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Deuterons

Dissertation Abstract–Idaho State University (2018)

Quantum chromodynamics (QCD) is the fundamental theory underlying the strong inter-

action. Great effort has been dedicated to explain hadron interactions and the hadron

composition in terms of the QCD degrees of freedom. However, this task has been largely

complicated by confinement which prevents us from a direct experimental study of the dy-

namics of quarks and gluons. Instead, QCD-inspired models have been developed to explain

the hadron spectrum, and while there has been success in explaining important features of

it, many of the states that have been predicted by these models have not been found ex-

perimentally. Furthermore, the hadronic spectrum is complicated to analyze because of a

high number of excited states of the nucleon which have large widths that cause resonances

to overlap. Additionally, we will need measurements of observables, coming from polarized

beam and polarized target experiments, to obtain a complete measurement of all the helicity

amplitudes.

My current research aims at contributing to a larger experimental program that seeks to

shed light on the evolving status of the proton spectrum. I focus on the photoproduction

of ω mesons off the bound proton, which is of great interest in providing information about

N∗ resonances as ω is an isospin filter. I have extracted a preliminary quasi-free ~γd →

ωp(n) photon beam asymmetry polarization observable from CLAS data. The ω meson was

identified through its charged decay ω → π+π−π0 where the π0 subsequently decays in two

photons. The data were taken during the E06-103 experiment with the CLAS detector in

Hall B at the Thomas Jefferson National Accelerator Laboratory (JLab). The experiment

used the Hall-B Coherent Bremsstrahlung Facility to provide a high quality beam of linearly-

polarized photons in the energy range from 1.1 to 2.3 GeV.
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Chapter 1

Hadron Spectrum

1.1 Baryon Spectroscopy

Baryons are strongly interacting fermions that have a baryon number B = 1, consistent with

a qqq configuration. Light baryons that consist only of u and d quarks, with isospin I = 1
2
,

are called nucleons, and those with isospin I = 3
2

are called ∆ resonances. The study of the

nucleon spectrum is key for understanding the internal dynamics of the nucleon as a whole.

It further provides a means to test the predictions of any number of theoretical approaches

used in modeling quantum chromodynamics (QCD).

Our understanding of the nucleon as a bound state of quarks and gluons (QCD degrees

of freedom) is still a great challenge for the hadron physics community. It is of fundamental

importance to study simultaneously the structure and the properties of the nucleon in the

ground state, along with studying the excited states of baryons, which are also known as

baryon resonances. On one hand, deep inelastic scattering experiments are used to study

the properties of the baryon’s constituent’s ground states, and on the other hand, we have

the spectroscopy experiments, which can shed light on the collective degrees of freedom by

probing the nucleon as a whole.

The paradigm of what can be learned by hadron spectroscopy studies was taught to us

by atomic spectroscopy. In the latter case, we study an electrically-neutral object (the atom)

composed of electrically-charged components that interact via the electromagnetic force that

is governed by quantum electrodynamics (QED). Similarly, for hadron spectroscopy, we study

a color-singlet object built by color charged components that follow QCD rules.

In this energy regime (the confinement region), the hadron spectrum cannot be calculated

using standard perturbation theory. Instead, different approaches have been developed to

predict the hadron spectrum. The phenomenological as well as QCD-inspired models [1]
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have given us most of the theoretical insight. Within these models, the constituent quark

models take the QCD Lagrangian and replace the valence quark1 with an effective quark or

constituent quark. The interaction of these constituent quarks is mediated through potentials

that force the correct behavior at large and small distances, i.e., asymptotic freedom at large

energies and quark confinement at low energies. Lattice QCD (see for instance [2]) has

started to complement this information with numerical solutions of QCD. Lattice QCD aims

to solve the exact QCD Lagrangian by assuming a discrete space-time.

While there has been success in explaining important features of the hadron spectrum,

many of the excited states that have been predicted have not been found experimentally.

The main issue behind the problem of the “missing baryon resonances” is that we do not

have a clear understanding of the number of the effective degrees of freedom.

Instead of considering three constituent quarks, the degrees of freedom are reduced by

assuming the baryons to be a quark-diquark bound system [1]. This assumption dramatically

reduces the number of excited states in the baryon spectrum [3]. However, the diquark model

still predicts a richer spectrum than that of the one observed experimentally. One other

possibility in explaining the missing baryon resonances issue may well be experimental. The

data obtained in the early developments of nucleon spectroscopy came from π − N elastic

scattering. Some of the missing resonances might couple weakly to this channel, therefore

escaping identification. The extraction of the resonant information has both experimental

and theoretical challenges.

From the experimental point of view, we come into several challenges. The hadronic

spectrum is much more complicated to analyze than the atomic one because of a high number

of excited states of the nucleon which have large widths that cause resonances to overlap.

Also, these resonances may decay into a multitude of decay channels involving either mesons

or baryons; an example of this can be seen in the table shown in figure 1.1. It is important

to note the large cross section that ω has for Eγ > 1.7 GeV, which corresponds to the part

1The quarks found in the standard model.
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of the hadron spectrum that is least understood.

Figure 1.1. Total photo-absorption cross section and exclusive cross sections for different
channels as a function of the photon energy.

In order to identify a state in the hadron spectrum (tagged by spin, parity, and isospin)2,

2The notation used in the past, when most of the information came from elastic πN
scattering, was to label the resonances with L2I,2J (For example N(1680)F15). Now that
the information also comes from γN experiments, this notation has been replaced with the
spin-parity JP of the state (For example N(1680 5/2+).

3



the observables obtained for different channels have to be decomposed into partial waves

to allow for extracting these quantum numbers. However, the extraction of these quantum

numbers is not unambiguous: to isolate resonant states from the nonresonant background

states, we need to use reaction models. This model dependency, which can vary among

different collaborations performing the partial wave analysis, results in several calculated

nucleon resonance spectra. That is to say, some excited baryons are included and other

baryon resonances are not.

The information from different groups is collected in the particle data group report and

each possible resonant state is assigned with a number of stars ranging from 4 (****) to 1

(*). An overall status of **** or *** is considered to be established resonances; these come

from data sets that include both differential cross sections and polarization observables

and are confirmed by an independent analysis. A status of * and ** is given to all other

signals. The table shown in figure 1.2 presents the Breit-Wigner masses and widths of N

resonances [4] calculated from different partial wave analysis groups. Note that the region

from 1.8− 2.2 GeV is poorly understood and needs to be studied in more detail.

Furthermore, for processes with spin, we will need measurement of observables coming

from a polarized beam and a polarized target towards obtaining a complete measurement of

all the helicity amplitudes.

1.1.1 Photoproduction of Vector Mesons

The quantum numbers associated with the photon are the same as the unflavored vector

meson. For energies close to the threshold, which is the energy range studied in this thesis,

three major mechanisms contribute to the cross section:

• Natural parity t-channel exchange or pomeron exchange,

• t-channel pion exchange,

• s-channel resonance excitation.
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Figure 1.2. Breit-Wigner masses and widths of N∗ resonances. Table taken from [4] with
permission.

For energies near threshold, the leading term in the cross section for the photoproduction of

vector mesons using real photon probes is natural parity exchange. This is evidenced by the

typical diffractive behavior through exponential fall-off of the cross section. The t-channel

pion exchange is expected to be large because of a large ω → π0γ coupling. Finally, the

most relevant in the context of baryon spectroscopy, which is the main focus of this thesis,

is the s-channel contribution. In the next chapter, we will discuss not only the previous

experimental data, but also their interpretation and the N∗ contributions that these data

have suggested.
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Figure 1.3. Main mechanisms in the ω photoproduction using real photons. From left to
right: t-channel pomeron exchange, t-channel pion exchange, s-channel N∗ resonance.
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Chapter 2

Photoproduction of ω Mesons

The ω meson is the channel that we take under consideration for this work. It is a vector

meson with quantum numbers IG(JPC) = 0−(1−−). As reported in [5], the weighted average

of the mass is 782.65 ± 0.12 MeV/c2, with an average width of 8.49 ± 0.08 MeV/c2. The

three main decay modes for this meson are:

• ω → π+π−π0 with a branching ratio of 89.2± 0.7%,

• ω → γπ0 with a branching ratio of 8.40± 0.22% and

• ω → π+π− with a branching ratio of 1.53±0.11
0.13 %.

I shall focus on the calculation of the beam asymmetry for the photoproduction of ω

mesons off the bound proton inside deuterium using a linearly polarized photon beam. This

decay channel is of great interest in providing information about N∗ resonances as ω is an

isospin filter because ωN states can only be produced by N∗ states with isospin I = 1/2

and not by ∆∗ states with isospin I = 3/2. Furthermore, since its threshold is above the π

and η photoproduction thresholds, the information obtained from the ω meson channel can

give information of higher mass resonances (i.e., the region where the proton spectrum is

less understood).

2.1 Vector Meson Photoproduction

In the reaction γp → pω we can have a total of 24 helicity amplitudes since we can have

three helicities for the vector meson and two helicities for the beam, the target, and the

recoil proton (3× 2× 2× 2 = 24). There are 12 relations between these amplitudes and one

can reduce the number of independent complex helicity amplitudes to 12 [6]. It is important

to notice, as discussed in the previous section, that the scattering amplitudes of different
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processes are very entangled, thereby forcing us to require not only the amplitude but also

the phase of the scattering amplitudes. As a result, a total of 23 independent measurements

have to be measured to have a “complete” description of the vector meson. Although such

a complete experiment is not currently possible, polarization observables will constrain the

bilinear combinations of the helicity amplitudes and thereby provide far more information

that just from unpolarized cross sections. There is another set of observables defined in the

1970s by Schilling [7] termed the Spin Density Matrix Elements (SDMEs), which can be

written in terms of a bilinear combination of the helicity amplitudes. These observables are

tied to the polarization of the vector meson by understanding the decay distribution of the

ω meson.

2.2 Previous Measurements for ω Photoproduction

The study of ω meson photoproduction has been a subject of study for around 50 years. It is

important to note that 20 years ago this topic regained relevance, given the great amount of

data collected by modern experimental facilities around the world. For a free proton target,

experiments from SLAC and Daresbury in the 1970s [8] and from CLAS in 2003 [9] extracted

the unpolarized differential cross section for a kinematic region of ECM ∈∼ [2.5− 2.9 GeV].

The SLAC data were produced using monochromatic photons from a backscattered laser

beam, going into a hydrogen bubble chamber. These two studies show a predominance of

a t-channel production mechanism for this energy region. For a larger kinematic region in-

cluding near-threshold energies, the unpolarized differential cross section and the unpolarized

SDMEs were extracted by the SAPHIR collaboration in 2003 [10], the CLAS collaboration

in 2009 [11, 12], and CBELSA/TAPS in 2015 [13]. Each collaboration agreed on the im-

portance of s-channel processes to describe their data. The CLAS collaboration went a

step further and performed an independent Partial Wave Analysis (PWA), where several

additional resonances were found to contribute to the process. There was good agreement

between the SDMEs from the two collaborations, but there is an energy-dependent disagree-
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ment in the normalization for the differential cross section; this discrepancy has not been

resolved yet.

Figure 2.1. Photon beam asymmetry Σ as a function of cos θCM for the reaction ~γp→ ωp for
photon energy Eγ ∈ [1.152, 1.876] GeV as reported in [14]. The black squares are the result
of CLAS 2017 study, it shows only statistical error and not a 6% systematic uncertainty for
each energy bin. The open red squares are the results from the CBELSA/TAPS [15], the
blue open open circles and the red solid circles from the GRAAL 2006 [16] and GRAAL 2015
[17] respectively. Figure taken from [14].

9



For polarized observables, the beam asymmetry Σ has also been extracted from different

experiments. The current published data from CBELSA/TAPS collaboration in 2008 [15],

the GRAAL collaboration in 2006 and 2015 [16, 17], and the most recent and more precise

data from CLAS in 2017 [14], all show the same general angular dependence (see figure 2.1).

This similarity means that the shape of the function describing the Σ(cos θCM) for a fixed

energy bin is the same. While the data from CBELSA/TAPS and CLAS are in agreement

for most of the kinematic region, the two GRAAL results do not agree with each other or

with the CLAS data. The biggest discrepancy is given for intermediate angles, while for the

most forward and backward angles all of the measurements coincide with a value close to

zero.

All the measurements described above refer to ω photo-production off the free proton.

Finally, we compare our data with GRAAL [17], as GRAAL is the experiment that has

published data from photoproduced omegas from bound protons in deuterium. The GRAAL

2013 paper finds that the photon asymmetry observable Σ to be the same for both the case

of the free proton in hydrogen and the quasi-free bound proton in deuterium (see Figure

2.2). We will note later that the results of this analysis find that Σfree reported from the

CLAS collaboration 2017 differs from Σbound presented in this work.
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Figure 2.2. Beam asymmetry Σ as a function of θCM . The full circles represent the free proton
channel, the full triangles the quasifree proton in a deuteron target for Eγ ∈ [1.18, 1.48] GeV.
Only statistical uncertainties are shown in the figure and reported in the paper. The lines
represent the Zhao model described in [18–20]. Figure taken from [17].
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Chapter 3

Experimental Layout

The Superconducting Radio Frequency (srf) Continuous Electron Beam Accelerator Facility

(CEBAF) at the Thomas Jefferson National Accelerator Facility (JLab) is a high-duty factor

electron accelerator providing a multi-GeV electron beam (see figure 3.1). The high-current,

Figure 3.1. Aerial view of the CEBAF at the Thomas Jefferson National Accelerator Facility
(JLab). Picture taken from [21].

high-duty-cycle accelerator (section 3.1) allows us to use electromagnetic probes to investi-

gate the internal structure of hadrons and nuclei. To determine an excited hadron reaction

exclusively, we need to efficiently detect the multi-particle final state over a large kinematic
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region. The CEBAF Large Acceptance Spectrometer (CLAS), located in Hall B, is a large

acceptance detector capable of precisely detecting charged and neutral particles (see section

3.3). The CLAS detector was designed to be able to operate with both electron and photon

beams. In this document, we describe data produced using a linear polarized photon beam

obtained via the coherent bremsstrahlung radiation technique explained in the section 3.2.

3.1 Electron Beam

CEBAF can deliver a continuous wave electron beams to three different experimental areas,

Halls A, B and C, simultaneously. After the 12 GeV upgrade, a fourth experimental area was

added, Hall D. Since the data used in this work were taken before the upgrade, we will only

discuss the accelerator composition for energies up to 6 GeV. CEBAF racetrack configuration

(see figure 3.2) consists of two antiparallel LINear ACcelerator (LINAC) segments (north and

south) connected by 9 recirculation beamlines allowing up to 5 passes. The beam currents

supplied to Halls A and C range between 1 − 200 µA , while for Hall B the currents range

between 1− 100 nA [21].

Figure 3.2. Experimental Layout of the CEBAF accelerator before the 12GeV upgrade.
Picture taken from [22].
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Electrons are produced via photoemission using three independent radio-frequency-gain

switched lasers directed at a GaAs photocathode. Each electron beam, one for each exper-

imental hall, is generated at a 499 MHz frequency with 120◦ phase separation. The three

beams are then combined in a 1497 MHz electron bunch train, and the bunch train is acceler-

ated to 67 MeV. The combined electron beam is then injected into one of the LINACs. Each

LINAC contains 20 cryomodules, each one consisting of 8 superconducting niobium cavities.

The cavities inside the cryomodules were immersed in liquid helium at temperatures of 2 K

to ensure superconducting conditions. Microwaves are directed into these cavities causing a

charge gradient along the beamline (see figure 3.3). The microwaves must cycle the position

of the charged regions 1.5 billion times per second to ensure that the high-speed electrons

from the beam have a positively charged area ahead of them and a negatively charged area

behind them (see figure 3.4).

Every time the beam passes through one of the LINACs, its energy will be increased by

0.6 GeV. LINACS are joined by nine recirculation arcs. Depending on the energy of the

beam, 16 or 32 magnetic dipoles are used to bend the electrons 180◦ (see a picture of the

arcs in figure 3.5) around the racetrack. When the electron beam has reached the desired

energy, it is finally extracted for each of the experimental halls, individually, using a system

of five warm sub-harmonic RF separator cavities operating at 499 MHz. For this thesis, we

will focus on experimental setup in Hall B. In particular, we will describe the subsystem

within the CLAS detector (see section 3.3 below) used for the g13b run period specified in

section 3.4.

3.2 Coherent Bremsstrahlung Facility

3.2.1 Coherent Bremsstrahlung

The bremsstrahlung technique is used for photon-induced experiments at Hall B in JLab. It

consists of the high energy electron beam interacting with the magnetic field of a radiator’s

nuclei. This interaction causes a deceleration of the electron, leading to the emission of a
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Figure 3.3. Photo of a Niobium Cavity.

Figure 3.4. Charge distribution in the cavity.
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Figure 3.5. Picture of the magnets in the arcs at Jefferson Lab.

photon. A small amount of the momentum (called recoil momentum) will be transferred

to the nucleus to ensure conservation of energy and momentum of the total system. The

spectrum of the emerging electrons is not monoenergetic, but it is proportional to 1/Eγ,

where Eγ is the energy of the photon. Three main possibilities are currently used for photon

beam experiments: unpolarized, circularly polarized, and linearly polarized. Each one of

these possibilities allows us to extract different physics observables. Depending on the type

of radiator and whether or not the electron beam is polarized, we can obtain one of these

possibilities. In particular, the g13b experiment uses what is called Coherent Bremsstrahlung

(CB) to produce linearly polarized photons.

When the direction of incidence of an unpolarized electron traveling through a crys-

tal is close to a direction of major crystal symmetry, the transition amplitudes from the

bremsstrahlung may interfere constructively (the amplitudes add up with definite phases) [23,

24]. More specifically, two conditions imposed in the recoiled momentum have to be satisfied

to obtain CB:

1. “pancake condition”: which imposes the longitudinal (ql) and transverse (qt) compo-
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nents of the recoil momentum to be in a pancake-shaped region. These limits come

from both kinematic restrictions and the fact that the bremsstrahlung cross section

decreases rapidly with increasing recoil momentum. A good approximation of the

pancake restrictions is presented in the following relations,

δ ≤ ql ≤ 2δ, (3.1)

0 ≤ qt ≤ 2x, (3.2)

with δ(x) ≡ qmin
l =

1

2E0

x

1− x
, (3.3)

where x = Eγ
E0

is the fractional energy of the photon, E0 is the energy of the electron

beam.

2. The Laue condition, where the recoil momentum direction has to coincide with the

direction of a reciprocal lattice vector.

Figure 3.6. Energy spectrum of linearly polarized photons, showing the coherent enhance-
ment over the incoherent background. Data were taken during the g13b experiment, for a
coherent edge of 2.1 GeV.

As a result, the total spectrum consists of a coherent enhancement on top of the inco-

herent, 1/Eγ spectrum (figure 3.6). The relative intensity plot (or enhancement) shows the
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ratio of the total coherent spectrum produced using the diamond radiator, and the incoher-

ent energy spectrum from the carbon radiator (see figure 3.7). The most prominent peak

corresponds to photons with highest linear polarization and is referred to as the primary

“coherent peak”. The leading edge of the coherent peak is called the “coherent edge”. For

fixed electron energy, the position of the coherent peak is precisely adjusted by aligning

the diamond radiator axis to the electron beam. In the next section, the high-precision

goniometer used for this alignment is described.

Figure 3.7. Typical enhancement plot. Taken from [25]. Copyright 2018, with permission
from Elsevier.

3.2.2 Diamond Radiator and Goniometer

In the g13b experimental period, the radiator was a 50-µm diamond positioned 22 m up-

stream of the tagger. The experiment also collected a few unpolarized photons using an

amorphous radiator. All these radiators were mounted in a target ladder located in the cen-

ter of a high-precision goniometer (see appendix A from [26]). This apparatus was designed

to accurately align the diamond, allowing control over five independent degrees of freedom:

three rotational and two translational (See figure 3.8). The goniometer had an angular accu-

racy between 0.7− 1.3 µrad and a translational accuracy between 25− 180 µm. In the g13b
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experiment, the electron beams were varied between 3.3 − 5.5 GeV producing six coherent

peak positions ranging from 1.1 to 2.3 GeV. The width of the coherent peak was typically

200 MeV with a maximum polarization in the primary coherent peak of ∼ 90%. For each

subset of data with a different coherent peak position, the direction of the electric field of the

photon was set to two orthogonal orientations: parallel (PARA) and perpendicular (PERP)

relative to the floor of Hall B.

Figure 3.8. Goniometer

19



3.2.3 Active Collimator

While the angular distribution of incoherent bremsstrahlung photons is independent of the

photon energy, the angle of the polarized photons is directly correlated to the relative photon

energy, x, and decreases with increasing photon energy. The expression for the reduced angle,

θ̄, in units of characterization angle is

θ̄ =
1− x
x

xd
1− xd

− 1, (3.4)

where xd =
2Einql

m2
e c3+2Einql

is the fractional energy. The characteristic angle θ∗ is given by

θ∗ =
mec

2

Ein

, (3.5)

where Ein is the initial energy of the electron. An active collimator placed downstream of the

photon tagger was used to reduce the incoherent radiation, enhancing the coherent part of the

distribution. The photon beam must be collimated with a 2 mm aperture, for a collimation

of half the characteristic angle [27], in order to achieve a beam polarization with an average

of 70%. Finally, it is important to note that the degree of linear polarization, which is

fundamental to extract certain polarization observables, cannot be directly measured. This

value was obtained by using an analytic expression, using the parameters extracted by fitting

the enhancement with a model that takes into account all the relevant parameters.

3.2.4 Photon Tagger

The photon tagger [28] aims to tag the energy and time of the bremsstrahlung photons

while deviating the electrons away from the beamline. The energy of the photon Eγ can be

determined from Eγ = Ein−Eout−Erec, where the Ein is the energy of the incident electron,

Eout is the energy of the outgoing electron, and Erec is the recoil energy 1. Since Ein is

1The recoil energy is the energy transferred to the crystal radiator.
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a known quantity determined by the accelerator and Erec is negligible, the only unknown

energy to calculate Eγ is the scattered electron energy. By tagging the time and energy

of the outgoing electron using momentum analyzing dipole magnet and hodoscope, we can

identify the energy of the photon on an event-by-event basis .

For the energies used in the g13b experiment, the characteristic angles of both electrons

and photons are smaller than 0.15 mrad, which means that both the electron and photon

are approximately still moving along the beamline. The beam at this point is composed

of scattered and unscattered electrons, and the bremsstrahlung photons. The electrons are

deflected by a magnetic field that is tuned to deflect the unscattered electrons into a shielded

beam dump located in the floor of the hall. On the other hand, the scattered electrons deviate

to a hodoscope with the first plane of E-counters and the second plane of T-counters as shown

in figure 3.9. Knowing the magnetic field and the radius of curvature of the electron allows

us to calculate its momentum and energy.

Figure 3.9. Photon tagger.

A precise and accurate determination of the position of the intersection of the electron

trajectory and a plane (E-counter plane) is fundamental in order to extract the radius cur-

vature. The hit position in the hodoscope is determined by 384 scintillator paddles, each

20 cm long, 4 mm thick and 6− 14 mm wide. The variation in the width takes into account

the variation of the momentum of the electrons, providing a broad tagging range between
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0.20− 0.95 Ein . The paddles overlap by one third of their widths on each side, creating 767

channels with a final resolution of ∼ 10−3Ein.

Similarly, the T-counter plane contains 61 scintillator paddles, each 2 cm thick. The

T-counter plane is positioned parallel to the E-counter plane, and the former sits 20 cm

behind the latter. To maintain a uniform counting rate, the widths of the scintillators

vary to compensate for the 1/Eγ distribution of the incoherent bremsstrahlung. The T-

counters slightly overlap, creating a total of 121 channels with a time resolution of 110 ps

[28]. Furthermore, the T-counters use two PMTs at either end for better timing resolution.

3.3 CLAS Detector

The CEBAF Large Acceptance Spectrometer (CLAS) is devoted to studying nuclear and

hadronic reactions produced from both electrons and photons by detecting the final-state

particles. For charged particle detection, it provides coverage of almost the full 4π solid

angle. CLAS is located in Hall B at Jefferson Lab, and it is composed of several detector

Figure 3.10. Experimental Layout of the CLAS detector before the 12GeV upgrade. Picture
taken from [22].
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subsystems within a toroidal geometry. The torus consisted of six superconducting coils that

produced a nonhomogeneous magnetic field that allowed it to bend charged particles. Each

one of the superconducting coils divided CLAS in six independent sectors [22]. The real

photon experiments used four major subsystems: STart counter (ST), Drift Chambers (DC),

Time of Flight (TOF) scintillators and Electromagnetic Calorimeter (EC). The Cherenkov

counters (CC) are not used for photon-induced experiments since CC’s primary goal is to

differentiate between electrons and pions. The sections below present a description of the

torus magnet and the detectors used in this thesis.

3.3.1 Torus Magnet

The torus magnet is composed of six superconducting coils located around the beamline and

shaped in a toroidal geometry (figure 3.12). Each coil separates the detector naturally into

six independent spectrometers referred to as sectors. The symmetry of the magnet provides

large coverage while preserving a central field free region [22]. As a result, the largest

component of the magnetic field lies in the φ direction except for small deviations at the

regions close to the coils (figure 3.11).

The magnet’s dimensions are 5 m in diameter and 5 m in length. Each coil consists of

four layers of 54 turns of aluminum-stabilized NbTi/Cu conductor. The coils are cooled to

4.5 K by a tubing system running super-critical helium and are highly isolated to ensure and

maintain superconducting conditions.

As described in the section 3.4, the magnetic field had a negative polarity at a torus

current of -1500 A. This is referred to as out-bending data meaning that the magnetic field

bent the negatively-charged particles away from the beamline (and thus positive ones toward

the beamline).
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Figure 3.11. a. Magnetic Field contour plot in the middle plane between coils. b. Magnetic
field perpendicular to the beamline and centered in the target. The six coils can be seen in
the intersection with the plane. Image taken from [22] with permission.

Figure 3.12. Schematic view of the torus cryostat. Image taken from [22] with permission.

24



3.3.2 Start Counter

The start counter is used only in real photon beam experiments. It is placed around the

target cell; therefore, it provides a fast input for the trigger. It also records the initial time

of every event generated in the target that set a trigger. The determination of the start

time, together with the time from the Time Of Flight (TOF) subsystem, is used to calculate

the time of flight of the outgoing particles. The start counter is composed of 24 scintillator

paddles, 4 for each sector, arranged in a hexagonal configuration around the target cell.

Each paddle is a single continuous piece of EJ-200 scintillator, with a 502-mm straight

section referred to as the “leg” and a tapered end called the “nose” [29]. When a charged

particle passes through a scintillator paddle, radiated photons are induced from ionization,

and they are collected by photomultiplier tubes attached at the end of each paddle.

The time resolution for the “leg” section is 292 ± 1 ps while it is 324 ± 2 ps for the

“nose” [29]. This resolution is sufficient to be able to identify the photon bunch that initiated

a reaction.

3.3.3 Drift Chambers

The Drift Chambers (DC) form the charged particle tracking system [30]. This subsystem is

composed of 18 chambers, partitioned into three regions (R1, R2, R3). R1 is located before

the magnetic field, R2 in the magnetic field, and R3 after the magnetic field in each sector

(see figure 3.15). Each chamber is composed of two superlayers of 6 wire-layers each and

is filled with a mixture of 90% Argon and 10% CO2 gas. Six field wires surround a sense

wire creating a hexagonal cell. The field wires are set to a positive high voltage, while the

sense wire is maintained at a negative high voltage, producing an electric field. In each

region, the wires of one of the two superlayers are oriented axially relative to the magnetic

field direction, while the wires from the other superlayer are oriented at a 6◦ stereo angle.

Charged particles crossing the chambers ionize the gas (in this case Argon). The electrons

then drift, due to the electric field, toward the anode, while positive ions will drift to the
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Figure 3.13. Schematic 3D view of the start counter. The purple volume represents the
target cell. Image taken from [29] with Elsevier permission.

Figure 3.14. Schematic cross section of the start counter subsystem. Image taken from [29]
with Elsevier permission.
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cathode. Near the anode, the electric field is big enough for the electron to knock an electron

from the molecules of the gas. This secondary electron can also ionize molecules in its way

to the anode, and the repeated process forms an avalanche. CO2 serves as a quencher.

When the electrons reach the sense wire, the drift time can be measured, and hence the

distance of closest approach. This information together with the magnetic field information

is used to reconstruct the trajectory of the particles inside the drift chambers. A resolution

of δp
p
≤ 0.5% was obtained for a nominal value of electron momentum of 1 GeV/c.

Figure 3.15. Schematic 2D view of the CLAS detector cut at the beamline high. It shows
a representation of two charged particles being detected. The dotted lines represent the
projection on this plane of the torus coils position. Enlargement in the box exemplifies the
hit pattern in the two superlayers of the region 3 of the drift chambers. The hexagonal cells
are discussed in more detail in the text. Image taken from [30] with Elsevier permission.

3.3.4 Time of Flight

The Time of Flight (TOF) [31] is an arrangement of 336 plastic scintillator counters located

3.5 to 5 meters from the center of CLAS. The TOF subsystem covers a polar angle of

8◦ ≤ θ ≤ 142◦. In each sector, the scintillator wall consisted of four panels of 57 bars of

different lengths and widths (see figure 3.16). The TOF provides information of the time it

takes a particle to travel from the reaction vertex in the target, through the DC, and then hit

the TOF scintillator paddles. Thus, the time of flight is calculated as the difference between
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Figure 3.16. TOF scintillator shell from one sector. Picture taken from [31] with Elsevier
permission.

the time measured in the TOF and the time in the vertex. This information, in combination

with the path length provided by the DC, is used to calculate the relative velocity of the

particle which, in turn, is used for charged particle identification. The scintillator fluoresces

as it is excited by ionizing radiation coming from a charged particle passing through the

material. A good portion of these photons are reflected through the light guides into the

photomultiplier tubes (PMTs) at each end. The overall time resolution is 150 ps.

3.3.5 Electromagnetic Calorimeter

The Electromagnetic sampling Calorimeter (EC) [32] was designed to accomplish three main

functions: to improve the efficiency of differentiation between electrons and pions for energies

above 0.5 GeV, to allow studies in the mass reconstruction of neutral particles that decay in

two or three photons, and to detect neutrons. This subsystem was particularly relevant in this

work because, to reconstruct the π0 meson, coming from the ω meson decay (ω → π+π−π0),

we have to detect the two photons obtained in the decay π0 → γγ.

The EC is composed of alternating layers of the bc412 scintillator and lead (Z=82)

sheets; each sector has 39 layers with equilateral triangle shape (see figure 3.17). Each
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scintillator layer has 36 strips aligned with one of the sides, and each consecutive layer is

rotated 120◦. Three consecutive layers form a group of U, V, and W views, each containing

13 layers, providing information of the energy deposited and the position. Each view is

further subdivided into two regions: inner (5 layers) and outer (8 layers).

Figure 3.17. Deconstructed view of one of the electromagnetic modules. Image taken from
[32] with Elsevier permission.

When a particle hits a lead layer, it creates a shower which produces photons in the

scintillators. The light is collected by the PMT and sent to the ADC (analog to digital

converter) and to the TDC (time to digital converter) boards. The sampling fraction, which

is the fraction of energy deposited in the active part of the calorimeter, is estimated to be

0.273. The energy resolution is ∆E
E

= 0.003 + 0.093√
E(GeV)

and the time resolution is about

600 ps for neutral particles, which is ∼ 10% for 1 GeV.
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3.4 The g13b Experiment

The CLAS g13 experiment was performed between October 2006 and June 2007. The g13

running period had both linear (g13b) and circular (g13a) polarized photon beams incident

on a 40 cm liquid deuterium target [33]. The target is described in the section 3.4.1. In this

analysis, we will study the g13b experiment. The linearly polarized photons were obtained

via the bremsstrahlung process with an unpolarized electron beam incident on a 50-µm

diamond radiator. The orientation of the diamond radiator (located in a goniometer) made

it possible to define the photon polarization plane and the energy of the coherent peak. The

range of energies of the incoming photons ranged from 1.1 to 2.3 GeV with the coherent

peak set every 200 MeV, for a total of 6 different settings. This was obtained by changing

the diamond orientation, and the relative energy of the energy of the photon.

The collimation enhanced the polarization because the angle of emission of the coherent

bremsstrahlung is smaller than the one for the unpolarized background. The polarization

of the radiated photons in the coherent peak was estimated to be between 70% and 90%.

The electron bremsstrahlung technique is described in detail in section 3.2. The beam

current was 10 nA. The torus magnet was set to bend negatively charged particles outward

from the beamline, with a current of −1500 A. A single sector trigger was used producing

approximately ∼30 billion events recorded on tape during the whole running period.

3.4.1 Target Cell

The Kapton target cell had a slightly conical shape (see figure 3.18) with a thin aluminum

window at the front. The target cell was designed to hold either liquid hydrogen or liquid

deuterium using a cryogenic system.

The target was 40-cm long and had a maximum diameter of 4 cm. It was located

20 cm upstream from the center of CLAS to maximize acceptance. The length of the target

ensured high statistics while maintaining a good rate of photons in the tagger. The width
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of the cell provided coverage for the ∼ 1 cm spread of the photon beam and minimal beam

misalignment. Most of the runs for the g13 run period used a liquid-deuterium target which

has a density of 0.1625 g/cm2.

Figure 3.18. Liquid-deuterium target cell. Picture taken from [34].

3.4.2 Trigger Conditions

Not all the information registered by each subsystem corresponds to an event of interest.

It is fundamental to establish an optimal trigger system to select events of interest while

minimizing the dead time. In general, CLAS has a two-level hierarchical system [22]. The

level 1 trigger allows the use of all available prompt information coming from the PMT

channels, while the level 2 trigger uses the slower track information from the drift chambers

to determine whether to write an event to the disk. The g13 experiment only used a level

1 trigger. In particular, for the g13a run period, a two-sector coincidence between the ST

and the TOF was used. On the other hand, the g13b experimental period required only one

sector coincidence between the ST and the TOF.
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3.4.3 DAQ

After the trigger conditions are satisfied, the data acquisition (DAQ) system records the

information onto magnetic tape. For the g13 period, the physics events were recorded at

a rate of around 10 kHz with a dead time of approximately 15%. In total, the number of

events recorded for the g13a run period was ∼ 20 billion, while for g13b the number was ∼ 30

billion. The average size for each event is around 2.5 kB, making a total of ∼ 130 TB dataset.

These raw data were recorded in Bank Object System (BOS) format, and each bank contains

the information of the particular subsystem position and electric signals ready for off-line

analysis. To extract physical quantities from these data, a complex and multi-step process

has to be performed. In the next chapter, we will discuss the process of reconstructing a

physical event.
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Chapter 4

Data Analysis: Event Reconstruction

4.1 Overview

The data coming from CLAS undergo a multistep process before being used in a physics

analysis. The “raw” data coming from the different subsystems first have to be “cooked”;

this means we have to calibrate each one of the subsystems. The calibration is applied

only for a selected number of runs and by iteration until the data reach a stable value after

which the calibration constants are frozen. After this, data are available for reconstruction

of physical quantities that will be used to identify different channels. For this particular

analysis, we have ~γd→ pω(n), where the particle in the parenthesis denotes the “spectator”.

In the spectator model, it is assumed that the photon interacts only with one of the nucleons,

in this case the proton, while the neutron acts only as a spectator. It is in general assumed

the impulse approximation, implying that during the collision there is no three-momentum

transferred to the spectator. As a consequence, the momentum of the neutron in the final

state corresponds to the Fermi momentum it had inside the deuteron at the time of the

interaction. Therefore, the neutron spectator will have a momentum lower than ∼ 200 MeV,

and it will not be possible to detect it with the EC subsystem. Because of this, we have to

identify all final state particles from the decay.

This chapter explains in detail the method that we used to exclusively identify

γd→ ω p(n),

ω → π+π− π0,

and π0 → γγ

(4.1)

The branching ratio for the charged decay channel of the ω → π+π−π0 is 89.2% and for the
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π0 → γγ decay is 98.8%.

This chapter explains in detail the method that we used to identify the final-state particles

of the decay described in equation (4.1) and the reconstruction of the ω meson. The particles

to be detected are five: the recoil proton, π+, π− and two photons from the π0 decay.

4.2 “Cooking” and Detector Calibration

The information collected by the CLAS detector subsystems is transferred on an event-by-

event basis to a dynamic memory structure called BOS (Bank Operating System) ([35]).

The BOS format consists of several banks1, at least one per subsystem at this stage. The

information included in the so-called “raw” BOS files consisted of channel ID and values

coming from the Charge to Digital Converters (QDC) and Time to Digital Converters (TDC).

The “raw” data are then “cooked”, which is the process of data reconstruction using

the software RECSIS (REConstruction and analySIS package [37]). What this means is

that the banks from the original BOS files are now translated into physical quantities like

momentum, position, energy, etc., and are stored in new banks in the “cooked” BOS file. It is

important to account for differences in the conditions during the whole experimental period

by calibrating each CLAS subsystem and the tagger. The complete data range was then

divided into subperiods where the experimental conditions were stable. For each subperiod,

a “golden” run was chosen for calibration in all the subsystems. For example, figure 4.1 shows

the start-counter-offset mean value and the standard deviation σ for π− for an intermediate

stage of calibration. The different color lines show the subperiods for g13 and in the bottom

the golden runs. The calibration from the start counter will ensure that the mean value

< 100 ps for all the runs while maintaining the standard deviation of ∼ 400 ps.

The calibration of all the subsystems is done in a particular order, given that some of the

values from individual detectors are used in other calibrations. A group of collaborators per-

1In dynamic memory management field, the term banks refers to structures of similar
data. The banks that are the building blocks of the BOS [36].
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Figure 4.1. Start Counter offset for π− particles for an intermediate stage of the Start
Counter calibration. The figure shows the subperiod division, and the runs that were chosen
to be golden runs.
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formed the calibration for each subsystem: Charles Taylor and Danny Martinez from Idaho

State University for the ST and TOF calibration, Edwin Munevar and Nicholas Zachariou

for the DC and tagger calibration and Paul Mattione for the EC. Their dedication to this

work ensured high-quality data for this analysis. After calibration, the set of “calibration

constants” is stored in a centralized MySql database and linked to RECSIS. Data are then

cooked and monitored again until the data reach a stable and acceptable condition for physics

analysis2.

The following is a list of banks that were used in the analysis and will be referenced later

in this thesis:

• EVNT: this bank has general information about the event after reconstruction.

• MVRT: primary vertex reconstruction calculation by assuming all the final state par-

ticles coming from the target.

• EPICS: information about the coherent edge, the radiator, coherent plane.

• TAGR: information from all the incident photons as well as the electron associated

with each photon.

• ECPB: Electromagnetic Calorimeter information. This bank was particularly used for

the π0 reconstruction.

For more information on the bank structure of the BOS files, refer to reference [35]. The

“cooked” files are now analyzed with ROOT [39], a scientific software framework developed

at CERN. ROOT provides big data handling, powerful mathematical and statistical tools,

and data visualization.

2The “acceptable conditions” for data vary for each detector. For example, for the start
counter the mean value of the offset for protons, π+ and π− were asked to be less than
0.2 ns while the sigma should be σ < 0.5ns. Monitoring plots were generated to check if
these parameters fulfilled these conditions for almost all the runs. These plots can be seen
in reference [38].
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4.3 Data Exclusion

The appropriate selection of good-quality data will translate into a reduction of the system-

atic uncertainty. During the experimental period, some of the runs were tagged as “junk”

from the shift takers, or were taken from different studies and not for production. A list of

“good runs” can be found in the g13 wiki page. This list combines information from the

logbook, the g13 wiki, the status obtained from the database, and studies on the EPICs

bank.

4.4 Skimming

4.4.1 First SKIM

Data at the cooking stage were filtered according to the minimum number of tracks. This

process is known as “skimming” and allows a faster data analysis as it reduces the file size,

by cutting out events that do not correspond to the minimum track requirement. Three

topologies were created and the one that was used for this analysis required at least three

tracks: one positive, one negative, and one neutral (1pos1neg1neu).

4.4.2 Second SKIM

The second skim is a filter that was applied to the skimmed BOS files. This time, the criteria

for reducing the data are decay specific, and the skim process retrieves only information that

will be later used in this analysis. The resulting root files have only events with the following

requirements:

• Two tracks associated with positively charged particles, one track associated with one

negatively charged particle and two tracks associated with neutral particles. For all

the tracks, a positive status on the EVNT bank was required3.

3According to the dictionary for the BOS banks [35], an out of time particle will be given
a 0 status on the EVNT bank.
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• The positive track with higher calculated mass is assumed to be a proton. Therefore,

the other track is assumed to be π+. All negative particles are assumed to be π−, and

all neutral particles are assumed to be photons.

• We perform a loose cut on the ∆β < 0.6 for the positively charged tracks. ∆β will be

discussed below.

4.5 Particle Identification

After the initial cuts, the good tracks have to be identified as the particles in the final state.

In this section, the process to identify a proton, π+, π− and two photons is described.

4.5.1 Charged Particles

The relative velocity β ≡ v
c

in the EVNT bank was calculated with the help of the track

length l and the time t values obtained from the TOF subsystem, and the time, tev, of the

event vertex; βmeas = l
c(t−tev)

. The difference between the βmeas in the bank and the βcalc was

calculated for the different tracks,

∆β = βmeas − βcalc, (4.2)

βcalc =
p√

p2 +m2
PDG

, (4.3)

where mPDG is the mass of the particle reported by the particle data group [5] and p

the momentum of the particle. A 3σ momentum dependent cut in the ∆β was performed

to identify charged particles. The projections of the 2-D plot ∆β vs. momentum along the

momentum axis were fit with a Gaussian. The µ±3σ profiles were then fit with a polynomial

function as described below. The parameters extracted from these fits are then used to define

the upper (µ+ 3σ) and lower limit (µ− 3σ) for the charged particle identification cuts. For

large-momentum and low-momentum bins with poor statistics, an extrapolation of a 0th-

order polynomial was performed, taking the value of the closest momentum bin that had
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good statistics. In figure 4.2, we can see the 2-D ∆β vs p plot. The red lines represent the

final cut to select the proton. Three regions were defined based in the momentum of the

track: for p < 0.26 GeV/c and p > 1.6 GeV/c were defined with 0th order polynomial, while

the central region was fitted with a 6th order polynomial. In the two plots on the right in

figure 4.2, we can see more clearly the fit for the middle region. The bands contaminating the

sample can come from different sources: out-of-time particles that correspond to a different

electron bunch, misidentified particles, and accidentals. As can be seen in figure 4.2, most of

the background is cut out of the signal, although an additional cut for out of time particles

will be performed later in this analysis.

Figure 4.2. Proton identification. Top left figure is the ∆β vs p plot. The events between
the red curves, are considered π+. The two right plots show the fit for the central region
for µ + 3σ (top) and µ − 3σ (bottom), where µ and σ are respectively the mean and the
standard deviation of a Gaussian fit over each momentum bin. The left bottom represents
µ for each momentum bin.

A similar analysis was performed for the identification of pions. The central region

p ∈ [0.2, 1.2] GeV/c was fit with a 8th order polynomial. The constants are slightly different
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for π+ and π−, but the regions on momentum are the same. The results for π− can be seen

in figure 4.3 and for the π+ in figure 4.4.

Figure 4.3. π− identification. Top left figure is the ∆β vs p plot. The events between the
red curves, are considered π−. The two right plots show the fit for the central region for
µ+3σ (top) and µ−3σ (bottom), where µ and σ are respectively the mean and the standard
deviation of a Gaussian fit over each momentum bin. The left bottom is the mean value for
each momentum bin.

The rest mass m0 of the particles can be determined as a function of the two independent

measurements, p and βmeas, as follows:

m2
0 =

(
p2

β2
meas

)
(1− β2

meas). (4.4)

The effect of the ∆β cuts on the mass-squared distribution can be seen in figure 4.5 for

tracks with positive charge and figure 4.6 for negatively charged particles. The large peak

at ∼ 0.02 GeV2/c4 corresponds to the pion, the peak around ∼ 0.9 GeV2/c4 in the positive

corresponds to the protons. The red distribution corresponds to the mass-squared distri-
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Figure 4.4. π+ identification. Top left figure is the ∆β vs p plot. The events between the
red curves, are considered π+. The two right plots show the fit for the central region for
µ+3σ (top) and µ−3σ (bottom), where µ and σ are respectively the mean and the standard
deviation of a Gaussian fit over each momentum bin. The left bottom represents µ for each
momentum bin.

bution before the ∆β cut. A small peak around ∼ 0.27 GeV2/c4 can be identified as K+

background 4.

4.5.2 Neutral Particle Identification

Tracks with positive EC status and DC status = 0 were considered neutral particles. The

separation of photons and neutrons is based on their relative velocities,

β
(n)
EVNT =

lEC

tEC − tγ
, (4.5)

4This peak can also be seen in the negative particles distribution, but it was largely
attenuated after the second skim filter was applied.
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Figure 4.5. Rest mass squared distribution for positive particles. In red the distribution
before ∆β cut and in blue after the ∆β cut. For further explanation refer to the text.

Figure 4.6. Rest mass squared distribution for negative particles. In red the distribution
before ∆β cut and in blue after the ∆β cut. For further explanation refer to the text.
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where lEC and tEC are the path length and the time information from the EC, and tγ,

defined in equation (4.7), is the vertex time of the incoming photon. The built-in particle

identification from CLAS assumes neutral particles to be photons if β
(n)
EV NT > 0.95 and its

energy was considered to be pEV NT = EEC/c with EEC = Etot/0.273. Etot is the total energy

deposited in the calorimeter, and the constant is the sampling fraction explained in section

3.3.5. Figures 4.7 and 4.8 show the β(n) distribution for the two neutral tracks. In the left

plot, the broad distribution of the sharp peak around β ∼ 0.9 corresponds to the photons,

while the broad distribution peaking at 0.8 to the left is associated with neutrons. The

second plot to the right has a lower contamination from neutrons. This may be due to the

order in which the particles are written in the bank. For this work, all the good neutral tracks

with βEVNT > 0.95 were assumed to be photons. A couple of corrections to the information

of the neutral tracks were applied:

• Energy Correction. The momentum calculation is sensitive to the determination of the

energy. For this analysis, we chose in the ECPB bank the maximum value between

ETOT and EIN + EOUT

• Path Length Correction. The β as well as θ and φ are sensitive to the determination of

the path length. This information was directly recalculated using the MVRT bank for

the interaction vertex and the information of the hit position from the ECPB bank.

4.6 Incoming Photon Identification

After obtaining the information on the properties of the particles in the final state, it is

necessary to select the correct incoming photon that started the reaction. The photon beam

produced via bremsstrahlung (as explained in 3.2) has the same 2.004 ns structure as has

the electron beam. In particular, for the g13b experiment, an average of 14 electrons were

detected in the tagger per trigger. These in-time electrons produce an average of 14 candidate

photons as can be seen in figure 4.9. Other possible sources of electron hits in the tagger
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Figure 4.7. βγ1 . The events in blue are those that are considered photons, while the distri-
bution in red is cut out.

Figure 4.8. βγ2 . The events in blue are those that are considered photons, while the distri-
bution in red is cut out.
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can come from random background accidentals.

Figure 4.9. Number of good photons per event.

The incident photon was identified by matching its time vertex, tγ, with the time vertex

of the particles, th. The calculation of the time of the hadron and the photon is as follows,

tγ = ttag +
z + zoff

c
, (4.6)

th = tsub −
lsub

cβcalc

, (4.7)

where tsub and lsub are respectively the time stamp and length from either the start counter

(SC) or the time of flight (TOF) subsystem. The zoff = 20 cm is the offset between the center

point of the CLAS detector and the center of the target. The distribution of ∆tγh ≡ tγ − th

shows a big peak centered around zero and several small peaks every 2 ns corresponding

mainly to events coming from different RF bunches. To select the incoming photon candi-

dates, a cut of |∆tγh|< 1 ns was applied to the data in figure 4.10.

Additionally, some events had more than one photon in the same RF bunch as shown

in figure 4.12. Only events with one photon in the same RF bunch were selected to avoid

ambiguity. Before any cut, the estimate of the number of events with just one photon is

∼ 68%.
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Figure 4.10. ∆tγπ− as a function of the π− momentum. The RF structure every 2 ns is clear
in the figure.

Figure 4.11. ∆tγπ− as a function of the π− momentum after cuts.

4.7 Hadron Time Coincidence

The majority of the background from out-of-time particles was removed with the ∆β momentum-

dependent cut. However, some of these particles lay underneath the big peak around ∆β = 0.
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Figure 4.12. Number of good photons per event that are in the same RF bucket, that is,
|∆t| < 1 ns.

This can be seen in the ∆β vs momentum plot as bands that cross the distribution centered

at zero. In order to ensure that all the charged hadrons were coming from the same event,

we did a cut for the time differences of the charged tracks with respect to the π−,

∆thπ− ≡ th − tπ− , (4.8)

with th the time of the hadron defined in equation (4.7). The cut was |∆tπ−p| < 1.2 ns and

|∆tπ−π+| < 1.2 ns. In figure 4.13, we can see the two cuts performed simultaneously marked

by the red lines. The time of the π− hit was taken as a reference time5, because having a

negative polarity on the torus optimized π− identification at low momentum.

4.8 Vertex Cut

The vertex information was taken from the MVRT bank, which calculates the averaged

reaction vertex using the information of all charged particles present in the event. This bank

is very accurate when two or more tracks come from the primary vertex. The higher the

number of tracks, the more accurate the calculation of the event vertex. The lifetime of the

5All the ∆t were calculated with respect to tπ− .
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Figure 4.13. 2-D plot of ∆tpπ− vs ∆tπ+π− . The red lines represent the cut performed
|∆thπ−| < 1.2 ns.

ω meson as reported by the particle data group [5] is 7.75± 0.07× 10−23 s; this means that

the assumption of the two charged pions coming from the primary vertex is good. In the

figure 4.14 is shown the z coordinate from the MVRT bank. The events in red are the events

excluded after this cut. No other cut was done in the x or y coordinate as seen in figure

4.15.

4.9 π0 Reconstruction

The reconstruction of π0 was done by calculating the invariant mass squared of the two

photons, given by the expression,

m2 =
2Eγ1Eγ2

c4
(1− cosα), (4.9)

Where α is the angle between the two photons, and Eγ1(2) the energy in the lab frame of the

photon 1(2). The invariant mass squared distribution can be seen in figure 4.16. In this plot,

a clear peak can be seen around the nominal value of the π0 mass squared over a smooth

background. There is also a peak at zero, which represents a nonresonant background, that
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Figure 4.14. z coordinate, with respect to the center of CLAS, of the event vertex as found
in the MVRT bank. The vast majority of the events are produced within the nominal values
of the target. The events in red are those that are cut out of the data sample.

Figure 4.15. y vs. x coordinate for the primary vertex from MVRT bank. No cut was
performed for these quantities.
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is, two photons that are produced in the decay, but do not come from a π0. The π0 events are

selected by fitting a Gaussian distribution to the m2(γγ) and applying a 3σ cut around the

distribution centroid. The centroid is shifted ∼ 0.0007 GeV 2/c4 with respect to the nominal

value.

Figure 4.16. Invariant mass squared of the two photons. The red lines mark the cut. The
green line indicates the position of the nominal value of the m2

π0 = 0.01822 GeV2/c4

4.10 Fiducial Cuts

The efficiency and reliability of the track reconstruction are reduced at the edges of the drift

chambers. It is also possible that the charged particles that hit the support frames or the

cryostats of the torus escaped detection completely. On the other hand, the magnetic field

close to the cryostats’ surfaces is not uniform, making the task of mapping and modeling very

difficult. Tracks coming from those regions are associated with more significant systematic

uncertainties in the measured momentum. This uncertainty will propagate in the calculation

of the physical observables, increasing also their uncertainty. For these reasons, fiducial cuts

are applied to ensure the tracks are more reliable. The code used to perform these cuts was

developed by a collaborator, Paul Mattione, for the g13 group.
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4.11 Energy and Momentum Corrections

4.11.1 Energy Loss Corrections

Charged particles passing through a material, other than electrons and positrons, lose en-

ergy primarily by ionization. The atomic electron collisions are in nature a statistical phe-

nomenon, but given that the number of collisions per path length is large, the fluctuations

in the total energy loss are small. This means that it is possible to describe the macroscopic

behavior by defining the average energy loss per unity length, called stopping power dE
dx

[40].

The stopping power is described by the Bethe-Bloch formula. In particular, the charged par-

ticles in CLAS lose energy in their path from the primary vertex, passing through the target

material and target cell structure, the beam pipe, supporting structures, the start counter,

and the air gap between the start counter, and region one of the drift chambers. From re-

gion one to region three, the reconstruction software calculates the momentum pmeas without

taking into account the previous energy loss. The four-momentum is found by multiplying

the measured momentum and a factor which is different for each particle6:

PEloss
p = ζpP

EVNT
p ,

PEloss
π+ = ζπ+PEVNT

π+ , (4.10)

PEloss
π− = ζπ−P

EVNT
π− . (4.11)

PEVNT
i is the momentum of the i particle as found in the EVNT bank, PEloss

i is the momentum

after energy loss correction, ζi is the correction factor and i is the type of particle (π+, π−,

proton). A collaborator, Eugene Pasyuk, developed a program to account for this energy

loss. The correction is on the order of a few MeV. Figures 4.17, 4.18 and 4.19 give the

relative correction, ∆p/p, for protons, π+, and π− respectively.

6The Bethe-Bloch formula does not depend on the mass of the particles, but it does
depend on the momentum of the particle
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Figure 4.17. Relative momentum difference after energy loss ∆p/pmeas for the proton after
particle identification cuts.

Figure 4.18. Relative momentum difference after energy loss ∆p/pmeas for the tracks identi-
fied as π+ after particle identification cuts.

Figure 4.19. Relative momentum difference after energy loss ∆p/pmeas for the tracks identi-
fied as π− after particle identification cuts.
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4.11.2 Momentum Corrections

After applying the energy loss corrections, momentum corrections for the charged particles

were applied. These corrections account for geometrical drift chambers misalignments and

inaccuracies for the toroidal magnetic field map. The corrections were calculated by applying

kinematic fitting (see reference [41] ) of the reaction γd→ ppπ− using data from g13a. The

case in which all the tracks were detected was compared with two topologies: γd→ pp(π−)

and γd→ pπ−(p). The information from the missing particle (denoted as (X )) was obtained

via energy and momentum balance. The corrections were then determined by calculating

the mean energy loss corrected tracks and the momentum of the missing particle. The error

in the measurement of the track was largest for low-momentum protons. The corrections

applied to the subset of events with coherent peak of 2.3 GeV is shown in the figures 4.20,

4.21, and 4.22, for the proton, π+, and π− respectively. For more details, see reference [42].

Figure 4.20. Relative momentum difference after momentum correction ∆p/pmeas for the
tracks identified as protons.

4.11.3 Incoming Photon Energy Corrections

As previously discussed in section 3.2.4, the energy of the incoming photon is determined

by knowing the energy of the electron beam and the energy of the scattered electron. The
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Figure 4.21. Relative momentum difference after momentum correction ∆p/pmeas for the
tracks identified as π+.

Figure 4.22. Relative momentum difference after momentum correction ∆p/pmeas for the
tracks identified as π−.

latter is determined by knowing the magnitude of the magnetic field and the hit into the

physical paddle in the tagger hodoscope. A study made by one collaborator, Mike Williams

(see reference [43]), noticed a systematic shift in the photon energy value that is compatible

with a gravitational sag of some of the tagger components. The overestimate on the energy

of the electron produces an underestimate of the photon energy. A multiplicative constant

was calculated to correct this error and can be seen in figure 4.23.
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Figure 4.23. Tagger correction accounting for the gravitational sag.

4.12 Missing Momentum Cut

The reaction ~γd → pω(n) is identified by using the kinematic information of all the final-

state particles. The only particle that is not detected, hence the particle that is “missing”, is

the spectator neutron, and its kinematics can be found by conservation of four momentum.

The missing momentum pX is calculated as follows,

pX = |~pγ − (~pp + ~pπ+ + ~pπ− + ~pγ1 + ~pγ2)| , (4.12)

where ~pi is the momentum of the detected particles after momentum and Eloss corrections.

The signal events 7 that are considered so far can come from different sources; one is the

quasi-free (QF) ω photoproduction, and, on the other hand, processes dominated by final-

state interactions. The QF channel, which is the one that is considered in this work, assumes

that the spectator neutron does not interact with any of the final state particles. What this

means is that the momentum of the spectator will be the Fermi momentum that it had inside

7These are events that do not come from background sources.
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the deuteron at the moment of the interaction. By applying a missing-momentum cut for

PX(γd→ pπ+π−γγX) ≤ 0.2 GeV/c, the final state interaction contributions are reduced.

4.13 ω Meson Reconstruction

After all the cuts described in this chapter, it is important to separate the background

events from the signal events. This separation was achieved by analyzing the invariant mass

squared of the three pions m2(π+π−π0) and the missing mass squared m2
X simultaneously.

As it is possible to see in the figure 4.26 (left), it is possible to distinguish three main regions:

the signal region (the big peak), the nonresonant background, and a small peak that is η

background. It is important to notice that the nonresonant background intersects with the

signal region. For each one of the photon energy subsets in g13b, we applied a missing-

mass-squared dependent cut. The projection on missing mass squared bins was fitted with

a double Gaussian as seen in figure 4.24.

Finally, the µi ± 3σi for the ith bin were then plotted and fitted with a second-degree

polynomial as seen in figure 4.25. This cut, as can be seen in figure 4.26, removes the η

background and the majority of the nonresonant background. However, there are still some

events under the ω peak. This issue will be addressed in the next chapter.
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Figure 4.24. Two-Gaussian fit to the projection of the invariant mass squared of the three
pions for different missing mass squared bins. The red lines show the 3σ cut.
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Figure 4.25. 3σ cut around the centroid. In the two bottom plots, it is possible to see the
2nd degree polynomial fit to the µ± 3σ.

Figure 4.26. Invariant mass squared of the three pions m2(π+π−π0) vs. the missing mass
squared m2

X(γd → pπ+π−π0X) before (left) and after the cut (right). This is an example
for the energy set with coherent peak at 2.3 GeV.
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Chapter 5

Data Analysis: Beam Asymmetry

After selecting the candidate ω photoproduction events, we then calculated the polarization

observable Σ that parametrizes the beam spin asymmetry. For this work, we are using lin-

early polarized photons incident on an unpolarized target. In this chapter, the methodology

for the calculation of the observable is explained in detail.

5.1 Binning

The kinematics of a two-body final state reaction can be completely described by two pa-

rameters. In this work, the energy of the incoming photon Eγ was chosen to be in the lab

frame and the cosine of the polar angle of the ω meson in the center of momentum frame

(cos θωCM). The z-axis is defined by the incoming photon direction (see figure 5.1).

Two energy bins were extracted for each coherent peak subset, with a width of 100 MeV,

covering a total range from 1.1 GeV to 2.3 GeV. Although the energy bins could overlap

between subsets, this option was discarded because the degree of linear polarization decreases

as the photon energy gets farther from the energy of the coherent edge (Ecoh). In particular,

the degree of photon polarization increases with the fractional photon energy x ≡ Eγ/E0,

where Eγ denotes the photon energy and E0 the electron beam energy. The figure of merit

(FOM) is defined as

FOM = LP 2, (5.1)

where L is the luminosity1, and P is the degree of polarization of that photon. An event

with lower polarization will not have as significant an impact on the FOM.

To accurately calculate the polar and azimuthal angle in the center-of-momentum frame,

1The luminosity does not depend on the energy of the incoming photon, but on the beam
energy.
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Figure 5.1. Schematic representation of the reaction γp → pω in the center-of-mass frame.
The blue rectangle represents the decay plane, and its normal unitary vector is defined by
n̂ =

ẑ×pωCM
|ẑ×pωCM |

. The orange rectangle represents the polarization plane for the incoming photon.

The angle between the two planes is denoted as β. Finaly, the θCM is the angle between
the proton and the ω meson in the center-of-mass frame. The z-axis is the direction of the
incoming photon.

.

the boost transformation was calculated with the final-state particles instead of the initial

particles. A Monte Carlo study of the uncertainty in the kinematic variables coming from

the resolution of the detectors was performed. The conclusion of this study was that the

uncertainty of the kinematic variables due to the resolution of CLAS and the Fermi momen-

tum was smaller than assuming the proton target was at rest, as can be seen in figure 5.2.

The cos θCM variable was divided in 6 bins as well. A total of 72 kinematic bins were

calculated and are reported later in this document.
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Figure 5.2. Difference between the cos θ generated with the Monte Carlo, and the cos θ
“detected” as a function of cos θCM. The top plot takes the information of the incoming
particles assuming the proton at rest. The bottom plot takes the information from the
final-state particles without any assumption.
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5.2 Beam Asymmetry: the φ Binned Method

The polarized cross section for vector mesons can be written as,

(
dσ

dΩ
(Eγ, θ

ω
CM, β)

)
pol

=

(
dσ

dΩ
(Eγ, θ

ω
CM)

)
unpol

(1− PΣ cos(2β)), (5.2)

where
(
dσ
dΩ

)
unpol

is the unpolarized differential cross section, Eγ is the energy of the incoming

photon, θωCM is the polar angle of the ω in the center-of-mass frame (see figure (5.1)), P is

the degree of polarization of the photon, β = φ − ϕ is the azimuthal angle between the

polarization plane and the production plane, and Σ is the beam asymmetry observable to

be extracted; Σ is a dimensionless quantity.

The observable Σ can be determined in different ways: one can, for example, perform a fit

to the polarized cross section with a function similar to equation (5.2). The problem with this

method is that the unpolarized differential cross section would have to be known precisely.

Also, a very accurate study of the acceptance would have to be done, since the φ distribution

is very dependent on the CLAS acceptance. A more standard way to calculate these kinds

of asymmetries is to calculate a ratio of linear combinations of the φ distribution for two

orthogonal data sets (for example, PARA and PERP).2 Taking the ratio of the parallel and

perpendicular distributions will serve to reduce systematic errors as it will cancel out the

acceptance dependence of the detector which is not a function of the polarization.

For this analysis, we have used the calculation of the distribution Y,

Y ≡
(dN
dβ

)⊥ − (dN
dβ

)‖

(dN
dβ

)⊥ + (dN
dβ

)‖
. (5.3)

The azimuthal distribution of the events produced with linearly polarized photons on an

2PARA (PERP) is short for parallel (perpendicular), which denotes the orientation of
the photon electric field with respect to the floor of the hall.
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unpolarized target is

(
dN

dβ

)‖,⊥
∼ A(φ)F ‖,⊥

(
1− P ‖,⊥Σ cos(2β‖,⊥)

)
, (5.4)

where A(φ) is the acceptance of the detector, F ‖,⊥ is the flux of the incoming photons, and

P ‖,⊥ is the degree of polarization. For the PARA data set, we have ϕ = 0, and for the

PERP data set, we have ϕ = π/2, therefore, the yield in equation (5.4) can be rewritten as

a function of φ as (
dN

dφ

)‖,⊥
∼ A(φ)F ‖,⊥

(
1∓ P ‖,⊥Σ cos(2φ)

)
. (5.5)

Using equation (5.5), the distribution Y described in equation (5.3) can be rewritten as

Y =
1− FR +

FRPR+1

PR+1
2P̄Σ sin ∆φ

∆φ
cos (2(φ− φ0))

1 + FR +
1−FRPR
PR+1

2P̄Σ sin ∆φ
∆φ

cos (2(φ− φ0))
, (5.6)

with the flux ratio FR = F ‖

F⊥
, polarization ratio PR = P ‖

P⊥
, and average of the polarization P̄ =

P ‖+P⊥

2
. The φ0 parameter is introduced to account for the offset of the photon polarization

vector. sin ∆φ
∆φ

is a correction for the bin of width ∆φ.

5.2.1 Parameter Optimization

Several studies have been carried out testing the φ-bin method ([44] [45]). Given the sta-

tistical restrictions, it is necessary to fix the values of the most of the parameters to have a

more accurate estimate of the observable Σ. These parameters are:

• the offset of the photon polarization vector φ0,

• the flux ratio FR,

• the level of polarization ratio PR and the average polarization P̄ .
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φ0 Offset

This parameter gives information about the offset in the alignment of the diamond radiator

in the goniometer. Since φ0 is a mechanical parameter, we do not expect it to change during

the experiment except for diamond realignments. Also, φ0 does not depend on the channel

and can be extracted accurately from a high-statistics channel from a fit on the asymmetry

integrated over a large kinematic region. The channel with very high statistics was the

single-pion channel (γn → pπ−) worked by collaborator Daria Sokhan. The value reported

is a weighted mean 0.03◦ ± 0.071◦ ranging from maximum values of ±2◦.

Photon Polarization

The degree of photon polarization has to be determined to fix the two parameters PR and

P̄ . The photon polarization was obtained by fitting the enhancement distributions with

a realistic theoretical model of the coherent spectrum [46]. The enhancement distribution

is a common quantity used in these types of experiments, and it is calculated by dividing

the coherent photon spectrum by the incoherent spectrum obtained with an amorphous

radiator (in this case, the carbon radiator). This quantity, since it is a ratio, removes

systematic effects and makes the determination of the photon polarization more reliable.

The method used for this calculation takes into account the electron beam energy, the smear

from beam collimation, beam size, fluctuations of the beam position and angle, and multiple

scattering [27]. In figure 5.3, it is possible to see a typical enhancement distribution and a

calculated degree of photon polarization. A program calculating the degree of polarization

of the photon, on an event-by-event basis, was developed by the g13 collaborator Nicholas

Zachariou. An overview of the steps for the method used to calculate the level of polarization

is given below:

• The enhancement is calculated by dividing the coherent-photon-energy spectrum by

the incoherent spectrum. Event-by-event data were used to account for the effect of

64



collimation.

• The exact position of the coherent edge was calculated by fitting the enhancement

in the region of the edge with a 3rd-order polynomial. The energy equivalent to the

biggest slope in the enhancement was chosen as the energy of the coherent edge.

• Drift in the coherent peak position forced to bin the data as a function of the beam

position. The bin width was 2 MeV and the photon polarization was determined for

each bin.

• The function used to fit the enhancement distribution is characterized by 5 parame-

ters. These parameters account for the angle between the beam and the crystal plane

defined by the [022] direction, the beam divergence, relative angle of collimation (in

characteristic angle units), the smearing factor for collimation, and the amplitudes of

the discrete peaks. An initial fitting for the coherent-edge-position bin with higher

statistics was done to fix two of the five parameters in the fit.

• The three floating parameters are calculated for the other coherent-edge-position bins.

• The level of photon polarization is calculated by an analytic function using the param-

eters extracted in the fitting routine.

• The level of polarization is then plotted as a function of the coherent edge position for

each E-counter. In order to remove statistical fluctuations, the polarization is fitted

with a 3rd-degree polynomial.

This method of determining the polarization is more accurate for E-counters located close

to the nominal coherent edge.

This information was then stored in tables that give the average degree of linear polar-

ization per run per E-counter. After the analysis cuts and event selection, the polarization

average was calculated for each energy bin (a bin width of 200 MeV under the coherent

peak) and for each set: PARA for those with the electric field parallel to the lab floor, and
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Figure 5.3. Typical photon polarization (top) and corresponding enhancement distribution
(bottom).

PERP for those perpendicular to the floor. The values calculated are shown in table 5.1.

The errors associated with the parameters reported in this section will be discussed in the

next chapter.

Flux Ratio

The flux ratio determination is based on a fit of the Y distribution, equation (5.3), with the

function described in equation (5.6). Since the incident photon flux is constant within each

energy subset, the integration over the entire polar-angle range and two bins in energy (200

MeV from the coherent edge nominal value) will provide good statistics for extraction of the
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Eγ(GeV ) PR P̄

1.1-1.3 0.88 0.754
1.3-1.5 1.01 0.782
1.5-1.7 0.96 0.750
1.7-1.9 0.94 0.676
1.9-2.1 0.99 0.730
2.1-2.3 1.02 0.695

Table 5.1. Polarization ratio and polarization average for all energy subsets with different
coherent peak.

parameter and for reducing any statistical fluctuations. An example of the fit performed is

shown in figure 5.4 and the results are summarized in table 5.2. The statistics for this fit

are larger than those that were used to calculate the beam asymmetry; the reduced χ2 was

used to estimate the goodness of the fit. As can be seen in table 5.2, in general the values

for the reduced χ2 are around 1.

Figure 5.4. Example of fit for 1.7 < Eγ < 1.8 GeV.

5.2.2 Dilution Factor.

The sample of the events, after all the cuts described in the previous chapter, still contains

some background. Two possible kinds of background could be under the peak: polarized

and unpolarized events. If the background is unpolarized, a dilution factor can be defined to
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Eγ(GeV) FR χ2/NDF

1.1-1.3 0.485± 0.015 1.098
1.3-1.5 1.024± 0.015 1.325
1.5-1.7 1.198± 0.014 1.358
1.7-1.9 0.914± 0.009 0.875
1.9-2.1 1.056± 0.011 0.677
2.1-2.3 1.058± 0.012 0.727

Table 5.2. Calculated values for the flux ratio FR.

understand how much the background will “dilute” the results of extracting Σ. A background

region was considered for values of invariant mass squared larger than an upper cut. This

cut was defined before by the second-degree polynomial fitted over µi + 3σi, where µi and σi

are the mean and the standard deviation of the Gaussian distribution describing the peak

in the ith bin of missing mass squared, respectively . After calculating Σ in the background

region, we found it to be 0 within the uncertainty. This is to say, the background is not

polarized. To account for the remaining background under the peak after the cuts described

above, a dilution factor D was defined for each energy subset,

D ≡
∑

i(Atot − Abkg)i∑
i(Abkg)i

,

(
dN

dφ

)‖(⊥)

signal

= D‖(⊥)

(
dN

dφ

)‖(⊥)

peak

,

where the sum
∑

i runs over all the missing mass squared bins, the region of the signal

defined as M2(π+π−π0) ∈ [µi − 3σi, µi + 3σi] and the background region defined as outside

of the signal region. Apeak can be calculated through integrating the model or by integrating

the histogram. The difference of the two methods is shown in figure 5.5. It is important to

note that although the difference in value of the dilution factor between the two methods

is larger for the energy bins corresponding to lower energies, it has minimal impact on the

calculation of the beam asymmetry as shown in figure 5.5. This is to say that the fits all agree

with each other. For this work, we chose to use the dilution factor calculated by integrating
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over the histogram. The estimated values of the dilution factor are summarized in table 5.3.

Taking into account the dilution factor, it is possible to rewrite the ratio Y described in

equation (5.3) as the ratio of the corrected distribution

Y ∗ ≡
D⊥(dN

dφ
)⊥ −D‖(dN

dφ
)‖

D⊥(dN
dφ

)⊥ +D‖(dN
dφ

)‖
. (5.7)

The error associated with the dilution factor parameter is discussed in the next chapter

(refer to section 6.5). Specifically in the regions of 1.1 to 1.7 GeV, the dilution factor is

small, meaning that there is a large number of background events diluting the signal peak.

Eγ(GeV) D
‖
HISTO D

‖
FIT D⊥HISTO D⊥FIT

1.1-1.3 0.571 0.679 0.603 0.657
1.3-1.5 0.606 0.619 0.611 0.621
1.5-1.7 0.601 0.606 0.605 0.607
1.7-1.9 0.661 0.661 0.661 0.660
1.9-2.1 0.730 0.736 0.736 0.738
2.1-2.3 0.779 0.776 0.769 0.773

Table 5.3. Dilution factor for each energy subset for PARA and PERP polarization. HISTO
and FIT stand for integration over the histogram, and integration over the double-Gaussian
model.

5.3 Statistical Uncertainty

The extraction of the beam asymmetry Σ uses a fit to the azimuthal yield ratios (refer to

equation 5.3) as explained in section 5.2. This type of experiment has an intrinsic uncertainty

because of the kinematical random nature of the nuclear processes3, which implies that the

number of counts in each kinematic bin is a random variable. The Poisson distribution is

typically associated with counting experiments; this means that the uncertainty associated

with a specific ith kinematic bin is
√
Ni. The statistical uncertainty of the ratio, modified

3It is not possible to predict the kinematics value of the final-state particles.
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Figure 5.5. Fit for the asymmetry extraction. The red dots and fit are taken before the
dilution factor correction is applied. The blue dots and fit are calculated after the dilution
factor is estimated by integrating the histogram. The green dots and fit are calculated after
the dilution factor is estimated by integrating a double-Gaussian-fit model to the background.

by the dilution factor (refer to equation (5.2.2)), is calculated by propagating the error of

each bin, given by the expression,

σY ∗ =

2D‖D⊥
√

(dN
dφ

)⊥(dN
dφ

)‖
(
dN
dφ

)⊥ + (dN
dφ

)‖
)

D⊥(dN
dφ

)⊥ +D‖(dN
dφ

)‖
. (5.8)

In equation (5.8), it is assumed that σ
‖,⊥
D = 0. The uncertainty coming from the dilution

factor calculation is included in the systematic uncertainties and will be discussed in the

next chapter. Furthemore, we shall assume that F ‖ = F⊥ and P ‖ = P⊥ = P̄ . Again, the

uncertainties from the photon flux ratio σFR and the degree of polarization P̄ are ignored

and will be folded into the systematic uncertainties. Therefore, the statistical uncertainty in

the asymmetry parameter is,

σΣ =
σY ∗

P̄
. (5.9)

5.4 Results

After the optimization was performed for all the parameters, the Y ∗ distribution defined in

equation (5.2.2) was fit with the function described by equation (5.6). The product of the
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average polarization and the beam asymmetry parameter, P̄Σ, is the only parameter that is

left to float. The φ binning for the azimuthal distributions is a trade-off between describing

the modulation correctly while having decent statistics. The regions where the coils are

located have very low statistics and therefore have been excluded from the distribution. The

bin width ∆φ was studied for three different scenarios: two, three, and four bins per sector.

The final binning choice was three φ bins per sector. In figure 5.6 it is possible to see the fit

applied to Y ∗ for the kinematic bin Eγ ∈ [2.1, 2.2] GeV.

Figure 5.6. Fitting the modulation of the ratio Y ∗ for different kinematic bins in cos θCM.
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Result4 for Beam Spin Asymmetry for 1.1 < Eγ < 2.3 GeV in energy bins of

∆Eγ = 100 MeV was calculated. The results are shown in figure 5.7. The blue triangles

are the results of this work, and the red circles are those reported by GRAAL 2015 [17]

also on the quasi-free photoproduction. The green squares are the results of CLAS 2017 [14]

reported for the photoproduction of the ω meson off the free proton. The error bars reflect

only the statistical uncertainty and are calculated as indicated in equation (5.9).

Figure 5.7. Result for Beam Spin Asymmetry for 1.1 < Eγ < 2.3 GeV in energy bins of
∆Eγ = 200 MeV. The blue triangles represent this work (quasi-free proton), the red circles
represent the GRAAL 2015 [17] results for the quasi-free reaction. The green squares are the
results from [14] for the free-proton channel. The blue line represents the Bonn-Gatchina
prediction after including the ω photoproduction data from CLAS 2017 [14] in their fit.

.

4CLAS preliminary result.
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Chapter 6

Systematic Studies

6.1 Overview

After the best estimate of the observable Σ, it is of fundamental importance to quantify

how good the estimate actually is. In general, there are two main types of uncertainties

associated with the experimental estimation of a value: statistical and systematic. The

statistical uncertainty has already been discussed in the previous chapter, where it took into

account the random nature of the nuclear processes and the amount of events analyzed.

Systematic uncertainty, on the other hand, does not depend on the number of events, and

it accounts for biases from nonstatistical sources. This chapter focuses on the quantification

of the systematic uncertainties. We report each source of systematic uncertainty separately.

6.2 Goodness of the Fit

In order to account for the goodness of the fit, we calculated the normalized residuals as seen

in figure 6.1. The mean value for the distribution of the normalized residual is expected to

be around zero, which can be seen in the plots. We added all the residuals for the six fits for

each energy bin. In order to find the σ2, we should fit a Gaussian to the normalized residual

distribution for each energy and cosine bin. The limitation with this calculation is that we

have only 12 points per distribution. The values for the σ2 are estimated to be, in general,

smaller than 1. This is attributed to the fact that we have limited statistics.

For the two lowest values for energy bin and the backward angles, we found a bias.

These two bins are the ones with the least statistics in all the data sets. This matter must

be studied before publication of the results found in this thesis.
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Figure 6.1. Normalized residuals distribution for each energy bin.

6.3 Systematics of the Parameters

To understand the robustness and to identify possible biases of the estimate of Σ, a detailed

study of the sensitivity of the observable to the fit parameters was reported in the CLAS

note [45]. In general, ideal probability distribution functions (pdfs) for PERP and PARA

events were generated by sampling the azimuthal pdf. In other words, events outside the

azimuthal pdf were discarded. These studies depend on the method and are not specific to

a determined channel. In this section, this work is summarized.

6.3.1 φ0 Offset

The systematic uncertainty in the φ-bin method1 associated with the goniometer has been

previously investigated for the φ-bin method. As described in reference [45], studies using

Monte Carlo-generated events with PARA and PERP polarization were used to calculate the

uncertainty in the method. By varying several parameters such as Σ, φ0, and the number

1The name of the method comes from reference [45]
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of events, the estimator of the total systematic uncertainty was chosen to be the standard

deviation of the observable σTOT. The “experiment” was repeated for a constant value of

φ0 to account for statistical fluctuations, and the mean value was chosen to be the best

estimate of statistical fluctuation σSTAT. The σsys =
√
σ2

TOT − σ2
STAT was reported to be of

the order of 10−6. In this work, we shall use this value as our estimate. More studies on

the Σ dependency from the φ0 also carried out by our collaborator Nicholas Zachariou (see

reference [45]); all coincide with this general estimate.

6.3.2 Photon Flux

A study, similar to the one described for φ0, was used to determined FR. The systematic

uncertainty reported in reference [47] is

σsys
FR

= 0.073σfit
FR
. (6.1)

For this work, we report the systematic uncertainty for each data subset in table 6.1, with

values of the order of σsys
FR
∼ 10−3. σfit

FR
used for this calculation are shown in table 5.2.

Eγ(GeV) σFR
1.1-1.3 0.0011
1.3-1.5 0.0011
1.5-1.7 0.0010
1.7-1.9 0.0007
1.9-2.1 0.0008
2.1-2.3 0.009

Table 6.1. Calculated values for the systematic uncertainty related to the flux ratio FR

6.3.3 Photon Polarization Ratio

The degree of photon polarization uncertainty affects two parameters, PR and P̄ . The

former is one of the parameters that is fixed in the fit, while the latter is a multiplicative
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parameter that affects directly the value of Σ. Since the extraction of both quantities comes

from the same polarization tables, the calculation of the two parameters is correlated. In

an independent study [44], the estimate of the uncertainty for the level of polarization is

σP ∼ 7%. Since P is not the parameter that is used directly in the fit, we have to propagate

this error to calculate the uncertainty of the polarization ratio σPR and the polarization

average σP̄
2. The propagation of error of this value provides an expression for σPR ,

σPR = PR

√
(
∆P ‖

P ‖
)2 + (

∆P⊥

P⊥
)2 (6.2)

= 0.1PR. (6.3)

A similar study [47] as the previous two found that the uncertainty of the beam asymme-

try due to PR, σsys
PR

< 1%. On the other hand, the uncertainty of the average degree of

polarization is given by

σP̄ =
1

2

√
(∆P ‖)2 + (∆P⊥)2, (6.4)

∼ 0.05P̄ . (6.5)

The uncertainty reported in that work is σsys

P̄
= 5%, and we shall use this value as our

estimate.

6.4 Event Selection Systematic Uncertainty

Unlike the previous uncertainties reported above, the ones that are directly related to the

event selection cuts are channel dependent. For the estimate of these values, we did not

make use of an event generator. Instead, the cuts were varied from their nominal value to

broader or tighter cuts. The beam asymmetry was then calculated again leaving all the

other parameters fixed. The total difference ∆Σ ≡ Σ∗ − Σ between the value of the beam

2It is important to note that σPR , and σP̄ are the uncertainties that will be reported in
this work. The uncertainty of the level of polarization σP is an intermediate step
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asymmetry calculated with different cuts (Σ∗) and the beam asymmetry calculated with the

nominal cuts Σ, was then fitted with a 0-degree polynomial. The value reported by the

difference was then selected as the maximum systematic uncertainty for that cut.

6.4.1 Neutral Particle Identification Systematics

The cut for neutral particle identification as a photon was done by asking the relative velocity

of both neutral tracks to be β > 0.95. For this study, we performed a looser cut asking

β > 0.9. The systematic uncertainty related to this cut is reported as 0.017 , as can be seen

in figure 6.2.

Figure 6.2. ∆Σ as a function of cos θCM . Σ∗ is calculated using a broader cut on the neutral
particle identification (βn < 0.9).

6.4.2 Incident Photon Identification

For this study, the cut variation was set to be ∆t < 1.2 ns as opposed to the 1 ns nominal

cut. The difference is shown in figure 6.3 and the value reported is ∼ 0.001.
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Figure 6.3. ∆Σ as a function of cos θCM . Σ∗ is calculated using a broader cut on the incoming
photon coincidence time with π− (∆tγπ− ≤ 1.2 ns).

Figure 6.4. ∆Σ as a function of cos θCM . Σ∗ is calculated using a tighter cut on the proton
and π+ coincidence time with π− (∆thπ− ≤ 1.0 ns).

6.4.3 Out-of-Time Cut

To estimate the systematic uncertainty associated with the out-of-time hadrons cut, a vari-

ation was set to be ∆t < 1.0 ns as opposed to the 1.2-ns nominal cut. The change of the cut
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was applied simultaneously to ∆t(π−p) and ∆t(π−π+). The difference is shown in figure 6.4

and the value reported is σ∆thh = 0.009.

6.4.4 z-Vertex Cut

Figure 6.5. ∆Σ as a function of cos θCM . Σ∗ is calculated using a broader cut on the z
coordinate of the primary vertex(−40 ≤ z ≤ 0 cm).

A broader cut for the coordinate z of the primary vertex was done. The nominal values

were instead taken into account, −40 ≤ z ≤ 0 cm. The ∆Σ is shown in figure 6.5, and the

absolute difference associated with this cut is σz = 0.005.

6.4.5 Missing Momentum

The missing momentum cut is fundamental for identifying quasi-free events from FSI dom-

inated events. For this, a tighter cut in missing momentum PX < 0.15 GeV/c was chosen.

The systematic reported here is 0.021 as seen in figure 6.6.
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Figure 6.6. ∆Σ as a function of cos θCM . Σ∗ is calculated using a tighter cut on the missing
momentum (PX < 0.15 GeV/c).

Figure 6.7. ∆Σ as a function of cos θCM . Σ∗ is calculated using a tighter 2 − σ cut on the
calculation of the dilution factor.

6.5 Systematic due to Dilution Factor and Invariant Mass Cut

The study of the systematic uncertainty related to the calculation of the dilution factor

is twofold; on the one hand, we have to estimate the error associated with the way we
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calculated the parameter, and on the other hand, we have to propagate this uncertainty into

the σΣ. We performed a separation from the background with a 2σ cut instead of the 3σ

cut to separate the systematic uncertainty from the statistical. This value accounts for the

cut and the dilution factor calculation. For example, for the energy bin corresponding to

2.15± 0.05 GeV , the dilution factors for PARA and PERP with the 2σ cut are D‖ = 0.832

and D⊥ = 0.825. These numbers are larger than the nominal values reported before as

expected3. The final systematic estimate is 0.010 as shown in figure 6.7.

6.6 Summary and Conclusion

The systematic uncertainty was calculated for different parameters, selection cuts, and back-

ground subtraction. The parameter that most influences the uncertainty is the determination

of the degree of polarization with a value of 5% as explained in section 6.3.3 . The uncertain-

ties for each cut are minimal and are assumed to be independent. However, this assumption

is not correct for the calculation of the dilution factor and the invariant-mass-squared cut.

The uncertainty of these two aspects is highly correlated and is calculated as one unique

source of error.

6.6.1 Systematic Error Budget

Table 6.2 is a summary of our estimate for the systematic uncertainty found in this work.

3As we us a tighter cut, the amount of events diluting the signal region should be smaller,
increasing the value of the dilution factor.
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Source of uncertainty |µ∆Σ|
φ0 offset 10−6

Photon flux ratio ∼ 0.001
Polarization ratio < 1%
Mean polarization 5%

Neutral particle cut 0.017
Incident photon identification 0.001

Out of time cut 0.009
z-vertex cut 0.005

Missing momentum cut 0.021
Dilution factor and 3− σ cut 0.010

Table 6.2. Summary of the estimated values for the systematic uncertainties related to differ-
ent sources. As extensively explained in this chapter, the estimated systematic uncertainties
related with the kinematical cuts are averages of the absolute difference of the parameter Σ
and its variation.
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Chapter 7

Summary and Conclusions

In this work, we extracted the polarization observable Σ for the exclusive quasi-free photo-

production of the ω meson off the bounded proton in deuterium. The photon energy range

spans from 1.1 to 2.3 GeV, for energy bins of 100 MeV. Systematic studies to estimate the

uncertainty are also included in Chapter 6. The first visible remark is that the beam asym-

metry is not 0 and it is negative for most of the kinematic bins, which was expected, as

was explained in Chapter 2. This fact is in agreement with s-channel contributions. The

comparison of my results with GRAAL (2015) [17] is shown in figure 5.7. Previous data

from GRAAL also for the quasi-free photoproduction are also plotted in figure 5.7, repre-

sented as red circles. The blue triangles are the results of this thesis. There is, in general,

good agreement for the two first energy bins. However, for Eγ = 1.35 GeV and Eγ = 1.45

GeV, the GRAAL results are systematically smaller than those presented here. On the other

hand, our data are compared with the photoproduction of the ω meson off the free proton1

reported by CLAS [14]. The values for this unbound channel are systematically larger in

amplitude than the ones presented in this work. This suggests that nuclear effects like the

off-shellness of the proton, Fermi motion, or the nucleon binding could possibly affect the

polarization observable Σ. On the other hand, this could possibly come from final-state-

interaction corrections that have to be taken into account even after the missing mass cut.

CLAS 2017 [14] and GRAAL 2015 [17] are also in disagreement with respect to the free

proton (the free proton target from CLAS is not shown here). There are no published data

so far for the energy bins from 1.95 GeV to 2.25 GeV for any experiment.

The blue line in figure 5.7 is the multi-channel coupled fit from the Bonn-Gatchina

collaboration. The results include many channels and observables. In particular, the Bonn-

1The hydrogen target, where the proton is not bound to any other nucleons in the nucleus.
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Gatchina fit includes the free proton data from CLAS 2017 and predicts the values for the last

three bins. The data for large energies will be fitted to theoretical calculation and will offer

a constraint on the Partial Wave Analysis performed by various groups. This information,

in time, will be a valuable input for the search of higher mass missing resonances.

This study will also help with a greater understanding of the quasi-free events, which is

of vital importance for the study of reactions with a bound neutron target. In this case, it is

not possible to compare with the free neutron, and although in general we do not expect the

quasi-free neutron to have exactly the same effect in the Σ, the methodology will be similar.
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