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Autonomous Robotic Grasp Planning by SuperEllipsoid Representation
Dissertation Abstract – Idaho State University (2018)

Though robots have been used in manufacturing industries for decades in precise and
repetitive tasks, nowadays they are entering the realm of household environments. While
the ”dream” is of an autonomous robotic butler, still the present scope is limited to only
vacuum cleaners and lawn mowers, due to the limited capability specifically in the field of
grasping and manipulation in the unstructured environment. The thesis approaches towards
a goal of grasping novel objects using low-cost and noisy sensors with an incomplete object
model, by incorporating a superellipsoid modeling. A complete grasping system is proposed
relying on real-time superellipsoid representation of partial-view objects and incomplete ob-
ject modeling, well suited for unknown symmetric objects in cluttered scenario followed by
optimized antipodal grasping. The incomplete object models are processed through a mir-
roring algorithm that assumes symmetry to first create an approximate complete model and
then fit for superquadric representation. The grasping algorithm is designed for maximum
force balance and stability, taking advantage of the quick retrieval of dimension and surface
curvature information from the superquadric parameters. The pose of the superquadric with
respect to the direction of gravity is calculated and used together with the parameters of
the superquadric and specification of the gripper, to select the best direction of approach
and contact points. The grasp hypotheses are filtered by incorporating a reachability map
ensuring the execution of grasps. The methods are evaluated on custom datasets contain-
ing objects in isolation as well as in clutter on three different robotic platforms a) a 7DOF
WAM arm, b) a 6DOF UR5 arm with 2-finger gripper and c) a PR2 mobile manipulator.
Though the method is based on simplistic shape and geometry information, it outperforms
existing state-of-art learning-based algorithms in cluttered environments measured against
time efficiency and accuracy.
Key Words: Grasp Planning, Unknown Objects, Superellipsoid, Symmetry model
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Chapter 1: Introduction

It has always been a childhood dream of many people to have a companion, a ”Robot” in
the home. But as simple and cordial the term sounds, the essence of the word is not so
soothing. ”Robot” is a synonym of ”forced labor”. Despite the prejudicial tone, a robot is
a machine, especially one programmable by a computer, capable of carrying out a complex
series of actions automatically [Oxford English Dictionary]. As the technologies continue
to comfort us with technical advancements, human desire to rely more on technologies is
increasing rapidly; even for simplistic tasks such as bringing or fetching objects, cleaning
and even cooking. Some may find this human behavior of leaning towards technologies for
such trivial tasks offensive. But according to 2017 U.S Census Bureau, 15% of Americans
are above the age of 65 and the number has a rapid growth. The statistics also suggest that
one in five people have some disabilities. In the year 2060, the number will reach 25%; i.e.
one in four of people will need some help in doing the regular household chores. The field of
robotics has the potential to bring cheap and reliable solutions to such healthcare problems.

According to Wikipedia, the term ”Robot” is first used by the Czech writer Karel Ćapek
in his 1920 play Rossumovi Univerzální Roboti (Rossum’s Universal Robots). But history
suggests that the efforts of creating artificial human started far before that, even in ancient
Greece or Chinese culture. In the current evolution phase of artificial humans, we can find
robots mostly in industrial settings taking care of the precise and repetitive tasks. But the
journey from the industrial scenario to a human environment has many constraints that need
to be solved before we can see a robot ”butler” in our home.

The core problem preventing robots from working in the household environment is that
unlike the factory environment, the domestic environment is dynamic, unstructured and
uncontrolled. The conditions of the home environment make robot incapable working with
offline conventional programming. A method relying on the complete knowledge of the state
of the environment and robot is most suitable for such scenes. The challenges are similar
in grasping problems. Robotic grasping enables a robot to fetch or manipulate objects such
as picking, placing, pouring, cleaning, using tools, etc which are an essential capability of
a service robot. To enable safe and efficient grasping through a robot, the grasping points
or suitable regions where the robot’s hand can be placed need to be identified. This can
be formulated as an optimization problem over the grasp location and the surface of the
object. In a home environment, the range of graspable objects can be huge. This situation
makes the approach of creating a database of possible objects infeasible. Thus algorithms
are needed to generate grasps online for the objects rather than using stored 3D models of
the objects.
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Figure 1.0.1: Several service robots present today: From left to right, top to bottom, a) PR2 by Wil-
low Garage, b) Relay from Saviaoke, c) Amigo robot of Eindhoven University of Technology, d) Care-
O-Bot 4 by Fraunhofer, e) Reem robot from PAL robotics, f) Pepper from SoftBank Robotics.

1.1 Motivation

Just after the moment of birth, a human child can hold onto the finger of the mother, before
knowing any basics about grasping. Enabling such kind of capability on a robot involves
various sub-tasks such as identifying objects, searching for appropriate regions or grasps on
the surface of the object, and execution of those grasps depending upon the task.

The main sensor for object identification for a human is the eye, which is the result of
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billion of years of evolution. Unlike such complex mechanism, the sensors in a service robot
rely on noisy and incomplete data. From this data, an approximate model of the object
needs to be constructed prior to grasp synthesis. If a previous instance of the object model
is present in the robot memory, it is possible to overlap the existing model with the perceived
sensor data and search for grasp regions. But to grasp unknown objects, this method is not
suitable as no previous occurrence of the object is present. The system has to cope with
missing information to generate an approximate full model while planning for grasping.

There are existing algorithms such as GraspIt [86] which search for grasps offline, assuming
a complete model of the object is present. But the absence of a complete model of the object
makes these algorithms infeasible for unknown objects. Nevertheless, while an approximated
model can be created by estimating the occluded and missing part of the object, grasping
directly on these sensor data may lead to erroneous grasping which may further result in
damage on the object, robot, environment or the participating human. Feasible grasps
can be found when the approximated model is estimated by a mathematical model and
geometry-based grasps are searched on the mathematical model. Additionally, all the object
identification and grasp synthesis tasks need to be performed in a time-efficient manner.

Before allowing the robot system to perform the grasp, it should be ensured that the grasp
can be executable by incorporating environment and robot constraints. A representation of
the environment and kinematics of the robot should be utilized by which the grasps that
may be outside the reach of the robot or may bring collision to the system are discarded.

1.2 Problem Statement

This thesis investigates the problem of grasping unknown objects, from partial and incom-
plete sensor data where the grasp is specified by high-dimensional grasp space of grasp
position and orientation, gripper opening angle and an approach direction of the robot arm.
The scenarios for grasping unknown objects may vary depending upon the robot configura-
tion and setting of the environment. For a typical end-to-end robot pick and place operation,
the following commands may be provided by the user:

• ”Robot, pick up the object”

• ”Robot, pick up all the objects on the table and put them in the box”

• ”Robot, Clear the table”

As the robot is supposed to work in a scenario where the objects are not specified, it
is the responsibility of the system to define which object it is supposed to pick up and
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how. Moreover, the system should perform following tasks autonomously in a safe and
time-efficient manner.

1. Model point cloud data to object model

2. Grasp unknown object in isolation

3. Grasp unknown object in clutter

4. Ensure safe and reliable grasping

1.2.1 Formal problem definition

Formally, the problem can be defined as:
Stable and executable grasps G should be found on a robot R, where the point cloud

PC ⊂ R3 and some obstacles OB in a robot co-ordinate frame CR is provided. The obstacles
are 3D structures that are not graspable such as the table. A grasp G can be defined by a
vector G = (P,O, α, d) where P is the position and O is the orientation of the gripper while
grasping. α denotes the opening angle of the gripper and d is the approach direction. A grasp
can be considered stable if it maintains the property of force-closure[95] or form-closure[17].
It is executable if the physical robot R can reach and execute the grasp trajectory without
any collision.

1.2.2 Challenges in Grasping

The thesis deals with grasping objects in real time in real environments. These are some
following issues which generate difficulties in grasping in the real world.

• Perception: The complete grasping system relies on the perception module as the main
input. While various sensors utilize different strategies for perceiving the environment,
proper and noiseless object surfaces cannot be obtained every time. Some surfaces
such as textureless or shiny surfaces are very hard to perceive. The environmental
constraints such as lightning and occlusions also affect the perception system.

• Calibration: calibration is one of the huge issues in terms of grasping. Wrong cali-
bration of hand camera system may lead to catastrophic damage to the system or the
object.

• Inverse Kinematics Solutions: Without a valid inverse kinematics solution, the whole
grasping system becomes incapable. The grasping system can output such grasp pose
which may not be reachable by the IK solver.
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• Robot Modelling: The robotic system should be modeled beforehand the grasping
task. In many grasping systems, URDF (Unified Robot Description Format) is used
to model robots. An incorrect modeling can lead to improper grasping.

1.2.3 Thesis Goals

This work aims to provide a new direction towards grasping unknown objects by incorporat-
ing superellipsoid modeling and find grasps directly on the model based on its parameters.
A complete grasping system framework is presented with the goals of:

1. Exploring new directions in superellipsoid representations by separating the process of
fitting the model and pose estimation, which can lead to time-efficient fitting.

2. A novel mirroring scheme which can approximate the occluded regions of the object,
which has the proficiency of efficient model fitting.

3. A novel grasp synthesis algorithm that can search grasps directly on the mathematical
model considering the geometry of the object and gripper constraints.

4. Combining robot kinematics and environment information in the grasp synthesis pro-
cess which can result in safe and reliable grasp execution.

1.3 Proposed Framework

The core idea of the proposed grasping system can be viewed in the Fig.5.5.1. After obtaining
the point cloud data from the sensor device, the workspace of the environment containing the
table and the objects on the table are considered. The table and the objects are separated
out and the point cloud supported by the table are further forwarded for processing. If
multiple objects are present on the table, the clusters of points are further segmented to
separate out multiple clusters where individual clusters can represent individual objects.
The system highly relies on the fitting of superellipsoid models on the approximated sensor
data. The system can be considered as a combination of multiple optimization problems.
The first optimization process estimates the pose of the object which is forwarded to the
second optimization process that searches for the parameters of the superellipse that can
be best fitted to the point cloud data. The final optimization step occurs during grasping
where the system searches for the best grasp that considers all the geometry constraints of
the fitted superellipse and gripper as well as the constraints posed by the environment and
robot kinematics.
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Figure 1.3.1: Scheme of grasping system

Each individual object model is searched for a pose which is a representation of position
and orientation of the object in the world frame. The poses and object point cloud are further
processed to construct a mirrored surface which in combination to the original point cloud
can represent an approximated model of the object. The model is fitted with superellipse
and the minimum parameters that best fit the approximated model are obtained.

The minimum parameters that represent the object are forwarded for grasp synthesis which
can find multiple grasp hypothesis dependent on the object geometry and gripper parameters.
A grasp hypothesis may contain information such as an optimized angle which determines
how much the gripper has to open, a pose of the gripper which decides where the gripper
angles should be placed and finally approach information deciding the direction by which
the arm has to come towards the object. The grasp hypotheses are filtered and searched
for optimized final grasp which can ensure grasp execution based on robot kinematics and
environment setup.

1.4 Thesis Structure

This thesis provides a system of grasping unknown objects in the isolated and cluttered
environment by superellipsoid representation. The structure of the thesis is as follows:

Chapter 2 discusses the representation of objects from sensor data. It provides a back-
ground on processing 3d point cloud, feature estimation and a detailed analysis of various
segmentation and clustering techniques.

Chapter 3 presents the mathematical background behind superellipsoids. It provides a
detailed explanation of superquadric sampling, fitting and normal estimation. Finally, it
formulates the process of pose estimation by iterations.

Chapter 4 discusses the concepts of reachability map incorporated in the work of grasp
filtering. After a brief explanation of robot kinematics, it presents a discussion on reachability
maps created by Reuleaux library.

Chapter 5 introduces the main work of grasping of unknown objects by superellipsoid
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fitting. After a discussion on the basic concepts of robotic grasping and a state-of-the-art
of various types of robotic grasping techniques, it explains the process of grasp hypothesis
generation and grasp filtering. The mirroring algorithm for object shape approximation and
the full grasping pipeline is discussed.

Chapter 6 presents the experimental results on three different robotic platforms for grasp-
ing in isolation and table clearing tasks. The results of Reuleaux library and superquadric
fitting are also presented.

Chapter 7 presents the conclusion, objectives achieved and future work related to the
thesis.

1.5 Glossary

For the sake of clarity, the basic terminologies used throughout the thesis are defined here:
Sensor: A sensor primarily detects or measures a physical property of the environment.

In the thesis, mainly low-cost 3D sensors such as Kinect1 and Kinect2 are used.
Point Cloud: The point cloud is a 3D representation of sensor data captured by a 3D

sensor represented mainly by (x, y, z) coordinates. Additional features such as color, normal
information can also be incorporated.

Segmentation: It is a process by which the object of interest can be defined separately in
a scene from rest of the objects.

Pose: A pose is a collection position and rotation information. The rotation can be
represented by Euler angles or quaternions.

Arm: An arm is a serial kinematic chain constructed by multiple joints and is mainly a
carrying device of the hand. The arm can also be termed as a manipulator.

Configuration: A configuration is a set of joint values which can be applied to the robot
arm.

End-effector: An end-effector is a gripper attached to the final link of the robot arm which
is generally used to manipulate objects. It can also be referred as the robot hand.

Mobile Manipulator: A mobile manipulator is a specific kind of robot which is capable of
manipulating objects by its attached manipulators and able to navigate through the wheels.

Robot Kinematics: Robot Kinematics is related to the field of mechanics by which the
motion of the robot manipulator can be defined. By forward kinematics, given joint angles,
the final pose of the end-effector can be determined. With inverse kinematics, while provided
a final pose of the end-effector, the joint angles needed to reach the pose can be determined.

Rechability Map: The reachability map is a collection of all the poses that the robot
manipulator can reach. It can also be represented by the cluster of areas defining reachable
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space.
Superellipsoid: A superellipsoid is a mathematical model mainly popular in computer

graphics community. Typical superellipsoids are superquadric and supertoroid.
Grasp: A grasp is a particular configuration of the end-effector where the gripper is in

contact with the object, not necessarily satisfying any task constraints. In our thesis, a grasp
is considered by mainly three components, a) a final pose where the gripper is touching the
object, b) an opening angle of the gripper and c) approach direction which determines from
the way the robot is going to approach the object.

Object in Isolation: A condition where the object in consideration is only present in the
scene.

Object in Clutter: A condition where the object under consideration is present with several
other objects, while some or all of them is in contact with each other.
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Chapter 2: Object Representation

Our primary goal is to put the robots in a home environment. When the term ”robot”
appears, the first image comes to our mind is of enormous arms working day and night
in industries and factories with repetition and accuracy stealing jobs of human. But the
situation is changing rapidly, as robots are not only limited to industries only. Researchers
around the world are trying to move them in our human environment as a social device
caring for elders, helping children even in personal services. In the industrial environment,
the task of the robot is quite easy, as the scenario is built up for the benefit of the robot.
The sensors are dedicated in detecting only the objects in the production. On the other
hand, in the unstructured environment, such in our home, lives the most uncertain being in
the universe, the human. The setting is modeled for the benefit of the human. Therefore,
the sensors should be modeled in such a way where the robot has to acquire the continually
changing human environment. There is no guaranty that an object would still be in the same
place where it was half an hour ago. So the robot has to detect and recognize the object and
the environment every time while finding it.

Representing the object is one of the most significant tasks for any robotic grasping system.
It has to classify beforehand which object in the environment it has to manipulate, which
objects are obstacles and which objects can be considered as support. As shown in Fig.6.0.1,
the system has to understand that the table is just a support surface on which the objects
are sitting, the objects upon the table which should be manipulated and rest in the scene
are obstacles.

Figure 2.0.1: Objects and the environment

Representations of objects can be categorized based on the output dimension of the sensors.
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We can represent objects in 1D, 2D even in 3D based on the application need and sensor
structure. The next section discusses different types of sensors and processing data from the
sensor output.

2.1 1D Object Representation

Objects can be most basically represented by just 1 dimension. Though not very useful for
the complete object representation, 1D representation can be used in applications such as
avoiding obstacles for mobile robot navigation, where the robot has to decide how much
far or near the object is from the robot. Basic example of sensors that can provide 1D
representation are IR, ultrasonic, laser, haptic sensors etc.

Figure 2.1.1: Different 1D sensors(from the left to right) a)ultrasonic, b)IR, c)Laser.

Figure 2.1.2: 1D sensor visualization

As displayed in fig.2.1.2, the robot detected 2 objects in the environment by the laser
sensor visualized by the red lines.

2.2 2D Object Representation

In a 2D representation, an object is represented in the form of image which is a composition
of pixels. Each pixel in the image has own (x, y) coordinates in the window and based on
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Figure 2.2.1: 2D image pixels

their color, grayscale or RGB, it stores intensity values.
The resolution of an image is the total number of pixels in the image. To obtain an object

from a 2D image, we have to segment out the pixels which may contain the object. If the
process further needs the recognition of the object, it has to select some predefined features
of the object in the segmented pixels and compare it with a image database stored separately.

Image representation and recognition as a different field of study, is beyond the scope of
this document. For more details, please refer to [65].

2.3 3D Object Representation

Humans perceive their environment in 3D and interpret the world on the basis of what they
see, among other sensing inputs. Looking at an object we can decide the object’s distance
from us. The preliminary results and progress over 2D community suggest that for robots
the world can be perceived in similar way by image recognition. For few years, it was
substantially believed that by only perceiving the world in 2D, we can achieve the same
results of perception as human[65]. But this erroneous theory miscomprehendes the facts
of simple constraints such as lighting conditions, scale, occlusions and so on. In fig 2.3.1
and 2.3.2 we can see how framing the perception problem in this way can lead to failures
in capturing the true semantic meaning of the world.

There are mainly two reasons for preferring 3D over 2D representation. The first one
is monocular computer vision applications are flustered by both fundamental deficiencies
in the current generation of camera devices and limitations in the datastream itself. The
former will most likely be addressed in time, as technology progresses and better camera
sensors are developed. An example of such a deficiency is shown in Figure 2.3.1,where due
to the low dynamic range of the camera sensor, the right part of the image is completely
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Figure 2.3.1: Model matching failure in underexposed 2D images. None of the features extracted
from the model (left) can be successfully matched onto the object of interest (right)(image from
https://pointclouds.org/).

Figure 2.3.2: An example of a good model match using features extracted from 2D images (left),
where a beer bottle template is successfully identified in an image. However, zooming out from the
image, we observe that the bottle of beer is in fact another picture stitched to a completely different
3D object (in this case a mug). The semantics of the objects in this case are thus completely wrong
(image from https://pointclouds.org/).
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underexposed. This makes it very hard for 2D image processing applications to recover the
necessary information for recognizing objects in such scenes. On the other hand computer
vision applications make use of 2D camera images mostly, which are inherently capturing
only a projection of the 3D world. Figure 2.3.2 attempts to capture this problem by showing
two examples of matching a certain object template in 2D camera images. While the system
apparently matched the model template (a beer bottle in this case) successfully in the left
part of the image, after we zoom out, we observe that the bottle of beer was in fact another
picture in itself, stitched to a completely different 3D geometric surface (the body of a mug
in this case). This is a clear example which shows that the semantics of a particular solution
obtained only using 2D image processing can be lost if the geometry of the object is not
incorporated in the reasoning process. [111]

2.4 3D Capturing Devices

Three dimensional (3D) point clouds provide very important cues to analyze objects or
environments. They are, for instance, heavily used in topographical mapping, where an
airplane or a satellite passes over an area and takes several snapshots with a laser range finder.
In [39], authors used laser range finders to build height map of the scanned area. The work
of [61] tried to develop such kind of distance sensor in the field of mobile robotics, where the
robot tries to find a path, avoiding obstacles from the 3D data. Also in navigation, the robot
has to recognize certain features that can be used as landmarks. During the DARPA Grand
Challenge and Urban Challenge, laser range finders have been used extensively on board of
the different autonomous vehicles to build a 3D map of the immediate environment. One of
the most important properties for mobile robots is their ability to process information from
the surrounding environment. There has been a lot of work done in the area of laser range
finders and scanners for perceiving 3D. The work of [96] used point clouds to reconstruct
historic monuments. [60] discusses the used of radial basis function to reduce the number of
point clouds in a point cloud dataset. Similar work has been done in [24] where algorithms
are presented to reconstruct objects from a point cloud dataset. In order to perform its
tasks, the robot needs to be able to perceive its environment.

In order to grasp an object, the robot needs to first find the object in the scene. To execute
this task, 3D object detection and classification have to be performed. [66] presented their
work where the 3D descriptors are presented in terms of spin images for object recognition.

There are several types of 3D capturing devices available. The use of cheap devices such
as Microsoft kinect has revolutionized the 3D capturing system for RGBD images. Figure
2.4.1presents some of the devices used for capturing the environment in 3D. The Time-
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Figure 2.4.1: 3D capturing devices: (from the left) Laser range finder, Time-of-flight cameras, Kinect
Camera, Stereo Camera, PR2 head with two stereo camera pair.

of-flight cameras or Laser Measurement systems (LMS) or LIDAR systems sends rays of
light(laser) or sound(sonar) in the world, which will reflect and return back to sensor. With
the knowledge of the speed with which a ray propagates, and using precise circuitry to
measure the exact time when the ray was emitted and when the signal returned, the distance
d can be estimated as (simplified):

d =
ct

2

where c is the speed of ray and t is time for signal emitted and coming back to the sensor.In
contrast, triangulation techniques usually estimate distances using the following equation
(simplified):

d = || ft

x1 − x2
||

where f represents the focal distance of both sensors, t the distance between the sensors,
and x1 and x2 are the corresponding points in the two sensors [65]. Though many different
triangulation systems exist, the most popular system used in mobile robotics applications is
the stereo camera.

An example of 3D point cloud has been presented in Figure 2.4.2. Dense 3D point clouds
can be processed and meaningful data can be extracted by Point Cloud Library(PCL). [111]
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Figure 2.4.2: An example of point cloud data with some example objects: cup, glass, gerber-
box,cokecan, boxes, toy cylinder.

Figure 2.4.3: Point Cloud Dataset showed in distance (red is close, blue is far away) spectrum(image
from https://pointclouds.org/).
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Figure 2.5.1: Point cloud data shown in terms of x,y,z,r,g,b,d

2.5 Processing in 3D

An important aspect when dealing with point cloud representations is that they can store
much more information than just the 3D positions of points as acquired from the input
sensing device. During the acquisition process of a point cloud P, the distances from the
sensor to the surfaces in the world can be saved as properties for each resultant 3D point
pi ∈ P. The representation of pointcloud based on their distances is presented in fig 2.4.3
where the close objects are shown in red and far objects are indicated in blue.

Figure 2.5.2: Volumetric representation using a octree structure, with a leaf size of 1.5cm(image from
https://pointclouds.org/)

2.5.1 3D data representation

Given the fact that point cloud representations can hold multiple properties per point, the
definition of a point pi = {xi, yi, zi} changes to that of pi = {f1, f2, f3....., fn}, where fi

denotes a feature value in a given space (color, class level, geometry etc.) thus changing
the concept of 3D to nD. From these requirements, we can deduce that an appropriate
I/O data storage format for a point cloud P, would be able to save each point with all its
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attribute values on a new line in a file, and thus have a file with n lines, for the n total
number of points in P. A fictitious example is shown in the Fig. 2.5.1, where xi, y1, zi

represents the 3D coordinates, ri, g1, bi are color associated with each point, li is the class
level, and di is the distance from the surface. To obtain the geometry around a query point
pq, most geometric processing steps need to discover a collection of neighboring points pk,
that represents the underlying scanned surface through sampling approximations. A solution
is to use spatial decomposition techniques such as kd-tree or octree [54], and partition the
point cloud data into P chunks. Though by implementation most spatial decomposition
techniques can represent as a volumetric representation of P as shown in fig. 2.5.2. Here all
the points are enclosed in boxes with different widths namely ”voxels”.

2.5.2 Normal Estimation

Surface normals are important properties of a geometric surface and are heavily used in many
areas such as computer graphics applications, to apply the correct light sources that generate
shadings and other visual effects. Given a geometric surface, it is usually trivial to infer the
direction of the normal at a certain point on the surface as the vector perpendicular to the
surface at that point. However, since the point cloud datasets that we acquire represent a
set of point samples on the surface, there are two possibilities:

1. obtain the underlying surface from the acquired point cloud dataset, using surface
meshing techniques, and then compute the surface normals from the mesh;

2. use approximations to infer the surface normals from the point cloud dataset directly.

Figure 2.5.3: Point cloud data of a gerber box(left), the estimation of normals (right)

The solution for estimating the surface normal can be reduced to an analysis of the eigen-
vectors and eigenvalues (or PCA – Principal Component Analysis) of a covariance matrix
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created from the nearest neighbors of the query point. More specifically, for each point pi,
we can assemble the covariance matrix C as follows:

C =
1

k
.

k∑
i=1

.(pi − p⃗).(pi − p⃗)T , C.v⃗j = λj.v⃗j, j ∈ {0, 1, 2}

where k is the number of point neighbors considered in the neighborhood of pi, p⃗ represents
the 3D centroid of the nearest neighbors, λj is the j-th eigenvalue of the covariance matrix
and v⃗j is the j-th eigenvector. An estimation of surface normal of a point cloud data has
been presented in Fig. 2.5.3.

2.5.3 3D Filtering

Point clouds data can be filtered in several ways. In the process of acquisition of 3D point
cloud data, there may be several noise due to sensor inefficiency. Otherwise the point cloud
becomes dense, where more data is present than we need. So processing the unneeded data
makes the system unstable or increases the time needed for processing. In a voxel grid filter,
the cloud is divided in multiple cube-shaped regions with the desired resolution. Then, all
points inside every voxel are processed so only one remains. The simplest way would be
to randomly select one of them, but a more accurate approach would be to compute the
centroid, which is the point whose coordinates are the mean values of all the points that
belong to the voxel[111].

Figure 2.5.4: Filtering point clouds. From left to right, up to down, a) Original captured image, b)
voxel grid filtered, c) statistical outlier removal filtered, d) passthrough filtered

In a passthrough filter, certain points will be removed from a point cloud dataset whose
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values do not fall within a user-provided certain range. As for example, filtering point cloud
data based on y value will remove all the points situated on the table. In a conditional
removal filtering, all the points will be filtered based on a certain condition provided by the
user. In a statistical outlier removal filtering process, or every point, the mean distance to
its K neighbors is computed. Then, if we assume that the result is a normal (gaussian)
distribution with a mean and a standard deviation , we can consider it safe to remove
all points with mean distances that fall out of the global mean plus deviation. It runs a
statistical analysis of the distances between neighboring points, and trims all which are not
considered ”normal”. So the points outside of the region, will be removed. Some of the
filtering process have been shown in the fig. 2.5.4

2.6 Object Segmentation

Segmentation is the process of dividing the cloud data into segments or clusters, where each
cluster may represent meaningful objects in the scene. Segmentation can be performed based
on points, normals or even textures. By segmentation, we can obtain which part of sensed
points correspond to the objects we want to manipulate [111].

First, the dominant plane should be detected, which corresponds to the support surface
on which the objects are resting on. The point cloud scene can be processed by Random
Sample Consensus (RANSAC) [47] to find the dominant plane in the scene. This iterative
method helps in the estimation of the parameters of a mathematical model from a set of
observed data containing outliers. The points belonging inside the mathematical model are
considered ”inliers”, and the points outside the model are ”outliers”. To find a tabletop
surface, a plane model can be fitted to the scene, where the points inside the plane model
are points corresponding to the table.

After segmenting out the table plane model in the scene, the table shape model is fitted
with 2D convex hull polygon by which an estimation of the table can be estimated. Another
benefit of this process is that the points normal to the plane can be considered as clusters
representing the objects to be manipulated. 2.6.1 represents a general overview of the table-
top segmentation pipeline. After the RANSAC algorithm, a plane is detected in 2.6.1b. The
convex hull of the plane is shown in 2.6.1d. The points resting on the table plane can be
considered as objects clusters 2.6.1c. The objects clusters now should be segmented out for
representation of meaningful objects in the scene.
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Figure 2.6.1: Tabletop segmentation pipeline. From left to right, up to down, a) Original captured
image, b) table plane, c) clusters on the table, d) convex hull

2.6.1 Clustering

To divide an unorganized point cloud set into smaller parts, a clustering method should
be implemented. The main benefit of clustering method is that it significantly reduces
processing time. Similar to flood fill algorithm for 2D image pixels, we can produce an
euclidean clustering algorithm for point clouds using the nearest neighbors. We can use the
volumetric representation for the occupied space, or the octree structure of fixed width boxes
[111]. Additionally, user-defined conditions can also be implied for a modified conditional
euclidean clustering technique, where after the euclidean clustering the user-defined condition
is evaluated which can be based on pure euclidean distance, smoothness or RGB information.

A region growing segmentation can also be performed where the algorithm merges the
points that are close enough based on smoothness constraints. The points belonging to same
smoothness constraints are clustered together. The algorithm first sorts the points based on
minimum curvature as the minimum curvature is located in the flat areas. From there it
starts to grow its region by comparing its neighbors for the angle between its normal and
seed point. While the angle is less than a predefined threshold, the point is added to the
region. The region growing segmentation can be modified to use color information instead
of normal information. After segmentation, two neighboring clusters which have small color
difference average are merged together.

A min-cut segmentation approach performs a binary segmentation, where the output cloud
is divided into two sets, which are background and foreground. The algorithm takes object
centers and its radius and constructs a weighted graph containing every point as vertices

20



Figure 2.6.2: Different object clustering techniques. From left to right, up to down, a) Original cap-
tured image, b) Min-Cut segmentation, c) Euclidean clustering, d) Condition euclidean clustering, e)
Region growing segmentation, f) Color based segmentation

and connected with nearest neighbors. Assigning background and foreground penalties, the
point cloud is cut into two sections. Different object clustering techniques are presented in
the fig. 2.6.2

2.7 Object Oversegmentation

For a dense scene, where objects are closely touching each other, segmentation provides poor
performance, as simplistic clustering does not maintain the semantic relationship between
the points of the same objects. Superpixel is a well known method in image processing field,
which reduces the number of regions to be considered for algorithms that are computationally
expensive. Voxel Cloud Connectivity Segmentation(VCCS) algorithm [99] performs over-
segmentation on the point clusters using voxel relationship maintaining spatial geometry of
the scene. VCCS creates supervoxels using a variation of K-Mean clustering enforcing two
constraints:

1. The seeding of supervoxel clustering is performed in the 3d space, instead of the pro-
jected image space.
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2. Enforcing strict spatial connectivity on occupied voxels it ensures that supervoxels
cannot cross boundaries for disjoint set in 3D Space.

First an adjacency graph of the voxel cloud is created and maintained throughout the
algorithm where voxels are considered neighbors which are within the octree leaf resolution.
Then it incrementally expand supervoxels by a set of seed points which are evenly distributed
in space. The expansion process from the seed points are monitored by distance metric D,
where Ds is spatial distance normalized by seeding resolution, Dc is the color euclidean
distance normalized in RGB space and Dn is the angle between the surface normal vectors.
Different weights are implied where Ws is the spatial weight, Wc is the color weight and Wn

is the normal vector weight. Rseed is the seed resolution.

D =

√
WcDc

2 +
WsDs

2

3Rseed
2 +WnDn

2 (2.1)

Figure 2.7.1: Supervoxel clustering parameters (image from https://pointclouds.org/)

Fig. 2.7.2 represents the output from the VCCS algorithm, where 2.7.2 is captured scene
of unorganized point clouds and 2.7.2b shows the supervoxels and adjacency graphs.

After the supervoxels and adjacencies are extracted from the unorganized point clouds,
the edges of the graph can be classified as either convex or concave by imposing some
simple criteria described in as Locally Convex Connected Patches (LCCP) [127] algorithm.
Individual supervoxels are represented as p⃗i = (x⃗i, n⃗i, Ni) where x⃗i is the centroid, n⃗i is the
normal vector e ∈ Ni. By applying an extended convexity criterion it can decided if the
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Figure 2.7.2: a) Captured scene, b) Supervoxels and supervoxel adjacency

connection e = (p⃗i, p⃗j) between two supervoxels are convex or concave. The basic convexity
criterion can be defined by:

CCb(p⃗i, p⃗j) =

true, (n⃗1 − n⃗2) · d̂ > 0 ∨ (β < βThresh),

false, otherwise,
(2.2)

where n⃗1 and n⃗2 are the normals from the centroids x⃗1 and x⃗2. βThresh is the concavity
tolerance threshold and β is the the bias for similar normals. To calculate the angle of the
normals to the vector d̂ = x⃗1 − x⃗2 which joins the centroid can be calculated by the dot
product a⃗ · b⃗ = |⃗a| · |⃗b| · cos(α) with α = ](⃗a, b⃗). If the connection is convex, α1 would be
smaller than α2, which can expressed as:

α1 < α2 ⇒ cos(α1)− cos(α2) > 0 ⇔ n⃗1 · d̂− n⃗2 · d̂ > 0, (2.3)

where d̂ =
x⃗1 − x⃗2

∥x⃗1 − x⃗2∥
. For a concave connection,

α1 > α2 ⇔ n⃗1 · d̂− n⃗2 · d̂ < 0, (2.4)

For an extended convexity criterion, the neighborhood information should also be included.
To consider a connection e = (p⃗i, p⃗j) to be convex there should exist a common neighbor p⃗c
with p⃗i and p⃗i that has convex connection to both of them. Now, the extended convexity
criterion can be defined as:

CCe(p⃗i, p⃗j) = CCb(p⃗i, p⃗j) ∧ CCb(p⃗i, p⃗c) ∧ CCb(p⃗j, p⃗j) (2.5)

After categorizing all the edge connection as convex or concave all valid convex connected
edges from the same subgraph are merged by a region growing approach. The result of LCCP
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Figure 2.7.3: LCCP segmentation. From left to right, top to bottom a) Captured scene, b) Supervox-
els, c) Supervoxels and adjacency graph, d) Segmented objects and normals

segmentation is presented in 2.7.3a and2.7.3d, where the supervoxels and the adjacency
graphs are shown in 2.7.3b and 2.7.3c.

After segmenting point clouds in terms of clusters by locally convex connected patches, the
objects can be segmented again fro dividing into multiple functional parts. This process can
be performed by a Constrained Planar Cuts (CPC) [123] algorithm which produces greddy
cuts for the locally concavity graph model. A cost function is implemented rewarding only
the cuts orthogonal to concave edges. The adjacency graph is transformed into an Euclidean
Edge Cloud representing each point as an edge in the graph. After implementing a directional
weighted RANSAC, the cost function becomes:

Sm =
1

|Pm|
∑
i∈Pm

witi (2.6)

ti =

|d⃗i · s⃗m| i is concave,

1 i is convex,
(2.7)

Where s⃗m is the vector perpendicular to the surface model of m and d⃗i is the ith edge
direction calculated by d⃗ =

x⃗1 − x⃗2
∥x⃗1 − x⃗2∥
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Figure 2.7.4: CPC segmentation. From left to right, top to bottom a) Captured scene, b) Supervox-
els, c) Supervoxels and adjacency graph, d) Segmented objects and normals

The results from the constrained planar cuts are represented in 2.7.4a and 2.7.4b where
the supervoxels and the adjacency graphs are shown in 2.7.4b and 2.7.4c.

2.8 Model Fitting

Instead of representing objects directly from sensor data, it is advantageous to represent
objects in terms of mathematical models which can be fitted on the segmented sensor data.
The advantages are such as:

1. By a model it is easy to estimate the quantitative behavior of the data.

2. The mathematical model discards the noise the sensor data

3. In terms of performing further manipulation of sensor data such as grasping, the op-
eration can be performed directly on parameterized models.

The most basic model that can be fitted are implicit polynomial and algebric invariants
[129] [22] mainly for object recognition and position estimation from noisy and partial data.
The approach towards fitting the models is to minimize the distance function:

dist2(S, f) =
∑

(xi,yi,zi)∈S

f 2(xi, yi, zi)

∥∇(f(xi, yi, zi))∥2
(2.8)
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Where f(xi, yi, zi) is the gradient and ∥∇(f(xi, yi, zi))∥2 is the square of the norm of
the gradient. The curve coefficients are considered as global descriptors. To fit the model, a
comparison between curve coefficients and local region of interest is not feasible as the data for
fitting the polynomials imposes constraints among the coefficients of fitted polynomials. The
coefficients of the fitted polynomial are constrained to lie on a manifold of lower dimension
than the number of coefficients.

In the work of [93], an algorithm to fit Spherical harmonics is presented which is widely
used for the purpose of shape reconstruction, shape descriptor, filtering, and frequency based
representation. The algorithm is computationally faster than other methods due to the
monte carlo integration over the edges. First, it imposes an unfolding split condition to
partition the object utilizing kd-tree. For each cell of the kd-tree, best fitting spheres are
found and spherical harmonics computations are performed. Triangulating each local patch
of the object spherical harmonics computations are performed again for local polar function
and finally the representations are blend together for the reconstruction of the overall object.
The spherical harmonics {Ylm(θ, φ) : |m| ≤ l ∈ N} are special functions defined on the unit
sphere S2 as:

Yl
m(θ, φ) = kl,mPl

m(cos θ)eimφ (2.9)

where θ ∈ [0, π], φ ∈ [0, 2π], kl,m is a constant and Pl
m is the associated Legendre polyno-

mial. In [68], a rotation invariant representation based on spherical harmonics is discussed.
The core advantage of this descriptor lies in improved performance in matching for recogni-
tion and dimensionality reduction for compact representation.

Object representation in temrs of Geons, a qualitative model for symbolic object recog-
nition is presented in [142]. The work in [28] proposed a method to model different types
of real-world objects by a generalized Cylinders, which is the solid generated by a planar
cross-section as it is moved and deformed along an axis [101]. In contrast of generalized
cylinders, a symmetry seeking model [132] which is designed into internal forces that con-
strain the deformation of the model is proposed. The consistent deformation maintains a
consistency with the 2D silhouette of the object. The model combines two separate models
of a deformable spine model and a deformable tube model. The three forces does the fol-
lowing functionalities: coerces the spine into axial position with the shell, predisposes the
tube to radial symmetry around the spine and controls expansion or contraction of the tube
around the spine. In [89], an approach towards processing geometric models and efficiently
recovering a compact representation of euclidean symmetry has been proposed. Union of
balls representation is proposed in [107] where a medial axis is computed first, which is the
center of the balls of maximum diameter inscribed inside the object.
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In [73] and [72] 3D objects are modeled as blob models assuming 3D models are composed
of a set of near-convex 3D simple parts and each part can be described as long and thin,
flat and wide or truly 3-dimensional. The long thin parts are called sticks and the flat wide
parts are called plates. The parts that are neither thin nor flat are considered blobs. Stick
is a 4-tuple set ST =< En, I, Cm,L > where En is the set of two ends of the stick, I is the
interior of the stick, Cm is the center of mass and L is the length. Plate can characterized by
PL =< Eg, S, Cm,A > where Eg is the edge separating the two surfaces. S = S1, S2 is the
set of surface points, where S1 is point on first surface and S2 is the points on second surface.
The center of the mass of plate is Cm and A is the area. A blob is BL =< S,Cm, V >

where S is the points on the surface, Cm is the center of mass and V is the volume. The
whole model is represented by the relational data structure between the sticks, plates and
blobs.

Object representation by superquadric models is deeply described in next section.

2.9 Summary

In this chapter, object representation from sensor data is discussed especially in 3D. The
processing of point data, segmentation and filtering procedures are analyzed. A brief expla-
nation of different approaches of model fitting are also presented. The superellipsoid model
used in this thesis is discussed in detail in next chapter.
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Chapter 3: Superellipsoid Representation

3.1 Superquadric Representation

Superquadrics is a generalization or extension of the family of quadrics, or quadric surfaces
first introduced by [15] and later extended in the work of [62]. The other members of ellipsoid
family are superellipsoids, superhyperboloids of one piece, superhyperboloids of two pieces
and supertoroids. The superellipsoid is one of the most popular geometric modeling tools
in the computer graphics community because of its diverse property of representing several
basic shapes such as cube, cylinder, octahedra, lozenges, spheres and spindles with rounded
or sharp corners with a single mathematical equation. The most special property of a
superquadric is that they represent closed surfaces on an object-centric coordinate system
in an inside-outside function.

3.2 Mathematical Definition

Superquadric is a spherical product of 2-dimensional surfaces achieving a 3-dimensional
surface. An unit sphere can be created as the spherical product of a half circle in the plane
orthogonal to (x, y) and a full circle which is in the (x, y) plane:

m(η) =

(
cos η

sin η

)
, with : η ∈ [−π/2, π/2] (3.1)

h(ω) =

(
cosω

sinω

)
, with : ω ∈ [−π, π] (3.2)

The spherical product is :

r(η, ω) = m(η)⊕ h(ω) =

 cos η cosω

cos η sinω

sinω

 (3.3)

Similarly, a superellipsoid can be obtained by the spherical product of two superellipses
of the form:

(x
a

)2
ϵ +

(y
b

)2
ϵ = 1 (3.4)
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r(η, ω) = S1

(
η)⊕ S2

(
ω) =

{
cosϵ1 η

a3 sin
ϵ1 η

}
⊗

{
a1 cos

ϵ2 ω

a2 sin
ϵ2 ω

}
=


a1 cos

ϵ1 η cosϵ2 ω

a2 cos
ϵ1 η sinϵ2 ω

a3 sin
ϵ1 η

 , (3.5)

with η ∈ [−π
2
, π
2
] and ω ∈ [−π, π], where a1, a2, a3 are the scaling factors of the three

principal axes. The exponent ϵ1 controls the shape of the superquadric’s cross-section in the
planes orthogonal to (x, y) plane, and ϵ2 controls the shape of the superquadric’s cross-section
parallel to the (x, y) plane. The pose of the superquadric with respect to a world frame is
specified by the six parameters that define a rigid motion, px, py, pz for the position vector
and ρ, ψ, θ for defining a rotation matrix, for instance using roll, pitch, and yaw angles. The
total set of parameters that fully defines the superquadric consists of 11 variables, {a1, a2,
a3, ϵ1, ϵ2, px, py, pz, ρ, ψ, θ }

The superellipsoid can also be expressed using an implicit equation in normal form as

f(a, x, y, z) :

(∣∣ x
a1

∣∣ 2
ϵ2+
∣∣ y
a2

∣∣ 2
ϵ2

) ϵ2
ϵ1

+
∣∣ z
a3

∣∣ 2
ϵ1= 1. (3.6)

The superquadric is bounded by the planes given by −a1 ≤ x ≤ a1, −a2 ≤ y ≤ a2, and
−a3 ≤ z ≤ a3.

3.3 Normals of Superquadrics

Depending on the value of the exponent, the intersections with the coordinate planes define
curves where the surface may not be smooth, and computing their parameters separately
is important. Working on the coordinate plane has some advantages regarding symmetry,
however in some cases, it is necessary to work on other parts of the superellipsoid surface. The
tangets to the superellipse in its differentiable regions can be computed along the parameters
η and ω as:

teη(η, ω) =


−a1ϵ1 cosϵ1−1 η sin η cosϵ2 ω

−a2ϵ1 cosϵ1−1 η sin η sinϵ2 ω

a3ϵ1 sin
ϵ1−1 η cos η

 (3.7)

teω(η, ω) =


−a1ϵ2 cosϵ1 η cosϵ2−1 ω sinω

a2ϵ2 cos
ϵ1 η sinϵ2−1 ω cosω

0

 (3.8)
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The normal vector can be defined as the cross product of the tangent vectors along the
two coordinate curves,

nη(η, ω) =


−a2a3ϵ1ϵ2 cosϵ1+1 η sinϵ1−1 η sinϵ2−1 ω cosω

−a1a3ϵ1ϵ2 cosϵ1+1 η cosϵ1−1 η cosϵ2−1 ω sinω

−a1a2ϵ1ϵ2 cos2ϵ1+1 η sin η cosϵ2−1 ω sinϵ2−1 ω

 (3.9)

3.4 Differential Geometry of Superquadrics

The superellipsoid is convex for the values of the exponent 0 < ϵ < 2; for larger values, it
becomes concave at the corresponding cross section, as shown in fig.3.4.1

Figure 3.4.1: Convex superquadrics for ϵ = 0.4, ϵ = 1, ϵ = 1.4 and flat for ϵ = 2; concave su-
perquadrics for ϵ = 2.4.

Differential parameters of superconics can be easily calculated from either their implicit
or their parametric expression. Considering the implicit equation in Eq.3.6, at the x − z

plane obtained when ω = 0, the tangent vector to the curve is:

te(η) =

{
−a1ϵ1 cosϵ1−1 η sin η

a3ϵ1 cos η sin
ϵ1−1 η

}
1√

(−a1ϵ1 cosϵ1−1 η sin η)2 + (a3ϵ1 cos η sin
ϵ1−1 η)2

(3.10)

and the normal vector,

ne(η) =

{
a3 sin

ϵ1−2 η

a1 cos
ϵ1−2 η

}
1√

(a3 sin
ϵ1−2 η)2 + (a1 cosϵ1−2 η)2

(3.11)

By using the position, tangent and normal vectors and components of parametric expres-
sion r(η) = (x, y), we can calculate the curvature as:

k =
∥t′e(η)∥
∥r′e(η)∥

=
x′y′′ − x′′y′

(x′2 + y′2)3/2
(3.12)
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For the superellipse, we can obtain:

ke(η) =
(ϵ1 − 2)a1a3 cos

ϵ1−4 η sinϵ1−4

ϵ1
√

(a21 cos
2ϵ1−4 η + a23 sin

2ϵ1−4 η)3
(3.13)

Similar expressions can be obtained for the other two planes passing through the origin
of the superquadrics’s frame. Depending on the value of the exponent ϵ1, the minimum
curvaute will be found at the intersection with the axes or at 45◦ from them. Fig. 3.4.2
shows the effect of the exponent on the location of the minimum curvature; the curvature is
constant for ϵ1 = 1.
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Figure 3.4.2: From top to bottm: a) curvature as a function of the angular parameter and the value
of the exponent ϵ in curvature plot, b) cross-sectional cut of the superquadric for same semi-axes
length and values ϵ = 0.5 and ϵ = 1.2.

3.5 Superquadric Sampling

In [102], a method is proposed for uniform spatial sampling of points on superquadric models.
The arc length between two close points on x(θ) and x(θ+∆θθ) on a curve can be estimated
by Euclidean distance,

D(θ) = |x(θ)− x(θ +∆θθ))| (3.14)

where we can use a first-order approximation for ∆θθ,

∆θθ =
D(θ)

ϵ
∗

√
cos(θ)2 sin(θ)2

a21 cos(θ)
2ϵ sin(θ)4 + a22 sin(θ)

2ϵ cos(θ)4
(3.15)

By setting D(θ) to a constant sampling rate, the incremental updates of the angular
parameters are

θi =

θi−1 +∆θ(θi), θ0 = 0, i ∈ {1....N}, θN < π
2
,

θi−1 −∆θ(θi), θ0 =
π
2
, i ∈ {1....N}, θN > 0,

(3.16)
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Figure 3.4.3: Superquadric sampling with varying values of ϵ1 and ϵ2

where for θ → 0,

∆θθ =

(
D(θ)

a2
− θϵ

) 1
ϵ

− θ (3.17)

and for θ → π
2

∆θθ =

(
D(θ)

a1
− (

π

2
− θ)

) 1
ϵ

− (
π

2
− θ) (3.18)

Sampling by the implicit equation [eq.3.6] results in loss of points on the surface and
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clutter of points on the interim, while the [102] method generates a properly distributed
sampling on the whole superquadric. The comparison is shown in fig.3.5.1, where the in
fig(a), it is sampled by the implicit equation and (b) is constructed by Pilu-Fisher method
from the same parameters of a1 = 0.0101381, a2 = 0.0389216, a3 = 0.0760457, ϵ1 = 0.1 and
ϵ2 = 0.29569.

Figure 3.5.1: Superquadric sampling by a) implicit equation 3.6 and b) Pilu-Fisher Method [102]

3.6 Superquadric Deformation

A new kind of superquadric representation can be achieved by introducing deformations to
the existing superquadric representations which can only represent simplistic convex and
symmetric objects [126]. There are mainly two kinds of deformations can be introduced to
superquadrics: a)Tapering and b)Bending.

3.6.1 Tapering

The most common tapering is linear tapering meaning only in z-axis which can achieved by
multiplying x and y function with the function of z. The radius of the object progressively
increase or decrease in x or y direction. With two new parameters tx and ty tapering factors,
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the tapering function can be defined as:

T (x) =


(tx

z

a3
+ 1)x

(ty
z

a3
+ 1)y

z

 (3.19)

The tapering parameters are restricted in the range of -1 to 1, where -1 and 1 meaning the
ends are pointed and 0 means no deformations.

3.6.2 Bending

Bending can be achieved by rotating the xz plane around the z-axis by an angle of α. First
the points of the undeformed superquadric are projected onto the bending plane and then
bent along a circular section of the plane with a radius of 1

k
, and finally projected back to

the original plane. The function for bending can simplified as:

B(x) =


x+ cosα(rB − r)

y + sinα(rB − r)

sin(zk)(
1

k
− 1)

 (3.20)

where
r = cos(α− arc tan

y

x
)
√
x2 + y2 (3.21)

rB =
1

k
− cos(zk)(

1

k
− r) (3.22)

While α ∈ (−π, π), a very small value of k should be provided as k ̸= 0. The value of k
should not be negative as deformation described by (α, k) is equivalent to (απ, k) [128].

3.7 Superquadric Fitting

The problem of fitting superquadric can be defined as the problem of finding a supere-
lipsoid that best fits the points, by some quality -of-fit criteria. There are several ap-
proaches proposed to fit superellipsoid such as Genetic Algorithms [125], Least-square fitting
[12][139], Simmulated Annealing[144] and combination of Genetic Algorithm and Simulated
Annealing[125]. The most commonly used method is Least-square fitting method as in terms
of computing time, it is less expensive. The goal is find the set of 11 parameters a ∋ {a1,
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a2, a3, ϵ1, ϵ2, px, py, pz, ρ, ψ, θ } that minimizes the total error:

E(a) =
1

N

N∑
i=1

χ2(a, xi) (3.23)

where N is the number of input points and i-th input point in the model space is xi.
By incorporating an error vector d := d(a) := (χ(a, xi))

N
i=1, it can be expressed in vector

notation as:
E(a) =

dTd

N
(3.24)

The function χ can be minimized by iterative methods such as Gaussian-Newton, Lavenberg-
Marquardt algorithms, or Taubin Method. The fitting process can be distinguished between
two approaches:

1. Algebric Fitting: The implicit equation [Eq.3.6] to calculate the error of a point.

2. Geometric Fitting: Considering the euclidean distance of a point to the surface as the
fitting error. It can be defined as the distance between xi and its orthogonal projection
x′i on the surface.

As the interior points are always have distance< 1, the algebric fitting is not a very suitable
choice. While geometric fitting is a better approach, it is computationally expensive. As
a distance measurement Solina’s distance [126], Taubin Distance [130], or Radial Euclidean
Distance can be considered while Radial Euclidean Distance is the most suitable choice.

To fit the superquadric model to point cloud data by Radial Euclidean Distance, the
distance from the points to the function f(a, x, y, z) must be minimized. Radial distance
|OP |, which is the distance between the points and the center of the superquadric [62], is used
instead of the distance perpendicular to the surface(minimum distance) for each point. Given
a point of coordinates p0 = (x0, y0, z0) in the superellipsoid frame, considering the scalar β
such that the tip of the scaled vector ps = βp0, falls on the surface of the superellipsoid.
Given the inside-outside function, Fe(ps) = 1, so that,

Fe(βx0, βy0, βz0) = β

2

ϵ1Fe(x0, y0, z0) = 1 (3.25)

We can calculate the scalar β as:

β
−
2

ϵ1 = Fe(x0, y0, z0) (3.26)
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The radial distance is then

d = |p0 − ps| = |p0||1− β| (3.27)

which can represented in its full form as:

d(a, x, y, z) = min

√√√√a1a2a3

n∑
k=0

||OP || ∗ (f(a, x, y, z)ϵ − 1) (3.28)

Where a is the superset of a1, a2, and a3. The total number of points in the point cloud
is n and d is the overall distance from the cloud to the superellipsoid. By Taubin Method
[130], the distance measurement can be performed by gradients:

d(a, x, y, z) =
|f(a, x, y, z)− 1|
|| ▽ f(a, x, y, z)||

. (3.29)

This method is more expensive as it needs the gradient at each step, while it provides
more accuracy for points near the surface.

3.8 Supertoroid Representation

A supertoroid is a dough-nut like surface represented by a similar mathematical formulation
of the superquadric. The supertoroid also has both implicit and parametric expression as the
their quadratic counterparts, and it is included with them as superquadric as an extension.
The parametric expression of the supertoroid is given by:

rt(η, ω) =

{
a4 + cosϵ1 η

a3 sin
ϵ1 η

}
⊗

{
a1 cos

ϵ2 ω

a2 sin
ϵ2 ω

}
=


a1(a4 + cosϵ1 η) cosϵ2 ω

a2(a4 + cosϵ1 η) sinϵ2 ω

a3 sin
ϵ1 η

 , (3.30)

where in order to complete the four quadrants, we need to take cosϵ1 η = sign(cos η)| cos η|ϵ1 ,
and similarly for the rest of the trigonemetric variables. As in the case of superellipsoid, the
real exponent ϵ2 controls the shape in the canonical x − y plane and the real, position ex-
ponent ϵ1 controls the shape in the perpendicular planes. The coefficients ai control the
dimensions in the x, y, z directions and the size of the hole.
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The supertoroid has the implicit equation, in its canonical coordinate system,

ft(a, x, y, z) :

∣∣∣∣(∣∣ xa1 ∣∣ 2
ϵ2+
∣∣ y
a2

∣∣ 2
ϵ2

) ϵ2
ϵ1

− a4

∣∣∣∣ 2
ϵ1

+
∣∣ z
a3

∣∣ 2
ϵ1= 1. (3.31)

3.9 Formulation of Supertoroid Radius

Consdering only the x− y plane (z = 0) in the Eq. 3.30 we can obtain:

a3 sin
ϵ1 η = 0, as a3 ̸= 0 implying η = 0, π (3.32)

In the x− y plane,

rt(0, ω) =


a1(a4 + 1) cosϵ2 ω

a2(a4 + 1) sinϵ2 ω

0

 (3.33)

The supertoid radius R(ω) =
√
x2 + y2 is:

R2(0, ω) = (a4 + 1)2
(
a21 cos

2ϵ2 ω + a22 sin
2ϵ2 ω

)
R2(π, ω) = (a4 − 1)2

(
a21 cos

2ϵ2 ω + a22 sin
2ϵ2 ω

) (3.34)

The plot of the radius of supertoroid in the x− y plane with η = (0, π) and ω = (0, π/2)

can be visualized in the Fig.3.9.1.
But the width of supertoroid is not constant as visualized in Fig.3.9.3a. Dependence of

the width of the supertoroid with w:

w(ω) = R(0, ω)−R(π, ω) =
(
(a4 + 1)− (a4 − 1)

)√
a21 cos

2ϵ2 ω + a22 sin
2ϵ2 ω

= 2
√
a21 cos

2ϵ2 ω + a22 sin
2ϵ2 ω (3.35)

where w(0) = 2a1 in the x-axis and w(
π

2
) = 2a2 in the y-axis. A radius of the mean ellipse

should be considered as shown in Fig.3.9.3b.
The radius of the mean ellipse is:

R2(
π

2
, ω) = a21a

2
4 cos

2ϵ2 ω + a22a
2
4 sin

2ϵ2 ω + a23 (3.36)
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Figure 3.9.1: The radius plot of the projected supertoid (z = 0) for the range of η = (0, π) and
ω = (0, π/2)

Figure 3.9.2: Radius of the supertoroid with varying η.
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Figure 3.9.3: Radius of the supertoroid. a) Difference in x and y axis, b) Mean radius of the superel-
lipse

R(w) = R(
π

2
, ω)

∣∣∣∣
z=0

= a4

√
a21 cos 2ϵ2ω + a22 sin 2ϵ2ω (3.37)

where R(w) is the projection in x− y plane.

3.10 Supertoroid Fitting

To fit the supertoroid model to point cloud data, the distance from the points to the func-
tion f(a, x, y, z) must be minimized. Given a point of coordinates p0 = (x0, y0, z0) in the
superellipsoid frame, we have to consider two scalars β1 and β2, where the Rπ = β2Pπ and
Pe = β1PR. Here Rπ is the mean superellipse distance in the x − y plane and Pπ is the
projection of the point P to be fitted on the x − y plane. Pe is the closest point of the
superellipse from Rπ and PR is distance from the closest point to the actual point to be
fitted.
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Figure 3.10.1: Calculation of distance β2

3.10.1 Distance to supertoid β2

Fig.3.10.1 Summarizes the calculation of β2 The projection of point P can be calculated as
Pπ = P − Pz . The median superellipse defined by Rc:

Rc(ω) = R(
π

2
)
∣∣
z=0

=

{
a1a4 cos

ϵ2 ω

a2a4 sin
ϵ2 ω

}
(3.38)

Assuming a4 > 0 in the implicit equation of the supertorid Eq.3.31:

Fc

({
x

y

})
=

∣∣∣∣ x

a1a4

∣∣∣∣
2

ϵ2 +

∣∣∣∣ y

a2a4

∣∣∣∣
2

ϵ2 = 1 (3.39)

It is known that Fc(Rc) = 1 as Rc defines the superellipse. Then

Fc(Rc) = Fc

(
β2

{
xπ

yπ

})
=

∣∣∣∣β2xπa1a4

∣∣∣∣
2

ϵ2 +

∣∣∣∣β2yπa2a4

∣∣∣∣
2

ϵ2 = 1 (3.40)

If β2 ≥ 0,

β

2

ϵ2
2

(∣∣∣∣ xπa1a4

∣∣∣∣
2

ϵ2 +

∣∣∣∣ yπa2a4

∣∣∣∣
2

ϵ2
)

= β

2

ϵ2
2 Fc(Pπ) = 1 (3.41)

So, β2 can be defined as:

β
−
2

ϵ2
2 = Fc(Pπ) (3.42)
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3.10.2 Distance to supertoid β1

Figure 3.10.2: Calculation of distance β1

The closest point to the surface is Ps where

Ps = Rπ + Pe = β2Pπ + β1(P − β2Pπ) (3.43)

Figure 3.10.3: superellipse in x′ − z′ plane
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In the x′ − z′ plane (z ∧ Pπ) as shown in Fig.3.10.3 :

r′e(η, ωπ) =


2
√
a21 cos

2ϵ2 ωπ + a22 sin
2ϵ2 ωπ cos

ϵ1 η

0

a3 sin
ϵ1 η

 =


aπ cos

ϵ1 η

0

a3 sin
ϵ1 η

 (3.44)

considering aπ = 2
√
a21 cos

2ϵ2 ωπ + a22 sin
2ϵ2 ωπ. Transforming to the original x−y−z axis,

it is just a rotation in z − axis:

re(η, ωπ) =

cosωπ − sinωπ 0

sinωπ cosωπ 0

0 0 1

 r′e(η, ωπ) (3.45)

Using the superellipse in x′ − z′ :

Fe

(
x′

0

z′


)

=

∣∣∣∣ x′aπ
∣∣∣∣
2

ϵ1 +

∣∣∣∣ z′a3
∣∣∣∣
2

ϵ1 = 1 (3.46)

where 
x′

y′

z′

 =

 cosωπ sinωπ 0

− sinωπ cosωπ 0

0 0 1




x

y

z

 =


x cosωπ + y sinωπ

−x cosωπ + y sinωπ

z

 (3.47)

Then

Fe

(
x

y

z


)

=

∣∣∣∣x cosωπ + y sinωπ

aπ

∣∣∣∣
2

ϵ1 +

∣∣∣∣ za3
∣∣∣∣
2

ϵ1 = 1 (3.48)

Fe(Pe) = 1, as in the superellipse-centric frame, Pe belongs to the quadric, hence:

Fe(β1, PR) = Fe

(
β1(1− β2)Px

β1(1− β2)Py

β1Pz


)

(3.49)

PR = P −Rπ = P − β2Pπ =


β1(1− β2)Px

β1(1− β2)Py

β1Pz

 (3.50)
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∣∣∣∣β1(1− β2)Px cosωπ + β1(1− β2)Py sinωπ

aπ

∣∣∣∣
2

ϵ1 +

∣∣∣∣β1Pz

a3

∣∣∣∣
2

ϵ1 = β

2

ϵ1
1 Fe(PR) = 1 (3.51)

So β1 can be defined as:

β
−
2

ϵ1
1 = Fe(PR) (3.52)

The final inside-outside function Fe(Pe) is:

Fe(Pe) = β
−
2

ϵ1
1

∣∣∣∣(1− β2)P
2
x√

P 2
x + P 2

y

+
(1− β2)P

2
y√

P 2
x + P 2

y

∣∣∣∣
2

ϵ1 +

∣∣∣∣Pz

a3

∣∣∣∣
2

ϵ1 = 1 (3.53)

= β
−
2

ϵ1
1

(
(1− β2)

2

ϵ1

∣∣∣∣ P 2
x + P 2

y√
P 2
x + P 2

y

aπ

∣∣∣∣
2

ϵ1 +

∣∣∣∣Pz

a3

∣∣∣∣
2

ϵ1
)

= 1 (3.54)

3.11 Pose Estimation

To estimate the pose of the superquadric in the sensor frame the most common method is
Principal Component Analysis(PCA). For determining the axes of the supertoroid, initial
value of ϵ1 = ϵ2 = 1 of an superellipsoid can be considered. The position parameters (px, py,
pz) can be estimated so that X0 is the barycenter of the input points:

X0 = X̄ =
1

N

N∑
i=1

Xi (3.55)

For a set of input points X, we can define

C =
1

N

N∑
i=1

(Xi − X̄)(Xi − X̄)T (3.56)

C is the covariance matrix which is symmetric. The eigenvectors of C can be defined as
the three axes of the inertia of the points. To obtain the solution, Jacobian Transformation
or Singular Value Decomposition [140]can be used. The goal is to align the main axis of
inertia with the z-axis of the superellipsoid. Sorting according to increasing eigenvalues, the
e1, e2, e3 are the axes of the superellipsoid in the x, y and z axes, moreover in the coordinate
system of the superellipsoid. The matrix of the eigenvectors represents the rotation matrix
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of the superellipsoid. The rotation angles ρ, ψ, θ can be obtained as:

ρ = arc tan
e2,3
e1,3

(3.57)

ψ = arc cos e3,3 (3.58)

θ = arc tan
e3,2
−e3,1

(3.59)

where ei,j is the j-th component of the i-th eigenvector.
Another method of estimating the pose in [5] where it is estimated the objects are standing

on the support surface, e.g table. The poses are only altered in terms of rotation in only
one axis. Instead of finding all the 6 parameters (px, py, pz,ρ, ψ, θ), it only searches for 4
parameters (px, py, pz,θ).
The center of the object or the position of the object (px, py, pz) is estimated by taking the
mean of the points in all three dimensions. For completely unknown objects, the ground
truth orientation is also unknown, so an assumption is asserted that the orientation of all
the objects perceived are z-axis upwards. The problem of obtaining pose information (ρ, ψ,
θ) is now limited to finding only θ which controls the rotation in z-axis. The volume Vcloud
is calculated by maximum distances in each dimension(dx, dy, dz), where the maximum
distance is the difference between the maximum value and minimum value in each plane.
All the points in the point cloud are projected onto the table plane and a 2D convex hull is
created around the projected cloud. The volume of a bounding box can also be estimated
from length l, width w of the convex hull and h, height as the value of pZmax; the maximum
height. By rotating the convex hull in small iterations and minimizing the error (ϵ) between
the volume of the bounding box and volume of the point cloud, the rotation θ in z-axis can
be obtained.

ϵ = min(Vcloud − [l ∗ d ∗ h]) (3.60)

Figure 3.11.1, illustrates the procedure of finding pose of the superquadric from the point
cloud data by iteration method. After finding the dimensions of the bounding box, the box
is projected to 2D plane and rotated by small iterations.

3.12 Summary

In this chapter, the superellispdoid representations are formulated. The implicit and para-
metric equations for the superquaric are presented with the notion of superquadric sampling.
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Figure 3.11.1: Pose Estimation by Iteration

The process of fitting superquadric to point cloud data is presented. Additionally the equa-
tions for supertoroid models are formulated. Finally a method of pose estimation by iteration
is presented.
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Chapter 4: Reachability Mapping

The robotic industry’s ongoing advancements depend upon state-of-the-art equipments- with
unique specifications and capabilities. As the hardware of the robotic systems is developed,
so as the softwares are metamorphosed. From the perspective of an industry or household
user, however, the main goal of deploying a robotic system remains the same: to successfully
perform the desired task. Tasks can range from intense industrial work such as welding,
packaging, and manipulation to relatively smaller scale of picking, placing or grasping. For
the users to accept and employ a robotic system, it must, (1) precisely execute the task,
and (2) integrate well into the user’s workspace. For both features, the user and the robot
should be aware of information about the robot’s reach and the workspace. Without this
knowledge, deployment of the robot depends solely on user intuition. An incorrect intuition
can lead to human casualty or catastrophic damage to the robotic system and workplace.

Non-expert users who do not have an in-depth understanding of robot kinematics and
the reachability challenges of robots might hold misconceptions that the workspace of a
robotic manipulator is sphere-shaped when the radius of the arm is fully extended and in
this region, the robot’s end-effector can move freely. On the contrary, the robotic arm’s
workspace depends entirely on the constraints posed on its arm joints. In the workspace,
there are few sections where the arm can reach freely; in some parts of the workspace,
the arm faces singularity. While this reachability information is advantageous in extended
applications such as finding a suitable base position for a robotic task, it can be very helpful
in filtering grasp poses and searching for most feasible grasp in the object’s grasp space.

Figure 4.0.1: From top to bottom, left to right. a) Cartesian workspace of 1DOF robot, b)Workspace
of a 2DOF robot where the joint axes are perpendicular
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4.1 Workspace of a Robot

The workspace is a set of configurations that the end-effector of the robot can achieve
depending on the structure of the robot. By definition of the workspace, every point in
the workspace of the robot should be reachable by at least one configuration or multiple
configurations of the robot[80]. Adding more joints than the DOF of the workspace point
poses redundancy to the system. Generally, the points of the reachable workspace are points
on cartesian space which the robot’s end-effector can reach. Combination of these points
generates the structure of the workspace. As for example, if the robot has a single revolute
joint or the robot is a 1DOF(Degree of Freedom) robot, the workspace of the robot will be a
planar disk or a surface as shown in Fig.4.0.1a. Adding another joint perpendicular to axis
transforms the robot to 2DOF robot and the workspace will be a sphere as demonstrated in
Fig.4.0.1b.

Figure 4.1.1: From top to bottom, left to right. a) Cartesian workspace of 2DOF robot where the
joint axes are parallel, b)Workspace plot of the 2DOF robot with joint limits and self-collision

Adding another revolute joint parallel to the axis of the first joint should maintain the
planar disk workspace of the robot, as displayed in Fig.4.1.1a. But in reality, due to joint
limits and self-collision, the structure is limited as shown in 4.1.1b for the 2R robot. The
limitation in the structure starts increasing with increase in joints. The increased complexity
of workspace with the inclusion of joints is demonstrated in Fig. 4.1.2 for a 7DOF robot and
a 6DOF robot.

4.1.1 From configurations to Workspace points

Workspace points from robot configurations can be achieved by Forward Kinematics (FK)
which finds the position (px, py, pz) and orientation (ρ, ψ, θ) of end-effector provided a con-
figuration (q) or value of individual joints (q1, q2, . . . qn) of the manipulator, where the robot
has a n-DOF manipulator [82]. The simple assumption is that all joints have a single degree
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Figure 4.1.2: From top to bottom. a) Workspace of individual joints for 7DOF WAM arm, b)
Workspace of individual joints for 6DOF UR5 arm with Barrett gripper

of freedom and the actions of each joint can be represented by a single number; angle of
rotation for revolute joint and displacement for prismatic joints. We can associate a joint
variable depending on the type of joint, such as for a joint i, the if it is revolute, it can be
denoted by qi and if it is prismatic, it can be defined as di. A coordinate frame is assigned to
each link of the robot as shown in Fig.4.1.3, where blue represents z-axis, green is y-axis and
x-axis is represented by red. Frame O0x0y0z0 is assigned to the first joint considered as the
base frame. When a joint is actuated, the links after the joints and the coordinate frames
obtain a resulting motion. Suppose Ai is the homogeneous transformation that provides the
position and orientation of frame Oixiyizi with respect to the frame Oi−1xi−1yi−1zi−1. We
can say that

Ai = Ai(qi) (4.1)

The homogenerous transformation that expresses the position and orientation of Ojxjyjzj

with respect to Oixiyizi

T i
j =


Ai+1Ai+2 · · · Aj−1Aj, if i < j

I, if i = j

(T j
i )

−1, if i > j

(4.2)

where T i
j is called the transformation matrix.

If the position and orientation of the end-effector with respect to the base frame are dOn
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Figure 4.1.3: Coordinate frames assigned to a 3R robot.

and RO
n , the it can be represented in terms of homogeneous transformation as

TO
n = A1(q)A2(q) · · · An−1(qn−1)An(qn) =

[
RO

n dOn

0 1

]
(4.3)

Where

Ai(qi) =

[
Ri−1

i di−1
i

0 1

]
(4.4)

The final transformation matrix is

T i
j = Ai+1Ai+2 · · · Aj−1Aj =

[
Ri

j dij

0 1

]
(4.5)

with
Ri

j = Ri
i+1 · · ·R

j−1
j and dij = dij−1 +Ri

j−1d
j
j−1 (4.6)

Expressing forward kinematics eqaution in the product of exponential form:

T (θ) = e|S1|θ1e|S2|θ2 . . . e|Sn|θnM (4.7)

where the robot is spatial n-DOF open chain. The forward kinematics equation can also be
represented in terms of Denavit-Hertenberg parameters [82].

4.1.2 From Workspace points to Configurations

Searching for a joint solution in terms of end-effector poses is the problem of finding inverse
kinematics (IK) solution [82]; the inverse problem of forward kinematics problem. The
general problem can be stated as:
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Given a 4x4 homogeneous transformation

H =

[
R3×3 d3×1

0 1

]
∈ SE(3) (4.8)

with R ∈ SO(3), we have to find one or all the solution of equations

TO
n (q1, · · ·qn) = H (4.9)

where
TO
n (q1, · · ·qn) = A1(q1) · · · An(qn) (4.10)

The inverse kinematics problem can be solved in two ways. a) Numerical Inverse Kine-
matics and, b) Analytic Inverse Kinematics

Numerical Inverse Kinematics

There are several attempts to find inverse kinematics solutions by Numerical methods which
revolve around gradient descent using ∂T

∂q
. The goal is to find the roots of the nonlinear

equation. An approach towards solving the non-linear equation can be Newton-Raphson
method. Still, different optimization methods may be needed where exact solutions do
not exist, and a closest approximate solution should be incorporated. To find solutions by
Newton-Raphson method for an equation g(θ) = 0 with a differentiable function g : R → R,
an initial guess θ0 should be considered. The Taylor series expansion for g(θ):

g(θ) = g(θ0) +
∂g

∂θ
[(θ0)(θ − θ0)] +

∂2g

∂θ2
[(θ0)(θ − θ0)] + · · · (4.11)

Taking only the first-order terms, setting g(θ) = 0, and solving for θ:

θ = θ0 −
(
∂g

∂θ
(θ0)

)−1

g(θ0) (4.12)

Taking this solution as the initial guess for the solution and repeating finding the solution
for θ, we can obtain the iteration:

θk+1 = θk −
(
∂g

∂θ
(θk)

)−1

g(θk) (4.13)

Until some stopping criteria or some user specified threshold such as |g(θk)−g(θk+1)|/|g(θk)| ≤
ϵ, the iteration process is repeated, where ϵ is an user-defined value . The process is similar
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for multidimensional equation, where g : Rn → Rn

∂g

∂θ
(θ) =


∂g1
∂θ1

(θ) . . .
∂g1
∂θn

(θ)

... . . . ...
∂gn
∂θ1

(θ) . . .
∂gn
∂θn

(θ)

 ∈ Rn×n (4.14)

Expressing the end-effector frame using the coordinate vector x by the forward kinematics
equation x = f(θ) by a multidimensional non-linear equation as f : Rn → Rm which maps
the n dimensional joint coordinates to m dimensional end-effector coordinates, we can solve
for g(θ) by Newton-Raphson method. The equation can be defined as

g(θd) = xd − f(θd) = 0 (4.15)

Taking θ0 as the initial guess, the equation can be expressed as Taylor series expansion to
the first-order terms as:

xd = f(θd) = f(θ0) +
∂f

∂θ

∣∣∣∣
θ0

△θ (4.16)

Where △θ = (θd − θ0) and the differentaible part is called Jacobian J(θ) ∈ Rm×n. The
equation can be further approximated as:

J(θ0)△θ = xd − f(θ0) (4.17)

Assuming J(θ0) is invertible and square, the △θ can be solved as

△θ = J−1(θ0)(xd − f(θ0)) (4.18)

If the J is not square or singular or invertible, a close solution can still be obtained by
Moore-Penros pseudoInverse J†.

Analytical Inverse Kinematics

Analytic Inverse Kinematics solvers are faster than numerical solvers and present almost
exact solutions. Also, the analytic solution is completely dependent on the structure of the
robot. There are many approaches towards solving inverse kinematics by analytical meth-
ods. The most general one is to convert the problem into a higher-dimensional univariate
polynomial. Another approach is to analyze the structure of solution sets of polynomial so-
lutions [138]. The most effective method is to formulate the problem as eignedecomposition
problem [112] [81]. In [36], a minimal, numerically stable analytical inverse kinematics solver
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is presented which proposes an algorithmic-search based approach.
The final transformation of the end-effector can be further simplified as:

Tee = T0J0T1J1T2J2 . . . Tn =


r00 r01 r02 px

r10 r11 r12 py

r20 r21 r22 pz

0 0 0 1

 (4.19)

where Ti is the constant affine transformations and Ji is the transformation depending on
the joint value ji, which may be a rotation around an arbitary axis vi:

Ji(ji) = I4×4+sin ji


0 −vi,z vi,y 0

vi,z 0 −vi,x 0

−vi,y vi,x 0 0

0 0 0 0

+(1−cos ji)


0 −vi,z vi,y 0

vi,z 0 −vi,x 0

−vi,y vi,x 0 0

0 0 0 0


2

(4.20)

or a translation along an axis:

Ji(ji) =

[
I3×3 jivi

0 1

]
(4.21)

All constraints for solving the inverse kinematics can be derived by changing frame of
reference:

T−1
0 TeeT

−1
n = J0T1J1T2J2 . . . Jn−1 (i = 0)

J−1
0 T−1

0 TeeT
−1
n = T1J1T2J2T3 . . . Jn−1 (i = 1)

T−1
1 J−1

0 T−1
0 TeeT

−1
n = J1T2J2T3 . . . Jn−1 (i = 2)

. . . T−1
n−1J

−1
n−2 . . . T

−1
0 TeeT

−1
n = Jn−1 (i = 2n− 2)

(4.22)

For each of the equations Tee,i =
[
Ree,i tee,i

0 1

]
and Ti =

[
Ri ti

0 1

]
such that Tee,i = Ti.

Including the constraints, the full equation becomes:∑
i

ai
∏
j

c
pi,j
j s

qi,j
j j

ri,j
i = 0 (4.23)

where cj = cos(j) and sj = sin(j) and pi,j + qi,j + ri,j ≤ 1. Putting c2j + s2j = 1 and other
trigonomtric variables, the system can consists upto 2n variables [36].
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4.1.3 Workspace in terms of Reachability Map

While the workspace fully defines all the Cartesian positions and orientations the robot can
reach, without parameterization, it is not thoroughly useful. In reality, it can be infinite.
Therefore to quantify the workspace, a mapping is needed which can maintain a specialized
structure to store all the task poses the robot can reach and the robot configurations asso-
ciated with it. The structure should also present a notion of areas where the manipulator is
most reachable and where it is less reachable or unreachable. It should be capable of provid-
ing quick results of simple queries such as which poses are in the most reachable area from
a pool of multiple poses or which grasps have the most feasibility in terms of reachability.
Reachability map is a parameterization of the workspace of the robot.

4.2 Previous Work

One of the challenges in developing a useful robotic system is designing a platform or
workspace that lets the robot to effectively complete the desired task. Initial work on path
planning and reachability were typically performed for simple grasp points on objects [90],
which involves creating a map representing the areas of high dexterity for the manipulators.
This work was then extended to the use of reachability maps to solve the inverse reachability
task [23] [36], where the optimal base placement was found to perform the desired grasp on
an object. Work done by [146] examined ways to simplify the reachability map by generating
a capability map, a simplified structure that permits faster and more efficient searches on
the map in order to solve the inverse reachability problem.

These methods are limited. They solve only the general problem of whether or not an
inverse kinematics solution was found. A given grasp location could mean that some or
all of the solutions found could be non-optimal (near singularities or joint limits). The
work of [145] presents the concept of manipulability ellipsoid measure, which can be derived
from a Jacobian matrix of manipulators. The size of the ellipsoid and the principal axes
represent the manipulation ability in a certain configuration and are thus used to determine
the effectiveness of a grasp at a given location. This work was extended regrading grasping
and manipulation in [135].

To overcome the single grasp location issue, various methods have been used to search the
reachability map in order to find the location where the desired trajectory can be executed
with the highest level of dexterity. Work proposed in [134] uses sampling of the trajectory
to find and overlay multiple base placements, while [147] uses a pattern search to fit the
trajectory into the area representing the field of high dexterity. Proposed method in [148]
uses a cross-correlation technique to fit the desired trajectory to the model of the robot
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reachability map. Further improvements to the reachability map method were developed by
[37] to include the ability to add a transform offset from the original end-effector location,
which is useful if the robot is grasping a tool with a non-zero length. Method of [106]explores
the case where a specific trajectory is not given; rather the task has been simplified into a
generalized workspace environment where the robot must work.

Algorithm 1 Generate Reachability Map
input (URDF of robot)

1: procedure GenerateReachMap
2: create VoxelStructure V
3: for each voxel vi in V do
4: create sphere s
5: checkforSelf Collision(s)
6: Store sfiltered in S
7: end for
8: for each si in S do
9: Sample surface and generate poses P

10: for each j in P do
11: findIKSolution (Pj)
12: if solution then
13: Store (si, Pj)
14: end if
15: di = FindReachabilityMeasure(si)
16: Store di with (si, Pj, qj) in map
17: end for
18: end for
19: end procedure

4.3 Reachability Map Generation

A reachability map is a collection of all poses that the robot’s end effector can reach. To
accommodate the abundant number of reachable poses, similar poses are clustered into a
sphere structure suitable for visualization and easy to access. The structure also captures

Figure 4.2.1 (following page): Different reachability map representations. From top to bottom:
a)Reachability Space in OpenRave [36], b)Default workspace visualization in UR5 manual, c) Grasp-
ing objects by reachability map [90], d)Reachability map in[135], e)Reachability map representation in
[146]
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the directional information of reachable poses, because several positions can be reached only
from a certain direction. An individual sphere is represented as a multimap data structure,
which holds information about the sphere’s position, all reachable poses belonging to the
sphere, the robot configurations leading to the poses, and the reachability measure of that
sphere. The robot’s workspace is first discretized, sampled for reachable poses and the
information of reachable poses are stored in a structured manner [6]. The algorithm for
constructing reachability map is presented in Algorithm. 1. The reachability map structure
of four different robots created with the Reuleaux library is shown in Fig.4.3.5.

4.3.1 Workspace voxelization

The input to the creation of a robot reachability map procedure is the Unified Robot De-
scription Format (URDF) model of the robot, from which a detailed robot description can be
obtained. The robot’s hypothesized workspace is first voxelized to create a square structure
around the robot. The voxelization process is performed by octree [54], a hierarchical data
structure enabling spatial partitioning and searching between voxels. The root node of the
octree is at the base of the manipulator, and every node is connected to its eight children.
The tree is extended to the overestimation of the diameter of the robot arm in an extended
state. The size of the voxels required is task dependent and thus user-defined. Tasks requir-
ing a high degree of accuracy will need a smaller voxel size to provide more accurate results
in the final base placement location. The centers of voxels are determined, and a sphere
with a radius of the voxel’s resolution is placed in every voxel. The workspace voxelization
is presented in Fig.4.3.1. For ease of visualization, very low-resolution voxels are presented.
In real work, the voxel resolution should be determined based on the task.

4.3.2 Self-Collision Checking

All the spheres collected by the voxelization procedure do not indicate reachable workspace to
be considered. The workspace regions where the robot body is present should not be included
in the workspace because end-effectors cannot reach those sections due to collisions. For
filtering out such sections, as a preprocessing step, the robot body is modeled as a collection
of triangles and checked for collisions with the voxelized sphere center. The sphere centers in
collisions with robot body (excluding the arm considered for reachability analysis) are opted
out of the workspace structure; they are not further discretized for reachability analysis. The
robot links of the body that are filtered from the voxelized workspace are shown in red in
Fig.4.3.2.
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Figure 4.3.1: Voxelization of the workspace of the robot from two point of views a)front and b)side.

A collision checking library FCL [97] is used for fast collision checking. This method
provides an advantage in terms of time efficiency since most other methods such as [146]
and [36], check for collision only when obtaining solutions from poses. This step drastically
reduces the spheres to be searched.

Figure 4.3.2: The voxels on the robot body are filtered. Robot body links are shown in red color.
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In the method proposed in [6], self-collision is also included while checking for reachability
of the poses. Certain poses may not be inside the robot body, but to reach the pose, some
part of the robot may be in collision. Such poses can be considered unreachable. A condition
where the robot is in self-collision is represented in Fig.4.3.3, where the links in collision are
shown in different colors. It is worth noticing in Fig.4.3.5 that reachability maps created
without self-collision represent overall symmetric structures that consider higher reachability
at the robot’s base, e.g., the reachability map of JACO arm (Fig.4.3.5b). Due to joint limits
and self-collision, the area of the robot base should be less reachable, which can be identified
in Fig.4.3.5a, the reachability map of the LWR arm. The reachability map of the Fetch
and PR2 robot in Fig.4.3.5c and Fig.4.3.5d shows an inconsistent structure since the sphere
centers within the robot’s body are filtered out in this step.

Figure 4.3.3: Self collision between two links of the robot. Colliding links are shown in red and yellow
color

4.3.3 Workspace Sampling

One of the most influential ways to determine robot’s possible reach position is by forward
kinematics (FK), where the joints of the manipulator can be uniformly sampled and the
configuration of the tool center point (TCP) can be stored in an efficient structure to repre-
sent the reachability workspace, similar to 4.1.1b. The number of TCP positions in a voxel
gathered from FK was considered to be a suitable representation of efficient reachability in
certain voxelized sections. In [146], it is proven invalid for most cases: If the positions in
the voxel represent a singular configuration, any large step in the configuration space will
cause small steps in the Cartesian space, leading to an abundance of poses in a single region.
Also, uniform sampling of the configuration space does not guarantee uniform sampling in

58



the Cartesian space.

Figure 4.3.4: a)Sampling of points on the sphere, b) Discretization of a single voxel in the workspace.
The cube(yellow) is the voxel to be searched. A sphere (green) is fitted inside the cube. The sphere is
discretized with probable poses (red arrow)

For uniformly sampling the task space, the spheres representing the voxels are sampled for
uniform point distribution on the sphere by the method presented in [118]. From every point
of the distribution, a direction is assumed towards the center of the sphere. As depicted
in Fig.4.3.4, an individual voxel of the discretized workspace is fitted with a sphere, and
the sphere is sampled for points on its surface. From an individual point, a direction is
considered towards the center of the sphere represented by a red arrow. Considering a
frame, the direction towards the center of the sphere is the z-axis, while the x and y axes
are tangential to the sphere surface.

All the frames created in the previous step are collected and searched for inverse kinemat-
ics(IK) solutions. A closed-form analytical inverse kinematics solver IKFast[36] is employed
to find inverse kinematics solutions. For manipulators where analytical solutions are not
available, a numerical solver KDL[1] is used which is less time-efficient due to the nature of
the solver. All reachable poses that return a valid joint solution are stored in a multimap
data structure with their corresponding sphere centers and inverse kinematics solutions.

4.3.4 Measure of Reachability

The reachability map generation procedure is simplified in Algorithm 1. A reachability
metric is proposed for a given voxel based on the fraction of discrete poses in the sphere
centered at that voxel that are reachable to the robot. In equation 4.24, the reachability
measure is termed D, where the number of discretized frames of a sphere is represented by

59



N and the number of reachable frames calculated is R.

D = (R/N) ∗ 100 (4.24)

Based on the calculated D, spheres are assigned to different colors on the color spectrum,
where blue represents higher reachability (i.e., the spheres with higher reachable poses) and
red represents lower reachability. In terms of decreasing reachability, the colors are in the
sequence of blue, sky blue, green, yellow and red.

Figure 4.3.5: Reachability map representations in Reuleaux. From top to bottm, left to right: Reach-
ability map of a) LWR 7DOF arm b) Jaco 6DOF arm c) Fetch 7DOF arm, d) PR2 7DOF arm

4.4 Queries from Reachability Map

As reachability map is a parameterization of the workspace of the robot, from the reachability
map, some vital information of the workspace can be easily queried. e.g. some cartesian pose
is reachable or not, which poses are most feasible to reach from a pool of poses and many
more. The initial solution to a numerical IK solver can also be obtained from the reachability
map, which provides fast convergence. As the voxels are already associated with a numerical
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value of the reachability measure, it is quite easy to search for a pose associated with the
voxel. To search for a reachability measure of a pose, first which voxel it belongs to should
be determined. First, the position part (px, py, pz) of the query pose should be searched in
multimap data structure of the reachability map. It can be searched in O(n) time which
provides the closest position of the voxel in the reachability map. After obtaining the position
information of the voxel, the orientation (rx, ry, rz) should be searched, which can also be
done in O(n) time. It outputs the closest orientation of the pose from the reachability map.
The associated reachability index value of the voxel can be assigned to pose and closest IK
solution can be considered to the initial solution to the IK solver. The returned numerical
value for the pose can be vital for the following sections, as the reachability index can be
associated with the grasp hypotheses obtained by grasping algorithm for better searching in
the grasp space.

Algorithm 2 Search for reachability measure
input (query pose P)
output(reachability index, initial IK solution)

1: procedure SearchReachability
2: Search for position (px, py, pz) ∈ Pof closest voxel
3: Search for orientation (rx, ry, rz) ∈ P of closest pose in the voxel
4: Return RI of the voxel and initial IK solution
5: end procedure

4.5 Summary

In this chapter, a reachability map representation is presented which is a parameterization
of the workspace of the robot. The workspace of the robot, the mapping between robot con-
figuration and workspace points and the procedure to obtain the workspace are introduced.
Existing work on reachability mapping and the implementation of the Reuleaux reachability
mapping package is discussed. Finally, the importance of the reachability map in the context
of grasping and query procedure for obtaining a numerical value for a task pose is presented.
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Chapter 5: Grasp Generation

Robotic Grasping is one of the most needed qualities for manipulating objects. The robots
to be placed in home or unstructured environment such as assistive services, healthcare,
household applications, they should have the capability of grasping objects. In the recent
years, the area of robotic grasping has gained significant attention and improvement. But
still, there is no grasping algorithm available that can be considered as an ”ideal” grasping
algorithm. The main cause behind that is the vast quantity of objects availability and the
uncertainty in the environment. Also, it is quite complex to present a grasping algorithm
without the previous knowledge about the shape and pose of the object. The problem
becomes more complex as the generated sensor data is noisy and incomplete.

Accurate grasping of possibly unknown objects is one of the main needs for robotic systems
in unstructured environments. In order to do so, robotic systems have to go through multiple
costly calculations. First, the object of interest needs to be identified, which includes a
segmentation step resulting in a suitable surface representation of the object. In the next
stage, the precise position of the object in the world should be determined. Then, grasps
need to be synthesized by calculating the set of points on the object where the fingers can
be placed followed by determining preferred approach directions. Finally, the system needs
to plan a safe collision-free path of the manipulator towards the object. Typical robotic
grasping methods focus on optimization of stable grasp metrics. One common approach
is to maintain a database of objects with their corresponding preferred grasps. When the
system encounters an object that can be identified with an entry from the database, the
corresponding suitable referred grasp is pulled out. In this case, the system has to explore
and evaluate an increasingly large number of objects and grasps for a given scenario. One of
the limitations of such kind of systems is that the database has to be quite large to contain
all of the common objects that a robot may encounter. If the system has to work in less
structured environments, observing a novel object may be common. A methodology for
grasping unknown objects is preferred here, rather than relying on the database.

5.1 Basic Concepts

Some of the most important concepts and terminologies related to robotic grasping are
discussed in this section.

5.1.1 Definition of Grasp

According to Wikipedia, ”A grasp is an act of taking, holding or seizing firmly with (or
as if with) the hand.” The implication of the definition is that by a grasp someone holds
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something firmly by its hand. In the context of robotic grasping, by a grasp, a robotic hand
provides force and torque balance and constraints the motion of the object and resists forces
and torques in certain directions. Grasp synthesis associates with the problem of finding a
suitable grasp among an infinite set of hypothesized grasps which can satisfy a certain set
of criteria.

As most of the robotic hands try to mimic the human hand, understanding the grasping
system of the human hand is necessary. In the earlier work in [94], a human grasp taxonomy
is presented. The taxonomy is a systematic arrangement of the space of human grasps,
and the organization of the taxonomy reveals some of the factors influencing grasp choice.
Grasps can be placed on a continuum according to object size and power requirements.The
taxonomy shows how task requirements (forces and motions) and object geometry combine
to dictate grasp choice. The taxonomy is based on observations of single-handed operations
by machinists working with metal parts and hand tools. The machinists were observed
and interviewed and their grasp choices were recorded as they worked. In addition, their
perceptions of tactile sensitivity, grasp strength, and dexterity were recorded. The Grasp
Taxonomy is presented in Fig. 5.1.1.

Several types of grasps can be performed. They are mainly:

• Force-closure Grasp: These types of grasps completely restrain the object.

• Torque-closure Grasp: In these type of grasps, the fingers completely restrain any
external moment of a force.

• Equilibrium: The contact forces can balance the object weight and external forces.
The origin is contained within grasp wrench space.

• Manipulable Grasp: These type of grasps can impart arbitrary velocities on the object
without breaking contact.

5.1.2 Friction cone and Wrench Space

Friction at a contact point allows forces in the directions other than the contact normal.
Considering a set of points Ci where the robot finger touches the object, the contact normal
ni at Ci points from the object to the finger. Let us assume the contact force as f c

i that is
exerted by the object to the finger. The normal component pi = (ni · f c

i ) is called pressure

Figure 5.1.1 (following page): Grasp taxonomoy reimagined from[94]
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and the tangential component f t
i = f c

i − (ni ·f c
i ) is the friction force at Ci. The point contact

remains the fixed contact mode until the contact force f c
i lies inside the friction cone directed

by ni.

f c
i · ni > 0 and ∥f t

i ∥2 ≤ µi(f
c
i · ni) (5.1)

where µi is the static friction. The friction cone can be estimated as a convex sum of a force
vector on the boundary assuming an unit normal vector.

f ≈
m∑
j=1

αifj (5.2)

Figure 5.1.2: friction cone

A contact wrench is a set of forces and torques applied through a contact point. For a 2D
point, a wrench is 3- dimensional vector with 2 force components and 1 torque component,
while for 3d case, a wrench is a 6-dimensional vector with 3 force and 3 torque components.
The set of all possible wrenches are considered as wrench space. A wrench is a point on
the wrench space. The space of wrenches that can be applied by a grasp is a grasp wrench
space(GWS) and the space of wrenches that can be applied by a task is called a task wrench
space (TWS).

W (i, j) =
f(i, j)

λ(d× f(i, j))
(5.3)

where W (i, j) is the wrench. The force is defined by f(i, j) and the torque is defined by
d× f(i, j). λ is the torque scale factor and λ =

1

dmax

.

65



5.1.3 Force Closure and Form Closure

For a grasp to be force-closed, the fingers have to apply arbitrary wrenches on the object
through some contact points and the motion of the objects is restricted by the contact forces
[95]. To be a force closure grasp, the contact wrenches should span the whole wrench space.
In a force closure grasp, generally friction forces are modeled by friction cones and the grasp
is able to resist all forces and torques from arbitrary directions. Force closure can be possibly
achieved within minimal contact points and it is mainly used for precision grasps. But it is
much difficult because of the nonlinear property of the Coulomb-friction cones.

On the other hand, in the case of form-closure, the contact points of the grasp immobilizes
the object without depending on the contact surface friction [17]. Form closure is a better
suitable condition than force-closure and mostly used for power grasps.

5.1.4 Grasp Quality

For analyzing a grasp, a grasp quality measure is needed which can also serve a criteria for
grasp synthesis. A detailed review of grasp quality measures is presented in [116]. Some of
the most popular grasp quality measures are:

1. Grasp quality can be measured in terms of force closure property where a specific line
is considered between two grasping points [119] [74]. The magnitude of angle between
the applied force direction and the line can be considered for quality measure.

2. Maximum finger force and total finger forces can also be considered as grasp quality
measure which should be optimized for searching for stable grasp [88].

3. In a grasp, the position of the gripper fingers is a vital property which can be considered
a grasp quality measure. In [30], a method is proposed where maximum singular value
and the combination of all singular values are used as grasp quality measure. It is
worth mentioning that, the gripper singularity should always be avoided.

4. Humans tend to grasp objects on the principal axis of an object. Utilizing this property,
a grasp quality is proposed in [14] and [13] which in combination with other measure
provides improved results.

5. Representing contact wrenches as points and forming a polygon by these points (grasp
polygon) [88] proposes a method where the area of this polygon is used as maximization
criterion. On the other hand, the distance of the center of mass of the object and the
center of the polygon should be minimized.
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6. In [117], the proposed method utilizes the property of the surface curvature of the
contact surface and used it as grasp quality measure.

5.2 Previous Work

As grasping is one of the most fundamental tasks in robotics, grasping objects by robotic
hands have a significant amount of history. There are several articles present that tried
to accumulate surveys on grasp synthesis [16] [20] [124]. In this section, a comprehensive
discussion on grasping known, familiar and unknown objects is presented. Additionally,
discussion on grasping objects based on superellipsoid modeling is also presented, as it is
most closely related to our work.

5.2.1 Grasping Known Objects

For grasping a known object, the problem of grasp synthesis reduces to the problem of
searching in the database. In this type of methods, the shape model of the object is previously
known and the grasp hypotheses are stored in the database. Utilizing a set of criteria, the
search for optimum grasp in the database of grasp hypothesis can be performed. A detailed
analysis of these types of methods is presented in [16] .

Earlier work on grasping objects were mostly based on extracting edges of polygons from
a 2D vision sensors. By the method proposed in [95], precision grasps can be synthesized,
where force closure grasps are performed for 2-finger grippers and form closure grasps are
performed for 4-finger grippers. Another method for 2-finger force closure grasps for curved
objects are introduced in [44], where each part of the object are modeled by parametric
curves and each part are considered for grasp synthesis. Force closure grasps for 2 finger
grippers by optimizing maximum finger force is discussed in [45]. In the work of [63] and
[27], the local curvature is classified as convex and concave regions and grasps are searched
in the regions. Modeling object boundary is also presented in [117], where the authors tried
to model the boundary by Elliptic Fourier Descriptors(EFD). An algorithm for grasping
considering the holes of the object is presented in [91] and using wrenches for optimization
criteria is presented in [88].

The complexity increases significantly for 3D objects due to added dimension and the
pose of the object should also be identified relative to the robot body. Most initial efforts
in grasping known objects in 3D is presented by extending the procedures from 2D grasping
in 3D. Most substantial and used work in grasping is presented in [86], where a simulator
GraspIt is presented. In the simulator, grasp heuristics are calculated offline and in the
online scenario, best grasp is chosen. Another notable simulator for generating grasps in
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OpenGrasp [76]. The basis of the work presented in[87] is model simplification, where object
models are simplified for basic shape primitives such as boxes, cones, and cylinders. Another
method that utilizes model simplification is presented in [59]. Methods presented in [40]
and [79] deals directly with the inaccuracies in the model and pose estimation. The gripper
preshapes are learned from a human demonstrator using a glove which significantly reduces
the possible grasp space. In terms of grasping known objects from a previously created
database, there are several works present which focuses on constructing the grasp database
[51], [67], [75], [104], [120].

There are also several works which incorporate learning in terms of grasping known objects.
In the proposed work in [49], the shape properties are mapped with approach vector by neural
networks and data is obtained by human volunteers. A framework is presented in [26] which
maps object representation to task representation by modeling discrete views of the object by
simple shapes and utilizes a neural network to map them to task representations. The work
of [41] the sub-components of the grasp are learned from manually labeled synthetic data.
Another work which uses human experience for grasping is the work in [34] which builds
the database around object-specific empirical grasp density. A method for handling object
uncertainty using partially observable Markov Decision Process(POMDPs) is presented in
[55]. In [143], the sum of finger forces is optimized by a genetic algorithm.

Grasping known object by estimating pose from a monocular image and further grasp
selection from an offline database is presented in [92] and later modified for stereo images in
[10]. The demonstration of the method on a whole robotic system is shown in [8] and [59].
In [98], an approach is proposed for grasping unknown object in clutter environment by 3D
object recognition and pose estimation based on object geometry. Using object categorization
to find grasps for similar objects is presented in [141] which overcomes the issue of incomplete
data perceived by a partial view. Grasping familiar objects also explored in the work of [19]
and [21] where a global shape representation is introduced and the system is trained by
a supervised learning on synthetic images. In the work of [53] template-based modeling
is done on objects and grasps are created by programming by demonstration technique.
Another similar method where prototype grasps are taught to the system is presented in [35].
Incorporating object models and enabling the use of force closure grasps are incorporated in
several other works such as [85], [78] and [103].

5.2.2 Grasping Unknown Objects

The methods which try to grasp unknown objects does not rely on any database for object
models or previously calculated grasp hypotheses. Most generally, the system has to identify
the objects from partial sensor data and generate grasps in an online scenario.
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The work in [69] aims to grasp objects by a two finger gripper based on raw depth data by
searching a pattern that fits in the interior of the end-effector by maximizing the contact area
between perceived point cloud and the gripper. Without utilizing any prior object model,
the work in [77] also utilizes the shape matching approach. In the work of [53], a heightmaps
inspired template matching algorithm is presented which generalizes grasps for novel objects.
[115] considers a certain set of grasps and grabs the object from the table top surface. The
grasps are considered to be closest to the center of mass of the objects. This method is later
improved in the work of [114] where opening of top surfaces and handles can also be grasped.
Contact reactive grasping by tactile information is presented in [56] where depth images are
used for calculating the principal axis and the grasp is executed by heuristics from a defined
grasp set. Another work that uses contact-reactive grasping is presented in [122], where the
system approaches to grasp around the principal axis and while execution, if an unwanted
contact is detected, the gripper reacts and corrects its pose. In [33], a classifier is trained
for stabilizing grasps based on tactile information. Another variation of grasping by contact
reaction is presented in [57] where proximity sensors are placed on the fingertips and finger
poses are tuned to achieve stable grasps. Grasping by knowledge base where the knowledge
base is created by an offline simulator is presented in [31].

Some algorithms tend to fill the gap of missing information of the partial sensor data
utilizing symmetry. In [109], the shape of the object is completed from the partial view
and a mesh of the completed model is generated for grasping. Generating a full model from
a partial model can be approached in several ways, mainly symmetry detection [89] and
symmetry plane [133] [83] [84]. Extrusion-based object completion has also been proposed
in [71]. [100] presents a different strategy of changing the viewpoint in a controlled manner
and registering all the partial views to create a complete model. This technique provides
good results, yet it is not very suitable for real- time systems and is prone to errors due to
the registration of several views. In addition, results are not satisfactory when the working
environment becomes densely cluttered.

Grasping unknown objects by 2D image features are propose in [9] [120]. Here supervised
learning on local patch-based image and depth features for grasping unknown objects is
proposed. The work is improved in [64] by including the capability of learning optimal
gripper width. Another improvement of the work is presented in [74], where the authors
accommodated multiple contacts in the grasps. The algorithm is fully implemented in a
task of lifting object and unloading a dishwasher is presented in [121]. A grasping algorithm
based on edge and texture based features to build a hierarchical representation is proposed
in [70]. An approach to combine 2D and 3D features for grasping is presented in [105]. The
approach further extended in [104] to include surface and edge-based grasps. Reinforcement
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leaarning is proposed for a solution in grasping unknown object in [11].
Some of the systems deal directly with clearing the whole table. The work of [32] proposes

an end-to-end approach of manipulating unknown objects in a pile and placing them into a
bin. The method of clearing a box by a Height Accumulated Feature (HAF) is presented in
[46]. The system is trained by an SVM to search for good grasps with the HAF features. [25]
proposes an algorithm to grasp unknown objects by curvature information from silhouette
images. In [2], the proposed work models the object by Gaussian and pick objects in the
domestic environment by optimizing a grasp criterion of minimizing distance between robot
palm and object. Another method for that grasps unknown objects for clearing a table is
presented in [131], where obtaining a point cloud and geometric parameters of the hand, the
system outputs a set of hand configurations that are expected to be good grasps. The work
is extended in [52] where the robot grasp configurations are detected using a convolutional
neural network.

5.2.3 Grasping by Superquadric Modelling

Another notable method to deal with the challenges of grasping known and unknown objects
tries to approximate the shape of the object models and calculates grasp on the approxi-
mated models. Different shape primitives such as boxes, cones, cylinder, and spheres are
implemented in the work of [87], [58] and [108]. In the work of [50] superquadric models are
used to approximate object models. This work approaches towards decomposing an object
model by decomposition tree and fit multiple superquadrics and later calculate grasps by
GraspIt simulator [86]. Another work that uses decomposition trees and fit superquadric
models on each part is presented in [149]. The proposed work in [136] segments object parts
from range images based on semantic cues and then fits superquadrics on each part for clas-
sification of different generic shapes. Another work that utilizes range image data for object
manipulation by superquadrics from one view in cluttered scene is presented in [18]. In the
method, the detection is based on hierarchical RANSAC search for obtaining fast detec-
tion results and voted by quality-of-fit criteria. Using superquadrics a distinction between
graspable and non-graspable objects is presented in [42]. After segmenting the object parts,
each part is fitted with a superquadric and trained by an artificial neural network to classify
between prehensile or not. Incorporating superquadric as a higher level representation to
approximate object model in the scene and grasping with multi-fingered hands is proposed
in [128]. In the work of [29], the region of interest(ROI) is decomposed into meaningful ROIs
by decomposition and superquadrics are fitted to them. Finally dynamically adjusting voxel
shapes are merged for estimating surfaces. A method for multiple superquadric fitting for
efficient pose and shape recovery is presented in [38]. The method introduces multi-scale
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voxelization for superquadric fitting and evaluated on multiple datasets. Superquadrics are
also used for modeling the shape hierarchy for visually guided grasping in [113]. The work
in [48] proposes a method to improve local symmetry estimation by superquadric fitting. A
probabilistic framework to suitable grasping regions on objects by superquadric modeling is
proposed in [43]. The object model is acquired by occupancy grid representation that deals
with uncertainty and later decomposes object global shape into components. Superquadric
model based approach to find substitute tools in 3D vision data is proposed in [3] where
simple hand-coded models of known tools are presented by superquadrics and a relationship
among them is maintained. Later the models are fitted to point clouds of unknown tools
and identified for good fit. A method to localize objects using superquadric model by Kinect
sensor is proposed in [7].

Using symmetry information and extrusion for grasping by superquadric modeling is pre-
sented in [109]. The work is improved in [110] where an approach for efficient grasp selection
for manipulation of unknown objects utilizing superquadric modeling is presented in. A
grasp manipulability measure is proposed to prioritize grasps. Recent work in grasping by
superquadric is approached in [137], where the object model is computed in real-time using
stereo vision and the pose of the object is formulated as a nonlinear constrained optimization
problem.

5.3 Input to Grasping System

In this section grasping known objects directly on superquadric models is been discussed
following the work in [5]. The approach towards grasping unknown object by the method
is different from other works such as [50] [137] and [43] is that the grasping phase is an
online phase, where no simulator is used for grasp calculation or any offline database is not
incorporated. The grasp configurations are achieved from the estimated geometry of the
superquadrics, instead of directly searching in the point cloud data.

Reiterating the superquadrics equations, a superquadric can be represented by the spher-
ical product of two superellipses:

r(η, ω) = S1

(
η)⊕ S2

(
ω) =

{
cosϵ1 η

a3 sin
ϵ1 η

}
⊗

{
a1 cos

ϵ2 ω

a2 sin
ϵ2 ω

}
=


a1 cos

ϵ1 η cosϵ2 ω

a2 cos
ϵ1 η sinϵ2 ω

a3 sin
ϵ1 η

 , (5.4)

with η ∈ [−π
2
, π
2
] and ω ∈ [−π, π],where a1, a2, a3 are the scaling factors of the three principal

axes. The exponent ϵ1 controls the shape of the superquadric’s cross-section in the planes
orthogonal to (x, y) plane, and ϵ2 controls the shape of the superquadric’s cross-section
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parallel to the (x, y) plane. It can also be expressed by an implicit equation as:

f(a, x, y, z) :

(∣∣ x
a1

∣∣ 2
ϵ2+
∣∣ y
a2

∣∣ 2
ϵ2

) ϵ2
ϵ1

+
∣∣ z
a3

∣∣ 2
ϵ1= 1. (5.5)

where it is bounded by the planes given by −a1 ≤ x ≤ a1, −a2 ≤ y ≤ a2, and −a3 ≤ z ≤ a3.
The total set of parameters that fully defines the superquadric consists of 11 variables, {a1,
a2, a3, ϵ1, ϵ2, px, py, pz, ρ, ψ, θ }

The input to the system is a point cloud data obtained from a 3D sensor such as Kinect.
This type of time-of-flight sensors can only provide a partial view model of the environment.
A typical scene captured by the sensor is presented in Fig. 5.3.1 where the box and cylinder
objects are partially visible by the sensor. The other parts of the objects are occluded. The
output of the grasping system is a grasp defined by a) Gripper opening angle, b) grasp pose
and c) approach direction.

Figure 5.3.1: Scene captured by a 3D sensor. The point cloud represents the partial model of the
object. The other sides of the objects are occluded

5.3.1 Preprocessing Point Cloud

From a typical 3D scene of an environment, the system deals with only the objects on the
table. So the rest of points can be discarded by specifying a workspace composed of the
table and the objects on the table. The point cloud resting on the table can be segmented
out by the methods described in Section.2.7. If there are multiple objects on the table, the
objects can be clustered by the clustering algorithms defined in Section.2.8. After the object
cluster is defined, the approximated object model can be run through a mirroring stage, by
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which the points on the object are mirrored and an approximated shape of the object can
be obtained which can surpass the limitations of the occluded region of the object.

Creating a mirrored surface

Algorithm 3 Generate Mirrored Cloud
input (organized point cloud Cloud)

1: procedure CompleteCloud
2: Segment out the Table
3: Segment Objects
4: for each i in Objects do
5: Find pose (cx, cy, cz, ρ, ψ, θ)
6: Generate local frame at cx, cy, cz
7: for each point p in i do
8: Calculate Euclidean distance (c, p)
9: Negate distance and find point m

10: Add m to i
11: end for
12: end for
13: end procedure

In this section, the procedure for completion of object models from the partial view point
cloud is described. A typical point cloud view from a point cloud capturing device is shown in
Fig.5.3.3a , where only a part of the object is captured. The other parts of the object are on
the occluded side, so they can only be captured by a device situated on the other side of the
table. Reconstruction of the full object model can then be performed by registering the two
views from two individual devices. As most of the objects in our daily lives are symmetric
by nature, by the law of symmetry it can be asserted that the occluded side of the object
is merely a reflection of the visible part. By using only this assumption, the mirroring
algorithm presented here creates the occluded part of the point cloud and reconstructs the
object model online. To obtain a complete approximated model of the perceived object, the
points perceived are mirrored based on the pose (px, py, pz,θ) estimated in the Section.3.7.
A local reference frame is assumed at the center of the object and the Euclidean distance of
all the points from the centroid is calculated. All the points are reflected on the occluded
side by scaling. So for every single point Pi(px, py, pz), a mirrored point Mi(−px,−py,−pz)
is created where px, py, pz are distances in the x, y, z directions from the center of the object.
Though the pose does not contain any ρ and ψ values, this mirroring method can work on
any arbitrary orientation of the object. To deal with noisy data, all the point clouds can be
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processed through a series of outlier removal algorithms.

Figure 5.3.2: Illustration of the mirroring procedure

Figure 5.3.3: Mirroring: From left to right, a) Point cloud Scene and b) each object with its own
mirrored points

An illustration for the mirroring procedure is presented in Fig.5.3.2, where the red points
are original points and the green points are in-correspondence mirrored points which are
mirrored by the plane. The mirroring algorithm is presented in Algorithm.3. The output of
the mirroring procedure is shown in Fig.5.3.3b, where the mirrored points are the colored
points and original points are shown in RGB. The approximated object model is advanced
to the superquadric fitting pipeline to obtain the 11 parameters {a1, a2, a3, ϵ1, ϵ2, px, py, pz,
ρ, ψ, θ } of the superquadric. The grasps can be directly searched on the superquadrics.
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5.3.2 Gripper parameters

The gripper of the robotic system is 2-finger parallel jaw gripper. The gripper width(w) and
the depth(d) are illustrated in the Fig.5.3.4 for 2 different grippers; PR2 and Robotiq. The
gripper frames are also shown. A notion of solvable multi-fingered hands is presented in [4].

Figure 5.3.4: Gripper parameters for 2 parallel jaw grippers. a) PR2 gripper and b) Robotiq 2-finger
gripper.

5.4 Grasp Hypothesis Generation

This work focuses on the use of two-fingered grippers for grasping the objects. It is well
known that antipodal grasps can be successful in both convex and concave objects in the
presence of friction. Finding antipodal points on generally-shaped object models usually
returns many candidates, which are ranked according to some metric. In order to make
the grasp more stable and balanced, we impose two conditions: a) grasping closer to the
centroid of the object and b) at the points of minimum curvature. In addition, we have
constraints given by the depth and width of the robotic gripper and the task-based direction
of approach.

5.4.1 Gripper Openning angle

The gripper opening angle is dependent on the placement of the gripper on the object. While
finger placements are determined, the gripper opening angle can be easily determined by the
mapping between the gripper width (w) and the opening angle(α) declared by the gripper
kinematics. The gripper contact points for antipodal grasping with minimum curvature can
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be calculated from the superquadric parameters to be

pW = [TWK ][TKSi
](±

{
pa

1

}
), (5.6)

where [TWK ] is the 4× 4 homogeneous transformation from the world frame to the camera
frame, [TKSi

] is the 4×4 homogeneous transformation from the camera frame to the principal
frame of superquadric i, and pa is the position vector of the contact points in the superquadric
frame, to be selected according to the criteria explained below and summarized in Table 5.4.1.

Table 5.4.1: Position vector to contact points as a function of the length of the semi-axis and the
exponent ϵ.

Exponent Dimensions Position vector
ϵ < 1 a1 > a2 pa = (0, a2, 0, 1)

a1 = a2 pa = (a1, 0, 0, 1) or pa = (0, a2, 0, 1)
a1 < a2 pa = (a1, 0, 0, 1)

ϵ = 1 a1 > a2 pa = (0, a2, 0, 1)
a1 = a2 pa = (a1 cosω, a1 sinω, 0, 1) for all ω
a1 < a2 pa = (a1, 0, 0, 1)

ϵ > 1 a1 = a2 pa = (a1/
√
2, a1/

√
2, 0, 1)

a1 ̸= a2 pa(ω) as per Eq.(5.9)

The superquadric is convex for values of the exponent 0 < ϵ < 2; for larger values,
it becomes concave at the corresponding cross section. Curvature in superquadric can be
easily calculated from either their implicit or their parametric expression. Considering the
implicit expression in eq (5.5) at the x− z plane obtained when ω = 0, the curvature is

k(η) =
(ϵ1 − 2)a1a3 cos

ϵ1−4 η sinϵ1−4 η

ϵ1
√

(a21 cos
2ϵ1−4 η + a23 sin

2ϵ1−4 η)3
, (5.7)

and similarly for the other two planes passing through the origin of the superquadric frame.
Depending on the value of the exponent ϵ1, the minimum curvature will be found at the
intersection with the axes or at 45o from them.

For substantially different lengths of the semi-axes of the convex superquadrics, the points
of minimum curvature at ϵ > 1 are not antipodal. Here, normal directions to the su-
perquadrics are found with minimum angular deviation. Disregarding its sign, the normal
to the superquadrics can be calculated for a coordinate plane passing through the origin as
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the second derivative of the parametrized curve. For x− z plane at ω = 0 normal n is

n(η) =


a3 cosϵ1+2 η sin2ϵ1 η√

a23 cos
2ϵ1+4 η sin4ϵ1 η+a21 cos

4ϵ1 η sin2ϵ1+4 η

a1 cos2ϵ1 η sinϵ1+2 η√
a23 cos

2ϵ1+4 η sin4ϵ1 η+a21 cos
4ϵ1 η sin2ϵ1+4 η

 (5.8)

Fig. 5.4.1 shows an example of the antipodal points with minimum curvature on the
x − z plane; if a solution exists, then there will always be another symmetric solution. In
addition, the contact points at the major axes are antipodal, but depending on the value of
the exponent, they may present higher curvature or a cusp for extreme cases.

Figure 5.4.1: Normals to the surface of the superquadrics for a1 = 0.5, a3 = 0.9 and ϵ1 = 1.5.
Normal lines of approximate antipodal points marked with thicker lines

The angular parameter of the approximate antipodal points in the plane can be found by
imposing that the normal line passes close enough to the origin,

pa = min
η

(
a1a3 cos

2ϵ1 η sin2ϵ1 η√
a23 cos

2ϵ1+4 η sin4ϵ1 η + a21 cos
4ϵ1 η sin2ϵ1+4 η

− 1). (5.9)

For concave superquadrics, the curvature helps make the grasp closed. Antipodal points
are sought using eq (5.9).

5.4.2 Grasp Pose

While the gripper opening angle is formed, the grasp pose of the gripper can be determined
by the normal of the antipodal points. Utilizing the gripper depth parameter (d) the distance
of the gripper frame from the normal line to the antipodal points are calculated. Let us define
the plane of grasping as the plane containing the contact points and normal to the fingers
of the gripper. The initial gripper pose should be in this plane. Because of the condition of
entered grasp, at least one of the dimensions of the superellipsoid at the plane of grasping,
ai, needs to be smaller than the width of the gripper, w. In addition, the dimension of the
major axis in the direction perpendicular to that plane needs to be smaller than the depth
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of the gripper, d. The grasping plane can be defined as:

sW = [TWK ][TKSi
](±

{
sa

0

}
), (5.10)

where sa = x, y, or z or a coordinate rotation about one of those axes.

Figure 5.4.2: Grasp pose

As one of the criteria is to grasp objects by the major axes, the initial gripper pose should
be parallel but inverse to the major axes of the superquadric by which the grasp is determined
and also perpendicular to other two axes. In reality, grasps determined only by major axes is
not a sufficient condition, as the determined grasp pose may not be reachable by the robot.
The robot poses can be sampled by iterating through a tilting angle (±λ) to accommodate
multiple grasp poses from a single normal line to the antipodal points. An illustration of
determining the grasp pose is presented in Fig.5.4.2.

5.4.3 Direction of approach

After Sampling multiple grasp poses, the approach direction of the gripper can be calculated
by sampling another pose in a fixed distance (t) from the grasp pose and applying a fixed
transformation in the x-axis of the gripper. The transformation has an identity (I) rotation
and a positive fixed translation. The line that passes through the poses is the approach
direction of the gripper and finally, it is transformed into the robot frame.

Multiple grasp hypotheses are sampled by above-mentioned criteria for opening angle and
grasp pose. For each sampled antipodal point, multiple grasps are defined by small iterations
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of λ on the normal axis of the antipodal points. All the grasp hypothesis are collected and
forwarded to the grasp filtering stage.

5.5 Grasp Filtering

The above-mentioned criteria are sufficient to find antipodal grasps on the superquadric, but
they may not be efficient for executing on a real robot system due to constraints and type of
the environment. Suppose the objects are situated on the table, so it can be stated obviously
that the grasps in the -z principal axis are invalid, as the robot cannot grasp through the
table surface. There are also other constraints on the system, by which all the grasps can
be quantified and based on the assigned value, they can be filtered. Each grasp is assigned
a numerical value Gi by:

Gi = (
RIi
100.

+ cti − di)si (5.11)

Where RIi measures the reachability of the grasp pose. The distance of the grasp pose
from the center of the superquadric is di. The distance the arm have to travel to reach
the grasp pose from its current position is assigned as ti. c is a normalized factor for the
voxelspace of the environment and si defines the distance of the grasp pose from the table
surface defined by si = hGi

−h, where hGi
is the height of the grasp pose and h is the height

of the table. si takes care of the fact that, the robot cannot execute the grasps which are
through the table or very close to the table. The contribution of the di is that it makes sure,
that the final grasp is closest to the center of the superquadric, so the moment on the object
can be dissipated while picking up. The ti makes sure that the robot tries not to grasp from
any negative approach direction while RIi measures the reachability of the grasp.

Figure 5.5.1: Grasping pipeline

Algorithm 4 shows the summary of the process to select the plane of grasping and the
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Algorithm 4 Grasp synthesis
input (superquadrics parameters, depth of the gripper d, width of the gripper w)

1: procedure SelectContactP lanes
2: for sa superquadrics direction do Calculate sW
3: if angle(sW ,ZW ) > α or length(sa) > d then
4: Discard sa
5: end if
6: end for
7: for remaining sa do
8: if 2 ∗ ai > w for perpendicular directions then
9: Discard sa

10: end if
11: end for
12: end procedure
13: procedure CalculateContactPoints
14: Select pa (Table 5.4.1)
15: Calculate pW
16: end procedure

contact points. It is intuitive that the algorithm always tries to approach object from the
minimum ±ai direction.

It is shown in Fig. 5.5.2, where the first and last image shows grasping of the box from the
minimum ±ai direction. The red are those which cannot be executed. The yellow grasps are
sampled by iterating by λ and the final green grasp has the highest grasp value. The final
approach direction is shown in cyan. The whole grasping pipeline is illustrated in Fig.5.5.1,
where the input to the system is unorganized point cloud representing the environment and
the output is a final grasp defined by a grasp pose, gripper opening angle and approach of
direction which can be executed on the real robotic system.

5.6 Summary

In this chapter, state-of-the-art in robotic grasping for known and unknown objects are dis-
cussed preceding by a discussion on common and most used terminologies in robot grasping.
The other works that utilized superquadric modeling as an ingredient of robotic grasping
are also presented. The grasping algorithm developed in the thesis is examined in detail.
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Figure 5.5.2: Grasps on the superquadrics. From left to right, a) on a box, b) on a cylinder. The red
grasps are invalid, yellow grasps are potential grasp on different axes, light yellow grasps are potential
grasp on current axes and green grasp in the best grasp. The final best approach direction is shown
by cyan bar.
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Chapter 6: Experimental Evaluation

The focus of the work is to present a concrete grasping algorithm enabling robotic systems
to generate antipodal grasping points for unknown objects and grasp them in real time. To
achieve this, a superquadric model approach has been incorporated, which can fit on object
models and the grasps can be directly performed on them. The main contribution here is
1) a library by which a reachability map of the robot can be constructed and 2) a novel
grasping algorithm that fits grasping points directly on superquadric models and executes
them.

The experiments with the reachability mapping library and grasping systems are pre-
sented here. To compare the efficiency of the reachability mapping, the results are compared
with two other works that construct reachability map presented in [36] and [146]. The su-
perquadric fitting results are compared with the work proposed in [109]. For comparing the
results of grasping unknown objects, two recent works presented in [131] and [46] are recre-
ated. The objects used for grasping are mostly symmetric household objects of various shape
and sizes. A curated list of objects used in different experiments is shown in Table.6.0.1. The
objects mentioned in the experiments are shown in Fig.6.0.1. The experiments are performed
on 3 different types of robot, a) WAM arm with custom hook gripper, b) UR5 robot with
Robotiq 2-finger gripper and c) PR2 robot with parallel-jaw gripper shown in Fig.6.0.2.

Figure 6.0.1: Objects used for the grasping experiments

The superquadric fitting experiments are performed in two conditions, where objects are
in isolated scene (a single object in the scene) and cluttered scene (multiple objects are
present while they are touching each other). The grasping experiments are performed also
in isolated and cluttered scenario for all three robots. The reachability maps are generated
for 3 different robots, a) PR2, b) UR5 and c) LWR arm for comparison with other methods.

82



Figure 6.0.2: Robots used for the grasping experiments

6.1 Reachability Mapping Results

The Reuleaux map generation library was applied on several robots with different speci-
fications and sizes. Without the collision checking facility, the average reachability map
generation time was around 156 sec. However, without self-collision, the generated map was
just a collection of reachable poses, which is disadvantageous. Since there is no standard
metric to measure the efficiency of a reachability map, we can consider time efficiency and
generalizability as the metrics. As the reachability map can be generated offline, its utility
lies in using the map in other tasks.

In Table 6.1.1 we represent an analysis of Reuleaux’s reachability map generation compared
to two methods presented in [36] and [146] on three different robots. PR2 right arm is a
7DOF manipulator, rigidly connected to the body. The LWR and UR5 are considered on
the ground. While the DOF of LRW is 7, the UR5 has only 6ODF. In method [36], available
as open-source library, reachability is not represented as sphere; instead, it is represented
as area. The opportunity to set the desired options for creating maps is only limited to
saving joint solutions and setting a maximum radius. On the other hand, [146] represents
reachability as a sphere and in extension with different shape representations. Because this
method is most similar to our approach, we also represent their work as spheres.

In Reuleux, the creation of a reachability map is based on the desired resolution of the
voxels and maximum radius. Resolution is a very useful parameter as it determines the
size of the voxel, which later creates the size of the spheres. For all our experiments, we
set the resolution of voxels at 0.08m and maximum radius at 1m. For convenience, our
implementation of [146] also uses the same resolution. For all the experiments, the IKFast
[36] library was used to obtain ikfast solutions.

In Table 6.1.1, the significant difference in the number of poses processed stems from the
fact that [36] obtained the poses by default parameters and in [146] all poses are rotated by
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Table 6.0.1: Objects list

object

Superquadric Fitting Grasping Experiment
WAM UR5 PR2

single clutter single clutter single clutter single clutter
Toy Cylinder X X X X X X

Big Ball X X X X
Cheese Box X X X X
large Dice X X X X

Pringles Can X X X X X X
Coke Can X X X X X X
Banana X X
Apple X X

Cleenex Box X X X X
Puzzle Box X X X X X X X X

Lego 1 X X X X X X
Lego 2 X X X X X X

Green Ball X X X X X X
Yellow Ball X X X X

Red Ball X X X
Box1 X X X X X X

Gooft String Cylinder X X X X X X
Chocolate Box X X X X
ScrewDriver X X

Eraser X X X X

Table 6.1.1: Rechability map results

Method Robot (x100000) (x1000) Time(min)
Poses spheres

processed created
Reuleaux PR2 20.938 2552 124.31

LWR 13.718 5127 160.41
UR5 7.636 5017 143.27

Diankov et.al[36] PR2 205.48 - 490.07
LWR 145.727 - 427.11
UR5 123.513 - 371.38

Zacharias et al [146] PR2 104.69 2680 405.47
LWR 68.59 5213 542.18
UR5 38.18 4883 413.23

5 degrees in z-direction to obtain extra poses. Regarding the time difference, in our system,
we have filtered out the spheres on the robot body in a preprocessing step.
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6.2 Superquadric Fitting Results

Our object dataset mostly consists of small symmetric objects, such as small boxes, cylinders,
and balls with varied parameters in x, y, z directions. For calculating the errors, in an offline
scenario, we obtained the ground truth (a1, a2, a3) parameters of all objects. ϵ1 and ϵ2 are
obtained by iterating over the values between 0.1 and 1.9 and choosing the volume that best
fits the object. The error is the radial distance error between the point cloud generated
by the ground truth information and the point cloud generated by estimated superquadric
parameters. For evaluation of single objects, 5 different poses are defined on the table
and objects are perceived from 5 different poses. The results in 6.2.1 are a comparison of
recovered parameters between our method, the method presented in [109] and a method
where pose estimation is done by PCA and superquadric fitting without mirroring. As the
result suggests, our method shows improved results in superquadric fitting in terms of time-
efficiency and accuracy, as out method determines the poses on the approximated center of
the object. Also, instead of optimizing 11 parameters of the superquadric, we only optimize 5
parameters related to object shape. While the size of the object increases, the time duration
of the optimization process also increases.

Figure 6.2.1: The complete superquadrics fitting pipeline. From top to bottom, the mirroring process
with a box and a cylinder object (The capturing device can be assumed at the right side of the im-
age): a) RGB side view of the object, b) captured point cloud of the scene, c) segmented point cloud
of the object, d) mirrored point cloud with the segmented cloud, e) superquadric representation of the
object.
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Figure 6.2.2: Superquadrics fitting in 5 different cluttered scenes. The detected poses of the objects
by iteration methods are shown in b and e

Table 6.2.1: Single object parameters. Method 1 is Mirroring and SQ Fitting, method 2 by Quispe et
al. [109]. Method 3 is PCA and superquadric fitting Average time in seconds.

Object Method a1 a2 a3 e1 e2 Avg. Avg.
time error

toy 1 0.023 0.024 0.15 0.389 1.031 0.535 9.2%
cylinder 2 0.022 0.022 0.15 0.561 0.928 1.788 9.78%

3 0.025 0.017 0.14 0.52 0.88 2.121 10.24%
ball 1 0.069 0.09 0.045 1.003 0.95 0.78 5.23%

2 0.43 0.04 0.043 0.986 0.972 1.23 6.24%
3 0.62 0.07 0.051 1.01 0.91 2.41 8.44%

Cheese 1 0.07 0.026 0.13 0.1557 0.319 0.82 8.41%
Box 2 0.06 0.023 0.15 0.1329 0.417 1.18 9.6%

3 0.047 0.025 0.12 0.12 0.35 2.33 11.18%
Large 1 0.05 0.05 0.479 0.603 0.606 0.56 6.77%
Dice 2 0.054 0.054 0.052 0.629 0.613 0.92 6.28%

3 0.06 0.064 0.058 0.57 0.62 2.02 9.77%
Pringles 1 0.012 0.012 0.168 0.355 1.28 0.95 7.48%

Box 2 0.016 0.016 0.162 0.372 1.315 1.24 8.21%
3 0.011 0.014 0.151 0.36 1.22 2.24 10.31s%

Coke 1 0.041 0.043 0.172 0.41 1.12 0.61 9.5%
Can 2 0.044 0.044 0.15 0.55 1.08 1.28 9.8%

3 0.021 0.047 0.14 0.51 1.14 2.07 11.12%
Puzzle 1 0.05 0.016 0.19 0.144 0.323 0.65 7.1%

Box 2 0.047 0.014 0.16 0.121 0.37 0.92 7.4%
3 0.061 0.017 0.21 0.141 0.42 1.13 9.1%

Lego 1 0.031 0.04 0.18 0.12 0.55 0.52 6.82%
Set1 2 0.044 0.042 0.163 0.08 0.667 0.88 8.13%

3 0.037 0.045 0.168 0.15 0.428 1.33 11.41%
Green 1 0.033 0.031 0.045 1.01 0.97 0.44 7.43%
Ball 2 0.012 0.035 0.025 0.99 0.91 0.81 9.71%

3 0.037 0.032 0.03 1.13 0.82 1.31 11.37%
Chocolate 1 0.09 0.07 0.068 0.16 0.526 0.72 7.3%

Box 2 0.11 0.062 0.05 0.18 0.435 1.44 9.1%
3 0.094 0.06 0.062 0.164 0.552 2.17 9.4%
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To fit superquadrics on multiple objects present in cluttered scenario, different objects are
chosen randomly for 5 different scenes. The 5 scenes are presented in the Fig.6.2.2. The
scenes cannot be considered as densely cluttered as some parts of the objects can be seen from
the camera point-of-view. The scenes can be considered as semi-cluttered environment. It is
noticeable, for a couple of scenes such as Scene2 the part of the cheesebox is not visible as
the toy cylinder is situated before the cheesebox and is occluding the front surface. Still, the
superquaric model is fitted properly on the cheesebox as the mirroring of the cheesebox model
generated enough points to approximate a box-alike structure. The fitting of superquadrics
in semi-cluttered scenario is highly dependent on the object clustering algorithm. If the
system cannot classify different objects by the segmentation, the fitting process leads to
erroneous fitting.

6.3 Experiments with WAM Arm

For the experiments, a WAM arm and a custom hook gripper is used. The mechanism of
the gripper is similar to parallel-jaw grippers while the closing plates are hooks instead of
flat plates. The gripper used for this experiments are shown in Fig.6.3.2a. WAM is a 7DOF
arm while the gripper has 1 DOF. The frames of the arm, Kinect and gripper are shown in
Fig.6.3.2b.

The sensor in the experiments is a Kinect1 attached upward to the system pointing to
the table where the objects are located. The goal of the robot is to detect the objects by
the Kinect device, fit superquadric models to the object, find grasps on them, pick up the
objects and place them on the left of the robot. The motion planner plans a motion to carry
the gripper to the approach pose. A cartesian controller is implemented which follows the
approach direction and reaches the gripper to the final pose. After picking up, the robot
follows a joint controller to place the objects. If the robot successfully picks and places the
object in the designated place, the trial is a success, otherwise, it is a failure.

The objects used in the single object grasping experiments are mainly apple, banana, coke
can, chocolate box, pringles can, puzzle box. The typical scenario where the object is picking
up the apple is shown in Fig.6.3.1. Three different locations are designated at the objects are
kept on the location for each trial. The average time and success rate for each trial is shown
in Table.6.3.1. The success rate for the banana is low, due to the fact that the superquadric
fitting on the banana was not proper, which led to incorrect grasping in all of the locations.
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Figure 6.3.1: WAM robot single object

Table 6.3.1: Grasping single object WAM

Object Loc. Loc. Loc. Avg. succeess
1 2 3 Time Rate (%)

Apple 3/3 2/3 3/3 7.13s 88.89
Banana 3/3 1/3 2/3 7.05s 66.67

Coke Can 2/3 3/3 3/3 7.21s 88.89
Chocolate Box 3/3 3/3 3/3 7.23s 100.
Pringles Can 3/3 3/3 2/3 8.17s 88.89
Puzzle Box 2/3 3/3 2/3 7.71s 77.78

Table 6.3.2: Table clearing WAM

Test Number of Success Total
case objects time(seconds)
TC1 7 5/7 103s.
TC2 3 2/3 53s.
TC3 5 3/5 72s.
TC4 5 2/3 87s.
TC5 3 1/3 45s.
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Figure 6.3.2: The WAM robot setup. a) The frames of the WAM arm and the pose of detected ob-
ject, b) The custom hook gripper

Figure 6.3.3: WAM robot multiple objects

The chocolate box has been grasped properly from each location.
Grasping multiple objects is purely a table clearing task, where randomly chosen multiple

objects are placed on the table and the task of the robot is to clear the table off all objects.
A full trial consists of the task of robot picking and placing each object in a designated place
one by one. The trail ends when either all of the objects are placed or the system stops
between the experiment. Each object can be tried only one. If the robot cannot grasp the
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object or fails to deliver to place it, it can be considered as a failure. A grasping multiple
object scenario is presented in Fig.6.3.3. The results of grasping multiple objects with the
success rate are presented in Table.6.3.2. The time shown is the full time for the trial. It
is easily visible the time taken for the trial increases with the number of objects present in
the scene. It is due to the fact that after grasping and placing one object, the system again
starts fitting for rest of all the objects present in the table. Because after moving one object,
it is not guaranteed that the pose of the rest of the objects remains same.

6.4 Experiments with UR5 Arm

Figure 6.4.1: UR5 robot and Robotiq 2-finger gripper in the grasping single object scenerio

The setup for the experiment with the UR5 arm is shown in Fig.6.4.1 where the robot
is picking up object Box1. The robot in the experiments is a UR5 arm with 6DOF and
the gripper is a robotiq 2-finger parallel-jaw gripper with 1DOF. This robot is specifically
chosen as it has 1 less DOF than other robot and the reachability of the robot is completely
different from other two robots used in our other experiments. The sensor in the experiments
is Kinect2 which has a much higher resolution that Kinect1. Due to calibration issues, the
depth data from Kinect2 device is much error-prone. So background of the environment is
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colored blue. The Kinect is placed in front of the table instead of putting it on the top of
the table like the previous experiment. In the previous experiment, the sensor could obtain
a top view of the scene. For the multiple object scenes, the workspace is chosen compact
enough to only include the table and the objects upon the table.

Table 6.4.1: Grasping single object UR5

Object Loc. Loc. Loc. Avg. succeess
1 2 3 Time Rate (%)

Box1 3/3 3/3 3/3 6.14s 100.
Goofy String Cylinder 2/3 2/3 3/3 6.08s 77.78

Toy cylinder 3/3 3/3 3/3 6.01s 100.
Puzzle Box 3/3 2/3 2/3 6.52s 77.78

Lego1 3/3 2/3 3/3 6.13s 88.89
Yellow Ball 3/3 3/3 3/3 6.07s 100.

Red Ball 3/3 2/3 3/3 6.11s 88.89
Kleenex Box 2/3 2/3 2/3 6.55s 66.68

Similar to the previous experiment for single object experiment, the objects are placed in
isolation to three different places on the table. For every trial, the objects are grasped three
times. The success rate and average time for grasping each object is shown in Table.6.4.1.
The objects used in the previous experiment is not used here. The object list for this
experiment is completely different. A box is placed at the left of the robot. The task of the
robot is to pick the objects and place them in the box.

Table 6.4.2: Table clearing UR5

Test Number of Success Total
case objects time(seconds)
TC1 5 5/5 78s.
TC2 8 4/8 113s.
TC3 5 4/5 81s.
TC4 4 3/4 65s.
TC5 5 4/5 87s.

For grasping multiple approach experiments similar to the previous experiment with the
WAM arm is performed. The objects are chosen randomly and place on the table in a semi-
cluttered way. An example of the scene (TC2) with 8 objects is presented in the Fig.6.4.2.
The results from the table clearing experiment are shown in Table.6.4.2.
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Figure 6.4.2: UR5 robot and Robotiq 2-finger gripper in the table clearing scenerio

6.5 Experiments with PR2 Robot

In this section, the grasping experiments with PR2 robot are presented. PR2 robot is
a mobile manipulator from Willow Garage with two 7DOF arms. For our experiments, we
have used the left hand of the PR2. The sensor used in the experiments is a Kinect1 attached
to the head of the robot. The experimental setup is presented in Fig.6.5.1. Similar to the
previous experiments, for single object grasping scenario, the objects are placed to three
different locations on the table and for every trial, the robot had to pick up the objects from
the table and place them in a box on the left of the robot. The motion planner takes care of
carrying the gripper to the approach pose and a custom cartesian planner is incorporated to
travel the approach distance towards the grasp pose. After picking up the object, the robot
had to drop the object by a joint motion planner.

The table is considered as a collision object, which is shown in the Fig.6.5.2. The grasps
identified for three objects are also shown. The single object grasping results are compared
with two recent methods HaF (Height Accumulate Features)[131] and Agile[46] shown in Ta-
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Figure 6.5.1: PR2 robot and environment setup

Figure 6.5.2: The tabletop setup for the experiments with the PR2. a) The typical experiment scene-
rio in visualization, b) The collision table shown in Green and the Grasps identified by the system.
The

ble.6.5.1. Grasping different objects for the single object experiments are shown in Fig.6.5.3.
For dense cluttered scenes, 5 experiments are performed and for all the experiments and

the objects are kept the same for individual experiments. The results of grasping in clutter
comparing with the other two methods are presented in Fig.6.5.4. As our system does not
rely on iteration for finding grasps to execute, it provides better results in time efficiency
than other methods. For single objects, location 2 is the place where every method struggled.
The location is chosen deliberately far away from the camera frame, where the segmentation
process is prone to failure. As the Agile method is not dependent on segmentation, it
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Figure 6.5.3: PR2 grasping single objects

Figure 6.5.4: Grasping result compared with methods presented in [131] and [46]. From left to right:
a) avg. time and b)success rate for individual objects. Gray bars are [131], Red bars are [46] and
while yellow bars are by Mirroring and Superquadric fitting.

provides a better result for only one object (ball). It failed significantly for the rest of the
objects. For cluttered scenes, our system consumes much more time for some scenarios than
the other scenarios, as those contain the highest number of objects in a given scene. In
experiment 1, though our method calculated all the grasp poses, the dice slipped from the
gripper, affecting the accuracy. The vertical placement of the camera where it perceives the
environment from the top explains the reason for the significantly poor performance of the
Haf grasping method. As for the Agile grasping, the execution system of agile grasping is
not based on most vertical grasps, so though in most of the cases, the objects are perceived
properly for good grasps, it still failed to execute them.

94



Table 6.5.1: PR2 grasping single object

Object Method Loc. Loc. Loc. Avg. succeess
1 2 3 Time Rate (%)

Ball Agile 3/3 2/3 3/3 4.24s 88.89
Haf 3/3 1/3 2/3 6.71s 66.67

Superquadric 3/3 2/3 3/3 3.02s 88.89
Puzzle Agile 2/3 1/3 2/3 4.57s 55.56

Box Haf 2/3 1/3 1/3 6.32s 44.45
Superquadric 2/3 1/3 2/3 3.21s 66.67

Toy Agile 2/3 1/3 3/3 3.78s 66.67
Cylinder Haf 2/3 0/3 2/3 6.45s 44.45

Superquadric 3/3 2/3 3/3 3.252s 88.89
Marker Agile 1/3 1/3 2/3 4.11s 44.45
Eraser Haf 2/3 0/3 1/3 6.23s 33.34

Superquadric 3/3 1/3 3/3 3.16s 77.78

6.6 Summary

In this chapter, the experimental setup and results are presented. This chapter discusses
the results from the reachability library (Reuleaux) with two other reachability mapping
approaches. The superquadric fitting results on objects in isolation and in clutter are dis-
cussed. For the grasping experiments, three different scenarios with three different robots are
presented. For all the scenarios, grasping in isolation and clutter is discussed. For grasping
with the PR2 robot, the results are compared with two well-recognized grasping methods
for unknown objects.

95



Chapter 7: Conclusion and Outlook

Robots are stepping inside daily-life human environment, leaving the days behind when
they were only meant to be in the industries doing repetitive tasks. There are still many
aspects that need to be resolved, specifically in the field of grasping and manipulation,
because contradictory to the industrial scenario, the environment where humans live is very
uncertain. The objects that need to be manipulated are the same objects used daily by
the human, coming in different varieties, types, shapes, and sizes. So it is impractical to
maintain a huge database which can contain all the objects in a household environment.
There will always be some objects that are unknown. So the most feasible choice is to
develop a grasping system that can directly grasp novel objects instead of searching them in
the database. The key contribution of the thesis approaches that problem of grasping novel
objects by low-cost sensor data quickly and efficiently.

7.1 Summary

This thesis presents an approach towards grasping unknown objects in isolated as well as
in cluttered scenario. The method proposed does not rely on the construction of databases.
The main contribution of the work is a superellipsoid fitting algorithm that fits models on
point cloud data in real time. The variation in the fitting algorithm creates a mirrored
surface as a pre-processing step which approximates the occluded side. The pose estimation
is performed in a separate stage which reduces the load to the model parameter searching
phase. Later the grasps are directly searched on the parameterized superellipsoid model
instead of exploring the feature space of the point clouds. Fast and efficient antipodal grasp
synthesis is incorporated which ensures grasp execution by filtering the grasp hypotheses
with reachability maps. Experiments are performed with objects used daily in the human
environment, comparing the efficiency of the method in terms of success and time with
state-of-the-art methods.

The benefits of modeling by superellipsoid representation are explored in such a way where
a single mathematical model can represent multiple shapes and sizes, instead of fitting dif-
ferent representation in different scenes. The parameters of the model serve as the ingredient
of the grasping phase which plays a vital role in determining the curvature of the surface
and finally leads to an optimized gripper opening, grasp pose and approach direction.

The approach to the grasping problem is robust to dynamically changing environment,
not limited only to theoretical practices or simulations. The extension of grasp hypothesis
filtering by reachability maps ensures the execution of grasps based on robot kinematic
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structure. The utilization of reachability maps plays a vital role in determining which object
to grasp based on the reachability of the object in the scene.

Several tests are performed on three different robotic platforms with distinct kinematic
structure of the robot and gripper designs ensuring hardware scalability. The tests are mainly
categorized into grasping objects in isolation and clearing table with multiple objects.

A complete grasping system is presented which takes point cloud of the scene and gripper
parameters as inputs and provides outputs in terms of grasps that can be directly executed
on the robot. The works presented in the thesis is openly available to the open-source
community.

7.2 Contributions to the Research Problem

The overall goal of the research is to investigate the problem of grasping unknown objects,
by computing a gripper pose, the opening angle of the gripper and an approach towards the
object which ensures safe and reliable grasping. Though grasping in household environments
poses different problems based on different scenarios, the thesis tries to contribute to four
different problems:

1. Modeling point cloud data to object model

2. Grasping unknown object in isolation

3. Grasping unknown object in clutter

4. Ensuring safe and reliable grasping

There are various approaches that try to model point cloud sensor data by mathematical
models. The approach presented in the thesis enables robotic systems to:

• fit a single model in all scenarios: The mathematical model utilized here is a superellip-
soid model, that has the capability of representing all the basic symmetric shapes such
as spheres, cylinders, boxes and many more enabling a generalization in the modeling
phase.

• fit model in real time: The approach tackles the problems of finding pose and fitting
model in different threads where each thread takes care of their functionalities and
merge them together towards a parameterized model in a quick and efficient way.

• approximate the occluded side: A mirroring algorithm is presented which constructs
the occluded side of the object model which cannot be perceived by a sensor capable
of capturing a partial-view model.
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The problem of grasping unknown object is still an unresolved problem. The thesis can
be a stepping stone to solving the problem enabling following services:

• discard the process of constructing a huge database: The approach estimates the object
model from the point cloud data before grasping. So there is no obligation towards
creating a database of objects beforehand and the grasps can be found directly from
the scene.

• find grasps by mathematical model: The grasping synthesis is directly performed on
the superellipsoid instead of the point cloud data. The geometry and shape information
extracted by the superellipsoids enables defining the antipodal points for grasping.

Grasping unknown objects in clutter or clearing a surface with objects that are close to
each other is a significantly hard problem as the system has to perform multiple grasps to
complete the task and removing a single object, changes the location and features of the rest
of the objects. This thesis can help in performing the tasks of:

• segmenting multiple objects and find grasps on each of them: After the objects are
segmented in different clusters, all the clusters are fitted to individual models and all
the models are searched for grasps in a parallelized process.

• finding grasps multiple times: After one object is removed, the process resets itself
and start from the beginning of searching for grasps on rest of the objects. So the
grasps defined in the previous iteration are discarded, as they may become invalid in
the current iteration.

It is not enough just to find grasp hypotheses that can be a representation of grasps for
certain object. The system should find reliable grasps that can be executed on real systems.
The thesis provides approaches to the execution of grasps enabling:

• incorporation of reachability information: The reachability map presented in this thesis
combines the kinematic information of the robot with the grasping phase. This ensures
that the grasps found by the system are reachable to the robot.

• safe and reliable grasp execution: It is the duty of the motion planner of the manip-
ulator for a safe grasp execution. While searching for an optimized grasp, the system
includes constraints such as distance to table for collision avoidance and grasping close
to the center of the object to care for moment of inertia, by which the object does not
wobble in the hand. This constraints posed by the grasping system reduces the load
on the motion planner and leads to safe execution.
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7.3 Outlook

Robotic grasping in unstructured environment is an interesting and vast field of research.
Grasping known objects is solved to some limits with various constraints. But robotic grasp-
ing for unknown objects is far away from a concrete solution. The author believes that this
thesis may work as a stepping stone towards the solution. There are some attainable aspects
of the research that are not discussed in this thesis.

A further potential extension to the work is interactive grasping, where the user can
point to the object to be grasped instead of grasping every object from a pile of objects.
The model fitting and searching for antipodal grasping points are limited to symmetric
simplistic objects. For objects with asymmetry, multiple models should be fitted and merged
to construct a complete model which can fit those objects. These models should not be only
a superquadric. A combination of a superquadric and a supertoroid may be incorporated
e.g. for fitting a cup; while the handle of the cup can be fitted with supertoroid and the cup
is fitted with a superquadric. Segmentation is still one of the bottlenecks in the problem.
Incorrect segmentation of the object may lead to incorrect fitting finally leading to erroneous
grasping, causing damage to the system and even to the human co-worker.
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Appendix

The superellipsoid fitting and grasping library can be found online at
github.com/jontromanab/sq_grasp/

The reachability mapping libreary Reuleaux can be found online at
http://wiki.ros.org/reuleaux
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