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ABSTRACT 

Development of a Real – Time, Artificial Neural Network based sEMG Classification Algorithm 

for Motion Identification 

Thesis Abstract--Idaho State University (2018) 

 

This work deals with aiding and developing upper body rehabilitation engineering methods for 

stroke victims. In most rehabilitation cases, only partial success is accomplished after long training 

sessions, and the patient is left with a limited range of motion. The aim of this research is to develop 

a training tool utilizing an augmented reality device (ARWED) that addresses the rehabilitation of 

human hand and forearm motion. For this purpose, the research is accomplished in three steps. 

The first step focuses on the development of real – time sEMG classification methods where ten 

classification methods have been chosen based on their different characteristics. The second step 

explains the development of real – time Artificial Neural Network (ANN) models based on the 

signal classifications. This part consists of training the ANN model based on real – time 

classification. The third step discusses the development of identification algorithms for identifying 

motion intend using real – time ANN models by using Simulink™ block model.The results 

indicate preferences for the preferred classifier: Slope Sign Change (SSC), Waveform Length 

(WL), Zero Crossing (ZC), and Wilson Amplitude (WAMP) which can help in the design of the 

signal processing for real – time ANN implementation. 

Key Words: Rehabilitation, surface Electromyography (sEMG) classification, real – time 

Artificial Neural Network (ANN), Backpropagation, Levenberg – Marquardt(LM), Arduino Mega 

2560, Simulink™, MATLAB®, Motion identification, Slope Sign Change (SSC), Waveform 

Length (WL), Zero Crossing (ZC), and Wilson Amplitude (WAMP), Neural Network training.
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CHAPTER 1: INTRODUCTION 

1.1 Problem Statement 

According to the Archives of Physical Medicine and Rehabilitation, nearly two million people are 

living in the United States with limb loss [1]. Current research shows that one in 190 Americans 

is living with the loss of limbs. This number has been increasing due to military engagements and 

vascular disease like strokes. It is estimated that the number of people living with limbs loss will 

be more than double to 3.6 million by 2050. There are many efforts to deal and improve with the 

advancement of prosthetic devices to help victims. Nonetheless, currently, there are no prosthetic 

devices available which can mimic the functionality of a human hand. Also, the available 

prosthetic devices are costly. Recent scientific and commercial advances in the man-machine 

interface field are promising and suggest that naturally controlled and simultaneous robotics 

prostheses can be a reality in the future for amputees. However, the framework of the situation in 

the market and the scientific ground is complicated, and the direction to naturally controlled 

prostheses still needs many improvements. 

1.2 Literature Review 

Upper – limb deficiency severely affects the ability to perform daily living activities. Myoelectric 

hand prostheses with many degrees of freedom are commercially available. Recent advances in 

rehabilitation robotics propose that their natural control can be performed in real life. These 

naturally controlled robotic prostheses can become a reality in everyday life. However, the path 

still needs many steps. In 2015, Atrzori et al.[2] proposed an overview of the advancements both 

in commercial and scientific domains to outline the current and future changes in this field. 
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Moreover, for upper limb amputees, the prosthesis control training is suggested before and after 

fitting. For functional monitoring, there are many different tests available. However, none can be 

used in the early phase of training. In 2015, Sturma et al. [3] proposed a tool for pre – evaluation 

of trainable voluntary muscle – activation skills before prosthetic fitting. The proposed tool 

supports planning of rehabilitation procedures for further monitoring where essential 

considerations for system development and the main features of the developed prototype are 

presented. 

A human can learn new movements through imitation and other learning techniques. There are 

some structured rehabilitation methods, which includes imitation, repetition, and reinforcement 

learning to improve multifunctional prosthetic control. For this purpose, in 2015, Roche et al.[4] 

suggests a structured training protocol of imitation, repetition and supporting role in learning to 

control of a new prosthetic hand. While considering the repetitive movements for rehabilitation,  

video – game based therapies can increase patient motivation, effort, and performance. For this 

purpose, a clinically feasible and entertaining virtual rehabilitation intervention is established and 

evaluated for short – term improvement of EMG control engaging gameplay elements [5]. 

Furthermore, to improve upper – limb deficiency for independence and quality of life, surface 

Electromyography (sEMG) based control systems have been widely researched for several decades 

[6], [7]. However, advanced myoelectric prosthetic hands are limited due to the lack of real – time 

control performance and weak signal sources on amputation residual muscles. A novel human – 

machine interface is done for prosthesis manipulation which combines the advantages of surface 

Electromyography(sEMG) and near – infrared spectroscopy (NIRS) to conquer the limitations of 

myoelectric control.[8] This experiment in [8] evaluates both offline classification accuracy (CA) 

and online performance of the forearm motion recognition system based on three types of sensors: 
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EMG, NIRS, and hybrid EMG – NIRS where the result shows that combining EMG and NIRS 

signals gives better real – time performance. Considering sEMG signal is extensively studied and 

applied in clinic and engineering. However, the major drawback of sEMG pattern recognition is 

the poor recognition results because of the presence of noise. Thus, methods of reducing the noise 

influence become the most significant in EMG signal analysis. In 2009, Phinyomark et al. [9] 

presented a novel feature that can tolerate with White Gaussian Noise (WGN) without using a 

noise removal algorithm. As a result, the experiment result shows better recognition result in a 

noisy environment than other success feature candidates. 

1.3 Thesis Goal 

From the literature reviews, it can be said that natural and proficient controls of robotic hand 

prostheses have been studied for a long time by the scientific community. Among them, most of 

the methods rely on the use of sEMG signals and pattern recognition, imitating or different learning 

techniques. Nonetheless, the control robustness offered by the researchers is still not sufficient for 

many real – life applications. In the recent years, deep learning transformed several fields of 

machine learning, including speech and computer vision. The aim of this research to develop a 

real – time Artificial Neural Network (ANN) for motion identification. This base can then be 

extended to Deep learning. The primary concept of this research to make better upper body 

prosthetic devices and develop methods that facilitate stroke victim rehabilitation.  

There are multiple types of hand prostheses. One of them is based on surface Electromyographic 

(sEMG) signals to initiate the actuation of the robotic hand [2]. sEMG signals are spatially 

distributed which pick up signals from other motor units stemming from different muscle groups. 
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The content of sEMG signal can be identified based on amplitude, frequency, and amplitude 

frequency. 

The first objective of this research is to develop a real – time sEMG signal classification. Ten 

different types of classifications are chosen based on their different characteristics. The hypothesis 

is that using more classifications can extract a significant amount of information which are going 

to be used for training the ANN. Each of the classifications designed as a sliding window with a 

0.067 sampling time (seconds). The classification and the size of the sliding window are picked 

randomly. All the real –  time classifications are done in Simulink™. 

The second objective of this work is to establish an ANN based on real – time signal classifications. 

For training purpose, two movements have chosen – inner and outer forearm movements. This part 

is done by extracting the signal values which are collected from the real – time Simulink™ 

classifications model and applied to ANN for offline training using a developed MATLAB® code. 

Backpropagation algorithm is used to train the proposed ANN. By following this method, the error 

can eventually be minimized, and the algorithm adjoined with an optimization result. 

Backpropagation has different training approaches which can optimize output results. In this part, 

the Levenberg-Marquardt, Scaled Conjugate Gradient and Bayesian Regularization methods are 

used for better optimization technique. However, for training and prediction, the Levenberg-

Marquardt backpropagation method gives the better result compared to the others. Thus, 

Levenberg – Marquardt is chosen for observing the finals results. 

Moreover, the third objective is to build motion identification intend using real – time ANN 

models. In this part, a Simulink™ block is built from the offline trained ANN model. Afterwards, 
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that block is placed to a Simulink™ model where all the classifications are used for extracting the 

sEMG signals in real – time. 

1.4 Organization of the thesis 

The thesis is organized as follows. Chapter 1 discusses the theme of the thesis and literature review. 

Chapter 2 provides the biological background of sEMG signals and its different categories. 

Chapter 3 focuses on the mathematical background of Artificial Neural Network (ANN), its 

different algorithm followed by an example of implementation of a real – time classification based 

ANN for motion identification. In Chapter 4, the experimental setup for the observation of sEMG 

signal is discussed. Chapter 5 focuses on the results and discussion based on the comprehensive 

sEMG example. Chapter 6 represents the conclusion and future works. 
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CHAPTER 2: BIOLOGICAL BACKGROUND 

2.1 Introduction of an EMG signal: 

Electromyography (EMG) is considered an experimental technique involving establishing, 

recording, and investigating of myoelectric signals. It is a study of muscle function through the 

analysis of the electrical signals originated during muscular contractions. There is a wide range of 

benefits for using EMG signal. It establishes evaluation tool for applied research, rehabilitation, 

sports science, and ergonomics. Besides EMG signals also have some common benefits which 

allow investigating the muscle directly, permit measurement of muscular performance, help 

patients to find and train their muscle, concede analysis to improve sports activities, and document 

treatment and training regimes. 

There are two main types of EMG signals – clinical and kinesiological EMG. Clinical EMG, 

typically done by neurologists and physiatrists. Kinesiological EMG is the most preferred in the 

literature considering movement analysis. Again, kinesiological EMG is divided into two 

categories – surface and fine wire. Surface EMG determines muscle function by recording the 

muscle activity on the skin surface. It requires surface electrodes which provide a limited 

assessment of the muscle activity. Surface EMG can be recorded by using a pair of electrodes 

because EMG recordings display the potential difference between two separate electrodes. The 

advantages of using surface EMG are that they are easy to apply, cause minimal pain with the 

application, and the process is perfect for movement application. The disadvantage of sEMG is 

that it requires a significant pickup area. Therefore, it increases the possibility for crosstalk from 

adjacent muscles. On the other hand, fine wire EMG requires insertion of needles into the muscle. 

The advantages of using fine wire EMG are the ability to test deep muscle, separation of specific 
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muscle parts of large muscles, and capable of testing small muscles which might be difficult to 

detect with surface EMG, due to crosstalk. The disadvantages of wire EMG are the insertion of 

the needle may cause discomfort, can increase the tightness in the muscle, and the electrodes are 

less repeatable because it is difficult to place the needle in the same area of muscle for every 

research. For this research, surface EMG signals have been chosen because it is easy to apply, 

electrodes can be used for several times, and it is without much discomfort compared to fine wire 

EMG process. 

2.2 Signal Origin 

Electromyography measures the electrical signal correlated with voluntary or involuntary muscle 

contraction. This muscle contraction is related to tension for the EMG activity. The functional unit 

of the muscle contraction is called a motor unit (MU). An MU consist of an alpha motoneuron in 

the spinal cord and the muscle fibers it innervates. The alpha motoneuron is the final point of 

addition for all the descending and reflexing inputs. Various synaptic innervation sites determine 

the discharge pattern of the motor unit by inducing a current in the motoneuron. The number of 

MUs per muscle in a human body may range from 100 to 1,000 depending upon small hand muscle 

or large limb muscles [10]. This different number of MUs changes significantly based force 

generating capacity. Figure 2.1 represents the schematic of the basic motor control mechanisms, 

motor units, and its components. 



8 
 

If there is an individual activity where the muscles of the body are to be recruited, the brain sends 

excitation signals through the Central Nervous System (CNS). In scientific terms, when there is a 

need for greater forces, the excitation from the CNS increases, which leads the motor units to 

increase activation level and of the firing rate. As a result, EMG signal shows up with high signal 

amplitudes [12,13]. 

2.3 EMG Electrodes and their categories: 

EMG electrodes help to detect the bioelectrical activity inside the muscle of a human body. There 

are mainly two types of EMG electrodes – Surface and Inserted electrodes. Inserted electrodes are 

Figure 2.1: A schematic image of primary motor control mechanisms, motor unit and its 

components [11] 
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also categorized into two different electrode types: needle and fine wire electrodes. However, since 

sEMG electrodes are exclusively used in this work, they are discussed separately. 

2.3.1 Needle electrodes 

Needle electrodes are commonly used in clinical procedure particularly in neuromuscular 

evaluations. The tip of the needle is called core which is bare and used for detection of a surface. 

There is an insulated wire in the cannula which is comparatively improved from another available 

category. It has relatively small pickup area and enables the electrodes to detect low force 

contractions. Figure 2.2 shows some details about the Needle electrodes. 

2.3.2 Fine Wire Electrode 

This kind of electrode is made of an alloy of platinum, silver, nickel, and chromium, which has a 

small diameter, is highly non-oxidizing, and constitutes a stiff wire with insulation. Fine wire 

electrodes are easily implanted and withdrawn from the muscle. They are less painful compared 

to needle electrodes. A fine wire electrode is shown in Figure 2.3. 

Figure 2.2: A Needle EMG Electrode [14] 
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2.3.3 Surface EMG Electrode 

Surface EMG electrodes implement a non-invasive process for measurement and detection of 

EMG signals. This technique increasingly used to detect activity to control device extensions to 

accomplish prosthesis for physically disabled and a population with amputations. There are two 

types of surface EMG Electrodes-Gelled and Dry EMG electrode. However, in categories, it is 

two types-Passive EMG electrodes and Active EMG electrodes. Passive electrodes should connect 

to an external amplification circuitry for proper acquisition of the EMG signal. On the other hand, 

active EMG electrodes consist of pre-amplifier attachment for surface electrodes. 

2.3.3.1 Gelled EMG Electrodes 

These types of electrodes contain a gelled electrolytic material as an interface between skin and 

electrodes. Oxidation and reduction reactions occur at the metal electrode junction. Silver-silver 

chloride (Ag-AgCl) is most by used for the metallic part of the gelled electrodes. It allows current 

from the muscle to pass freely across the intersection between the electrode and the electrolyte. 

Almost around 80% of Surface EMG applications use Ag – Agcl electrodes. Gelled electrodes 

Figure 2.3: A fine wire EMG electrode [15] 
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require special skin preparation [16] and precautions such as hair removal, prevention of sweat 

accumulation, proper gel concentration, etc. Gelled EMG electrodes are shown in Figure 2.4. 

2.3.3.2 Dry EMG Electrodes 

As it is a Dry Electrode, it does not require a gel interface between skin and the detecting surface. 

Figure 2.5 shows an example of dry EMG electrode. It might contain more than one surface. They  

are usually heavier (>20g) compared to gelled electrodes (<1g) which cause for electrode fixation. 

Thus, a material for the stability of the electrode with the skin is needed 

 

Figure 2.4: Gelled EMG Electrodes [15] 

 

 

 

Figure 2.5: An Example of Dry EMG Electrode [15] 
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2.4 EMG Electrode Placement 

Application of surface EMG electrodes needs proper skin preparation to obtain quality EMG 

signal. The skin’s electrical resistance must be reduced. For this purpose, hair must be removed, 

and it is advisable to use an abrasive gel to reduce the dry layer of skin where EMG electrodes are 

to be placed. The surface EMG (sEMG) electrodes should be attached between the motor unit and 

the tendinous insertion of the muscle. The distance between the center electrodes should be only 

1-2cm. It is essential to have a proper understanding of the particular muscles from where the EMG 

signal is being extracted in order to get the best result from sEMG. Crucial limb and trunk muscles 

activity can be investigated by using sEMG signals. For more in-depth, smaller or overlaid 

muscles, a fine wire application is required in order to safely and selectively detected the 

corresponding sEMG signals. Figure 2.6 shows a muscle map, a selection of muscles that 

commonly are investigated in kinesiological studies, where the two yellow dots of the surface 

muscles point out the orientation of the electrode. 
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Figure 2.6: Frontal view of anatomical positions of selected sites [17] 
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2.5 EMG Signal Acquisition Circuitry 

The method of differential amplification is utilized to acquire sEMG signals. This setup should 

have high input impedance and very low output impedance, which can be achieved with the help 

of instrumentation amplifiers. This instrumentation amplification accomplishes differential 

amplification by subtracting the voltages V1 and V2 (see Figure 2.7 and 2.8). By this way, the noise 

signal, which is common at V1 and V2 are eliminated. The habit of a differential amplification to 

reject signal is common to both inputs is regulated by common mode rejection ratio (CMRR) of 

90dB. The placement of the sEMG and detecting surfaces are categorized in three different 

configurations: monopolar, bipolar, and multipolar. 

2.5.1 Monopolar configuration 

This configuration is carried out using only a single electrode on the skin against a reference 

electrode as shown in Figure 2.7. Though this method is used for its simplicity, however, it is not 

recommended as it detects all the electrical signals in the proximity of the detecting surface.  

 

Figure 2.7: Monopolar Signal Acquisition technique [15] 

 

 



15 
 

2.5.2 Bipolar Configuration 

This configuration is used to acquire sEMG signal using two EMG detecting surfaces with the 

support of a reference electrode. The two sEMG surfaces are placed only 1-2cm from each other 

and they are connected to a differential amplifier. The differential amplifier reduces the common 

noise signals to both inputs and amplifies the difference. It is the most commonly used electrode 

configuration which is also followed in this research work because it gives less noisy output 

compared to monopolar configuration and less circuit implementation method compared to 

multipolar configuration. 

2.5.3 Multipolar Configurations 

This method uses more than two detecting surfaces to achieve the EMG signal with the support of 

a reference electrode. Three or more EMG detecting surfaces can be used, and they are placed 

from 1 to 2cm apart. This configuration needs to pass through more than two stages of differential 

amplification. By this way; it reduces crosstalk and noise concerns. 

Figure 2.8: Bipolar Configuration [15] 
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2.6 Raw EMG Signal 

An unprocessed and unfiltered signal detecting the Motor Unit Action Potential called as a raw 

sEMG signal. Figure 2.9 shows a raw surface EMG recording for the three static contractions of 

the biceps brachii muscle. 

The raw EMG baseline noise depends upon the environmental noise and the quality of the given 

detection. Usually, the average baseline noise considered not higher than 3-5 microvolts. By 

nature, raw sEMG spikes are of random shapes which cannot be reproduced in exact shape. The 

reason is the actual set of recruited motor units continually changes within the diameter of available 

motor units. Before the sEMG signal displayed and analyzed in the computer, it needs to be 

converted from analog to digital conversion (A/D). The resolution of an A/D board should be 

converted into the amplitude range of +/-5 volts. In this research work, an Arduino board is used 

which has 210=1024 bits. The range of bits starts from 0 to 1023.Thus for this purpose the bits 

value is converted into the range +/- 5 volts by computing (5/1023)voltage. 

 

Figure 2.9: The raw EMG signal of three construction burst of the biceps [17] 
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CHAPTER 3: NEURAL NETWORK 

3.1 Overview 

In the beginning of this chapter, mathematical background of Artificial Neural Network (ANN) 

and its different algorithm is explained. Furthermore, an example of implementation of a real – 

time classification – based ANN for motion identification is showed. For this purpose, 

implementation of Simulink ™ is discussed further which explains all the steps from Arduino to 

real – time ANN motion identification by showing a LED sensor light experimentation.  

3.2 Artificial Neural Network 

An Artificial Neural Network (ANN) is an analytical model based on the neural structure of the 

brain. The essential structure of every ANN is given by a simple mathematical model or function 

which has three simple sets of rules – multiplication, summation, and activation. At the beginning 

of artificial neuron, the inputs are weighted that means the individual weights multiplies every 

input value. The middle section of the model is a summing function that sums all weighted inputs 

and bias. At the end of an artificial neuron is the sum of previously weighted inputs and bias which  

is then passing through the activation function which is called a transfer function. Figure 3.1 shows 

the working principle of ANN. 



18 
 

Animal brains are capable of functions which are currently impossible for computers. Computers 

can do routine things well such as keeping ledgers or performing complicated math computations 

method. However, computers have trouble recognizing even simple patterns. Therefore, this 

biologically inspired method of computing is a significant advancement for computing. Research 

shows that brains can store information as a pattern. Some of these patterns are very convoluted 

and permits us the ability to recognize individual faces from many different angles. The process 

of storing information as patterns, utilizing them, and afterward solving problems introduces a new 

field of computing which is ANN. This field does not utilize traditional programming, however, 

involves the creation of mostly parallel networks and the training of those networks to solve any 

specific problems. 

Figure 3.1: The Basic working principle of an ANN [18] 
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3.3 Biological Inspiration  

The brain consists of approximately 1011 of highly connected elements called neurons [19]. These 

neurons have three components – the dendrites, the cell body and the axon. From Figure 3.2 tree 

– like receptive networks are called dendrites which carry electrical signals into the cell body. The 

cell body efficiently sums and thresholds the incoming signals. A single long fiber that carries the 

signal from the cell body towards other neurons called the axon. The point of connection where an 

axon from one cell and a dendrite of another cell come together is called synapse. The whole 

process is determined by a complicated chemical process with the arrangement of neurons and the 

strength of the individual synapses, establishes the function of the neural network. 

Some of the neural structure is defined at birth while other parts developed through learning [19]. 

By this process, neural structures continue to change throughout life. These changes contribute to 

the strengthening or weakening of synaptic junctions. Artificial neural networks do not follow the 

complexity of the brain. However, there are two similarities between biological and artificial 

neural networks. First, the highly connected building blocks of both networks are simple 

Figure 3.2: Schematic diagram of two biological neurons [19] 
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computational devices. Second, the connections between neurons regulate the function of the 

network. The further discussion will introduce primary artificial neuron and will analyze how the 

combination of such neurons form networks. 

3.4 Neuron Model 

Figure 3.3 shows the fundamental building block of the single – input neuron for neural networks. 

In the building block, the scalar input p  is multiplied by the scalar weight w  to form the product 

wp . Afterward, the weighted input wp  added to the scalar bias b  which creates a net input n . 

Finally, the net input passed through the transfer function f  to produce a scalar output a. These 

three processes are named as – the weight function, the net function, and the transfer function. 

A single – input neuron can be extended to a multiple – input neuron (Figure 3.4), where the input 

and the weights become vectors instead of scalars. For a single R – element input vector where the 

individual inputs are considered 
1 2, , Rp p p  multiplied by weights, the weighted values delivered 

to the summing junction is Wp . The bias b of the neuron is summed with the weighted inputs to 

form the net input n . 

                      1,1 1 1,2 2 1,R Rn w p w p w p b= + + + +                               (1) 

 

Figure 3.3: Single – input neuron model [19] 
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which can be expressed as follows: 

                                                                   *n w p b= +                                                                                 (2) 

A multiple – input can also extend to a single layer of neurons with multiple inputs (Figure 3.5). 

Furthermore, a single layer can be extended to multiple layers (see Figure 3.6). The ANN can be 

built up to perform more complicated tasks. However, too complicated structures can be 

troublesome in the training which might lead to a poor generalization on test data. 

 

 

 

Figure 3.4: Multiple – input neuron [2] 

Figure 3.5: A layer of neurons each with multiple inputs and one output [19]. 
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There are two major types of neural networks: feedforward and recurrent. All the examples are 

explained so far are feedforward networks. In this process, the input is piped all the way until the 

end where the values do not get reused at any stage of the process. On the other hand, recurrent 

Neural Network(RNN) are ones with feedback, where some of the outputs get connected to inputs 

throughout the process. Figure 3.7 represents an example of an RNN. In comparison, RNNs are 

more potent than feedforward NNs, because they acquire the ability to deal with dynamic systems 

while feedforward NN can only implement static input–output mapping. Feedforward NN, 

however, has been the focus of much research, resulting in a massive amount of literature. 

Figure 3.7: An example of a Recurrent neural network(RNN) [19] 

Figure 3.6: Multiple – layers of neuron model [19]. Here only three layers are shown. However, 

the number of layers can be extended as desired. 
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3.5 Backpropagation Neural Network 

Backpropagation is a learning algorithm of a multilayer neural network with a fixed architecture. 

It is an abbreviation of ‘Backpropagation Propagation Error’ [20] which is used to train ANN. It 

executes to minimize the sum squared error between the given target values and the network output 

values. Backpropagation training associates with two phases – the feedforward and the feedback 

propagation. In the first phase, the input values are fed to a network assembled with random 

weights. In this phase, the weights of each neuron remain unchanged. The output values produced 

by the hidden layer. In the second phase, the error is calculated by subtracting the network 

predicted output from the input values. Afterward, the error is back – propagated through the 

hidden layer(s) and minimized which results in updating the weights of the network. This is a 

repeated process until a satisfactory result is achieved. Figure 3.8 shows the mechanism chart of a 

backpropagation method.  

Figure 3.8: Mechanism chart of backpropagation [21]. Here, an error value is created based on 

‘n’ input neurons and ‘m’ output neurons and then backpropagate(s) through the hidden layer. 

Through this process, the error is minimized by updating the weights of the hidden and output 

neurons 
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As explained in section 3.5, the backpropagation algorithm is used to train ANN. Backpropagation 

has different training processes to minimize the error : Levenberg – Marquardt (LM), Bayesian 

Regularization (BR), and Scaled Conjugate Gradient (SCG) backpropagations are nothing but 

different methods used for the optimization technique. Thus, LM, BR, and SCG are explained 

further in the following sections. 

3.5.1 Levenberg – Marquardt Backpropagation 

Levenberg – Marquardt(LM) is an optimization algorithm which solves the problem of minimizing 

non – linear functions [22]. It is also known as the Damped Least Square (DLS) algorithm [23]. 

LM merges the error backpropagation (EBP) and Gauss – Newton (GN) method. The features of 

both algorithms i.e. the speed of GN and the stability of EPB help to improve the performance. By 

comparison, LM is more robust than GN as well faster than the EBP. In this section, the LM 

algorithm is derived from the EBP and the GN methods. The following derivation is adopted from 

[22] where p  represents the number of patterns i.e. multiple inputs or single inputs, m  shows the 

number of outputs, i  and j  are weight indices, and k  is the index iterations 

Equation (3) is defined as the sum of square error which generalizes to all training patterns and 

network outputs 

                                                                            2.
1 1

1
( , )

2

P M

p m
P m

E x w e
= =

=                                                  (3) 

In here, x is the input vector , w  is the weight vector and ,p me  is the training error which is 

defined as Equation (4) 

                                                               . . .p m p m p me d o= −                                                     (4) 

where d  is the target output and o  is the predicted output vector from the NN. 
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The steepest descent algorithm uses a gradient g . For this, it uses the first – order derivative of 

the error function which is defined by Equation (5) 
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The value from g can updates the weights by following: 
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Equation (6) shows the weighted equation where a is the learning constant. The gradient vector 

will have minimum values around the minimum point. Therefore, very tiny weight change will be 

completed. 

All the gradient components 
1, , Ng g  are functions of weights where all of them are linearly 

independent. 
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In Equation (7), 
1, , NF F are nonlinear weights corresponding to the grading components. 

Expanding each component using the Taylor series and taking the first-order approximation yields 

Equation (8). 
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From Equation (5) it can be written as: 
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Combining Equation (8) and Equation (9) can produce:  
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For finding the minimum of a total error function E , each element of the gradient vector is 

equalized to zero value:   
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Combining Equation (5) and Equation (11) can be written as: 
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There are N equations for N parameters. Thus, all the iw can be calculated, and the weights can 

be updated iteratively. Equation (12) can be written as: 
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The square matrix in Equation (13) is called the Hessian matrix: 
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From the above equations, one can get 

                                                                                     g H w− =                                                        (15)                                                                                                                                                   

and  

                                                                      1
gw H − =−                                                                    (16)                                                                                                                                        

Thus, the weights can be uploaded using Equation (17) 

                                                                            
1

1k k k k
w w H g−

+
= −                                                              (17)                                                                                                                                                      

This method needs computation of the second order derivative for every component which might 

be complicated. Therefore, the Gauss – Newton Algorithm simplifies the steps by introducing the 

Jacobian matrix J , which is shown as: 
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By integrating Equations (3) and (5) the following equation can be found: 
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   


=
 

 
                      (19)                                                                                                                      

By combining Equations (18) and (19) one can produce the relationship between the gradient 

matrix and the Jacobian matrix. 

                                                                             g Je=                                                                                        (20) 

In Equation (20), e  is the error vector which is given by the following equation: 
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By subtracting Equations (3) and (4), the Hessian matrix can be formed. The equation is described 

by Equation (22) 
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In here, ,i jS is: 
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,i jS  is very small in the basic assumption of Newton’s method. That is why the relationship 

between the Hessian matrix H and the Jacobian matrix J is: 

                                                                                   T JH J                                                                            (24) 
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Comparing Equations (17), (20), and (24), the updated weighted formula is given by: 

                                                                
1

1
( )T

k k k k k k
w J J J ew −

+
= −                                                        (25) 

The Levenberg – Marquardt algorithm proposes a new approximation to the Hessian matrix. In 

Equation (26), the approximation makes sure that TJ J is always invertible, where  is the 

combination coefficient and I is the identity matrix. The new approximation makes sure that the 

main diagonal of the Equation (26) is positive. Therefore, the approximation matrix will always 

be invertible. 

                                                                           T J IH J +                                                                         (26) 

Combining Equations (25) and (26) produces the updated weights for the Levenberg –Marquardt 

method. 

                                                       
1

1
( )T

k k kk k k
J I J ew w J  −

+
− +=                                                (27) 

As it is already mentioned in this section, LM method blends both GN and EBP methods, this 

process can be observed when the combination coefficient is varied from very small to large 

values. If  is close to zero, then Equations (27) turns into (25) which is the Gauss – Newton’s 

algorithm. On the other hand, if  is very large it becomes the learning coefficient of the steepest 

descent method. 

LM is a fast and stable training method. It uses the Jacobian matrix; performance is a Mean of 

Squared Errors (MSE) or a Sum of Squared Errors (SSE). It limits the performance function which 

may not lead to the best generalization. In the following, the Bayesian regularization 

backpropagation method is explained. 
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3.5.2 Bayesian Regularization Backpropagation   

Overfitting is one of the most significant issues of training neural networks. For NN’s, there should 

be fewer parameters than there are data points in order to train  a network [19]. Therefore, the 

concept is that if the network is too complicated, it might learn unnecessary patterns which might 

not be able to generalize. There are many approaches to this problem. However, the author of [19] 

suggests two methods for robust terms in practicality – early stopping and regularization. These 

two approaches restrict the complexity of the network by reducing the magnitude of the weights. 

Among them, regularization is the kind where Bayesian algorithm lie. 

Thomas Bayes is the founder of the concept of the Bayesian Regularization (BR) algorithm. His 

famous Bayes’ theorem computes the conditional probability of an event ‘A’ given a condition ‘B’ 

has occurred. The formula can recall as follows: 

                                                                  
( | ) ( )

( )
( | )

P B A P A

P B
P A B =                                                              (28) 

In 1992, David MacKay developed an approach to use the Bayes’ theorem for neural network 

training [24]. This approach brings neural network training to the probability framework. Beale, 

Demuth and Hagan divides this framework into two levels.The analysis described in the following 

section is adapted from [19]. 

Level I calculation starts with the assumption that the weights of an artificial neural network are 

random variables. Then the conditional probability of the weights form the data points. In the end, 

the weights which maximize the formula are found and chosen.  
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This probabilistic relation can be described as follows:  

                                 
( | , , ) ( | , )

( | , , )
( | , , , )

P D x M P x M

P D M
P x D M

 

 
  =                                   (29)                                                                                                                                                      

In Equation (29), x represents the vector containing all the weights and biases in the network, 

and  are the parameters related with the density functions ( | , , )P D x M and ( | , )P x M , D  is 

the input/output, and M is the architecture of the designed network. 

To clarify this concept, each term in Equation (29) is further described. The probability density of 

the data ( | , , )P D x M , given the weight vector x , the parameter   and the network model M

can be represented as given in Equation (30). 

                                                               
1

( )
( | , , ) DE

D

e
Z

P D x M 


 −=                                                       (30) 

where 

                                                                                        
2

1

2 
 =                                                            (31)                                   

 Here, 
2

  is the variance of the noise source, DE is the squared error and  

                                                                 
2 2 2( ) (2 ( ))

N N

D
Z 

 


= =                                                   (32) 

The weights are selected to maximize because maximizing the function requires minimizing the 

squared error  DE . 
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The second term in Equation (29) is ( | , )P x M . It consists of the knowledge of the weights before  

collecting the data. This term is known as prior density. If the weights consider very small (close 

to zero), a zero – mean prior density function can be selected: 

                                                                   
1

( )
( | , ) wE

w

e
Z

P x M 


 −=                                                    (33) 

where  

                                                                                
2

1

2 w
 =                                                                                 (34) 

Here, 
2

w  is the variance of the weights, wE  is the sum squared of the weights and : 
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22( ) (2 )

n
n

wwz 
 


 
 
 

= =                                                  (35) 

where n is the number of weights and biases in the network. 

The last term in Equation (29) is called the evidence ( | , , )P D M   which does not involve the 

weights vector x . However, the goal is to maximize Equation (28). Thus, it is not concerned at 

this point. 

Putting Equations (29), (30) and (33) together, the density function can be rewritten as: 

                                        

 
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Where ( , )FZ    is the function  and  . ( )F x  is the regularization performance index which 

can be defined as ( ) D wF x E E = + . 

Level II of the framework estimates the parameter  and  from the data for analysis. The level 

II framework equation can be written as: 

                                                    

( | , , ) ( , | )

( | )

                                 

( , | , )
P D M P M

P D M
P D M

   
  =

                                    (37) 

This formula is almost the same as Equation (29). Following the same logic, Equation (36) can be 

maximized by maximizing ( | , , )P D M  .However, this term is identical to the normalizing 

factor of Equation (29). Thus, ( | , , )P D M   can be solved as: 
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                 (38) 

From Equations (32) and (35) ( )DZ  and ( )wZ  can be found. However, ( , )FZ   can be 

expressed utilizing the Taylor series expansion: 

                                                   ( ) ( )
1

2
( )( ) MP

T
MP MP MP

x x x H x xF x F + − −                               (39) 

Here, MPH is the Hessian matrix of ( )F x which is evaluated at MPx . Substituting Equation (39) 

into Equation (36) yields the following equation: 
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1

12 2( , ) (2 ) (det(( ) )) exp( ( ))
n

MP MP
F H F xZ    − −                          (40)                                                                                                                                      

Also, substituting Equations (40) and (38) brings the optimum solution for  and   at the 

minimum point: 

                                             
( )

  
2 2 ( )MP

w

MP MP
MP

D

and
E x

N

E x
 

 
= =

−
                                                  (41) 

where n is the total number of parameters in the network (weights and biases) and 

12 ( )MP MPn tr H  −= −  is the efficient number performance. 

3.5.3 Scaled Conjugate Gradient Backpropagation   

The Scaled Conjugate Gradient (SCG) algorithm is based on ‘conjugate gradient methods’ where 

the large – scale problem is  handled by a group of optimization techniques. SCG is similar to the 

LM method in the sense that it provides quadratic termination without computing the Hessian. 

Considering the mathematical calculation, a set of vectors { }kp is mutually conjugate with regards 

to a positive definite Hessian Matrix H, if : 

                                                                           0   T
jk

p Hp k j=                                                               (42) 

Identical to orthogonal vectors, there are an infinite number of conjugate vectors, includes the 

Hessian Matrix spanning an n-dimensional space. Thus, the conjugacy condition in Equation (42) 

must be stated without H . Recalling that for quadratic functions: 

                                                                            ( )F x Hx d = +                                                                     (43) 

                                                                                2 ( )F x H =                                                               (44)                                                                   

By combining the formulas the change in gradient at iteration 1k + : 
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1 1

( ) ( )
k k k k k k

Hx d Hx d H xg g g
+ +

= + − + =  = −                               (45) 

                                                                ( )1k k k k k
x x px 

+
== −                                                    (46)                                                                                                                                                     

Here, ka  is minimizing ( )F x  in the direction 
kp . 

The equation for conjugacy condition can be related as: 

                                                     0    T T T
j j jk k k k

p Hp x Hp g p k ja = = =                       (47) 

Equation (47) represents the conjugacy condition with respect to change in the gradient at 

successive iterations.  There are infinite number of conjugate vectors because 
0p  is arbitrary and

1p can be any vector that is orthogonal to 0g .The equation can be expressed in the steepest decent 

direction: 

                                                                      0 0p g= −                                                                                   (48) 

Next, a vector 
kp  that is orthogonal to 

0 0 1{ , ,......, }kg g g −    can be simplified to iterations of the 

form [25]: 

                                                                               1k k k k
p g p

−
= − +                                                   (49)                                                           

Here, 
k  is scalar which produce equivalent results when it comes to quadratic functions [25]. 

The most common methods are [25]: 
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CHAPTER 4: EXPERIMENTAL SETUP 

4.1 Surface EMG Circuit Design 

This chapter describes building a circuit board to detect surface EMG (sEMG) signals. The circuit 

board consists of three different stages. All the stages are explained in the following 

documentation. 

4.1.1 The first stage  

This stage feeds the sEMG signal to the non–inverting terminal of the LM324 instrumentation 

amplifier. It compares two inputs and multiplies the difference 100 to increase the strength of the 

sEMG signal. Figure 4.1 shows the circuit diagram of the instrumentation amplifier. The figure 

contains four resistors which suggested values are R1 – 2KΩ, R2 – 100KΩ, R3, and R4 – 

10KΩ.The quad-operational amplifier model is a LM324NFS – ND. The output values from the 

first stage vary from ± 0.01 𝑡𝑜 ± 0.09 𝑚𝑉. The signal from the instrumentation amplifier is 

afterwards feed to the notch filter. 

Figure 4.1: Instrumentation Amplifier [27] 
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4.1.2 Second Stage 

The second stage consists of a notch filter which eliminates interference caused by the 

environment, i.e., electronic components using a power supply at 60Hz. A UAF42 circuit is used 

to build a notch filter by adding a set of corresponding resistors to tune the filter to a 60Hz 

frequency. The calculation of the resistor values shown below- 

                                           𝑓𝑁𝑜𝑡𝑐ℎ =√(
𝐴𝐿𝑃

𝐴𝐻𝑃 
.

𝑅𝑍2

𝑅𝑍1
)   *𝑓𝑜                                                   (53) 

In the equation ALP represents the gain from the input to the low-pass filter, AHP indicates the gain 

from the input to high – pass filter and 𝑓𝑜 is the fundamental frequency. 𝑅𝑍1 𝑎𝑛𝑑 𝑅𝑍2 are the 

resistor values which are each 2KΩ. Consistently, the product of (
𝐴𝐿𝑃

𝐴𝐻𝑃
∗  

𝑅𝑍2

𝑅𝑍1
) value is one, thus the 

notch filter frequency is equal to the fundamental frequency. Figure 4.2 reparents a UAF42 circuit 

diagram. 

 

Figure 4.2: UAF42 circuit [28] 
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The -3dB drop-off occurs at the cut off frequency of the filter which correlates to half power level 

and the attenuation. The -3dB drop-off estimated as: 

                                                                                     3
notch

dB

f
BW

Q
− =                                                             (54) 

Here, Q represents the quality factor which can be adjusted by 

                                                                                             
1

Q

R

Q
R =

−
                                                                (55) 

 Figure 4.3 shows the notch filter with the combination of resistors Rq – 4.99KΩ, RF1 and RF2 – 

2.65 MΩ, RZ3 – 12.1KΩ and UAF42AP – ND – the universal active filter used for 60Hz 

compensation. The output from the notch filter is then feed to the bandpass filter, which encompass 

the next stage of the suggested design. 

 

Figure 4.3: A notch filter [27] 
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4.1.3 Third Stage 

A Chebyshev type II 0.1dB passband is used in this stage. It is an active filter for roll off used to 

describe the steepness of a transmission function with the frequency. This filter has a unique 

feature in eliminating the error between the idealized and the actual filter. The Chebyshev type II 

represents the stopband ripple which consists of low-pass and high-pass filter. Figure 4.4 shows a 

design frequency of 450Hz high – pass filter. 

The output from the High – pass filter is passed through a 4Hz low – pass filter. The outputs of the 

low – pass filter range from ±0.01𝑉 − ±0.09𝑉. Figure 4.5 represents the suggested low-pass 

filter. The resistors values and the operational amplifier model is shown in the figure. 

Figure 4.4: High – pass filter [27] 
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The output from the lowpass filter is the final process to achieve sEMG signal. The output value 

from the low pass filter is not being able to measure regulate voltage because of Arduino. Therefore 

amplification of the signal is required. For this, a buffer amplifier is used in combination with  

voltage shift circuit to make suitable with a typical microcontroller. Figure 4.6 represents the buffer 

and voltage shift circuit where R1 & R3 – 2KΩ, R2 – 27KΩ, R4 & R5 – 33KΩ, R6 is a 

potentiometer range of 10KΩ and LM324NFS – ND is quad – operational amplifier. 

Figure 4.5: Low – pass filter [27] 

Figure 4.6: Buffer amplifier along voltage shift circuit [27] 
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The final implementation is achieved by doing a compact design of a PCB (Printed Circuit Board). 

This PCB design is small and portable for using mobile application. Figure 4.7 shows a final 

implementation of a PCB design for achieving sEMG signal. 

The implemented PCB design needs ± 5𝑉  of  battery supply to power the circuit. A power supply 

circuit diagram and connection are shown in Figure 4.8 and Figure 4.9. The power supply 

employed three regulators, U3 is a 10V regulator, U1 and U2 are +/-5V regulators. The battery 

from an old laptop lithium – ion batteries supplies approximately 23V. 

 

 

Figure 4.7: Final implementation of a PCB model [27] 
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4.2 Shortcomings of PCB and the power supply 

Through testing the sEMG channel box some shortcomings were noted. The sEMG sensor box has 

ten channel connections as shown in Figure 4.10.  

Figure 4.10: sEMG channel box contains ten channels [29] 

Figure 4.8: Power supply diagram 

 

 

 

       Figure 4.9: Power supply circuit connection 
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However, not all the times the sEMG signals appeared in perfection. Most of the times the channel 

box showed some noisy output. Therefore, some additional tasks were made to acquire the desired 

sEMG signal. At first, there was only one power supply for the ten channels which is changed by 

adding a second two power supply resulting in one power supply for the right side five channels 

and the other one is connected to left side five channels. With the proposed change in power 

supplies, however, the output seemed to be the same as previously noted, which is a noisy signal. 

After investigating the circuit wire connections and the electrode connections, it was discovered 

that the channel box has ground connection issues. The breadboard ground connection might get 

loose while experimenting. Besides of that, it is also observed that the electrodes which are 

connected to the PCB through poles, are also creating signals that are noisy. Thus, for this purpose, 

a new power supply was built by using the solderable breadboard, which can provide for a robust 

ground connection. Figure 4.11 shows a new power supply using the solderable board. On the 

other hand, the poles on the sensor board have been removed and the electrodes were soldered 

directly to the PCB. Figure 4.12 represents the new set – up for achieving ideal sEMG signals 

without much noise. 

Figure 4.11: New power supply connection using the solderable board 
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The left side of the box contains five channels which has a separated solderable (red color) power 

supply box. Also, on the left side in Figure 4.12 shows the poles being removed and the electrodes 

being directly soldered on the PCB. On the other side, the right side which has another five 

channels connected to a breadboard (white color) power supply box. There wasn’t any ground 

issue on the right side channels, thus the poles and power supply box did not change. 

 

 

 

 

 

 

     Figure 4.12: New sEMG channel box setup 
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4.3 Electrodes Placement and establishing sEMG signal 

Once the circuit setup is completed, the electrodes are confirmed working and wired correctly, the 

sEMG signal can be produced by controlling the hand muscles. Figure 4.13 and Figure 4.14 shows 

how the two hand motions should perform to activate the inside and outside forearm muscles with 

the least amount of effort. In standard muscle control method, it will be either open or close. As 

an example, if the outer forearm muscle is tensed the hand should open and when the inner forearm 

muscle has tensed the hand should close. 

By following the steps for Simulink™ setup which is  discussed in chapter 3, the sEMG signals 

can easily observed. Figure 4.15 and Figure 4.16 show the output from two channels for two 

                  Figure 4.14: Outer forearm muscle movement position 

      Figure 4.13: Inner forearm muscle movement position 
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different motions. Figure 4.15 represents the inner forearm muscle movements when the hand is 

open. However, Figure 4.16 represents the outer forearm muscle movements while the hand close.  

By observing the Figure 4.15 and Figure 4.16, it is noticeable the two sEMG signals have opposite 

pattern. The reason for this, the inner forearm muscle movement, and the outer forearm muscle 

movement contradicts each other movement positions. That is why in Figure 4.15 has the peak 

value at one instance in time in Figure 4.16 it does not show any changes. 

 

 

Figure 4.16: sEMG signal for outer forearm muscle movement 

Figure 4.15: sEMG signal for inner forearm muscle movement 
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CHAPTER 5: IMPLEMENTATION AND VALIDATION OF ANN 

Chapter 3 gives the idea about the mathematical background of an Artificial Neural Network 

(ANN). In this chapter, ANN algorithm is going to be used for training of the network. For this 

purpose, implementation of Simulink™ models are explained, which is given in the following 

three parts: - 

1. Implementation of real – time classification Simulink™ model. 

2. Training the ANN model based on real – time classification. 

3. Development of identification algorithm for identifying motion intend using real – time ANN 

models. 

5.1 Implementation of real – time classification Simulink™ model  

Figure 5.1 represents the real – time classification Simulink™ block model. Figure 5.1 consists of 

several implementation of the presented methods. The first part contains the connection from 

receiving the signal from Arduino to Simulink™ through serial port including the convertion of 

the ASCII code into a bit number between 0 to 1023 and afterward in the range of 0 to 5V.  The 

second part shows the buffer blocks for calculating the overlapping sliding window. The third part 

in the block represents the different classification algorithms and their finals outputs. All the parts 

are explained elaborately in the further sections. 
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Figure 5.1:Real – time classification Simulink™ block model 
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5.1.1 Connecting Arduino to Simulink™ through serial port: 

 Instead of using traditional Arduino analog input Simulink™ block, an Arduino code has been 

created to consider the Arduino controls as a data acquisition system. By uploading the code, 

Arduino can pass the signal through serial communication to feed the Simulink™ block running 

on the PC. Usually, Arduino does not have much AVR memory, and because of its lower processor 

speed, it is tough to send a lot of data at average speed to the Simulink™ block running on the 

Arduino. Also, it seems impossible to pass the signal of average speed when the overlapping has 

increased. However, connecting the Arduino through the serial port helps with the system to speed 

up the signal processing. Thus, for this reason, at first, an Arduino code has been created. The code 

is made to read the 1024 bit from the one analog input. The analog input will show four bits which 

can be seen (Figure 5.2) in the serial monitor. 

                                         Figure 5.2: 4 bits of value from the serial monitor                                    
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The universal serial receive block has been chosen instead of the Arduino Serial receive block to 

receive the signal. Otherwise, the standard Simulink™ block will force to use the Arduino 

processor which makes the output slow and impossible to process the signals. For configuring the 

serial receiver block, the corresponding has been selected as [4 1] because there is a total of four 

bits which are coming through serial communication. These four bits considered for the bit range 

of 0 to 1023.The sampling time is selected as 0.067 to adjust the speed between Arduino and 

Simulink™ communication. Besides, another serial configuration has been added where the baud 

rate is selected as 115,200 and the number of data bits has been chosen as four bits. Figure 5.3 

represents the configuration parameters for serial receive and serial configuration parameters. 

Afterwards, data type conversion block is used to convert the value. However, the output of real 

values can be observed when the ASCII code is converted into 0 to 1023 – bit values. Thus, for 

this, the values have been passed through a MATLAB® code to convert the ASCII value into bit 

values. Then those bit values are fed to a gain block to convert this signal into a voltage value 

which ranges from 0 to 5V. Through this process, the analog input signal can be achieved by a 

Simulink™ block running on the PC without using Arduino processor. 

       Figure 5.3: Parameters selection for (a) serial receive block and (b) serial configuration                                                                              
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5.1.2 Overlapping Sliding Window: 

Before the classification process has begun, 50 blocks of delays are built with an overlapping 

sliding window. For doing so, a buffer block is used which will create 50 blocks of delay with 

overlapping sliding window. However, before doing that, the buffer block has been checked to 

confirm that it is working as a delay block and overlapping with each other. The examination of 

buffer block and overlapping calculation is described in further explanations. 

5.1.3 Checking the Buffer blocks for creating delays: 

For checking the buffer blocks, a triangular signal has been created with a sampling time of 

.01seconds. To observe the delays the output buffer size is selected as 100.Thus, this system can 

assume that after one second the buffer will start showing its output signal. The Simulink™ block 

& its output signal are shown in Figure 5.4 and Figure 5.5. 

Figure 5.5: Output of buffer delay block 

Figure 5.4: Checking delays using buffer block 
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Now, for checking the overlaps, a ramp signal is being used. The signal is passed through the 

buffer block where the output buffer size is 100 and overlapping is 99. By observing the output 

signal, it can be easily seen that the output always shows the mean value by calculating its present 

value with the previous values which act as overlapping sliding window. For clearer concept, 

referred to Figure 5.6 and 5.7 which represent the block diagram & its output.   

Figure 5.7: Output results of Buffer overlapping calculation 

Figure 5.6: Checking overlaps using buffer block 
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From Figure 5.7, the lower graph shows the overlapping result. For example, if the second value 

is observed one could notice that the output value is .03 at 2 seconds (circled as blue), which means 

that at first it counts 98 values as zeros for its previous values and then counts the two values for 

its present values which are 1 and 2 respectively.  

As the Buffer block is used for creating delays and overlapping one needs an Unbuffer block before 

getting the outputs. After each classification, the Unbuffer block is being used. Thus, this way the 

analog signals can be passed through from Arduino to Simulink™ running on the PC without being 

interrupted or slowed down. 

5.1.4 Classification 

After creating buffer blocks for overlapping, the analog signals will be processed for classifications 

purposes. A numbers of different classification algorithms have been used in this work most of 

which are in the time domain. The hypothesis is that with more classifications, a larger amount of 

information can be extracted which is then used for training of ANNs. Each classification is 

designed as a sliding window with a width of 50 data points. The equations, and the Simulink™ 

Block diagram of the classifications are listed below.  

5.1.4.1 Integrated EMG (IEMG) 

Integrated EMG (IEMG) is the summation of the absolute values of the amplitude of sEMG signal. 

It is used as an onset index to detect the muscle activity which can be related to the sEMG signal 

sequence firing point [26]. IEMG can be expressed as  

                                                                         
1

| |
N

i
i

IEMG X
=

=                                                                        (56) 

where N  represents the length of the signal and iX  denotes the segment of sEMG signal. 
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5.1.4.2 Mean Absolute Value (MAV) 

MAV calculates the average value of sEMG signal which is denoted as 
iX . It is one of the popular 

classification used in myoelectric control application because of its simplicity [26]. It can be 

denoted as 

                                                                       
1

1
||

N

i

iN
MAV X

=

=                                                                     (57) 

5.1.4.3 Mean Absolute Value Slope (MAVSLP) 

MAVSLP is an altered version of MAV. The contrast between them is that MAVs of adjacent 

segments are determined [9]. The equation for this classification is 

                                                             1i iiMAV MAVMAVSLP += −                                                 (58) 

5.1.4.4 Simple Square Integral (SSI) 

This classification uses the energy of the sEMG signal as a feature [26]. The equation for SSI 

represents as 

                                                                            2

1

| |
N

i
i

SSI X
=

=                                                             (59) 

5.1.4.5 Root Mean Square (RMS) 

RMS uses the square root mean value signal which power raised to second. It is also called the 

quadratic mean. RMS is modeled as amplitude modulated Gaussian random process whose RMS 

is relevant to constant force and non – fatiguing contraction [9]. It associates to standard deviation, 

which can be expressed as: 

                                                                            
2

1

1 N
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i

RMS X
N =

=                                                                  (60)                                                 
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5.1.4.6 Wavelength Length (WL) 

It is related to the waveform frequency, amplitude and time. WL is the increasing length of the 

waveform over time segment [9]. It can be defined as: 

                                                                              
1

1
1

| |
N

nn
n

WL X X
−

+
=

= −                                                          (61) 

5.1.4.7 Zero Crossing (ZC) 

ZC represents the number of times when the amplitude value of the sEMG signal crosses the zero 

y – axis. For EMG feature extraction, the threshold condition is used to refrain from the 

background noise or white noise. It provides an approximate estimation of frequency domain 

properties which can be formulated as: 

                                                1
1

[sgn | | ]
N

i i
i

ZC x x threshold+
=

= −                                                 (62) 

where                                         
sgn( ) {0.5,    

                 0 , 

x if x threshold

otherwise

= 
                                                                                                           

5.1.4.8 Slope Sign Change (SSC) 

SSC is similar to zero crossing. SSC is another way to represent the frequency information of 

sEMG signal. This method is an indicator of the slope sign change over three consecutive 

segments. This classification of sEMG signal is used for previous research [9]. SSC is described 

as follows: 
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where, 

                                                                
( ) { 0.1,  

                  0, 

f x if x threshold

otherwise

= 
 

5.1.4.9 Willison Amplitude (WAMP) 

Willison amplitude detects the difference of the number of times between sEMG signal amplitude 

among two adjacent segment that crosses a predefined threshold to eliminate noise effects same as 

ZC and SSC. It is defined as: 
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where,   

                                                                
( ) { 0.5,  

                  0, 

f x if x threshold

otherwise

= 
 

 

5.1.4.10 Mean 

It is the most common classification for measuring the central tendency of a random variable. It 

can denote by: 
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Mean X
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=                                                                    (65) 
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5.2 Configuration parameters for running the model in Simulink: 

At first, the Arduino code must be uploaded. Then the Simulink™ model can be run. However, 

before running the Simulink™ model, some parameters need to be changed for running this model. 

The runtime option should be selected as normal mode, and in the options, tab target hardware 

should be chosen as Arduino Mega 2650. Enable overrun detection option should be a checked on 

in the same tab. Also, the baud rate should be changed to 115,200 for Serial 0 & Serial 1 baud rate 

option. The reason behind changing the baud rate is because in the Arduino code the baud rate has 

been chosen as 115,200 for better speed. 

5.3 Training Artificial Neural Network (ANN): 

One channel of classified signal values are stored in the MATLAB® workspace by using 

Simulink™ blocks. Those stored classified values then processed by MATLAB® code for training 

the ANN. The corresponding Simulink™ block diagram for training the ANN is shown below. 
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Figure 5.8: Simulink™ Diagram for storing the signal values into the MATLAB® Workspace 
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In this section, the classified signals from Channel 1 has been fed to the MATLAB® workspace. 

Afterwards, those classified signal values are processed for training the ANN. A different example  

is used, i.e. a photoresistor led sensor is tested before processing surface 

electromyography (sEMG) signals (see Figure 5.9).  

The photoresistor acts like a sensor. If there put some shadow it shows the lowest output values, 

in normal room light conditions it shows the highest value and if there is flashing an extra light it 

shows middle of the range value (see Figure 5.10). For experiment purpose, total thirty seconds 

time duration is chosen, where first ten seconds for shadow on photoresistor, next ten seconds for 

normal room light condition and last ten seconds selected as extra flashing light on photoresistor. 

For three different stages, three different target number is selected: first ten seconds is trained as 

number 3, next ten seconds is trained as number 1 and last ten seconds is trained as number 2 (see 

Figure 5.11).  

    Figure 5.9: Circuit connection for a photoresistor led sensor 
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 For better training result, the value between changing the conditions are ignored.Because, there 

are some addition noise can be found while changing the conditions. That is why, after each nine 

seconds, one second values are ignored. Also, intial and last one second value is ignored for the 

same purpose. For making the gap, a function named stitch is built by using the MATLAB®  code. 

function[x] = stitch (x,t, i, j, k, l) 

 mask = ~(((t>=i(1)) & (t<=i(2))) | ((t>=j(1)) & (t<=j(2))) |  ((t>=k(1)) & (t<=k(2))) | ((t>=l(1)) & 

(t<=l(2)))); 

x = x+1; 

           Figure 5.11: Analog output from the channel 

Figure 5.10: Targeted output value 
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x = x.*mask; 

x(x==0) = []; 

x = x - 1; 

Here, i, j, k, and l define the parameters of gap about how much values should be ignored. And t 

represents the time duration of the experiment These values are selected in the main MATLAB®  

as follows. 

i= [0 1]; 

j= [10 11]; 

k= [20 21]; 

l= [29 30]; 

In the Simulink™ model, there is one channel which has ten classifications. These values are 

collected from the MATLAB® workspace. At first, all the obtained values are being squeezed to 

remove the singleton dimensions. Afterwards transposed the values, because for further 

calculations all values should be in one row. Also, the targeted output is collected from the signal 

builder blocks and transposed in order to make the same dimensions as inputs. Because, without 

the same dimensions of input values and targeted output ANN will show errors and as a result it 

cannot run. 

Furthermore, all the processed values are trained through ANN network toolbox. Thus, for this 

feedforward neural network has been used. It consists a series of layers. The first layer shows the 

connection from the network inputs where the inputs are the classified values from the channels. 

And the final layer produces the network’s output which follows some predetermined outputs. 

Inside the network each subsequent layer has a connection from the previous layer. There are forty 
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hidden layers, and for training function, ‘trainlm’ which is Levenberg Marquardt algorithm has 

been chosen. Total epochs are selected as 8000, and targeted performance is chosen as 1e-25. 

% Training the ANN 

net=newff(minmax(Channel1), [40,1], {'logsig','purelin','trainlm'}); 

net.performFcn='msereg'; 

net.performParam.ratio=0.5; 

net.trainparam.epochs=8000; 

net.trainparam.goal=1e-25;  

net.trainparam.lr=.067; 

net=train (net, Channel1, o_); 

v1=net ([x1; x2; x3; x4; x5; x6; x7; x8; x9; x10]); 

error=o-v1; 

After training the NN, the output is plotted to compare the results between targeted output and 

trained output. Besides that, an error plot is also shown to observe the error difference between the 

two outputs. Figure 5.12 is shown the NN training toolbox to observe the number of epochs, 

targeted performance and gradient to achieve the training values for targeted output 
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And the figures for the outputs and error difference between the two outputs are shown in Figure 

5.13 and 5.14. 

Figure 5.12: Training result for NN toolbox 

Figure 5.13: Comparing result between targeted output and predicted output 
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Afterward, Simulink™ block created by using command genism(net). The newly created trained 

ANN block then placed to the Simulink™ model to observe the identification of the targeted output 

signal. Figure 5.15 shows the Simulink ™ implementation for real – time identification. 

 

 

 

Figure 5.14: Observing the error between two outputs 
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Figure 5.15: Simulink™ model for real – time implementation 
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5.4 Real – time identification 

After running the Simulink™ in real – time, three different kinds of output can be observed. Figure 

5.16 shows the output for real – time identifications. As already discussed a snitch function is used 

for reducing the additional noise values while changing the conditions. Though this function makes 

the training result much smoother than normal, however, for ignoring the gap still has some effects 

which is visible in the Figure 5.16. From the figure, it is noticeable that there are some extra noises 

while changing its real – time identification positions. 

 

Figure 5.16: Real – time identification from trained NN Simulink™ block. Number three 

representing flashing light on resistors, number one for normal condition and number two for 

shadowing the photoresistor. 
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This implementation method gives the idea that the built-up Simulink™ models and all the 

followed steps can lead a fruitful result for real – time identification of any signal. This experiment 

is just a test before approaching the primary purpose of this research which is building real – time 

classifications and identifications for sEMG signal. 
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CHAPTER 6: DISCUSSION AND RESULT 

This chapter consists of the discussion of the experiments using sEMG signal in real – time for 

training and identifications purpose. Implementation of Simulink™ models, Arduino code, and 

MATLAB® codes are introduced and discussed in Chapter 5. Experimenting with the sEMG 

signals for training the Artificial Neural Network (ANN) gives better training output, however, for 

real – time identification the output does not show the satisfying result as obtained with the 

experiments using the LED sensor lights. Therefore, some different approaches were followed for 

improving the identification results. As we know, sEMG is a complex signal which always gives 

random values based the subject’s different movement. As a human being our movement are not 

exactly same as the previous movement even if we are doing the same activities in a repeated way. 

Subject’s different muscle movement and activities can imply a lot affect the quality of the outputs 

while experimenting in real – time identification. Because in this research it is found that if the 

sEMG is trained for a specified period for different motions, the ANN can train unnecessary 

motion movement. For example, if motion one is trained for three seconds then directly move to 

action two and train for another four seconds without placing any gap, this will lead the ANN to 

train the random values. As a result, real – time identification will give some random noise signals 

which are not related to the identifier of the motion executed. That is why instead of using some 

continuous training pattern, random output numbers are chosen with random period gaps. This 

training pattern can help ANN to separate the additional movement values apart from the needed 

movement values. 
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6.1 Building real – time random output values 

For this purpose, at first, a physical pushbutton is used to correlated motion initiation with the 

collected sEMG data. However, we know that pushbutton has some debouncing effect. Even if the 

debouncing impact is solved, the implementation of a pushbutton in Simulink™ faces some 

problems. First, it is not possible to use an Arduino analog input block because of the use of 

Arduino serial communication through USB for faster processing speed. Thus, the Arduino code 

needs to change in order to send the pushbutton values along with sEMG signal values to the PC. 

Nonetheless, the pushbutton values also affect the sEMG values as these values pass through the 

serial communication (Figure 6.1). From the figure, it is observable that when the pushbutton is 

pressed a sudden peak can also be seen in real – time sEMG signal which can eradicate the natural 

characteristic of the sEMG signal. Therefore, a different approach is being pursued for building 

the real –  time implementation for sEMG experiments. 

    Figure 6.1: Pushbutton values affecting the natural characteristic of sEMG signal 
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In this work, a built – in Simulink™ block is used for giving a different number of outputs at 

random times [30]. Inside the Simulink™ block, a switch block and call – back functions are used 

to create an artificial pushbutton. The pushbutton block can have many different output numbers. 

However, for this research purpose, only two different numerical values are chosen. The first value 

is ‘three’ which is associated with the inner forearm muscle movement and the second value is the 

number ‘one’ which is associated with the outer forearm muscle movement values. Figure 6.2 

shows the Simulink™ block for two different output numbers one and three. By double – clicking 

the block, the output values can change from 0 to 3 or 0 to 1 in real – time.  

6.2 Classifications 

Classification is implemented according to the material introduced in Chapter 5. In Chapter 5 there 

are ten classification algorithms introduced. These classification algorithms work well with the 

LED sensor experiment. However, the same classification algortihms give noisy output while 

Figure 6.2: On/Off Simulink buttons and their corresponding output values 
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experimenting with sEMG signals. Later, it is found that some of the classifications create noisy 

output instead of improving the identification outputs. For this purpose, a different approach is 

attempted for better identification. The actual sEMG signal is too small (in millivolts) which can 

be observed by amplifying the signal. It is noticed that some of the classifications do not show a 

change in values for the smaller amount of signal change. On the other hand, some of them can 

give a wide variety of output values for a small change in the signal amplitude. At first, the 

Simulink™ blocks with classifications running in real – time for the inner forearm motion and 

outer forearm motion are used. Afterwards, these results are compared for the different 

classifications with each other to observe which classification can give a significant amount of 

output values for the small amount of change in the sEMG signals. Figure 6.3 and 6.4 show 

different classifications values for real – time forearm movements. 
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Figure 6.3: The First graph is sEMG signal, second IEMG, third MAV, fourth MAVSLP, fifth SSI, sixth 

RMS, seventh WL classifications outputs 



76 
 

In Figure 6.3 the first graph shows the output of a real – time sEMG signal. The following graphs 

are showing the different classified value perspective of the sEMG signal. By observing the ten 

different classifications, it can be noticed that the classifications named waveform length (WL), 

zero crossing (ZC), slope sign change (SSC) and Wilson amplitude (WAMP) classification are 

showing significant output changes due to a slight change in the real – time sEMG signal. Thus, 

these four classifications are chosen and used to train the Artificial Neural Network for better 

identification results. 

Figure 6.4: The First graph is SSI, second RMS, third WL, fourth ZC, fifth SSC, sixth WAMP and 

the last one is mean classifications outputs. 
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6.3 Training Artificial Neural Network(ANN) 

In Chapter 5, the training is done by collecting all the classified values from the Simulink™ to 

MATLAB® workspace. However, instead of using all ten classifications together a few 

classifications are chosen based on their performance for better accuracy identification. These 

chosen classifications are used one by one instead of using them together, because it is also found 

that when two or more classifications together are used, they hamper the output values for better 

sEMG identifications. Thus, WL, ZC, SSC, WAMP classifications are used one by one for training 

purpose and later their trained value is compared to check which classification is giving better 

training and identification results. Figure 6.5 denotes the Simulink™ block for four different 

classifications. These classification values are stored in the workspace using different names so 

that each classification can be trained just by changing their stored variable names. 
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Figure 6.5: Four different classifications Simulink™ block 
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For training purpose, two movements are chosen – inner forearm movement and outer forearm 

movement which is shown in chapter 4 (See Figure 4.13 and 4.14). For training the targeted output 

values with the input values, the inner movement is set to number 3 and outer forearm movement 

is set to number 1. Figure 6.6, 6.7, and 6.8 show the inner and outer muscle movement 

     Figure 6.7:sEMG signal for outer forearm muscle movement 

  Figure 6.6:sEMG signal for inner forearm muscle movement 

Figure 6.8:Real – time pushbutton output considered as a targeted output 
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corresponding to their target values 3 and 1. That means, when the target output shows a 3, the 

participant needs to do an inner forearm movement. On the other hand, when it is 1 the participant 

needs to perform outer forearm movement.  

At first, the sampling time is chosen as 0.067 seconds which is also used in the Simulink™ block. 

The classified real – time values from two different channels are stored in the MATLAB® 

workspace to train the values through ANN. Later, time values are chosen from one of the channels 

which value is stored in the MATLAB® workspace to plot the output result between input values 

and target outputs. Afterwards, all the values are transposed into a row matrix to confirm all the 

dimensions to the same range. Because of the backpropagation training, the values of the input 

data and target output data should have the same dimensions.  

There are many kinds of the backpropagation algorithm. Among them, for faster training purpose, 

the Levenberg – Marquardt (trainlm) is used [30]. There are several parameters associated with 

trainlm. A feed – forward network consisting of two – layer backpropagation is used. The 

following call to the MATLAB® function ‘newff’ creates a two – layer network with 40 neurons 

in the hidden layer: 

net = newff(p,outputb,40,{'tansig','purelin'},'trainlm'); 

Here, p represents the input values which are the classification values from two channels, and 

outputb represents the target output values. Tan – sigmoid and linear transfer functions are chosen 

as transfer functions. For better training results, the default training parameters are modified. The 

following part of the code shows the regularized performance functions. Here the performance 

ratio is set to .007. The learning rate is chosen to be 0.05; the number of epochs is 5000 and the 

parameter goal is chosen as 1e-15. It should be noted that if the learning rate is made too big, the 

algorithm becomes unstable [19]. On the other hand, if the learning rate is too small, the algorithm 
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takes a long time to converge [19]. Thus, it should be chosen wisely. The same considerations need 

to be applied for choosing the performance parameter ratio. If this parameter is too large, the results 

might get overfitting. Otherwise, if the ration is too small, the network does not sufficiently fit the 

training data. 

net.divideFcn = ''; 

net.performFcn='msereg'; 

net.performParam.ratio=0.007; 

net.trainParam.show = 500; 

net.trainParam.lr = 0.05; 

net.trainParam.epochs = 5000; 

net.trainParam.goal = 1e-15; 

The initialize command is used to reinitialize the weights and biases. This function works a 

network object as input and rebound a network object with all weights and biases initialized. 

Finally, the training has to be done with the combination of input values and targeted output values. 

Below is shown the coding lines for initializing the network and training command. 

net = init(net); 

[net,tr] = train(net,p,outputb); 

y = sim(net,p); 

Also, the error is calculated from the trained values and targeted outputs. Figure 6.9 shows the 

training results for four different classifications individually such as - WL, ZC, SSC, WAMP. The 

time duration for real – time classification is set to 25 seconds. Overlapping delay is chosen as 100 

data points. Thus, in the buffer block the output buffer size is set to 100 and buffer overlap is set 
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 to 99. Figure 6.10 represents the trained output values comparing the targeted output and predicted 

outputs. Moreover, Figure 6.11 and 6.12 produces the error values between targeted and predicted 

outputs. 

(a)                                                                             (b) 

         (c)                                                                                 (d) 

Figure 6.9: Training results for NN toolbox. (a) Slope Sign Change (SSC) (b) Waveform Length 

(WL) (c) Zero Crossing (ZC) (d) Wilson Amplitude (WAMP). 
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Figure 6.10: Four different classification SSC, WL, ZC and WAMP trained output graphs 

 

 

      Figure 6.11: Error difference between targeted and predicted outputs for SSC and WL 
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Among the four classifications, waveform length (WL) shows the lowest error value which is     

2.561%. Others such as the SSC, ZC, and WAMP error values are 115.58%, 109.84%, 29.74              

% respectively. However, it should be noted that the error values for different classifications might 

vary depending upon how fast participants can do inner and outer forearm movements according 

to the real – time random pushbutton outputs. This pushbutton output is considered as a targeted 

output. If there is a delay between the pushbutton outputs and the participant's movements, it might 

create a large amount of difference in real – time identification. Thus, the timing between 

movements and pushbutton should be done cautiously. 

 

 

 

 

 

Figure 6.12: Error difference between targeted and predicted outputs for ZC and WAMP 
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6.4 Identification and result 

Four different Simulink™ blocks are created from the trained ANN for four distinct classification 

– WL, ZC, SSC, WAMP. Afterwards, those blocks are placed in the Simulink ™ model 

individually for observing real – time identifications. However, there is a change in the Simulink™ 

model for better results. A MATLAB ® function block is used toward the trained ANN Simulink™ 

block for collecting the signal values from two different channels classifications. Besides, a 

saturation block is also used to fix the range, thus the identified output values cannot go beyond 

the predefined range. While training the network number 1 is chosen for outer forearm movement, 

and number 3 is chosen for inner forearm movement. For this reason, the lower limit range is set 

to 0 and upper limit range is set to 3, so the real – time identification values cannot go beyond this 

range. Figure 6.13 shows the Simulink™ block implementation for four different classifications. 

Also, Figure 6.14, 6.15, 6.16, 6.17 denote the real – time identifications for different 

classifications. 
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            Figure 6.13: Trained ANN Simulink™ block implementation for real – time identification  
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    Figure 6.15: Identification using WL classification 

   Figure 6.14: Identification using SSC classification 
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  Figure 6.17: Identification using ZC classification 

     Figure 6.16: Identification using WAMP classification 
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By noticing the identifications results from four different classifications, WAMP shows the best 

identifications result.Though the WL shows less error values (2.561%), however, it seems like the 

training values might be overfitting which creates some unstable output on real – time 

identification.Thus, it should be remind that overfitting values might also cause some noisy 

outputs. Nevertheless, it has been mentioned that the results of the different identifications may 

vary based on the participant performance. In this case, the delay between the participant reaction 

and the targeted output values play a vital role. There are some noises in the identification output 

which represent the error values from the trained ANN. The better the training the fewer noise 

content in the output scope. Thus, from all the steps derived in this chapter someone can conclude 

that the presented approach works for in real – time sEMG signal identifications. However, it 

should be pointed out that classification methods play an essential role in achieving the most 

accurate identification results.  
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CHAPTER 7: CONCLUSION AND FUTURE WORKS 

7.1 Conclusion 

The study of human apprehension through artificial intelligence recently has seen a rapid 

improvement because of soft computing abilities and the implementation of many concepts 

including Artificial Neural Network (ANN). Nowadays, the study of sEMG signals and their 

relation to human motion learning has become one of the hot topics of research. An abundant 

number of researchers study the sEMG signal relation to human motion through the application of 

ANN. Most of the studies include the use of different features/classifications to help the learning 

process of the ANN. 

The outcome of this research shows some significance. This research explores the relationship 

between sEMG and the human forearm movement motions. However, before proceeding with the 

sEMG signal classification, a different example experiment is done in chapter 3 which includes 

the training and identification of signals in real – time. This experiment helps to justify the 

proposed procedure in order to give the desired result for this research. Nonetheless, there have 

been some slight changes between the experiment for the LED sensor light and the sEMG 

implementation. The experiment involving the LED sensors give a different range of output values 

based on in which conditions the sensor is placed. Based on the conditions, the output can give a 

full variety range which helps the ANN to identify each condition easily. As a result, the output 

shows very accurate identification result. On the other hand, sEMG signal is a complex signal 

which has a minimal range of output values. Besides of that, human motion does not match even 

when they are associated with the same tasks. The pressure of the muscles and angles of the 

movements impacts and changes the sEMG signals. Thus, for better results, this research is focused 
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on finding the classifications which can identify the motions even if there are slight changes in the 

output of sEMG signal. Besides of that, it is learned from this research; if any motion is trained 

for a specific range of time it might give a better – trained output, however, it might end up training 

the random values which can impact the real – time identification outputs. Thus, a pushbutton 

function is made which can give different numbers at random times. The pushbutton 

implementation helps to improve the ANN training. As a result, it shows better identification 

outputs without showing much noisy signals. 

7.2 Future Work 

Through this research, it is shown that real – time identification through ANN training is possible. 

Nonetheless, some improvement might end up with more accurate results.  

First of all, there is some ground problem in the sEMG circuit which leads the output to be as a 

noise signal. Besides the connection of electrodes between the boards get loose sometimes, which 

also impacts the output results. Thus, a more compact PCB board design is suggested for the 

ground issue problem of the sEMG circuit. 

Moreover, while working with an Arduino board, the author faced the limited memory problem 

while working with overlapping in real – time.This problem lead the author to follow different 

paths in order to use a more powerful processor and larger memory, which can calculate more 

significant overlapping calculation. Therefore, a more powerful microcontroller such as 

Beaglebone or a similar one is suggested for further research.  

Last but not the least, classifications play the most vital role in identification. Choosing the wrong 

classification might lead the research results to be insufficient. In this research, noise influence 

was faced because of choosing the wrong classifications. Thus, it is recommended to choose a 
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better classification alogorithm that will help the identification results. For this research purpose, 

ten classifications are chosen initially. However, while working with sEMG signals, only four 

classifications are selected because of the other classification methods cause problems to the real 

– time identification implementation. There are time – domain and frequency – domain 

classification methods that are used for this research work. Choosing the right classification 

method, should be considered the most important part in working with sEMG identifications. 
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APPENDIX 

Sensor – based LED example experimentation setup 

At first, after circuit setup connection is done, the Arduino should relate to PC through USB cable. 

The following Arduino code need to be uploaded for serial communication which has one Analog 

input channel configuration with a baud rate of 115,200. 

 

// These constants won't change.  They're used to give names 

// to the pins used: 

const int analogInPin = A2; // Analog input pin that the Channel is attached 

to 

int sensorValue = 0;       // value read from the Channel 

 

void setup() { 

  // initialize serial communications at 115200 bps: 

  Serial.begin(115200); 

} 

void loop() { 

  // read the analog in value: 

  sensorValue = analogRead(analogInPin); 

  // print the results to the serial monitor: 

  //Serial.print("sensor = "); 

  //If else loop showing 0 to 1023-bit output through serial port 

 

  if (sensorValue > 999) { 

    Serial.print(sensorValue); //When the bit value is greater than 999 

 } 



98 
 

  else if (sensorValue > 99) //When the bit value ranges from 100 to 999 

  { 

    Serial.print(0); 

    Serial.print(sensorValue); 

  } 

 

  else if (sensorValue > 9) //When the bit value ranges from 10 to 99 

  { 

    Serial.print(0); 

    Serial.print(0); 

    Serial.print(sensorValue); 

  } 

 

  else 

  { 

    Serial.print(0); 

    Serial.print(0); 

    Serial.print(0); 

    Serial.print(sensorValue); //When the bit value ranges from 0 to 9 

  } 

  Serial.print('\n'); 

  // for the analog-to-digital converter to settle 

  // after the last reading: 

  delay(50); 

} 
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Afterward, Simulink™ model needs to set up for collecting the signal from the USB cable. 

Simulink™ model should be selected as normal mode. Run on hardware configuration should be  

chosen as Arduino Mega 2560 and serial 0 and 1 baud rate should be chosen as 115,200. See the 

below figures: 

See Figure 5.8, which shows the Simulink™ model including the buffer (Overlapping purpose) 

and the classifications for real – time experiment. In that model, parameters need to be selected for 

serial receive block and serial configuration block (see Figure 5.3). Figure 0.3 shows the buffer 

parameters. 

Figure 0.2: Arduino Mega 2560 setup for Simulink™ model 

             Figure 0.1: Simulink™ run time mode selected as normal 



100 
 

Classifications 

As discussed earlier in this thesis, ten classifications are developed to extract the dynamics from a 

given real – time sEMG signal. All the ten classifications are programmed in MATLAB® as 

functions and grouped in a different MATLAB® functions Simulink™ blocks. The following 

MATLAB® codes are shown for ten different classifications. 

Integrated EMG classification: 

function y = fcn(u) 

N=length(u); 

IEMG=zeros(N,1); 

for n=1:N 

    IEMG(n)=abs(u(n)-mean(u)); 

end 

 

Figure 0.3: Buffer block parameter. Here,50 overlapping is chosen 
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y=sum(IEMG); 

Mean Absolute Value classification: 

function y = fcn(u) 

N=length(u); 

MAV = zeros(N,1); 

for n=1:N 

    MAV(n)=abs(u(n)-mean(u)); 

end 

 

y=sum(MAV)/N; 

Mean Absolute Value Slope classification: 

function y = fcn(u, u_) 

N=length(u); 

MAV = zeros(N,1); 

for n=1:N 

    MAV(n)=abs(u(n)-mean(u)); 

end 

 y=sum(MAV)/N; 

MAV_ = zeros(N,1); 

for n=1:N 

    MAV_(n)=abs(u_(n)-mean(u_)); 

end 

 

y= y-(sum(MAV_)/N); 
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Simple Square Integral classification: 

function y = fcn(u) 

N=length(u); 

SSI = zeros(N,1); 

for n=1:N 

    SSI(n)=abs(u(n)-mean(u)).^2; 

end 

y=sum(SSI); 

 

Root Mean Square classification: 

function y = fcn(u) 

N=length(u); 

x=zeros(N,1); 

for n=1:N 

    x(n)=u(n)-mean(u); 

end 

 

y=rms(x); 

Wavelength Length classification: 

function y = fcn(u) 

N=length(u); 

WL = zeros(N,1); 

for n=1:N-1 

    WL(n)=abs(u(n+1)-u(n)); 

end 

 

y=sum(WL); 
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Zero Crossing classification: 

function y = fcn(u) 

N = length(u); 

u = u - mean(u); 

y = 0; 

for i = 1:N-1 

    if u(i)*u(i+1) < 0 

        if abs(u(i)-u(i+1)) >= 0.05 % white noise/background noise 

            y = y+1; 

        end 

    end 

end 

Slope Sign Change classification: 

function y = fcn(u) 

N = length(u); 

y = 0; 

for i = 2:N-1 

    if (u(i)-u(i-1))*(u(i)-u(i+1)) > 0.01 

 

            y = y+1; 

 

    end 

end 

 

Willison Amplitude classification: 

function y = fcn(u) 

N=length(u); 
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y = 0; 

for n=1:N-1 

    if abs(u(n)-u(n+1)) > 0.05; 

    y=y+1; 

    end 

end 

 

Mean classifications classification: 

function y = fcn(u) 

 

y=mean(u); 

 

For targeted output, a signal builder block is used which can generate the values one, two, and 

three. After real – time classifications, the stored MATLAB® classification values are used for 

offline training Artificial Neural Network (ANN). The training has been done by using 

classification values as input values and the targeted output. A function named stitch is used to 

skip the values while moving from one position to other positions by multiplying zero. The main 

purpose of using this function to reduce the additional noise.  Figure 0.4 shows the block diagram 

of targeted output and its parameter configuration. 
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The following MATLAB® code showed how stitch function MATLAB® code is made. 

function[x] = stitch (x,t, i, j, k, l) 

 

mask = ~(((t>=i(1)) & (t<=i(2))) | ((t>=j(1)) & (t<=j(2))) |  ((t>=k(1)) & (t<=k(2))) 

| ((t>=l(1)) & (t<=l(2)))); 

x = x+1; 

x = x.*mask; 

x(x==0) = []; 

Figure 0.4: Targeted output Simulink block and its configuration. 
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x = x - 1; 

 

Afterward, extracted the classification values and converted the values in the same dimensions 

where targeted output has the same amount of matrix dimension. Later, both values are trained by 

using backpropagation algorithm. Also, the error values are calculated by comparing the targeted 

output and predicted output values. The following MATLAB® is shown for offline ANN training.   

 

 fs = 0.067; 

% Stitch function parameters 

i=[0 1]; 

j=[10 11 ]; 

k=[20 21]; 

l=[29 30]; 

t=f1.time; 

t=t'; 

% Ten classification values collected from the workspace 

x1=squeeze(f1.signals.values); 

x2=squeeze(f2.signals.values); 

x3=squeeze(f3.signals.values); 

x4=squeeze(f4.signals.values); 

x5=squeeze(f5.signals.values); 

x6=squeeze(f6.signals.values); 

x7=squeeze(f7.signals.values); 

x8=squeeze(f8.signals.values); 

x9=squeeze(f9.signals.values); 

x10=squeeze(f10.signals.values); 

% Transpose the classification values to meet up the same dimension with targeted 

output 
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x1=x1'; 

x2=x2'; 

x3=x3'; 

x4=x4'; 

x5=x5'; 

x6=x6'; 

x7=x7'; 

x8=x8'; 

x9=x9'; 

x10=x10'; 

% Targeted Output value 

o=squeeze(Output.signals.values); 

o=o'; 

% Stitch function is used for reducing additional noise 

x1_=stitch(x1,t,i,j,k,l); 

x2_=stitch(x2,t,i,j,k,l); 

x3_=stitch(x3,t,i,j,k,l); 

x4_=stitch(x4,t,i,j,k,l); 

x5_=stitch(x5,t,i,j,k,l); 

x6_=stitch(x6,t,i,j,k,l); 

x7_=stitch(x7,t,i,j,k,l); 

x8_=stitch(x8,t,i,j,k,l); 

x9_=stitch(x9,t,i,j,k,l); 

x10_=stitch(x10,t,i,j,k,l); 

 

o_=stitch(o,t,i,j,k,l); 

 

Channel1=[x1_;x2_;x3_;x4_;x5_;x6_;x7_;x8_;x9_;x10_]; 

 

% Training the NN 

net=newff(minmax(Channel1),[40,1],{'logsig','purelin','trainlm'}); 

net.performFcn='msereg'; 
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net.performParam.ratio=0.5; 

net.trainparam.epochs=8000; 

net.trainparam.goal=1e-25; 

net.trainparam.lr=.067; 

net=train(net,Channel1,o_); 

v1=net([x1;x2;x3;x4;x5;x6;x7;x8;x9;x10]); 

error=o-v1; 

% To plot the graph of targeted output and predicted output and showing the error 

value 

figure 

plot(t,o,t,v1,'r') 

figure(2) 

plot(error) 

error=sum(abs(error)) 

 

After training is done, a Simulink™ block is created based on the trained values by using the 

command ‘genism(net)’ in the command window. Figure 0.5 shows the Simulink™ block diagram 

generated from the trained value. 

 From the Figure 0.5, only Custom Neural Network and y1 block is implemented in the different 

Simulink™ block where input values are collected from Arduino analog input through the USB 

cable through overlapping and classification in real – time. A MATLAB® function block is used 

Figure 0.5: Generated Simulink™ block from the trained NN 
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to convert the ten classification input values into one output value. For more understanding, 

referred to see Figure 5.15. Below the shown code is used for converting the ten inputs into one 

output value. 

function y = fcn(u1,u2,u3,u4,u5,u6,u7,u8,u9,u10) 

%#codegen 

y = [u1;u2;u3;u4;u5;u6;u7;u8;u9;u10]; 

 

By following the above steps, it is possible to observe real – time identification for a sensor – based 

LED light. 

Real – time sEMG identification experimental setup 

For the sEMG identification, the followed steps almost the same as sensor – based LED light. 

However, for sEMG identification, two Arduino analog inputs are selected instead of one analog 

input. Thus, there has been made a little change in the Arduino code. Also, instead of using ten 

classifications only four classifications are used. Four classifications: Slope Sign Change (SSC), 

Waveform Length (WL), Zero Crossing (ZC), and Wilson Amplitude (WAMP) have same 

MATLAB® function codes which is used in the LED experiment. Buffer overlapping is selected 

as 100. And these four classifications are trained individually instead of using altogether as LED 

experiment. Also, avoided the stitch functions because, the targeted output is also done real – time 

(see Figure 6.2) in order to achieve better identification. Comparing the LED experiment with 

sEMG there are two major changes in the codes: one in Arduino code and another is for training 

the ANN. Also, a new Simulink™ block named saturation block is used to outline the real – time 

identification value which prevent to go beyond the targeted output values. Figure 0.6 shows the 

configuration parameters for saturation block.Otherwise, all the steps are same as LED experiment 
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just few changes have made in the Simulink™ block as individual classification is done. For better 

understanding recommended to see Figure 6.5 and 6.13. In the following the Arduino code and 

ANN training code are given which are used in sEMG experimentation. 

Arduino Code: 

void setup () 

  { 

  Serial.begin (115200); 

 

  }  // end of setup 

 

void loop () 

  { 

  for (int whichPort = A2; whichPort <= A3; whichPort++)// for collecting the 

analog inputs from two different channels 

     { 

     analogRead (whichPort);   

     int result = analogRead (whichPort); 

     //Serial.println("Status: " + status); 

     if (result>999) 

     { 

     Serial.print (result); 

     } 

     else if (result>99) 

     { 

     

     Serial.print(0); 

     Serial.print (result); 
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     }  

     else if (result>9) 

     { 

     Serial.print(0); 

     Serial.print(0); 

     Serial.print (result); 

     }  

     else 

     { 

     Serial.print(0); 

     Serial.print(0); 

     Serial.print(0); 

     Serial.print (result);  

     } 

     } 

  Serial.println(); 

  delay (50); 

  }  // end of loop 

MATLAB® code to train the ANN: 

fs = 0.067; % Sampling time 

t=a.time; 

t=t'; 

% Classification values from two analog inputs 

i1=squeeze(a2.signals.values); 

j1=squeeze(b2.signals.values); 

 

% Targeted outptu value 

outputa=squeeze(simout.Data); 
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o=outputa'; 

% Converting the input values and targeted output into same dimension 

inputst=[i1 j1]; 

inputs=inputst'; 

p = inputs; 

outputb = o; 

 

% Traing the NN 

net = newff(p,outputb,40,{'tansig','purelin'},'trainlm'); 

net.divideFcn = ''; 

net.performFcn='msereg'; 

net.performParam.ratio=0.07; 

net.trainParam.show = 500; 

net.trainParam.lr = 0.05; 

net.trainParam.epochs = 5000; 

net.trainParam.goal = 1e-15; 

net = init(net); 

[net,tr] = train(net,p,outputb); 

y = sim(net,p); 

v1=net(inputs); 

error=o-v1; 

% Plotting the graph 

figure 

plot(t,o,t,v1,'r') 

figure(2) 

plot(error) 

error=sum(abs(error)) 
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Figure 0.6: Saturation block configuration parameters 


