through the

serial communication (Figure 6.1). From the figure, it is observable that when the pushbutton is

pressed a sudden peak can also be seen in real – time sEMG signal which can eradicate the natural

characteristic of the sEMG signal. Therefore, a different approach is being pursued for building

the real – time implementation for sEMG experiments.

 Figure 6.1: Pushbutton values affecting the natural characteristic of sEMG signal

73

In this work, a built – in Simulink™ block is used for giving a different number of outputs at

random times [30]. Inside the Simulink™ block, a switch block and call – back functions are used

to create an artificial pushbutton. The pushbutton block can have many different output numbers.

However, for this research purpose, only two different numerical values are chosen. The first value

is ‘three’ which is associated with the inner forearm muscle movement and the second value is the

number ‘one’ which is associated with the outer forearm muscle movement values. Figure 6.2

shows the Simulink™ block for two different output numbers one and three. By double – clicking

the block, the output values can change from 0 to 3 or 0 to 1 in real – time.

6.2 Classifications

Classification is implemented according to the material introduced in Chapter 5. In Chapter 5 there

are ten classification algorithms introduced. These classification algorithms work well with the

LED sensor experiment. However, the same classification algortihms give noisy output while

Figure 6.2: On/Off Simulink buttons and their corresponding output values

74

experimenting with sEMG signals. Later, it is found that some of the classifications create noisy

output instead of improving the identification outputs. For this purpose, a different approach is

attempted for better identification. The actual sEMG signal is too small (in millivolts) which can

be observed by amplifying the signal. It is noticed that some of the classifications do not show a

change in values for the smaller amount of signal change. On the other hand, some of them can

give a wide variety of output values for a small change in the signal amplitude. At first, the

Simulink™ blocks with classifications running in real – time for the inner forearm motion and

outer forearm motion are used. Afterwards, these results are compared for the different

classifications with each other to observe which classification can give a significant amount of

output values for the small amount of change in the sEMG signals. Figure 6.3 and 6.4 show

different classifications values for real – time forearm movements.

75

Figure 6.3: The First graph is sEMG signal, second IEMG, third MAV, fourth MAVSLP, fifth SSI, sixth

RMS, seventh WL classifications outputs

76

In Figure 6.3 the first graph shows the output of a real – time sEMG signal. The following graphs

are showing the different classified value perspective of the sEMG signal. By observing the ten

different classifications, it can be noticed that the classifications named waveform length (WL),

zero crossing (ZC), slope sign change (SSC) and Wilson amplitude (WAMP) classification are

showing significant output changes due to a slight change in the real – time sEMG signal. Thus,

these four classifications are chosen and used to train the Artificial Neural Network for better

identification results.

Figure 6.4: The First graph is SSI, second RMS, third WL, fourth ZC, fifth SSC, sixth WAMP and

the last one is mean classifications outputs.

77

6.3 Training Artificial Neural Network(ANN)

In Chapter 5, the training is done by collecting all the classified values from the Simulink™ to

MATLAB® workspace. However, instead of using all ten classifications together a few

classifications are chosen based on their performance for better accuracy identification. These

chosen classifications are used one by one instead of using them together, because it is also found

that when two or more classifications together are used, they hamper the output values for better

sEMG identifications. Thus, WL, ZC, SSC, WAMP classifications are used one by one for training

purpose and later their trained value is compared to check which classification is giving better

training and identification results. Figure 6.5 denotes the Simulink™ block for four different

classifications. These classification values are stored in the workspace using different names so

that each classification can be trained just by changing their stored variable names.

78

Figure 6.5: Four different classifications Simulink™ block

79

For training purpose, two movements are chosen – inner forearm movement and outer forearm

movement which is shown in chapter 4 (See Figure 4.13 and 4.14). For training the targeted output

values with the input values, the inner movement is set to number 3 and outer forearm movement

is set to number 1. Figure 6.6, 6.7, and 6.8 show the inner and outer muscle movement

 Figure 6.7:sEMG signal for outer forearm muscle movement

 Figure 6.6:sEMG signal for inner forearm muscle movement

Figure 6.8:Real – time pushbutton output considered as a targeted output

80

corresponding to their target values 3 and 1. That means, when the target output shows a 3, the

participant needs to do an inner forearm movement. On the other hand, when it is 1 the participant

needs to perform outer forearm movement.

At first, the sampling time is chosen as 0.067 seconds which is also used in the Simulink™ block.

The classified real – time values from two different channels are stored in the MATLAB®

workspace to train the values through ANN. Later, time values are chosen from one of the channels

which value is stored in the MATLAB® workspace to plot the output result between input values

and target outputs. Afterwards, all the values are transposed into a row matrix to confirm all the

dimensions to the same range. Because of the backpropagation training, the values of the input

data and target output data should have the same dimensions.

There are many kinds of the backpropagation algorithm. Among them, for faster training purpose,

the Levenberg – Marquardt (trainlm) is used [30]. There are several parameters associated with

trainlm. A feed – forward network consisting of two – layer backpropagation is used. The

following call to the MATLAB® function ‘newff’ creates a two – layer network with 40 neurons

in the hidden layer:

net = newff(p,outputb,40,{'tansig','purelin'},'trainlm');

Here, p represents the input values which are the classification values from two channels, and

outputb represents the target output values. Tan – sigmoid and linear transfer functions are chosen

as transfer functions. For better training results, the default training parameters are modified. The

following part of the code shows the regularized performance functions. Here the performance

ratio is set to .007. The learning rate is chosen to be 0.05; the number of epochs is 5000 and the

parameter goal is chosen as 1e-15. It should be noted that if the learning rate is made too big, the

algorithm becomes unstable [19]. On the other hand, if the learning rate is too small, the algorithm

81

takes a long time to converge [19]. Thus, it should be chosen wisely. The same considerations need

to be applied for choosing the performance parameter ratio. If this parameter is too large, the results

might get overfitting. Otherwise, if the ration is too small, the network does not sufficiently fit the

training data.

net.divideFcn = '';

net.performFcn='msereg';

net.performParam.ratio=0.007;

net.trainParam.show = 500;

net.trainParam.lr = 0.05;

net.trainParam.epochs = 5000;

net.trainParam.goal = 1e-15;

The initialize command is used to reinitialize the weights and biases. This function works a

network object as input and rebound a network object with all weights and biases initialized.

Finally, the training has to be done with the combination of input values and targeted output values.

Below is shown the coding lines for initializing the network and training command.

net = init(net);

[net,tr] = train(net,p,outputb);

y = sim(net,p);

Also, the error is calculated from the trained values and targeted outputs. Figure 6.9 shows the

training results for four different classifications individually such as - WL, ZC, SSC, WAMP. The

time duration for real – time classification is set to 25 seconds. Overlapping delay is chosen as 100

data points. Thus, in the buffer block the output buffer size is set to 100 and buffer overlap is set

82

 to 99. Figure 6.10 represents the trained output values comparing the targeted output and predicted

outputs. Moreover, Figure 6.11 and 6.12 produces the error values between targeted and predicted

outputs.

(a) (b)

 (c) (d)

Figure 6.9: Training results for NN toolbox. (a) Slope Sign Change (SSC) (b) Waveform Length

(WL) (c) Zero Crossing (ZC) (d) Wilson Amplitude (WAMP).

83

Figure 6.10: Four different classification SSC, WL, ZC and WAMP trained output graphs

 Figure 6.11: Error difference between targeted and predicted outputs for SSC and WL

84

Among the four classifications, waveform length (WL) shows the lowest error value which is

2.561%. Others such as the SSC, ZC, and WAMP error values are 115.58%, 109.84%, 29.74

% respectively. However, it should be noted that the error values for different classifications might

vary depending upon how fast participants can do inner and outer forearm movements according

to the real – time random pushbutton outputs. This pushbutton output is considered as a targeted

output. If there is a delay between the pushbutton outputs and the participant's movements, it might

create a large amount of difference in real – time identification. Thus, the timing between

movements and pushbutton should be done cautiously.

Figure 6.12: Error difference between targeted and predicted outputs for ZC and WAMP

85

6.4 Identification and result

Four different Simulink™ blocks are created from the trained ANN for four distinct classification

– WL, ZC, SSC, WAMP. Afterwards, those blocks are placed in the Simulink ™ model

individually for observing real – time identifications. However, there is a change in the Simulink™

model for better results. A MATLAB ® function block is used toward the trained ANN Simulink™

block for collecting the signal values from two different channels classifications. Besides, a

saturation block is also used to fix the range, thus the identified output values cannot go beyond

the predefined range. While training the network number 1 is chosen for outer forearm movement,

and number 3 is chosen for inner forearm movement. For this reason, the lower limit range is set

to 0 and upper limit range is set to 3, so the real – time identification values cannot go beyond this

range. Figure 6.13 shows the Simulink™ block implementation for four different classifications.

Also, Figure 6.14, 6.15, 6.16, 6.17 denote the real – time identifications for different

classifications.

86

 Figure 6.13: Trained ANN Simulink™ block implementation for real – time identification

87

 Figure 6.15: Identification using WL classification

 Figure 6.14: Identification using SSC classification

88

 Figure 6.17: Identification using ZC classification

 Figure 6.16: Identification using WAMP classification

89

By noticing the identifications results from four different classifications, WAMP shows the best

identifications result.Though the WL shows less error values (2.561%), however, it seems like the

training values might be overfitting which creates some unstable output on real – time

identification.Thus, it should be remind that overfitting values might also cause some noisy

outputs. Nevertheless, it has been mentioned that the results of the different identifications may

vary based on the participant performance. In this case, the delay between the participant reaction

and the targeted output values play a vital role. There are some noises in the identification output

which represent the error values from the trained ANN. The better the training the fewer noise

content in the output scope. Thus, from all the steps derived in this chapter someone can conclude

that the presented approach works for in real – time sEMG signal identifications. However, it

should be pointed out that classification methods play an essential role in achieving the most

accurate identification results.

90

CHAPTER 7: CONCLUSION AND FUTURE WORKS

7.1 Conclusion

The study of human apprehension through artificial intelligence recently has seen a rapid

improvement because of soft computing abilities and the implementation of many concepts

including Artificial Neural Network (ANN). Nowadays, the study of sEMG signals and their

relation to human motion learning has become one of the hot topics of research. An abundant

number of researchers study the sEMG signal relation to human motion through the application of

ANN. Most of the studies include the use of different features/classifications to help the learning

process of the ANN.

The outcome of this research shows some significance. This research explores the relationship

between sEMG and the human forearm movement motions. However, before proceeding with the

sEMG signal classification, a different example experiment is done in chapter 3 which includes

the training and identification of signals in real – time. This experiment helps to justify the

proposed procedure in order to give the desired result for this research. Nonetheless, there have

been some slight changes between the experiment for the LED sensor light and the sEMG

implementation. The experiment involving the LED sensors give a different range of output values

based on in which conditions the sensor is placed. Based on the conditions, the output can give a

full variety range which helps the ANN to identify each condition easily. As a result, the output

shows very accurate identification result. On the other hand, sEMG signal is a complex signal

which has a minimal range of output values. Besides of that, human motion does not match even

when they are associated with the same tasks. The pressure of the muscles and angles of the

movements impacts and changes the sEMG signals. Thus, for better results, this research is focused

91

on finding the classifications which can identify the motions even if there are slight changes in the

output of sEMG signal. Besides of that, it is learned from this research; if any motion is trained

for a specific range of time it might give a better – trained output, however, it might end up training

the random values which can impact the real – time identification outputs. Thus, a pushbutton

function is made which can give different numbers at random times. The pushbutton

implementation helps to improve the ANN training. As a result, it shows better identification

outputs without showing much noisy signals.

7.2 Future Work

Through this research, it is shown that real – time identification through ANN training is possible.

Nonetheless, some improvement might end up with more accurate results.

First of all, there is some ground problem in the sEMG circuit which leads the output to be as a

noise signal. Besides the connection of electrodes between the boards get loose sometimes, which

also impacts the output results. Thus, a more compact PCB board design is suggested for the

ground issue problem of the sEMG circuit.

Moreover, while working with an Arduino board, the author faced the limited memory problem

while working with overlapping in real – time.This problem lead the author to follow different

paths in order to use a more powerful processor and larger memory, which can calculate more

significant overlapping calculation. Therefore, a more powerful microcontroller such as

Beaglebone or a similar one is suggested for further research.

Last but not the least, classifications play the most vital role in identification. Choosing the wrong

classification might lead the research results to be insufficient. In this research, noise influence

was faced because of choosing the wrong classifications. Thus, it is recommended to choose a

92

better classification alogorithm that will help the identification results. For this research purpose,

ten classifications are chosen initially. However, while working with sEMG signals, only four

classifications are selected because of the other classification methods cause problems to the real

– time identification implementation. There are time – domain and frequency – domain

classification methods that are used for this research work. Choosing the right classification

method, should be considered the most important part in working with sEMG identifications.

93

REFERENCES

[1] K. Ziegler-Graham, E.J. MacKenzie, P.L. Ephraim, T.G. Travison, R. Brookmeyer.Estimating

the prevalence of limb loss in the United States: 2005 to 2050.Arch Phys Med Rehabil, 89 (2008),

pp. 422-429

[2] Atzori, M., and Muller, H. (2015). Control capabilities of myoelectric robotic prostheses by

hand amputees: A scientific research and market overview. Front. Syst. Neurosci. 9:162. DOI:

10.3389/fnsys.2015.00162

[3] Sturma A, Roche AD, Göbel P, Herceg M, Ge N, Fialka-Moser V, et al. A surface EMG test

tool to measure proportional prosthetic control. Biomed Tech (Berl) 2015; 60: 207–2013

[4] Roche AD, Vujaklija I, Amsüss Sebastian, Sturma A, Göbel Peter, Farina D, Aszmann OC. A

structured rehabilitation protocol for improved multifunctional prosthetic control: a case study. J

Vis Exp. 2015 Nov 06;(105): e52968. DOI: 10.3791/52968

[5] C. Phram, F. Kayali, I. Vujalija (2017). Increasing motivation, Effort and performance through

Game – based rehabilitation for Upper Limb Myoelectric Prosthesis Control. IEEE, preprint of

the Publication[38]. DOI: 10.1109/ICVR.2017.8007517

[6] G. N. Saridis, T. P. Gootee, "EMG pattern analysis and classification for a prosthetic arm",

IEEE Trans. Biomed. Eng., vol. BME-29, no. 6, pp. 403-412, Jun. 1982.

[7] B. Hudgins, P. Parker, R. N. Scott, "A new strategy for multifunction myoelectric control",

IEEE Trans. Biomed. Eng., vol. 40, no. 1, pp. 82-94, Jan. 1993.

94

[8] Guo WC, Sheng XJ, Liu HG, Zhu XY (2017) Toward an enhanced human-machine interface

for upper-limb prosthesis control with combined EMG and NIRS signals. IEEE Transactions on

Human-machine Systems 47(4):564–575

[9] A. Phinyomark, C. Limsakul, and P. Phukpattaranont, “A novel feature extraction for robust

EMG pattern recognition,” Journal of Computing, vol. 1, issue 1, pp. 71-80, December 2009.

 [10] Henneman, E., and L. M. Mendell, “Functional organization of the motoneuron pool and its

inputs,” in V. B. Brooks, ed., Handbook of physiology: The nervous system, American

Physiological Society, Bethesda,1981, pp. 423–507.

[11] Moritani T, Stegeman D, Merletti R. Basic physiology and biophysics of EMG signal

generation. In: Merletti R, Parker P, editors. Electromyography physiology engineering and

noninvasive applications. Hoboken, NJ: Wiley-IEEE; 2004. P 1–25.

[12] Carlo J. De Luca (1997) “Use of Surface Electromyography in Biomechanics” Journal of

Applied Biomechanics, Vol.3

[13] Carlo J. De Luca (2006) “Electromyography: Encyclopedia of Medical Devices and

Instrumentation” (John G. Webster Ed.), John Wiley Publisher

[14] Paul E. Barkhaus and Sanjeev D. Nandedkar (2000) “Electronic Atlas of Electromyographic

Waveforms” Vol. 2, 2nd Edition

[15] M. Z. Jamal, “Signal acquisition using surface EMG and circuit design considerations for

robotic prosthesis,” 2012

[16] Dr. Scott Day “Important Factors in Surface EMG Measurement,” Bortec Biomedical

Incorporated,2002.

95

 [17] Peter Konrad, The ABC of EMG: A Practical Introduction to Kinesiological

Electromyography, Scottsdale: Noraxon U.S.A, Inc., 2006.

[18] A Krenker, J Bešter and A Kos,”Introduction to the Artificial Neural Networks”,Edited Kenji

Suzuki, Published by InTech,, Janeza Trdine, Croatia,(2011), pp 1-18.

[19] M. T. Hagan, H. B. Demuth and M. H. Be, Neural Network Design, Boston: PWS pub, 1996.

[20] D. A. Winter, Biomechanics and Motor Control of Human Movement, New Jersey: Wiely &

Sons Inc., 2009.

[21] S. Kumar and A. Mital, Electromyography In Ergonomics, London: Taylor & Francis Inc.,

1996.

[22] C. R. Jeffrey and D. Maya, "The History of Muscle Dysfunction and SEMG,"Journal of

Electromyography and Kinesiology, vol. 4, pp. 5-14, 1994.

[23] Noraxon, "Manufacturers of professional electromyography products (emg/semg) and

biomechanical sensors," 10 March 2006. [Online]. Available: ww.noraxon.com. [Accessed 315

March 2018].

[24] G. L. X. Z. J. H. a. G. L. A. Xiong, "Feasibility of EMG-based ANN controller for a real-time

virtual reality simulation," in 38th Annual Conference on IEEE Industrial Electronics Society,

Montreal, 2012.

[25] A. M. S. P. D. a. B. R. S. Micera, "A hybrid approach to EMG pattern analysis forclassification

of arm movements using sta- tistical and fuzzy techniques," Med. Eng.Phys., vol. 21, pp. 303-311,

1999.

[26] D. W. Marquardt, "An Algorithm for Least Square Estimation of Non-Linear Parameters,"

Journal of the Society for Industrial and Applied Mathematics, vol. 11,no. 2, pp. 431-441, 1963.

96

[27] MS thesis by Pavan Kumar Yarlagadda, " Real – time sEMG-based finger joint anglecontrol

for a smart prosthetic hand," ISU, May 2013

[28] http://www.ti.com/lit/ds/symlink/uaf42.pdf [Accessed 3/30/2018]

[29] MS thesis by Abduljaleel (AJ) Alriyadh, " EMG Feature-Based Approach toward a Robust

Artificial Neural Networks Analysis of Human Finger Motion," ISU, May 2016

[30] MATHWORKS, “Simulink on/off switch” by Gleen Gomes, 2012 [Online]. Available:

https://www.mathworks.com/matlabcentral/fileexchange/39348-simulink-on-off-switch

[Accessed 3/30/2018]

97

APPENDIX

Sensor – based LED example experimentation setup

At first, after circuit setup connection is done, the Arduino should relate to PC through USB cable.

The following Arduino code need to be uploaded for serial communication which has one Analog

input channel configuration with a baud rate of 115,200.

// These constants won't change. They're used to give names

// to the pins used:

const int analogInPin = A2; // Analog input pin that the Channel is attached

to

int sensorValue = 0; // value read from the Channel

void setup() {

 // initialize serial communications at 115200 bps:

 Serial.begin(115200);

}

void loop() {

 // read the analog in value:

 sensorValue = analogRead(analogInPin);

 // print the results to the serial monitor:

 //Serial.print("sensor = ");

 //If else loop showing 0 to 1023-bit output through serial port

 if (sensorValue > 999) {

 Serial.print(sensorValue); //When the bit value is greater than 999

 }

98

 else if (sensorValue > 99) //When the bit value ranges from 100 to 999

 {

 Serial.print(0);

 Serial.print(sensorValue);

 }

 else if (sensorValue > 9) //When the bit value ranges from 10 to 99

 {

 Serial.print(0);

 Serial.print(0);

 Serial.print(sensorValue);

 }

 else

 {

 Serial.print(0);

 Serial.print(0);

 Serial.print(0);

 Serial.print(sensorValue); //When the bit value ranges from 0 to 9

 }

 Serial.print('\n');

 // for the analog-to-digital converter to settle

 // after the last reading:

 delay(50);

}

99

Afterward, Simulink™ model needs to set up for collecting the signal from the USB cable.

Simulink™ model should be selected as normal mode. Run on hardware configuration should be

chosen as Arduino Mega 2560 and serial 0 and 1 baud rate should be chosen as 115,200. See the

below figures:

See Figure 5.8, which shows the Simulink™ model including the buffer (Overlapping purpose)

and the classifications for real – time experiment. In that model, parameters need to be selected for

serial receive block and serial configuration block (see Figure 5.3). Figure 0.3 shows the buffer

parameters.

Figure 0.2: Arduino Mega 2560 setup for Simulink™ model

 Figure 0.1: Simulink™ run time mode selected as normal

100

Classifications

As discussed earlier in this thesis, ten classifications are developed to extract the dynamics from a

given real – time sEMG signal. All the ten classifications are programmed in MATLAB® as

functions and grouped in a different MATLAB® functions Simulink™ blocks. The following

MATLAB® codes are shown for ten different classifications.

Integrated EMG classification:

function y = fcn(u)

N=length(u);

IEMG=zeros(N,1);

for n=1:N

 IEMG(n)=abs(u(n)-mean(u));

end

Figure 0.3: Buffer block parameter. Here,50 overlapping is chosen

101

y=sum(IEMG);

Mean Absolute Value classification:

function y = fcn(u)

N=length(u);

MAV = zeros(N,1);

for n=1:N

 MAV(n)=abs(u(n)-mean(u));

end

y=sum(MAV)/N;

Mean Absolute Value Slope classification:

function y = fcn(u, u_)

N=length(u);

MAV = zeros(N,1);

for n=1:N

 MAV(n)=abs(u(n)-mean(u));

end

 y=sum(MAV)/N;

MAV_ = zeros(N,1);

for n=1:N

 MAV_(n)=abs(u_(n)-mean(u_));

end

y= y-(sum(MAV_)/N);

102

Simple Square Integral classification:

function y = fcn(u)

N=length(u);

SSI = zeros(N,1);

for n=1:N

 SSI(n)=abs(u(n)-mean(u)).^2;

end

y=sum(SSI);

Root Mean Square classification:

function y = fcn(u)

N=length(u);

x=zeros(N,1);

for n=1:N

 x(n)=u(n)-mean(u);

end

y=rms(x);

Wavelength Length classification:

function y = fcn(u)

N=length(u);

WL = zeros(N,1);

for n=1:N-1

 WL(n)=abs(u(n+1)-u(n));

end

y=sum(WL);

103

Zero Crossing classification:

function y = fcn(u)

N = length(u);

u = u - mean(u);

y = 0;

for i = 1:N-1

 if u(i)*u(i+1) < 0

 if abs(u(i)-u(i+1)) >= 0.05 % white noise/background noise

 y = y+1;

 end

 end

end

Slope Sign Change classification:

function y = fcn(u)

N = length(u);

y = 0;

for i = 2:N-1

 if (u(i)-u(i-1))*(u(i)-u(i+1)) > 0.01

 y = y+1;

 end

end

Willison Amplitude classification:

function y = fcn(u)

N=length(u);

104

y = 0;

for n=1:N-1

 if abs(u(n)-u(n+1)) > 0.05;

 y=y+1;

 end

end

Mean classifications classification:

function y = fcn(u)

y=mean(u);

For targeted output, a signal builder block is used which can generate the values one, two, and

three. After real – time classifications, the stored MATLAB® classification values are used for

offline training Artificial Neural Network (ANN). The training has been done by using

classification values as input values and the targeted output. A function named stitch is used to

skip the values while moving from one position to other positions by multiplying zero. The main

purpose of using this function to reduce the additional noise. Figure 0.4 shows the block diagram

of targeted output and its parameter configuration.

105

The following MATLAB® code showed how stitch function MATLAB® code is made.

function[x] = stitch (x,t, i, j, k, l)

mask = ~(((t>=i(1)) & (t<=i(2))) | ((t>=j(1)) & (t<=j(2))) | ((t>=k(1)) & (t<=k(2)))

| ((t>=l(1)) & (t<=l(2))));

x = x+1;

x = x.*mask;

x(x==0) = [];

Figure 0.4: Targeted output Simulink block and its configuration.

106

x = x - 1;

Afterward, extracted the classification values and converted the values in the same dimensions

where targeted output has the same amount of matrix dimension. Later, both values are trained by

using backpropagation algorithm. Also, the error values are calculated by comparing the targeted

output and predicted output values. The following MATLAB® is shown for offline ANN training.

 fs = 0.067;

% Stitch function parameters

i=[0 1];

j=[10 11];

k=[20 21];

l=[29 30];

t=f1.time;

t=t';

% Ten classification values collected from the workspace

x1=squeeze(f1.signals.values);

x2=squeeze(f2.signals.values);

x3=squeeze(f3.signals.values);

x4=squeeze(f4.signals.values);

x5=squeeze(f5.signals.values);

x6=squeeze(f6.signals.values);

x7=squeeze(f7.signals.values);

x8=squeeze(f8.signals.values);

x9=squeeze(f9.signals.values);

x10=squeeze(f10.signals.values);

% Transpose the classification values to meet up the same dimension with targeted

output

107

x1=x1';

x2=x2';

x3=x3';

x4=x4';

x5=x5';

x6=x6';

x7=x7';

x8=x8';

x9=x9';

x10=x10';

% Targeted Output value

o=squeeze(Output.signals.values);

o=o';

% Stitch function is used for reducing additional noise

x1_=stitch(x1,t,i,j,k,l);

x2_=stitch(x2,t,i,j,k,l);

x3_=stitch(x3,t,i,j,k,l);

x4_=stitch(x4,t,i,j,k,l);

x5_=stitch(x5,t,i,j,k,l);

x6_=stitch(x6,t,i,j,k,l);

x7_=stitch(x7,t,i,j,k,l);

x8_=stitch(x8,t,i,j,k,l);

x9_=stitch(x9,t,i,j,k,l);

x10_=stitch(x10,t,i,j,k,l);

o_=stitch(o,t,i,j,k,l);

Channel1=[x1_;x2_;x3_;x4_;x5_;x6_;x7_;x8_;x9_;x10_];

% Training the NN

net=newff(minmax(Channel1),[40,1],{'logsig','purelin','trainlm'});

net.performFcn='msereg';

108

net.performParam.ratio=0.5;

net.trainparam.epochs=8000;

net.trainparam.goal=1e-25;

net.trainparam.lr=.067;

net=train(net,Channel1,o_);

v1=net([x1;x2;x3;x4;x5;x6;x7;x8;x9;x10]);

error=o-v1;

% To plot the graph of targeted output and predicted output and showing the error

value

figure

plot(t,o,t,v1,'r')

figure(2)

plot(error)

error=sum(abs(error))

After training is done, a Simulink™ block is created based on the trained values by using the

command ‘genism(net)’ in the command window. Figure 0.5 shows the Simulink™ block diagram

generated from the trained value.

 From the Figure 0.5, only Custom Neural Network and y1 block is implemented in the different

Simulink™ block where input values are collected from Arduino analog input through the USB

cable through overlapping and classification in real – time. A MATLAB® function block is used

Figure 0.5: Generated Simulink™ block from the trained NN

109

to convert the ten classification input values into one output value. For more understanding,

referred to see Figure 5.15. Below the shown code is used for converting the ten inputs into one

output value.

function y = fcn(u1,u2,u3,u4,u5,u6,u7,u8,u9,u10)

%#codegen

y = [u1;u2;u3;u4;u5;u6;u7;u8;u9;u10];

By following the above steps, it is possible to observe real – time identification for a sensor – based

LED light.

Real – time sEMG identification experimental setup

For the sEMG identification, the followed steps almost the same as sensor – based LED light.

However, for sEMG identification, two Arduino analog inputs are selected instead of one analog

input. Thus, there has been made a little change in the Arduino code. Also, instead of using ten

classifications only four classifications are used. Four classifications: Slope Sign Change (SSC),

Waveform Length (WL), Zero Crossing (ZC), and Wilson Amplitude (WAMP) have same

MATLAB® function codes which is used in the LED experiment. Buffer overlapping is selected

as 100. And these four classifications are trained individually instead of using altogether as LED

experiment. Also, avoided the stitch functions because, the targeted output is also done real – time

(see Figure 6.2) in order to achieve better identification. Comparing the LED experiment with

sEMG there are two major changes in the codes: one in Arduino code and another is for training

the ANN. Also, a new Simulink™ block named saturation block is used to outline the real – time

identification value which prevent to go beyond the targeted output values. Figure 0.6 shows the

configuration parameters for saturation block.Otherwise, all the steps are same as LED experiment

110

just few changes have made in the Simulink™ block as individual classification is done. For better

understanding recommended to see Figure 6.5 and 6.13. In the following the Arduino code and

ANN training code are given which are used in sEMG experimentation.

Arduino Code:

void setup ()

 {

 Serial.begin (115200);

 } // end of setup

void loop ()

 {

 for (int whichPort = A2; whichPort <= A3; whichPort++)// for collecting the

analog inputs from two different channels

 {

 analogRead (whichPort);

 int result = analogRead (whichPort);

 //Serial.println("Status: " + status);

 if (result>999)

 {

 Serial.print (result);

 }

 else if (result>99)

 {

 Serial.print(0);

 Serial.print (result);

111

 }

 else if (result>9)

 {

 Serial.print(0);

 Serial.print(0);

 Serial.print (result);

 }

 else

 {

 Serial.print(0);

 Serial.print(0);

 Serial.print(0);

 Serial.print (result);

 }

 }

 Serial.println();

 delay (50);

 } // end of loop

MATLAB® code to train the ANN:

fs = 0.067; % Sampling time

t=a.time;

t=t';

% Classification values from two analog inputs

i1=squeeze(a2.signals.values);

j1=squeeze(b2.signals.values);

% Targeted outptu value

outputa=squeeze(simout.Data);

112

o=outputa';

% Converting the input values and targeted output into same dimension

inputst=[i1 j1];

inputs=inputst';

p = inputs;

outputb = o;

% Traing the NN

net = newff(p,outputb,40,{'tansig','purelin'},'trainlm');

net.divideFcn = '';

net.performFcn='msereg';

net.performParam.ratio=0.07;

net.trainParam.show = 500;

net.trainParam.lr = 0.05;

net.trainParam.epochs = 5000;

net.trainParam.goal = 1e-15;

net = init(net);

[net,tr] = train(net,p,outputb);

y = sim(net,p);

v1=net(inputs);

error=o-v1;

% Plotting the graph

figure

plot(t,o,t,v1,'r')

figure(2)

plot(error)

error=sum(abs(error))

113

Figure 0.6: Saturation block configuration parameters

