
Use Authorization 

In presenting this dissertation in partial fulfillment of the requirements for an 
advanced degree at Idaho State University, I agree that the Library shall make it freely 
available for inspection. I further state that permission to download and/or print my 
thesis for scholarly purposes may be granted by the Dean of the Graduate School, Dean 
of my academic division, or by the University Librarian. It is understood that any copying 
or publication of this thesis for financial gain shall not be allowed without my written 
permission. 

Signature  

Date    



 
 

Development of an Interior Component Flooding Fragility 

Model and Design of Component Flooding Evaluation 

Laboratory Safety Circuit 

 
 
 
 

 
 
 
 
 

 
 

 
 

by 
 

Sneha Suresh 
 
 
 
 
 
 

 
 
 

 
 

 
A thesis 

 
submitted in partial fulfillment 

 
of the requirements for the degree of 

 
Master of Science in the Department of Nuclear Engineering 

 
Idaho State University 

Spring 2017



Committee Approval 

To the Graduate Faculty: 

The members of the committee appointed to examine the thesis of SNEHA 

SURESH find it satisfactory and recommend that it be accepted. 

iii 

_____________________________________________ 
Dr. Chad Pope, 
Major Advisor 

_____________________________________________ 
Dr. S. Hossein Mousavinezhad 
Committee Member 

_____________________________________________ 
Dr. Bruce Savage 
Graduate Faculty Representative 



iv 
 

Acknowledgments 

 
I would like to express my sincere gratitude to Dr. Pope for providing me an opportunity 

to work under him in the CFEL project. His timely guidance and useful critiques of this 

research work has been of great help in completion this thesis. 

I would also greatly extend my thanks to Dr. Bruce Savage and Dr. S. Hossein 

Mousavinezhad for their advice and support during the course of this thesis. 

I would thank my parents for their never-ending support and encouragement through my 

master’s journey. Last but not the least my sincere thanks Allison and all the other CFEL 

team members for their help and a few of my close friends for their moral support. 

 



v 
 

Contents 
List of Tables ................................................................................................................................... vi 

List of Figures ................................................................................................................................. vii 

List of Abbreviations ..................................................................................................................... viii 

Abstract ............................................................................................................................................ x 

1.  Introduction ................................................................................................................................ 1 

2. Background .................................................................................................................................. 2 

3. Portal Evaluation Tank ................................................................................................................. 3 

3.1 Design ..................................................................................................................................... 3 

3.2 Testing in PET ......................................................................................................................... 4 

2.3 Door Test Data ....................................................................................................................... 9 

4 Fragility Modeling ....................................................................................................................... 10 

4.1 Seismic Modeling ................................................................................................................. 11 

4.2 Bayesian Analysis ................................................................................................................. 13 

4.2.1 Bayesian Regression Modeling ..................................................................................... 13 

4.2.2 Software Tools .............................................................................................................. 14 

4.2.3 Bayesian Regression Model Example............................................................................ 15 

4.3 Flooding Bayesian Analysis .................................................................................................. 22 

5.0 Current Work ........................................................................................................................... 23 

5.1 Other OpenBUGS Link Functions ......................................................................................... 26 

5.2 Model Selection via DIC ....................................................................................................... 28 

5.2.1 Exploring Model Fit Using DIC ....................................................................................... 29 

5.2.2 DIC Model Analysis for NASA Data ............................................................................... 30 

6.0 CFEL Key Features .................................................................................................................... 32 

6.1 Safety Circuit Design ............................................................................................................ 33 

6.1.1 Safety Circuit Implementation ...................................................................................... 38 

6.2 Reliability of Components ........................................................................................................ 43 

6.2.1 Reliability Prediction Definitions ................................................................................... 43 

6.2.2 Bathtub Curve ............................................................................................................... 45 

6.2.3 R(t) Calculations ............................................................................................................ 46 

6.2.4 Reliability Block Diagrams ............................................................................................. 47 

6.2.5 Fault Tree Analysis ........................................................................................................ 50 

7 Conclusion ................................................................................................................................... 53 



vi 
 

8 Future Work ................................................................................................................................ 53 

9 Bibliography ................................................................................................................................ 54 

Appendix A ..................................................................................................................................... 55 

Appendix B ..................................................................................................................................... 56 

Appendix C ..................................................................................................................................... 59 

Appendix D ..................................................................................................................................... 63 

Appendix E ..................................................................................................................................... 66 

 



vii 
 

List of Tables 

 

Table 1. Door Test Data ................................................................................................................. 10 

Table 2. O-Ring Thermal Stress Data Prior To Launch of Challenger In January 1986................... 16 

Table 3. OpenBUGS Script for Regression Model for the O-ring Fragility Example ....................... 19 

Table 4. Parameter Results (Mean Values) Of the Fragility Regression ........................................ 20 

Table 5. Updated PET Door Test Experimental Data ..................................................................... 23 

Table 6. OpenBUGS Script for Depth Model .................................................................................. 25 

Table 7. Results of the Depth Model ............................................................................................. 25 

Table 8. Models Responses to Link Function ................................................................................. 27 

Table 9. Errors Observed While Using Different Link Functions .................................................... 27 

Table 10. Information on DIC and Other Parameters of the Seven Models .................................. 30 

Table 11. DIC and p-values for the NASA Example Data ................................................................ 31 

Table 12. Truth Table ..................................................................................................................... 34 

 



viii 
 

List of Figures 

Figure 1. Portal evaluation tank. ...................................................................................................... 4 

Figure 2. Interior hollow core wooden door. ................................................................................... 5 

Figure 3 Results of door test 0. ........................................................................................................ 6 

Figure 4. Plot of time Vs water height. ............................................................................................ 7 

Figure 5. Plot of time Vs the flow rate. ............................................................................................ 7 

Figure 6. Plot of time Vs water height for door Test 3 and 4 .......................................................... 8 

Figure 7. Door test 3 flow information. ........................................................................................... 8 

Figure 8. Door test 4 flow information. ........................................................................................... 9 

Figure 9. Illustration of seismic fragility model for an example component ................................. 12 

Figure 10. Solid rocket motor cross section shows positions of tang, clevis and O-rings. ............ 15 

Figure 11. P-value predictability. ................................................................................................... 20 

Figure 12. Fragility model curves for the O-ring example. ............................................................ 22 

Figure 13. Common influencing factors that affect component flooding fragility. ....................... 23 

Figure 14. Testing bay. ................................................................................................................... 32 

Figure 15. The key features of CFEL. .............................................................................................. 33 

Figure 16. K-map. ........................................................................................................................... 36 

Figure 17. First safety circuit logic. ................................................................................................ 36 

Figure 18. Second Safety Circuit using a 2:1 MUX. ........................................................................ 37 

Figure 19. Online simulation of first safety circuit. ........................................................................ 39 

Figure 20. Second safety circuit with 2:1 MUX’s internal circuit. .................................................. 40 

Figure 21. Online simulation of second safety circuit. ................................................................... 40 

Figure 22. Implementation of first safety circuit on breadboard. ................................................. 41 

Figure 23. Implementation of second safety circuit on breadboard. ............................................ 42 

Figure 24. Understanding MTBF. ................................................................................................... 44 

Figure 25. Typical bathtub curve. .................................................................................................. 46 

Figure 26. Components connected in series. ................................................................................. 48 

Figure 27. Components connected in parallel. .............................................................................. 48 

Figure 28. RBD for the first safety circuit. ...................................................................................... 49 

Figure 29. Second safety circuit RBD. ............................................................................................ 50 

Figure 30. FT analysis for the first safety circuit. ........................................................................... 51 

Figure 31. FT analysis for the second safety circuit. ...................................................................... 52 

 

  

file:///C:/Users/sneha/Desktop/sneha_thesis_final.docx%23_Toc481225307


ix 
 

List of Abbreviations 

 

PET   Portal Evaluation Tank 

CFEL  Component Flooding Evaluation Laboratory  

NPP  Nuclear Power Plant 

PRA  Probabilistic Risk Assessment 

MERC  Measurement and Control Engineering Research Center 

ISU  Idaho State University 

DOE  Department of Energy 

LWRS  Light Water Reactor Sustainability Program 

GPM  Gallons Per Minute 

BUGs  Bayesian inference using Gibbs sampling 

MCMC  Markov Chain Monte Carlo 

GML  General Linearized model  

BIC  Bayesian Information Criteria 

DIC  Deviance Information Criterion  

MUX  Multiplexer 

K-map  Karnaugh map 

T-T  Truth Table 

BCD  Binary Coded Decimal 

RTL  Resistor-Transistor Logic 

TTL  Transistor-Transistor Logic



x 
 

 

DTL  Diode–Transistor Logic 

CMOS  Complementary Metal-Oxide-Semiconductor logic 

LS  Low power Schottky 

TI  Texas Instruments 

LED  Light Emitting Diode 

FIT  Failure In Time 

MTBF  Mean Time Between Failure 

FT  Fault Tree 

RDB  Reliability Block Diagram 

FTA  Fault Tree Analysis

https://en.wikipedia.org/wiki/Diode%E2%80%93transistor_logic


xi 
 

 

Abstract 

The goal of this two-part thesis was to design and develop a flooding fragility model for 

an interior hollow core wooden door tested in the Portal Evaluation Tank of the 

Component Flooding Evaluation Laboratory (CFEL) using Bayesian analysis. For the data 

acquired in the door tests, various models were developed using Bayesian regression 

modeling. An attempt was also made to select the best model to represent the failure 

probability. The second section of this thesis focused on safety analysis of the CFEL. 

Simple yet effective safety circuits using digital control logic was designed and built. 

Reliability and fault tree analysis was done to verify the correctness of two safety circuits. 

Based on the reliability analysis results, one operational safety circuit was selected for 

CFEL. 
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1.  Introduction 

 In Nuclear Power Plant (NPP) Probabilistic Risk Assessment (PRAs) the failure of 

the components from the flooding phenomenon due to water damage is not elucidated. 

The March 11, 2011, Tsunami at the Fukushima Daiichi NPP has highlighted the 

importance of flooding as a potential hazard. Traditionally, NPP flooding analysis involves 

identification of the frequency of expected flooding depths and then assuming 

components below the flooding depths fail during the flooding event. However, there is 

merit in understanding the reliability of NPP components under flooding conditions to 

allow a more robust evaluation of flooding hazards. 

The Component Flooding Evaluation Laboratory (CEFL) research group, is involved 

in the testing of numerous NPP components such as doors, feed throughs, pipes, electrical 

and mechanical components. These components are tested to failure under mainly three 

categories namely the water rise, water spraying and the wave impact flooding events.  

 Using the data generated from the flooding events, we then develop stochastic 

models that can later be used to analyze the probabilistic risks associated with respect to 

component flooding of NPP with the help of a mathematical modeling. These models can 

then be used to develop flooding fragility curves for the component being tested. 

The purpose of this thesis is to understand, develop a fragility model for the 

mechanical component, an interior hollow core wooden door tested in CFEL, and building 

of a safety circuit for a secure and controlled operation in CFEL. 
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2. Background 

Flooding has always been a potential risk to NPP as they are typically located near 

the oceans or other bodies of water. Studies were done in CFEL research group on 

numerous flooding accidents that have occurred over the years [1]. Shockingly there have 

been 18 accidents at NPPs in the USA alone. Common reasons include leakage from 

containment pipe ruptures, failure of seals, loss of off-site power causing the emergency 

core cooling system to be flooded. This is a stark reminder for the need of deeper 

understanding of NPP component reliability under flooding. Thus, the need and 

construction of CFEL was well established. 

The construction of CFEL is underway in the Measurement and Control 

Engineering Research Center (MERC) building at Idaho State University (ISU). This project 

is funded by the Department of Energy (DOE) under the Light Water Reactor Sustainability 

Program (LWRS). This project began with the design and construction of small-scale 

experiments for a better understanding of the behavior of the mechanical and electrical 

components under flooding conditions. Components such as radios, laptops, small scale 

doors were tested [2]. Using the information obtained, the need of flooding fragility 

curves in a NPP risk analysis were established. A flooding fragility curve is a plot of the 

probability of failure of a defense as a function of a load event. The loading event maybe 

caused due to temperature, pressure, depth of water etc.  
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Full-scale experiments commenced in a tank constructed specifically to conduct 

large-scale experiments, called the Portal Evaluation tank or PET. The next section 

discusses the design and the full-scale experiments conducted in PET. 

3. Portal Evaluation Tank 

3.1 Design  

The PET is a crucial part of CFEL where component testing takes place (Figure 1).  

A brief description of PET follows. The PET is a semi- cylindrical steel tank with 7,500 liter 

capacity with a 2.4 x 2.4 m opening for various installations such as doors, pipes, 

feedthroughs and other components. It has two 7.5 cm inlets on the side with a single 

5 cm outlet at the bottom. It also has four outlets at the top for pressure and air relief 

valves, a pressure gauge and a pressure transducer. A 5 Hp submersible pump is 

connected to the PET using a 3 inch PVC pipe. The pump will take about 20 minutes to fill 

the tank at the flow rate of 100 GPM for 3-inch pipe. If the pump is turned on in full power, 

a flow rate of about 300 GPM could be achieved, which takes about 8 minutes to fill the 

tank. The pump is located inside a 30,000-liter water reservoir. For the measurement of 

flow, leakage rate and water depth an electronic flow meter, ultrasonic sensor and a 

pressure transducer is used [3].  
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Figure 1. Portal evaluation tank. 

 

3.2 Testing in PET 

Hollow core interior wooden door experiment was the first successful full scale 

testing done in PET shown in Figure 2. These doors were subjected to a water rise 

scenarios. For the initial set of experiments, a hollow core wooden door of dimensions 

3-feet wide and 7-feet tall was chosen. The door was hung onto the tank with the help of 

the door frame and wall [3]. 
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Figure 2. Interior hollow core wooden door. 

 

Once the construction of the wall assembly was done, it was then installed in the 

PET. To prevent leakage, silicone and insulating foam were applied. The general 

experimental approach was to fill the PET with water under the door failed at a certain 

height. The aim was to observe door failure modes. 

A set of five full scale door experiments were conducted for a span of two 

months [3]. In all the five experiments the depth in inches, a flow rate in gal/min and 

temperature in Fahrenheit were measured. Summary of the tests is discussed below. 
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The first experiment was conducted on June 27, 2016. Failure occurred at a water depth 

of 21 inches at approximately 11.50 A.M. The door swung open when the wooden section 

of the latch engagement area failed. Here, no damage to the door occurred but damage 

to the wooden piece on the door frame was visible. The results of door test 0 as shown 

in Figure 3. 

 

 

 

 

 

 

 
Figure 3 Results of door test 0. 

 

The second experiment immediately followed the first one. Minor changes were 

done to conduct this experiment. The broken latch section of the wooden door was glued 

back in place and the metal bracket was installed. To prevent the excessive leakage as 

recognized from the first experiment, a plywood strap was attached at the bottom of the 

door and was secured by the studs around the door frame. The pump was turned on at 

12:28 P.M. The observed flow rate was 294 gpm and it filled the tank in 10 mins with no 

leakage. The water level inside the tank reached about 40 inches within 3 minutes. The 

results of door test 1 and 2 are shown in Figure 4 and Figure 5.  
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Figure 4. Plot of time Vs water height.               

 

 

 

 

 

 

 

 

 

 

Figure 5. Plot of time Vs the flow rate.         

  

The following tests involved the inward opening of the doors. Since the water 

inside the tank would help to force the door against its frame, a reduction in the water 

leakage rate was anticipated. The results of the tests are shown below in Figure 6,      

Figure 7 and Figure 8. 
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 Figure 6. Plot of time Vs water height for door Test 3 and 4 

 

 

 

 

 

 

 

 

 

 

 

Figure 7. Door test 3 flow information. 
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Figure 8. Door test 4 flow information. 

 

In the plots featuring the flow rate, it is observed that leakage rate becomes 

negative at the beginning of the test. This is attributed to rapid water level changes in a 

specific area above the instrumentation and the assumptions were made to simply the 

data analysis [3]. 

2.3 Door Test Data 

   For each of the different door tests done on a particular day, data was collected 

for height, flow rate and temperature was collected and condensed in a table as shown 

Table 1. 

The test column indicates the date the door test was performed along with the 

test number. The next column indicates the greatest depth in inches at which the door 

failed. Next is the flow rate in gal/min, this was calculated as the average of flow rate data 

collected for a door test number. Lastly, the temperature in Fahrenheit was also 
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calculated as the average for the specific door test. Failure (1) for a test was decided when 

the damage to the door was permanent.  Success (0) was defined when an equilibrium 

state was reached between leakage and flow rate. The data in the table will be converted 

in eight full sets for modeling. 

Table 1. Door Test Data 

 

 

 

 

 

 

 

4 Fragility Modeling  

Door tests data obtained from the full-scale interior door testing are now fit into 

a mathematical model. There are two factors of concern while approaching this method. 

Firstly, what parameters needs to be considered like water height, flow rate, leakage rate 

etc. Secondly, what kind of probability distribution can be used to model the failure. This 

thesis began with the investigation of various mathematical models to model the 

obtained flooding data from the full-scale door test. The approach to use the obtained 

flooding experiment data is by use of fragility models.  

Test Dates Depth(in) Flow 
Rate(gal/min) 

Temp(F) Failure 

06-24-2016 11.54 NA 65.59 0 

06-24-2016 NA 291 NA 0 

06-24-2016 23.23 291.5 65.98 0 

06-27-2016 20.75 292.5 67.04 0 

06-27-2016 42.3 292.5 66.02 1 

07-20-2016 21.05 297 67.67 0 

07-20-2016 24.22 294.5 66.60 0 

07-20-2016 35.41 292.5 66.87 1 

08-20-2016 40.76 291 68.33 1 

08-20-2016 38.85 294 68.14 1 



11 
 

4.1 Seismic Modeling 

Traditionally, fragility models have been used in the NPP industry by the seismic 

community to determine the failure probability of a component or structure. Fragility is 

the conditional probability of "failure” of a structure or component for a given peak 

ground acceleration. This thesis began with investigating the possibility of adapting 

seismic modeling. Seismic fragility defines the probability of a certain failure mode as: 

 𝑃𝑓(𝐴) = 𝛷(
ln⁡(

𝐴
𝐴𝑚

)

𝛽𝑅
) (1) 

Where A is the peak ground acceleration, Am is the median ground acceleration, 

Φ is the standard Gaussian cumulative distribution function, and βR is the log standard 

deviation of randomness. For a given failure state, a curve can then be generated where 

the probability of failure is a function of the peak ground acceleration.  Seismic fragilities 

are a distribution of the peak ground acceleration at which the component will fail [2].  A 

single variable ground acceleration (g) as a function of earthquake levels is used to 

represent the component or structure failure as a simple monotonically-increasing 

fragility curve. The probability of a component failing (or reaching a specified damage 

state) is described as a random variable governed by an underlying probability 

distribution (Figure 9). 
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Figure 9. Illustration of seismic fragility model for an example component 

 

It was observed that for some flooding types such as submersion or slow-rise 

flooding, a simple 1-Dimenstional fragility model may be sufficient. This was 

demonstrated in Dave Kamerman’s thesis for the small-scale component testing 

experiment conducted by the CFEL research group [2]. However, a thorough 

understanding of the seismic modeling determined the variance of flooding method from 

the seismic fragility evaluation. One of the main reasons was the fact that seismic fragility 

modeling considered a single parameter i.e. the peak ground acceleration to characterize 

the probability of failure of a component. However in reality, other flooding types like 

waves or spray events require more observables to develop a fragility model.  
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4.2 Bayesian Analysis 

Expanding on seismic modeling, it may be observed that for a more detailed and 

better characterization of failure, other parameters such as, X, Y and Z parts of ground 

motion, age of the component, frequency of the wave, anchorages and specifics of the 

component or any of the above combination. Overcoming the limitations of seismic 

modeling requires more observables instead of a single “driven” parameter. So, for 

fragility modeling a more flexible and data informed approach i.e. Bayesian fragility 

modeling through phenomena driven regression modeling is used. 

4.2.1 Bayesian Regression Modeling 

In probability theory Bayes theorem [4] is given by equation 2 

P(H|D) = P(H) 
P(D|H)

P(D)
                                                 (2) 

Where, 

P(H|D) : Posterior distribution, which is conditional upon the data D that is known    

                 related to the hypothesis H 

P(H) : Prior distribution, from knowledge of the hypothesis H that is independent of   

     data D  

 P(D|H) : Likelihood, or aleatory model, representing the process or mechanism that  

                  provides data D 

 P(D):  Marginal distribution, which serves as a normalization constant 
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One of the applications of Bayes theorem is Bayesian inference. In Bayesian 

regression modeling, the aim is to build an aleatory model to obtain association or 

connection between parameters (H) and observables (D) and use them to calculate the 

posterior probability. An aleatory model pertains to stochastic or non-deterministic 

events, the outcome of which is described using probability. 

The Bayesian method has several attributes. It can be applied to any probability 

distribution and calculate the predicted distribution of unobserved data used for model 

checking where non-significant variable can be eliminated. It also allows for the flexibility 

in adjusting the model to better reproduce the observed data and uncertainties in 

observable parameters.  

4.2.2 Software Tools 

The most common software tool used for Bayesian analysis is the Bayesian 

inference using Gibbs sampling, commonly called as the BUGs. BUGs is a software package 

for performing Bayesian inference using Markov Chain Monte Carlo (MCMC) which is 

based on Gibbs sampling. Two popular tools from the BUGS family that use MCMC 

sampling are WinBUGS and OpenBUGS. Both software packages are freely available 

online.  Advantages of OpenBUGS over WinBUGS is, the former is open source, has 

greater flexibility, and extensibility. Also, a user selected node can be updated after every 

compilation. OpenBUGS supports over 20 distributions. Discrete and continuous 

univariate and multivariate are some of the supported distributions. It also offers support 

for some of the most common and frequently used distributions in PRA such as Binomial, 

Poisson, Exponential, Weibull, Gamma, Beta, Lognormal and Uniform [4]. 
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4.2.3 Bayesian Regression Model Example 

 Taken directly from the reference [1], the example given below elucidates the 

Bayesian regression modeling.  This example will be used a reference modeling for the 

flooding data obtained from the door tests. The script used to model the O-ring example 

is modified accordingly for the flooding data. The example data is taken from the NASA 

Space Shuttle program-related to O-ring impacts. Each shuttle had three primary and 

three secondary O-rings [5].  The O-ring was a circular gasket designed to separate the 

sections of the rocket booster between each fuel segment. The location of O-rings is 

shown in Figure 10. Appendix A shows the O-ring location in detail. 

 

 

 

 

 

 

 

 

 

 

 

Figure 10. Solid rocket motor cross section shows positions of tang, clevis and O-rings. 
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Table 2 shows the data related to the O-ring impact. The column labeled “distress” 

represents erosion or blow-by of an O-ring. 

Table 2. O-Ring Thermal Stress Data Prior To Launch of Challenger In January 1986 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 To perform the model analysis, two things are required. First, the need of a model 

that represents the failure of an O-ring during the launch of the spacecraft. Second, the 

key variable associated with binomial modeling is the failure on demand, p. However, it 

Flight Distress Temperature 
(oF.) 

Pressure 
(psig) 

1 0 66 50 

2 1 70 50 

3 0 69 50 

5 0 68 50 

6 0 67 50 

7 0 72 50 

8 0 73 100 

9 0 70 100 

41-B 1 57 200 

41-C 1 63 200 

41-D 1 70 200 

41-G 0 78 200 

51-A 0 67 200 

51-C 2 53 200 

51-D 0 67 200 

51-B 0 75 200 

51-G 0 70 200 

51-F 0 81 200 

51-I 0 76 200 

51-J 0 79 200 

61-A 2 75 200 

61-B 0 76 200 

61-C 1 58 200 
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is necessary to determine what observable or observables determine the failure for 

fragility modeling purposes. So, it may lead to turning the parameter p into its own model. 

A very commonly used failure on demand model is the binomial model. In simple 

words, a change of state in a parameter occurs in response to a demand. The binomial 

model is under a broad class of model referred to as the General Linearized 

Models (GMLs). It is a conventional linear regression model for a continuous response 

variable given continuous and/or categorical predictors [6]. 

There are three components to any GLM: 

1. Random Component – refers to the probability distribution of the response 

variable (Y); e.g. normal distribution for Y in the linear regression, or binomial 

distribution for Y in the binary logistic regression.  Also, called a noise model or 

error model. 

2. Systematic Component - specifies the explanatory variables (X1, X2, ... Xk) in the 

model, more specifically their linear combination in creating the so-called linear 

predictor; e.g., β0 + β1x1 + β2x2. 

3. Link Function, η or g(μ) - specifies the link between random and systematic 

components. It says how the expected value of the response relates to the linear 

predictor of explanatory variables; e.g., η = g(E(Yi)) = E(Yi) for linear regression, 

or  η = logit(π) for logistic regression [6]. 

For Binary Logistic Regression model, the binary response variable Y depends on 

a set of k explanatory variables, X=(X1, X2, ... Xk).   
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logit(π) = ln (
𝜋

1−𝜋
) = β0 + βxi +…+  β0 + βxk’                       (3) 

So for the above example, the primary failure model is binomial with parameters 

p and n equal to 6 as there are six affected-rings in the shuttle. In this model, p is possibly 

a function of both temperature and applied pressure. One complication with the binomial 

model is that the parameter p must be restricted between 0 and 1 since it represents a 

probability (here the value of p was 6 and to use logit function it must be restricted 

between 0 and 1). A common approach to constrain this is to use the logit function for p 

and using equation 3, 

     logit(p) 











p

p

1
ln                       

These possibilities are looked in the fragility modeling of this case: 

1. Both temperature and pressure drives parameter p to failure. 

2. Temperature alone drives parameter p to failure. 

3. Pressure alone drives p to failure. 

The above cases can be modeled as: 

logit(p) = a + bT+ cP     (5) 

logit(p) = a + bT      (6) 

logit(p) = a + cP                  (7) 

 

This example problem is now solved for the equations shown above to obtain the 

value of co-efficients of depth, flow and temperature namely a, b, c using OpenBUGS. The 

(4) 
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script depicting equation (5) including both temperature and pressure is shown in below 

in Table 3. A brief description of the script follows, since the model is binomial, binomial 

distribution is chosen to represent the failure states and next equation (5) is modeled. 

Diffuse priors are used to model the parameters and any additional information about 

these parameters if available, can be included too by modifying equations 5, 6 and 7 

accordingly. A diffuse prior is a predicted or a vague value that is used to obtained new 

formation. Lastly, the data from the Table 2 is written in a list form and the script for 

calculation of p, a, b and c is written inside a for-loop. Other fragility models, equation (6) 

and equation (7) can be solved by modifying the script for logit(p) line. 

Table 3. OpenBUGS Script for Regression Model for the O-ring Fragility Example 

 

model { 

for(i in 1:K) { 

 distress[i] ~ dbin(p[i], 6)                                #binomial distribution 

 logit(p[i]) <- a + b*temp[i] + c*press[i]  #model with temperature and pressure 

 } 

# Prior distributions and the parameters (diffuse priors) 

a ~ dnorm(0, 0.000001)  

b ~ dnorm(0, 0.000001) 

c ~ dnorm(0, 0.000001) 

} 

data 

list( 

   distress=c(0,1,0,0,0,0,0,0,1,1,1,0,0,2,0,0,0,0,0,0,2,0,1), 

   temp=c(66,70,69,68,67,72,73,70,57,63,70,78,67,53,67,75,70,81,76,79,75,76,58), 

press=c(50,50,50,50,50,50,100,100,200,200,200,200,200,200,200,200,200,200,200,200,200,200,200), 

   K=23 

   ) 

 

 

The results of running the script are shown in Table 4. 
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Table 4. Parameter Results (Mean Values) Of the Fragility Regression 
Models for the O-Ring Case 

  In Table 4, mean values are obtained for the applicable parameters in the logistic 

regression fragility models from OpenBUGS. Bayesian P-value is also obtained for each 

model. This P-value metric can be used to determine model validity. Closer the value of P 

to 0.5 higher the predictive capability (Figure 11). So, equation 7 (only a function of 

pressure) is a slightly better model than the other two. However, since there is just a slight 

variation in the P-values for the three model, two conclusions are drawn. One, a simple 

binominal model is adequate. Two, if additional flexibility is afforded in case additional 

data is collected, the model with both pressure and temperature i.e. equation (5) may be 

selected.  

Figure 11. P-value predictability. 

Parameter Equation 5 Equation 6 Equation 7 

a (intercept) 2.1 5.2 -5.0 

b (temperature 
coefficient) 

-0.10 -0.12 n/a 

c (pressure coefficient) 0.012 n/a 0.013 

Bayesian P-value 0.19 0.21 0.26 
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 The parameters from table 2 can then be used with fragility model to calculate the 

failure probability p for an O-ring as a function of pressure and temperature. Using 

equation (5) fragility model, we can determine the p-value and the derivation is shown 

below, 

 logit(p) = ln (
p

1−p
) = a+bT+cP 

 
p

1−p
 = 𝑒𝑎+𝑏𝑇+𝑐𝑃 

 p = (1-p) ( 𝑒𝑎+𝑏𝑇+𝑐𝑃) 

 p = 𝑒𝑎+𝑏𝑇+𝑐𝑃 – p( 𝑒𝑎+𝑏𝑇+𝑐𝑃) 

 grouping p terms together, 

 p (1 +⁡𝑒𝑎+𝑏𝑇+𝑐𝑃) =  𝑒𝑎+𝑏𝑇+𝑐𝑃 

 therefore, 

 p = 
𝑒𝑎+𝑏𝑇+𝑐𝑃

1+⁡𝑒𝑎+𝑏𝑇+𝑐𝑃
 

 multiplying and dividing the above equation by 𝑒𝑎+𝑏𝑇+𝑐𝑃 

 p = 
1

𝑒−(𝑎+𝑏𝑇+𝑐𝑃)+1
            [

1

𝑒
= 𝑒−1] 

Hence, the p value is calculated using the equation 

    p = 
1

𝑒−(𝑎+𝑏𝑇+𝑐𝑃)+1
   

 Plotting the three fragility models provides the results shown in Figure 12. It is a 

plot of the temperature vs the failure probability, p. The fragility model given by     

Equation 7 is invariant to any temperature changes (p stays at 0.024) since the 

temperature parameter is removed from the regression model for that particular case.  

(8) 
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Figure 12. Fragility model curves for the O-ring example. 

4.3 Flooding Bayesian Analysis 

This section talks about how the above example can be used as a reference for the 

flooding data obtained from the door tests. As discussed in section 4.2, one of the 

complications in flooding fragility modeling is the involvement of “many” factors 

contribution to the failure modeling instead of a single factor. Common observables 

include age, inundation level, pressure, mass, temperature, component type (Figure 13). 

Some thinking must be given as to what factors would be most important for regression 

modeling. Nonetheless, an advantage of using Bayesian quantification approach is 

parameters in the regression model that have no significant role are found to be 

negligible. This behavior is outlined in the next section with the available door test data 

conducted in PET. 

 



23 
 

Figure 13. Common influencing factors that affect component flooding fragility. 

5.0 Current Work 

The recent experiment conducted in the PET was the full-scale door tests. The 

instrumentation fitted on PET recorded water depth (D), flow rate (F) and temperature 

(T). The experimentation results available was recorded as in Table 1 and was updated for 

eight completed sets of data as shown in Table 5. 

Table 5. Updated PET Door Test Experimental Data 

 

 

 

 

 

 

 

Depth(in) 
Flow 

Rate(gal/min) Temp(F) Failure 

23.23 291.5 65.98 0 

20.75 292.5 67.04 0 

42.3 292.5 66.02 1 

21.05 297 67.67 0 

24.22 294.5 66.60 0 

35.41 292.5 66.87 1 

40.76 291 68.33 1 

38.85 294 68.14 1 
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Applying a similar analogy of the example problem section, an assumption that 

depth, flow and temperature may be the parameters that affect the flooding fragility 

model in this case. The primary model will be the binomial model with parameters p and 

n=1 (only one door is potentially challenged during testing). In this model, p is a possible 

function of depth, flow and temperature. Following on the lines of the example problem, 

the parameter p is constrained between 0 and 1 and logit relation is used for p                             

(equation 4). 

The fragility model in this case will look at 7 possibilities with each of the 

parameters alone driving the model to failure, combination of two factors and 

combination of all the three. These models are: 

logit(p) = intercept + aD + bF + cT                                   (9) 

logit(p) = intercept + aD                                     (10) 

logit(p) = intercept + bF                         (11) 

logit(p) = intercept + cT                       (12) 

logit(p) = intercept + aD + bF                      (13) 

logit(p) = intercept + aD + cT                                    (14) 

logit(p) = intercept + bF + cT                         (15) 

  

A script similar to Table 3 was written for the above seven equations. Since there 

was no predictive capability on temperature and flow the model had to be reduced to the 

depth variable when logit(p) function was used. This script is shown in Table 6. The 

remaining equations are modelled in the Appendix B. 
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Table 6. OpenBUGS Script for Depth Model 

 

 The results of running the script in Table 6 give the depth coefficient and the 

intercept value shown in Table 7. The Bayesian p-value is not available because the 

number of samples obtained was less and hence the mean p-value was not obtained but 

currently work is being done on this part. 

 

Table 7. Results of the Depth Model 

 

 

 

 

 

#Depth (D) Model 

model { 

for(i in 1:tests) { 

 failure[i] ~ dbin(p[i], num.tested) 

 # Regression model 

 cloglog(p[i]) <- int + a*depth[i]  

        #failure.rep[i] ~ dbin(p[i], num.tested)  # Replicate values for model validation 

    #diff.obs[i] <- pow(failure[i] - num.tested*p[i], 2)/(num.tested*p[i]*(1-p[i])) 

    #diff.rep[i] <- pow(failure.rep[i] - num.tested*p[i], 2)/(num.tested*p[i]*(1-p[i])) 

 } 

 #chisq.obs <- sum(diff.obs[]) 

 #chisq.rep <- sum(diff.rep[]) 

 #p.value <- step(chisq.rep - chisq.obs) 

# Prior distributions 

int ~ dnorm(0, 0.0001)  

a ~ dnorm(0, 0.001)  

} 

data 

list(num.tested=1, tests=8, depth = c(23.23,20.75,42.3,21.05,24.22,35.41,40.76,38.85), failure = 

c(0,0,1,0,0,1,1,1)) 

inits 

list(int=0, a=0) 

 

Parameter Mean Value 

intercept 3.827 

a (depth coefficient) -110.2 

Bayesian p-value _ 
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Since no conclusive results was obtained by using the logit function, the next 

section deals with possible functions that could potentially replace logit. Once the 

necessary coefficient values are established, equation (9) would be re-modelled for this 

case as: 

  p = 
1

𝑒−(𝑖𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡+𝑎𝐷+𝑏𝐹+𝑐𝑇)+1
                                                                (16)                                      

5.1 Other OpenBUGS Link Functions 

The shortcoming with the logit function was recognized and an attempt was made 

to check other available link functions that could provide complete results for equations        

9-15. The available link functions that are supported by OpenBUGS are log, logit, cloglog 

and probit [7]. They are defined as: 

log(p): natural logarithm of p                                                                      (17) 

logit(p) = ln (
p

1−p
)                                                                                       (18) 

cloglog(p): complementary log log of p ln⁡(− ln(1 − p))                      (19) 

probit(p): inverse of standard normal cdf phi(p)                     (20) 

 

Table 8 shows link functions behavior with designed flooding fragility models. 
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Table 8. Models Responses to Link Function 

 

As seen, only the models with   indicate the complete results are available for 

intercept and coefficients. The symbols used in the table represents the errors faced while 

compilation and they are listed below in Table 9. 

Table 9. Errors Observed While Using Different Link Functions 

Symbols Observed Errors 

  Something went wrong in procedure; updater delayed. Sample in 

module updater. 

o  Something went wrong in procedure. Sample in module update 

rejection. 

 

  Something went wrong in procedure node. Value in module graph 

probit. 

 

 variables log logit cloglog probit 

1 flow rate         

2 depth         

3 temperature         

4 flow rate, depth   o      

5 flow rate, 
temperature 

        

6 depth, 
temperature 

  o      

7 flow rate, depth, 
temperature 

  o      
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Link function cloglog was chosen instead of logit, as it works well with the seven 

models. This was mainly done to obtain the value of intercepts and mean values of 

coefficients. These values were then compared with the other seven models to select the 

best fit. The next step was running the scripts again with cloglog function and calculating 

the Deviance Information Criterion (DIC) for the selection of a best fit. This will be 

discussed in the next section. Appendix C has the complete results with mean, standard 

deviation and other important stats for the seven models updated with cloglog function. 

5.2 Model Selection via DIC 

Another way to predict the best model fit when the p-value is unavailable is using 

information criteria. This criteria measure the relative fit. A best model from the relative 

point of view maybe not very good from an absolute point of view. So, for an absolute 

model adequacy assessment, it is necessary to examine Bayesian P-value and replicated 

times [4]. Two commonly discussed information criteria are the Bayesian Information 

Criteria (BIC) and DIC. DIC is a measure of model fit that can be applied to Bayesian models 

and that works when the parameter estimation is done using numerical techniques, such 

as Gibbs samplers.  It is particularly useful in Bayesian model selection problems where 

the posterior distributions of the models have been obtained by  MCMC simulation. DIC 

is a popular Bayesian analog of BIC. DIC has been recommended for selecting among the 

hierarchical models. A hierarchical model also sometimes called multilevel model has 

mutual dependence on the selected parameters that affect the modeling [8]. The door 

test data shows clear interdependence on the factors that have been selected to affect 

regression modeling as seen in the current work section. 

https://en.wikipedia.org/wiki/Bayesian_inference
https://en.wikipedia.org/wiki/Model_selection
https://en.wikipedia.org/wiki/Posterior_distribution
https://en.wikipedia.org/wiki/Statistical_model
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 In OpenBUGS, Dbar is automatically monitored by the node called deviance and it 

requires no additional scripting. But mathematically DIC is calculated as the sum of Dbar 

and pD [9] 

 

 DIC = Dbar + pD                                                                             (21) 

 pD = Dbar – Dhat                                                                           (22) 

 

Where,  

pD is the effective number of parameters 

Dhat  is deviance evaluated at posterior mean of parameter(s) 

 

DIC and even pD can be negative in some cases. DIC is usually negative when the 

density function > 1. However, if pD turns out to be negative, DIC cannot be used. As a 

rule of thumb, the model with the smallest DIC usually indicates the best fitting model. 

For example, consider four models with DICs -11.5, -26, 10, 56. The second model is the 

best fit model because it has the smallest DIC among the others. It must also be noted 

that since DIC is a measure of relative fit, a model with the smallest DIC can still be a poor 

fit [5]. 

5.2.1 Exploring Model Fit Using DIC 

  This section deals with DIC application on the flooding data obtained from door 

test. The scripts are re-written to change the link function from logit to cloglog. First, the 

seven models are run for 100,000 samples. Next, DIC is selected from the inference menu 
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of OpenBUGS. DIC now needs to be set and the models are run for another 100,000 more 

updates.  Now the deviance information is collected. Table 10 shows the results obtained 

from running 100,000 samples and skipping the first 1000 samples. 

Table 10. Information on DIC and Other Parameters of the Seven Models 

 

According to Table 10, best fit model should be the first one (smallest DIC, of 

0.02266) which has all the three parameters namely, depth, flow and temperature driving 

the model to failure. Currently, work is being done on this section to determine the 

Bayesian p-value. 

5.2.2 DIC Model Analysis for NASA Data 

 The example script in Table 3 was run for temperature and pressure DIC values. 

The results of this is shown in Table 11. 

  

Parameter Equ. 9 Equ. 10 Equ. 11 Equ. 12 Equ. 13 Equ. 14 Equ. 15 

Intercept 5.653 -108.0 3.468 -6.659 3.289 -2.621 9.64 

a 
(depth 
coeff) 

42.37 3.72 _ _ 43.14 36.23 _ 

b 
(flow rate 

coeff) 

-7.109 _ -
0.01354 

_ -4.405 _ 0.004231 

c 
(temp 
coeff) 

12.16 _ _ 0.09177 _ -16.06 -0.1703 

DIC 0.02266 0.2804 12.74 12.36 0.02729 0.03374 14.23 
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Table 11. DIC and p-values for the NASA Example Data 

Parameters Equation 5( P and T) Equation 6 (T) Equation 7 (P) 

DIC 36.67 35.41 38.68 

Bayesian p-value 0.19 0.21 0.26 

 

 According to model selection via DIC, among the three models equation 6 

(temperature model) has the smallest DIC. But, as seen in Table 11 there is just a slight 

variation in the p-values for the three model and the p-vales are not far from 0.5, so 

equation 5 (both temperature and pressure model) is selected. Both the variables are 

kept for possible future flexibility. When DIC and p-values are similar, it is recommended 

that the model with the most parameters be selected.  

The next section outlines about second part of this thesis, the design for CFEL 

safety circuit.   
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6.0 CFEL Key Features 

The testing bay will be the heart of CFEL where the flooding experiments will be 

carried out, see Figure 14. During experiments, water will be rapidly introduced into the 

testing bay. Prior executing experiments, researchers will need to enter the testing bay 

to configure various experiments. To avoid personnel injury, it is imperative that the CFEL 

water flow systems are not activated while researchers are present in the testing bay. 

 

 

 

 

 

 

Figure 14. Testing bay. 

 

To address the personnel safety issue, a safety strategy was devised that takes 

advantage of the overall CFEL design. Key features of the CFEL design are depicted in 

Figure 15. For water to flow, the system pump must be activated and the flow control 

valve must be open. Additionally, personnel must be in the testing bay to be subject to 

the hazard. Thus, a safety strategy coupling pump and valve status and personnel access 

was developed. 
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Figure 15. The key features of CFEL. 
 

6.1 Safety Circuit Design 

The CFEL safety circuit ensures no water flow occurs during configuration of the 

experiment within the testing bay. That is, the safety circuit provides personnel 

protection while they are located in the below grade testing bay by preventing water flow. 

The safety circuit was particularly designed to provide the safety requirement in CFEL by 

protecting the person when they are at the testing bay when the experimental set up is 

being done. It ensures that the flow control like the pumps and the vales are not activated 

at that time and only switched on when the experiments begin with no personnel in the 

testing bay. 

Two prototypes of the safety circuit have been designed. One circuit is a 

combination of AND gates and NOT gates. The other way is by the use of a 2:1 MUX 
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(multiplexer) with two data inputs and a select line. Both of them use the Boolean 

expression from the Truth Table (T-T) which is simplified using the Karnaugh map (K-map). 

The safety circuit design begins with construction of a four -Variable T-T.  Inputs 

to the T-T are Experimenter (A), Card (B), Pump (C) and Valve (D) (Figure 15). The reason 

for choosing the above parameters is as follows: - Once the Experimenter has the access 

to the testing bay, he must then configure the required experimental setup. Once he 

leaves the bay, the next step would be the activation of water flow with the help of Pump 

and Valve. So, these four parameters form the premise as the four variable of the T-T 

(Table 12).  

Table 12. Truth Table 

 

 
 

 

 

 

 

 

 

Cell 
No 

Experimenter-
A 

Card-
B 

Pump-
C 

Valve-
D 

Output- 
Y 

0 0 0 0 0 0 

1 0 0 0 1 0 

2 0 0 1 0 0 

3 0 0 1 1 0 

4 0 1 0 0 0 

5 0 1 0 1 0 

6 0 1 1 0 0 

7 0 1 1 1 0 

8 1 0 0 0 0 

9 1 0 0 1 0 

10 1 0 1 0 0 

11 1 0 1 1 0 

12 1 1 0 0 1 

13 1 1 0 1 0 

14 1 1 1 0 0 

15 1 1 1 1 0 
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The T-T is constructed as follows: For an n-Variable T-T, the number of input 

combinations required are 2n, so in this case we have four variables and 24 = 16 input 

combinations. These combinations are then written in BCD (Binary Coded Decimal) or the 

8-4-2-1 format from 0(0000) to 15(1111). For example, Cell No 12 of the T-T (Table 12), 

where Experimenter and the Card is high (1) meaning the former has access to the bay 

and the Pump and the Valve are low (0) i.e. they are closed at the start of the experiments. 

Once the truth table is obtained we need to a boolean expression of the above mentioned 

condition. K-maps are used to facilitate the simplification of Boolean algebra functions. 

The Boolean function described by the following truth table. Since we have four input 

variables, they can be combined in 16 different ways, so the truth table has 16 rows, and 

the Karnaugh map has 16 positions. The Karnaugh map is therefore arranged in a 4 × 4 

grid [10]. 

 The values form the T-T are transferred onto two-dimensional grid with the cells 

arranged in gray code. Gray code is way of encoding numbers such that the adjacent 

numbers just change by one bit. The cell positions are the representation of the input 

combinations and the cell values is its analogous output value from the T-T. Groups of 1's 

and 0's are identified and grouped together as single group or a pair or quadruplets. This 

represents the canonical form of the logic in the original T-T. For example, 1's are in Cell 

No. 12 and hence grouped as a single term. The canonical form for this cell is ABCD. Thus, 

a Boolean expression is obtained for the logic is given in equation (23). The K-map for the 

T-T is shown in Figure 16.  

 

https://en.wikipedia.org/wiki/Boolean_algebra_(logic)
https://en.wikipedia.org/wiki/Truth_table
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Figure 16. K-map. 
 

  

Once the boolean expression is obtained the next step is to construct a logic diagram for 

the expression obtained in equation 22. This is as shown in Figure 17. 

 

 

 

 

 

 

 

 

 
 

 

Figure 17. First safety circuit logic. 

 

 

Y= A   B  C  D 
   

(23) 
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The second safety circuit uses a MUX (Figure 18). The input of the two data lines 

are zero and an AND combination of Experimenter and the Card given by I0. The select 

line is the OR combination of the Pump and the Valve given by S. The output is low (output 

is 0) only if the Experimenter and Card entry is high (if the experimenter has an access) 

and the Pump and Valve entry is low (before the start of the flooding experiments when 

the Pump and the Valve is closed).  

 

 

 

 

 

 

 

 

 

 

Figure 18. Second Safety Circuit using a 2:1 MUX. 

 

Using the information, the equation for 2:1 MUX is shown below in equation (24) and 

the output is shown in equation (25). 

 

Z = Io   S + I1   S 

Where I0 = A   B and I1 = 0 and S = C + D, 

S = C + D = C    D 

 

So, Z = A   B    C   D 

(24) 

(25) 
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6.1.1 Safety Circuit Implementation 

Both safety circuit designs were implemented on a breadboard and verified by 

connecting an LED to the output from each of the safety circuits. The first part in circuit 

implementation is selection of the logic gates from available digital logic families and the 

second part is choosing the company that manufactures the logic family. Some common 

logic families are Resistor-Transistor Logic (RTL), Transistor- Transistor Logic ( TTL), Diode–

Transistor logic (DTL) and Complementary Metal-Oxide-Semiconductor logic (CMOS)  For 

the two safety circuits designed in equations 23 and 25, Low power Schottky (LS) logic is 

selected from TTL . The TTL logic family in general has many advantages when compared 

to the other logic families. High noise immunity, wide operating temperatures, easy 

interface with high-level circuits are among the many and the key features of LS are low 

power consumption and shot propagations delays [10]. 

For the second part, Texas instruments (TI) was chosen as the primary 

manufacturer. There was no specific reason for choosing TI, other than the history 

attributed to the TTL family in TI. The TTL family of integrated circuits was introduced 

about 20 years ago by TI. All the manufacturer of TTL chips use a common naming system 

as “SN74LS01”. The Prefix SN indicates that this chip was manufactured by TI. The other 

company have their prefix codes. The numeric code 74 indicates that the chip complies 

to the requirements of the civilian computer industry, being able to operate over a 

temperature range of 00 to 700 C. The letters LS indicate which subfamily the chip belongs 

https://en.wikipedia.org/wiki/Diode%E2%80%93transistor_logic
https://en.wikipedia.org/wiki/Diode%E2%80%93transistor_logic
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to. Finally, the last two digits indicate the logical function performed by the chip such as 

AND, OR , NOT or inverter logic etc. [11].  

The logic components ordered from the TI were AND gate (SN74LS08), OR 

gate(SN74LS32) NOT gate (SN74LS04) and 2:1 MUX (SN74LS157). The circuit diagram, 

truth table of these gates are in Appendix D. Before the construction of the circuit an 

online simulation, tool was used to verify the logic for both safety circuits. The first safety 

circuit is shown in Figure 19. The inputs to the gates is a digitally simulated voltage either 

0 or 1 and cell no 12 of T-T in table 11 is verified for the first safety circuit. 

 

 

 

  

 

  

 

Figure 19. Online simulation of first safety circuit. 

 The second safety circuit using the MUX is broken down to the internal circuit with 

logic gates for an easier understanding. The dotted lines in Figure 20 shows the MUX’s 
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internal circuits consisting of AND, OR and an inverter. Figure 21 shows the online 

simulation of the second safety circuit. 

 

 

 

 

 

 

 

 

 

Figure 20. Second safety circuit with 2:1 MUX’s internal circuit. 

 

 

 

 

 

 

 

 

 

 

 

Figure 21. Online simulation of second safety circuit. 
 

The online simulation was followed by building both the safety circuits on the bread 

board. Figure 22 shows the first safety circuit on bread board. The circuit is read from 
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right to left as, the first gate is the NOT followed by two AND gates. The output of the last 

AND gate is connected to a 200 ohms (Ω) resister to protect the Light Emitting Diode (LED) 

from trying to draw too much current. The inputs to the gates is 5V from a DC power 

supply and ground (0V) is connected at the required terminals. The combination of cell 

no 12 from the T-T (Table 12) is verified and output for this combination is high (1) and so 

the LED glows. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 22. Implementation of first safety circuit on breadboard. 
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The second safety circuit is implemented in a similar way as shown in Figure 23. The circuit 

is read from left to right with OR gate combinational logic followed by AND gate for the 

select input of the MUX. The output of MUX is connected to a 200 Ω resistor and then to 

a LED. The output is high (1) as the same cell no 12 of T-T is verified. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 23. Implementation of second safety circuit on breadboard.  
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6.2 Reliability of Components 

Any component or system operating changes its state as the time evolves and at 

any given point of time they are either running successfully or have failed. Any working 

component will fail in its period of time. A component is generally classified as repairable 

or non-repairable and is assumed to have two states namely, failed state and working 

state. If a component is repairable and has failed, it will continue to remain in that state 

of time until it is repaired. Once the repair is completed it transcends back to functioning 

state. It is assumed that this component is back to its original state and its “almost in new 

condition” The change from a functioning to a failed state is failure while the change from 

a failure to a functioning state is referred to as repair. This cycle of failure to repair will 

continue for a repairable component. 

The reliability, R(t), of a component or system is defined as the probability that 

the component or system remains operating from time zero to time t1, given that it was 

operating at time zero. Reliability is commonly quantified in terms of one of the category 

of failure rate (λ) known as the Mean Time to failure (MTBF). The aim of this thesis to 

check for the reliability of the two safety circuits given the MTBF. The following sections 

provide more information on MTBF, λ(t) and how they all are related to each other. 

 6.2.1 Reliability Prediction Definitions 

 Failure rate λ(t): Rate at which components fail per unit time. General notation for 

failure rate is ‘X failures per million hours’ but the common unit used in semiconductor 
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industry is FIT (Failures In Time). FIT gives the number of failures in one billion hours of 

operation. Hence, FIT = 109 / MTBF. 

Mean time between failure(MTBF): is a basic measure of reliability for repairable items. It 

is defined as the arithmetic mean value of session time between two failures where the 

system is functional. The following illustration (Figure 24) explains MTBF graphically: 

 
 
 
 

 
 
 
 
 
 
 
 
 

 

Figure 24. Understanding MTBF. 

 

The time when the system is functional is mentioned as “Running time” and denoted as 

“Time 1, Time 2. . . Time N”, while the number of failures is denoted as “1, 2 . . N”. Hence, 

MTBF can be expressed as: 

 MTBF = [Time 1 + Time 2 + . . . Time N] / [N]  

MTBF is usually expressed in terms of hours. MTBF can also calculated as the inverse of 

the failure rate, λ, for constant failure rate. 

                      MTBF = 
1

λ
                                                                                                              (26) 
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The following equation (25) gives the relationship between R(t), MTBF and λ(t) 

 MTBF = 
1

λ
                                                               (27) 

Where, 

R(t): Reliability of the component 

MTBF: Mean Time Between Failure 

t: hours of operations 

λ :  failure rate 

The next section provides an insight about components life span i.e. most components 

lifetimes can be represented using a simple curve called the bathtub curve [12]. 

 6.2.2 Bathtub Curve 

 A bathtub curve as the name suggests has a plot like the shape of a “bathtub” and 

is a graph of time vs failure rates. This curve has been widely accepted by the reliability 

community over the years. The life of a population of units can be divided into three 

distinct periods. Figure 25 shows the general plot of bathtub curve for devices. As seen, 

the first period or initial stages at time zero, is characterized by a high but a decreasing 

failure rate. This occurrence is mainly seen in the populations units that are weaker when 

compared to the others. This region is known as the Early Failure period (also referred to 

as infant mortality period and is expected to last for a few months. The next region on the 

graph is the flat portion where the failure rates are low and constant. This region is 

referred to as the intrinsic failure period (also called the stable failure period or the useful 

period). Most components spend their lifetime in this region of the bathtub curve. The 

last region is the wear-out failure period where the components that survives the two 
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regions now may begin to fail due to aging or degradation. The failure rate is rapidly 

increasing with time [12] & [13]. 

 

 

 

 

 

 

 

 

 

Figure 25. Typical bathtub curve. 

 

The TI website lists the MTBF rates for components chosen for the two safety 

circuits [14]. Appendix E lists the MTBF and the bathtub curve for the components used. 

The last section of safety circuit analysis deals with calculation of R(t) given the value of t 

and fault tree representations. Finally, the more reliable safety circuit between the two 

can be determined. 

6.2.3 R(t) Calculations  

Using the information from the TI website (
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Appendix E) for the components used in building of the two safety circuits and using 

equation (27) for R(t)), we have 

 t= 1000 hours, MTBF = 1.38x109        (28) 

R(t) = e- λt= e-(t/MTBF) 

R(t) = e-(1000/1.38x109)             [ using 28] 

R(t) = 0.9999992754                                                                            (29) 

Since all the logic components have the same MTBF, R(t) also remains the same. 

Next, is the calculation of complete system R(t) i.e. Rsys(t) for safety circuit 1 and safety 

circuit 2. 

Before Rsys(t) is calculated for the two safety circuits, it is necessary to see the 

available methods to compute the system reliability from component reliabilities. the two 

commonly used methods are Reliability Block Diagrams (RBD) and Fault Trees (FT). The 

two will be discussed in detail in the coming sections. 

6.2.4 Reliability Block Diagrams 

 A Reliability Block Diagram(RBD) is a diagrammatic approach that shows individual 

component reliability contributes to the entire system’s reliability (Rsys(t)) in terms of 

success or failure. The RBDs are usually represented as blocks either in series or parallel 

combinations or a combination of both. [15] 

For a series circuit as shown in Figure 26, the reliability is calculated as Rs = RA RB RC  
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Figure 26. Components connected in series. 

     Rs = RA RB RC 

 

For a parallel circuit as shown in Figure 27, the reliability is calculated as                                         

Rs =( 1- RA) (1- RB)( 1- RC) 

 

 

 

 

 

Figure 27. Components connected in parallel. 

      Rs =( 1-RA) (1-RB)( 1-RC) 

With this information, Rsys(t) for the first safety circuit and second safety circuit can be 

be calculated.  

 For the first safety circuit, referring to Figure 17, It is observed that all of gates 

must connected in series for a successful operation, and there are no redundant gates so 

no parallel circuits. Hence, the RBD equivalent circuit is three blocks connected in as 
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shown in Figure 28. Block A is the first component; block B is the second component with 

one inverter gate in series to it. And block C is the third component in the circuit. Each 

block has R(t) approximately equal to 0.99 (from equation 28).  Also, referring to           

Figure 26 for series reliability, R1sys(t). 

 

 

Figure 28. RBD for the first safety circuit. 

Here, 

RA = 0.99 

 RB = 0.99 

RC = 0.99 

Therefore,   

R1sys(t) = 0.99 x 0.99 x 0.99 =0.9703 

So, first safety circuit is reliable about 97%, under given operation conditions. 

 For the second safety circuit the reliability of this circuit is a bit complicated as the 

MUX is made up of internal gates and the individual MTBF of the gates is unknown so, the 

mux was considered as a single entity or a block and the other two gates as two separate 

blocks. First component X was the OR gate for the select line S and component Y was the 

AND gate for input I0 and component Z was considered as the MUX. 

So, the RBD is similar to the first safety circuit and is shown as in Figure 28. 

 

 

A B C 
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Figure 29. Second safety circuit RBD. 

 

Here, 

RX = 0.99 

RY = 0.99 

RZ = 0.99 

Therefore,   

R2sys(t) = 0.99 x 0.99 x 0.99 = 0.9703 

So, second safety circuit is reliable about 97%, under given operation conditions. 

 Even though the second safety circuit has the same Rsys(t) as the first safety 

circuit, the latter is more reliable because of the lesser number of components used and 

all the rates having the same MTBF rates. The MUX was assumed to be a single entity, but 

in comparison it’s made of several internal logic gates that may have different failure rates 

impairing the overall MUX’s operation in the long run. 

6.2.5 Fault Tree Analysis  

Fault Tree analysis (FTA) follows a top down approach for failure modeling. Top 

event is the undesired event and combination of events that lead to it are modelled using 

gates and events connected with lines. An RBD can easily be converted by replacing the 

series and parallel paths by OR and  AND gates respectively. An OR gate is used when the 

output event occurs, if at least one of the input events occurs while an AND gate is used 

X Y Z 
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when the output event occurs, if all input events occur. RBD is the modeling of a success 

event, the Fault Tree (FT) is modeling of a failure event. The two safety circuits are now 

modelled for unreliability using the FT approach [15]. 

 The FT for the first safety circuit is done by considering the basic or the initial 

events affecting the seconding events and then the final events.  The serious blocks of the 

RDBs in Figure 26 is replaced by the OR gate. Safety circuit in Figure 17 is modelled using 

the FT approach shown below in Figure 30.  

 

 

 

 

 

 

 

 

 

 

 

 
Figure 30. FT analysis for the first safety circuit. 
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 The second safety circuit modeling is done similar to the first one, with basic 

events affecting the secondary and eventually the top event. Referring to Figure 18 for 

the second safety circuit, the FT analysis is done as shown in Figure 31. 

 

 

 

 

 

 

 

 

Figure 31. FT analysis for the second safety circuit. 

 

Based on the reliability and FTA the first safety circuit is recommended for safe operations 

at CFEL.  
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7 Conclusion 

 Safety is the utmost priority in any industry and with the NPP industry it is the 

essence of any operational system. This thesis was an attempt to fortify the safety in NPP 

risk analysis concerning the flooding events. Bayesian models were developed to better 

understand the risk associated with NPP flooding conditions, and progress is still being 

made to better quantify the risks. Efforts were also made to develop two safety circuits, 

the first of its kind for safe operations at CFEL and choosing the better one for efficient 

operationality. Reliability and FTA was also done to verify for its correctness.  

8 Future Work 

 The path forward for the Bayesian analysis section would be investigate 

the OpenBUGS link functions in detail and the errors that were found while using certain 

link functions with different models. A further investigation with small parameter 

variation would also be considered. The information from the hollow core door modeling 

would help in future testing of different components and consideration of other variables 

(if any). Another important future work would be to tie the data and models with the 

codes currently used by the LWRS effort to model risk safety margin such as Smoothed 

particle hydrodynamic (SPH). For the safety circuit, it would be to determine if parallel 

circuits are needed. Investigation on the logic gates of the 74LS series of other companies 

for comparison on failure rates would also be conducted. 
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Appendix B 

1. Flow model 

#Flow Rate (F) Model 

model { 

for(i in 1:tests) { 

 failure[i] ~ dbin(p[i], num.tested) 

 # Regression model 

 cloglog(p[i]) <- int + b*flow[i]   

 # failure.rep[i] ~ dbin(p[i], num.tested)  # Replicate values for model validation 

 # diff.obs[i] <- pow(failure[i] - num.tested*p[i], 2)/(num.tested*p[i]*(1-p[i])) 

 # diff.rep[i] <- pow(failure.rep[i] - num.tested*p[i], 2)/(num.tested*p[i]*(1-p[i])) 

 } 

#chisq.obs <- sum(diff.obs[]) 

#chisq.rep <- sum(diff.rep[]) 

#p.value <- step(chisq.rep - chisq.obs) 

# Prior distributions 

int ~ dnorm(0, 0.0001)  

b ~ dnorm(0, 0.001)  

} 

data 

list(num.tested=1, tests=8, flow = c(291.5,292.5,292.5,297,294.5,292.5,291,294), failure = 

c(0,0,1,0,0,1,1,1)) 

inits 

list(int=0, b=0) 

 

2. Temperature model 

#Temperature (T) Model 

model { 

for(i in 1:tests) { 

    failure[i] ~ dbin(p[i], num.tested) 

    # Regression model 

    cloglog(p[i]) <- int + c*temp[i] 

    # failure.rep[i] ~ dbin(p[i], num.tested)  # Replicate values for model validation 

    # diff.obs[i] <- pow(failure[i] - num.tested*p[i], 2)/(num.tested*p[i]*(1-p[i])) 

    # diff.rep[i] <- pow(failure.rep[i] - num.tested*p[i], 2)/(num.tested*p[i]*(1-p[i])) 

} 

#chisq.obs <- sum(diff.obs[]) 

#chisq.rep <- sum(diff.rep[]) 

#p.value <- step(chisq.rep - chisq.obs) 

# Prior distributions 

int ~ dnorm(0, 0.0001) 

c ~ dnorm(0, 0.001) 

} 

data 

list(num.tested=1, tests=8, temp = c(65.98,67.04,66.02,67.67,66.6,66.87,68.33,68.14),  

failure = c(0,0,1,0,0,1,1,1)) 

inits 

list(int=0, c=0) 
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3. Depth and flow model 

#Flow Rate (F) and Depth (D) Model 

model { 

for(i in 1:tests) { 

 failure[i] ~ dbin(p[i], num.tested) 

 # Regression model 

 cloglog(p[i]) <- int +  a*depth[i] + b*flow[i]   

 #failure.rep[i] ~ dbin(p[i], num.tested)  # Replicate values for model validation 

                #diff.obs[i] <- pow(failure[i] - num.tested*p[i], 2)/(num.tested*p[i]*(1-p[i])) 

                #diff.rep[i] <- pow(failure.rep[i] - num.tested*p[i], 2)/(num.tested*p[i]*(1-p[i])) 

 } 

#chisq.obs <- sum(diff.obs[]) 

#chisq.rep <- sum(diff.rep[]) 

#p.value <- step(chisq.rep - chisq.obs) 

# Prior distributions 

int ~ dnorm(0, 0.0001)  

a ~ dnorm(0, 0.001)  

b ~ dnorm(0, 0.001)  

} 

data 

list(num.tested=1, tests=8,  

     depth = c(23.23,20.75,42.3,21.05,24.22,35.41,40.76,38.85),  

     flow = c(291.5,292.5,292.5,297,294.5,292.5,291,294) ,  

     failure = c(0,0,1,0,0,1,1,1)) 

inits 

              list(int=0, a=0,b=0) 

4. Flow and temperature model 

#Flow Rate (F) and Temperature (T) Model 

model { 

for(i in 1:tests) { 

 failure[i] ~ dbin(p[i], num.tested) 

 # Regression model 

 cloglog(p[i]) <- int + b*flow[i] + c*temp[i]   

 # failure.rep[i] ~ dbin(p[i], num.tested)  # Replicate values for model validation 

 # diff.obs[i] <- pow(failure[i] - num.tested*p[i], 2)/(num.tested*p[i]*(1-p[i])) 

 # diff.rep[i] <- pow(failure.rep[i] - num.tested*p[i], 2)/(num.tested*p[i]*(1-p[i])) 

 } 

#chisq.obs <- sum(diff.obs[]) 

#chisq.rep <- sum(diff.rep[]) 

#p.value <- step(chisq.rep - chisq.obs) 

# Prior distributions 

int ~ dnorm(0, 0.0001)  

b ~ dnorm(0, 0.001)  

c ~ dnorm(0, 0.001)  

} 

data 

list(num.tested=1, tests=8, flow = c(291.5,292.5,292.5,297,294.5,292.5,291,294),  

      temp = c(65.98,67.04,66.02,67.67,66.6,66.87,68.33,68.14),  

      failure = c(0,0,1,0,0,1,1,1)) 

inits 

list(int=0, b=0, c=0) 
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5. Depth and temperature model 

#Depth (D) and Temperature (T) Model 

model { 

for(i in 1:tests) { 

 failure[i] ~ dbin(p[i], num.tested) 

 # Regression model 

 cloglog(p[i]) <- int + a*depth[i] + c*temp[i]   

 # failure.rep[i] ~ dbin(p[i], num.tested)  # Replicate values for model validation 

 # diff.obs[i] <- pow(failure[i] - num.tested*p[i], 2)/(num.tested*p[i]*(1-p[i])) 

 # diff.rep[i] <- pow(failure.rep[i] - num.tested*p[i], 2)/(num.tested*p[i]*(1-p[i])) 

 } 

#chisq.obs <- sum(diff.obs[]) 

#chisq.rep <- sum(diff.rep[]) 

#p.value <- step(chisq.rep - chisq.obs) 

# Prior distributions 

int ~ dnorm(0, 0.0001)  

a ~ dnorm(0, 0.001) 

c ~ dnorm(0, 0.001)   

} 

data 

list(num.tested=1, tests=8, depth = c(23.23,20.75,42.3,21.05,24.22,35.41,40.76,38.85),  

temp = c(65.98,67.04,66.02,67.67,66.6,66.87,68.33,68.14),  

failure = c(0,0,1,0,0,1,1,1)) 

inits 

list(int=0, a=0,c=0) 

 

6. Depth, flow and temperature model 
 

#Flow Rate (F), Depth (D), and Temperature (T) Model 

model { 

for(i in 1:tests) { 

 failure[i] ~ dbin(p[i], num.tested) 

 # Regression model 

 logit(p[i]) <- int + a*depth[i] + b*flow[i] + c*temp[i]   

#failure.rep[i] ~ dbin(p[i], num.tested)  # Replicate values for model validation 

 #diff.obs[i] <- pow(failure[i] - num.tested*p[i], 2)/(num.tested*p[i]*(1-p[i])) 

 #diff.rep[i] <- pow(failure.rep[i] - num.tested*p[i], 2)/(num.tested*p[i]*(1-p[i])) 

 } 

 #chisq.obs <- sum(diff.obs[]) 

 #chisq.rep <- sum(diff.rep[]) 

 #p.value <- step(chisq.rep - chisq.obs) 

 # Prior distributions 

int ~ dnorm(0, 0.0001)  

a ~ dnorm(0, 0.001)  

b ~ dnorm(0, 0.001)  

c ~ dnorm(0, 0.001) 

} 

data 

  list(num.tested=1, tests=8, depth = c(23.23,20.75,42.3,21.05,24.22,35.41,40.76,38.85),  

 flow = c(291.5,292.5,292.5,297,294.5,292.5,291,294) ,  

 temp = c(65.98,67.04,66.02,67.67,66.6,66.87,68.33,68.14),  

 failure = c(0,0,1,0,0,1,1,1)) 

 inits 

               list(int=0, a=0, b=0, c=0 
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Appendix C 

 

1. Depth Model 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2. Flow Model 
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3. Temperature Model 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4. Depth and Flow Model 
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5. Flow and Temperature Model 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

6. Depth and Temperature model 
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7. Depth, Flow and Temperature Model 
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Appendix D 

 

1. AND Gate (SN74LS08) 
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2. OR Gate (SN74LS32) 
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3. NOT Gate (SN74LS04) 
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4. 2:1 MUX (SN74LS157) 
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Appendix E 

MTBF and Bathtub Curve 

Note: The Bathtub curves for the logic components used are the same.  

Refer:  http://www.ti.com/quality/docs/estimator.tsp  

1. AND Gate 
 

 

 

  

 

 

 

  

http://www.ti.com/quality/docs/estimator.tsp
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2. OR Gate 
 

 

 

 

 

 

 

 

 

3. NOT Gate 

 

 

 

 

 

 

 

4. 2:1 MUX 

 




