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Abstract 

The first project of the thesis included an approach to identify inhibitors of the enzyme 

enoyl-acyl carrier protein reductase (FabK) of Clostridium difficile using homology 

modeling. The second project involved molecular dynamics studies to obtain the lowest 

energy structure of Salmonella typhimurium DT 104 using homology modeling.  

FabK is an important enzyme in the bacterial fatty acid synthesis process. It has become a 

potential drug target. This study used molecular docking to identify small molecule 

inhibitors of the enzyme in Clostridium difficile. We developed a homology model of this 

enzyme using the Modeller package with multiple structure templates and analyzed the 

models using various programs. The best model was chosen for the molecular docking of 

more than 3 million compounds from seven different libraries. We analyzed the top ten 

percent compounds from each library and found key interactions of top ranked 

compounds with the residues of the binding site. These studies identified potential hits 

with good scores for further experimental study.  

Salmonella enterica serovar typhimurium DT 104 is one of the major reasons of 

Salmonellosis and is resistant to many antibiotics. It secretes AB5 toxin possessing ArtA 

and ArtB subunits. The study used homology modeling approaches from Schrödinger to 

create model structures of both the subunits. Protein-protein docking was used to obtain 

the complete ArtAB structure. Molecular dynamics simulations were conducted. The 

simulations helped us determine the energy of the system and conformational changes in 

the structure. The identification of the lowest energy conformation based on potential 

energy obtained may assist in future crystallography studies. 
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Chapter 1. Introduction 

1.1 Computer-Aided Drug Design  

It takes a long duration of time and hundreds of millions of dollars to introduce a novel 

medication.1 There are significant chances of failure during the development process, and 

nearly 90 % of compounds which enter clinical studies do not get consent from the FDA, 

and fail to reach the patients.1 High throughput screening (HTS) has been used primarily 

for screening compounds.1-2 Despite the fact that the HTS technique can be successful in 

obtaining several hits which are prone to lead selection, the number of hits obtained from 

this method are usually very few.2 To reduce the cost and time involved in the drug 

discovery and design process, CADD methods have been used extensively in drug design 

studies. Many pharmaceutical companies and other scientific groups have been using 

computational approaches as an important component in the initial phase of drug design 

to accelerate the procedure of developing new drugs, decrease the costs associated, and 

reduce chances of failure in the latter stages.3  CADD is a rational approach towards drug 

discovery and development. 

The methods used in CADD are grouped into two categories.1-3  

a) Structure-Based Drug Discovery (SBDD) 

b) Ligand-Based Drug Discovery (LBDD) 

1.1.1 Structure-Based Drug Discovery (SBDD) 

In this approach the three dimensional structure of the biological target enzyme or 

receptor is used for the purpose of designing or screening of the ligands.3 Information 

about the binding site of the target protein also facilitates the SBDD process. Different 
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experimental and computational methods can be used for determining the structure of the 

target. Experimental techniques include X-ray Crystallography, Nuclear Magnetic 

Resonance (NMR) Spectroscopy and Cryo-Electron Microscopy whereas computational 

techniques include homology modelling, and molecular simulations.4-5  Obtaining the 

three dimensional structure of the target provides a means to examine the potential 

topology of the binding site and the occurrence of cleft and binding pockets.6  Knowledge 

of the valid binding site assists us to use several in silico methods like virtual screening 

and molecular docking to identify potential compounds.1, 6  

The SBDD method uses different approaches as shown in Figure 1.1. 

 

 

 

 

 

 

 

 

Figure 1.1. Different approaches used in Structure Based Drug Discovery 

 

1.1.2 Ligand-Based Drug Discovery 
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modelling or ab initio methods becomes demanding, so the alternate approach in use in 

this case is ligand-based drug design.8-9 In this method, the facts obtained from some 

compounds, which have measured activity against a given target, are used to determine 

the important structural properties accountable for showing the given activity.3 Knowing 

the structural properties from the known ligands help us to design our ligand-based 

model. 

Figure 1.2 shows some of the strategic approaches that are used in LBDD.10 

Ligand based drug design 

 

 

 

Figure 1.2 Approaches used in Ligand-based Drug Discovery 

 

All the research projects carried out in this thesis utilized structure-based drug design. In 

our research projects, we did not use approaches of ligand-based drug design. Hence, we 

are explaining some of the approaches used in LBDD in brief. 

a) Similarity search 

This is one of the simplest methods used in LBDD. In this method, fingerprints of the 

known compounds are first generated ,and then these fingerprints are screened for  larger 

compound containing databases to find ligands with identical fingerprints.11  Both 2D and 

3D fingerprints can be used for this purpose but a 2D fingerprint is the most preferred 

one. To determine the similarities between the query and the target fingerprint, different 
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types of coefficient of similarity are available.12 Some of the frequently used coefficients 

of similarity in 2D fingerprint are as follows:12 Tanimoto coefficient (Tc), Cosine, 

Forbes, Euclidean distance, dice, Russel-Rao and Soergel distance. 

b) Pharmacophore modeling 

In simple words, Pharmacophore refers to the molecular skeleton that shows important 

properties  responsible for the pharmacological activity of the given ligand.1 

Pharmacophore modeling based on ligand design is one of the essential  approaches in 

drug design when the target structure is not available.13 Generally, this approach is 

carried out by obtaining common structural and chemical attributes from the three 

dimensional structures of a known group of ligands  showing interaction with the target 

of interest.13 At present various kinds of pharmacophore developing software are used in 

the field of drug discovery namely HipHop14, HypoGen15, DISCO16, GASP17, 

Schrödinger, MOE etc. A successful example of ligand-based pharmacophore technique 

is Indole-3-carbinol, a naturally existing anticancer agent that had poor metabolic 

property was optimized using this technique to develop a new compound analog 

SR13668 which has high potency against various types of cancer cells.18  

c) Quantitative Structure Activity Relationship (QSAR) 

The method used in QSAR is based on the reality that compounds that have identical 

structures prone to show similar biological activity.19 In simple words, the QSAR 

technique is used to design a mathematical method that aims to obtain a statistical 

correlation between the physiochemical properties of the compounds and their biological 

actions, which is then used to determine activities of other novel molecules.20 Some of 

the important points for generating a QSAR model are as follows:1 
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 Determining biologically active molecules and the actions that bind to the target of 

interest using either the large computational databases or high throughput screening. 

 Obtaining the required physicochemical and structural properties of the compounds 

like bond angle, atom counts, important functional groups, surface area etc. 

 Generating the QSAR model and finding correlation between the studied properties 

and the biological actions of the compounds. 

 Authentication of the generated QSAR model. 

 Application of the model to optimize the newly recognized active molecules for its 

biological actions. 

Experimental study of the biological activities of the QSAR methods can be classified 

from 1D to 6D QSAR based on the structural depiction and the manner in which the 

descriptors are obtained.20 Norfloxacin, a drug for the treatment of urinary tract infection, 

was designed using the method of QSAR.21 Frequently, using QSAR techniques can get 

good results.20 However, numerous times we fail to get favorable results for our purpose 

in spite of good correlation determined from the data used in the study.20 

1.2 Homology modelling 

Homology modeling is one of the useful computational techniques used for three 

dimensional structure prediction of biological targets. Identification of the structure of a 

protein with experimental procedures like x-ray crystallography and NMR techniques is a 

tedious task and not always successful in determining the structure of all proteins, 

particularly membrane proteins.22  The overall steps to carry out the homology modeling 

are depicted in Figure 1.3. 
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Figure 1.3. Flowchart for overall steps in generation of homology model  
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local alignment purpose and searching the database with the query sequence provides a 

record of protein structures that matches up with the target sequence.22 BLAST uses a 

pairwise sequence alignment method that predicts homology by aligning pair of 

sequences. The percentage of sequence identity between the query and the template 

sequences can determine the appropriate template for further homology modeling steps. 

BLAST provides good result if the sequence identity is over 30 percent. BLAST may not 

provide a good template if the sequence identity is less than 30 %, which means the 

templates obtained may not be accurate.22   

A mistake due to alignment is one of the main reasons for divergence in comparative 

modeling even when we select an accurate template.22 Profile-sequence and Hidden 

Markov Model (HMM) sequence alignments use an aligned group of related sequences 

shown by profile or HMM respectively. Position specific iterated BLAST (PSI-

BLAST)26  is a profile-sequence alignment. Similarly, the HMM includes Sequence 

alignment and Modelling(SAM)27 and HMMER28 which are also called profile HMMs. 

SAM generates an HMM with the use of  single query sequence by repetitively searching 

templates in  the database and then uses multiple alignment to produce an HMM .27  

Another sequence-based method is a profile-profile alignment method that uses 

comparison of sequence families to discover evolutionary identity. This alignment has 

improved sensitivity and accuracy of the alignment.29-30  Every profile-profile alignment 

includes steps like development of  multiple sequence alignment, assessment of profile 

that can be used, profile alignment with sequence profile using online database like PDB 

and evaluation of the final outcome of the alignment with its statistical significance.31  

HH search32, FFASO331 and profilescan33 are commonly used profile-profile alignments. 
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The multiple sequence alignment method concurrently aligns a set of sequences already 

identified by other means to determine conserved section, estimate the functional area 

and help in evolutionary analysis.34 These tools are helpful to improve quality of profiles 

and HMMs for the search of homologs. The majority of the multiple sequence alignments 

use heuristics called progressive alignment.22, 35 Some of the multiple sequence alignment 

tools are ClustalW36, ClustalX36, T-Coffee37, 3D Coffee/Expresso38, M coffee39, 

MAFFT40 etc.  

The structure alignment step follows the sequence alignment. Supplementary information 

about the secondary and tertiary structure of the protein is used to assist in alignment of 

the sequence. The structural alignment aligns areas of the protein sequence that are 

structurally similar instead of depending entirely on the sequence information. Some of 

the methods for structural alignment include distance matrix alignment (DALI)41, 

sequential structure alignment program (SSAP)42, combinatorial extension(CE).43  

The  DALI method uses the 3D structure of every protein and computes the distance 

matrices.44 Distance matrices are calculated for each contact pattern of a hexapeptide 

sequence, and identical contact patterns are coupled as well as combined into greater 

consistent pairs.44 Later these distance matrices are used for alignment purposes. The 

SSAP is a dynamic programming method which uses atom to atom vectors for structure 

alignment.42, 45 Similarly, the CE method creates a pairwise structural alignment by 

applying local geometry to align short fragments. The algorithm used by CE evaluates a 

group of  proteins and gives a record of proteins that are identical structurally .43  
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Model building 

The next stage after sequence and structural alignment is model building. Different 

approaches used for model building are rigid-body assembly/fragment assembly46-48, 

segment matching, satisfaction of  spatial restraint49 and artificial evolution50. The  

fragment assembly approach to the model building depends on different parts of the 

protein such as preserved center regions of the protein, a loop region that links them and 

the side chain regions.22  

The foundation of the segment matching method is building of the query model structure 

using the sequence of the amino acids and the positions of the atoms.51 The query 

structure is divided into a group of smaller fragments. 51 Later the database is explored 

for the similar fragments that are fitted onto the structure of the query/target.51 Important 

points while selecting similar fragments from the database are homogeneity of the amino 

acid sequences, similarity with the atomic positions and closeness with the query 

structure.51    

The method of 3D model building by satisfaction of spatial restraints contain three steps: 

aligning the query sequence with the template protein sequence, obtaining spatial 

restraints from the previous alignment step and acquiring complacency of the obtained 

restraints.52  

Predicting loop region with good correctness is one of the important factors for using the 

obtained homology model for further structural study.53  Several loop prediction methods 

are available for optimizing the loop regions. These are either in-built in some homology-

model building software or available as separate loop modelling software. Some of the 

methods for loop modeling are i) template/database methods such as Superlooper and  
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FREAD that align model with the templates, measure the backbone segment spreading on 

the specific region and seek the database for a section of identical length that stretches on 

a section of same size and alignment.22 ii) Other non-template based methods such as 

Molecular dynamics/Monte Carlo simulations that are useful in building larger loops. 22 

Model refinement 

The model obtained after the model building needs refinement as it may contain 

structural problems like steric clashes, bond angle deviations and dihedral angles. Many 

homology-modeling programs already include a refinement stage in their algorithm. The 

first step in refinement is minimization of the model structure to reduce the bad contacts 

using a molecular mechanics force field. Further steps in refinement include all atom 

molecular dynamics simulation or Monte Carlo simulations for a longer duration of time 

using accurate force fields.54 Commonly available force fields for both minimization and 

simulation include AMBER55-56, CHARMM57-58, and OPLS59. Once the structure is 

refined, it needs quality assessment as explained in the section below. 

Model validation/assessment 

The obtained model structure needs validation and assessment as well as suitable 

stereochemistry.60 Generally, the model structures are compared with the template 

structures used for model generation. The Root Mean Square Deviation (RMSD) is used 

for measuring the average distance between the C alpha atoms in the backbone chain by 

superimposing the template and model protein structures. The RMSD indicates how 

greatly the model structure relates to and deviates from the template structure.  
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Next, the model structure can be assessed based on the Ramachandran plot between the 

template and model structures.22 The Ramachandran plot provides information about the 

favored regions, generously allowed regions and disallowed regions of the amino acids. 

The greater the number of amino acids in the favored region, the better is the quality of 

the model structure. Various programs are available that use statistical scoring functions 

based on the observed properties of the amino acids of the structure. Correct protein 

stereochemistry including symmetry check, chirality, torsion angles, bond angle and 

packing volume can be assessed using programs like WHATCHECK61 and 

PROCHECK62. Other programs such as VERIFY3D63, PROSAII64 and ANOLEA65 are 

used to evaluate the fitting of the sequence to the predicted model and then later score for 

each residue which fits to the current environment. Besides using several programs for 

evaluation, manual inspection of the model structure is also an essential part of the 

assessment process. 

1.3 Protein-Protein docking 

There are various kinds of protein-protein interactions taking place in living organisms 

ranging from bacteria to human tissue. These interactions play vital roles in different 

biological activities that take place inside the body. To understand the mechanism of how 

these individual proteins combine to form protein complexes, several experimental 

techniques like x- ray crystallography, NMR spectroscopy and new method Cryo-

Electron Micsoscopy are available.66 Nevertheless, shortcomings of the above mentioned 

methods are related to the large protein area in the complex, flexible residues, and 

intensity of the interaction.66 Hence, computational protein-protein docking plays an 

important role in molecular modeling of protein-protein interaction.  
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The main goal of the protein-protein docking is to determine the shape of the protein 

complex when two separate proteins are available.67 While carrying out the docking, one 

protein, generally the smaller one, is considered as a ligand and the larger one as a 

receptor. Although structure of the proteins can be obtained from Protein Data Bank 

(PDB) that contains structures  from X-ray crystallography, we can also use homology 

model structures which have smaller resolution.67  There are two types of situation in 

protein-protein docking. The simplest situation is the case of bound docking. This 

docking tries to regenerate a known protein complex from the bound co-crystal structure 

of ligand -receptor.67 The aim is to reconstruct the original complex after artificial 

isolation of the proteins. The molecule from the co-crystal structure acts as a beginning 

phase that contains more than one molecule. There are no conformational changes in 

bound docking.67  

The unbound docking situation is more difficult than the bound. In this case, the proteins 

are present in their unbound native conformation, which are docked to predict the 

association between the molecules. There are significant conformational changes in the 

three dimensional structure of the proteins while interacting with each other to form the 

complex.68  

There are three important components in protein-protein docking: i) Presentation of the 

molecules in the system ii) the search algorithm iii) scoring of the potential solutions.69 

Presentation of molecules in the system 

Molecules participating in the protein-protein docking should be represented 

computationally. Mathematical models like geometrical surface descriptors, grid or 

dynamic/static treatment of protein frame in flexible and rigid docking are frequently 
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used to portray these kind of surfaces.69 A regularly used geometric surface is a Connolly 

that applies portion of  the Vander Waals surface, which is attainable to the contact 

surface, called as probe surface joined by a group of concave, saddle and convex surfaces 

gets smooth over the crevices and pits over the atoms.68-69  Other physiochemical 

properties can be used to complement the geometrical surface.69 Another way that can 

represent surface is by utilizing the three dimensional grid in association with Fourier 

correlation search algorithm for distinguishing inner portion, surface and outer region of 

the proteins.68  

Search algorithm  

Searching algorithm searches for the suitable docking solutions of the complex. At 

present, ab initio methods are being employed in several programs where one of the 

proteins is definite and the other is either translated or rotated on the first one.70 The 

major limitation of ab inito method in searching through the complete conformational 

space is that calculations are very costly and this seldom leads to specific solution.70 

Hence searching algorithms need to be descriptive, efficient, fast and accurate.71 “The 

docking method is generally based on the idea of complementarity between the 

interacting molecules, which may be geometric, electrostatic, hydrophobic, or all three ”. 

68 The algorithms can be classified according to the flexibility reported into i) Rigid body 

docking, the primary model, in which both the proteins are treated as rigid bodies. There 

are no conformational changes in the proteins. ii) Semi-flexible docking, in which one of 

the proteins, mostly the smaller one, is regarded as flexible and the larger one is rigid in 

nature. There might be conformational changes in the smaller protein structure. iii) 

Flexible docking, in which both the protein structures have flexibility. These proteins 
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might have conformational changes. 69 These algorithms tend to find the solution with the 

minimum energy and stability. Two approaches preferred for searching of docking 

solutions include i) an entire space solution search, in which the entire conformational 

space is examined for the solutions.69 ii) gradual guided progression through search 

space, in which only a part of the conformational spaces is examined for the  solutions .69  

Methods like molecular dynamics simulation, Monte Carlo, simulated annealing and 

other evolutionary approaches like the genetic algorithm use search algorithm to search 

part of the space either in a partly random and criteria-guided fashion or by using ones 

that fit the solution.69 Fourier Correlation technique like Fast Fourier transform (FFT) 

algorithm are also widely used.68-69 It applies the correlation function and evaluates the 

overlap between the molecular surfaces of the two proteins and penetration during their 

relative shifts.72 Later correlation values are calculated that explains the extent of 

overlap.72 

Scoring function 

The essential part of protein-protein docking is to find the pose with the global local 

minima after assessment of energies of all the available protein-protein docking poses. 73 

Therefore, a proper scoring function differentiates between accurate native structures that 

have small RMSD and other protein complexes within an appropriate period of time.69 

There is no uniform opinion about the criteria to be incorporated for good scoring 

functions. Previously, many docking algorithms used geometric complementarity of 

molecular surfaces as the individual criterion for scoring function.73 Criteria like steric 

complementarity in  the site of interface, hydrogen bond and electrostatic interaction have 

been incorporated in the scoring functions.68  A few scoring functions also apply 
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solvation potential, contact between the atoms and the residues, free energies, 

evolutionary usefulness of the interacting areas and clustering size.68-69 Despite 

development in scoring functions, a lot of improvement in this area is necessary in the 

future to get a good predicted solution. 

Evaluation of the result 

After generating a protein-protein docked structure and scoring it, the next stage is the 

evaluation of the results. One of the evaluation steps is to compare the RMSD, generally 

between the C-alpha atoms of the native and the docked structures that we created. The 

lower the RMSD between the structures, the better is the result. Critical Assessment of 

Prediction of Interaction (CAPRI) is a benchmark that helps in assessment of protein-

protein docking.74  

Refinement of the docked structures 

The docked structure needs refinement in further stage. Firstly, minimization of the 

protein-protein docked structure can be performed using a molecular mechanics force 

field. This helps to prevent bad contacts between the residues and minimize the energy of 

the system. Secondly, we can conduct molecular dynamics simulations of the structure.  

Software used in protein-protein docking 

Some of the software programs, their methods and sources available for the protein-

protein docking process are mentioned below.  

GRAMMX Server:  

This is a widely used protein-protein docking software. It uses the rigid body FFT 

method for searching algorithm and Lennard-Jones potential for addressing the 
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conformational variation.68 This is accompanied by refinement or minimization of the 

structure and rescoring.68 The web interface for this open access server is 

http://vakser.compbio.ku.edu/resources/gramm/grammx75. 

ClusPro 

This server applies the rigid body searching method, evaluates the poses based on 

knowledge-based scoring potentials such as atomic touch potential and utilizes the 

electrostatic potential for refining.68 Ranking is based on the clustering features of the 

low energy composite.68  The web interface for this server is 

https://cluspro.bu.edu/login.php76. 

Rosetta Dock 

One of the most commonly used kinds of docking software, the Rosetta Dock uses 

minimization by Monte- Carlo process for both rigid- body as well as side-chain 

conformation to determine complexes containing low free energy.77 The website for this 

software is   http://rosettadock.graylab.jhu.edu/78 . 

HADDOCK server 

HADDOCK stands for High Ambiguity Driven biomolecular Docking. The docking 

takes place in three steps: i) randomization of the orientations and rigid-body 

minimization of the energy in  the protein complexes, ii) partial rigid simulated annealing 

in the torsional angle space and iii) lastly optimization in Cartesian space with explicit 

solvation.68, 70 The address for the webserver: 

http://haddock.science.uu.nl/services/HADDOCK2.2 70, 79 

 

http://vakser.compbio.ku.edu/resources/gramm/grammx
http://vakser.compbio.ku.edu/resources/gramm/grammx
https://cluspro.bu.edu/login.php
https://cluspro.bu.edu/login.php
http://rosettadock.graylab.jhu.edu/
http://rosettadock.graylab.jhu.edu/
http://haddock.science.uu.nl/services/HADDOCK2.2
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Patchdock 

Patchdock80 is a docking program based on a geometry-dependent algorithm.68, 81 It 

focuses on finding out the molecular docking transfiguration that provides better 

molecular shape compatibility.81 The algorithm divides the Connolly dot representation 

of the molecules into various concave, convex and flat patches, and these patches are 

matched to generate reasonable transformations.68 A web interface to Patchdock is 

http://bioinfo3d.cs.tau.ac.il/PatchDock/81. 

ZDOCK 

ZDOCK uses a rigid body Fast Fourier Transformation (FFT) dependent algorithmic 

property that incorporates complementarity of the shape, desolvation energy and 

electrostatistics.68  ZDOCK could be applied in coalition with RDOCK to help in 

minimization, further refinement and ranking of the complexes.82-85 The web interface of 

ZDOCK server is http://zdock.umassmed.edu/86-87. 

HexServer 

HexServer is the first to use graphic processors for this kind of docking .88 It provides an 

easy way to operate the GPU- driven FFT dependent rigid body docking of protein 

complexes.88 An easy to use web interface for HexServer is http://hexserver.loria.fr/ 88. 

Schrodinger bioluminate:  

Bioluminate is a commercial program provided inside the Schrӧdinger software package 

that performs the protein-protein docking to study the protein interactions. It performs the 

rigid body docking of protein complexes.  

http://hexserver.loria.fr/
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1.4 Molecular dynamics Simulation 

Study of the protein dynamics/flexibility is important to know the protein functions. 

Moreover, protein dynamics study helps us to know about different possible 

conformations of the protein structure. Experimental methods like x-ray crystallography 

are available to study the flexibility of protein in ligand binding but they are expensive  

and require great hard work.89  This problem led to the development of various 

computational methods to study protein dynamics.89 Molecular dynamics (MD) studies 

the motion of the molecules using computer simulation. These simulations have been 

used in the research involving protein and biomolecules.  

Conventional MD is a process to investigate the interaction and movement of atoms or 

molecules using Newton’s laws of motion.90 We use force fields to evaluate the force 

present on the interacting molecules and compute the total energy that exists on the 

system.90 Later on during the simulation process, the representative configurations of the 

evolving system are generated that produce trajectories, give velocities and positions of 

the atoms throughout the time period.90 Several features such as free energy calculation, 

potential energy and kinetic properties can be calculated from the generated trajectories 

that can be compared with the experimental values if available.90  

The initial step in the MD simulation is representing the molecular system in terms of a 

computer model applying data from x-ray crystallography, NMR or a model structure. 89 

Then the forces affecting each of the atoms in the system is calculated using Newton’s 

law of motion. This can be achieved by resolving the differential equations of Newton’s 

second law of dynamics as shown in Equation 1.1 below.90  
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 𝐹𝑖 (𝑡)  =  𝑚𝑖 𝑎𝑖 (𝑡)  =  − 𝑑𝑉 (𝑥 (𝑡)) / 𝑑𝑥𝑖 (𝑡) Equation 1.1 

 

Fi  is the force at a particular point of time acting on the atom i, mi is the mass of the 

atom i and the acceleration is represented by ai. Similarly, the configuration of the system 

is shown by x (t).  

To simplify the force acting on the system, potential energy function is introduced in 

Equation 1.1 and a  simplified depiction of  the model is generated called molecular 

mechanics (MM) or, in other terms, the Force field (FF).90  In this force field, two types 

of forces, namely forces resulting from interaction between bonded atoms and non-

bonded atoms, are taken into consideration.89 The MM with the several component forces 

are  represented in the Equation 1.2 below.89 

 

Εtotal =  ∑ 𝐾𝑟(𝑟 −  𝑟𝑒𝑞)
2

 

𝑏𝑜𝑛𝑑𝑠
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2

+
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∑
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6  +  
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𝑐𝑅𝑖𝑗
]

𝑖< 𝑗

 

 

Equation 1.2 

The foremost three energy terms, namely bonds, angles and dihedrals, represent the bond 

stretching, bending and torsions between the atoms that interact with each other. 90 These 

represent interactions between the bonded atoms. Van deer Waals and Coulombic 

interactions respectively portray the non-bonded interactions. Van deer Waals 

interactions are considered using the 6-12 Lennard-Jones potential.90 Likewise, the 

electrostatic interactions between the two atoms are depicted using the Coulombic 

potential where partial charges between the pair of atoms are considered.90  To propagate 
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the true behavior of  the molecules , the force field terms mentioned above may undergo 

parameterization with the  quantum-mechanical and  experimental values.89 The benefit 

of using  molecular mechanics is that it boosts up the calculation process in comparison 

to the quantum mechanics method.90 Some of the commonly used molecular mechanics 

force fields for simulation of biological molecule are AMBER55-56, CHARMM91, 

GROMOS92, and OPLS59. Besides amino acids, the guardian force fields have also 

accommodated the parameters for carbohydrates, nucleic acids, lipids and some ionic 

molecules in the recent years.90 Nevertheless, the parameters for ligand and other non-

standard residues have problems dealing with these force fields. Hence, the user needs to 

provide parameters for ligand and some non-standard residues.90 Force fields like 

GAFF56 and CGenFF57 are available for parameterization of organic molecules/ligands 

that are used for AMBER and CHARMM respectively.90 Programs such as 

ANTECHAMBER93, paramfit94 , Hopkins-Roitberg’s approach used for amber95 and 

general automated atomic model parameterization (GAAMP)96 are frequently used for 

the purpose of parameterization of small molecules.  

After the force field has been specified and the forces affecting every atom on the system 

has been calculated, the particles are moved based on Newton’s law of motion.89  Since 

the bio molecular systems are larger in size and difficult to solve, the integration of 

Newton’s law of motion needs to be divided into distinct intervals of time ie. time steps, 

dt.90 As forces acting upon the atom depend upon positions of the atom that fluctuate over 

time, a slight dt introduced helps to portray valid forces over the time.90 One of the 

simplest and best algorithms used for integration of Newton’s equation of motion is the 

Verlet algorithm97. This algorithm utilizes positions, velocities and accelerations at a time 
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t to calculate the new positions at time t+dt  which is shown by the Equation 1.3 given 

below.90 

 𝑋(𝑡 + 𝑑𝑡)  =  𝑥(𝑡)  +  𝑣(𝑡)𝑑𝑡 +  1/2𝑎 (𝑡)𝑑𝑡2       Equation 1.3   

Likewise, accelerations are computed by measuring the force affecting per atom that 

includes the first order derivative of potential energy in  regard to its positions.90 When 

these tiny steps are integrated, they form the trajectory of the whole system for a given 

time span. The time steps need to be advanced by one or two femtoseconds and the 

method is repeated multimillion of times.89 We can accelerate the simulation procedure 

by affixing the length of the covalent interaction, which helps to accelerate the time steps 

from 2 to 6 femtoseconds.98 Algorithms like SHAKE99 and RATTLE100 are used to 

constrain bond lengths. SHAKE is one of the most commonly used algorithms for this 

purpose.  

Another way of running long time scale simulation is Hydrogen Mass Repartitioning. 

Studies have shown that this method is a convenient way of increasing the speed of 

molecular dynamics simulations.101 Repartitioning the weight of heavy atoms into the 

bonded hydrogen atoms, the motions of biomolecule under study can be reduced.101 This 

helps to increase the time steps of MD simulation by factor of 2.101 With this particular 

technique, the simulations can be increased to 4-femtosecond time step.   

Ensembles used in molecular dynamics simulation 

During the MD simulation, we use different kinds of ensemble approaches. Straight 

implementation of most of the integrators will result in simulations that use micro 

canonical ensemble i.e. constant number of particles (N), volume and energy (NVE 
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ensemble).90, 98  Nevertheless, the simulation of the system can be carried out under a 

constant temperature condition called canonical ensemble where N, V and T are 

constants (NVT ensemble).98 Several coupling algorithms are used to maintain the 

constant temperature during the simulation process98, and are called thermostats102. 

Commonly used thermostats in the MD simulation are Berendsen103, Anderson104 and 

Noose-hoover thermostats105-106. Similarly, simulations are also carried under the 

conditions of constant pressure where N, P and T are constants (Isothermic isobaric 

ensemble). Several barostat algorithms97, 107 are available to maintain the constant 

pressure during simulation. The pressure is checked by fluctuating the volume of the 

system.90  

Periodic Boundary Conditions (PBC) 

In a molecular dynamics simulation, periodic boundary conditions are used to illustrate 

the large characteristics of the system of a finite size .90 In PBC, the system is kept inside 

a unit cell and then reproduced by translation in every direction to make system more like 

an infinite geometry to fill the space.90 Practically cut off distances are appointed to judge 

non-bonded interactions and make sure that only one group of closest neighbors are 

present around a simulation cell.108 Usually a cut-off distance of 8-10 Angstroms is 

preferred. An interesting point is that if a particle/atom moves out of the unit cell in one 

or other cell coordinates by any means, its corresponding image enters the cell from the 

spot where the atom has left by lattice symmetry.108 Some important features of PBCS 

are they help to conserve particle number, mass and liner momentum in the system.108 

The most important behavior of PBC is to confirm that no particle inside the unit cell 

notices a vacuum within the cut-off area and hence surface artifacts are prevented.108 
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Solvation models in MD simulation 

Solvation has an effect on the simulation process. There are two types of solvation model 

used in MD simulation. They are explicit and implicit solvation models. Water is the 

most widely used solvent for simulation of biomolecules. In explicit solvation, water 

molecules are added explicitly to the system. Commonly used water models in the 

simulation process include SPC109, TIP3P110, TIP4P110 and TIP5P111. Although all the 

water models mentioned above have been improved to match one or other physical 

properties of water including radial distribution, diffusion and density, none of the 

models represent all the properties. 112 Since the solvent molecules are also present in the 

simulation, application of explicit solvent in the simulation makes the process 

computationally extensive.  

Implicit solvation is less rigorous computationally. The implicit model treats the solvent 

molecule as a consistent high-dielectric medium surrounding the target and the solute is 

treated as a small dielectric area with spatial distribution of charge.114 Commonly used 

implicit models are the Poisson Boltzmann (PB) model and the Generalized Born (GB) 

model.115 

Figure 1.4 represents an explicit water solvation model of the transmembrane bound 

human nicotinic acetyl choline receptor (nAchr) alpha 7 homology model113. We created 

the explicit water solvation model utilizing the Visual Molecular Dynamics (VMD). The 

figure shows the graphical representation of the transmembrane n-acetyl choline receptor 

(nAchr) created using VMD. Yellow CPK represents chloride ions. Purple CPK 

represents sodium ions. New ribbon depicts protein structure. The lowermost surface 

represents lipid bilayer. The outermost transparent surface depicts water box.   
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.  

Figure 1.4. Explicit water solvated protein with ions included.  

 

The most commonly used MD simulation packages are AMBER116, CHARMM91, 

GROMOS92, 117, GROMACS118-120, NAMD121-122 and DESMOND123.  We have used 

AMBER for molecular dynamics simulation in our Salmonella typhimurium ArtAB 

project. 

1.5 Molecular docking 

During the drug discovery stage, it is a commonly used technique to utilize big and 

diverse libraries of small molecules for the purpose of in silico and experimental 

screening. 124 Virtual high throughput screening is a widely used computational screening 
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of huge libraries of compounds from the database against a desirable macromolecular 

target to find the active molecules. Later the biological features such as affinity, potency 

and efficacy can be identified for the selected compounds using various experimental 

methods.125 Virtual screening has advantages over high throughput screening in that it is 

cheaper, faster and if carried out cautiously gives good hit rates. Virtual screening is 

classified into structure-based and ligand-based virtual screening approaches. We have 

already discussed ligand-based approach in the previous section. Since we have used 

structure-based virtual screening in our project, we are mainly focusing on it.  

Molecular docking is the most commonly used structure-based virtual screening 

technique. Molecular docking is a widely used computational approach in virtual 

screening that helps to estimate the potential binding mode of a molecule in a specific 

binding site of a target.126 The three-dimensional structure of the target/receptor helps to 

dock the compound in the binding site. With the application of molecular docking, study 

of the compound binding mode and the intermolecular interaction that takes place when 

the ligand binds with the receptor can be performed.127 Moreover, this kind of study 

provides estimation of the binding energy and ranks the docked ligands depending on the 

binding association of ligand and receptor.127-128 Molecular docking of ligand and 

receptor complex involves two main stages127, 129 i) searching of the conformational space 

or sampling to find the docking poses and ii) scoring and ranking of the generated docked 

poses.  

Searching conformational space or sampling 

Sampling in molecular docking is mentioned as the production of genuine compound 

binding conformation in the active site of the target.127  Two commonly used algorithms 
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for conformational search are i) systematic search and ii) stochastic search.130-131 The 

systematic conformation search causes small changes in the structural parameters and 

slowly alters the conformation of the compounds.132 These search algorithms are applied 

for flexible ligand docking and produce all feasible conformations of the compound 

docked.127 Table 1.1 shows different docking programs and their search algorithms.6 

Table 1.1. Docking programs under stochastic and systematic algorithms  

Stochastic algorithmic search Systematic algorithm search 

GOLD133 DOCK134 

ICM135 LUDI136  

QXP137 FRED138 

AUTODOCK139 eHiTS140 

Prodock141 GLIDE142 

PSI-DOCK143 FleXX144 

Molegro Virtual Docker145 Surflex-Dock146 

MolDock147 ADAM148 

PRO_LEADS149 SLIDE150 

MOE151 FLOG152 

 

The stochastic algorithm performs sampling of ligand conformations/orientations by 

causing random changes in the structural parameters of the compound. 6, 127 The 

stochastic algorithm produces a combination of ligand conformations, examines the 

energy space and expands the chances of obtaining the final ligand-binding mode at the 

global minima.6 
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Scoring functions  

A scoring function is an important aspect of molecular docking programs. Scoring 

functions evaluate the binding affinity of the ligand and target complex.6 Scoring 

functions also help in ranking the docked poses according to the binding affinity. Scoring 

functions can be classified into three groups127, 153 i) force field ii) empirical iii) 

knowledge based scoring function and iv) consensus scoring function.  

The force field scoring function, as the name suggests, takes into account various bonded 

and non-bonded interactions that we mentioned earlier and hence calculates the binding 

affinity of the compound into the receptor.6 One drawback about this scoring function is 

it does not correctly predict the entropic effect. 6  

The empirical scoring function utilizes the statistics obtained from experimental 

structures and tries to match them with the parameters.1 It calculates the binding affinity 

by taking into account the properties like hydrophobic impact and total hydrogen bond 

information and then matches them with the experimental details.1, 3  

The knowledge based scoring function uses statistical or structural data from the 

experimental compound-receptor complexes.1, 64, 154-155  While calculating the energy, it 

uses a dataset of structures and considers the number of occurrence of atom pairs present 

within a known distance.6 After that, several interactions that are present between the 

atom pairs in the dataset are categorized and the ultimate score in the docking process is 

the aggregate of these interactions.6   

Many of the above scoring functions may have some shortcomings.6  Therefore, a 

consensus scoring function increases the chances of obtaining a good ultimate solution 
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from the docking by combining several scoring functions and neutralizes the 

shortcomings from the independent one.127  Table 1.2 shows several scoring functions 

used in molecular docking and their examples. 

Table 1.2. Different scoring functions and their examples  

Scoring function  Examples 

Force-field based Autodock,139 DOCK,134 Goldscore,133, ICM135 

Empirical based Ligscore,156 LUDI,157 Glidescore,142 X-score,158 

Chemscore,159 Fresno,160 SCORE161 

Knowledge based Drugscore,162  SMoG,163 PMF-Score,164 Posescore165 

Consensus Multiscore,166 X-Cscore,158 GFscore167 

 

In our research project we used GLIDE (Grid-Based Ligand Docking with Energetics) for 

molecular docking and virtual screening purposes. This is a program available in the 

Schrödinger suite. During the glide docking process, the grid, generated by the grid 

generation process represents the receptor. 168 The appearance and features of the grid in 

the grid generation stage are computed by using several groups of force fields that 

facilitate the correct scoring of the ligand in the receptor.142 Initially the glide program 

produces poses of a ligand in the docking procedure. 169 Later the glide program applies a 

hierarchical group of filtering criteria to explore a feasible location of the compound in 

the binding site of the receptor grid.142, 169 The glide program produces a group of 

compound conformations.142 With these compound conformations present, preliminary 

screening of complete conformational space takes place, and generates a set of favorable 
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ligand poses during the procedure.142 Minimization of the poses of the compound occurs 

with the application of force field OPLS-AA170 in the grid.142, 169 A few of the small 

energy ranking poses also undergo Monte Carlo calculation to find out the minima.142 

After the minimization steps eventual scoring takes place with the Glidescore.169 

Glidescore is employed to estimate the binding affinity of the compound and also aids in 

ranking of the compounds in the virtual database.142 However, we have used a different 

matrix called glide ligand efficiency score in ranking some of our compound libraries.  

The glide ligand efficiency score in our calculation determines the efficiency of the 

ligand. The larger the docked ligand molecule in the receptor, the greater the chances of 

more interaction with the amino acid residues and increased score. To solve this problem, 

the glide score has been normalized taking into account the number of heavy atoms 

present in the ligand.  
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Chapter 2. Modelling and docking studies on the Clostridium difficile FabK enzyme 

2.1 Introduction 

Clostridium difficile  is one of the major causes of nosocomial diarrhea, which affects 

people causing mild diarrhea to severe cases of colitis.171 C. difficile leads to more than 

450000 infections and approximately more than 29000 deaths every year in the United 

States.172  In regards to expenditure on health services, C. difficile infection has caused 

more than $4 billion of surplus health care expenses considering acute health service 

only.173-175 Infections from C. difficile may occur after an interruption of the gut 

protective normal flora increase growth rate of C. difficile in the intestine.176-177  

Studies have shown that the two toxins A and B produced by the bacteria play major 

roles as virulence elements in the pathogenesis of the disease.178-179 Besides, these toxins 

also act as an important indicator in the diagnosis of the disease caused by the C. difficile 

infections.179  Hence, the present diagnosis and treatment of infections mainly focuses on 

these toxins. Drug therapies like Metronidazole and Vancomycin are common in the 

treatment of infections caused by C. difficile.180-182 These infections can be treated with 

antibiotics but relapse of the disease even after the treatment has been a major issue for a 

long time.181 Moreover, these antibiotics also harm normal flora present in the intestine. 

There is an immediate necessity for the new drug targets in these bacteria for the 

treatment of the infections. 

 



31 
 

2.1.1 Clostridium difficile FabK enzyme 

One of the possible targets in the Clostridium difficile is the reductase enzyme called 

enoyl-acyl carrier protein reductase II (FabK). Different types of enzymes having various 

features catalyzing the bacterial fatty acid synthesis process (FAS II)183-184 are shown in 

Figure 2.1185 below.  

 

Figure 2.1. Bacterial fatty acid synthesis process  

This figure was reproduced with the permission of the journal185. 

 

FabK is a reductase enzyme, a flavoprotein that needs NADPH for its biological action186 

and is resistant to the drug Triclosan187. Many of the enzymes that catalyze the bacterial 

fatty acid synthesis can be potential target of antibacterial agents. For  example, Triclosan 
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inhibits FabI, an important enoyl-acyl ACP reductase, in the fatty acid synthesis process 

of bacteria187. Likewise, FabK is the only enoyl reductase enzyme that plays a crucial role 

in the fatty acid synthesis process of C. difficile. It is distinct from FabI enzyme. 

Currently, no study has investigated the crystal structure of C. difficile FabK and 

targeting this enzyme with the inhibitors. 

Our hypothesis for this study is that the small molecule inhibitors of FabK enzyme show 

selective antidifficile action against C. difficile with good binding affinity. The basis of 

our hypothesis relies on the fact that FabK is the only reductase in C. difficile that leads to 

selectivity. Some studies have shown the inhibitors of FabK in other bacteria.  

2.1.2 Aim of the study 

The aim of this project is to identify small molecule inhibitors of the Clostridium difficile 

FabK enzyme. We believe that inhibition of this bacterial fatty acid synthesis process in 

C. difficile will provide us compounds for further experimental study. 

To fulfil our aims, we used a computational approach to develop a validated homology 

model of C. difficile FabK, as it does not have a crystal structure. After that, the refined 

model was used for molecular docking using compounds from seven different libraries. 

2.2 Materials and Research methodology 

To fulfil our aims and carry out our research activities we used different software 

programs for various purposes. The several kinds of software used in this project are 

summarized in Table 2.1 below. In the project, Maestro from Schrodinger188, Chimera189-

190 and VMD191-192 were used for the purpose of visualization; other programs and 

software are itemized in detail in the research methodology. 
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Table 2.1.  Software used in C. difficile FabK modelling and docking  

Program  Supplier 

Chimera-Modeller interface Chimera 

Swiss Model Swiss model expasy server 

Verify3D UCLA-MOE lab 

Protein Preparation wizard Schrödinger LLC 

Ligand preparation program Schrӧdinger LLC 

Maestro Schrödinger LLC 

Glide docking Schrӧdinger LLC 

Chimera University of California San Francisco 

(UCSF) Biocomputing team 

VMD University of Illinois at Urbana-

Champaign (UIUC) Biophysics group 

 

2.2.1 Creating the homology model of C. difficile FabK 

We obtained the FASTA amino acid sequence of enoyl- (acyl-carrier-protein) reductase 

II enzyme of Clostridium difficile strain 630193-194 from the National Center of 

Biotechnology Information (NCBI)  Protein database195. To generate the homology 

model of C. difficile FabK, we used the Modeler interface available in Chimera. Using 

the query sequence, we selected templates from the blast query considering whether the 

template contained the FabK enzyme or not. Two templates were chosen evaluating 
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sequence identity, E value, score and resolution of the structure. The first template was 

2Z6J_A i.e. chain A of the crystal structure of Streptococcus Pneumoniae FabK in 

complex with the phenyimidazole inhibitor, TUI (contains 58 % sequence identity, 

Evalue = 1.79694e-114, score=334 and resolution 2.3). The second template was 

4IQL_A i.e. chain A of the crystal structure of Porphyromonas gingivalis FabK with 

sequence identity 46.1 percent, Evalue = 5.09482e-71, score=223 and resolution 1.94.  

Initially blast alignment was used for aligning the target and the templates. Later we 

realigned the sequences using Clustal Omega, which is useful for multiple sequence 

alignment. We viewed the sequence alignment in the Multialign viewer.  

We ran a structure prediction from the Chimera-Modeller graphical user interface locally 

and generated 10 different models. One Na+ ion from the center and FMN from 4IQL 

were retained on models. Likewise, we retained the inhibitor TUI from 2Z6J template. 

FMN and the Na+ ion lie in the active site of the receptor. The TUI retained in the 

homology model could provide us with the coordinates of the centroid of the ligand 

during the later docking steps. We deleted NADPH as it acted as the competitive 

inhibitor of FMN. Similarly, we removed two Na ions in the template 4IQL that were far 

from the active site. Among ten different models generated from the Modeller-Chimera 

interface, the selected model was the one with majority of best scores in terms of the 

lowest RMSD, lowest zDOPE or normalized discrete optimized protein energy (more 

negative value of the structure) score, highest GA341 score and the best-estimated 

overlap of the model and template.  
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The model was subjected to 2500 iterations of energy minimization from the Schrödinger 

software188 (Tasks – minimization – forcefield) to minimize the bad contacts, steric 

clashes and other structural problems.  

We performed further evaluation of the model. PROCHECK62 was used to evaluate the 

stereo chemical properties utilizing Swiss model expasy server196. VERIFY 3D197-198 

helped to evaluate the compatibility of the three dimensional model structure with its own 

amino acid sequence (one dimensional structure). This analysis was performed using the 

structural analysis and verification server (SAVES)199. QMEAN200 was used from the 

Swiss model expasy server196 to evaluate the quality of the model taking into 

consideration the six different energy terms that are mentioned in the results later. 

2.2.2 Sequence identity of the active sites of the homology model 

After we evaluated the final selected homology model, we calculated the percentage 

sequence identity of the residues of the active site utilizing the sequence alignment. First, 

we selected 5-Angstrom region around the TUI inhibitor as the active site. The residues 

were chosen within this region. We opened the two templates (2Z6J and 4IQL) in the 

Chimera. The model structure was superimposed with both the templates (Tools -- 

Structure comparison -- Matchmaker). The model structure was considered as a reference 

and the two templates as matching structures. The matching was restricted to the selected 

areas of the active residues. After the superposition, structure-based multiple sequence 

alignment was calculated for the model and the two templates. Structure alignment of the 

residues of the active site of the homology model with the templates helped us to 

calculate the percentage sequence identity of the active site residues with reference to the 

templates.  
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2.2.3 Redocking validation using inhibitor of the model structure 

            The following step included the docking revalidation of the inhibitor TUI in the final 

refined homology model. Validation is performed to check how far docking of the native 

ligand reproduces the result.169 Moreover, this also provides us with an idea of the 

parameters that can be used for molecular docking of compound libraries. We extracted 

the TUI inhibitor from the model structure. This was followed by ligand preparation 

stage.  For this, we used the ligprep program that prepares the ligand for docking process. 

Glide suggests processing of the ligands by ligprep before the docking procedure. 

The next step was preparation of the model structure using the protein preparation wizard 

of the Schrödinger software. The protein preparation wizard201 has two stages: i) 

Preprocess that assigns bond order, adds hydrogen to the protein, produces zero-order 

bond to metals and fills missing side chains that may occur in the protein; and ii) 

Optimization that optimizes the intra and intermolecular hydrogen bonds present between 

the amino acid residues.  

The next step was generation of the receptor grid from the task menu of the Schrödinger. 

We did not include the original TUI in the grid. An enclosing outer box was prepared 

(size 29*29*29). This is the outermost region that the docked compounds can occupy. 

Similarly, an inner box of 12*12*12 size centered on the native TUI was created. This 

defined the size of the inner/ligand diameter midpoint box. This was adjusted from the 

advanced settings option. No constraints were used in the procedure. 

After preparation of the ligands from the ligprep and generation of the receptor grid, we 

performed the glide docking. Flexible ligand sampling and Glide standard precision 

modes were selected. We analyzed the docked compounds based on the RMSD between 
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the heavy atoms of the docked pose and the native TUI inhibitor present in the homology 

model.  The three docked poses generated from the glide docking were saved in mol2 

format. The RMSD between the docked poses and the native TUI ligand in the homology 

model were calculated in Chimera using rmsd command from the command line. 

Hydrogen molecules were removed from the docked poses to make an equal number of 

heavy atoms between the docked ligand and the native TUI.  

2.2.4 Redocking validation of the ligands of the crystal structures  

We conducted the redocking validation of TUI to 2Z6J and FMN to 4IQL. We used Auto 

dock vina from Chimera for these docking jobs. We removed TUI from 2Z6J and FMN 

from 4IQL PDB structures. This was followed by the protonation of both the protein 

structures utilizing PDB2PQR in Chimera (Tools – Structural editing – PDB2PQR). The 

cartesian centers of TUI and FMN were calculated using the linux command line. We 

protonated TUI and FMN at pH 7.4 using Openbabel. These structures were retrieved in 

mol2 format.  

Next, we conducted the docking using Auto dock vina from Chimera (Tools – 

Surface/Binding analysis). For 2Z6J, the pqr file of 2Z6J was considered as the receptor 

and the mol2 file of TUI was considered as the ligand. Likewise, for 4IQL, the pqr file of 

4IQL was considered as the receptor and the mol2 file of FMN was considered as the 

ligand. The cartesian coordinates of 2Z6J and 4IQL were x=9.688, y=1.095 and z=6.557 

and x = -19.26, y = 22.3899 and z = -21.9837 respectively. We defined the box size of 

23*23*23 for both the redocking validations. All the other options were default. We 

analyzed the docked poses comparing the RMSD between the heavy atoms of the docked 

pose and the native ligand available in the crystal structures. RMSD between the docked 
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poses and the original ligands in both the crystal structures were calculated in Chimera 

using rmsd command from the command line. Hydrogen molecules were removed from 

the docked poses to make an equal number of heavy atoms between the docked ligand 

and the native ligands in the crystal structures.  

2.2.5 Ligand preparation of multiple libraries for glide docking. 

Seven different libraries were obtained from the database. They were Human Approved 

Drugs collection, NIH Chemical Genomics Center (NCGC) Pharmaceutical collection, 

Maybridge, Chembridge express, Chembridge core, Lifechemicals and Specs. We carried 

out the ligand preparation from the ligprep program of the Schrödinger. Ligprep helps to 

generate 3D ligands from their 2D structure, potential ionization states at pH 7 and +/- 2, 

tautomers, chiralities and other features. During the ligand preparation stage, filtering 

criteria were used to include the appropriate molecules in the libraries. Since Human 

Approved and NCGC pharmaceutical libraries are approved for use in humans, we only 

applied a filter for a molecular range of 150 to 800 Dalton. For the other five larger 

libraries, a filtering file was prepared that included criteria for molecular weight and 

definition of different functional groups as shown in B.1 (appendices). The final libraries 

contained compounds ready for docking. 

Table 2.2 shows the number of compounds in each library before ligand preparation from 

the ligprep.  
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Table 2.2. Number of compounds in seven different libraries  

Name of the library Number of compounds in the library  

Human Approved Drugs 7794 

NCGC Pharmaceutical collection  3273 

Maybridge  52160 

Chembridge express  More than 480,000 

Chembridge core  More than 640,000 

Lifechemicals More than 450,000 

Specs compound More than 200,000 

 

2.2.6 Molecular docking of compound databases. 

Protein preparation of the homology model was conducted in a similar way as the 

redocking validation of the inhibitor. This preparation was followed by the receptor grid 

generation for molecular docking. We assigned formal charges to the Na metal available 

in the active site. The force field used for grid generation was OPLS_2005. We did not 

include the TUI inhibitor of the model in the grid generation. It was excluded from the 

receptor grid by picking up the ligand. In the site tab, an outer enclosing box of 29 * 29 * 

29 was considered for the receptor grid. It represents the grid box within which all 

docked compounds are contained. The center of the box was specified on the centroid of 

the workspace ligand. Size of the inner/ligand diameter midpoint box was adjusted to 13 

* 13 * 13 from the advanced settings option. We considered Na+ ion and FMN in the 
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active site during the generation of the receptor grid. These were included in the grid box. 

No constraints were used in the grid generation.  

We performed docking of compound libraries that were prepared from the ligprep. The 

receptor grid was specified, which was generated in the grid generation. Ligands were 

screened with FMN and Na ion available in the active site. In the beginning, the Human 

Approved Drugs library and NCGC pharmaceutical collection were used for glide 

docking. We chose options like “no docking and scoring of ligands more than 300”, and 

“number of rotatable bonds not more than 100”. No constraints were used in the 

procedure. We chose the flexible ligand sampling to consider flexibility of the docked 

ligands. Other default settings remained as they were. Since Human Approved Drugs and 

NCGC Pharmaceutical libraries were smaller in size compared to other libraries, standard 

precision (SP) mode was used for docking  

We selected the top ten compounds from Human Approved and NCGC libraries based on 

glide score (from the highest negative glide score to the lowest). For the other five larger 

libraries, first we conducted high-throughput virtual screening of these compounds. We 

sorted these compounds according to their glide ligand efficiency ln values. This 

normalizes the standard glide score with the number of heavy atoms present in the given 

ligand. We proceeded with SP docking of the top ten percent of these sorted compounds. 

The same procedure was repeated for Maybridge, Chembridge core, Chembridge express, 

Lifechemicals and Specs libraries. Default parameters were selected for docking. 

Moreover, the compounds from standard precision docking were also sorted according to 

their glide ligand efficiency ln values. The ligands were sorted from lower (higher 
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negative) to higher (lower negative and positive) glide ligand efficiency. The top ten 

compounds were chosen for analysis. 

2.3 Results 

2.3.1 Homology model of C. difficile FabK enzyme 

We generated ten different homology models of C. difficile FabK using the Chimera-

Modeller interface. These models have different individual GA341 scores, zDOPE 

scores, estimated root mean square deviations (RMSDs) and estimated overlap between 

the templates and models. The best model, 2.9, was chosen based on highest GA341 

score, lowest zDOPE score, smallest estimated RMSD and the highest estimated overlap. 

Table 2.3 shows ten different models with their different individual scores.  

Table 2.3. Top ten models of C. difficile FabK from Chimera-Modeller.  

Model GA341 zDOPE Estimated 

RMSD 

Estimated 

Overlap (3.5 A) 

2.1 1.00 -0.72 2.628 0.862 

2.2 1.00 -0.77 2.541 0.873 

2.3 1.00 -0.59 2.993 0.833 

2.4 1.00 -0.73 2.501 0.875 

2.5 1.00 -0.74 2.582 0.865 

2.6 1.00 -0.77 2.443 0.883 

2.7 1.00 -0.79 2.346 0.881 

2.8 1.00 -0.79 2.347 0.880 

2.9 1.00 -0.83 2.298 0.885 

2.10 1.00 -0.64 2.764 0.854 
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We subjected the model to 2500 iterations of minimization from the Schrödinger suite to 

refine the structure and minimize the bad contacts. The minimized structure was further 

analyzed. The quality of the selected model was assessed using the Ramachandran plot, 

PROCHECK scores, verify 3D and QMEAN6 score. 

The Ramachandran plot generated from the PROCHECK result of the selected final 

model is shown in Figure B.2 (in Appendix). It gives information about the residues in 

different regions that include the favored, allowed, generously allowed and disallowed 

regions. The Ramachandran plot/statistics shows that 0.4% of the residues fall in the 

disallowed, 91.3 % in the most favored, 7.2% in the additionally allowed and 1.1% in the 

generously allowed regions.  

Similarly, the PROCHECK program generated several stererochemical properties of the 

final model. Approximately 97.2 % of the residues had appropriate bond length, and 90 

% of them had bond angle within the selected limit. All the planar groups of the side 

chains present in the protein were within the limit.  

Detailed plots of bond length, bond angle and major distances from planarity are shown 

in Figures B.3, B.4 and B.5 (in Appendices). Major stererochemical properties from the 

Procheck can be summarized in Figure 2.2.  
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Figure 2.2. The PROCHECK summary of the C.  difficile FabK homology model.  

 

Verify 3D results 

The verify 3D result of the final selected model showed that 94.50 % of the residues had 

a mean 3D-1D score greater than or equal to 0.2. The pass criteria for verify 3D is that at 

least 80 % of the amino acid residues should have scored greater than or equal to 0.2 in 

the 3D/1D profile. 

QMEAN 6 result 

QMEAN6 evaluation of the model was performed using the Swiss expasy web server. 

The various components of the QMEAN6 score with their raw and Z scores are shown in 

Table 2.4 below.  
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Table 2.4. QMEAN6 score of C. difficile FabK homology model  

Scoring function term Raw score Z-score 

C_beta interaction energy -84.39 -1.05 

All-atom pairwise energy -5342.17 -1.48 

Solvation energy -39.54 0.80 

Torsion angle energy -73.74 -0.67 

Secondary structure agreement 82.8% 0.16 

Solvent accessibility agreement 83.8% 0.61 

QMEAN6 score 0.775 0.01 

 

The average QMEAN6 score of the model was 0.775. The values of a QMEAN6 score 

ranges from 0 to 1. This score consists of combinations of scores of several components 

that have an important role to play in the structure. The higher the score of the QMEAN, 

the better is the structure 

2.3.2 Sequence identity of the active sites of the homology model 

We matched the selected residues of the active site of the homology model with the two 

templates. After the superposition, structure-based multiple sequence alignment was 

conducted for the model and the two templates. We calculated the percentage sequence 

identity of the active site residues with the templates. Figures 2.3 and 2.4 show the 

sequence alignments of the active site residues of the model with the templates 2Z6J and 

4IQL separately.  
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Figure 2.3. Sequence alignment of the active site residues of the model with 2Z6J 

 

Pink region inside the box shows the sequence alignment of the residues of the active site 

with the residues of the template 2Z6J. There are 19 residues in the active site. 18 of the 

19 residues of the active site matched with the structural template. The sequence identity 

of the active site is 95%. 
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Figure 2.4. Sequence alignment of the active site residues of the model with 4IQL 

 

In the figure, pink region inside the box shows the sequence alignment of the residues of 

the active site with the residues of the template 4IQL. 8 of the 19 residues of the active 

site matched with the residues of the template 4IQL.The sequence identity is 42%.  

The sequence alignment of the active site residues of the model with the template 2Z6J 

showed high sequence identity (95%) compared to the overall sequence identity of 58%. 

Similarly, the sequence alignment of the active site residues of the model with the 

template 4IQL showed sequence identity of 42% compared to the overall sequence 

identity of 46%. Utilizing multiple templates improved the sequence identity of the active 

site residues. 
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2.3.3 Redocking validation of the native TUI inhibitor of the modeled structure 

Redocking was performed by extracting the TUI inhibitor presented in the homology 

model to validate the process. The docking poses were evaluated comparing the 

calculated RMSD between the coordinates of the heavy atoms of the docked ligand to 

that of the TUI inhibitor of the model. The RMSD was calculated in Chimera using the 

command rmsd in the command line.  Table 2.5 represents RMSD between the three 

docked poses and the original TUI inhibitor presented in the homology model. 

Table 2.5. RMSD measurement of top docked poses of redocking validation  

Compound  RMSD between the pose and native 

ligand (in Angstrom) 

Pose 1 1.359 

Pose 2 11.207 

Pose 3 1.551 

 

From Table 2.5, it is seen that the best RMSD is 1.359 Angstrom between pose 1 and the 

native TUI of the homology model (lies in the 2 Ao cutoff). 

The three dimensional visualization of the best-docked pose (pose 1) with the native 

ligand available in the homology model is shown in Figure 2.5 below. The top docked 

pose 1 is colored by their element properties. The original TUI of the homology model is 

shown in green. The FMN cofactor is shown in grey. Sodium ion is shown in yellow.  
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Figure 2.5. Top docked pose with the native ligand in the receptor  

 

2.3.4 Redocking validation of the ligands of the crystal structures  

We conducted the redocking validation of both TUI and FMN of 2Z6J and 4IQL 

respectively. The poses obtained from redocking validation were evaluated comparing 

the RMSD between the heavy atoms of the ligand of the docked pose to that of the ligand 

of the template. Table 2.6 shows the RMSD between the docked poses and the original 

ligand FMN of 4IQL. Table 2.6 shows that the best RMSD is 1.004 Angstrom between 

Pose 2 and FMN of 4IQL 
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Table 2.6. RMSD between the docked poses and FMN of 4IQL  

Compound RMSD between the docked pose and  FMN 

Pose 1 4.607 

Pose 2 1.004 

Pose 3 2.584 

Pose 4 6.706 

Pose 5 7.083 

Pose 6 6.630 

Pose 7 6.665 

Pose 8 6.717 

Pose 9 4.855 

 

The 3D visualization of the best-docked pose (Pose 2) as well as FMN of 4IQL is shown 

in Figure 2.6 below.  

 

Figure 2.6. Top redocked pose with FMN of 4IQL 
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The top docked pose (Pose 2) is colored by their element properties. The FMN of 4IQL is 

shown in cyan and NDP (left) is shown in heteroatoms. 

Similarly, we also conducted the redocking validation of the TUI on 2Z6J (FMN present 

on the active site). Table 2.7 shows the RMSD between the docked poses and the original 

TUI of 4IQL. 

Table 2.7. RMSD between the docked poses and TUI of 2Z6J  

Compound  RMSD between the docked pose 

and original TUI of 2Z6J 

Pose 1 6.44 

Pose 2 6.747 

Pose 3 6.11 

Pose 4 6.33 

Pose 5 10.183 

Pose 6 10.611 

Pose 7 12.407 

Pose 8 4.24 

Pose 9 9.577 

 

The RMSDs between the docked poses and the TUI of 4IQL are higher than 2 

Angstroms. Table 2.7 shows that the best RMSD is 4.24 Angstroms between Pose 8 and 

the TUI of 4IQL. The best-docked pose (Pose 8) and native TUI of 2Z6J are shown in 

Figure 2.7 below 
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Figure 2.7. Top docked pose with TUI of 2Z6J  

The top docked pose (Pose 8) is shown by their element properties. The original TUI in 

2Z6J is represented in green. FMN is depicted in pink. 

2.3.5 Docking of compound libraries 

We performed the glide docking of seven different libraries after ligand preparation from 

the ligprep program of the Schrödinger software. For Human Approved Drugs and 

NCGC pharmaceutical collection libraries, glide SP docking was performed (no HTVS 

docking for these libraries). We selected the compounds from these libraries based on the 

glide score. For five other libraries, initial HTVS docking was performed. The 

compounds obtained from these HTVS docking were sorted according to the glide ligand 

efficiency ln score and the top ten percent compounds were extracted. This was followed 
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by the glide SP docking of the selected top ten percent compounds. The number of 

compounds obtained in HTVS and SP docking are shown in Table 2.8 below. 

Table 2.8. Number of compounds obtained for HTVS and SP docking  

Name of the library No. of compounds from 

HTVS docking 

No. of compounds 

from SP docking 

Human approved drugs None 6372 

NCGC Pharmaceutical 

collection  

None 7982 

Maybridge  43781 4378 

Chembridge express  550856 55085 

Chembridge core  1766180 176618 

LifeChemicals 572848 57286 

Specs compound 226131 22613 

Total 3,159,796 330,334 

 

After glide SP docking of these compounds, we again sorted the compounds according to 

the glide ligand efficiency. The top ten compounds from each class were represented in 

table format.  

Human Approved Drugs library 

This library contains FDA approved drugs for the treatment of diseases in human beings. 

The ligands from the SP docking were sorted based on their glide score (from highest 

negative to the lowest negative/positive). Table 2.9 shows the top ten compounds 

obtained from Human Approved Drugs molecular docking. Salmeterol had the best glide 

score of -9.829. All top ten compounds had scores greater than -8.6.   
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Table 2.9. Top ten compounds from Human Approved Drugs Library  

Compounds Molecular weight Pubchem_cid Glide  

gscore 

Salmeterol 415.578 5152 

6604001 

56801 

-9.829 

Thiamphenicol 356.227 27200 

146678 

5433 

-9.308 

Pranlukast 481.515 115100 -9.29 

Domperidone 425.922 3151 

145924 

6604595 

24870822 

-9.106 

Glibenclamide 494.014 3488 -8.792 

Tetragastrin 596.711 446569 -8.788 

Cephaloglycin 405.433 19150 -8.751 

Latamoxef 520.481 24870866 

6604567 

16757704 

24871007 

47499 

-8.697 

Ketoconazole 531.443 456201 

47576 

5702077 

16757695 

-8.683 

Betiatide 367.383 185457 -8.654 

 

 

Figures 2.8 and 2.9 show Salmeterol docked into the active site of the receptor and the 

ligand interaction diagram respectively. Salmeterol is colored based on their element 

properties (shown in ball and stick representation). The FMN is shown in tube (pink). 

The receptor is shown in ribbon. The Sodium ion is represented in CPK (purple). 
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Figure 2.8. Salmeterol docked in the binding pocket of receptor  

 

Figure 2.9. 2D interaction of Salmeterol with key residues  
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Sodium (NA) is shown in grey. Purple lines show hydrogen bond, and green lines 

represent Pi-Pi stacking between the molecules. 

NCGC Pharmaceutical collection library 

The top ten compounds in the NCGC library are shown in Table 2.10 below.  

Table 2.10. Top ten compounds from NCGC pharmaceutical collection  

Compounds Molecular 

weight 

Pubchem_cid Glide gscore 

Salmeterol 416.586 5152 

6604001 

56801 

-9.829 

Thiamphenicol 356.227 27200 

146678 

5433 

-9.308 

Pranlukast 480.507 115100 -9.29 

Domperidone 426.93 3151 

145924 

6604595 

24870822 

-9.106 

Glibenclamide 494.014 3488 -8.792 

Latamoxef 518.465 24870866 

6604567 

16757704 

24871007 

47499 

-8.697 

Ketoconazole 531.443 456201 

47576 

5702077 

16757695 

-8.683 

Betiatide 366.375 185457 -8.654 

Entecavir 277.285 170343 

153941 

-8.648 

Talampicillin 482.539 71446 

24870952 

6604402 

-8.64 
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As in the Human Approved Drugs library, Salmeterol was the top-ranked compound with 

the highest glide score -9.829 (the highest negative value). All top ten compounds had 

scores above -8.6.  

The top docked pose (Salmeterol) of the NCGC pharmaceutical collection is as same as 

Human Approved Drugs collection library. We have already shown the 3D visualization 

and key interactions of Salmeterol from the Human Approved Drugs library. 

Maybridge library docking 

The top ten compounds obtained from glide SP docking of Maybridge library are shown 

in Table 2.11 below. 

Table 2.11. Top ten compounds from Maybridge library  

Compound code Molecular weight logP value Glide ligand efficiency ln    

score 

S14092 329.738 1.75 -2.485 

HTS01959 383.358 1.97 -2.480 

HTS01978 350.156 2.11 -2.404 

NRB04602 190.225 1.84 -2.367 

FM00043 168.219 0.89 -2.367 

HTS01851 339.302 0.37 -2.347 

HTS01858 317.32 0.02 -2.335 

SCR00961 286.329 2.05 -2.329 

CD04894 412.271 3.86 -2.296 

SCR00955 383.451 1.26 -2.294 
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HTVS docking of the Maybridge library resulted in 43781 compounds. The results were 

sorted according to the glide ligand efficiency score. We used the top ten percent 

compounds (4378) from HTVS for glide SP docking.  

The compound with code S14092 has the highest ligand efficiency score of -2.485. 

Figures 2.10 and 2.11 show 3D visualization and the ligand interaction diagram of the top 

docked pose (S14092) respectively.  

 

Figure 2.10. Compound S14092 of Maybridge docked in the receptor  

 

Compound S14092 is colored based on their element properties (shown in ball and stick 

representation). The pink ligand represents the cofactor FMN. The receptor is shown in 

the ribbon. The sodium ion is represented in CPK (purple). 

Compound S14092 shows key interactions with residues of the binding site. These key 

interactions are illustrated in the ligand interaction diagram in Figure 2.11 below. 
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Figure 2.11. 2D interaction of compound S14092 with residues of binding site  

 

Red amino acid residues have negative charges; blue are polar residues; and green are 

hydrophobic residues. Sodium (NA) is shown in grey. Purple lines show hydrogen bond, 

and green lines represent Pi-Pi stacking between the molecules. 

Chembridge express library 

550856 compounds were obtained from HTVS glide docking of this library. Compounds 

were sorted based on the glide ligand efficiency ln score. We used the selected top ten 

percent of the compounds (55085) for more advanced glide SP docking. Again, the 

compounds were categorized according to the ligand efficiency. The top ten compounds 

from the final SP docking result are shown in Table 2.12.   
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Table 2.12. Top ten compounds from Chembridge express  

Compound ID Molecular weight cLogP Glide ligand efficiency ln score 

7567382 594.472 4.412 -2.475 

7113385 261.26 0.74 -2.473 

9214223 230.228 1.944 -2.468 

9202609 308.383 3.258 -2.434 

5624606 315.375 4.03 -2.431 

9033325 307.355 2.857 -2.427 

7998731 393.424 3.63 -2.409 

6046846 298.276 2.07 -2.406 

5728840 337.315 2.15 -2.404 

7849307 275.375 3.66 -2.401 

 

The compound with ID 7567382 had the best ligand efficiency score of -2.475 and clogP 

value of 4.412.  All the compounds had ligand efficiency scores of more than -2.0 and 

molecular weight from 230 to 595 Dalton  

Figures 2.12 and 2.13 depict binding of the compound 7567382 in the receptor and the 

ligand interaction diagram respectively. Compound S14092 is colored based on their 

element properties (shown in ball and stick representation). FMN is shown in pink. The 

receptor is shown in ribbon. The sodium ion is represented in CPK (purple). 
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Figure 2.12. Compound 7567382 of Chembridge express docked into receptor  

 

 

Figure 2.13. 2D interaction of Compound 7567382 in the receptor  
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Red amino acid residues have negative charges; blue are polar residues; and green are 

hydrophobic residues. Sodium (NA) is shown in grey. Purple lines show hydrogen bond, 

and green lines represent Pi-Pi stacking between the molecules. 

Chembridge Core library 

Among all the libraries that we docked, this is the one containing the largest number of 

compounds. HTVS glide docking provided 1766180 compounds. After sorting these 

compounds based on the ligand efficiency score, we chose the top ten percent of these 

compounds for glide SP docking. Glide SP docking provided nearly 176618 compounds. 

Lastly, we categorized the SP docked compounds based on the glide ligand efficiency. 

The top ten compounds from SP docking results are depicted in Table 2.13 below.   

Table 2.13. Top ten compounds from Chembridge core  

Compound ID Molecular weight clogP Glide ligand efficiency ln 

score 

77077035 279.278 -0.6 -2.532 

58649928 284.32 0.57 -2.530 

66161357 357.416 -0.54 -2.487 

7567382 594.472 4.412 -2.475 

7113385 261.26 0.74 -2.473 

9214223 230.228 1.944 -2.468 

97483872 346.408 1.92 -2.463 

10835968 396.428 1.53 -2.454 

74288240 291.377 0.02 -2.441 

34788033 321.379 1.03 -2.438 

 

The compound with ID 77077035 had the highest score of -2.53. It had clogP value of -

0.6. Some of the top compounds from express also scored well in core library. Figures 
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2.14 and 2.15 represent the binding mode and the ligand interaction of Compound 

770770335 in the receptor respectively.  

 

Figure 2.14. Compound 77077035 docked in the receptor-binding site  

 

The compound 77077035 is colored based on their element properties (shown in ball and 

stick representation). FMN is shown in pink. The receptor is shown in ribbon. The 

sodium ion is represented in CPK (purple). 
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Figure 2.15. 2D interaction of Compound 77077035 with important residues  

 

 Red amino acid residues have negative charges; blue are polar residues; and green are 

hydrophobic residues. Sodium (NA) is shown in grey. Purple lines show hydrogen bond, 

and green lines represent Pi-Pi stacking between the molecules. 

LifeChemicals compound library 

HTVS glide docking of the Lifechemicals library yielded 572848 compounds that we 

sorted based on their ligand efficiency scores. The top ten percent of the compounds were 

used for glide SP docking and provided 57286 compounds. The selected top ten percent 

compounds were sorted according to their ligand efficiency scores (highest negative to 

lowest negative/positive). The top ten compounds obtained from the sorted SP docking 

result are shown in Table 2.14 below.  



64 
 

Table 2.14. Top ten compounds from Lifechemicals library  

 Compound ID Molecular weight clogP Glide ligand efficiency ln 

score 

F6413-0485 406.529 4.56 -2.523 

F5060-0158 316.297 -0.05 -2.511 

F2783-0073 344.417 3.83 -2.506 

F6413-1972 406.529 4.56 -2.5 

F6413-1957 378.422 3.17 -2.488 

F6418-1972 408.545 3.66 -2.48 

F6413-2949 372.396 3.48 -2.477 

F2024-1610 362.407 2.21 -2.475 

F5097-2910 417.512 2.06 -2.474 

F6413-0186 428.508 4.05 -2.473 

 

Compound F6413-0485 has the best ligand efficiency score (-2.523) with clogP 4.56. 

Figure 2.16 shows compound F6413-0485 bound to the receptor. Figure 2.17 represents 

the ligand interaction diagram of the compound F6413-0485.  
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Figure 2.16. Compound F6413-0485 docked in the binding site of receptor  

The compound F6413-0485 is colored based on their element properties (shown in ball 

and stick representation). FMN is shown in pink. The receptor is shown in ribbon. The 

sodium ion is represented in CPK (purple). 

 

Figure 2.17. 2D interaction of Compound F6413-0485 in the receptor  
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Red amino acid residues have negative charges; blue are polar residues; and green are 

hydrophobic residues. Sodium (NA) is shown in grey. Purple lines show hydrogen bond, 

and green lines represent Pi-Pi stacking between the molecules. 

Specs Compound library 

Initially we performed HTVS glide docking. We got 226131 compounds from this result. 

These compounds were sorted based on glide ligand efficiency. The top ten percent were 

utilized for further glide SP docking. The compounds were categorized according to 

ligand efficiency scores from the highest to the lowest. Table 2.15 shows the top ten 

compounds of SP docking results.   

Table 2.15. Top ten compounds from Specs chemical library  

Compound ID Molecular weight clogP Glide ligand efficiency ln score 

AF-399/42487793 305.383 3.28 -2.395 

AK-968/41018290 278.7 1.16 -2.383 

AH-357/03489045 190.225 1.45 -2.367 

AP-185/15474006 232.197 -0.27 -2.361 

AT-057/43348336 310.356 2.78 -2.341 

AN-329/41328917 326.399 2.86 -2.335 

AN-329/43450308 372.855 3.18 -2.33 

AN-988/15131258 584.743 3.06 -2.323 

AO-476/43407140 298.307 -1.5 -2.321 

AO-081/40847547 358.828 2.72 -2.307 

 

The compound AF-399/42487793 displayed best ligand efficiency score (-2.395) and had 

clogP of 3.28. Figures 2.18 and 2.19 depict the binding mode of the docked pose and the 

ligand interaction diagram of AF-399/42487793 respectively.  
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Figure 2.18. Compound AF-399/42487793 docked in the binding site  

The compound AF-399/42487793 is colored based on their element properties (shown in 

ball and stick representation). FMN is shown in pink. The receptor is shown in ribbon. 

The sodium ion is represented in CPK (purple). 

 

Figure 2.19. 2D interaction of AF-399/42487793  



68 
 

Red amino acid residues have negative charges; blue are polar residues; and green are 

hydrophobic residues. Sodium (NA) is shown in grey. Purple lines show hydrogen bond, 

and green lines represent Pi-Pi stacking between the molecules. 

2.4 Discussion 

The goal of this project was to create a C. difficile FabK model and perform molecular 

docking of seven different compound libraries. From this result, we obtained inhibitors 

that can be tested in experimental screening. Virtual screening is a useful approach in 

CADD that helps to screen larger libraries and obtain potential hits.  

2.4.1 Homology model of C. difficile FabK  

We created the homology model of C. difficile FabK using two different templates: 

2Z6J_A and 4IQL_A. Both the templates had sequence identities over 40 % making them 

good templates for our purpose. We realigned the sequences using Clustal Omega, which 

is a useful alignment tool for multiple sequence alignment. All ten different generated 

models had GA341 scores of 1, indicating the folds of all the models are of good quality. 

A value greater than 0.7 indicates that the model is good and that there is a 95 % 

probability of having accurate folds in the model structure.202 The estimated backbone Ca 

RMSD values of all the models are less than 3 Angstroms. From the results, it is seen 

than four of the ten different models have RMSD less than 2.5 A, which shows that these 

models are in acceptable agreement with the template structures. As seen from the table, 

model 2.9 is considered the best model as it has the best RMSD and zDOPE score and 

possesses good overlap with the template. The estimated overlap of approximately 89 

percent depicts that nearly this percentage of C-alpha atoms of this model structure lie 

within 3.5 A0   of the respective atoms in the template structures after superposition. The 
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chosen model structure could provide us with the starting structure of C. difficile Fabk 

enzyme for further evaluation of stererochemical and other properties.  

After the required steps of minimization, the selected model was subjected to further 

evaluation. The Ramachandran plot showed that the majority of residues are in the 

favored region. A good quality model is assumed to have more than 90 % of the residues 

in the most favored region of the model. Only a single residue in the model is in the 

disallowed regions. Visual inspection of the model showed that Serine 223 lies in the 

loop regions and does not fall in the active site of the model. Loop regions in the protein 

are considered highly flexible and difficult to model. This would suggest that the active 

site containing FMN and sodium ion has no problematic amino acid residues around it. 

 A good overall compatibility of the three-dimensional structure of the model with the 

amino acid sequence is supported by verify3d results. The plot of verify 3D shows that a 

few of the residues in some loop regions (those having residue numbers 116, 117 and 298 

to 309) have less compatibility of 3D structure with the amino acid sequence. This could 

be because 3D structure of loop regions are hard to model from the amino acid sequence. 

We decided to accept the selected model for further steps after evaluating the overall 

properties from various programs.   

2.4.2 Redocking validation of the inhibitor of the model structure. 

Redocking was used to determine whether the docking parameters we used effectively 

predict the pose of the ligand to that of the original homology model. Docking validation 

is necessary to obtain best outcome for future docking of compound libraries. Flexible 

ligand docking was incorporated, resulting in three poses. Out of three different docked 

poses of ligand generated from glide docking of the native TUI, two gave acceptable 
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results with a backbone Ca RMSD less than 1.5 Angstroms. The visual inspection of 

these two poses also showed good orientation of the ligand in compatible with the 

original ligand of the binding pocket. One of the poses gave a relatively higher RMSD 

value. Viewing the particular pose in chimera revealed that it had a slight different 

orientation of the docked ligand in this pose compared to the native ligand. Since the 

majority of poses were able to produce good results, we concluded that this docking 

validation method provided us with starting parameters for docking compound libraries. 

2.4.3 Molecular docking of compound libraries 

We continued the glide docking procedure for seven different libraries, using the inner 

boundary box of 13 * 13 * 13 in grid generation. Compounds that we docked from 

several libraries may have compounds of different sizes (larger than the native inhibitor 

present in the model).  

The first round of HTVS docking yielded more than 3 million compounds. The top ten 

percent were sorted according to the ligand efficiency scores for glide SP docking. The 

top ten compounds obtained from all these libraries have ligand efficiency scores of more 

than -2. An interesting thing is that the highest scoring compound of each library has key 

interaction with histidine 143 residue (forms hydrogen bond with most of the residues). 

Furthermore, this particular residue also displayed Pi-Pi interaction with some top 

compounds like Salmeterol and F6413-0485 as seen from the ligand interaction diagrams 

in Figures 2.8 and 2.16 respectively.  

FabK is considered a flavoprotein enzyme and the reaction is determined by the complex 

formation of NADPH and a FMN enzyme and follows a Ping-Pong reaction mechanism 

to reduce the substrate.203 Similarly, the crystal structure of FabK enzyme of S. 
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pneumoniae has shown that histidine 144 acts as a catalytic residue, the conformation of 

which changes upon complex formation of NADPH and FMN.186 This helps us assume 

that histidine 143 also plays some role in the catalytic process of NADPH - FMN reaction 

in FabK of C. difficile.  

Similarly, compounds Salmeterol, ID S14092, ID 7567382, ID 77077035, F6413-0485 

and AF-399/42487793 form a hydrogen bond with Alanine 95. A study conducted on the 

FabK enzyme of S. pneumoniae has shown that conformational alteration takes place in 

the major chains of Glycine 95 and Alanine 96 in the loop region, and forms hydrophobic 

interactions with phenyimidazole inhibitors.204  Some of the top compounds also showed 

interactions with Sodium ion (metal ion) present in the active site. This study showed that 

docked compounds have some key interactions in the binding site as seen in the previous 

study of FabK enzymes of other organisms. Binding of drugs with these key interactions 

might help to identify novel inhibitors of the FabK enzyme. 

2.5 Conclusion 

By combining homology modeling and molecular docking, we determined several 

compounds that can act as potential inhibitors of the FabK enzyme of C. difficile. 

Homology modeling was used to predict the structure of the enzyme and the selected 

model was analyzed for its properties using various programs. Redocking validation prior 

to molecular docking was utilized to check whether the docking process reproduces the 

pose of the original inhibitor of the binding site. The docking validation also provided us 

some parameters for future library docking. Molecular docking of seven different 

libraries provided us with several high ranked compounds.  These compounds have 
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interactions with the key residues of the binding site and provides a suitable starting point 

for future experimental study.  
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Chapter 3. Modeling of the Salmonella typhimurium ArtAB toxin 

3.1 Introduction 

It has been reported that Salmonella enterica causes more than one million cases of 

infection each year in USA and is the major reason of hospital stay and mortality due to 

food related diseases205. As Salmonella infections play a major role in public health, the 

United States Department of Health and Human Services has aim to reduce the incidence 

of these infections by one-fourth by 2020.206  In various nations, one of the major reasons 

of Salmonellosis in human beings and other living animals is Salmonella enterica 

serotype Typhimurium aka Salmonella typhimurium.207  In the past many years, these 

bacterial infections have rose in various countries of the world.208  

Recently Salmonella serovar typhimurium definitive phage type (DT) 104, which is 

resistant to many drugs, has been recorded in various countries.205, 209-211 This particular 

strain of Salmonella typhimurium shows resistance to multiple antibiotics like 

chloramphenicol, ampicillin, streptomycin, tetracycline and sulfonamide.212 These 

pathogens can have genetic factors that are transferable from one bacteria to another like 

plasmid DNA, prophages and genomic islands, and these factors can act as virulence 

elements.212 New cases of Salmonella typhimurium DT 104 has been rising in both 

human beings and animal populations, but an increased virulence-related phenotype for 

this microbe has not been noticed.213 It has been proposed that a new virulence pathway 

might have developed in these organisms that has led to the incidence growth.209   
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3.1.1 Salmonella typhimurium DT 104 ArtA and ArtB 

Numerous microorganisms contain code for specific ADP-ribosyltransferase toxins.214 S.  

typhimurium DT 104 has been reported to have ADP-ribosyltransferase toxins known as 

ArtA and ArtB.214 These ArtA and ArtB are the subunits A and B of  the new toxin found 

in these organisms called  AB toxin.207 The AB5 toxin in these pathogens has been called 

ArtAB.214  The AB5 toxin consists of two subunits, namely catalytic A and  pentamer B, 

and both of them are linked non-covalently to each other.215 This toxin works in two 

steps215 : first, the B subunit of the toxin binds to the particular glycan receptors in the 

host body that provokes intake of more toxin in the host cells, which is then accompanied 

by the release of the A subunit that prevents the important cell functions in the host cells. 

ArtA of S. typhimurium  DT 104 is homologous to subunit A of Pertussis toxin found in 

the species of Salmonella typhi and Salmonella paratyphi.214  Similarly, ArtB is 

homologous to Subtilase cytotoxin subunit B secreted by Escherichia coli,215 periplasmic 

protein of Salmonella typhi and Salmonella paratyphi,207 subunit B of pertusiss toxin 

(ptx) of Salmonella typhi and Salmonella paratyphi207. This ArtAB position is situated on 

the prophage in S. typhimurium DT104 of the pathogen.214  Although AB5 toxin acts as a 

virulence element in S. typhimurium DT 104, no phenotypic structures of ArtA and ArtB 

of S. typhimurium DT104 are available.  

Our hypothesis for the study is that predicting the structures of the ArtA and ArtB 

subunits of S. typhimurium DT104 will provide us details about the binding mechanism 

of ArtA with ArtB that could be useful for extracting the crystal structure of ArtAB toxin. 

Our basis for this hypothesis is that most of the AB5 toxins produced by various 
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pathogens have homologous similarity with one or more subunits of the structures of the 

family of bacteria possessing this toxin. 

3.1.2 Aim of the study 

The aim of this study was to create the final homology model of the structure of AB5 

exotoxin of S. typhimurium DT104. We believe that the successful completion of the 

project will provide us with a phenotypic structure of AB5 toxin that can be used as an 

assisting tool for crystallographic studies.  

To fulfil our aims, first we created the homology models for both ArtA and ArtB, as there 

are no available structures for them. Next, we conducted the protein-protein docking to 

obtain a full structure of AB5 toxin. Finally, a molecular dynamics simulation was 

performed to see the time dependent behavior of the molecular system of the combined 

ArtAB structure.  

3.2 Materials and Methodology 

Kinds of software used for this study are listed below. 

 Schrödinger Prime structure prediction tool for creating the homology 

models. 

 PROCHECK, VERIFY 3D, QMEAN for evaluating the homology model. 

 Bioluminate program of Schrödinger software for protein-protein docking 

program 

 AMBER program for minimization and molecular dynamics simulation. 
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3.2.1 Structure prediction through Homology modelling 

We obtained the FASTA amino acid sequences of both ArtA and ArtB of Salmonella 

enterica serovar typhimurium Structure DT104 using the National Center of 

Biotechnology Information (NCBI) protein database. We utilized the FASTA amino acid 

sequences to get preliminary ideas about the possible templates for both the structures 

using the blast homology search. After that, we created homology models of ArtA and 

ArtB using Schrödinger suite 15-2. First, we created the homology model of ArtB (Tasks 

– biologics – homology modeling – advanced homology modeling). Since ArtB is a 

pentamer (B5 units), homo -5-mer was created for this structure. In the input sequence 

step, the FASTA amino acid sequences of ArtB were entered in the box. It has 141 amino 

acids. Next in the find homolog step, we searched for the potential templates of the query 

sequence using the blast homology search. NCBI PDB (all) option was chosen in the 

search option. We chose template 3DWP with sequence identity 35% (highest) looking at 

the percentage sequence identity, sequence coverage between the query-template, E-score 

and other properties. Mainly the total percentage sequence identity was considered.  

As we wanted to create a pentamer (homomultimer), we selected 3DWP_A, 3DWP_B, 

3DWP_C, 3DWP_D and 3DWP_E as multiple templates at the same time by clicking the 

shift click button. This helped us create a homo pentamer in a single step in the build 

homology step. Even though the sequences were identical for each template chosen, each 

template chain was chosen to create the homomultimer. If we are building a multimer of 

any sort, we should not align the template chains, because they must already be in the 

correct spatial relation and alignment with each other to construct the multimer from 

them. The template chains were arranged spatially in the workspace. We verified the 



77 
 

symmetry between the chains of the template with the pentamer 3DWP structure. The 

third step is the edit alignment step. The edit alignment process helps to enhance the 

alignment between the templates and the query. To generate the alignment, we selected 

Prime STA, which is an alignment method based on the secondary structure prediction. 

Prime STA is a good alignment method for average sequence identity (20-50%). In our 

case, the identity is 35 %.  

We ran the secondary structure prediction by selecting the required option. SSpro is the 

secondary structure prediction program available in the Prime. After that we generated 

the alignment from the align option. Because a few gaps in the template residues were at 

the 66 to 69 positions and one residue at position 66 was at strand, we unlocked the gap 

at the strand manually using the edit menu option available in the menu bar.  

After visual inspection of the alignment and secondary structure prediction, we moved 

forward to the build structure step. To build the pentamer (homomultimer), first the 

chains of the templates were verified for their accurate location (position and orientation 

with respect to each other). In the multi-template model, we chose the Homo-multimer 

option (as we are building the pentamer B5). All templates were aligned to the target 

sequence. We did not include any ligands, cofactors or water available in the templates. 

No any constraints were used in the procedure. In the build options, all default settings 

like retain the rotamers for conserved residues, optimize side chains and omit structural 

discontinuities for insertion in template gaps of more than 20 residues were chosen. The 

knowledge-based approach was preferred as the model building method. We created a 

single homomultimer as the default option. Each template chain was used to build the 

model structure for the homomultimer. The template chains were in accurate position and 
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orientation with respect to each other. An assembled homo-5-mer model was obtained, 

which had all the chains in correct location and symmetry as in the template chains.  

Similarly, we predicted the homology model of ArtA following the same steps as above. 

For this structure, we created an “A” subunit, a monomeric unit that binds with the ArtB 

subunit. The FASTA amino acid sequence of Salmonella typhimurium ArtA contains 241 

amino acids. The blast homology search in the find homologs step showed 4K6L_G, the 

structure of Salmonella enterica serovar typhi (S. typhi) with sequence identity 61% as 

the best template. 

The template was viewed in the workspace to see the alignment in the sequence viewer. 

As we are building a monomer and the sequence identity of the template is high, we only 

selected single template. In the following edit alignment step, ClustalW was selected as 

the alignment method. ClustalW generates the alignment based on sequence information 

only. It can be used to create the alignment when the sequence identity between the query 

and template is higher (more than 50%). In our case, it was 61%. We ran the secondary 

structure prediction from the option and finally alignment was obtained. No major gaps 

and other structural problems were seen during the visual inspection of the alignment. 

Therefore, no any manual alignment was performed in the process. Only a single 

template was used in the build homology step. Other parameters selected were the same 

as the process followed during the build step of ArtB model. 

After building the homology models of both ArtA and ArtB, the models were subjected 

to 2500 iterations of energy minimization from the Schrödinger software (Tasks – 

minimization – forcefield) to minimize the bad contacts, steric clashes and other 

structural problems. Next, we examined the obtained homology models. We calculated 
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the RMSD between the alpha carbons of the homology model and the chain/chains of the 

template used for building the corresponding model from matchalign menu of Chimera.  

PROCHECK62 was used to evaluate the stererochemical properties using the Swiss 

model expasy server196, 216. VERIFY 3D197-198  was used to assess the compatibility of the 

3D structure of the model with the amino acid sequence. Verify 3D was performed using 

the structural analysis and verification server (SAVES)199. We used QMEAN200 from the 

Swiss model expasy server196 to evaluate the quality of the model taking into 

consideration the six different energy terms. 

3.2.2 Protein-Protein docking of Salmonella ArtA and Salmonella ArtB 

Both the homology models of ArtA and ArtB were once again prepared through the 

protein preparation wizard. After inspection in the workspace, these models were taken 

further for protein-protein docking (Application – bioluminate – protein-protein docking). 

We chose the standard mode for the docking purpose. The ArtB Pentamer (all the chains 

A, B, C, D, and E) was selected as the receptor. The smaller subunit, ArtA, was chosen as 

the ligand. The number of ligand rotations to probe was 70000. We selected the 

maximum number of poses as 30. Bioluminate protein-protein docking generated the 

poses from top to bottom based on ranking. The final model was selected mainly based 

on the visual inspection from the top models.  

We obtained the complete ArtAB structures of 4L63217 and 4L6T217 from the Protein 

Data Bank and observed the binding of subunits ArtA and ArtB. This provided us some 

insights about appropriate binding of ArtA and ArtB in our AB5 complex predicted from 

the protein-protein docking. The pose obtained with the ArtA correctly docked in the 
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interface of ArtB Pentamer was considered as the best pose of all the other poses. We 

selected the second best pose based on visualization and accuracy of the pose.  

After creating the complete protein structure of ArtAB, we used the structure for MD 

simulation purposes to study the stability of the AB5 exotoxin. Moreover, we studied the 

conformational changes and analyzed them as described below. 

3.2.3 Molecular Dynamic studies of protein-protein docked Salmonella ArtAB 

The AMBER program was used to study the molecular dynamics simulation of the 

ArtAB structure obtained from protein-protein docking. First, topology and coordinate 

files were prepared from the leap program available in the AMBER software. The 

AMBER ff14SB force field was used for protein residues. We solvated the system with 

explicit solvation. A 12-Angstrom buffer of TIP3P was used. Two Na+ ions were added 

to neutralize the system. Generated topology and coordinate files were saved for further 

use. The next step was minimization of the ArtAB system. Initial minimization of water 

was performed using 10000 steps of maximum cycle with protein fixed using restraint of 

100 on the protein. After relaxing and removing the bad contacts present in water, we 

conducted minimization of the whole system. Since the ArtAB system was larger, the 

minimization of the entire system was performed in two steps: 

 a) Minimization of 3000 maximum cycles with decreased restraint of 50.0 on the protein 

(since larger systems have maximum chances of blowing up the structure, the system was 

slowly relaxed using lower restraint)  

b) Second minimization of 5000 maximum cycles removing the restraint on protein and 

relaxing the entire system. 
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After completion of the minimization, we viewed the structure in VMD to observe the 

differences in structure before and after the minimization. 

Equilibration of the ArtAB system 

Two-stage equilibrations were performed for the ArtAB structure after the minimization 

steps. In the initial stage of equilibration, we increased the temperature of the system 

from 0 to 300K for 500000 steps with time steps of 2 femtosecond. A restraint of 20.0 

was used on the protein to prevent the system from blowing out instantly. A periodic 

boundary condition with constant volume (ntb=1) was used in this stage. NTT=3 was 

chosen as the temperature coupling algorithm. Our aim for the first equilibration was to 

safely raise the temperature from 0 to 300K. After the equilibration, we checked the 

temperature of the system using the cpptraj program available in AMBER. We plotted the 

temperature data using grace software to evaluate temperature changes over the period.  

In the second stage of equilibration, we equilibrated the system at constant pressure 

(ntb=2) and constant temperature periodic boundary conditions for 1 ns with 2 

femtosecond time steps. No restraints were used in the second equilibration. We analyzed 

the second equilibration for properties like density, potential energy, kinetic energy and 

total energy of the system as a function of time using the cpptraj program. The obtained 

data were plotted using the grace software. 

Production run 

Evaluating the output files from equilibration and studying different properties of the 

system like temperature, density, potential energy and kinetic energy from the 

equilibration stages provided us information whether the equilibrium of the system has 
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been reached. After the equilibration was reached, we ran production simulation for 8 ns 

with 2-femtosecond time steps. Constant pressure (ntb=2) and constant temperature 

periodic boundary conditions were used. A cutoff of 10 Angstrom was used for periodic 

boundary conditions.  

Once the production run was completed, we analyzed the results.  First, we measured the 

RMSD of backbone atoms of each frame (total 4000 frames) taking first frame of the 

production run as the reference frame using the cpptraj program. Second, we studied the 

Root Mean Square Fluctuation (RMSF) of each amino acid residue over the trajectory. 

These atomic fluctuations were studied on the backbone Carbon (Ca) atoms. We plotted 

the data obtained from these analyses using grace data plotting software. After this, we 

studied the energies of the system (especially the potential energy) during the production 

simulation. The potential energy helped us to locate conformations with the lowest 

energies. The Process_mdout_perl command helped us to interpret the energy results 

from the output file of the MD simulation. We extracted the top three lowest energy 

conformations from the last one nanosecond of production simulation in PDB format 

using the potential energy file generated from the above process. Later we visualized 

these conformations in Chimera. Finally, the lowest energy conformation was selected. 

3.3 Results 

3.3.1 Modelled structure of Salmonella ArtAB 

We obtained homology models of ArtA and ArtB from the Schrödinger. The protein 

preparation wizard was used to prepare the protein. Minimization of 2500 steps was 

conducted from Schrödinger. This helps to refine the structure and reduce the structural 

problems. We analyzed both the structures using various programs. We calculated the 
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RMSD between the backbone alpha carbon of the homology model and the chain/chains 

of the template. From the Chimera match align, each chain of the model was 

superimposed with the corresponding template chain. Then RMSD was calculated. The 

RMSD results between the individual template and the respective model chain are shown 

in Table 3.1 below. 

Table 3.1. RMSD between generated models and chains of the templates  

ArtB homology model 

Chains RMSD (Angstrom) 

Model_chain_A- Template_chain_A 0.76 

Model_chain_B – Template_chain_B 0.79 

Model_chain_C – Template_chain_C 0.75 

Model_chain_D – Template_chain_D 0.89 

Model_chain_E – Template_chain_E 0.76 

ArtA homology model 

Model – Template_chain_G 0.32 

  

Next, we studied the Ramachandran plots of both ArtA and ArtB models to evaluate the 

amino acid residues. 

Figures 3.1 and 3.2 shows the Ramachandran plots of ArtA and ArtB generated models. 

The Ramachandran plot of ArtA exhibits 86 % of the residues in the most favored 

regions, slightly above 11% in the additionally favored regions and 1.8% in the 

generously allowed regions. No residues fall in the disallowed regions of the graph.   

The Ramachandran plot of ArtB reveals slightly more than 78 % residues in the most 

favored regions, nearly 19 % in the additionally favored regions and around 2% in 

generously allowed regions. 0.6% of them fall in the disallowed regions. 
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Figure 3.1. Ramachandran plot of the ArtA homology model  
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Figure 3.2. Ramachandran plot of the ArtB homology model 
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We studied several stererochemical properties of both ArtA and ArtB models applying 

PROCHECK analysis. The detailed plots of bond length, bond angle and major distances 

from planarity from the PROCHECK results of ArtA are shown in Figures C.1, C.2 and 

C.3 respectively (in Appendices). More than 99% of the residues of ArtA have main 

chain bond lengths within the specified limit. Likewise, main chain bond angles of 95% 

residues are within the limit and planar groups are 98% of the acceptable limit. Figure 3.3 

below shows the PROCHECK summary of ArtA model. 

 

Figure 3.3. PROCHECK summary of residues of the ArtA homology model  

 

Similarly, PROCHECK analysis was performed for ArtB homology model. The detailed 

results of PROCHECK of amino acids about the bond length, bond angle and the main 

distance from planarity are depicted in Figures C.4, C.5 and C.6 respectively (in 

Appendices). The main properties from the PROCHECK results are summarized in Figure 

3.4 below.  
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Figure 3.4. PROCHECK summary of residues of the ArtB homology model  

 

More than 99% of the residues have main chain bond length within the favorable limit. 

Furthermore, 92% of the residues possess main chain bond lengths within the specified 

limit and planar groups are 92% within the acceptable limit. 

Verify3D results of the models. 

Verify3D program was utilized to predict the compatibility between the three 

dimensional structure of the model and the amino acid sequence.  84.65 % of the residues 

have a mean 3D -1D verify 3D score of more than 0.2 for the ArtA homology model 

whereas for the ArtB model 100.00% residues have such a score.  

QMEAN6 score 

The QMEAN6 score was calculated using the Swiss model expasy server. We obtained 

Scores of 0.471 for the ArtA model and 0.31 for the ArtB model.  
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3.3.2 Protein-Protein docked structure 

We used the Bioluminate program of the Schrӧdinger package to dock the ArtA and ArtB 

structures. The protein-protein docked structures were ranked from top to bottom 

according to the poses generated. There were altogether 30 ArtAB docked poses obtained 

from the results. We selected the second pose based on ranking and visualization. The 

second pose had ArtA correctly docked in the interface of ArtB pentamer. The 3D 

structure of the selected ArtAB docked pose with the interface is shown in Figure 3.5 

below. 

 

Figure 3.5.  Protein-protein docked complex of ArtAB with interface  

ArtA in the top of the structure is shown in red. Pentamer chains of ArtB are depicted by 

five different colors. Chain A: blue, Chain B: cyan, Chain C: spring green, Chain D: lime 

green and Chain E: yellow.  
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3.3.3 Molecular Dynamics Studies and analysis 

The selected ArtAB model was subjected to molecular dynamics simulations. First, we 

carried out minimization of the system. The unrestrained 5000 iterations of final 

minimization of the whole system decreased the energy of the system from -4.0654E+05 

to -4.1056E+05.  After minimization of the whole system reduced the bad contacts, the 

system was heated in the first equilibration stage from 0 to 300 K using small restraint on 

the protein. The ArtAB system is larger and it may blow out when increasing the 

temperature. The restraint was used to prevent rapid fluctuation of our structure and 

prevent it from falling apart. The output file was viewed for temperature changes. The 

fluctuation in temperature during two nanoseconds of the equilibration stages is shown in 

Figure 3.6 below.  

 

Figure 3.6. Temperature of the system over one nanosecond of equilibration at 

constant volume. 
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From the Figure 3.6, we can see that the temperature of the ArtAB system remained 

stable throughout the time of simulation after initial 5 picoseconds. After the temperature 

of the system was stabilized in the first equilibration stage, the second equilibration was 

conducted in the constant pressure condition to relax the density of the water and stabilize 

it before running the production. Restraint was removed from the system. The density of 

the ArtAB system during the second equilibration stage at constant pressure is depicted in 

Figure 3.7 below.   

 

Figure 3.7. Density of the system during one nanosecond constant pressure 

equilibration  

The density of the system has equilibrated at around 1.025 g/cm3. This seems to be 

reasonable and as per expectation. We did not calculate density in the first one 



91 
 

nanosecond equilibration at constant volume (as volume remains unchanged). Hence, 

density data represents only the constant pressure equilibration stage. We also studied the 

volume of the system during the simulation. The second equilibration at constant pressure 

provided information about volume. The volume of the system remained stable after the 

first 200 picoseconds of simulation at constant pressure as shown in Figure C.7 (in 

Appendices). For first 200 picoseconds, it decreased rapidly and after that, it remained 

almost constant throughout the rest of the simulation. Later, different energy terms of the 

system were studied for the equilibration both at constant volume and at constant 

pressure periodic boundary conditions. This enlightened us about the changes in energy 

over time for both the simulations. Figure 3.8 shows the kinetic, potential and total 

energy of the system during both the equilibration stages. 

 

Figure 3.8. Potential, Kinetic and Total energy of the system during equilibration. 
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The black line represents potential energy, the red line represents kinetic energy and the 

green line represents total energy of the system. Kinetic energy (red line) after increasing 

for a few picoseconds remained steady throughout the simulation. Kinetic energy was 

positive (over 20000 Kcal/mole). Potential and total energy (kinetic + potential) of the 

system increased for a few picoseconds in the beginning and remained constant for rest of 

1 ns simulation at constant volume. This was followed by slightly decreases in both the 

energy terms for a few picoseconds and again remained steady for rest of the 1 ns 

simulation at constant pressure.  

We also evaluated the pressure of the system to confirm whether it had equilibrated or 

not, shown in Figure C.8 (in Appendices). The pressure of the system remained zero 

during the constant volume equilibration stage. During the constant pressure equilibration 

run, the pressure was initially negative for a few picoseconds. Later the pressure of the 

system became positive. Broadly, the pressure of the system fluctuated swiftly 

throughout the simulations whereas the average pressure remained stabilized around -3.7 

g/cm3.  

Analysis of the equilibration stages provided us information about various properties of 

the system. Equilibration stages were accompanied by production run. Due to our 

availability of resource and time constraint, we ran 8ns of production run using the same 

parameters used for the constant pressure equilibration run. From the analysis of 

equilibration stages, the system was nearly equilibrated in terms of temperature, density, 

pressure and energy terms. We analyzed the structure from the production run. To see 

whether the structure remained sensible or not, we analyzed the trajectory of the 

production simulation by calculating the RMSD of the backbone atoms of the trajectory 
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as the function of time. The RMSD was calculated between each successive structure and 

the first structure of our production run (last structure of the second equilibration).The 

RMSD measures how identical the internal coordinates of the given structure is to the 

reference structure. We measured the RMSD using the cpptraj program and plotted the 

data using the grace software as represented in Figure 3.9 below. 

 

 Figure 3.9. Backbone RMSD vs. Time of the production run trajectory  

 

In the production run, there were total of 4000 frames (4000000 steps written at every 

1000 steps, ntwx =1000). From the figure, we can see that initially the RMSD of the 

system increased rapidly until 4 ns and then it remained stable throughout rest of the 

simulation. Similarly, we also studied the flexibility of each residue from the trajectory. 

We calculated the atomic position fluctuations of each atom in terms of backbone alpha 
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carbon. Figure 3.10 represents the Root Mean Square Fluctuation (RMSF) per residue 

from the production simulation.   

 

Figure 3.10. RMSF of each residue in terms of backbone carbon atoms during 

production simulation  

For 826 residues, the majority of amino acids showed atomic fluctuations less than 4 

Angstroms throughout the simulation. Some of the residues had high atomic fluctuations 

as shown in the figure above. When the trajectory was viewed in VMD, larger 

movements were obtained in amino acids whose residue numbers ranged from 582 to 598 

of the ArtB structure and from 801 to 807 of the ArtA structure.  

We inspected the energy plots of the production run. The potential energy of the system 

for 8 ns of production run was evaluated to take a few snapshots of the low energy states. 
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The potential energy of the system remained stable throughout the simulation as shown in 

Figure C.9 (in Appendices). We can identify the lowest energy states by viewing the 

summary.EPTOT file generated by the process_mdout.perl just as in the equilibration 

stages. We took three snapshots of the top three low energy states of the last 1 

nanosecond of the production run. Frame 3800 at 9.60 ns had the lowest energy with 

potential Energy =-310796 Kcal/mole. The second and third low energy states were at 

9.67 ns and 9.39 ns respectively. They represent frames 3839 (Energy = -310640 

Kcal/mol) and 3695(Energy = -310560 Kcal/mol) respectively. Later we extracted the top 

three frames in PDB format using the cpptraj program. We viewed the structures in 

Chimera to see whether they looked reasonable or not. The final structure chosen was the 

one with the lowest energy. The three dimensional visualization of the lowest energy 

conformation of the ArtAB structure is represented in Figure 3.11 below. 

 

Figure 3.11. Lowest energy snapshot of ArtAB with interface of ArtA and ArtB  
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ArtA is represented in orange. ArtB is shown in tan. The figure shows that a part of the 

alpha helix of ArtA enters the junction/interface of the ArtB pentamer.  

3.4 Discussion 

Our aims for this project were a) to create ArtA and ArtB structures of Salmonella 

typhimurium DT 104 using the homology modeling, b) to develop a protein-protein 

docked structure of complete ArtAB and c) to perform molecular dynamics simulations 

of the docked structure to generate the lowest energy conformer of the structure for future 

studies. 

3.4.1 Homology models of ArtA and ArtB 

Homology models of ArtA and ArtB were constructed from the templates 3DWP (all five 

chains) and chain A of 4K6L respectively. Both of these templates are from the family of 

AB5 toxin secreted by various bacteria and are related evolutionarily. Both final models 

of ArtA and ArtB compared with their template structures have backbone carbon (Ca) 

RMSD values less than 1 Angstrom. We also studied the Ramachandran plots of both the 

ArtA and ArtB structures. ArtA has no residues in the disallowed region and ArtB has 

nearly 0.6% residues (Cysteine 106, Glutamine 41and Valine 42) in this region. The 

majority of the residues in ArtA and ArtB have bond length, bond angle and planar 

groups within the specified limit (more than 90 % residues). Both the structures of ArtA 

and ArtB have good compatibility between the 3D structure and their own amino acid 

sequences as shown by verfiy3d scores. The only problem is with the QMEAN6 score. 

Both ArtA and ArtB structures have scores below 0.5 and ArtB, especially, has lower 

score. One of the reasons for having low QMEAN scores may be the use of low-

resolution templates as crystal structures for modeling of both the homology models.   
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3.4.2 Protein-protein docked structure of ArtAB 

After creating the homology models of both ArtA and ArtB, we conducted the protein-

protein docking to create the complete structure of ArtAB. 14 of 30 (36.6%) protein-

protein docked poses generated from the Bioluminate program of the Schrödinger were 

able to predict the correct ArtAB structure. “A” subunit is a toxic component possessing 

an  active site and “B” component of  ArtAB binds with the target in the host cells and 

translocates ArtA inside the host cell.207 The  catalytic subunit A binds noncovalently 

with the pentavalent subunit B in the interface.215 So we chose the top ranked compound 

(rank 2) that had ArtA correctly bound in the interface of ArtB. The first pose did not 

have the correctly docked ArtAB. 

3.4.3 Molecular dynamics simulations of ArtAB structure 

The initial minimization of the system resulted in decreasing the energy of the system. 

Our goal in this stage was to remove bad contacts and prepare the ArtAB structure for 

further MD simulation. The first equilibration of 1ns at constant volume resulted in 

maintaining the temperature at around 300 K after a few picoseconds. This was what we 

expected. This also indicated that the Langevin dynamics for maintaining the temperature 

(NTT=3) that we used in our simulation worked well. Langevin temperature for 

equilibration (NTT=3) is considered better for maintaining and equilibrating the 

temperature.218 Temperature remained around 300K throughout the simulation. We used 

limited restraint force on the protein in this stage to help the system from falling apart 

during the heating process. The second equilibration was at constant pressure for one 

nanosecond to equilibrate density and other energy terms. Density remained at around 

1.025 g/cm3 as shown in Figure 3.7.  Density of water is 1 g/cm3. Adding protein and 
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some positive charged Na ions in the solvent might have slightly increased the density of 

the system.218  While analyzing the potential, kinetic and total energy of the system, we 

found these energy terms equilibrated, as we wanted for our system as illustrated in 

Figure 3.8. Due to increase in temperature from 0 to 300k, the kinetic energy increased 

for a few picoseconds as expected and then remained stable throughout the simulation. 

After we removed the restraint and equilibrated the system at constant pressure, the 

potential and total energy of the system remained stable. 

We ran 8ns of production simulation to study the time dependent behavior of our ArtAB 

system. Comparing the RMSDs between the total frames of the trajectory to that of the 

first reference structure, it remained below 2.5 Angstroms during the production run. 

Interestingly, the RMSD remained stable after 4ns of production simulation. This 

stability indicates that there is no huge conformational changes taking place in the 

structure. Although larger time scale molecular dynamics simulations of microseconds 

are required to study accurate conformational changes in the structure, small and stable 

RMSD during the simulation of ArtAB provided us the acceptable standard for studying 

the properties of the system.  

The atomic fluctuation of backbone alpha carbon during the simulation as indicated by 

RMSF shows that atomic fluctuations in these residues differ. Most of the residues have 

RMSF from 2 to 4 Angstroms. A few residues have greater fluctuations as indicated by 

the residue number mentioned in the result and seen in Figure 3.10. While visualizing in 

VMD, these residues were mainly present in the loop regions of the ArtB structure (chain 

C) and some loop regions of the ArtA monomer structure.  
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We also visualized the interface of ArtA and ArtB where the alpha helix part of ArtA 

interacts at the junction of the pentamer of ArtB and found that these regions do not 

possess large conformational changes. Finally, we extracted the lowest energy conformer 

of the ArtAB based on potential energy. We proposed this structure to aid in the study of 

crystal structure of ArtAB.  

3.5 Conclusion 

In this project, we proposed a model of the complete ArtAB structure of Salmonella 

enterica serotype typhimurium DT104. We created ArtA and ArtB homology models 

using templates 4K6L and 3DWP respectively using the homology model program from 

the Schrödinger software. ArtA contains monomer and ArtB contains pentamer structure. 

We analyzed these structures using RMSD, Ramachandran plot, PROCHECK, Verfiy3D 

and QMEAN scores. We noted that these programs generated acceptable and better 

results for both structures except the QMEAN scores. QMEAN score values for both 

structures were lower than 0.5. We speculate that this may have happened because of the 

low-resolution x-ray crystal structure templates used for generating these homology 

models.  

There were 30 protein-protein docked poses of ArtAB generated from Schrödinger’s 

Bioluminate program. We visualized the docked poses in the workspace and found that 

approximately half of the poses were docked appropriately. We selected the top ranked 

accurately docked pose.  

After 5000 steps of the whole system minimization, we conducted two steps of 

equilibration. We observed that the system attained equilibrium in terms of temperature, 

density, volume, pressure, kinetic, potential and total energy in these steps. Though 
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pressure fluctuated during the constant pressure equilibration stage, it remained at an 

average of -3.7 g/cm3   throughout the process. Additionally we performed 8ns of 

production run to study the behavior of the system. The RMSD analysis of the backbone 

atoms was performed on 4000 frames of the trajectory, and comparing the first structure 

of production run showed that the RMSD remained within 2.5 Angstroms. After half of 

the production simulation time, it remained stable. However, flexibility of loop residues 

of both the ArtB and ArtA structures was shown by RMSF analysis. These loop regions 

did not fall on the interface of ArtA and ArtB.  

Finally, we studied the potential energy of production run. It remained stable during 

whole 8ns time. We extracted the lowest energy conformer from the last one nanosecond 

time. Frame 3800 at time period 9.60 ns had the lowest energy with minimum potential 

energy (Emin) of -310796 Kcal/mole. The resulting structure of ArtAB can act as a 

starting point for further three-dimensional study of crystal structure.  
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Chapter 4. Discussion and Conclusion 

4.1 General review of the thesis 

The thesis work includes two different projects. The first was predicting the structure of 

the C. difficile FabK enzyme using homology modeling and finding potential inhibitors 

that bind in the active site of the enzyme. The second was predicting the structure of 

Salmonella ArtAB, and obtaining the lowest energy conformer of the structure from 

molecular dynamics simulations. This can be used as a starting structure for 

crystallography study of ArtAB. With these two projects, I was able to study and utilize 

several computational techniques.  

 The Chapter 2 project contained the study of FabK enzyme (an important enzyme in 

fatty acid synthesis) of C. difficile. Utilizing homology-modeling techniques, I created the 

final model structure that was analyzed using various software programs. Similarly, 

seven different libraries were prepared from the ligand preparation program using various 

filtering criteria included in the filtering file. Additionally these compounds were docked 

in the active site of the receptor. Some of the top compounds showed key interactions 

with the residues of the receptor.  

The Chapter 3 project included discussions about the Salmoenalla typhimurium ArtAB. 

Using the homology-modeling approach, I created models for the ArtA monomer and the 

ArtB pentamer. These structures were analyzed using several programs in a similar way 

to that of Chapter 2. Moreover, the protein-protein docking tool was applied to create the 

complete ArtAB structure and the top ranked reasonable structure was selected. 

Molecular dynamics simulations were utilized to study the time dependent behavior of 

the system. Furthermore, the thermodynamic properties of the system were analyzed 
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along with the atomic fluctuations of the residues. Final selection of the lowest energy 

conformer was conducted from the potential energy data of the system.  

4.2 Discussion of computational tools 

The projects in this thesis employed several computational tools. These tools are desribed 

in the introduction (Chapter 1) of  the thesis. Computational tools/methods have become 

an integral part of the drug discovery and development process. They reduce the time 

required for these processes and save a lot of money. A good computational approach 

requires knowledge of structural biology, molecular biology, pharmacology and various 

other disciplines. However, these tools have limitations. In this segment, I discuss the 

benefits and limitations of the computational tools used in these thesis projects. 

4.2.1 Homology modeling  

Homology modeling is a useful computational tool that helps to predict the 3D structure 

of a protein when there is no available experimental structure of the protein. If the 

sequence/sequences of the query structure is known, it can be used to identify the 3D 

structure by alignment with available template structures. However, homology modeling 

has some limitations because it is a theoretical model and visual inspection is required   

The first consideration is that homology model only provides acceptable results if the 

sequence identity between the template and query is more than 30%.34 Sequence identity 

below this level may not provide reliable models. Understanding this limitation is very 

important. In the case of these thesis projects, all homology models have more than 40% 

sequence identity except ArtB in one project, which has a low sequence identity of 35%. 
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The second consideration is a good sequence alignment between the template and query. 

This is required for producing accurate models for the target sequence.34 Even though 

there are several alignment tools available that can generate alignment between the 

templates and query as discussed in chapter 1.2, there are still chances of errors in this 

process. The multiple chains single homology model, as in one of the projects, needs 

proper alignment and spatial arrangement of the chains before model building.  It is 

always necessary to visualize the alignment before being sure about it. Sometimes 

manual alignment might be required in the process.  

The third consideration is prediction of loop regions in the model. Loops have a 

reputation of  being highly flexible where insertions and deletions occur frequently.22 

These regions are tough to predict with accuracy in comparison to other secondary 

structures like the alpha helix and beta strand.22 Although several loop prediction 

methods are available (as discussed in chapter 1.2), predicting loop regions are still 

considered a challenge.  

The homology modeling methods used in these thesis projects helped us to create 

acceptable models for various purposes of the studies. There are still requirements for 

advance methods for minimizing the errors in predicting the models particularly at the 

active site and if there is a low sequence identity between the query and template.34 New 

method such as ligand-steered homology model tools have evolved where data from a 

familiar ligand are used to enhance configuration and optimize the binding site.219-223 

This technique is especially helpful in minimizing the variability in modeling the active 

site region.34 Despite having some limitations, homology modeling is an essential 

approach in structure based drug discovery. 
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4.2.2 Protein-protein docking  

To study the interaction of two protein partners, a technique such as protein-protein 

docking is an important tool. This technique has various applications in drug discovery. 

Although it is emerging as a fast and cost-effective tool to predict the complete structures 

of proteins, it has some limitations. A careful understanding of these limitations is 

required to use this tool appropriately in drug discovery process. 

A benefit of using the protein-protein docking is that it is an easy and fast technique to 

obtain a docked structure. Although development of different search algorithms or 

scoring functions (as discussed in chapter 1.3) has facilitated the process, the protein-

protein docking tool does not indicate the correct or incorrect docked poses. Predicting 

perfect binding condition is a tough job considering the larger nature of the protein 

structure.68 A wise decision is required to predict whether the obtained docked pose is 

desirable or not. The poses generated from various software give different configurations. 

A little knowledge of the binding interface (how it binds), as in the ArtAB project, is 

helpful to differentiate between the accurate and inaccurate poses. Moreover, 

visualization of the docked poses is necessary. 

Another important consideration is docking of model structures, as done in the studies of 

ArtAB docking. The trouble is that protein-protein docking gets complicated if the 

structures are homology models instead of crystal structures.67 Thus, proper visualization 

of the docked pose and refinement of structures using minimization and MD simulations 

might help to minimize the errors/bad contacts that can occur in these structures.  

A more comprehensive searching algorithm and scoring functions are required in the 

future to overcome the challenges in protein-protein docking. Though there are some 
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limitations and challenges in the process, a wise use of the protein-protein docking tool 

helps to understand the interaction mechanism of two protein partners.  

4.2.3 Molecular docking  

Another important computational method is molecular docking. Molecular docking helps 

in understanding the binding mode of the ligand in the receptor. In addition, it has 

become an essential part of virtual screening. Though it is a time saving and cost-

effective way of obtaining virtual hits against a target, it has some limitations. A good 

understanding of the docking process and its weaknesses is necessary. 

The first consideration in molecular docking is preparation of the receptor and ligands for 

docking. The receptor needs proper preparation with the addition of hydrogen, proper 

charges, bond orders and the receptor grid box for docking purpose. Similarly, 

preparation of ligands in terms of protonation states, partial charges, bond orders and 

tautomers is necessary for docking process. One of the common errors is lack of 

assigning partial charges to the ligand. A careful visualization of the receptor and 

prepared ligands is required.  

The second consideration is validation. Scoring functions act differently to various types 

of receptors according to the nature of polar or lipophilic sites present in the binding 

site.224 To overcome this limitation, there is a need to evaluate whether the sampling 

algorithm and scoring function present in the docking program are favorable for the 

binding site/target. A validation of the docking process with the original ligand of the 

receptor helps to provide parameters for future library screening.  
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Another important limitation in the docking process is scoring function. Due to the 

development of several search algorithms, conformational search space for docking pose 

has advanced properly but scoring functions are still not satisfactory. Binding affinity of 

the ligand in the pose is determined by the scoring function.1 Nevertheless, contemporary 

algorithms for scoring (as discussed in chapter 1.5) available in several docking programs 

do not correctly predict the interaction energy of ligand-target composite with sufficient 

accuracy.6 These scoring functions do not accurately predict the binding energy of the 

docked ligand. The algorithm used in scoring functions still faces some problems of 

desolvation and entropic impact.225 A good visual interpretation of docking score results 

is necessary to identify hit compounds.  

Despite some limitations of molecular docking indicated in the above sections, it is an 

essential tool in screening millions of compounds in a cost-effective way. A successful 

docking application also depends on the user and familiarity with the docking programs.  

4.2.4 Molecular dynamics simulation 

Molecular dynamics simulations are a convenient method in studying the molecular 

motion of atoms and residues in biological system. They can be used to study the time-

dependent behavior of both crystal and model structures. Time scale motion of loops, 

alpha helix, beta strand and ligand-receptor binding can be studied utilizing MD 

simulations. However, MD simulations have some limits. 

The first consideration is that MD simulations are time-consuming and computationally 

expensive. In larger systems just like the one in this thesis’s second project, to study the 

conformational behavior of the protein structure requires a simulation of at least a 

microsecond. To correctly and precisely model nanosecond level protein motions, it 
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require a much longer simulation of a few microseconds.226 Despite development of 

GPUs and increase in computational speed recently, this scale of simulation requires 

several weeks or months to complete the process. Increased computational requirements 

limit simulations of more than a few microseconds in length.89 

The second important consideration is the force field used in molecular dynamics 

simulations. The molecular mechanics force fields used are approximations of quantum 

mechanics.89 Molecular mechanics simulations can predict the motion of several 

biological molecules but quantum mechanics are required in some cases like transition 

metal coordination or electronic distribution.89 Another important  limitation of  

mechanics force fields is that they cannot be utilized for understanding the chemical 

reactivity as they do not take into account the bond breaking and making phenomenon.90 

These problems have been addressed by incorporating quantum mechanics force into 

molecular mechanics (QM/MM) and has been used successfully in many systems.89 

However, in QM/MM, only a part of the system can be treated quantum mechanically 

and the majority of it is treated using a classical force field. This technique is still 

computationally intensive, time consuming and difficult to use in larger systems.  

Another important point is preparation of the system for simulations. Force fields are 

used to prepare the coordinate and parameter files for the residues of the system. 

Currently, several mechanics force fields are available that are used to prepare parameters 

for protein, nucleic acids, carbohydrates, lipids and some other biomolecules (as 

discussed in chapter 1.4). However, for non-standard residues such as ligand and 

cofactors, other force fields (as discussed in chapter 1.4) that are validated should be used 
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for preparing the parameters for these residues. The theme of this section is that proper 

evaluation of residues of the system is needed to conduct a successful simulation.  

Lastly, although a few nanoseconds simulation was used in the second project of the 

thesis to obtain the lowest energy conformer of the structure, a few milliseconds 

simulation is required to accurately study the behavior of  large protein motion and 

protein folding. Various enhanced sampling algorithms such as umbrella sampling227, 

replica exchange228, metadynamics229, steered molecular dynamics230-231, accelerated 

molecular dynamics232, milestoning233, transition-path sampling234 and free energy 

perturbations(FEP)235-236 have evolved  that have increased sampling of the 

conformational space with accuracy. Although limitations exist for MD simulation, it is 

an important tool in drug discovery. 

4.3 Future perspective 

We studied two projects, namely C. difficile FabK and ArtAB, in this thesis work. We 

have presented some work in C. difficile FabK with our available resources and time. 

There are some avenues for future exploration. Some of the probable future paths that 

require exploration in C. difficile FabK and ArtAB projects are summarized below. 

4.3.1 C. difficile FabK project 

Future work on this project includes application of other docking programs for molecular 

docking. In this project, we have used glide docking from the Schrödinger to dock 

millions of compounds. It is always better to validate docking results from one or more 

docking algorithms. Although it might be time consuming to dock large number of 

compounds using other programs, it will be exciting to compare the results  
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Another future direction is experimental screening of virtually docked compounds. 

Ordering of some of these compounds from vendors is underway. Results from 

experimental assays of top hit compounds will provide crucial information about potency 

of these compounds in inhibiting the enzyme. Furthermore, they may also provide crucial 

information for the lead optimization process and help to refine further virtual screening. 

4.3.2 Salmonella ArtAB project 

We have obtained the ArtAB structure of S typhimurium from homology modeling and 

MD simulations. Future work in this project includes using a good resolution and higher 

sequence identity template especially for the ArtB structure. The template obtained for 

ArtB during the time of the project was crystal structure of subunit B of AB5 toxin of 

Escherichia coli (PDB:3DWP) possessing sequence identity of approximately 35% and 

resolution 2.2 Angstroms. Our aim in the project was to obtain lowest energy conformer 

structure of ArtAB that could aid in the analysis of crystal structure. We considered ArtB 

structure acceptable in this purpose. Detailed study including protein folding, loop 

motion, binding of ArtA and ArtB definitely requires a template that possesses higher 

sequence identity and a good alignment with the query sequence. Recently, a higher 

sequence identity template from same Escherichia coli (PDB: 4Z9C) has been noticed in 

the Protein Data Bank. I would suggest this as a good template for ArtB modeling. 

Comparison of both the results would provide differences between the two structures. 

This could improve the molecular modeling of the ArtAB structure. 

Another future perspective for ArtAB is performing longer time scale MD simulation. 

We performed 8 ns production simulation in our project. Despite some loop motions in 

both the structures, no larger conformational changes took place as suggested by 
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thermodynamics properties, RMSD and RMSF analysis. As discussed earlier in the 

chapter 4.2.3, at least a few microseconds simulation is required for analyzing the system 

accurately. I would suggest a multiple-step microsecond simulations in the future. This 

can be utilized to get the lowest energy conformer of the structure and might represent 

the structure more accurately than the present one.  

4.4 Conclusion 

Homology models of both C. difficile FabK enzyme and Salmonella ArtAB were created 

and evaluated for their structural properties using multiple programs. After predicting the 

model, millions of compounds prepared from ligand preparation using filtering criteria 

were docked in the C. difficile FabK receptor. From this particular study, conclusions 

were drawn about the top compounds from different libraries and the key interactions 

shown by these compounds with the residues of the binding site. Similarly, ArtA and 

ArtB were used for protein-protein docking purposes. After the entire ArtAB structure 

was developed, it was modelled using molecular dynamics simulations and evaluated for 

their thermodynamics properties, atomic fluctuation and lowest energy conformation 

structure. From molecular dynamics, it was identified that the thermodynamic properties 

remained stable during the simulation. Flexibility was seen in the loop regions of the 

structure. The lowest energy conformer had the minimum potential energy and has the 

probability of assisting in the study of crystal structure.  

I conclude this thesis by trying to give a satisfactory answer to the question: Are 

computational methods appropriate for drug design and biomolecular study? 

We have used various computational methods in both of our projects. These include the 

homology model, protein-protein docking, molecular dynamics simulation and molecular 
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docking. The mentioned methods have some limitations as discussed in chapter 4.2. 

There might be several questions about the results of computational methods. However, 

computational methods have been used successfully in drug design and biomolecular 

study. Even in our docking study, we obtained some top compounds that had important 

key interactions with the residues, and had previously been believed to play a role in 

catalytic process of the FabK enzyme. Computational methods applied with caution and 

proper validation aid in the drug design as well as biomolecular study. 

Finally, I trust that computational methods have a good future in the field of science. 

With the development of newer algorithms and techniques, several limitations as 

mentioned in chapter 4.2 will be solved. The computational field has a bright future. 
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Appendices 

B.1. Filtering file containing filtering criteria for ligand preparation of compound 

libraries.  

# Custom patterns 

DEFINE Aliphatic_thioester [S;X2]([!#1])[C;X3](=O)[C;X4;H2,H3] 

DEFINE Hydrazines [NX3][NX3] 

DEFINE Acyl_halides [F,Cl,Br,I][C;X3]=O 

DEFINE Sulfonyl_halides [F,Cl,Br,I][S;X4](=O)=O 

DEFINE Sulfinyl_halides [F,Cl,Br,I][S;X3]=O 

DEFINE Sulfenyl_halides [F,Cl,Br,I][S;X2] 

DEFINE Alkyl_halides_wo_fluorine [Cl,Br,I][C;X4;H2,H3] 

DEFINE Anhydrides [O;X2]([C;X3]=O)([C;X3]=O) 

DEFINE Perhalomethylketones 

[#6][C;X3](=O)[C;X4]([F,Cl,Br,I])([F,Cl,Br,I])[F,Cl,Br,I] 

DEFINE Aldehydes [#6][C;H1]=[O;X1] 

DEFINE Formates [O;X2][C;H1]=O 

DEFINE Peroxides [O;X2]~[O;X2] 

DEFINE Isothiocyanates [#6][N;X2]=C=[S;X1] 

DEFINE Isocyanates [#6][N;X2]=C=O 

DEFINE Phosphinyl_halides [P;X3][Cl,Br,I] 

DEFINE Phosphonyl_halides [P;X4](=O)[Cl,Br,I] 

DEFINE Carbodiimides [#6][N;X2]=[C;X2]=[N;X2][#6] 

DEFINE Silyl_enol_ethers C=CO[Si;X4] 

DEFINE Nitroalkanes [#6][C;H2][N](~[O;X1])[O;X1] 

DEFINE Phosphines [#6][#15]([#6])~[#6] 

DEFINE Alkyl_sulfonates [#6]O[S;X4](=O)=O 

DEFINE Epoxides [O;X2;r3](C)C 

DEFINE Azides [#6][N;X2]=[N;X2]=[N;X1] 

DEFINE Diazoniums [#6][N;X2]#[N;X1] 

DEFINE Isonitriles [#6][N;X2]#[C;X1] 

DEFINE Halopyrimidines [F,Cl,Br,I]c(nc)nc 
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DEFINE 1,2-Dicarbonyls [C;X3](=O)([C;X3](=O)) 

DEFINE Michael_acceptors [O;X1]=C[C;H1]=[C;H1] 

DEFINE beta-Heterosubstituted_carbonyls [O;X1]=C[C;H2]C[F,Cl,Br,I] 

DEFINE Diazos [N;X2]~[N;X2] 

DEFINE Disulfides [S;X2]~[S;X2] 

DEFINE Imines [N;X2]([!#1])=[C;X3][C;H2,H3] 

DEFINE Aziridines [N;X3;r3](C)C 

DEFINE Thiols [S;X2;H1] 

DEFINE Aliphatic_ester [O;X2]([!#1])[C;X3](=O)[C;X4;H2,H3] 

DEFINE Aliphatic_ketone [C;X4;H3][C;X3](=O)[C;X4;H2,H3] 

DEFINE Thiourea [#1][N-0X3][C-0X3](=[S-0X1])[N-0X3][#1] 

DEFINE Cyclohexanone [O-0X1]=[C-0X3]1[C-0X4][C-0X4][C-0X4][C-0X4][C-0X4]1 

DEFINE Halogenated_hydrocarbons [F,Cl,Br,I][C;X4,H1][F,Cl,Br,I] 

DEFINE Hydroxylamines [#1][N-0X3][O-0X2][#1] 

DEFINE Iminoquinones [N-0X2]=[C-0X3]1[C-0X3]=[C-0X3][C-0X3](=[O-0X1])[C-

0X3]=[C-0X3]1 

DEFINE Halocarbonyl_Cl [Cl-0X1][C-0X4][C-0X3]=[O-0X1] 

DEFINE Halocarbonyl_Br [Br-0X1][C-0X4][C-0X3]=[O-0X1] 

DEFINE Halocarbonyl_F [F-0X1][C-0X4][C-0X3]=[O-0X1] 

DEFINE Halocarbonyl_I [I-0X1][C-0X4][C-0X3]=[O-0X1] 

DEFINE Heteroatom_Heteroatom_1 [N-0X3][O-0X2] 

DEFINE Heteroatom_Heteroatom_2 [N,#8][N,#8] 

DEFINE Heteroatom_Heteroatom_3 [N-0X3][S-0X2] 

DEFINE Heteroatom_Heteroatom_4 [n-0X2][s-0X2] 

DEFINE Heteroatom_Heteroatom_5 [O-0X2][S-0X2] 

DEFINE Nitro_aromatic [a]-[$([NX3](=O)=O),$([NX3+](=O)[O-])][!#8] 

# 

# Filter criteria 

# 

Aliphatic_thioester                   >= 1 

Hydrazines                               >= 1 

Acyl_halides                            >= 1 

Sulfonyl_halides                      >= 1 



146 
 

Sulfinyl_halides                       >= 1 

Sulfenyl_halides                      >= 1 

Alkyl_halides_wo_fluorine     >= 1 

Anhydrides                               >= 1 

Perhalomethylketones              >= 1 

Aldehydes                                >= 1 

Formates                                  >= 1 

Peroxides                                 >= 1 

Isothiocyanates                        >= 1 

Isocyanates                              >= 1 

Phosphinyl_halides                  >= 1 

Phosphonyl_halides                 >= 1 

Carbodiimides                          >= 1 

Silyl_enol_ethers                      >= 1 

Nitroalkanes                             >= 1 

Phosphines                                >= 1 

Alkyl_sulfonates                       >= 1 

Epoxides                                   >= 1 

Azides                                       >= 1 

Diazoniums                               >= 1 

Isonitriles                                   >= 1 

Halopyrimidines                        >= 1 

1,2-Dicarbonyls                         >= 1 

Michael_acceptors                      >= 1 

beta-Heterosubstituted_carbonyls      >= 1 

Diazos                                        >= 1 

Disulfides                                   >= 1 

Imines                                     >= 1 

Aziridines                               >= 1 

Thiols                                      >= 1 

Aliphatic_ester                       >= 1 

Aliphatic_ketone                    >= 1 

Thiourea                                 >= 1 
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Cyclohexanone                       >= 1 

Halogenated_hydrocarbons    >= 1 

Hydroxylamines                      >= 1 

Iminoquinones                          >= 1 

Halocarbonyl_F                         >= 1 

Halocarbonyl_Br                       >= 1 

Halocarbonyl_Cl                          >= 1 

Halocarbonyl_I                           >= 1 

Heteroatom_Heteroatom_1         >= 1 

Heteroatom_Heteroatom_2         >= 1 

Heteroatom_Heteroatom_3          >= 1 

Heteroatom_Heteroatom_4          >= 1 

Heteroatom_Heteroatom_5          >= 1 

Nitro_aromatic                           >= 1 

Num_chiral_centers                       >= 3 

Molecular_weight                         <= 150 OR >= 750 
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Figure B.2. Ramachandran plot of selected CdFabK homology model 
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Figure B.3  Main Chain bond lengths of the amino acid residues of CdFabK model 
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Figure B.4. Main chain bond angles of amino acid residues of CdFabK model 
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Figure B.5. RMS distances of  planar atoms from the best-fit plane of CdFabK 

model 
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Figure C.1. Main Chain bond lengths of ArtA homology model 
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Figure C.2. Main chain bond angles of ArtA homology model 
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Figure C.3. Root mean square distances of  planar atoms from the best-fit plane of 

ArtA model 
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Figure C.4.  Main chain bond lengths of ArtB homology model  
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Figure C.5. Main chain bond angles of ArtB homology model 
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Figure C.6. Root mean square distances of  planar atoms from the best-fit plane of 

ArtB model 
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Figure C.7. Volume of the system ArtAB at constant pressure equilibration stage. 

 

 

Figure C.8. Pressure of the system ArtAB at constant pressure equilibration stage. 
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Figure C.9. Potential, Kinetic and Total energy of the system during 8ns production 

stage. 

 

Black line represents potential energy, red line represents kinetic energy and green line 

represents total energy of the system. 
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