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AN ABSTRACT OF A THESIS

PICARD AND TAYLOR KERNELS FOR SELF-ADJOINT
SECOND ORDER DIFFERENTIAL EQUATIONS

Caitlin M. Klimas

Doctor of Arts in Mathematics

This thesis examines Gronwall’s inequality, its generalizations, and its ap-
plications. The research aims to expand on the ideas of Gronwall’s inequality and
reveal further generalizations. The previous research on Picard kernels provides
inspiration for the development of Taylor kernels, which are extensively explored
in terms of integral equations. The integral equation findings are then completely
translated to the differential equation setting. The main results are used to give a
new proof as well as an integral version of Sturm’s Comparison Theorem. The final
result concerns the oscillation of solutions to a second-order differential equation.
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CHAPTER 1

INTRODUCTION

Differential and integral inequalities have long been used as tools for study-

ing differential and integral equations. Much research has been dedicated to such

inequalities because of the vast number of applications to dynamical systems in the

natural and technological world, and many of these dynamical problems give rise

to models which involve differential or integral equations, few of which have acces-

sible solutions. Inequalities that give definite bounds on these solutions provide

a useful tool in determining properties of solutions to these dynamical systems.

Perhaps one of the most used inequalities for this purpose is Gronwall’s inequality.

Gronwall’s inequality provides us with a way to bound functions which sat-

isfy a simple integral equation. In application, this produces many useful estimates

when considering first-order differential equations. This thesis aims to generalize

this basic idea to higher-order ordinary differential equations and apply these re-

sults to explore when a Picard-like iteration technique can be effectively applied

in order to produce estimates for solutions. In this section, we will look at the

classical version of Gronwall’s inequality, provide a slightly different formulation

of it which will be useful for the results in the following chapters, provide a survey

of generalizations and results that follow directly from Gronwall’s inequality, and

discuss some applications.

1.1 Gronwall’s Inequality

In 1919, Thomas Hakon Gronwall proved a version of the following theorem

in which B and K were constant terms [1]. In 1943, Richard Bellman proved the

1
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generalized result, still referred to as Gronwall’s inequality, as it is stated below

[2].

For this reason, Theorem 1.1.1 is often referred to as the Bellman-Gronwall

Inequality.

Theorem 1.1.1 (Gronwall’s inequality). Let B,K ∈ C[a, b] with K ≥ 0. If

u ∈ C[a, b] satisfies

u(t) ≤ B(t) +

∫ t

a

K(s)u(s)ds, t ∈ [a, b],

then

u(t) ≤ B(t) +

∫ t

a

K(s)B(s) exp

[∫ t

s

K(u) du

]
ds

in [a, b].

Proof. Define

y :=

∫ t

a

K(v)u(v)dv, t ∈ [a, b].

Then y(a) = 0 and, by the Fundamental Theorem of Calculus,

y′(t) = K(t)u(t) ≤ K(t)B(t) +K(t)

∫ t

a

K(s)u(s)ds = K(t)B(t) +K(t)y(t),
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t ∈ (a, b). Multiply y by F (t) = exp

[
−
∫ t
a
K(s) ds

]
. Then

(y(t)F (t))′ = y′(t)F (t) + y(t)F ′(t)

≤ (K(t)B(t) +K(t)y(t))F (t) − y(t)F (t)K(t)

= K(t)B(t)F (t) .

Integrate:

∫ t

a

d

du
(y(u)F (u)) du = y(t)F (t)

so that

y(t)F (t) ≤
∫ t

a

K(u)B(u)F (u) du.

Multiply the inequality by 1/F (t) > 0:

y(t) ≤ 1

F (t)

∫ t

a

K(u)B(u)F (u) du

=

∫ t

a

K(u)B(u) exp

[ ∫ t

u

K(s) ds

]
du .

By hypothesis, u(t) ≤ B(t) + y(t). Therefore

u(t) ≤ B(t) +

∫ t

a

K(s)B(s) exp

[∫ t

s

K(u) du

]
ds.

�
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For the purposes of this thesis it is useful to present a slightly reformulated

version of Gronwall’s inequality, which will provide the general setting for many

of the results. We restrict the interval to [0, b] for ease of argument, but note that

all results in this thesis are valid for the more general interval [a, b].

Theorem 1.1.2. Let B,K ∈ C[0, b] with K ≥ 0. If u ∈ C[0, b] satisfies

u(t) ≤ B(t) +

∫ t

0

K(s)u(s)ds, t ∈ [0, b],

and φ ∈ C[0, b] is the solution of

φ(t) = B(t) +

∫ t

0

K(s)φ(s)ds, t ∈ [0, b],

then u ≤ φ on [0, b].

1.2 Survey of Results and Generalizations

Gronwall’s theorem is considered so remarkable and useful that many

mathematicians have (and continue to) set out to generalize it and maximize

its usefulness. The following results are just a few of these, presented for the

purpose of giving the reader a taste of the many generalizations that have been

proven. This theorem, proven by Silvestru Dragomir, is a direct result of Gron-

wall’s inequality [4].

Theorem 1.2.1. Let B,K ∈ C[a, b] with K ≥ 0 and B differentiable on [a, b]. If

u ∈ C[a, b] satisfies

u(t) ≤ B(t) +

∫ t

a

K(s)u(s)ds, t ∈ [a, b],
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then

u(t) ≤ B(t)

[∫ t

a

K(v)dv

]
+

∫ t

a

exp

[∫ t

s

K(v)dv

]
B′(s)ds

in [a, b].

H.E. Gollwitzer gave the following two generalizations [5]. In the first the-

orem, Gollwitzer shows that you can multipy the integral in Gronwall’s inequality

by a nonnegative, continuous function g(t). Gronwall’s inequality is a special case

of this situation with g(t) = 1.

Theorem 1.2.2. Let u, B, g, and K be nonnegative, continuous functions defined

on J = [a, b], and let u satisfy

u(t) ≤ B(t) + g(t)

∫ t

a

K(s)u(s) ds, t ∈ J.

Then on the interval J

u(t) ≤ B(t) + g(t)

∫ t

a

K(s)B(s) exp

[∫ t

s

K(v)g(v) dv

]
ds.

Theorem 1.2.3. Let u, v, K, and g be nonnegative, continuous functions defined

on J = [a, b] and

u(t) ≥ v(t)− g(t)

∫ t

x

K(s)v(s) ds, a ≤ x ≤ t ≤ b.

Then

u(t) ≥ v(x) exp

[
−g(t)

∫ t

x

K(s) ds

]
, a ≤ x ≤ t ≤ b.
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The following two generalizations were given by Deepak B. Pachpatte [3].

Theorem 1.2.4. Let u, g, and k be nonnegative, continuous functions defined on

J = [a, b], B(t) be a continuous, positive, and nondecreasing function defined on

J , and let u satisfy

u(t) ≤ B(t) + g(t)

∫ t

a

k(s)u(s) ds, t ∈ J.

Then on the interval J

u(t) ≤ B(t)

[
1 + g(t)

∫ t

a

k(s) exp

[∫ t

s

k(v)g(v) dv

]
ds

]
.

Theorem 1.2.5. Let u, B, g, K, and q be nonnegative, continuous functions

defined on J = [a, b] and

u(t) ≤ B(t) + g(t)

∫ t

a

[K(s)u(s) + q(s)] ds, t ∈ J.

Then on the interval J

u(t) ≤ B(t) + g(t)

∫ t

a

[K(s)B(s) + q(s)] exp

[∫ t

s

K(v)q(v) dv

]
ds.

In Chapter 2, we will discuss generalizations of Gronwall’s inequality which

extend to Volterra-type inequalities. First we consider some examples of the

applications of Gronwall’s inequality to differential equations.
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1.3 Applications of Gronwall’s Inequality

Gronwall’s inequality is particularly useful when looking at the following

first-order differential equation in Rn: y′ = f(t, y) with f continuous and satisfying

the Lipschitz condition

‖f(t, y)− f(t, z)‖ ≤ K‖y − z‖

for some K ≥ 0. Gronwall’s inequality gives the following error bound for approx-

imate solutions of the initial-value problem [11]: If z′ = f(t, z), ‖y′ − f(t, y)‖ ≤ ε,

and ‖y(0)− z(0)‖ ≤ δ, then

‖y(t)− z(t)‖ ≤ δeKt + ε · e
Kt − 1

K
, t ≥ 0,

where ‖ ‖ is the norm on Rn. This inequality is essential for observing that

solutions depend continuously on the initial conditions, a key result in the theory

of ordinary differential equations.

Another useful application is the following lemma. Rather than integral

equations, it involves differential equations, but it has the same spirit as Gronwall’s

inequality. It will be used later in this thesis, so the proof is provided.

Lemma 1.3.1. Let y : [0, b] → R be a solution to y′ = f(t, y), where f is con-

tinuous and locally Lipschitz with respect to its second variable. Suppose that

w : [0, b]→ R satisfies w′ ≤ f(t, w) in [0, b].

(i) If w(0) ≤ y(0), then w ≤ y throughout [0, b].

(ii) If w(t) = y(t) for some t ∈ (0, b], then w = y throughout [0, t].
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Proof. (i) If we integrate y′(t) = f(t, y), we have

y(t)− y(0) =

∫ t

0

f(s, y)ds,

or

y(t) = y(0) +

∫ t

0

f(s, y)ds.

Similarly, we have

w(t) ≤ w(0) +

∫ t

0

f(s, w)ds.

Since w(0) ≤ y(0), the hypotheses of Theorem 1.1.2 are met, and we have w(t) ≤

y(t), t ∈ [0, b].

(ii) Suppose w(t1) = y(t1) for some t1 ∈ (0, b]. Then

y′(t1) = f(t1, y(t1))

= f(t1, w(t1))

≤ w′(t1) .

Integrating over [0, t1], y(t) ≤ w(t) for some t ∈ (0, t1) (by the monotonicity of

the Riemann integral). By (i), we have y(t) ≥ w(t) for t < t1, which implies that

y(t) = w(t) for t ∈ [0, t1]. �

We note that Lemma 1.3.1 holds if ≤ is replaced with ≥.

The following chapters will lead to the following result about second-order

differential equations:
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Theorem 6.1.1 Let

β(p) = p
−p

2p−1 (p− 1)
−p+1
2p−1 (2p− 1)B

(
3p−1

2p
, 1

2

) 2p
2p−1

,

where

B(x, y) =

∫ 1

0

tx−1(1− t)y−1 dt,

the beta function. Let uq be the solution to the initial value problem

u′′ + qu = 0 , (u, u′)(0) = (0, 1) (1.1)

where q ∈ C[0, b] such that the Lp-norm ‖q‖p ≤ 1. Then

(a) β(p) = inf{z ∈ (0, b] : uq(z) = 0 for some q}

(b) Given p > 1 and b ≥ β(p), there is a unique function q ∈ C[0, b] such that the

solution uq to (1.1) vanishes at β(p). Moreover, q > 0 on (0, β(p)) and q = 0

almost everywhere on the complement [0, b] \ (0, β(p)).

The following corollary gives a bound on the number of zeros to (1.1).

Corollary: On [0, b], suppose we have the equation

u′′ + qu = 0, (u, u′)(0) = (0, 1),

with q ∈ C[0, b], q ≥ 0, and ||q||p = m. Then the number of zeroes n of a solution

in [0, b] is bounded:

n ≤
(

b

β(p)

) 2p−1
2p

m1/2.
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The usefulness of Gronwall’s inequality is widely recognized, and many

mathematicians have set out to generalize it. The next chapter of this thesis will

survey a few basic properties of integral operators as well as some Gronwall-type

integral inequalities, and present a result of Stowe that is the inspiration for this

thesis. The ultimate objective of this thesis is to present two new generalizations

of Gronwall’s inequality and exhibit their applications to differential inequalities

and second-order differential operators.



CHAPTER 2

BASIC PROPERTIES OF INTEGRAL OPERATORS AND

STOWE’S THEOREM

2.1 Basic Properties of Integral Operators

The following are some basic results about integral operators that will be

assumed throughout this thesis.

Fix b > 0. Define Φ
K

: C[0, b] −→ C[0, b] by

(Φ
K
u)(t) =

∫ b

0

K(t, s)u(s) ds,

where K : [0, b] × [0, b] → R is a function that agrees with continuous functions

on each of the sets

∆ = {(t, s) : s ≤ t} , ∆′ = {(t, s) : s ≥ t} ,

except, perhaps, along the diagonal s = t. The function s 7→ K(t, s)u(s) is then

Riemann integrable whenever t ∈ [0, b] and u ∈ C[0, b]. Let us allow K to be

undefined on the diagonal and consider two such kernels J and K equal if they

agree off the diagonal. Equivalently, we consider certain continuous functions on

{(t, s) ∈ [0, b]× [0, b] : s 6= t} .

The following facts are straightforward to establish and thus presented

without proof. The proofs can be found in Basic Operator Theory [9].

11
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Theorem 2.1.1. The function ΦKu : [0, b]→ R is continuous when u ∈ C[0, b].

Theorem 2.1.2. The operator ΦK is a bounded linear operator on C[0, b] with

respect to the norm ‖u‖∞ = max |u|, and its operator norm satisfies ‖ΦK‖ ≤

b‖K‖∞, where ‖K‖∞ = ess sup |K|.

Theorem 2.1.3. The operator ΦK is a positive operator if and only if I + ΦK is

a positive operator if and only if K ≥ 0.

Theorem 2.1.4. If Φ is any bounded linear operator on C[0, b] and

∞∑
n=1

‖Φn‖ <∞,

then I − Φ is invertible. The sum converges if and only if ‖Φn‖ < 1 for some n.

Theorem 2.1.5. The mapping K 7→ ΦK is linear and injective.

Theorem 2.1.6. The adjoint of ΦK with respect to the inner product

〈u, v〉 =

∫ b

0

uv

on C[0, b] is ΦK∗ ,whereK∗(t, s) = K(s, t).

Theorem 2.1.7. If J and K are kernels [of the kind that we are considering],

then

(J ∗K)(t, s) =

∫ b

0

J(t, r)K(r, s) dr, (t, s) ∈ [0, b]× [0, b],

is also a kernel [of the kind that we are considering], and ΦJ∗K = ΦJΦK. Fur-

thermore, the product ∗ is associative but not commutative.

Theorem 2.1.8. If J and K vanish throughout ∆′, then J ∗ K also vanishes

throughout ∆′.
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Theorem 2.1.9. If K vanishes throughout ∆′, then the n-fold product K ∗ · · · ∗K

satisfies

|(K ∗ · · · ∗K)(t, s)| ≤ ‖K‖n∞ ·
(t− s)n−1

(n− 1)!
, (t, s) ∈ ∆, n ≥ 0,

and I − ΦK is invertible.

2.2 Motivation

It is natural to think about extending Gronwall’s inequality to the setting of

integral operators. In fact, this setting has been explored by many mathematicians

because of the many applications to differential and integral equations. Below, are

just a couple of examples of results containing inequalities that echo Gronwall’s.

For instance, H. Movljankulov and A. Filatov proved the following Gronwall-type

inequality in this setting [4].

Theorem 2.2.1. Let u(t) be real, continuous, and nonnegative in [0, b]. Let

u(t) ≤ a(t) + b(t)

∫ t

0

k(t, s)u(s) ds,

where a(t) ≥ 0, b(t) ≥ 0, and k(t, s) ≥ 0, are continuous functions for 0 ≤ s ≤

t ≤ b. Then

u(t) ≤ A(t)

[
expB(t)

∫ t

0

K(t, s)

]
ds,
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where

A(t) = sup
0≤s≤t

a(s),

B(t) = sup
0≤s≤t

b(s),

and

K(t, s) = sup
s≤σ≤t

k(σ, s).

Chu and Metcalf [7] proved the following generalization of Gronwall’s in-

equality in this setting.

Theorem 2.2.2. Let the functions u and f be continuous on the interval [0, b] and

let the function K be continuous and nonnegative on the triangle 0 ≤ s ≤ t ≤ b.

If

u(t) ≤ f(t) +

∫ t

0

K(t, s)u(s) ds,

then

u(t) ≤ f(t) +

∫ t

0

H(t, s)f(s) ds,

where H(t, s) =
∑∞

i=1 Ki(t, s), 0 ≤ s ≤ t ≤ b, is the resolvent kernel, and the Ki

(i = 1, 2, . . .) are the iterated kernels of K.

These are just two examples of the type of results this thesis aims to achieve.
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2.3 Overall Idea

The following discussion will present the overall idea for this thesis and

give some results of Stowe [11].

Gronwall’s inequality suggests the general question: For which K ∈ C(∆)

and which B ∈ C[0, b] is the following implication valid?

∀u, φ ∈ C[0, b],
u ≤ B + ΦK(u)

φ = B + ΦK(φ)

⇒ u ≤ φ.

With v = u− φ, the implication becomes

∀w ∈ C[0, b], (I − ΦK) (w) ≥ 0⇒ w ≥ 0. (∗)

Theorem 2.3.1. If K ∈ C(∆), then (I − ΦK)−1 = I+ΦR for a unique R ∈ C(∆).

The implication (∗) holds if and only if R ≥ 0, and that occurs when K ≥ 0.

Furthermore, R = K + (K ∗K) + (K ∗K ∗K) + · · · .

Proof. If J,K ∈ C(∆), then ΦJΦK = ΦJ∗K , where

(J ∗K) (t, s) =

∫ t

s

J(t, r)K(r, s) dr, (t, s) ∈ ∆.

The n-fold product satisfies

|(K ∗ · · · ∗K) (t, s)| ≤ ‖K‖n∞(t− s)n−1/(n− 1)!.
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If J ∈ C(∆) and u ∈ C[0, b], then

‖ΦJ(u)‖∞ ≤ b‖J‖∞‖u‖∞.

From these, one concludes that the series

R = K + (K ∗K) + (K ∗K ∗K) + · · ·

converges uniformly in ∆ and that I + ΦR is a two-sided inverse of I − ΦK .

Uniqueness follows from the fact that the mapping J 7→ ΦJ is injective.

It is clear that R ≥ 0 when K ≥ 0 and that I + ΦR is a positive operator

when R ≥ 0. Finally, suppose that R < 0 at some point (t, s). By continuity, one

can choose that point to be in the interior of ∆ and choose δ > 0 such that

(s− δ, s+ δ) ⊆ [0, t] and R(t, r) < 0 for all r ∈ (s− δ, s+ δ).

If v ∈ C[0, b] is positive in the interval (s− δ, s+ δ) and zero outside it, then the

function w = (I + ΦR) (v) satisfies (I − ΦK) (w) = v ≥ 0, but

w(t) = 0 +

∫ t

0

R(t, r)v(r) dr < 0.

�

For the rest of this thesis, R(K) := K + (K ∗ K) + (K ∗ K ∗ K) + · · · .

There is a slightly weaker requirement for R ≥ 0 than K ≥ 0. In the following

proof I will use the notation Kn = K ∗K ∗ · · · ∗K︸ ︷︷ ︸
n times

.
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Lemma 2.3.1. If K ∗K and K + K ∗K are positive operators, then R(K) is a

positive operator.

Proof. The proof is a straightforward algebraic manipulation of R(K):

R(K) = lim
n→∞

n∑
k=1

Kk

=
∞∑
k=1

K2k−1 +K2k

=
∞∑
k=1

K2k−2 ∗ (K +K2).

Therefore if K2 and K + K2 are positive operators, R(K) is a positive operator.

�

Suppose u ∈ Cn[0, b] satisfies

L(u) = g(t), E0(u) = (α0, . . . , αn−1), (2.1)

where g is continuous,

L(u) = u(n) +
n−1∑
k=0

pk(t)u
(k),

with pk of class Ck, and

E0(u) =
(
u, u′, . . . , u(n−1)

)
(0) ∈ Rn.
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Using Taylor’s formula and integrating by parts, one finds that the solution of

(2.1) satisfies the integral equation

u = B + ΦK(u), (ΦKu) (t) =

∫ t

0

K(t, s)u(s) ds, (2.2)

where

K(t, s) = KL(t, s) =
n−1∑
k=0

(−1)k+1 ∂
k

∂sk

(
(t− s)n−1

(n− 1)!
pk(s)

)
,

B(t) = BL,g,α(t) =

∫ t

0

(t− s)n−1

(n− 1)!
g(s) ds+

n−1∑
k=0

αk
k!
tk

+
n−1∑
k=1

k−1∑
j=0

(−1)jαk−1−j ·
∂j

∂sj

(
(t− s)n−1

(n− 1)!
pk(s)

)∣∣∣∣∣
s=0

.

Since (2.2) has just one solution, it is equivalent to the initial-value problem. We

can say more about KL and BL,g,α:

Theorem 2.3.2 (Stowe’s Theorem). If

L(u) = u(n) +
n−1∑
k=0

pk(t)u
(k),

with pk of class Ck, then the function K = KL is of the form

K(t, s) =
n−1∑
k=0

(t− s)k

k!
qk(s),

qk of class Cn−1−k, and when g is continuous and α ∈ Rn, the function B = BL,g,α

is of class Cn. These properties imply that the solution of u = B + ΦKv solves

w(n) +
n−1∑
k=0

pk(t)v
(k) = g,
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with E0(w) = α.

We callKL the Picard kernel associated with L, since defining an iterative

sequence by starting with a Cn-function u0 satisfying E0(u0) = α, inductively

defining um+1 as

um+1 = B + Φkum,

and letting u = limum, will converge to a solution.

In this setting, the operator L and initial conditions E0 are associated

with a unique Green’s function, G(t, s) ∈ C(∆). For such a G(t, s), ΦG(g) solves

L(u) = g and E0(u) = 0 for g ∈ C[0, b]. Recall (2.2), which says a solution u

satisfies

u = B + ΦK(u),

and thus

u− ΦK = B,

or

(I − ΦK)(u) = B.
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If we apply I+ΦR(K) to both sides of this equation the result is u =
(
I + ΦR(K)

)
B.

Thus,

u(t) =

∫ t

0

[
(t− s)n−1

(n− 1)!
+

∫ t

s

(t− s)n−1

(n− 1)!
[R(K)](t, r) dr

]
g(s) ds. (2.3)

Since Green’s functions are unique, the kernel in (2.3) must be the Green’s function

associated with the initial value problem, and we have the following theorem by

Stowe [11].

Theorem 2.3.3. The Green’s function associated with the initial value problem

L(u) = g(t), E0(u) = (α0, . . . , αn−1),

where g is continuous,

L(u) = u(n) +
n−1∑
k=0

pk(t)u
(k),

with pk of class Ck, and

E0(u) = (u, u′, . . . , u(n−1))(0) ∈ Rn

is given by

G(t, s) =
(t− s)n−1

(n− 1)!
+

∫ t

0

R(k)

(
(t− s)n−1

(n− 1)!

)
ds.

In the next chapter, we will generalize the Gronwall’s inequality strictly in

terms of integral operators, and in Chapter 4 the focus will shift to applications
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to differential equations in which we will define the Taylor kernel, which is very

similar to Stowe’s Picard kernel, and discuss how the two are related.



CHAPTER 3

MAIN RESULTS

3.1 General Integral Theorem

To set up the general theorem, consider the following situation: Suppose

that a continuous function φ on [0, b] satisfies an equation

φ(t) = C(t) +

∫ t

0

M(t, s)φ(s) ds, t ∈ [0, b],

where C ∈ C[0, b] and M is a continuous function on the set

∆ = {(t, s) ∈ [0, b]× [0, b] : s ≤ t}.

In this thesis, the shorthand notation φ = C + ΦM(φ) will be used frequently. If

u ∈ C[0, b] satisfies a similar inequality u ≥ B + ΦK(u), in certain situations one

can deduce a relation of the form

(aI + ΦH)(u) ≥ D + (aI + ΦH)(φ)

for certain functions H ∈ C(∆), D ∈ C[0, b] and scalar a. That is,

au(t) +

∫ t

0

H(t, s)u(s) ds ≥ D(t) + aφ(t) +

∫ t

0

H(t, s)φ(s) ds, t ∈ [0, b].

In this chapter, we discuss conditions that are necessary and sufficient for such an

implication to be valid.

22
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In many applications, some or all of a, B, C, D, and H are zero. We

include them in the main theorems in the interest of full generality. Notice that

“≥” has been used in both of the above inequalities, but the conditions also apply

to implications involving “≤” in both places since, for u, w, φ, ψ ∈ C[0, b], the

implications

φ = C + ΦM(φ), u ≥ B + ΦK(u) ⇒ (aI + ΦH)(u) ≥ D + (aI + φH)(φ)

ψ = −C + ΦM(ψ), w ≤ −B + ΦK(w) ⇒ (aI + ΦH)(w) ≤ −D + (aI + ψH)(ψ)

are either both valid or both invalid. Again, the implication of interest is:

u ≥ B + ΦK(u)⇒ (aI + ΦH)(u) ≥ D + (aI + ΦH)(φ). (3.1)

It is beneficial to manipulate this into an equivalent implication to provide a

more straightforward proof for the first main theorem. The antecedent of (3.1)

is equivalent to (I − ΦK)(u) ≥ B. Adding −(I − ΦK)(φ) to both sides of the

inequality gives

(I − ΦK)(u− φ) ≥ B + (ΦK − I)(φ). (3.2)

The consequent of (3.1) is equivalent to

(aI + ΦH)(u− φ) ≥ D.

Recall that

{
(
I + ΦR(K)

)
(I − ΦK) = I,
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so we can write the consequent as

(aI + ΦH)
(
I + ΦR(K)

)
(I − ΦK)(u− φ) ≥ D. (3.3)

Let w = (I − ΦK)(u− φ). Substitute w into (3.2) and (3.3) to get

w ≥ B + (ΦK − I)(φ)

and

(aI + ΦH)
(
I + ΦR(K)

)
(w) ≥ D,

respectively. Thus, the main question is equivalent to: What conditions on a, φ,

K, M , H, B, C, and D are necessary and sufficient for the implication

w ∈ C[0, b] and w ≥ B + (ΦK − I)(φ)⇒ (aI + ΦH)
(
I + ΦR(K)

)
(w) ≥ D

(3.4)

to hold? This preliminary result will be used in the proof of the following theorem,

which provides necessary and sufficient conditions on a, φ, K, M , H, B, C, and

D for (3.4) to hold.

Theorem 3.1.1. Let a be a real number and let functions B, C, D, φ ∈ C[0, b].

Let H, M , and K ∈ C[∆]. Suppose φ = C + ΦM(φ). The implication

u ∈ C[0, b] and u ≥ B + ΦK(u)⇒ (aI + ΦH)(u) ≥ D + (aI + ΦH)(φ) (3.5)

holds if and only if the following hold:

(i) (aI + ΦH) [
(
I + ΦR(K)

)
(B − C + ΦK−M(φ))] ≥ D, and
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(ii) (aI + ΦH)
(
I + ΦR(K)

)
is a positive operator.

Proof. Suppose conditions (i) and (ii) hold. Let u ∈ C[0, b] with u ≥ B + ΦK(u).

As in the discussion above, let w = (I − ΦK)(u− φ), and consider the equivalent

implication (3.4). Then w ≥ B + (ΦK − I)(φ) and

(aI + ΦH)
(
I + ΦR(K)

)
(w) ≥ (aI + ΦH)

(
I + ΦR(K)

)
[B + (ΦK − I)(φ)]

= (aI + ΦH)
(
I + ΦR(K)

)
[B − C + ΦK−M(φ)]

≥ D.

Now suppose condition (i) fails. Then (aI + ΦH)
(
I + ΦR(K)

)
[(B − C + ΦK−M(φ)](t) < D(t)

for some t ∈ [0, b].

Let w = B + (ΦK − I)φ. Then the hypotheses of the theorem are met and

(aI + ΦH)
(
I + ΦR(K)

)
(w)(t) ≤ (aI + ΦH)

(
I + ΦR(K)

)
[B + (ΦK − I)φ](t)

= (aI + ΦH)
(
I + ΦR(K)

)
[(B − C + ΦK−M(φ)](t)

< D(t).

Suppose (ii) fails. Then there exists v ∈ C[0, b] such that v ≥ 0 and

(aI + ΦH)
(
I + ΦR(K)

)
(v)(t) < 0

for some t ∈ [0, b]. Let

w = B + (ΦK − I)φ+ kv,
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where k is sufficiently large to insure that

(aI + ΦK)
(
I + ΦR(K)

)
(w)(t) + (aI + ΦH)

(
I + ΦR(K)

)
(kv)(t) < D(t).

Then the hypotheses of the theorem are met and

(aI + ΦH)
(
I + ΦR(K)

)
(w)(t) = (aI + ΦH)

(
I + ΦR(K)

)
[B + (ΦK − I)φ+ kv](t)

= (aI + ΦK)
(
I + ΦR(K)

)
[B − C + ΦK−M(φ) + kv](t)

< D(t),

which implies that (3.4) is false. �

Remark 3.1.1. Note that Stowe’s Theorem is a special case of Theorem 3.1.1

with B = C, M = K, H = 0, and a = 1.

3.2 General Integral Comparison Theorem

Theorem 3.1.1 gives us necessary and sufficient conditions for (3.5) to hold.

While this is useful, it is not always practical to apply. The following theorem

supplies sufficient conditions for (3.5), which leads to many useful results.

Theorem 3.2.1. Let functions B, C, D, u, φ ∈ C[0, b]. Let a be a real number,

and let H, M , K ∈ C(∆). Suppose

φ(t) = C(t) + ΦM(φ)(t) and u(t) ≥ B(t) + ΦK(u)(t).
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Define

Φ := (aI = ΦH) ◦
(
I + ΦR(M)

)
.

Suppose

Φ ◦ Φ[K−M ] = ΦΘ ◦ (aI + ΦH)

for some Θ ∈ C(∆). If Φ and I + ΦR(Θ) are positive, and

(
I + ΦR(Θ)

)
[Φ(B − C + ΦK−M(φ))] ≥ D,

then

(aI + ΦH)(u) ≥ D + (aI + ΦH)(φ).

Proof. Since Φ = (aI + ΦH) ◦
(
I + ΦR(M)

)
, we have

(aI + ΦH)(u− φ) = Φ[(I − ΦM)(u− φ)] = Φ[u− ΦM(u)− φ+ ΦM(φ)].

Now, since Φ is positive,

φ(t) = C(t) + ΦM(φ)(t)

and

u(t) ≥ B(t) + ΦK(u)(t)
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imply that

(aI + ΦH)(u− φ) ≥ Φ[B + ΦK(u)− ΦM(u)− C].

Adding and subtracting ΦK(φ) from the right side, it follows that

(aI + ΦH)(u− φ) ≥ Φ[B − C + ΦK−M(u− φ) + ΦK−M(φ)]

= Φ[B − C + ΦK−M(u− φ)] + Φ[ΦK−M(φ)]

= Φ[B − C + ΦK−M(u− φ)] + ΦΘ[(aI + ΦH)(φ)].

Subtracting ΦΘ[(aI + ΦH)(φ)] from both sides implies that

(I − ΦΘ)[(aI + ΦH)(u− φ)] ≥ ΦG[B − C + ΦK−M(φ)]

and

(aI + ΦH)(u− φ) ≥ (I + ΦRΘ
)[ΦG[B − C + ΦK−M(φ)]] ≥ D.

Therefore (aI + ΦH)(u) ≥ D + (aI + ΦH)(φ). �



CHAPTER 4

APPLICATIONS TO LINEAR DIFFERENTIAL EQUATIONS

In this chapter, we will discuss applications of Theorems 3.1.1 and 3.2.1 to

linear differential equations with initial conditions. The first few results establish

a basic equivalence between such differential inequalities and specific integral in-

equalities of the form investigated in Chapter 3. This will allow the translation of

Theorems 3.1.1 and 3.2.1 into theorems about differential inequalities. With these

translations, we will see useful applications to nth order differential equations as

well as a generalization of Sturm’s Comparison Theorem in the 2nd order case.

The discussion will start with few simple but useful results.

Note: Throughout this chapter, let

Hn(t, s) =
(t− s)n−1

(n− 1)!
,

the Green’s function associated with the differential operator L(v) = v(n).

Lemma 4.0.1. Suppose v ∈ Cn[0, b] with initial values v(k)(0) = αk, 0 ≤ k ≤ n.

Then

v(t) =
n∑

k= 0

αk
tk

k!
+

∫ t

0

v(n)(s)
(t− s)n

(n)!
ds.

Proof. We proceed by induction. Let n = 1. Then integrating v′ results in

∫ t

0

v′(s)ds = v(t)− α0

29
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and

v(t) =

∫ t

0

v′(s)ds+ αn−1.

Suppose the statement holds for some n and let v ∈ Cn+1[0, b]. Then

v(t) =
n∑
k=0

αk
tk

k!
+

∫ t

0

v(n)(s)
(t− s)n

(n)!
ds,

and integrating by parts gives

v(t) =
n∑
k=0

αk
tk

k!
+

∫ t

0

v(n+1)(s)
(t− s)n+1

(n+ 1)!
ds+ αn+1

tn+1

(n+ 1)!

=
n+1∑
k=0

αk
tk

k!
+

∫ t

0

v(n+1)(s)
(t− s)n+1

(n+ 1)!
ds.

Therefore, by the Principle of Mathematical Induction, the statement holds for

all n ≥ 1. �

Remark 4.0.1. Applying Lemma 4.0.1 to v(m), where m < n, provides the fol-

lowing formula:

v(m)(t) =
n−1∑
k=m

αk
tk−m

(k −m)!
+

∫ t

0

v(n)(s)
(t− s)n−m

(n−m)!
ds.

This will be the building block for translating differential inequalities to integral

inequalities.



31

Theorem 4.0.1. Let v ∈ Cn[0, b], g ∈ C[0, b], and let ` be the differential operator

defined by

`(v) = v(n) +
n−1∑
k=0

pkv
(k),

where the pk are continuous for 0 ≤ k < n. Suppose further that the initial con-

ditions v(k)(0) = αk hold for 0 ≤ k < n. Then l(v) ≥ g if and only if

v(n) ≥ B +

∫ t

0

K(t, s)v(n)(s) ds,

where

B(t) = g(t)−
n−1∑
k=0

pk

[ n−1∑
j=k

αjt
j−k

(j − k)!

]
and

K(t, s) = −
n−1∑
k=0

pk(t)
(t− s)n−k−1

(n− k − 1)!
.

Proof. First, `(v) ≥ g if and only if

v(n)(t) ≥ g(t)−
n−1∑
k=0

pkv
(k)(t).
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Applying Lemma 4.0.1 to the right hand side of the inequality gives

v(n)(t) ≥ g(t)−
n−1∑
k=0

pk(t)

[( n−1∑
j=k

αj
tj−k

(j − k)!

)
+

∫ t

0

v(n)(s)
(t− s)n−k

(n− k)!
ds

]

= g(t)−
n−1∑
k=0

pk(t)

[ n−1∑
j=k

αj
tj−k

(j − k)!

]
−

n−1∑
k=0

pk(t)

[ ∫ t

0

v(n)(s)
(t− s)n−k

(n− k)!
ds

]

=B(t)−
∫ t

0

[ n−1∑
k=0

pk(t)v
(n)(s)

(t− s)n−k

(n− k)!
ds

]
=B(t) +

∫ t

0

K(t, s)v(n)(s) ds.

Therefore `(v) ≥ g if and only if

v(n) ≥ B +

∫ t

0

K(t, s)v(n)(s) ds.

�

Notice, if we apply Theorem 4.0.1 to Lemma 1.3.1, the following lemma,

which will be used in a later chapter, is immediate:

Lemma 4.0.2. Let y : [0, b]→ R and w : [0, b]→ R satisfy

y =

∫ t

0

f(s, y) ds

and

w ≥
∫ t

0

f(s, w) ds,
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where f(s, t) is continuous and locally Lipschitz with respect to t.

(i) If w(0) ≥ y(0), then w(t) ≥ y(t) throughout [0, b].

(ii) If w(t) = y(t) for some t ∈ (0, b], then w(t) = y(t) throughout [0, t].

Definition 4.0.1. We call K in Theorem 4.0.1 the Taylor kernel associated

with the differential operator `.

The following discussion will set up the next theorem, a result that is used

quite often. Let

L(v) = v(n) +
n−1∑
k=0

pkv
(k) on [0, b],

where pk ∈ C[0, b], k = 0, 1, . . . , n − 1, and n ≥ 2. Consider the solution v to

L(v) = δa, where δa is the Dirac-delta function for a ∈ (0, b). It is generally known

that v solves L(v) = 0 in (0, a] and (a, b] separately, is of class Cn in each of those

intervals, and is Cn−2 overall. We will prove this using Theorem 3.2.1.

In order to translate Theorems 3.1.1 and 3.2.1 into theorems involving

differential operators, an equivalence between implications of the form

L(ψ) = h and `(v) ≥ g =⇒ v ≥ f + ψ

and an integral implication of the form investigated in Chapter 3,

φ = C + ΦM(φ) and u ≥ B + ΦK(u) =⇒ (aI + ΦH)(u) ≥ D + (aI + ΦH)(φ),

is needed. Theorem 4.0.1 and Lemma 4.0.1 provide the desired equivalence.
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Theorem 4.0.2. Let `, v, g, K, and B be as in Theorem 4.0.1. Let ψ ∈ Cn[0, b],

f, h ∈ C[0, b], and L be the differential operator defined by

L(ψ) = ψ(n) +
n−1∑
k=0

Pkψ
(k),

where Pk is continuous for 0 ≤ k < n. Suppose further that initial conditions

ψ(k)(0) = βk for 0 ≤ k < n hold. The following implications are equivalent:

• If L(ψ) = h and `(v) ≥ g, then v ≥ f + ψ .

• If ψ(n) ≥ C + ΦM

(
ψ(n)

)
and v(n) ≥ B + ΦK

(
v(n)
)
, then

ΦHn

(
v(n)
)
≥ D + ΦHn

(
ψ(n)

)
,

where

C(t) =h(t)−
n−1∑
k=0

Pk

[ n−1∑
j=k

βjt
j−k

(j − k)!

]
,

D(t) = f(t) +
n−1∑
k=0

(βk − αk)
tk

k!
,

and M(t, s) is the Taylor kernel associated with L.

Proof. By Theorem 4.0.1, L(ψ) = h and `(v) ≥ g are equivalent to

ψ(n) = C + ΦM

(
ψ(n)

)
and

v(n) ≥ B + ΦK

(
v(n)
)
,
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respectively. Lemma 4.0.1 implies v ≥ f + ψ is equivalent to

ΦHn

(
v(n)
)
≥ D + ΦHn

(
ψ(n)

)
.

Therefore the two implications are interchangeable. �

Theorem 4.0.2 states that any linear differential inequality can be associ-

ated with an equivalent integral inequality. This allows one to apply Theorems

3.1.1 and 3.2.1 to differential inequalities. In the next section, we will translate

Theorem 3.1.1 into an equivalent statement about differential inequalities.

4.1 Translation of Theorem 3.1.1

The next theorem is the translation of Theorem 3.1.1 into a statement

about linear differential operators.

Theorem 4.1.1. Let L and ` be the linear differential operators defined by

L(u) = u(n) +
n−1∑
k=0

u(k)Pk

and

`(u) = u(n) +
n−1∑
k=0

u(k)pk,
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with pk, Pk ∈ C[0, b] for all k. Let f , g, h ∈ C[0, b], and let ψ, v ∈ Cn[0, b] with

initial conditions ψ(k)(0) = βk and v(k)(0) = αk for 0 ≤ k ≤ n. The implication

If L(ψ) = h and `(v) ≥ g, then v ≥ f + ψ

holds if and only if

ΦHn

(
I + ΦR(K)

) (
B − C + ΦK−M

(
ψ(n)

))
≥ D

and ΦHn

(
I + ΦR(K)

)
is a positive operator where K(t, s) and M(t, s) are the

Taylor kernels associated with ` and L, respectively, and

B(t) = g(t)−
n−1∑
k=0

pk

[ n−1∑
j=k

αjt
j−k

(j − k)!

]
,

C(t) = h(t)−
n−1∑
k=0

Pk

[ n−1∑
j=k

βjt
j−k

(j − k)!

]
,

and

D(t) = f(t) +
n−1∑
k=0

(βk − αk)
tk

k!
.

Proof. Applying Theorem 4.0.2 to

L(ψ) = h and `(v) ≥ g =⇒ v ≥ f + ψ
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gives the equivalent statement

ψ(n) = C+ΦM

(
ψ(n)

)
and v(n) ≥ B+ΦK

(
v(n)
)

=⇒ ΦHn

(
v(n)
)
≥ D+ΦHn

(
ψ(n)

)
.

Now apply Theorem 3.1.1 to get the desired result. �

4.2 Translation of Theorem 3.2.1

In this section, we will translate Theorem 3.2.1 into a theorem about lin-

ear differential operators. It is first necessary to discuss the Green’s functions

associated with linear differential operators with initial conditions. It is natural

for Green’s functions to come up in this context as the main discussion focuses

on comparing solutions to different linear differential operators with initial condi-

tions. The following proposition gives a relation between the Green’s function and

the Taylor kernel associated with an operator `. The theorem parallels Theorem

2.3.3 which gives a similar relation for the Picard kernel.

Proposition 4.2.1. Let ` be the linear operator given by

`(u) = u(n) +
n−1∑
k=0

u(k)pk,

with pk continuous on [0, b], and let K be the Taylor operator associated with `.

If G(t, s) is the Green’s function for ` on ∆, then G = Hn +Hn ∗R(K).

Proof. If G(t, s) is the Green’s function for `, then, for any continuous function g,

v = ΦG(g) satisfies l(v) = g and

v(n) = g(t) + ΦK

(
v(n)
)
.
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We also have

v = ΦHn

(
v(n)
)
.

Thus

v = ΦHn

(
v(n)
)

= ΦG(g) = ΦG

(
v(n) − ΦK

(
v(n)
))

and, in particular,

ΦHn

(
v(n)
)

= ΦG

(
v(n) − ΦK

(
v(n)
))

or

ΦHn

(
v(n)
)

= ΦG(I − ΦK)
(
I + v(n)

)
.

Applying
(
I + ΦR(K)

)
on the right, results in ΦHn

(
I + ΦR(K)

) (
v(n)
)

= ΦG

(
v(n)
)
.

As this is true for any g (and, hence, any v(n)),

G = Hn ∗ (I +R(K)) = G = Hn +Hn ∗R(K).

�

Because of the uniqueness of Green’s functions, we can now relate the

Taylor kernel to the Picard kernel in an interesting way.
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Theorem 4.2.1. Let ` be the linear operator given by

`(u) = u(n) +
n−1∑
k=0

u(k)pk,

with pk continuous on [0, b], and let K and Kp be the Taylor and Picard kernels

associated with `, respectively. Then

R(Kp) ∗Hn = Hn ∗R(K).

Proof. Since Green’s functions are unique, we have

Hn ∗ (I +R(K)) = (I +R(Kp)) ∗Hn

by 4.2.1 and 2.3.3. Therefore

R(Kp) ∗Hn = Hn ∗R(K).

�

Suppose we are looking at the Taylor kernels K and M associated with the

differential operators

`(v) =
n−1∑
k=0

pk(t)v
(k)(t)

and

L(v) =
n−1∑
k=0

Pk(t)v
(k)(t),
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respectively, with Pk, pk ∈ Ck[0, b] for 0 ≤ k ≤ n− 1. Let G be the Green’s func-

tion for the operator L. The following lemma will give a continuous function

Θn(t, s) so that

G ∗ [K −M ] = Θn ∗Hn,

as in Theorem 3.2.1.

Lemma 4.2.1. Let

Θn =
n−1∑
k=0

∂k

∂sk

[
G(t, s)(Pk(s)− pk(s))

]
.

Then

G ∗ [K −M ] = Θn ∗Hn.

Proof. First,

G ∗ [K −M ] =

∫ t

s

n−1∑
k=0

G(t, r)

[
Pk(r)− pk(r)

]
(r − s)k

k!
dr

=
n−1∑
k=0

∫ t

s

G(t, r)

[
Pk(r)− pk(r)

]
(r − s)k

k!
dr.

Letting

u = G(t, r)[Pk(r)− pk(r)]
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and

dv = (r − s)kdr/k!

and integrating by parts k times, we get

n−1∑
k=0

∫ t

s

G(t, r)[Pk(r)− pk(r)]
(r − s)k

k!
dr =

n−1∑
k=0

∫ t

s

∂k

∂rk

[
G(t, r)(Pk(r)− pk(r))

]
(r − s) dr

=

∫ t

s

n−1∑
k=0

∂k

∂rk

[
G(t, r)(Pk(r)− pk(r))

]
(r − s) dr

= Θn ∗Hn.

Therefore

G ∗ [K −M ] = Θn ∗Hn.

�

Note: Henceforth, Θn will be defined as in Lemma 4.2.1.

Theorem 4.2.2. Let ` and L be differential operators defined by

`(u) =
n−1∑
k=0

pk(t)u
(k)(t)

and

L(u)
n−1∑
k=0

Pk(t)u
(k)(t),
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respectively, with Pk, pk ∈ Ck[0, b] for 0 ≤ k ≤ n− 1. Suppose L(ψ) = h and `(v) ≥ g

for h, g ∈ C[0, b] and ψ, v ∈ C(n)[0, b], with initial conditions v(k)(0) = αk and

ψ(k)(0) = βk for 0 ≤ k ≤ n. Let f ∈ C[0, b], let G(t, s) be the Green’s function as-

sociated with L, and let K(t, s) and M(t, s) be the Taylor kernels associated with

` and L, respectively. Let

B(t) = g(t)−
n−1∑
k=0

pk

[ n−1∑
j=k

αjt
j−k

(j − k)!

]
,

C(t) = h(t)−
n−1∑
k=0

Pk

[ n−1∑
j=k

βjt
j−k

(j − k)!

]
,

and

D(t) = f(t) +
n−1∑
k=0

(βk − αk)
tk

k!
.

If ΦG and I + ΦR(Θn) are positive and

(I + ΦR(Θn)) ◦ ΦG(B − C + ΦK−M
(
ψ(n)

)
) ≥ D,

then v ≥ f + ψ.

Proof. By Lemma 4.0.1, L(ψ) = h is equivalent to

ψ(n)(t) = C(t) + ΦM

(
ψ(n)

)
(t)
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and `(v) ≥ g is equivalent to

v(n)(t) ≥ B(t) + ΦK

(
v(n)
)

(t).

By Lemma 4.2.1,

G ∗ [K −M ] = Θ ∗Hn.

Thus, all the hypotheses of Theorem 3.2.1 are met and

(aI + ΦHn)(u) ≥ (aI + ΦHn)
(
ψ(n)

)
+D.

Applying Lemma 4.0.1 again, v ≥ k + ψ. �

4.3 Picard Iteration

Here we will give an overview of Picard iteration and present two similar

iteration techniques for nth-order linear initial value problems using the Taylor

and Picard kernels.

Picard iteration is a numerical method used to construct solutions to the

differential equation y′ = f(x, y) with initial condition y(0) = y0, where f satisfies

a Lipschitz condition. The first step is to convert the differential equation into

the corresponding integral equation

y(x) = y0 +

∫ x

0

f [s, y(s)] ds.
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The iterative process starts with y0(x) = y0 and continues with

yn(x) = y0 +

∫ x

0

f [s, yn−1(s)] ds.

This sequence converges and y(x) = lim
n→∞

un(x) is a solution to the initial value

problem [8]. While Picard iteration is not often practically used, it has been used

to prove some powerful and useful results such as the Existence and Uniqueness

Theorem which is commonly used [8].

The Picard and Taylor kernels can be used in an iterative technique which

mirrors the Picard method. Given an nth-order linear initial value problem,

L(v) =
n−1∑
k=0

pk(t)v
(k)(t) = g(t), v(k)(0) = αk for 0 ≤ k ≤ n− 1, (4.1)

with pk of class Ck and g continuous, the first step for the iterative technique is

to convert the differential equation into the corresponding integral equation

v(n) = B +

∫ t

0

K(t, s)v(n)(s) ds.

Here, as in Theorem 4.0.1,

B(t) = g(t)−
n−1∑
k=0

pk

[ n−1∑
j=k

αjt
j−k

(j − k)!

]
,

and K is the Taylor kernel associated with L. In fact, by Theorem 2.3.1, we could

also replace the Taylor kernel with the Picard kernel and use the B(t) given there.

Keeping that in mind, the following discussion applies to both kernels. Let v0(t)

be a Cn-function which satisfies the initial conditions. Since all the functions
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involved are relatively well-behaved, the iteration defined by

vn(t) = B(t) +

∫ t

0

K(t, s)vn−1(s) ds

for n ≥ 1 will converge to the solution of (4.1).



CHAPTER 5

STURM’S COMPARISON THEOREM

5.1 Classical Sturm’s Comparison Theorem and a Generalization

Using what has previously been established, it is natural to consider the

location of zeros of solutions to the differential equations we examined in Chapter

4 in order to arrive at comparison theorems similar to the celebrated Sturm’s

Comparison Theorem. Sturm discovered his theorem in 1836, and at the time,

his work on finding roots and oscillation were considered very unique [13]. Now,

Sturm’s ideas and techniques are indispensable in functional analysis.

Here, I will state the portion of the theorem that is appropriate for this

discussion and give a new proof.

Theorem 5.1.1. Suppose continuous functions ψ(t) and v(t) satisfy the following

conditions:

ψ′′ +Qψ = 0 and v′′ + qv = 0, t ∈ [0, b],

(ψ, ψ′)(0) = (α1, α2),

(v, v′′)(0) = (β1, β2),

46
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and

β1/β2 ≥ α1/α2,

where Q, q ∈ C[0, b] and Q ≥ q. If ψ has no zero in (0, b), then v has no zero in

(0, b).

Proof. If ψ has no zero in (0, b), we can assume that it is positive, for if it were

negative, we could just take the opposite sign, and the following argument would

still hold. Let

y(t) := ψ(t)ψ(s)

∫ t

s

1/ψ2(r) dr

for each s ∈ (0, b) with s < t. Then

y′(t) = ψ(s)/ψ(t) + ψ(s)ψ′(t)

∫ t

s

1/ψ2(r) dr

and

y′′(t) = ψ(s)ψ′′(t)

∫ t

s

1/ψ2(r) dr.
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Thus, y(t) satisfies y′′ +Qy = 0 since

y′′(t) +Q(t)y(t) = y′′(t)− ψ′′(t)

ψ(t)
y(t)

= ψ(s)ψ′′(t)

∫ t

s

1

ψ2(r)
dr − ψ′′(t)

ψ(t)

[
ψ(t)ψ(s)

∫ t

s

1

ψ2(r)
dr
]

= ψ(s)ψ′′(t)

∫ t

s

1

ψ2(r)
dr − ψ(s)ψ′′(t)

∫ t

s

1

ψ2(r)
dr

= 0.

We also have (y, y′)(s) = (0, 1) for each s ∈ (0, b), so

G(t, s) := ψ(t)ψ(s)

∫ t

s

1/ψ2(r) dr

is a Green’s function for the differential equation that ψ satisfies. Since ψ is pos-

itive, so is ΦG.

Now, suppose we have a function φ that satisfies

φ′′ +Qφ = 0

and

(φ, φ′)(0) = (β0, β1)

on [0, b]. Assume both α0 and β0 are positive and let c = β0/α0. Consider the

function cψ. Note that

(cψ)(0) = α0(β0/α0) = β0 = φ(0).
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We also have

(cψ)′(0) = α1(β0/α0) ≤ β1

by the statement of the theorem. Thus,

(cψ)′(0) ≤ φ′(0)

and

φ− cψ = dG(t, 0)

on [0, b] for some d ≥ 0. Therefore, φ has no zero in (0, b).

Finally, let us consider the function v. Note that

v′′ +Qv = (Q− q)v.

Thus,

v = φ+ ΦG[(Q− q)v]

and, since everything involved is positive, v ≥ φ on [0, b], implying that v has no

zero in (0, b).

�

The next theorem is a generalized comparison theorem similar to Sturm’s

Theorem. First, we need a lemma.
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Lemma 5.1.1. Suppose a continuous function u satisfies

l(v) = v(n) +
n−1∑
k=0

ptv
(k) = 0

on [0, b], with pk continuous on [0, b] and initial conditions v(k) = 0 for 0 ≤ k ≤ n− 1

and v(n) = 1. Suppose further, a continuous function ψ satisfies

L(ψ) = ψ(n) +
n−1∑
k=0

ptψ
(k) = 0

on [0, b], with Pk continuous on [0, b] and initial conditions ψ(k) = 0 for 0 ≤ k ≤ n− 1

and ψ(n) = 1. Let G be the Green’s function associated with L. Then

ΦG

[ n−1∑
k=0

(Pk − pk)
tn−k−1

(n− 1− k)!

]
= Φθn

[
tn−1

(t− 1)!

]
.

Proof. Proof by induction. Let n = 1. G in this case is the constant function 1

and

ΦG[P0 − p0] =

∫ t

0

P0(s)− p0(s) ds = Φθ1(1).

Suppose the statement holds for some n. Then, looking at the n+ 1 case,

ΦG

[ n−1∑
k=0

(Pk − pk)
tn−k

(n− 1)!

]
= ΦG[Pn − pn] + ΦG

[ n−1∑
k=0

(Pk − pk)
tn−k−1

(n− 1− k)!

]
= ΦG[Pn − pn] + Φθn

[
tn−1

(t− 1)!

]
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by the inductive assumption. Integrating ΦG[Pn − pn] by parts n times gives us

ΦG(Pn − pn)

[
tn−1

(n− 1)!

]
.

Now, combining the two integrals into one,

ΦG[Pn − pn] + Φθn

[
tn−1

(t− 1)!

]
= Φθn

[
tn−1

(t− 1)!

]
,

and the statement holds for n+ 1. Therefore the statement holds for all n. �

This lemma is very useful for proving the following generalized linear dif-

ferential comparison result.

Theorem 5.1.2. Let pj and Pj be continuous on [0, b] for 0 ≤ j ≤ n−1. Suppose

ψ, v ∈ Cn[0, b] with

L(ψ) = ψ(n) +
n−1∑
k=0

ptψ
(k) = 0

and initial conditions ψ(k) = 0 for 0 ≤ k ≤ n− 1 and ψ(n) = 1. Similarly, suppose

l(v) = v(n) +
n−1∑
k=0

ptv
(k) = 0

and initial conditions v(k) = 0 for 0 ≤ k ≤ n− 1 and v(n) = 1. Let G(t, s) be the

Green’s function associated with L. If ψ is positive on (0, b), G(t, s) is a positive

operator on ∆, and Θn is positive on ∆, then v ≥ ψ on (0, b).
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Proof. By Theorem 4.2.2, the statement holds if ΦG, I +R(Θn), and

(
I + ΦR(Θn)

)
◦ ΦG

[
n−1∑
k=0

(Pk − pk)
tn−k−1

(n− 1− k)!
+ ΦK−M(ψ(n−1))

]

are positive, where K and M are the Taylor kernels associated with l and L,

respectively. The hypotheses of this theorem state that G and Θn are positive, so

I +R(Θn) is positive. Now,

ΦG

[
n−1∑
k=0

(Pk − pk)tn−k−1

(n− 1− k)!
+ ΦK−M(ψ(n−1))

]
= ΦG

[
n−1∑
k=0

(Pk − pk)tn−k−1

(n− 1− k)!

]
+ΦG

[
ΦK−M(ψ(n−1))

]
,

and by Lemma 5.1.1 and Lemma 4.2.1, this is equal to

ΦΘn

(
tn−1

(t− 1)!

)
+ ΦΘn∗H(ψ(n−1)) = ΦΘn

[
tn−1

(t− 1)!
+ ΦHn(ψ(n−1))

]
,

which is positive since ΦΘn and ψ are positive. Therefore

(I + ΦR(Θn)) ◦ ΦG

[ n−1∑
k=0

(Pk − pk)
tn−k−1

(n− 1− k)!
+ ΦK−M(ψ(n−1))

]

is positive and v ≥ ψ on (0, b) by Theorem 4.2.2.

�

This theorem will be used to prove the following nth-order Sturm’s theorem.

Theorem 5.1.3. Let Q and q be continuous with Q > q on [0, b]. Suppose ψ,

v ∈ Cn[0, b] with

L(ψ) = ψ(n) +Qψ = 0,
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and initial conditions ψ(k) = 0 for 0 ≤ k ≤ n− 1 and ψ(n) = 1. Similarly, suppose

l(v) = v(n) + qv,

and initial conditions v(k) = 0 for 0 ≤ k ≤ n− 1 and v(n) = 1. Let G(t, s) be the

Green’s function associated with L. If ψ is positive on (0, b) and G(t, s) is a

positive operator on ∆, then v ≥ ψ on (0, b).

Proof. In this case,

θn = G(t, s)(Q(s)− q(s)),

which is a positive operator since G is positive and Q > q. Therefore, by the

previous theorem, v ≥ ψ. �

5.2 Integral Versions of Sturm’s Comparison Theorem

The next two results are integral versions of Sturm’s Comparison Theorem.

Theorem 5.2.1. Suppose q, Q ∈ C[0, b] with Q(t) ≥ q(t), H(t, s) is continuous

on ∆ = {(t, s) : 0 ≤ s ≤ t ≤ b}, and R ∈ C[∆] is such that

(I + ΦR) = (I +Q(t)ΦH)−1.

Furthermore, suppose

φ = −Q(t)[t+ ΦH(φ)]
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and

u ≥ −q(t)[t+ ΦH(u)].

If ΦH(φ) + t > 0, then ΦH(u) ≥ ΦH(φ).

Proof. Suppose not. Then there exists a ∈ (0, b) such that ΦH(u)+t > 0 through-

out (0, a] and

ΦH(u)(a) < ΦH(φ)(a).

Note that in the interval (0, a],

u(t) +Q(t)[t+ ΦH(u)] ≥ −q(t)[t+ ΦH(u)] +Q(t)[t+ ΦH(u)]

= [Q(t)− q(t)][t+ ΦH(u)]

≥ 0.

Thus on the interval (0, a],

ΦH(u(t)− φ(t)) = ΦH(I + ΦR)[I +Q(t)ΦH ][u(t)− φ(t)]

= ΦH(I + ΦR)[(I +Q(t)ΦH)(u) +Q(t)t]

≥ ΦH(I + ΦR)[u(t) +Q(t)(t+ ΦH(u))]

≥ 0.

The last inequality follows by 4.2.1, which states G = H + H ∗ R is the Green’s

function for the equivalent differential equation. In this case, we can say G > 0
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on ∆. Thus we have a contradiction since we assumed ΦH(u)(a) < ΦH(φ)(a).

Therefore, if ΦH(φ) + t > 0, then ΦH(u) ≥ ΦH(φ). �

Theorem 5.2.2. Let M , K, and R be continuous on ∆ = {(t, s) : 0 ≤ s ≤ t ≤ 0}

with

(I + ΦR) = (I − ΦM)−1.

Define G = H + H ∗ R, where H is as before: H(t, s) = (t− s). Let φ, u, A, B,

and C ∈ C[0, b] with A(t) ≥ 0, B(t) ≥ C(t),

φ(t) = C(t) + ΦM(φ)(t),

u(t) ≥ B(t) + ΦK(u)(t),

and

ΦG∗[K−M ](u) = Φ[A(s)G]∗H(u).

If ΦH(φ) > 0, then ΦH(u) ≥ ΦH(φ).

Proof. Suppose not. Then there exists an a ∈ [0, b] such that

ΦH(u)(a) < ΦH(φ)(a)
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with ΦH(u) > 0 on (0, a]. Thus, on (0, a], we have

ΦH(u− φ) = ΦG[ΦI−M(u− φ)]

= ΦG[u− ΦM(u)− φ+ ΦM(φ)]

= ΦG[u− ΦM(u)− C]

≥ ΦG[B − C + ΦK−M(u)]

≥ ΦG∗[K−M ](u)

= Φ[A(s)G]∗H(u)

> 0,

which is a contradiction. Therefore, if ΦH(φ) > 0, then ΦH(u) ≥ ΦH(φ) on [0, b].

�



CHAPTER 6

OSCILLATION OF COEFFICIENTS IN SECOND-ORDER

DIFFERENTIAL EQUATIONS

6.1 Introduction to a Theorem

For 1 < p <∞, consider the zeros in (0,∞) of solutions of

u′′ + qu = 0, (u, u′)(0) = (0, 1),

as q ranges over the nonnegative, continuous functions in [0,∞) such that ‖q‖p =

1. We wish to determine the infimum β(p) of those zeros, show that it is a

minimum exactly when p > 1, and describe q and u in those cases.

Motivation: In general, we are looking at solutions to u′′+qu = 0 in [0,∞),

with (u, u′)(0) = (0, 1), q ≥ 0, and ‖q‖p = 1. Specifically, what is the smallest

possible zero for u?

Given a solution, we know

u(t) = t+ Φk(u)(t)

or

(I − ΦK)(u) = id,

where id represents the identity function. Suppose we have β ∈ [0,∞). Without

loss of generality, assume u(β) > 0. Can we change q slightly to reduce u(β) while

57
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still maintaining ‖q‖p = 1? Replace q with q + εq̂. Then we have

(I − Φq+εq̂)(uq+εq̂) = id.

Taking the derivative with respect to ε, we get

−ΦK̂u+ (I − ΦK)û = 0,

where û is the rate of change of the solution with respect to ε. That is,

û(t) =
(
I + ΦR(K)

)
ΦK̂u(t) =

∫ t

0

−(t−s)q̂(s)u(s)ds+

∫ t

0

R(t, s)

[∫ s

0

−(s− r)q̂(r)u(r)dr

]
ds.

Can we choose q̂ so that û(β) = 0? We require that ‖q + εq̂‖p = 1, forcing

the restriction

∫ ∞
0

pqp−1q̂ = 0.

If we switch the order of integration and perform a simple algebraic manipulation

on û, we see that

û(t) =

∫ t

0

−q̂(s)u(s)

[
(t− s) +

∫ t

s

−R(t, s)(r − s)dr
]
ds =

∫ t

0

−q̂(s)u(s)G(t, s)ds

by Proposition 4.2.1, where G(t, s) is the Green’s function associated with our

differential equation. Thus

û(β) =

∫ β

0

−q̂(s)u(s)G(β, s)ds.
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We will call q a critical choice if û(β) = 0 for all such q̂. Notice that the

only time

∫ β

0

pqp−1q̂ = 0

and û(β) = 0 is when u(t)G(β, t) is a constant multiple of pqp−1(t). Thus qp−1

must be equal to the product of two solutions, one with a zero at 0 and with a

zero at β. Therefore, it must be that q(p−1)/2 solves the equation.

If r = q(p−1)/2, then we have

r′′ + qr = 0

or

r′′ + r(p+1)/(p−1) = 0.

The goal is to find the first zero of r, β(p). To make calculations more straight-

forward, we shift things to be symmetric around the origin. That is, find r such

that

r′′ + r(p+1)/(p−1) = 0

and

(r, r′)(0) = (1, 0).
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The goal is to find the first positive zero, f(p), (and hence the first negative zero

−f(p)) of r. We will find f(p) and then manipulate r and q so that they satisfy

the original differential equation and ultimately find β(p).

The first integral

(1/2)(r′)2 + (p− 1)/(2p)r2p/(p−1)

is constant along r ([12], pp. 16-18), in particular at t = 0. Thus

(1/2)(r′)2 + (p− 1)/(2p)r2p/(p−1) = (p− 1)/(2p).

Solving for r′ results in

dr/dt = [(p− 1)/p(1− r2p/(p−1))]1/2

and hence

dt/dr = [(p− 1)/p(1− r2p/(p−1))]−1/2.

To find f(p), integrate from 0 to 1:

f(p) =

∫ 1

0

[(p− 1)/p(1− s2p/(p−1))]−1/2ds = (p/(p− 1))1/2

∫ 1

0

(1− s2p/(p−1))−1/2ds.

Using the substitution w = s2p/(p−1), we get

f(p) = (1/2)(p/(p− 1))1/2((p− 1)/p)1/2

∫ 1

0

w(−p−1)/(2p)(1− w)1/2dw.
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Finally,

f(p) = (1/2)((p− 1)/p)1/2B((p− 1)/(2p), (1/2)),

where B is the beta function defined by

B(x, y) =

∫ 1

0

tx−1(1− t)y−1 dt, x, y > 0

=
Γ(x)Γ(y)

Γ(x+ y)

and

Γ(x) =

∫ ∞
0

tx−1e−t dt.

Notice in this symmetric case, we have not yet required ‖q‖p = 1, so we will

address this now. First, we compute
∫ f(p)

−f(p)
qp. By using the first integral and

integrating by parts, we get the following result:

∫ f(p)

−f(p)

qp(t) dt =

∫ f(p)

−f(p)

r
2p
p−1 (t) dt (∗)

=

∫ f(p)

−f(p)

1−
(

p

p− 1

)
(r′)2(t) dt

= 2f(p)− p

p− 1

∫ f(p)

−f(p)

(r′)2(t) dt

= 2f(p)− p

p− 1

∫ f(p)

−f(p)

r
2p
p−1 (t) dt. (∗∗)
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Setting (∗) = (∗∗) and solving for

∫ f(p)

−f(p)

r2p/(p−1)(t) dt,

we get

∫ f(p)

−f(p)

r(2p)/(p−1)(t) dt = 2(p− 1)f(p)/(2p− 1). (6.1)

We need to manipulate r into some function v so that the differential equation is

still satisfied and

‖v2p/(p−1)‖p = 1.

Let

v(t) =

[
2f(p)(p− 1)

2p− 1

]−p+1
2p−1

r

([
2f(p)(p− 1)

2p− 1

] −1
2p−1

t

)
. (6.2)

Notice that the zeros of v are then

fv(p) := f(p)

[
2f(p)(p− 1)

2p− 1

] 1
2p−1

, (6.3)

which can be simplified algebraically and by using properties of the beta function

to

fv(p) =
1

2
p

−p
2p−1 (p− 1)

−p+1
2p−1 (2p− 1)B

(
3p− 1

2p
,
1

2

) 2p
2p−1

.
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Then

∫ fv(p)

−fv(p)

v2p/(p−1)(t) dt =

∫ fv(p)

−fv(p)

[2f(p)(p−1)/(2p−1)](−p+1)/(2p−1)r([2f(p)(p−1)/(2p−1)]−1/(2p−1)t) dt.

Using the change of variable

s = [2f(p)(p− 1)/(2p− 1)]−1/(2p−1)t,

the integral becomes

(2p− 1)/[2f(p)(p− 1)]

∫ f(p)

−f(p)

r2p/(p−1)(s) ds = 1

by (6.1).

We observe v also satisfies the differential equation since

v′′(t) + v
p+1
p−1 (t) =

[
2f(p)(p− 1)

2p− 1

]−p−1
2p−1

(r(s) + r′′(s)) = 0,

where s is the same as in the change of variable above.

If we shift the symmetric case to the origin, our solution (6.2) remains the

same only shifted by fv(p), and this will shift the first possible zero to twice (6.3),

resulting in the following theorem:

Theorem 6.1.1. Let

β(p) = p
−p

2p−1 (p− 1)
−p+1
2p−1 (2p− 1)B

(
3p−1

2p
, 1

2

) 2p
2p−1

,
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where

B(x, y) =

∫ 1

0

tx−1(1− t)y−1 dt,

the beta function. Let uq be the solution to the initial value problem

u′′ + qu = 0 , (u, u′)(0) = (0, 1), (6.4)

where q ∈ C[0, b] such that the Lp-norm ‖q‖p ≤ 1. Then

(a) β(p) = inf{z ∈ (0, b] : uq(z) = 0 for some q}

(b) Given p > 1 and b ≥ β(p), there is a unique function q ∈ C[0, b] such that the

solution uq to (6.4) vanishes at β(p). Moreover, q > 0 on (0, β(p)) and q = 0

almost everywhere on the complement [0, b] \ (0, β(p)).

y=Π

0 5 10 15

3.0

3.5

4.0

4.5

5.0

The discussion in the chapter leading up to Theorem 6.1.1 has shown (a).

The second part of Theorem 6.1.1 will require a number of preliminary results

contained in the following section.
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6.2 Lemmas Needed to Prove Theorem 6.1.1

Throughout this chapter,

(Φqu) (t) =

∫ t

0

(t− s)q(s)u(s) ds

and

uq = (I − Φ− q)−1 (id)

for q ∈ Lp[0, b], u ∈ C[0, b] and t ∈ [0, b].

Lemma 6.2.1. For q ∈ Lp[0, b], u ∈ C[0, b], and t ∈ [0, b],

(Φqu) (t) =

∫ t

0

(t− s)q(s)u(s) ds

converges.

Proof. Since q ∈ Lp[0, b], Hölder’s inequality gives

||q||1 ≤ b(p−1)/p||q||p,

which implies that

|(Φqu) (t)| ≤ t||q||1 max
t∈[0,b]
|u|.

Thus Φqu converges. �

Lemma 6.2.2. Each function Φqu is C1.
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Proof. First, a straightforward epsilon-delta proof will give us continuity. Given

a ∈ [0, b], for all ε > 0, let

δ =
ε

2||q||1max|q|
.

Then, if |t− a| < δ, we have

|(Φqu) (t)− (Φqu) (a)| =
∣∣∣∣−∫ a

0

(a− s)q(s)u(s) ds+

∫ t

0

(t− s)q(s)u(s) ds

∣∣∣∣
=

∣∣∣∣∫ a

0

(t− a)q(s)u(s) ds+

∫ t

a

(t− s)q(s)u(s) ds

∣∣∣∣
≤
∣∣∣∣∫ a

0

(t− a)q(s)u(s) ds

∣∣∣∣+

∣∣∣∣∫ t

a

(t− a)q(s)u(s) ds

∣∣∣∣
≤ |t− a| · ||q||1max|u|+ |t− a| · ||q||1max|u|

≤ 2|t− a| · ||q||1max|u|

≤ 2δ||q||1max|u|

= ε.

Now we turn to (Φqu)′.

(Φqu)′ (t) =

(
−
∫ t

0

(t− s)q(s)u(s) ds

)′
=

(
−t
∫ t

0

q(s)u(s) ds

)′
+

(∫ t

0

sq(s)u(s) ds

)′
= −

∫ t

0

q(s)u(s) ds− tq(t)u(t) + tq(t)u(t)

= −
∫ t

0

q(s)u(s) ds.

Because q, u, and integration are all continuous, we have that (Φqu)′ must be

continuous. �
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Lemma 6.2.3. The uniform bounds

(a) || (Φqu) ||∞ ≤ C||q||p||u||∞

and

(b) || (Φqu)′ ||∞ ≤ D||q||p||u||∞

hold, and, in particular, Φq is a bounded linear endomorphism of C[0, b].

Proof. We start by proving (b):

|| (Φqu)′ ||∞ ≤
∫ b

0

|q(s)u(s)| ds ≤ ||q||1||u||∞ ≤ b(p−1)/p||q||p||u||∞,

where the last inequality was previously established by Hölder’s inequality.

(a) By the mean value theorem, for any t ∈ (0, b] there exists c ∈ (0, t) such that

(Φqu) (t)− (Φqu) (0)

t
= (Φqu)′ (c).

Observing that (Φqu) (0) = 0 and multiplying both sides by t, we obtain

(Φqu) (t) = t (Φqu)′ (c) ≤ b (Φqu)′ (c).

Taking the norm, we have

||Φqu||∞ ≤ b|| (Φqu)′ ||∞ ≤ b(2p−1)/p||q||p||u||∞.

�
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Lemma 6.2.4. The series
∑∞

n=0 Φn
q converges in the space of bounded linear op-

erators and therefore produces a two-sided inverse I − Φq.

Proof. We claim that

||
(
Φn
qu
)

(t)|| ≤ ||q||n1 ||u||∞
(
tn

n!

)
.

We prove the claim by induction.

n = 0: 0 ≤ ||q||1||u||∞.

Now suppose it holds for some n. Then

∣∣(Φn+1
q u

)
(t)
∣∣ ≤ ∣∣∣∣−∫ t

0

(t− s)q(s)||q||n1 ||u||∞
sn

n!
ds

∣∣∣∣
=
||q||n1 ||u||∞

n!

∣∣∣∣−∫ t

0

(t− s)q(s)sn ds
∣∣∣∣

≤ ||q||
n
1 ||u||∞
n!

∫ t

0

|q(s)(t− s)sn| ds

≤ ||q||
n
1 ||u||∞
n!

· ||q||1 max
s∈[0,t]

{(t− s)sn} .

The last inequality follows by applying Lemma 6.2.3. We now find the maximum

of (t− s)sn by first setting the derivative of tsn − sn+1 equal to zero and solving

for s:

ntsn−1 − (n+ 1)sn = 0

ntsn−1 = (n+ 1)sn

nt = (n+ 1)sn

nt

n+ 1
= sn.
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We observe that s is definitely in the interval [0, t). Therefore max(t− s)sn is

(
t− nt

n+ 1

)(
nt

n+ 1

)n
=

t

n+ 1
· tn ·

(
n

n+ 1

)n
≤ tn+1

n+ 1
.

Thus

∣∣(Φn
qu
)

(t)
∣∣ ≤ ||q||n1‖u‖∞ (tn/n!)

for all n, which implies that

||Φn
q || ≤ ||q||n1 · (bn/n!) .

�

Lemma 6.2.5. The series
∑∞

n=0 Φn
q converges in the space of bounded linear en-

domorphisms and therefore produces a two-sided inverse I − Φq.

Proof. From Lemma 6.2.1, we have

∞∑
n=0

Φn
q ≤

∞∑
n=0

‖Φn
q ‖ ≤

∞∑
n=0

(‖q‖1b)
n

n!
= exp (‖q‖1b) ≤ exp

(
b(2p−1/p‖q‖p

)
,

using the Taylor series for e and Lemma 6.2.3. Thus, by Theorem 2.1.4, I − Φn
q

is invertible and

(
I − Φn

q

)−1
=
∞∑
n=0

Φn
q

because the space is complete. �
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Lemma 6.2.6. There is a uniform bound on the operator norms ‖ (I − Φq)
−1 ‖

for q ∈ Lp[0, b] with ‖q‖p ≤ 1.

Proof. For q ∈ Lp[0, b], we have

‖ (I − Φq)
−1 ‖ =

∥∥∥∑Φn
q

∥∥∥ ≤∑ ‖Φn
q ‖ ≤ exp

(
b(2p−1)/p‖q‖p

)
.

�

Lemma 6.2.7. Let q ∈ Lp[0, b] and a ∈ (0, b]. If Q ∈ Lp[0, b] with Q ≥ q and uQ

has no zero in (0, a), then uq has no zero in (0, a). Furthermore, uq has no zero

in (0, a] unless uQ(a) = 0, in which case q = Q almost everywhere in [0, a].

Proof. We claim that

(
uQu

′
q − u′Quq

)
(t) =

∫ t

0

(Q− q)(s)uQ(s)uq(s) ds

for t ∈ [0, b]. To prove this, we take the derivative of the left-hand side:

(
uQu

′
q − u′Quq

)′
(t) =

[
u′Qu

′
q + uQu

′′
q − u′′Quq − u′Qu′q

]
(t)

=
[
uQu

′′
q − u′′Quq

]
(t)

= [(Q− q)uQuq] (t).

We observe that for fixed t, both mappings

q,Q 7→
(
uQu

′
q − u′Quq

)′
(t)
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and

q,Q 7→
∫ t

0

(Q− q)(s)uQ(s)uq(s) ds

are continuous by Hölder’s inequality and Lemma 6.2.3, so the claim holds.

Now suppose uq has a zero in (0, a] and let z be the least such zero. Then

we have

(
uQu

′
q − u′Quq

)′
(z) =

∫ z

0

(Q− q)(s)uQ(s)uq(s) ds,

or

uQ(z)u′q(z) =

∫ z

0

(Q− q)(s)uQ(s)uq(s) ds.

We note that the left-hand side of the last equation is less than or equal to zero,

while the right-hand side is nonnegative because both uq and uQ are positive on

[0, z]. This forces both sides to be zero, and hence q = Q almost everywhere in

[0, z], which also forces z = a. �

6.3 A Minimum Exists

Finally, we need to show that the set

{z ∈ (0, b] : uq(z) = 0, q ∈ Lp[0, b], ‖q‖p ≤ 1}
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actually attains a minimum. We first note that for sufficiently large values of b,

the set is non-empty. For example, let

b >
(π

2

)2p/(2p−1)

and take

q(0) =
( π

2b

)2

.

Then

uq(t) =
2b

π
cos

(
πt

2b

)

satisfies u′′ + qu = 0, ‖q‖p < 1, and the first zero occurs at z = b.

Lemma 6.3.1. The infimum

β = inf {z ∈ (0, b] : uq(z) = 0, q ∈ Lp[0, b], ‖q‖p ≤ 1}

is positive.

Proof. First we observe that

uq(t) = (I − Φq)
−1 (id)(t),

implying that

t = ((I − Φq)uq) (t) = uq(t) =

∫ t

0

(t− s)q(s)u(s) ds.
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By Hölder’s inequality and Lemma 6.2.3, we have

‖ (Φquq)
′ ‖∞ ≤ b(p−1)/p‖q‖p‖u‖∞ ≤ b(2p−1)/p exp

(
b(2p−1)/p

)
.

Because

(Φ− qu) (0) = 0,

we have

uq(t) = t−
∫ t

0

(t− s)q(s)uq(s) ds

≥ t− max
s∈[0,t]

|(t− s)uq(s)| ·
∫ t

0

|q(s)| ds

≥ t− t2 exp
(
t(p−1)/p

)
t(p−1)/(p−1)

= t ·
(
1− t(2p−1)/p exp

(
t(2p−1)/p

))
.

If we solve

1− t(2p−1)/p exp
(
t(2p−1)/p

)
> 0,

we find

t < (W (1))p/(2p−1) ≈ (.567143)p/(2p−1),



74

where W is the Lambart W -function defined by W (x)eW (x) = x for x ∈ [−e−1,∞]

[14]. It follows that

β > (W (1))p/(2p−1) .

�

We note that as p gets very large,

(W (1))p/(2p−1) →
√
W (1) ≈ .753089.

Lemma 6.3.2. There exists q ∈ Lp[0, b], ‖q‖p ≤ 1, such that uq(β) = 0.

Proof. Choose a sequence {qj}j→∞ in the closed unit ball of Lp such that the uqj

have zeros zj > 0 with

∞
lim
j=1

zj = β.

Again we have the following relation: uqj = id + Φqj

(
uqj
)
. By Lemma 6.2.3, the

Φqj

(
uqj
)

are uniformly bounded with uniformly bounded derivatives. Utilizing the

Arzela-Ascoli Theorem, we can choose a subsequence which converges uniformly to

some u ∈ C[0, b]. Because the closed unit ball of Lp is sequentially compact in the

weak topology, we can again choose a subsequence so that for all f ∈ Lp/(p−1)[0, b],

lim
j→∞

∫ b

0

qj(s)f(s) ds =

∫ b

0

q(s)f(s) ds

for some q ∈ Lp[0, b], with ‖q‖p ≤ 1. The resulting subsequence {Φqjuqj}∞j=1

converges pointwise to Φqu, and since the
(
Φqju

)′
are uniformly bounded, the
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convergence is uniform. Thus we have

u = lim
j→∞

uqj = lim
j→∞

(
id+ Φqjuj

)
= lim

j→∞

(
id+ Φqju

)
= id+ Φqu.

Therefore u = uq and u(β) = 0. �

Lemma 6.3.3. Suppose q ∈ Lp[0, b], with ‖q‖p ≤ 1 and uq(β) = 0. Then q ≥ 0

and ‖q‖p = 1.

Proof. Let

Q = |q|/
(∫ b

0

|q(s)|p ds
)1/p

on [0, b] and zero elsewhere. Then Q ≥ q and ‖Q‖p = 1 by construction. By

Lemma 6.2.7, q = Q almost everywhere on [0, b], and the requirement ‖q‖p ≤ 1

implies that q = 0 outside of [0, b]. �

Let qβ be the minimizing q we found in Lemma 6.3.2. By Lemma 6.3.3, qβ

satisfies the conditions we placed on q in the introduction of this chapter, which

led to the discovery of β(p). Therefore β(p) is the minimum zero and the mini-

mizing solution uqβ is a multiple of pqp−1(t), as we also found in the discussion.

This proves Theorem 6.1.1.
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6.4 Further Results

Corollary 6.4.1. Suppose 1 ≤ p ≤ ∞. Given u′′+ qu = 0, (u, u′)(0) = (0, 1) and

||q||p = m, the infimum of the first possible zero of solutions is given by

βm(p) = m
−p

2p−1β(p).

Proof. If ||q||p = m, then in the discussion above, (6.2) becomes

v(t) =

[
2f(p)(p− 1)

mp(2p− 1)

]−p+1
2p−1

r

([
2f(p)(p− 1)

mp(2p− 1)

] −1
2p−1

t

)
,

which implies that the smallest possible zero changes by a factor of m−p/(2p−1).

Thus, the new zero is

βm(p) := m−p/(2p−1)β(p).

�

Corollary 6.4.2. On [0, b], suppose we have the equation

u′′ + qu = 0, (u, u′)(0) = (0, 1),

with q ∈ C[0, b], q ≥ 0, and ||q||p = m. Then the number of zeros n of a solution

in [0, b] is bounded:

n ≤
(

b

β(p)

) 2p−1
2p

m1/2.
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Proof. Suppose that u is a solution and that it has n zeros in [0, b]. Without

loss of generality, assume the zeros are evenly distributed; that is, they occur at

b/n, 2b/n, 3b/n, . . . , (n− 1)b/n, b. Let

ki =

[∫ ib
n

(i−1)n
b

qp(s)ds

]1/p

, i = 1, . . . , n.

Then

b/n ≥ β(p)k
−p/(2p−1)
i

by Corollary 6.4.1, and

k
p/(2p−1)
i ≥ nβ(p)/b,

which implies that

kpi ≥ [nβ(p)/b]2p−1
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for i = 1, . . . , n. Now, since ||q||p = m, we have

mp =

∫ b

0

qp(s)ds

=
n∑
i=1

∫ ib
n

(i−1)n
b

qp(s)ds

=
n∑
i=1

kpi

≥ n

[
nβ(p)

b

]2p−1

= n2p

[
β(p)

b

]2p−1

.

Solving the inequality

mp ≥ n2p [β(p)/b]2p−1

for n, we find

(b/β(p))(2p−1)/(2p)m1/2 ≥ n.

�

Notice that if we look at p =∞, we get n ≤ (b/π)
√
m.

Let us now consider 0 < p < 1. We claim that, given an interval [0, b] and

values n and ε, we can construct a function q so that

∫
|q|p ≤ ε
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and a solution to the differential equation

u′′ + qu = 0, (u, u′)(0) = (0, 1),

has n zeros in [0, b].

It is enough to show the construction on the first [0, b/n] since the process

is identical for the other n − 1 intervals. That is, we can construct q so that the

solution has a zero in [0, b/n] while keeping
∫ b/n

0
|q|p as small as we like.

Let η > 0 and define

q̂(t) :=

π
2η

sin
(
π
2η

(
t− b

2n
+ η
))

2η
π

sin
(
π
2η

(
t− b

2n
+ η
))

+ b
2n
− η

.

Notice that q̂
(
b

2n
− η
)

= 0 and q̂ (b/(2n) + η) = 0, which implies that

q(t) :=



0 if 0 ≤ t < b
2n
− η

q̂(t) if b
2n
− η ≤ t ≤ b

2n
+ η

0 if b
2n

+ η < t < b
n

is a continuous function.

We also have

q (b/(2n)) = π2n/(4nη2 + bπη − 2nη2π),
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so

lim
η→0

q (b/(2n)) =∞,

implying that q behaves like a delta function at b/(2n) as η gets very small. Thus,

we can make ||q||p < ε by picking η sufficiently small.

Now, let

û(t) :=
2η

pi
sin

(
π

2η
(t− b/(2n) + η)

)
+ b/(2n)− η.

We observe that

û (b/(2n)− η) = û (b/(2n) + η) = b/(2n)− η,

so the function defined by

u(t) :=



t if 0 ≤ t < b/(2n)− η

û(t) if b/(2n)− η ≤ t ≤ b/(2n) + η

−t+ b
n

if b/(2n) + η < t ≤ b
n

is continuous with a zero at t = b/n.

Since u(t) also satisfies u′′+qu = 0, (u, u′)(0) = (0, 1), we have constructed

the u and q that we needed.
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