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Parameter Identification and Controller Design for a One Stage Axial Flow Compressor 
System 

Thesis abstract -- Idaho State University (2018) 

 

 

The research presented in this thesis details identification of the parameters of an axial flow 

compressor’s characteristic. The parameters are dependent on the compressor’s geometry and 

are important factors for designing a controller of such a system. In order to identify compressor 

specific parameters, a genetic algorithm is used for solving the optimization problem. The 

optimized parameters are used to design a controller for keeping the operating point of the 

compressor away from stall inception. A fuzzy logic controller is designed and the mass flow 

rate is controlled in order to operate the compressor at the desired point.  

 

Keyword: Axial flow compressor, Stall, Genetic Algorithm, Optimization, Control, Fuzzy 

logic, Compressor parameters.  
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Chapter 1 

Introduction 

 

1.1 Background: 

The thesis represents an approach to mitigate a long standing instability problem in axial flow 

compressors. The instabilities known as stall and surge limits the operating range of axial flow 

compressors. A controller is designed to keep the operating point away from stall. Also 

parameters of the compressor characteristics are extracted to design an efficient controller.   

Compressors are used in various applications. Some major applications are pressurization of 

gas and fluid for process industry, fluid transportation in pipelines, turbo jet engines, gas 

turbines for power generation, etc. Mainly four types of compressors are used. They are axial, 

reciprocating, rotary, and centrifugal. In this work, the axial flow compressor is studied. 

In axial compressors, fluid flows in parallel to the axis of rotation. The working principle of 

axial compressors is that it accelerates the fluid flow and then converts the kinetic energy into 

potential energy. The fluid is accelerated by applying thrust using rotating blades and then 

decelerated by using stationary blades. Thus converting the kinetic energy into potential 

energy.   

The basic compression model used for the derivation of the model is shown in Figure 1.1. 

According to the figure, air is fed to the compressor through the inlet and inlet guide vanes 

(IGV’s). The air is then compressed in the compressor as it passes through the rotor and stator. 

The compressor is operated in a duct and the compressed air is discharged into the plenum. 

The plenum has a larger volume than that of the compressor and duct. The flow in a compressor 

is assumed as incompressible but the gas in the plenum is considered compressible. A throttle 

is used to control the flow through the system. The throttle is located at the exit of the plenum. 
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Figure 1.1: Basic Compression System 

The performance of a compressor during steady and axisymmetric flow is represented by a 

cubic curve based on the Moore-Greitzer model, [1]. This cubic curve is known as 

characteristic curve. The throttle characteristic is represented by a quadratic curve. Figure 1.2 

shows the typical characteristic curve and throttle curve. The horizontal axis represents mass 

flow rate and the vertical axis represents pressure rise. The intersection of both curves 

represents the operating point on steady flow condition.  

This operating point indicates that the flow through the compressor and the throttle are the 

same and the pressure in the compressor is the same as the pressure drop through the system.  
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Figure 1.2: Compressor Characteristic and Throttle Characteristic 

 

The operating point can be manipulated by controlling the mass flow rate by using the throttle. 

If the operating point is moved from the designed operating point to the unstable region, then 

two types of instability occur in the compression system. These two types of instability are 

known as Rotating Stall and Surge.  

Rotating stall is the disruption of flow through the compressor. It happens due to one or more 

stall cell. The stall cell means an area of slow flow which rotates around the annulus of the 

compressor. The mechanism of rotating stall inception is shown in Figure 1.3. 
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Figure 1.3: Rotating Stall inception Mechanism by Emmon [2] 

The mechanism of rotating stall was described by Emmon [2]. A row of rotating blade is 

considered for describing the inception of rotating stall. Suppose when the fluid flow is 

nonuniform, a high angle of attack is produced at blade B. A blockage of flow is developed due 

to this high angle of attack between B and C which diverge the fluid to blade A and C. Hence 

a high angle of attack is produced on blade A. Thus blade A becomes stall after blade B and 

propagates along the direction on the blade row.   

It became evident that the stall propagation and surge reduces the operating range and 

efficiency of an axial compressor. Since 1950, extensive research have been conducted on the 

flow dynamics and stall inceptions of compressors. Primarily the research was based on 

collecting experimental data and connecting them to the operating condition of compressors, 

[3] [4]. In this way, researchers were able to build a better understanding of the mechanism and 

inception of rotating stall.  

The understanding encouraged and lead the researcher to build a mathematical model for 

understanding the flow mechanism and inception of stall and surge in axial compressors. In the 
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continuation of this effort, a theoretical model was developed by E. M. Greitzer at 

Massachusetts Institute of Technology in the mid-1970s. He also validated the model by 

collecting experimental data and comparing it with the mathematical model. The theoretical 

model for compression system was published in 1976 and known as the Greitzer model, [5] 

[6]. 

While Greitzer was developing the theoretical model at Massachusetts Institute of Technology, 

F. K. Moore was also conducting extensive research on rotating stall theory. Moore published 

his work in 1984 in the Journal of Engineering for Gas Turbines and Power [7]. 

In the summer of 1983, an arrangement was made to combine the work of Moore and Greitzer. 

A three weeks residence was arranged at NASA-Lewis Research Center. Their combined effort 

developed a set of coupled ordinary differential equation capable of describing the flow 

mechanism of rotating stall and surge. A report was submitted to NASA in March of 1985 

detailing the development of the model. Their collaborative work is known as Moore-Greitzer 

Model and was published in 1986 [1]. Their model has paved the way for development of 

controller for mitigating the stall and surge in axial compressor. 

The Moore-Greitzer model was widely accepted as a good characterization of the flow 

dynamics of compression system. During the 1990’s, extensive research was conducted for 

modification and improvement of the Moore-Greitzer model. J. M. Haynes, G.J.Hendricks and 

A. H. Epstein modified Moor-Greitzer model by including the effect of blade row time gap, 

[8]. The modified model was then used to stabilize a three stage low speed axial compressor 

by damping circumferentially travelling low amplitude waves. The prediction of open and 

closed loop dynamic response using this model matched with experimental result. Paduano 

developed an analytical model which describes rotating stall as a traveling wave packet, [9]. 

Paduano validated this model by conducting an experiment where he was able to reduce the 
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stalling mass flow by 18%. Hendricks et al. also developed a nonlinear model by representing 

the flow dynamics by the unsteady Euler’s equation, [10]. 

Based on the Hendricks model, several control strategies are developed to suppress stall and 

surge. H. J. Weigh and others [11] stabilized the rotating stall and surge by using feedback 

control on a single-stage axial compressor. They use an array of twelve air injector to stabilize 

the system. The control system used to measure the static pressure pattern on upstream wall 

and feedback the data to air injectors.  D’Andrea et al. [12] also used pulsed air injector to 

control the onset of rotating stall. They were able to extend the stall point and thus eliminated 

the hysteresis loop of rotating stall.  

Gravdhal and Egeland [13] developed a model based on the MG model where they have 

included Greitzer B parameter as another state. Thus using this new model, it became possible 

to design controllers for variable speed compressors. Shu Lin, Chunjie Yang, Ping Wu and 

Zhihuan Song [14] designed a controller to control speed and surge in variable speed axial 

compressor using the model developed by Gravdah and Egeland. Shu Lin and his group 

designed a proportional controller to control speed and a fuzzy logic controller to control surge 

based on their model. Gravdahl et al. [15] also proposed a closed couple valve controller for 

controlling surge. 
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1.2 Problem Statement: 

Controlling the fluid flow in axial compressors efficiently has been a major problem for many 

years. Researchers and Scientists have been working to find the complicated fluid dynamics of 

the compression system. Various models were developed to explain the dynamics of the fluid 

and the onset of stall and surge. Previously, linear models were developed to explain this 

phenomenon, [16] but this was not successful to completely explain the behavior of the system. 

To overcome this limitation of linear models, Moore and Greitzer combined their work to 

develop the Moore-Greitzer Model. This MG model is built on the assumption of a compressor 

characteristic but the parameters of the characteristic are dependent on the compressor 

geometry and other factors. As each compressor exhibits different characteristics, the 

parameters of the characteristic equation are not the same. Thus the MG model is not able to 

provide a compressor specific dynamics model rather it describes the general fluid dynamics 

of a compression system. Customizing a controller for specific compressors was not possible 

using the general nonlinear fluid dynamics model. In order to solve this problem, an approach 

is proposed in this work to extract a compressor specific compressor characteristic.   

The extracted parameters are then used to design a controller for a one stage axial compressor. 

A fuzzy logic controller is designed to control the mass flow rate by varying the throttle of the 

compressor. The input into the controller is the error between the desired operating point and 

actual operating point. The output is the throttle coefficient. The controller is designed in a way 

that it adjust the throttle coefficient according to the mass flow rate of the compressor. 

Normally when the mass flow rate increases, the controller decreases the throttle coefficient 

and vice versa.  
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1.3 Objective of Thesis: 

The following is a list of objectives postulated for this thesis: 

 To optimize the parameters of compressor characteristic for a particular compression 

system. Thus developing a technique to extract the parameters for each particular 

compressor in order to overcome the shortcomings of Moore-Greitzer Model which is 

not able to provide compressor specific characteristic. Thus making it impossible to 

design a controller on the basis of each compressor’s characteristic.  

 To utilize the optimized coefficients to design a controller for a single stage compressor 

model.  

 To design a controller for the single stage axial compressor to keep the operating point 

away from the peak of the characteristic curve. Thus allowing the compressor to operate 

in safe region by accommodating the flow disturbance.  
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1.4 Thesis Outline: 

As the purpose of this thesis is to optimize the parameters of the characteristic of compressor 

of Moore-Greitzer model, at first the Moore-Greitzer model is derived and reformulated as an 

optimization problem. The derivation of the Moore-Greitzer model and reformulation is 

described in Chapter 2: Moore-Greitzer Model.  

According to the reformulated MG model, the three states and compressor characteristic are 

simulated in discrete time using MATLAB®. The simulated data are then used as the desired 

output from the system. The optimization problem requires to build a cost function and initial 

population of chromosome for a genetic algorithm. The initial population of chromosomes is 

created such that each chromosome consists of four genes. These four genes are the four 

coefficients of the third order polynomial equation representing the compressor characteristics. 

After creating the initial population, a cost function is developed to find the fittest 

chromosomes from the population. The cost function is the error between the simulated output 

via genetic algorithm and the desired output. The description for optimizing the parameters 

using the genetic algorithm is given in Chapter 3.  

The optimized parameters from the genetic algorithm is then used to design a fuzzy logic 

controller. The Mamdani Fuzzy Model is used in this thesis. The fuzzy input variable is the 

error from the designated operating point. The output variable is the throttle coefficient. The 

fuzzy rules are assigned such that it adjusts the throttle coefficient to keep the mass flow rate 

constant. Thus keeping the operating point at the designated operating point. The above fuzzy 

logic controller design is illustrated in Chapter 4. 

The simulation of the MG model in discrete time is given in Chapter 5. Also the optimization 

results from the genetic algorithm and the simulation from the fuzzy logic controller are given 

in Chapter 5. A discussion on the results and simulation is provided.  
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The conclusion on the basis of the work is given is Chapter 6 along with the scope of the future 

work. 
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Chapter 2 

Moore-Greitzer Model 

 

2.1 Development of model: 

F. K. Moore and E. M. Greitzer developed a model [1] to describe the flow dynamics of axial 

flow compressor. The basic compression model used for the derivation of the model is shown 

in Figure 2.1. According to the figure, the compressor is operated in duct and the compressed 

air is discharged to the plenum. The plenum has a larger volume than that of the compressor 

and duct. The flow in compressor is assumed as incompressible but the gas in the plenum is 

considered compressible. A throttle is used to control the flow through the system. The throttle 

is located at the exit of plenum. 

 

 

Figure 2.1: Basic Compression System (MG model) 
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The total pressure rise from inlet to plenum is expressed as, 

4
2

ˆ Ta

w

P P
P

U


  , 

where, 

4P   Pressure at plenum, 

TaP   Pressure at inlet, 

   Density of the fluid, 

wU   Wheel speed at mean radius. 

The total pressure rise is the accumulation of pressure rise in each control volume. 

So the above equation can be expressed as, 

4 3 3 2 2 1 12

1ˆ [( ) ( ) ( ) ( )]T T T T Ta
w

P P P P P P P P P
U

            (2.1) 

where, 4 3( )P P is the pressure rise in exit duct. 

3 2( )TP P is the pressure rise in compressor. 

2 1( )T TP P is the pressure rise in inlet guide vanes (IGV’s) 

1( )T TaP P is the pressure rise at inlet. 

Each part of the model is developed separately and added together. 
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2.2 Compressor Dynamics: 

The pressure on each blade is derived from the acceleration of the fluid flow in the blade. 

Thus, 

dC
P b

dt
      

where,  b is the chord length of the blade 

C is the velocity of the flow in compressor passage 

  is the density of the fluid 

 𝑡̃  is the dimensional time which can be expressed as, 

 𝑡̃ = 𝑡(
ோ

௎ೢ
) , 

where,   t is the non-dimensional time, 

R is the mean compressor radius 

and wU  is the wheel speed at mean radius. 

All of these quantities are described in Figure 2.2 
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Figure 2.2: Compressor blade, [17] 

 

If the time derivative is written in relative form then, 

stator

dC C

dt t



   , 

w

rotor

UdC C C

dt t R 
 

 
    , 

The pressure rise can be calculated for a single blade row as follows, 

2

ˆ ˆ ˆ
ˆ( ) ( )w

i ri si
w

UP U U U
F U

U t R t
 

 
   

   
     , 

where, ˆ( )iF U  is a function of non-dimensional flow coefficient,Û .  

cosˆ
w

C
U

U


  , 

cosr s
w

b

U
 


   , 
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Time, t  is recalled as 
( / )w

t
t

R U



 . Thus the above equation becomes  

23

2

ˆ ˆ
ˆ( )T

c r
w

P P U U
F U

U t 
  

  
 

 ,      (2.2) 

Here, 

ˆ ˆ( ) ( )c i
i

F U F U is pressure rise across the compressor under clean flow condition. 

( )w
ri si

i

U

R
     , 

w
r ri

i

U

R
   , 

  

2.3 The IGV and the Inlet: 

The inlet flow is assumed to be irrotational and incompressible. So Bernoulli’s equation is 

applied to obtain the pressure difference across the inlet. Thus the pressure rise across the 

inlet is expressed in terms of the unsteady velocity potential. 

1

2
0

a

I

T T

x l xw

P P

U t t

 
  

  
 
 

  , 

Where, ( , , )x t   is the potential velocity of flow at inlet ( Il ). Il  is expressed as I
I

L
l

R
  

where R is the mean compressor radius and IL  is the length of inlet duct. 

The velocity potential can be obtained by solving the following Laplace equation: 

2 2

2 2 2

1
( ) 0

x R

 


 
 

 
 , 
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The boundary condition at inlet exit ( 0)x   is
0

ˆ
x

U
x









 and at inlet entrance 

 ( Ix l  ) is 0
ˆ

Ix l

U
x









, 

Where axial velocity at inlet entrance, 0Û  is the average annular flow of the axial velocity at 

inlet exit, Û . The velocity potential after solving the equation is  

( ) ( )

0
1

[ ]ˆ( , , ) ( ) ( )
I I

I I

n x l n x lN
in

n X nl nl
n

e e
x t U t x A t e

ne ne
 

  





 

 + complex conjugate, (2.3) 

Therefore, 

10

( ) . .
N

in
n n

nx

K A t e c c
t




  
   ,       (2.4) 

0
1

ˆ ( ) ( ) . .
I

N
in

I n n
nx l

l U t K A t e c c
t




     
   ,     (2.5) 

Where, 

I I

I I

nl nl

n nl nl

e e
K

ne ne









 and

2
I In nl nl

K
ne ne


 . 

It is assumed that no pressure loss occurs across the inlet guide vanes (IGV), therefore  

2 1T TP P    
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2.4 The Exit Duct: 

The pressure rise across the exit duct is expressed as, 

4 3
2

ˆ
E

w

P P U
l

U t
 

 


 , 

where, E
E

L
l

R
  ; EL  is the length of exit duct. 

Now putting the pressure rise on each segment together on Equation 2.1, the following 

expression for total pressure rise is obtained, 

0

ˆ ˆ
ˆ ˆ( ) ( )

I

c r E
x l x

U U
P F U l

t t t

 
  

   
      

   
,    (2.6) 

2.5 Plenum Dynamics: 

The dynamics of the fluid flow from plenum to throttle is derived in this section. It is assumed 

that the fluid flow is a free jet to the plenum. The accumulation of mass flow in the plenum is 

calculated as the difference between the mass flow rate at the entry and exit point of the plenum. 

Thus, 

( )p c T

d
m m m

dt
           (2.7) 

where,  

4c c cm U A  is the mass flow entering the plenum.  

T T T cm U A   is the mass flow at throttle or exiting the plenum.   

p p plm V   

Assuming that the fluid is incompressible inside the plenum, 
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c T     , 

Thus Equation 2.7 becomes, 

4( )p
pl T c

d
V U U A

dx


 

    ,       (2.8) 

If the process is isentropic inside the plenum, then 

2

1pd dP

dt a dt







  ,        (2.9) 

Where, a  is the speed of sound. 

So from Equation 2.8 and 2.9,  

42
( )pl

T c

V dP
U U A

a dt
 

   


 ,       (2.10) 

Now Greitzer’s B parameter is introduced into the above equation. This equation is also 

nondimensionalized by length scale R , velocity scale wU  and time scale
w

R

U
. 

The Greitzer’s parameter, 
2

w

c

U
B

wL
  , 

where,  

c

pl c

A
w a

V L
   , 

So, after introducing the Greitzer parameter, Equation 2.10 becomes, 

2
4

ˆ
ˆ ˆ4 c T

dP
l B U U

dt
  ,         (2.11)  
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In the above equation, 4Û  is same as the 0Û . ˆ
TU  is modeled as a function of the throttle 

coefficient and pressure drop.  

ˆ ˆ
TU P ,  

Where γ is the throttle coefficient. 

2.6 The Compressor Characteristic ˆ( )cF U : 

The compressor characteristic given by Moore and Greitzer in 1986 [1] is, 

33 1ˆ ˆ( ) [ [1 ( 1) ( 1) ]
2 2c coF U P H U U      ,     (2.12) 

The coefficient of the above polynomial equation varies for different compression system. The 

above equation is assumed for a particular compression system. 

2.7 Moore-Greitzer Model: 

Equation (2.6) is integrated from 0 to 2  over  . Then Equation (2.4) and (2.5) are applied to 

express the equation in terms of mean flow 0Û . 

2
0

0 20

ˆ 1ˆ ˆ ˆ( ) ( )
2E I c

U
P l l F U u d

t







     
  ,    (2.13) 

where, 2 0
1

ˆ ˆˆ ( ) . .
N

in
n

n

u U U A t e c c



     is the nonaxisymmetric disturbance of axial velocity. 

Subtracting Equation (2.13) from Equation (2.6) we have, 

2
2 2

0 2 0 2
1 0

ˆ ˆ 1ˆ ˆˆ ˆ( ) ( ) ( ) . . ( ) ( )
2

N
in

n n n r E c c
n

K K A t e l c c F U u F U u d
t


   

 

           
    

         (2.14) 
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After rescaling the above equation with W for velocity and H for pressure rise, the Moore-

Greitzer Model is obtained. 2W is the mass flow coefficient corresponding to the maximum 

pressure rise coefficient and 2H is the maximum pressure rise coefficient according compressor 

characteristic curve. Thus the final form of equation after rescaling are: 

02

1
( ) [ ( )]

4 T
c

P t U U P
B Sl

           (2.15) 

2

0 0 2

0

1
( ) [ ( ) ( ) ]

2 c
c

S
U t P t P U u d

l






           (2.16) 

2 2

1

2

0 2 0 2

0

( ) ( ) ( ) . .

( ) ( )
2

N
in

n n n r E
n

c c

u u
K K A t e l c c

t

S
SP U u P U u d












       
 

   







    (2.17) 

where, 

0 2
0 2

ˆ ˆ
; ; ;

U uP H
P U u S

H W W W
   


. 

 

The above Moore-Greitzer Model is derived using the following equation: 

ˆ( ) ( )c cF U HP U   

33 1
( ) [ 1 ( 1) ( 1) ]

2 2c coP U P U U        

where ĉo
co

P
P

H
  ; For MG Model, 1.5coP   

 

 



21 
 

2.8 One-mode Truncated Models: 

The first Fourier mode of the stall disturbance 2 ( , )u t  is represented as, 

2 1( , ) ( ) cos( )u t R t      

After replacing the stall disturbance by this expression, the Equation 2.15, 2.16 and 2.17 of 

MG model is simplified as, 

02

1
[ ( ) ( )]

4 T
c

dP
U t U P

dt B Sl
   

20
0 0 1

3
[ ( ) ( 1) ( 1) ]

4c
c

dU S
P t P U U R

dt l
       

2 2 2
2 21 1 1

0
1 1

4 3 3
{ [1 ( 1) ]( ) ( ) }

2 2 4 2E

dR R RS
U

dt l K K
   
       

eU  and eP  are equilibrium mean flow velocity and pressure rise respectively at equilibrium 

point and when 1 0R  . 

( )e T eU U P   

( 1)e c eP P U    

Also the states of the MG model can be expressed as, 

1 0( ) ( ) ex t U t U    

2 ( ) ( ) ex t P t P    

2
3 1( )x t R   

Using the above equations, the one mode truncated model is expressed as, 
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1
2 1 1 3

3
[ ( ) ( 1) ( 1) ]

4e c e e
c

dx S
x P P x U x U x

dt l
            (2.18) 

2
1 22

1
[( ) ( )]

4 e T e
c

dx
x U U x P

dt B Sl
         (2.19) 

2 23 3 3
1

1 1

4 3 3
{ [1 ( 1) ]( ) ( ) }

2 2 4 2E
E

dx x xS
x U

dt l K K
    
        (2.20) 

The above model can be further simplified by rescaling time t  with ( )
c

S
t

l
  , 

1
2 1 1 3

3
( ) ( 1) ( 1)

4e c e e

dx
x P P x U x U x

d
         ,    (2.21) 

2
1 22

1
[( ) ( )]e T e

dx
x U U x P

d 
    ,      (2.22) 

2 23
1 3 3[4(1 ( 1) ) ]c E

dx
Kl x U x x

d
     ,     (2.23) 

Where,  

1 1

3

4( )E

K
l K K


      . 
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2.9 Optimization Problem: 

The above Moore-Greitzer model is reformulated as an optimization problem to identify the 

parameter of the cubic characteristic curve. The reformulation is done by assuming that 

𝑈௘and 𝑃௘ satisfies the following equation: 

𝑃௘ = 𝑃௖(𝑈௘)         (2.24) 

𝑈௘ = 𝑈்(𝑃௘)         (2.25)  

It is assumed that 𝑃௖(𝑈௘) is a 3rd order polynomial.  

𝑃௖(𝑈௘) =  𝑎଴ + 𝑎ଵ𝑈௘ + 𝑎ଶ𝑈௘
ଶ + 𝑎ଷ𝑈௘

ଷ     (2.26)  

The coefficients of the polynomial equation are identified for a given value of ep  and eU .

   

Applying 𝑃௖(𝑈௘) to 𝑃௖(𝑥ଵ + 𝑈௘ − 1) results in: 

𝑃௖(𝑥ଵ + 𝑈௘ − 1)  

= 𝑎଴ + 𝑎ଵ(𝑥ଵ + 𝑈௘ − 1) + 𝑎ଶ(𝑥ଵ + 𝑈௘ − 1)ଶ + 𝑎ଷ(𝑥ଵ + 𝑈௘ − 1)ଷ  (2.27) 

The throttle characteristics: 

𝑈்(𝑃௘) = ඥ𝛾𝑃௘        (2.28) 

Then,  𝑈்(𝑥ଶ + 𝑃௘) = ඥ𝛾(𝑥ଶ + 𝑃௘)      (2.29) 
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Substituting Equation 2.26-2.29 into Equation 2.21-2.25: 

𝑥ଵ̇ = (−𝑥ଶ + 𝑃௘) + [𝑎଴ + 𝑎ଵ(𝑥ଵ + 𝑈௘ − 1) + 𝑎ଶ(𝑥ଵ + 𝑈௘ − 1)ଶ + 𝑎ଷ(𝑥ଵ + 𝑈௘ − 1)ଷ 

−
ଷ

ସ
(𝑥ଵ + 𝑈௘ − 1)𝑥ଷ ,        (2.30)  

𝑥ଶ̇ = 
ଵ

ఉమ
[(𝑥ଵ + 𝑈௘) − ඥ𝛾(𝑥ଶ + 𝑃௘)] ,      (2.31)  

𝑥ଷ̇ =  𝐾{4[1 − (𝑥ଵ + 𝑈௘ − 1)ଶ]𝑥ଶ − 𝑥ଷ
ଶ},     (2.32)  

𝑃௖(𝑈௘) =  𝑎଴ + 𝑎ଵ𝑈௘ + 𝑎ଶ𝑈௘
ଶ + 𝑎ଷ𝑈௘

ଷ,     (2.33)  

𝑈௘ = ඥ𝛾𝑃௘,         (2.34) 
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2.10 Potential of MG Model: 

The Moore-Greitzer Model explains the flow dynamics within an axial flow compressor. 

Understanding the flow dynamics of the compressor is very important when designing a 

controller for the system. The provision of a sufficient stall margin is considered while 

designing a compression system and also a controller. The post stall behavior plays another 

important role here. The instability of the system after the inception of stall is a great concern 

while running the aircraft engine. Generally the stall is nonrecoverable i.e. the only remedy 

when the engine enters the post stall instability condition is to shut down the engine and restart 

it. The Moore-Greitzer Model relates the onset of stall with the mass flow rate and pressure 

rise of the system. So it is possible to predict the formation of stall by analyzing the flow rate 

and pressure rise. Also it is possible to prevent the inception of stall by controlling the flow 

rate and pressure rise. Using this potential of Moore-Gretzer Model, Tommy Gravdahl and 

Olav Egeland, [15] have developed surge controller by backstepping and closed couple valve. 

Shu Lin, Chunjie Yang, Ping Wu and Zhihuan Song [14] designed a controller to control speed 

and surge in variable speed axial compressor. Shu Lin and his group have designed a 

proportional controller to control speed and a fuzzy logic controller to control surge based on 

this MG Model.  

The MG model has opened doors for further development of the compressor dynamics. As an 

example, Gravdhal and Egeland [13] have developed a model based on MG model where they 

have included Greitzer B parameter as another state. Thus using this new model, it became 

possible to design controller for variable speed compressor.  
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2.11 Shortcoming of MG Model: 

One of the shortcomings of the MG model is that it assumes the compressor speed as a constant. 

However, that shortcoming was overcome by Gravdhal and Egeland. In present work, the speed 

of the compressor is assumed as a constant as well i.e. the Greitzer B parameter is assumed as 

constant.   

Moore and Greitzer [1] developed a set of nonlinear differential equations which describes 

three time dependent states of a compression system. The characteristic of the compression 

system is assumed and is represented by a third order polynomial curve. The parameters of this 

third order polynomial equation was also assumed by Moore and Greitzer for a particular 

compressor. Each compressor has a unique characteristic and a different cubic equation. Thus 

a shortcoming of MG model is that it can only be used to design a controller for the general 

dynamics of a compressor as this characteristic curve is unknown. The controller has to be 

customized according to each compression system and that’s why the extraction of the 

parameter of the polynomial equation is important.  
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Chapter 3 

Discrete time MG model and Genetic Algorithm 

3.1 Background: 

The compressor characteristics curve represents the behavior of the compressor. Each 

compressor shows different behavior and has different characteristic curves. From the previous 

chapter on the Moore-Greitzer model, the compressor characteristics and throttle 

characteristics are expressed by Equation 2.33 and 2.34. Both equations are represented here 

again. 

𝑃௖(𝑈௘) =  𝑎଴ + 𝑎ଵ𝑈௘ + 𝑎ଶ𝑈௘
ଶ + 𝑎ଷ𝑈௘

ଷ,     (2.33) 

𝑈௘ = ඥ𝛾𝑃௘         (2.34) 

Equation 2.33 represents a third order polynomial curve and Equation 2.34 represents a 

quadratic curve. The intersecting point of these two curves represent the operating point (Ue, 

Pe) of the compressor at a specific throttle point. As Equation 2.34 is a function of throttle 

coefficient (𝛾), it is possible to move the throttle characteristics along the compressor curve by 

varying the value of throttle coefficient. Thus for a different value of throttle coefficient, there 

is a different operating point of each compressor system. 

By solving Equations 2.33 and 2.34, an operating point is obtained. As an example, for throttle 

coefficient of 0.5, the operating point is calculated as (0.4684, 0.4387). That means for 𝛾 =

0.5, the mass flow rate coefficient and pressure rise coefficient are 0.4684 and 0.4387, 

respectively.  

The MG model is represented on the basis of the characteristics curve as the following set of 

equations. 
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𝑥ଵ̇ = (−𝑥ଶ + 𝑃௘) + 𝑃௖(𝑥ଵ + 𝑈௘ − 1) −
ଷ

ସ
(𝑥ଵ + 𝑈௘ − 1)𝑥ଷ ,   (2.21) 

𝑥ଶ̇ = 
ଵ

ఉమ
[(𝑥ଵ + 𝑈௘) − 𝑈்(𝑥ଶ + 𝑃௘)] ,      (2.22)  

𝑥ଷ̇ =  𝐾{4[1 − (𝑥ଵ + 𝑈௘ − 1)ଶ]𝑥ଶ − 𝑥ଷ
ଶ}     (2.23)  

    

The above MG Model consists of three states 𝑥ଵ, 𝑥ଶ and 𝑥ଷ. Here  

𝑥ଵ is the mean velocity disturbance expressed as 𝑥ଵ ≜ 𝑈(𝑡) − 𝑈௘ , 

𝑥ଶis the pressure rise disturbance expressed as 𝑥ଶ ≜ 𝑃 − 𝑃௘ , 

𝑥ଷ is the amplitude of the non-axisymmetric disturbance 𝑥ଷ ≜  𝐴ଵ
ଶ. 

These states of the MG Model at operating point (0.4684, 0.4387) and throttle coefficient 0.5 

are approximated in discrete time using Runge-Kutta 4th order method. 
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3.2 Discretization of MG Model: 

Runge-Kutta fourth order (RK4) method is selected to solve MG Model in discrete time. 

Runge-Kutta 4th order method is a numerical method to solve a system of coupled ordinary 

differential equations. This method is equivalent to Euler’s method, except whereas Euler’s 

method considers only one point on each step, the RK4 method evaluates at four points on the 

step size for each iteration. Out of the four points, two points are the end points and the other 

two points are located on the middle of each iteration.  

The four points where the derivative is evaluated at is depicted in Figure 3.1 

 

Figure 3.1: The four points where the derivative is evaluated for Runge-Kutta 4th order method. 

The derivative at point 1, 2, 3 and 4 are expressed as 1 2 3, ,k k k  and 4k , respectively. The equation 

used to find the derivative at these points are: 

1 ( , )n nk f x t         (3.1) 

1
2 ( , )

2 2n n

k h
k f x h t         (3.2) 

2
3 ( , )

2 2n n

k h
k f x h t         (3.3) 

4 3( , )n nk f x hk t h         (3.4) 
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The Moore-Greitzer (MG) Model can be expressed in the form,    

𝑥̇ = 𝑓(𝑥, 𝑡)         (3.5)  

Here x  is to be approximated from the initial value 0x  at initial time 0t . The standard Runge-

Kutta 4th order method takes the following form: 

1 1 2 3 4( 2 2 )
6n n

h
x x k k k k            (3.6) 

1n nt t h            (3.7) 

1nx   is derived from present value nx  , step size, h and four derivative 𝑘ଵ, 𝑘ଶ, 𝑘ଷ, 𝑘ସ. 

The above method is applied to the MG model for approximating the states 𝑥ଵ, 𝑥ଶ and 𝑥ଷ at an 

operating point (0.4684, 0.4387). The initial value of  𝑥ଵ, 𝑥ଶ and 𝑥ଷ are assumed as 0.5, 0.5 and 

2 respectively. The step size is taken as 0.0010.    
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3.3 Proof of Concept: 

The concept of Runge-Kutta Method is validated by using it on a system of non-linear 

differential equations. The approach is to simulate the known system using Range-Kuttha 4th 

order method and compare it with existing result. A system of three non-linear differential 

equations is selected which shows the chaotic behavior of an atmospheric system. An American 

mathematician/meteorologist Edward Norton Lorenz invented the system while investigating 

the possibility of predicting weather accurately on long term basis. According to his research, 

there are many factors that affect long term weather prediction. A small change in any part of 

a system, can change the other parts of the system as well. So there are some unknown factors 

in the system which makes the system chaotic or unpredictable. Also this chaotic behavior of 

the system makes the forecasting of long term weather very difficult. 

Edward Norton Lorenz built a mathematical model that depicts the way air flow in the 

atmosphere. The mathematical model is as follows: 

( )

( )

dx
y x

dt
dy

x z y
dt
dz

xy z
dt







 

  

 

  

The model indicates rate of change of ,x y  and z . x  is proportional to the change of convection 

rate, y  is proportional to the temperature variation in horizontal direction and z  is proportional 

to the temperature variation in the vertical direction. The parameters of the model are σ, β and 

ρ. 

 

The parameters of the system not only have a numerical value but also indicate physical 

characteristics of the system. σ is known as the Prandtl number and demonstrates the viscosity 
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and thermal conductivity of the system. Another constant, β represents the dimensions of the 

box where the Lorenz attractor is located. Parameter, ρ indicates a control parameter which is 

generally difference between highest and lowest driving forces of the system. As an example, 

if the model is used to represent the convection flow in a fluid filled reservoir, then the 

difference between the temperature of the top and bottom layer is indicated by ρ.    

The solution of the Lorenz’s mathematical model is known Lorenz attractor. Different value of 

the parameter gives different behavior of the system. The value taken for the parameters of the 

system are: 

σ = 10; 

β = 8/3 

ρ = 28 

The Lorenz model is simulated in continuous time and discrete time. ODE45 is used to solve 

it on continuous time and Range- Kutta 4th order method is used to solve it on discrete time. 

Both simulation results are compared and it is found that they fit one another. The simulation 

of the states x, y and z using ode45 and the Runge-Kutta method is shown in Figure 3.2 and 

3.3. 
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Figure 3.2: Simulation of Lorenz model using ode45. 

 

Figure 3.3: Simulation of Lorenz model using Runge-Kutta method 
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The error between the above two simulation of Lorenz model is shown in Figure 3.4: 

 

Figure 3.4: Mean square error  
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3.4 Genetic Algorithm:  

Genetic Algorithm is a method to optimize constrained or unconstrained problem based on the 

theory of evolution of biological system. Mr. Holland and his students developed this method 

for doing adaptive search between 1960s and 1970s. This method is developed on the basis of 

the evolutionary process. In a biological system, only the fittest species survives and the 

children inherits the characteristics of their parents. So only the best parents can produce 

offspring.  

As the genetic algorithm follows the evolution in a biological process, the terminology of the 

algorithm closely follows some terminology of biology. Some basic steps that genetic 

algorithm follows are: 

 Creation of a fitness function. 

 Creation of a population of chromosome. 

 Evaluating the best chromosome based on the fitness function. 

 Selecting best chromosome for mating or reproduce. 

 Generating the next generation from the best chromosomes.  

 Mutation among chromosomes of the new generation. 

 The steps are repeated until the test converges to the requirement. 

3.4.1 Creation of Initial population: 

A chromosome is an array of parameters. The purpose of genetic algorithm is to solve the 

problem and find the optimum value of the parameters. If the problem consists of parN  

parameters, then each chromosomes is represented by parN  parameters array. 

1 2[ , ,........, ]Nparchromosome P P P ,   
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For the Moore-Greitzer model, the genetic algorithm is deployed for optimizing the coefficients 

of the characteristic curve. As the polynomial equations consists of four coefficients (

0 1 2 3, , ,a a a a ), the chromosome is an array of four elements and each element has a floating 

point number. Thus the chromosome of a MG model is an array of four numerical values. 

0 1 2, 3[ , , ]chromosome a a a a , 

The initial population of the chromosomes is randomly generated. Each chromosome in the 

population is then evaluated based on the fitness function. The equation used for generating 

the initial population is  

0 0( ) { }pop i ipop parI h l random N N l    ,  

where,  

{ }ipop parrandom N N  is a function that generates a matrix of size ipop parN N  of uniform random 

number valuing between 0 and 1. 

parN = The total number of parameters. 

ipopN = The initial population size of each parameter. 

ih  = Highest value in the range of parameter 

0l  = Lowest value in the range of parameter 

For the current optimization problem of the characteristic curve of the Moore-Greitzer model, 

the total number of parameters is 4parN  ,  

the initial population size of each parameter, popI  = 48, (The algorithm is programmed in a way 

that the user will be able to input the population size. For illustration, this is assumed as 48) 
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So, the matrix size of initial population of chromosome becomes 48 4 .  

Each parameter has different range of values. The population of each parameter is generated 

separately. Then the population of each parameter is added together to form the total population 

matrix of the chromosome.  

For parameter 0a ,  the highest number, ih   = 0.35 

the lowest number, 0l   = 0.25 

For parameter 1a , the highest number, ih  = 0.95 

the lowest number, 0l   = 0.85 

For parameter 2a , the highest number, ih  = 0.40 

the lowest number, 0l   = 0.30 

For parameter 3a , the highest number, ih  = -3.40 

the lowest number, 0l   = -3.60 
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3.4.2 Creation of a cost function and evaluation of each chromosome: 

The term “fitness” comes from the theory of evolution. It measures how fit the chromosomes 

are to optimize the fitness function. The fitness function is referred as cost function in this 

optimization algorithm. Equation 2.30-2.34 is constructed to use this optimization problem.  

In order to perform the optimization problem, at first the MG model consisting of Equation 

2.30 – 2.34 is simulated. This simulation provides data on characteristics curve and state 

response of the system. The proposed genetic algorithm finds the best value of the parameters 

from the initial population of chromosomes such that it fits the simulated data of characteristic 

curve and state response.  

After the generation of the initial population of chromosomes, the fitness of each parameter of 

the chromosomes is evaluated and a fitness score is assigned. The fitness is evaluated on the 

basis of the cost function. So, in order to get the best result from the genetic algorithm, the 

formation of an effective cost function is crucial.  

The state response and the characteristic curve is generated for each chromosome of population 

using the MG model. The newly generated MG model is then compared with the previously 

simulated true MG model. For each chromosome, the error between the two models is 

computed for each point. The error for each point is then summed and mean square error (MSE) 

is evaluated. In this way, for each chromosome, four MSE are recorded. One for the 

characteristic curve error and the other three for the three state response errors. Weights are 

assigned for each MSE and then the weighted MSE are added together to from the cost 

function. The cost function formed is given as Equation 3.1. 

1 2 1 2 2 3 3Cos char x x xt w mse w mse w mse w mse         (3.8) 
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3.4.3 Pairing:  

Since each chromosome is assigned a fitness value, they are sorted from lower value to higher 

value. Those chromosome who has low cost is the fittest chromosome for mating. In this work, 

top 50% of the chromosomes are kept for mating. The selection of Mom and Dad chromosome 

is accomplished by a roulette wheel method, where the fittest chromosomes have the highest 

probability to be selected as a parent. 

3.4.4 Mating: 

There are different methods for implementing the mating operation in genetic algorithm. A 

combination of cross over method and extrapolation method is implemented in this work. The 

advantage of this method is that it inherits the Binary genetic algorithm procedure where a 

cross over point is randomly selected between two new parent chromosomes. The equation 

used for selecting the cross over point is given by Equation 3.2. 

var{ }round random N   ,       (3.9) 

where varN  =4 for the MG model. 

After getting the cross over point, the parent chromosome can be written as 

1 1 ar[ ..... ..... ]m m mNvparent P P P , 

2 1 ar[ ..... ..... ]d d dNvparent P P P , 

where m  and d  stand for mom and dad respectively. The element at cross over point is 

formulated to produce a new element. This new element will appear in the new offspring. 

1 ( )new m m dP P P P     , 

2 ( )new d m dP P P P     , 
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where β is a random value between 0 and 1. With this new element the cross over method is 

carried out at the cross over point with the remaining elements. After cross over the new off 

springs are: 

1 1 2 1 ar[ ..... ..... ]m m new dNvoffspring P P P P , 

2 1 2 2 ar[ ..... ..... ]d d new mNvoffspring P P P P ,  

On the same way, for a different values of β, two more off springs can be generated from the 

same parents.  

3.4.5 Mutation: 

The cost function may have many local minimums. So there is a possibility that the genetic 

algorithm may converge quickly to a local minimum. To avoid this problem, the algorithm is 

forced to search other areas of the cost surface so that it does not end up on a local minimum 

and instead find the global minimum. In order to do that, a forced alteration on the variables of 

the chromosome is carried on which is known as mutation. The number of parameters to be 

mutated is calculated by multiplying the total number of parameter with the mutation rate. The 

parameter to be mutated is selected by randomly selecting the row and column of the parameter. 

The selected parameter is then replaced by a new random number. 
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Chapter 4 

Fuzzy Logic Controller Design 

 

4.1 Fuzzy Logic:  

Fuzzy logic (FL) is a method of reasoning that resembles the human reasoning. Fuzzy logic 

imitates the human’s decision making process which involve all intermediate possibilities 

between YES and NO.  The YES and NO are referred as 0 and 1 in Boolean logic for TRUE 

and FALSE, respectively. The conventional logic block in a computer generates precise outputs 

like TRUE and FALSE and is not capable of producing any intermediate value between 0 and 

1.  

Lotfi Zadeh, a professor at University of California at Berkley, observed that human decision 

making is unlike than that of computers. It may contain different possibilities between YES 

and NO. As an example human can make decisions such as YES, Possibly YES, NO, Possibly 

NO, Cannot Say, etc. The fuzzy logic considers all the possibilities such as the human mind to 

achieve an output from the inputs.   

Fuzzy logic can be implemented to control a system of various size and capabilities. As 

example it can be implemented from micro controller to large scale networked based controller. 

At present it is being implemented in automotive systems and electronic goods. Example of 

fuzzy logic in an automobile is the automatic gearbox, vehicle environment control and four 

wheel steering. In electronic goods, it is implemented on washing machines, microwave oven, 

vacuum cleaners, photocopiers etc.  
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The algorithm of a fuzzy logic system is given by the following steps: 

 Define linguistic variables and terms 

 Develop membership functions for variables. 

 Develop base of rules. 

 Fuzzification of the input crisp data into fuzzy data using membership function. 

 Implication or evaluation of each rule of base of rules. 

 Aggregation or combination of the output of each rule into a single fuzzy set.   

 Defuzzification or converting the fuzzy output data into nonfuzzy data.  

The algorithm can be represented by the Figure 4.1. 

 

   Figure 4.1: Fuzzy Logic Process Flow 
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4.2 Fuzzy Logic Controller for Moore-Greitzer Model: 

The above algorithm is implemented for designing a fuzzy logic controller with the objective 

to control the mass flow in an axial flow compressor. The operating point is manipulated by 

controlling the mass flow rate in the axial compressor. The mass flow is controlled by varying 

the opening of throttle. Thus, a fuzzy logic controller is designed where the input is the error 

between the desired operating point and the actual operating point. The output is the throttle 

coefficient. The schematic diagram of the controller is shown in Figure 4.2. 

 

   Figure 4.2: Diagram of Fuzzy Logic Controller  
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4.2.1 Define Fuzzy linguistic variables and terms: 

The input into the fuzzy logic controller for the Moore-Greitzer model is the error between the 

desired mass flow and the actual mass flow. So, the input variable is ‘Error’ and it consists of 

linguistic variables. The linguistic variables are terms in simple word. The linguistic set of 

input variable “Error’ is expressed as, 

Error = {Positive, Zero, Negative}, 

where Positive means actual mass flow is higher than the desired mass flow, zeros means the 

desired mass flow and the actual mass flow are the same, Negative means the actual mass flow 

is lower than the desired mass flow.  

The output of the controller is the throttle opening. So the output variable is throttle opening. 

The linguistic set of throttle opening is, 

Throttle opening = {Close, Partially Open, Open}. 

4.2.2 Development of membership function: 

A membership function is a curve that assigns a membership value to each input value. The 

degree of membership or membership value ranges from 0 to 1. This membership value 

represents how closely the input crisp value belongs to a fuzzy set. As an example, if x  is the 

element of a universe of discourse X , then the fuzzy set can be represented as, 

{ , ( ) | }AA x x x X  ,        (4.1) 

where, A is the membership function of x  in the fuzzy set A . As x  is the element of X , the 

membership function maps each element of X  in the fuzzy set.   

Equation 4.1 can be used to develop membership function of the input variable of the Moore-

Greitzer Model. The universe of discourse X  is the input Variable “ERROR’ and x  is the 
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elements of X  i.e. the linguistic set of input variable - Positive, Zero, Negative. The 

membership function A for each linguistic term is mapped from 0 to 1.  

The MATLAB® fuzzy logic toolbox has 11 types of built in membership function. These built 

in membership functions are formed from several basic function: 

 Linear piece-wise function. 

 Gaussian distribution function 

 Sigmoid curve 

 Cubic and quadratic polynomial curve 

Thus there is a wide range of membership functions to choose from. It is also possible to create 

own membership functions. It is not necessary to use a complicated membership function for 

a good fuzzy inference system. The simplest membership function such as the triangular or 

trapezoidal membership function could work very well.  

In this work, triangular membership functions are selected due to the advantage of simplicity. 

The name of the triangular membership function is ‘trimf’ and is represented by a triangle 

formed by connecting of three points. 

The membership function for the input variable ERROR is represented in Figure 4.3  

  

Figure 4.3: Membership function of input variable “Error” 
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Similarly, the membership functions for the output variable “Throttle Opening” are formed. 

The range of the output variable is selected from 0 to 2. Figure 4.4 represents the membership 

function of the output variable. 

 

  Figure 4.4: Membership function of the output variable 

4.2.3 Development of Fuzzy Rules: 

The if-then rules statement is used to construct the fuzzy rules. The form of the if-then rule is, 

If x is A then y is B, 

where A and B are fuzzy sets for input variable X and output variable Y. The first part ‘If x is 

A’ is called antecedent and the second part ‘Y is B’ is called consequent.  

In the Moore-Greizer model, the X represents the input variable “ERROR” and the Y represents 

the output variable “Throttle.” Thus the base of rules constructed for this present controller can 

be represented as: 

 If ERROR is zero then Throttle is partially open 

 If ERROR is negative then throttle is closed. 

 If ERROR is positive then throttle is open. 

In order to implement the rules, at first the input needs to be fuzzified. The flow of information 

in the fuzzy inference system can be represented by Figure 4.5. 
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  A system of one input, one output and three rules 

 

The inputs are   The rules are evaluated The results are  output is 
non-fuzzy number using fuzzy reasoning  aggregated and non-fuzzy  
within a range      defuzzified 
    

   Figure 4.5: Flow of fuzzy reasoning 

 

4.2.4 Fuzzification: 

The membership functions for each linguistic term converts the crisp input into a fuzzy input. 

This process is called fuzzification. Fuzzification assigns a value between 0 and 1 for each 

crisp value. As an example, in the present work the linguistic term “Positive’ ranges from 0 to 

0.6. Any value in this range corresponds to a number in membership function. Suppose 0.6 has 

a degree of membership 1 while 0 has degree of membership 0. Any value between 0 and 0.6 

will have a corresponding fuzzy value between 0 and 1.  

 

 

 

 

 

Input 

Error If ERROR is negative then 
throttle is closed. 

If ERROR is zero then 
Throttle is partially open 

If ERROR is positive then 
throttle is open. 

   
Output 

(Throttle
) 



48 
 

4.2.5 Implication: 

After fuzzification, the evaluation of each rule is performed. This evaluation is known as 

implication. The implication process consists of weighing each rule separately. Each rule can 

be weighted by a value between 0 and 1. One rule is given less effect over other rules by 

assigning the weight to the rules. 1 is the maximum weight so one rule can be made less 

effective by assigning a weight lower than 1 to that rule. In this work, all rules have same 

weight 1.  

 

4.2.6 Aggregation: 

Each rule is evaluated separately and the output for each rule is a fuzzy set. The aggregation 

method is to combine all the fuzzy sets into one fuzzy set. There are three built in method for 

performing the aggregation: 

 Sum 

 Max 

 Probor 

In the present work, the Max aggregation method is used. 

 

4.2.7 Defuzzification: 

The output of the result after aggregation is a range of output values. These output values are 

a fuzzy set and need to be defuzzified in order to get a single output or crisp output value. This 

process to get a single output from a fuzzy set is known as fuzzification process. There are five 

built in fuzzification method in fuzzy logic toolbox. The centroid calculation is the most 

popular fuzzification method. The other fuzzification method are smallest of maximum, largest 

of maximum, middle o maximum and bisector.  
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After following all the steps as listed above, the final throttle output for an input error -0.0622 

is found as 0.185 as shown in Figure 4.6. 

 

 

Figure 4.6: Fuzzy Inference system 

 

The controller is designed in a way that when there is no error then the throttle coefficient is 

0.21. When the error is positive, i.e. the operating mass flow is greater than the designated mass 

flow, then the throttle opening is reduced to reduce the mass flow rate and vice versa.  
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4.3 Simulation block diagram: 

The fuzzy logic controller is implemented in a Simulink® model to control the mass flow rate. 

A MATLAB® function block is used to evaluate the Moore-Greitzer compressor 

characteristics. The output of this block is the operating point. The operating point is 

represented by the mass flow rate and pressure rise coefficient. The controller is designed to 

keep the mass flow rate at 0.3270 and the pressure rise coefficient at 0.5093. The error between 

designated operating point and the actual operating point is measured. The error is then given 

as input to the controller. The controller changes the throttle coefficient correspondingly to 

reduce the error. 

 

The complete Simulink® block diagram is given is Figure 4.7 

 

 

Figure 4.7: Simulink block diagram for MG Model control 

 

As it can be seen from Figure 4.7, a constant block is used to specify the desired operating 

point i.e. the desired mass flow rate. A sum block is used to find the error between the desired 
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mass flow and the actual mass flow. The error is fed into a block which is linked to the fuzzy 

logic controller. The fuzzy logic controller takes the input and executes the necessary action 

according to the rules constructed for this controller. The output of this block is the throttle 

coefficient which is fed to the matlab function block. The matlab function block is linked to 

the matlab function ‘simPeUe’ which computes the corresponding mass flow rate and pressure 

rise coefficient. The feedback of the mass flow rate is given into the sum bock and the error is 

computed. The process continuous until the stable operating condition is achieved.   
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Chapter 5  

Simulation Results and Discussion 

 

5.1 Moore-Greitzer model characteristic curve: 

The characteristic curve is represented by a third order polynomial equation. Equation 2.33 

represents the compression characteristic curve. The throttle characteristic is represented by a 

quadratic equation and the equation is Equation 2.34. The intersecting point of the two curve 

is known as the operating point. The intersecting point is found by solving the above two 

equations for a particular throttle coefficient. Each throttle coefficient produces a different 

operating point. For a throttle coefficient 0.21, the equations are solved and it is found that the 

mass flow and pressure rise coefficient are 0.3271 and 0.5093 respectively. The Matlab® 

program is shown in appendix 1 and the output is shown in Figure 5.1. 

 

Figure 5.1:  Operating point at throttle coefficient 0.21 

Using the similar method, the Equation 2.33 and 2.34 are solved again and simulated for a 

range of value of throttle coefficient. The range for the value for the throttle coefficient is from 

0 to 2.0. The simulation result within this range is shown in Figure 5.2. 
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Figure 5.2: Characteristic curve for throttle coefficient 0   to 2.0  

It can be seen from Figure 5.2 that the maximum pressure rise is 0.5093 i.e. at this point the 

slope of the characteristic curve is zero. The left side of this point is known as unstable region 

and the right side is known as the stable region. Our aim is to operate the compressor on the 

stable region. The throttle coefficient and mass flow rate with respect to the maximum pressure 

rise are 0.21 and 0.3270 respectively. The simulated data are expressed as Table 5.1. 

Table 5.1: Simulated data for throttle coefficient 0   to 2.0  

Throttle coefficient Mass Flow ( )eU  Pressure rise ( )eP  

0 0 0.3 

0.042553191 0.133360476 0.417947828 

0.085106383 0.199016441 0.465388526 

0.127659574 0.250742954 0.492497402 
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0.170212766 0.293415153 0.505793113 

0.212765957 0.329197472 0.509343554 

0.255319149 0.35949227 0.506169189 

0.29787234 0.385347349 0.498510787 

0.340425532 0.407581874 0.487986257 

0.382978723 0.426844863 0.475735396 

0.425531915 0.443653039 0.462545841 

0.468085106 0.458419345 0.448953175 

0.510638298 0.471475268 0.435315816 

0.553191489 0.483088355 0.421869031 

0.595744681 0.493475873 0.408763089 

0.638297872 0.502815412 0.396089896 

0.680851064 0.511253108 0.383901494 

0.723404255 0.518910021 0.372222872 

0.765957447 0.525887095 0.361060836 

0.808510638 0.532269039 0.350410144 

0.85106383 0.538127375 0.340257758 

0.893617021 0.543522842 0.33058578 

0.936170213 0.548507312 0.321373472 

0.978723404 0.553125316 0.312598651 

1.021276596 0.557415278 0.304238629 

1.063829787 0.561410505 0.29627085 

1.106382979 0.565140006 0.288673301 

1.14893617 0.568629147 0.281424778 
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1.191489362 0.571900203 0.274505046 

1.234042553 0.574972807 0.267894918 

1.276595745 0.577864326 0.261576291 

1.319148936 0.580590179 0.255532144 

1.361702128 0.583164095 0.249746516 

1.404255319 0.58559834 0.244204463 

1.446808511 0.587903904 0.238892015 

1.489361702 0.590090661 0.23379612 

1.531914894 0.592167507 0.228904594 

1.574468085 0.594142478 0.224206059 

1.617021277 0.596022849 0.219689896 

1.659574468 0.597815222 0.21534619 

1.70212766 0.599525602 0.211165681 

1.744680851 0.601159463 0.207139718 

1.787234043 0.602721804 0.203260213 

1.829787234 0.604217201 0.199519605 

1.872340426 0.605649848 0.195910815 

1.914893617 0.607023599 0.192427217 

1.957446809 0.608341997 0.189062601 

2 0.609608312 0.185811147 

 

The stable region of the characteristic curve is simulated again in Figure 5.3. The range of 

throttle coefficient is from 0.21 to 2.0. 
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Figure 5.3: Characteristic curve for throttle coefficient 0.21   to 2.0  
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5.2 States of the Moore-Greitzer Model: 

The three-coupled differential equation of Moore-Greitzer model is solved and simulated in 

Matlab®. The ode45 method and Runge-Kutta Method are used for simulation in continuous 

and discrete time. The simulation using ode45 is shown in Figure 5.5. 

The states of the MG model are 𝑥ଵ, 𝑥ଶ and 𝑥ଷ. Here,  

𝑥ଵ is the mean velocity disturbance expressed as 𝑥ଵ ≜ 𝑈(𝑡) − 𝑈௘, 

𝑥ଶis the pressure rise disturbance expressed as 𝑥ଶ ≜ 𝑃 − 𝑃௘ , 

𝑥ଷ is the amplitude of the non-axisymmetric disturbance 𝑥ଷ ≜  𝐴ଵ
ଶ. 

 

 

Figure 5.4: Simulation of states in continuous time 

Similarly, the states are simulated using the Runge-Kutta method in Figure 5.6. 
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Figure 5.5: Simulation of states in discrete time 

The error between the simulation using ode45 and Runge-Kutta method is shown in Figure 

5.7. 
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Figure 5.6: The error between the simulation using ode45 and Runge-Kutta method. 

5.3 Genetic Algorithm results and simulation:   

Using genetic algorithm, at first initial population of the chromosome is created. The created 

program allows user to specify the initial population size. As an example, for initial population 

size 98, a random population for each gene of a chromosome is generated within range. Thus 

for four gene of a chromosome, the total population size becomes a matrix of size 98 x 4. The 

simulation of the initial population is shown in Figure 5.8 for each parameter separately. 
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  Figure 5.7: Generation of initial population 

The cost of each chromosome is evaluated based on the cost function. The program for 

evaluating the cost is given in Appendix 3.  

The mean cost and minimum cost of the initial population is 0.0214 and 0.0194 respectively. 

The cost of each chromosome of initial population is also represented in Figure 5.9. 
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  Figure 5.8: Cost of chromosomes of initial population.  

As the cost of each chromosome is evaluated, they are sorted from lower cost to higher cost. 

The best chromosomes are selected by pairing (Appendix 3), mating (Appendix 4) and 

mutation (Appendix 5) according to the process described in chapter 3.  These steps are 

repeated for 20 iterations. Finally at the end of 20th generation, the best chromosome 

produces cost of 0.0194. The top chromosome and its associated cost in Matlab® output is 

represented in Figure 5.10. 

 

Figure 5.9: Top chromosome and cost 
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Thus the best coefficients of compressor characteristic are: 

1a   = 0.2637 

2a   = 0.9107 

3a   = 0.3958 

4a   = -3.4638 
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5.4 Fuzzy logic Controller: 

The fuzzy logic controller is designed to control the mass flow rate in order to keep the 

operating point within the stall margin. The controller is designed to manipulate the throttle 

opening to reduce or increase the mass flow rate. It is found from the compressor characteristic 

simulation that the throttle coefficient 0.21 produces mass flow rate 0.3270 and pressure rise 

0.5093. The controller is designed to keep the operating point at (0.3270, 0.5093). The 

simulation of the output is represented in Figure 5.10 and 5.11. 

 

 

Figure 5.10: Simulation of mass flow ( )eU  
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Figure 5.11: Simulation of pressure rise coefficient ( )eP  
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Chapter 6 

Conclusion and future work 

 

6.1 Conclusion: 

In this thesis, the parameters of an axial flow compressor characteristic is optimized. The 

optimized parameters are then used to design a fuzzy logic controller to keep the operating 

point within the stall margin. At first, different methods are investigated in order to solve the 

Moore-Greitzer model in discrete time. Discretization of the MG model was not possible 

through z-transform because the system is nonlinear. Euler’s method is implemented and 

satisfactory results are found. As Euler’s method only considers the first and last point within 

a step, this method does not always provide precise results. From inspiration of Euler’s method 

success and also considering its shortcomings, the Runge-Kutta 4th order method is used for 

solving and simulating the nonlinear system. The simulated compressor characteristics and 

three states of the MG model are used as the desired or the true simulation.  

A cost function is developed in order to optimize the parameters of the compressor 

characteristics using genetic algorithm. The cost function is the weighted sum of the error 

between the true simulated data and data generated by the chromosomes. The initial population 

of chromosomes is generated and the cost of each chromosome is evaluated. The best 

chromosomes were selected for pairing using roulette wheel method. After selecting the Mom 

and Dad chromosomes, mating and mutation were carried out. This process is repeated for 10 

generation and finally the best chromosome is found. The four genes of this best chromosome 

is the four parameters of the compressor characteristics.  

A Mamdani fuzzy logic controller is designed in such a way that changes the throttle opening 

in response to the mass flow change. The mass flow rate is measured and is given feedback to 
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the reference input value. The error between this two values is used as the input to the fuzzy 

logic controller. The simulation of the mass flow rate and pressure rise is observed. The mass 

flow rate and pressure rise became stable at the desired operating point.  
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6.2 Future work: 

The future work on this research topic includes the implementation of the designed fuzzy logic 

controller in the real compressor at the Chinese Academy of Science. The controller can be 

implemented in a Raspberry PI and also the programming can be done in Python according to 

the internship at Idaho National Laboratory [Appendix D]. The Greitzer’s B parameter is 

considered constant in this research i.e. the speed of the compressor is considered constant. The 

research can be extended for a variable speed compressor. The Greitzer’s B parameter is 

proportional to the speed of the compressor. Thus considering a variable speed compressor, 

gives the flexibility of changing the B parameter to control stall and surge. As Moore-Greitzer 

[18] concluded that low values of Greitzer’s B parameter facilitates rotating stall and high value 

of B facilitates surge, considering B parameter as variable can be very useful while designing 

a controller.  

At first the characteristic coefficients of the compressor are assumed. More research can be 

conducted to see the effect of these coefficients on the controller’s performance. As an 

example, the second coefficient of the characteristic curve is considered as zero in the 

assumption of the nature of the characteristic curve of the MG model. This value makes the 

characteristic curve to go up just after crossing the Y-axis. In this paper, the second coefficient 

is assumed to be 0.90. The performance of the controller can be investigated for these two 

different values of the second coefficient.  
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APPENDIX A – Matlab ™ files for simulation of Moore-Greitzer model 

A-1: Calculation of the operating point for a particular throttle coefficient 

%% Computation of operating point for a particular throttle coefficient 
%% Polynomial equations  
% 
% <include>polynomial.m</include> 
% 
function [Pe,Ue]= solvePeUe(gamma) 
% clear; 
% clc; 
%% Coefficient and paramters 
global a0 a1 a2 a3  
a0 = 0.30; 
a1 = 0.90; 
a2 = .35; 
a3 = -3.5; 
gammalow = 0.5; 
gammahigh = 2; 
N = 96;%length(CHROMOSOMES); 
steps = (gammahigh-gammalow)/(N-1); 
solution = zeros(2,1); 
gamma = 0.21; 
%% Solving m file polynomial of Characteristic Curve 
fun = @(y)polynomial(y,gamma); 
x0 = [1;1]; 
solution = fsolve(fun,x0); 
Pe = solution(1); 
Ue = solution(2); 
% Display result 
X = ['The mass flow rate is ', num2str(Ue)]; 
Y = ['The pressure rise coefficient is ', num2str(Pe)]; 
disp(X); 
disp(Y); 
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A-2: Characteristic equation and throttle equation 

% Polynomial  and quadratic equations 
 
function F = polynomial(y,gamma) 
global a0 a1 a2 a3  
F1 = -y(1)+a0+a1.*y(2)+a2.*(y(2)^2)+a3.*(y(2)^3); 
F2 = -y(2)+sqrt(gamma.*y(1)); 
F = [F1;F2]; 
End 
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A-3: Simulation of compressor characteristic curve 

%% Simulation of characteristic curve for Moore-Grietzer Model 
%% Polynomial equations  
% 
% <include>polynomial.m</include> 
% 
function [Pe,Ue]= PeUesolve() 
% clear; 
% clc; 
%% Coefficient and paramters 
global a0 a1 a2 a3  
a0 = 0.30; 
a1 = 0.90; 
a2 = .35; 
a3 = -3.5; 
gammalow = 0.21; 
gammahigh = 2; 
N = 48;%length(CHROMOSOMES); 
steps = (gammahigh-gammalow)/(N-1); 
%N = floor((gammahigh-gammalow)/steps)+1; 
gamma = gammalow:steps:gammahigh; 
% steps = 0.010; 
% N = floor((gammahigh-gammalow)/steps)+1; 
% gamma = gammalow:steps:gammahigh; 
solution = zeros(2,N); 
Pe = zeros(1,N); 
Ue = zeros(1,N); 
%% Simulation of Characteristic Curve 
for i = 1:N; 
fun = @(y)polynomial(y,gamma(i)); 
x0 = [1;1]; 
options = optimoptions('fsolve','Display','Off'); 
solution = fsolve(fun,x0,options); 
Pe(i) = solution(1); 
Ue(i) = solution(2); 
% disp('Pe = '); 
% disp(Pe); 
% disp('Ue = '); 
% disp(Ue); 
end  
  
figure(1) 
plot(Ue,Pe) 
title('Characteristic Curve'); 
xlabel('----Ue-----','color','r','Fontweight','bold','FontSize',16); 
ylabel('----Pe-----','color','r','Fontweight','bold','FontSize',16); 
grid on  
save('data','Pe','Ue') 
xlswrite('The characteristic data.xls',gamma',1,'A2') 
xlswrite('The characteristic data.xls',Ue',1,'B2') 
xlswrite('The characteristic data.xls',Pe',1,'C2') 
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A-4: Moore-Greitzer Model 

function xdot = mgmodel(t,y) 
global k gamma beta Pe Ue a0 a1 a2 a3  
a0 = .30; 
a1 = .90; 
a2 = .35; 
a3 = -3.5; 
  
xdot = [(-y(2)+Pe)+ [a0 + a1*(y(1)+Ue-1) + a2*(y(1)+Ue-1).^2 + a3*(y(1)+Ue-
1).^3]-(3/4)*(y(1)+Ue-1)*y(3); 
 (1/beta^2)* ((y(1)+Ue)-sqrt(gamma*(y(2)+Pe))); 
 k*(4*(1-(y(1)+Ue-1).^2)*y(3)-y(3).^2)]; 
% gamma + gamma*.10*sin(5*t)]; 
% xdot = [xdot1;xdot2;xdot3]; 
end 
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A-5: Simulation of MG model using ode45 

%% Simulation of MG Model on continuous time 
function [t,z]= continuous_time() 
clear; 
clc; 
gamma=1.8; 
y0 = [0.5;0.5;2]; 
tfinal = 3; 
tspan = 0:0.00010:3;%[1,tfinal]; 
%tspan = [0,tfinal]; 
opts = odeset('reltol',1e-6); 
[t,z]=ode45(@mgmodel,tspan,y0,opts); 
figure(3); 
  
    subplot(3,1,1); 
    plot(t,z(:,1),'g'); 
    title('x1'); 
    grid on; 
     
    subplot(3,1,2); 
    plot(t,z(:,2),'b'); 
    title('x2'); 
    grid on; 
     
     
    subplot(3,1,3); 
    plot(t,z(:,3),'m'); 
    title('x3'); 
    grid on;  
     
    ha = axes('Position',[0 0 1 1],'Xlim',[0 1],'Ylim',[0 
1],'Box','off','Visible','off','Units','normalized', 'clipping' , 'off'); 
    text(0.5, 1,'\bf Simulation on continuous 
time','HorizontalAlignment','center','VerticalAlignment', 'top'); 
     
end 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



75 
 

A-6: Simulation of MG model using the Runge-Kutta Method 

%% Simulation of states of Moore-Greitzer Model on Discrete time 
% Pe and Ue are solved. The values of Pe and Ue are used to simulate x1,x2 
% and x3 for a value pf gamma within range.  
  
function y = discrete_time() 
%% Initial condition 
global  beta k gamma Pe Ue  
clc; 
clear; 
%%% Parameter known from compressor geometry 
H = .25; 
W = .25; 
S = H/W; 
B = .15; 
beta = 2*B*S; % Stagger angle of the rotor blade 
  
R = 250; % Radius of the duct in the compressor  
lid = 2.9; % Length of the inlet duct 
ratio = R/lid; 
led = 2.37; % Length of the exit duct 
timelag_r = .8; % time lag for the rotor 
timelag_s = .48; %time lag for the stator 
timelag = timelag_r + timelag_s; % total time lag 
k1 = (exp(ratio)+exp(-ratio))/(exp(ratio)-exp(-ratio)); 
k1tilda = 2/(exp(ratio)-exp(-ratio)); 
k = 3/4*(timelag+led+k1+k1tilda); 
  
%% Generating a random value of gamma within the range of (gammalow, 
gammahigh) 
gammalow = 0.5; 
gammahigh = 2.0; 
%gamma = (gammahigh-gammalow).*rand(1)+gammalow; 
gamma = 1.8; 
  
%% Generating value of Pe and Ue from the random value of gamma 
poly = @(y)polynomial(y,gamma); 
x0 = [1;1]; 
solv = fsolve(poly,x0); 
Pe = solv(1); 
Ue = solv(2); 
%[Pe, Ue] = PeUesolve(); 
y1 = [0.5;0.5;2]; 
   %% Time and step size  
    t0 = 0; 
    Tstop = 3; 
    Ts = 0.00010; 
    T = Tstop-t0; 
    N = floor(T/Ts)+1; 
    t = zeros(N,1); 
    y = zeros(length(y1),N); 
    y(:,1)= y1; 
    t(1) =1; 
    h = Ts; 
     
%% for loop 
    
for i=1:N-1 
        k1 = mgmodel  (t(i)        , y(:,i)           ); 
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        k2 = mgmodel(t(i) + 0.5*h, y(:,i) + 0.5*h*k1); 
        k3 = mgmodel(t(i) + 0.5*h, y(:,i) + 0.5*h*k2); 
        k4 = mgmodel(t(i) +     h, y(:,i) +     h*k3); 
        y(:,i+1) = y(:,i) + (h/6)*(k1+2*k2+2*k3+k4); 
    end 
    i = 0:Ts:Tstop; 
    figure(7) 
    subplot(3,1,1); 
    plot(i,y(1,:),'g'); 
    title('x1'); 
    grid on; 
     
    subplot(3,1,2); 
    plot(i,y(2,:),'b'); 
    title('x2'); 
    grid on; 
     
     
    subplot(3,1,3); 
    plot(i,y(3,:),'m'); 
    title('x3'); 
    grid on;  
     
    ha = axes('Position',[0 0 1 1],'Xlim',[0 1],'Ylim',[0 
1],'Box','off','Visible','off','Units','normalized', 'clipping' , 'off'); 
    text(0.5, 1,'\bf Simulation on discrete 
time','HorizontalAlignment','center','VerticalAlignment', 'top'); 
     
end    
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A-7: Comparison between the simulation of Moore-Greitzer Model on discrete time and 
continuous time. 

%% Comparison between the simulation of Moore_Greitzer Model on discrete 
time and continuous time. 
% The Moore_Greitzer Model is simulated on discrete time using Runge-Kutta 
method and on continuous time using ODE45.  
%% Moore-Greitzer Model 
% Moore-Greitzer Model is represented by 
% 
% <include>mgmodel.m</include> 
% 
%% Code for simulation of Moore-Greitzer Model on discrete time 
% Simulation using RangeKutta method 
% 
% <include>discrete_time.m</include> 
% 
%% Simulation of Moore-Greitzer Model model on discrete time 
y= discrete_time(); 
  
%% Simulation on continuous time using ODE45 
[t,z]= continuous_time(); 
  
%% Codes for simulation on continuous time 
% 
% <include>continuous_time.m</include> 
% 
%% Mean square error  
errorx1 = z(:,1)-y(1,:)'; 
errorx2 = z(:,2)-y(2,:)'; 
errorx3 = z(:,3)-y(3,:)'; 
sq_errorx1 = errorx1.^2; 
sq_errorx2 = errorx2.^2; 
sq_errorx3 = errorx3.^2; 
  
figure(8) 
subplot(3,1,1); 
plot(t,sq_errorx1); 
title('Error of x1') 
grid on  
subplot(3,1,2); 
plot(t,sq_errorx2); 
title('Error of x2') 
grid on  
subplot(3,1,3); 
plot(t,sq_errorx3); 
title('Error of x3') 
grid on  
ha = axes('Position',[0 0 1 1],'Xlim',[0 1],'Ylim',[0 
1],'Box','off','Visible','off','Units','normalized', 'clipping' , 'off'); 
text(0.5, 1,'\bf Error between the Simulation on continuous and Discrete 
time','HorizontalAlignment','center','VerticalAlignment', 'top'); 
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APPENDIX B – Matlab ™ files for simulation of Lorenz model 

B-1: Lorenz model 

function ydot = lorenz(t,y) 
% lorenz attractor rhs 
global sigma rho beta 
ydot=zeros(3,1); 
ydot(1) = -beta*y(1) +y(2).*y(3); 
ydot(2) = -sigma*(y(2) - y(3)); 
ydot(3) = -y(2).*y(1) + rho*y(2) -y(3); 
return 
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B-2: Simulation of Lorenz model using ode45 

function [t,z]= lorenz_driver() 
clear; 
clc; 
% lorenz driver 
global sigma rho beta 
sigma = 10; 
rho = 28; 
beta = 8/3; 
zeta = sqrt(beta*(rho-1)); 
yc = [rho-1;zeta;zeta]; 
  
y0 = yc + [0;0;3]; 
tfinal = 20; 
tspan = 1:0.0010:20;%[1,tfinal]; 
%tspan = [1,tfinal]; 
opts = odeset('reltol',1e-6); 
[t,z]=ode45(@lorenz,tspan,y0,opts); 
% y0n = y0+ .001*randn(size(y0)); 
% [tn,yn]=ode45(@lorenz,tspan,y0n,opts); 
% figure(1) 
% plot3(z(:,1),z(:,2),z(:,3),'r') 
figure(2) 
plot(t,z(:,1),'c',t,z(:,2),'g',t,z(:,3),'m') 
title('Simulation on continuous time using ODE45'); 
legend('z(:,1)','z(:,2)','z(:,3)'); 
%hold on 
End 
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B-3: Simulation of Lorenz model using the Runge-Kutta Method 

% Simulation on discrete time using Runge-Kutta Method 
function y = RK4() 
clc; 
clear 
%% Initial condition 
global sigma rho beta  
sigma = 10; 
rho = 28; 
beta = 8/3; 
zeta = sqrt(beta*(rho-1)); 
yc = [rho-1;zeta;zeta]; 
y1 = yc + [0;0;3]; 
   %% Time and step size 
    t0 = 1; 
    Tstop = 20; 
    Ts = 0.0010; 
    T = Tstop-t0; 
    %% 
    N = floor(T/Ts)+1; 
    t = zeros(N,1); 
    y = zeros(length(y1),N); 
    y(:,1)= y1; 
    t(1) =1; 
    h = Ts; 
    
%% for loop 
    
for i=1:N-1 
        k1 = lorenz  (t(i)        , y(:,i)           ); 
        k2 = lorenz(t(i) + 0.5*h, y(:,i) + 0.5*h*k1); 
        k3 = lorenz(t(i) + 0.5*h, y(:,i) + 0.5*h*k2); 
        k4 = lorenz(t(i) +     h, y(:,i) +     h*k3); 
        y(:,i+1) = y(:,i) + (h/6)*(k1+2*k2+2*k3+k4); 
    end 
    i = 1:Ts:Tstop; 
%     figure(5) 
%     plot3(y(1,:), y(2,:),y(3,:)) 
    figure(6) 
    plot(i,y(1,:),'g', i, y(2,:),'y',i, y(3,:),'k'); 
    title('Simulation on discrete time using Runge-Kutta method'); 
    legend('y(1,:)','y(2,:)','y(3,:)'); 
  
end 
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B-4: Comparision between the simulation of lorenz system using ode45 and Runge-
Kutta Method 

%% Comparision between the simulation of lorenz system on discrete time and 
continuous time. 
% Lorenze system consists of three differential equations. It is 
% non-linear, deterministic and three dimensional. 
% The system is simulated on discrete time using Runge-Kutta method and on 
continuous time using ODE45.  
%% Lorenz system 
% The differential equation of lorenz system 
% 
% <include>lorenz.m</include> 
% 
%% Code for simulation of lorenz model on discrete time 
% Simulation using RangeKutta method 
% 
% <include>RK4.m</include> 
% 
%% Simulation of lorenz model on discrete time 
y= RK4(); 
  
%% Simulation on continuous time using ODE45 
[t,z]= lorenz_driver(); 
  
%% Codes for simulation on continuous time 
% 
% <include>lorenz_driver.m</include> 
% 
%% Mean square error  
error = z-y'; 
sqerror = error.^2; 
figure(8) 
plot(t,sqerror) 
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APPENDIX C – Matlab ™ files for optimization of parameters of the compressor 
characteristic using Genetic Algorithm 

C-1: Genetic Algorithm 

% ******************* GPid_con.m ******************** 
% 
%                           Version 1.0 
%                         June 25, 2000 
%                     Dr. Marco P. Schoen 
%                  Modification: Md Fahdul Wahab Chowdhury 
% ___________________________________________________ 
  
% Toolbox for genetic programming. Code for continues 
% genetic algorithm. 
%clear;clc 
  
% Define Variables: 
maxiterations=input('Maximum Number of iterations: '); 
ipopsize=input('Population Size of Generation 0: '); 
popsize=input('Population Size for Generations 1 - end: '); 
%popsize=popsize*ipopsize; 
keep=input('Number of Chromosomes kept for mating: '); 
%keep=keep*popsize; 
pars=input('Total Number of parameters in a chromosome: '); 
mutaterate=input('Mutation rate: '); 
% hi=input('High end of parameter value: ');  %for all parameters 
% lo=input('Low end of parameter value: ');   %for all parameters 
op=1;%input('Probability options: 1. Top-Buttom 2.Random 3. Weigh-Rand. : 
'); 
  
% Create the initial population, evaluate costs, and sort 
CHROMOSOMES = zeros(ipopsize,pars); 
hi = [0.35 0.95 0.40 -3.40]; 
lo = [0.25 0.85 0.30 -3.60]; 
for i = 1:pars 
    CHROMOSOMES(:,i)= (hi(i)-lo(i))*(rand(ipopsize,1))+lo(i); 
    xlswrite('chromosomes.xls',CHROMOSOMES,1,'A2'); 
    figure(9) 
    subplot(2,2,1); 
    plot(CHROMOSOMES(:,1),'ms'); 
    title('Coefficient 
a1','FontSize',9,'color','m','HorizontalAlignment','Right') 
     
    subplot(2,2,2); 
    plot(CHROMOSOMES(:,2),'k+'); 
    title('Coefficient 
a2','FontSize',9,'color','k','HorizontalAlignment','Left') 
     
    subplot(2,2,3); 
    plot(CHROMOSOMES(:,3),'cd'); 
    title('Coefficient 
a3','FontSize',9,'color','c','HorizontalAlignment','Right') 
     
    subplot(2,2,4); 
    plot(CHROMOSOMES(:,4),'gp'); 
    title('Coefficient 
a4','FontSize',9,'color','g','HorizontalAlignment','Left') 
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    ha = axes('Position',[0 0 1 1],'Xlim',[0 1],'Ylim',[0 
1],'Box','on','Visible','off','Units','normalized', 'clipping' , 'off'); 
    text(0.5, 1,'\bf Generation of initial population 
','Fontsize',11,'Color','b','HorizontalAlignment','center','VerticalAlignme
nt', 'top'); 
  
end 
  
cost_initial=costfunction(CHROMOSOMES); 
xlswrite('chromosomes',cost_initial,1,'E2'); 
figure(2) 
plot(cost_initial,'c*'); 
xlabel('Chromosomes'); 
ylabel('Cost of chromosomes'); 
title('Cost of Chromosomes of initial population'); 
%CHROMOSOMES = chromosomes(); 
  
% CHROMOSOMES will be a matrix of random numbers within hi - lo 
  
% Loop: 
gen=0;quit=0; 
h = waitbar(0,'Please wait...'); 
while (gen<maxiterations & (~quit)) 
   gen=gen+1; 
   cost=costfunction(CHROMOSOMES); 
   New=[cost,CHROMOSOMES]; 
   xlswrite('chromosomes',New,2,'A2'); 
   New2=sortrows(New,[1]); cost=New2(:,1);CHROMOSOMES=New2(:,2:pars+1); 
   mincost(gen)=min(cost); 
   meancost(gen)=mean(cost); 
   stdcost(gen)=std(cost); 
   % Pairing,Mating, and Mutation 
   %CHROMOSOMES=New2(1:popsize,2:3);cost=New2(1:popsize,1); 
   [Mom,Dad]=pairing(CHROMOSOMES,cost,keep,popsize,op); 
   CHROMOSOMES=matecon(Mom,Dad,CHROMOSOMES,keep,popsize,pars); 
   CHROMOSOMES=mutatecon(CHROMOSOMES,mutaterate,popsize,pars,hi,lo); 
   % Check for Conversions 
   % if mincost(gen)< ... and/or meancost(gen) < ... and or stdcost(gen)< 
   % ... quit=1    
   waitbar(gen/maxiterations); 
   figure(10) 
plot(gen,meancost(gen),'b*'); 
title('Mean Cost'); 
hold on 
end; 
close(h); 
  
TopChrom=CHROMOSOMES(1,:) 
min(cost) 
figure(3) 
plot(cost,'c*'); 
xlabel('Chromosomes'); 
ylabel('Cost of chromosomes'); 
title('Cost of Chromosomes of last generation'); 
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C-2: Cost function 

function cost = costfunction(CHROMOSOMES) 
%% calling function to evalauate the desired curve 
[Pe,Ue]= PeUesolve();        
desired_curve = [Pe Ue]; 
%% Calling function to simulate curve using the random value of Chromosome 
within high and low value 
[Pm, ma] =solvece(CHROMOSOMES); 
simulated_curve = [Pm, ma]; 
%% Simulation of the states of MG Model on discrete time using Runge-Kutta 
Method 
error_state = state_error(CHROMOSOMES); 
x1_error = error_state(1,:)'; 
x2_error = error_state(2,:)'; 
x3_error = error_state(3,:)'; 
  
%% Pre-allocating the size of error 
[row,col] = size(simulated_curve); 
error = zeros(size(simulated_curve)); 
mean_sq_error = zeros(row,1); 
cost=zeros(row,1); 
%error = simulated_curve- desired_curve; 
%% Creating loop to evaluate the error 
for i = 1:row 
    error(i,:) = simulated_curve(i,:)- desired_curve;   
    error_sq = error.^2; 
    mean_sq_error(i,:) = sum(error_sq(i,:))/length(error_sq); 
    cost(i,:) = 10*mean_sq_error(i,:)+ x1_error(i,:)+ 
x2_error(i,:)+x3_error(i,:); 
end 
end 
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C-3: Simulation of characteristic curve from chromosomes 

%% Simulation of characteristic curve for Moore-Grietzer Model 
%% Polynomial equations  
% 
% <include>polynomial.m</include> 
% 
function [Pm,Um]= solvece(CHROMOSOMES) 
% clear; 
% clc; 
%% Coefficient and paramters 
a0 = CHROMOSOMES(:,1); 
a1 = CHROMOSOMES(:,2); 
a2 = CHROMOSOMES(:,3); 
a3 = CHROMOSOMES(:,4); 
[row, col] = size(CHROMOSOMES); 
gammalow = 0.5; 
gammahigh = 2.0; 
%steps = 0.010; 
N = 48;%length(CHROMOSOMES); 
steps = (gammahigh-gammalow)/(N-1); 
%N = floor((gammahigh-gammalow)/steps)+1; 
gamma = gammalow:steps:gammahigh; 
% N = floor((gammahigh-gammalow)/steps)+1; 
% gamma = gammalow:steps:gammahigh; 
%solution = zeros(2,N); 
Pm = zeros(row,N); 
Um = zeros(row,N); 
%% Simulation of Characteristic Curve 
for i = 1:N; 
    for j = 1:row 
fun = @(y)characteristic(y,gamma(i),CHROMOSOMES(j,:)); 
x0 = [1;1]; 
options = optimoptions('fsolve','Display','off'); 
solution = fsolve(fun,x0,options); 
Pm(j,i) = solution(1); 
Um(j,i) = solution(2); 
desired_curve = [Pm, Um]; 
z = size(desired_curve); 
    end  
end 
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C-4: Simulation of Moore-Greitzer model from chromosomes 

function [y] = RK4_chrom(CHROMOSOMES) 
%% Initial condition 
global  beta k gamma Pe Ue  
% global sigma rho 
% sigma = 10; 
% rho = 28; 
%%% Parameter known from compressor geometry 
H = .25; 
W = .25; 
S = H/W; 
B = .15; 
beta = 2*B*S; % Stagger angle of the rotor blade 
  
R = 250; % Radius of the duct in the compressor  
lid = 2.9; % Length of the inlet duct 
ratio = R/lid; 
led = 2.37; % Length of the exit duct 
timelag_r = .8; % time lag for the rotor 
timelag_s = .48; %time lag for the stator 
timelag = timelag_r + timelag_s; % total time lag 
k1 = (exp(ratio)+exp(-ratio))/(exp(ratio)-exp(-ratio)); 
k1tilda = 2/(exp(ratio)-exp(-ratio)); 
k = 3/4*(timelag+led+k1+k1tilda); 
  
%% Generating a random value of gamma within the range of (gammalow, 
gammahigh) 
gammalow = 1.8-1.8*0.3; 
gammahigh = 1.8+1.8*0.3; 
gamma = 0.5;%(gammahigh-gammalow).*rand(1)+gammalow; 
  
%% Generating value of Pe and Ue from the random value of gamma 
poly = @(y)polynomial(y,gamma); 
x0 = [1;1]; 
solv = fsolve(poly,x0); 
Pe = solv(1); 
Ue = solv(2); 
y1 = [0.5;0.5;2]; 
   %% Time and step size  
    t0 = 1; 
    Tstop = 3; 
    Ts = 0.0010; 
    T = Tstop-t0; 
    N = floor(Tstop/Ts)+1; 
    t = zeros(N,1); 
    y = zeros(length(y1),N); 
    y(:,1)= y1; 
    t(1) =1; 
    h = Ts; 
       
%% for loop 
  
a0 = CHROMOSOMES(:,1); 
a1 = CHROMOSOMES(:,2); 
a2 = CHROMOSOMES(:,3); 
a3 = CHROMOSOMES(:,4); 
[row,col] = size(CHROMOSOMES); 
for j = 1:row 
for i=1:N-1 
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        k1 = mgmodel_chrom  (t(i)        , y(:,i)  ,CHROMOSOMES(j,:)         
); 
        k2 = mgmodel_chrom(t(i) + 0.5*h, y(:,i) + 0.5*h*k1, 
CHROMOSOMES(j,:)); 
        k3 = mgmodel_chrom(t(i) + 0.5*h, y(:,i) + 0.5*h*k2, 
CHROMOSOMES(j,:)); 
        k4 = mgmodel_chrom(t(i) +     h, y(:,i) +     
h*k3,CHROMOSOMES(j,:)); 
        y(:,i+1,j) = y(:,i) + (h/6)*(k1+2*k2+2*k3+k4); 
end 
end 
    i = 0:Ts:Tstop; 
    figure(7) 
    subplot(3,1,1); 
    plot(i,y(1,:,1),'g'); 
    title('x1'); 
    grid on; 
     
    subplot(3,1,2); 
    plot(i,y(2,:,2),'b'); 
    title('x2'); 
    grid on; 
     
     
    subplot(3,1,3); 
    plot(i,y(3,:,3),'m'); 
    title('x3'); 
    grid on;  
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C-5: Computing error between true simulation of states and simulation from 
chromosomes. 

function mean_sq_error = state_error(CHROMOSOMES) 
%% simulated states from chromosomes 
x = RK4_chrom(CHROMOSOMES); 
x1 = x(1,:,:); 
x2 = x(2,:,:); 
x3 = x(3,:,:); 
  
%% desired state model 
y = RK4(); 
y1 = y(1,:); 
y2 = y(2,:); 
y3 = y(3,:); 
  
%% finding error  
[row,col,page] = size(x); 
%mean_sq_error = zeros(row,1,page); 
for i = 1:page 
x1_error(1,:,i) = x(1,:,i)-y1; 
x2_error(1,:,i) = x(2,:,i)-y2; 
x3_error(1,:,i) = x(3,:,i)-y3; 
% Error for state x1 
error_sq_x1 = x1_error.^2; 
mean_sq_error_x1(i) = sum(error_sq_x1(1,:,i))/length(error_sq_x1); 
% Error for state x2 
error_sq_x2 = x2_error.^2; 
mean_sq_error_x2(i) = sum(error_sq_x2(1,:,i))/length(error_sq_x2); 
% Error for state x3 
error_sq_x3 = x3_error.^2; 
mean_sq_error_x3(i) = sum(error_sq_x3(1,:,i))/length(error_sq_x3); 
mean_sq_error = [mean_sq_error_x1; mean_sq_error_x2; mean_sq_error_x3]; 
 
end 
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C-6: Selection of Mom and Dad using roulette wheel method 

function[Mom,Dad]=pairing(CHROMOSOMES,cost,keep,popsize,op) 
% Based on the probability option op, one of the following 
% three pairing criterias is used: 
% 1. Top-Down, 2. Random, 3. Weighted Random  
% for the selection of the parents of the next generation 
  
replacements=(popsize-keep)/2;denum=0; 
if op==1 
   for r=1:replacements 
      denum=denum+r; 
   end; 
   for n=1:replacements 
      probn(n)=n/denum; 
   end; 
end; 
if op==2 
   %need to write code 
end; 
if op==3 
   %need to write code    
end; 
  
%Cummulative Probabilities 
cum=0;odds=zeros(1,replacements); 
for i=1:replacements 
   cum=probn(i)+cum; 
   odds(1,i)=cum; 
end; 
%Roll dice for Parents 
pick1=rand(1,replacements); %vector of random # for Mom 
pick2=rand(1,replacements); %vector of random # for Dad 
  
Mom=zeros(1,replacements);Dad=Mom; 
for i=1:replacements 
   for j=2:replacements 
      if (pick1(i)<odds(j) & pick1(i)>odds(j-1)) 
         Mom(i)=j; 
      end; 
      if Mom(i)==0 
         Mom(i)=1; 
      end; 
      if (pick2(i)<odds(j) & pick2(i)>odds(j-1)) 
         Dad(i)=j; 
      end; 
      if Dad(i)==0 
         Dad(i)=1; 
      end; 
   end; 
end; 
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C-7: Mating  

function CHROMOSOMES=matecon(Mom,Dad,CHROMOSOMES,keep,popsize,pars) 
% Code for continuous GP mating. Selects a crossover point 
% ceil rounds to next higher integer. Row index contains 
% first offspring, row intex +1 contains second offspring 
% Mom-vector containing row numbers of first parent 
% Dad-vector containing row numbers of second parent 
  
CHROMOSOMES%to test chromosomes on the screen during development phase 
replace=(popsize-keep)/2; 
for ic=1:replace 
   alpha=ceil(rand*pars);i=2*(ic-1)+1; 
   beta=rand(1); 
   CHROMOSOMES(keep+i,alpha)=CHROMOSOMES(Mom(ic),alpha)-
beta*(CHROMOSOMES(Mom(ic),alpha)-CHROMOSOMES(Dad(ic),alpha)); 
   
CHROMOSOMES(keep+i+1,alpha)=CHROMOSOMES(Dad(ic),alpha)+beta*(CHROMOSOMES(Mo
m(ic),alpha)-CHROMOSOMES(Dad(ic),alpha)); 
    
end; 
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C-8: Mutation 

Function CHROMOSOMES=mutatecon(CHROMOSOMES,mutaterate,popsize,pars,hi,lo) 
% Inside a loop iterating over the number of mutations, a random  
% parameter in the population is selected and replaced by a new  
% random parameter 
  
nmu=ceil(popsize*pars*mutaterate); 
for i=1:nmu 
   row=ceil((popsize-1)*rand)+1; 
   col=ceil(pars*rand); 
   if col == 1 
       CHROMOSOMES(row,col)=(hi(1)-lo(1))*rand+lo(1); 
   elseif col == 2 
       CHROMOSOMES(row,col)=(hi(2)-lo(2))*rand+lo(2); 
   else  
       CHROMOSOMES(row,col)=(hi(3)-lo(3))*rand+lo(3); 
   end 
end; 
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Abstract 

 

Research, tests and projects are implemented during the period of internship in Idaho National 

Laboratory INL). Ongoing research on Micro Grid Management System (MGMS) and Plug-in 

Electric Vehicle (PEV) are studied. Several tests are carried out in collaboration with National 

Renewable Energy Laboratory (NREL) on MGMS. Real Time Digital Simulation (RTDS) 

platform is used to do a test like adjustment of electrolyzer power according to the faults 

simulation from INL grid model. 

 A project on installation of one hundred raspberry PIs is completed. The operating system on 

Raspberry PIs are installed, the networking of the Raspberry PIs was completed by making 

Ethernet cable and networking those to VILLAS node and Real Time Digital Simulation 

(RTDS). This project is going to be used to do some tests on Plug-in Electric Vehicles (PEV). 

Each Raspberry PI is capable of sending and receiving some data through VILLAS node. The 

VILLAS node then MUX and DEMUX the data and send them to RTDS and OPAL-RT. The 

RTDS and OPAL-RT are used for simulation. On the other hand a research on the optimization 

of the cost of an electrolyzer for a Hydrogen Re-fueling station is carried on. Sequential least 

squares programming algorithm (SLSQP) optimizer on python is implemented to do the 

optimization.          
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Chapter 1: Optimization of an electrolyzer 

 

1.1 Introduction: 

This report provides a summary on the study of the electrolytic hydrogen production 

technologies, and a cost optimization of the processes. A cost analysis is carried out to 

determine the effects of electricity price on hydrogen gas production through electrolysis. A 

specific electrolyzer model is selected and its energy requirement is used to calculate the 

demand of the electricity. In this study no capital, maintenance or operating costs are taken into 

consideration. 

1.2 Technical Description: 

Hydrogen is produced via electrolysis by passing electricity through two electrodes in water. 

The water molecule is split and produces oxygen at the anode and hydrogen at the cathode. 

In Figure 1, a very general electrolysis process is depicted. The process and the equipment may 

vary according to the method used for electrolysis. As an example water purification and 

electrolytic solution may vary from system to system.  

Figure 1: Electrolysis Process. [1] 
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In the Figure 1, a compressor and Hydrogen storage tank are added but in the analysis the 

produced hydrogen is directly fed to the vehicle. The utilities generally used for the process are 

electricity for electrolysis, cooling water etc.  

1.3 Calculation:  

1.3.1 Electricity cost to produce hydrogen: 

At present electrolyzer efficiencies, electricity costs should be between 4 and 5.5 cents per 

KWh to keep the hydrogen production cost lower than $3.00/kg [1].  

In this study, Norsk Atmospheric Type No.5040 (5150 Amp DC) is considered as an 

electrolyzer. [1] 

Electricity required to produce 1 kg hydrogen = 53.5 KWh/kg 

Cost of electricity for KWh on peak time = $0.055/KWh 

Cost of electricity for KWh on off-peak time = $0.04/KWh 

Electricity cost for producing 1 kg of hydrogen on peak time,  

𝐶𝐻2௣௘௔௞ = 53.5
௄ௐ௛

௄௚
× 0.055 

$

௄௪௛
 

 = $2.94/kg  

Electricity cost for producing 1 kg of hydrogen on off-peak time, 

 𝐶𝐻2௢௙௙௣௘௔௞ = 53.5
௄ௐ௛

௄௚
× 0.04 

$

௄௪௛
 

  = $2.14/kg  
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1.3.2 Demand Calculation [1]: 

The efficiency of fuel cell is almost twice than the efficiency of internal combustion engine as 

can be seen from Table 1. That’s why Fuel cell vehicle can go twice the distance of the gasoline 

vehicle can go by 1 gallon [2].  

Table 1– Calorific Power of Different fuels (25ºC and 1 atm) 

Fuel HHV  LHV 

Hydrogen 141.86 MJ/kg 119.93 MJ/kg 

Methane 55.53 MJ/kg 50.02 MJ/kg 

Propane 50.36 MJ/kg 45.60 MJ/kg 

Gasoline 47.50 MJ/kg 44.50 MJ/kg 

Gas-oil 44.80 MJ/kg 42.50 MJ/kg 

Methanol 19.96 MJ/kg 18.05 MJ/kg 

SOURCE: BEJAN, A. Advanced Engineering Thermodynamics. New York: Wiley. (1988). 

One of the disadvantages of working with hydrogen is that on ambient condition, it has very 

low energy density as can be seen from Table 2. That’s why it needs to be compressed to liquid 

state and stored at low temperature. So most part of the operation related to hydrogen has an 

important efficiency drop due to compression and transportation.  
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Table 2– Energy density of different fuels 

 

Fuel Specific Energy Energy Density 

Hydrogen (ambient condition) 141.86 MJ/kg 2.8 Wh/L 

Hydrogen at 690 bar, 15ºC 141.86 MJ/kg 1250.0 Wh/L 

Liquid Hydrogen at -240 ºC 141.86 MJ/kg 2358.6 Wh/L 

Methane at 1 bar, 15 ºC 55.60 MJ/kg 10.5 Wh/L 

Natural Gas 53.60 MJ/kg 10.1 Wh/L 

Gasoline 47.50 MJ/kg 9500.0 Wh/L 

Source: https://energy.gov/sites/prod/files/2014/03/f12/fcm01r0.pdf (2001). 

 

The driving range of a fuel cell vehicle is typically around 300 miles on one tank of hydrogen. 

The maximum capacity of a tank is normally 5 kg of compressed hydrogen gas. 

While determining the number of cars to be served, it is assumed that a car typically requires 

200 kg of hydrogen to travel 12,000 miles in a year with a rate of 60 miles/kg of hydrogen.   
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The assumed demand of Hydrogen is depicted in Table 1: 

Table 3: Demand of hydrogen fuel on peak time 

Start time End time  Demand of 
Hydrogen in (kg) 

Power required to 
produce 1 kg 𝐻ଶ 

in KWh/kg 

Demand of 
Energy in 
KW 

Peak time 

08:01:00 09:00:00 30 53.5  1605 

09:01:00 10:00:00 30 53.5  1605 

10:01:00 11:00:00 30 53.5  1605 

11:01:00 12:00:00 30 53.5  1605 

12:01:00 13:00:00 30 53.5  1605 

13:01:00 14:00:00 30 53.5  1605 

14:01:00 15:00:00 40 53.5  2140 

15:01:00 16:00:00 40 53.5  2140 

16:01:00 17:00:00 40 53.5  2140 

 Total 300  16050 
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Table 4: Demand of hydrogen fuel on off-pick time 

Start time End time  Demand of 
Hydrogen in (kg) 

Power required to 
produce 1 kg 𝐻ଶ 

in KWh/kg 

Demand of 
Energy in 
KW 

Off-peak time 

17:01:00 18:00:00 20 53.5  1070 

18:01:00 19:00:00 20 53.5  1070 

19:01:00 20:00:00 20 53.5  1070 

20:01:00 21:00:00 20 53.5  1070 

21:01:00 22:00:00 20 53.5  1070 

22:01:00 23:00:00 20 53.5  1070 

23:01:00 00:00:00 20 53.5  1070 

00:01:00 01:00:00 20 53.5  1070 

01:01:00 02:00:00 20 53.5  1070 

02:01:00 03:00:00 20 53.5  1070 

03:01:00 04:00:00 20 53.5  1070 

04:01:00 05:00:00 20 53.5  1070 

05:01:00 06:00:00 20 53.5  1070 

06:01:00 07:00:00 20 53.5  1070 

07:01:00 08:00:00 20 53.5  1070 

Total 300  16050 
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1.4 Optimization: 

1.4.1 Cost optimization equation for the electrolyzer: 

An attempt is made to optimize the cost of re-fuelling hydrogen station according to the demand 

on peak time and off-peak time. An optimization program in python is developed to minimize 

the cost function under some constraints.   

The cost function given to minimize is: 

𝐶𝑜𝑠𝑡 = ൣ𝐶𝐻2௣௘௔௞ × 𝐻𝑝𝑟௣௘௔௞ ൧ + [𝐶𝐻2௢௙௙௣௘௔௞ × 𝐻𝑝𝑟௢௙௙௣௘௔௞] 

Where, 

 𝐶𝐻2௣௘௔௞ = Cost of hydrogen production on peak time = $2.94/kg 

 𝐶𝐻2௢௙௙௣௘௔௞ =  Cost of hydrogen production on off − peak time = $2.14/kg 

 𝐻𝑝𝑟௣௘௔௞ = Amount of hydrogen to be produced in peak time(in kg) 

 𝐻𝑝𝑟௢௙௙௣௘௔௞ =  Amount of hydrogen to be produced in off − peak time(in kg) 

 𝐻௥௔௧௘ = Rate at which hydrogen is produced = 43.59 𝑘𝑔/ℎ𝑟 

 SOCi = Initial State of Charge (SOCi) 

 SOCp = Predicted/Required SOC 

 CF = Convertion factor from SOC (in %) to Power (in KW) 

 𝜂 = Efficiency of Electrolyzer = 73% 

 k = SOC (in %) to hydrogen (in kgs) = 3.93 

 Pref = Demanded/ Predicted Power  

 𝑡1 = Start time (On peak) 

 𝑡2 = End time(On peak) 

 𝑡3 = Start time (Off peak) 

 𝑡4 = End time(Off peak) 
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The constrained are: 

i) Constraint1: 10 ≤ 𝑆𝑂𝐶𝑖 ≤ 95. 

(Initial State of Charge should be between 10% and 95 %.)  

ii) Constraint2: 𝑆𝑂𝐶𝑝 =  
௉௥௘௙

ఎ×஼ி
 

(Predicted State of charge is depended on predicted power requirement and conversion 

factor from SOC to power) 

iii) Constraint3: 8.0 ≤ 𝑡1, 𝑡2 ≤ 17.0 

(The time range of peak time is between 8.00 AM and 5.00 PM) 

iv) Constraint4: 17.0 < 𝑡3, 𝑡4 ≤ 23.59 

v) Constraint5: 0.0 ≤ 𝑡5, 𝑡6 < 8.0 

(The time range of off-peak time is divided into two parts. One part is between 5.01 PM 

and 11.59 PM and another part is between 0.00 AM and 8.00 AM) 

vi) Constraint 6a: 𝐻𝑝𝑟௣௘௔௞ = 𝑘 × (𝑆𝑂𝐶𝑝 − 𝑆𝑂𝐶𝑖) 

(Hydrogen production on peak time is equivalent to the difference between predicted SOC and 

initial SOC. For converting the SOC to required amount of hydrogen in kg, it is multiplied by 

a conversion factor ‘k’) 

vii) Constraint 6b: 𝐻𝑝𝑟௢௙௙௣௘௔௞ = 𝑘 × (95 − 𝑆𝑂𝐶𝑖)  

(The predicted demand of hydrogen on off peak time is fixed as it is 95% of SOC. So the 

production of hydrogen in that period is dependent on initial State of Charge and the conversion 

factor) 
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viii) Constraint 6c: 𝐻௥௔௧௘ × (𝑡2 − 𝑡1) =  𝐻𝑝𝑟௣௘௔௞ 

Constraint 6d: 𝐻௥௔௧௘ × (𝑡4 − 𝑡3) =  𝐻𝑝𝑟௢௙௙௣௘௔௞ 

(The hydrogen production rate is 43.59 kg/hr for the assumed electrolyzer. So the total 

hydrogen production in a given time is calculated by multiplying the production rate with the 

duration of the time) 

1.4.2 Optimization result and discussion: 

The cost function and constraints are studied and analyzed. After analyzing, the cost function 

and constraints are modified but still some more modification is needed to produce best 

optimization result.    

Using the constraint, the cost function is optimized by python programming. Sequential least 

squares programming algorithm (SLSQP) optimizer is used to minimize the cost function. Even 

though the program successfully terminated the optimization, more work is needed on the 

electrolyzer optimization modelling. The cost function consists of two parts. The first part 

evaluate the cost on peak time and the second part evaluate the cost on off peak time. Both part 

are supposed to generate the cost according to the demand of power at their respective time. 

According to the constraint given, hydrogen production on peak time is evaluated based on the 

demand on that time but the calculation of the hydrogen production on off peak time is not 

effected by demand on that time because no constraint is assigned to do it.      

The conversion factor from state of charge to power is also playing an important role during the 

optimization. Little work on these issues like conversion factors and constraints can make the 

optimization more efficient. The optimization result from the python optimization program is 

depicted in Figure 3. 
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Figure 2: Optimization Result of Electrolyzer 

 

The optimization result shows the cost of producing 301 kg hydrogen on peak time and 273.25 

kg hydrogen on off-peak time. The demand of hydrogen on peak time is given as 300 kg. So it 

produces 301.60 kg hydrogen for that period at a conversion rate 215 (SOC to power). More 

work is needed to find the exact conversion rate as it makes a big difference for the cost 

optimization. No demand is taken into consideration while calculating the hydrogen production 

on off-peak time. It is assumed that the hydrogen produced on off-peak time considered the initial 

value of the optimization algorithm and constraints given for that period. The end time of the off-

peak time range does not stay within limit. So more research is needed to solve this inconsistency.     
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Chapter 2: Installation of Raspberry PIs 

 

2.1 Introduction: 

The Raspberry PI is a credit card sized little computer which is capable of doing many things 

like Desktop computer. The specification of Raspberry PI 3 mode B is given as following: 

Table 5: Specification of Raspberry PI 3 model B 

Introduction Date 2/29/2019 

SoC BCM2837 

CPU Quad Cortex A53 @ 1.2GHz 

Instruction Set ARMv8-A 

GPU 400MHz VideoCore IV 

RAM 1GB SDRAM 

Storage Micro-SD 

Ethernet 10/100 

Wireless 802.11n/Bluetooth 4.0 

Video Output HDMI / Composite 

Audio Output HDMI / Headphone 

GPIO 40 

Source: http://hackaday.com/2016/02/28/introducing-the-raspberry-pi-3/ 

Due to its size and capability, it can be used in many electronics projects. For this reason, in 

order to perform some research on electric vehicle charging, a platform with hundreds of 

raspberry PI is installed. Each Raspberry PI is connected to Real Time Digital Simulation 

(RTDS) system through VILLAS node and capable of sending and receiving data like voltage, 
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frequency etc. This installation process is carried out in some steps. In this chapter, all the steps 

that are taken are discussed with elaboration.  

2.2 Procedure:  

The installation process is carried out in some steps. The steps are: 

i. Installation of the operating system on the Raspberry PI. 

ii. Set up of the Raspberry PI 

iii. Assigning a static IP address. 

iv. Putting Raspberry PIs on Shelves. 

v. Making network cable.  

vi. Connecting all the Raspberry PIs to the network. 

vii. Testing by sending and receiving some data. 

2.2.1 Installation of the operating system on the Raspberry PI: 

 The first step is to download the operating system for the raspberry PI. The official 

operating system is Raspbian. The official image of Raspbian is downloaded on a 

Desktop computer from Raspberry PI website[5]  

 A micro SD card is inserted into card reader. The card reader is then connected to the 

computer.  

 An image writing tool is needed to install the image of Raspbian to the SD card. In 

this case, Win32 Disk imager is downloaded and used to write the ‘.img’ file into the 

SD card. 
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2.2.2 Set up the Raspberry PIs: 

After installation of the operating system, the Raspberry PI is ready to set up. The following 

steps are taken is set up the Raspberry PI [6]: 

 The microSD card is inserted into the card slot of the Raspberry PI. 

 A USB keyboard and a USB mouse are plugged into the USB ports.  

 One end of a HDMI cable is connected to the Raspberry PI and other end is connected 

to the monitor. 

 Power supply is connected to the Raspberry PI. When the power supply is plugged into 

the power outlet the Raspberry PI is turned on and booted up. 

2.2.3 Assigning a static IP address: 

When the setup is complete, each Raspberry PI is assigned a static IP address starting from 

141.221.118.128 to 141.221.118.227. The specifications are as following:  

IP address: 141.221.118.128 to 141.221.118.227 

Mask:  255.255.255.0 

Gateway: 141.221.118.65 

DNS server: 141.221.118.69 

2.2.4 Arranging raspberry PI on shelves: 

The Raspberry PIs are put and glued on the shelves. Each Shelf contains 20 Raspberry PI. Five 

PIs are connected to one charger. So four chargers are used for twenty Raspberry PIs in one 

shelves. Each Raspberry PIs and chargers are adhered to the shelf using sticky VELCRO sticky 

back tape. 
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2.2.5 Making network cables: 

One hundred Ethernet cables are made for one hundred Raspberry PI. The following things are 

used [7]: 

 Bulk Ethernet cable category 5e or CAT-5e 

 Bulk RJ45 Connectors for CAT-5e 

 RJ-45 Crimping tool 

 An Ethernet cable tester. 

The bulk Ethernet cable is cut into one hundred PIs. The following steps are taken to make the 

cable: 

 The plastic sheath is cut into about 1 inch from the end of the cable. 

 The wires are untwisted and straightened. The wires are then organised according to 

the figure 4: Ethernet cable (order of wires) 

Figure 3: Ethernet cable (order of wires) [7] 

 All the colored wires are then pushed into the connector RJ-45 according to the Figure 

3. 
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 The connector is placed into the Ethernet crimper and the handles are cinched down. 

After removing the connector from the crimper, it is ready to use.  

 The steps are repeated for the other end and both ends are tested using Ethernet cable 

tester.   

 

2.2.6 Connecting all the Raspberry PIs to the network: 

Each end of the Ethernet cable is connected to one Raspberry PI. The other end is connected 

to the network. These connections are made to do some simulation on Real Time Digital 

Simulation (RTDS) and OPAL RT. VILLAS node act as a gateway between them.  

Below Figure 5, 6 and 7 shows the networked Raspberry PIs. 

 

Figure 4: Arrangement of Raspberry PI on Shelf (1) 
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Figure 5: Arrangement of Raspberry PIs in shelf (2) 

 

Figure 6: A front view of the Raspberry PIs 
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2.2.7 Testing by sending and receiving some data: 

A python program is developed for sending and receiving a float number. A float number is 

sent from one of the Raspberry PI to VILLAS node and tested successfully. 

The python program used for sending and receiving data is: 

The ‘client.py’ file depicted in Figure 8 is used to send data. 

 

 

Figure 7: client.py 

The server.py file in Figure 9 is used to receive data 
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Figure 8: server.py 

 

 

2.3 Discussion: 

A test is performed by sending a float number from a raspberry PI having IP address 

141.221.118.160 to the VILLAS node having IP address 141.221.118.93. Using the program 

client.py and server.py, another Test is going to be completed for both receiving and sending 

data.  After that more test will be carried out for simulation on RTDS system and OPAL-RT.  
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APPENDIX: Python code for optimization 
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