
i

Authorization

In presenting this dissertation in partial fulfillment of the requirements for an
advanced degree at Idaho State University, I agree that the Library shall make it freely
available for inspection. I further state that permission to download and/or print my
dissertation for scholarly purposes may be granted by the Dean of the Graduate School,
Dean of my academic division, or by the University Librarian. It is understood that any
copying or publication of this dissertation for financial gain shall not be allowed without
my written permission.

Signature ___________________________________

 Date ______________________________

ii

DESIGN AND IMPLEMENTATION OF COMPACT
RECONFIGURABLE INPUT OUTPUT CONTROLLER

FOR CRS ROBOT MANIPULATOR

 by

Kashyap Kalavapudi

A thesis

submitted in partial fulfillment

of the requirements for the degree of

 Master of Science in Measurement and Control Engineering

 College of Science and Engineering

 Idaho State University

May 2017

iii

Committee Approval

 To the Graduate Faculty: The members of the committee appointed to examine the
thesis of Kashyap Kalavapudi find it satisfactory and recommend that it be accepted.

___ Major Advisor

Dr. Alba Perez-Garcia (Associate Professor, Associate Chair of Mechanical Engineering,
College of Science and Engineering, Idaho State University)

___Committee Member

Dr. S. Hossein Mousavinezhad (Professor, Electrical Engineering, Department of Physics,
Nuclear and Electrical Engineering, College of Science and Engineering, Idaho State
University)

 __Graduate Faculty Representative

Dr. Chikashi Sato (Professor and Associate Chair, Dept of Civil & Environmental
Engineering)

iv

Acknowledgments

This is an acknowledgement of the intensive drive and technical competence of many
individuals who have contributed to the success of this thesis.

I’m immensely thankful & obliged to Dr. Alba Perez-Gracia, for giving me the opportunity
and facilitating me to do this thesis and for her meticulous guidance and support throughout.

 I take pleasure in expressing my respects and thanks to Dr. S. Hossein Mousavinezhad for
his advice and support during the course of this thesis.

 I express my deep sense of gratitude to Dr. Chikashi Sato for u for being my graduate
faculty member.

Last but not least I would love to thank my parents for the bottom of my heart for their
support and love without which I could not meet and have a chance to work with these inspiring
personalities.

v

Abstract

The robotic manipulator CRS PLUS A150 have its own language, Robo Comm-II, to
program and control it. Having a different coding or programming system for each robot
is a problem in learning environments. The maker of this robot is defunct from more than
a decade, making it difficult to get information, manuals and parts to keep the robot in
working conditions. The ultimate aim of this thesis is to make the robot available to run
on open source programming such as Robot operating system (ROS). In order to do so,
the signals of motors and sensors have been identified and analyzed, and different
controllers and drivers have been tested. The resulting system is open source and has the
ability to interface with ROS as future work.

vi

Contents
Abstract

List of Figures viii

List of Tables xi

1. Introduction 1

1.1 Introduction 1

1.2 Report overview 2

2. CRS Robot 3
2.1 CRS-PLUS A150 robot arm 3

2.2 Motors 8

2.3 Encode r 9

3. Other Components needed 11
3.1 National Instrument CRIO Controller (NI cRIO-9704) 11

3.1.1 Digital output module- NI 9476 12

3.1.2 Digital input module- NI 9425 13

3.2 Driver module for motor 14

3.2.1 L298N Driver module 14

3.3 Other controllers 15

3.3.1 ARM controller board 15

3.3.2 Arduino 16

3.4 Regulated Power supply 18

3.4.1 Introduction to regulated power supply 18
3.4.2 SMPS 19

4. Software Installation and Configuration 20
4.1 Measurement & Automation Explorer 20

4.1.1 MAX 20

vii

4.1.2 Prerequisites for Installation 20

4.1.3 Configuring MAX 21

4.1.4 Device Properties in MAX 27

4.1.5 Configuring Devices in MAX 27

4.1.6 Help in MAX 29

4.1.7 Software Information 30

4.2 LabVIEW Installation 31

4.2.1 Prerequisites 31

4.2.2 Installation Procedure 32

4.3 Installing and Using NI cRIO-9074 32

4.3.1 Prerequisites for Installation 32

4.3.2 Installing cRIO – Procedure 32

5. Experiments/Results 36
5.1 Identification of power cables 36

5.2 Identification of encoder cables 38

5.3 Reading encoder signals with LabVIEW 39

5.3.1 Some basics of signal conditioning 39

5.3.2 Encoder signal conditioning 39

5.3.3 Other signal conditioning 41

5.4 LabVIEW Experiments 43

5.5 Reading encoder signals with LabVIEW 52

5.6 Controlling robot with NI CRIO 55

5.7 Reading encoder signals Arduino 57

5.8 Controlling robot with NI Arduino 58

6. Conclusion 60
6.1 Conclusion 60
6.2 Future work 60

Appendix 61

References 78

viii

List of Figures

Figure 2.1: CRS-PLUS A150 robot arm labeled with Axis (edited from [7])

Figure 2.2: Elevation view of CRS-PLUS A150 robot arm (CRS PLUS A150 Manual)

Figure 2.3: Plan view of CRS-PLUS A150 robot arm (CRS PLUS A150 Manual)

Figure 2.4: Dimension of CRS-PLUS A150 robot arm (Edited from CRS PLUS A150 Manual)

Figure 2.5: Stator and rotor of DC Brushless motor.

Figure 2.6: Speed -Torque Characters of TORQUEMASTER 2110 Series (TORQUEMASTER

2110 Series manual)

Figure 2.7: Optical Encoder (CRSPLUS A150 Manual, [6])

Figure 2.8: A, B and Z encoder pulses

Figure 3.1: cRIO-9074(edited from NI website)

Figure 3.2: NI 9476 and pinouts/front panel connections (NI 9476 manual)

Figure 3.3: NI 9425 and Pinouts/Front Panel Connections (NI 9425 manual)

Figure 3.4 gives L298N H-bridge module

Figure 3.5: Arm mbed 1768 board(NXP 1768 manual)

Figure 3.6: Arduino MEGA

Figure 3.7: Step down transformer

Figure 3.8: Circuit to convert 24VAC to 5VDC

Figure 3.9: SMPS at lab(MCERC lab 122)

Figure 4.1: Dialogue box at before MAX launch

Figure 4.2: MAX launch configuration

Figure 4.3: MAX system properties

Figure 4.4: Setting MAX system general properties

Figure 4.5: Setting MAX system properties

Figure 4.6: Setting MAX system properties interrupt level settings

Figure 4.7: Setting MAX system interrupts levels properties

Figure 4.8: Setting MAX Wavetek 1375 properties

Figure 4.9: Setting for VXIpc-870

ix

Figure 4.10: VXIpc Options

Figure 4.11: Setting Visa options

Figure 4.12: Setting Visa32.dll options

Figure 4.13: Firefox Setting

Figure 4.14: LAN settings

Figure 4.15: IP settings

Figure 5.1: Axis-1

Figure 5.2: Motor power cables

Figure 5.3: Encoder cable

Figure 5.4: Operational amplifier

Figure 5.5: Non-inverting Amplifier circuit diagram

Figure 5.6: Non-inverting Amplifier connections

Figure 5.7: voltage divider circuit

Figure 5.8: Voltage Regulator L78S05CV

Figure 5.9: Starting LabVIEW

Figure 5.10: Open LabVIEW

Figure 5.11: Creating new LabVIEW FPGA Project.

Figure 5.12: Discover existing system.

Figure 5.13: Selecting NI CRIO as controller

Figure 5.14: LabVIEW FPGA Project Preview

Figure 5.15: Project Explorer window

Figure 5.16: Creating new Vi file.

Figure 5.17: LabVIEW Front panel and Block diagram.

Figure 5.18: Example to LabVIEW code.

Figure 5.19: Save LabVIEW project

Figure 5.20: Saving LabVIEW Code

Figure 5.21: LabVIEW Compile

Figure 5.22: LabVIEW ready to run

Figure 5.23: Reading virtual pushbutton and energize virtual LED

x

Figure 5.24: Code to read I/O from Crio

Figure 5.25: Reading cRIO I/O

Figure 5.26: Reading encoder signals.

Figure 5.27: Encoder Output for A and B

Figure 5.28: Encoder Output for A and B

Figure 5.29: Counting Encoder Output at A and B pulses

Figure 5.30: Counting Encoder position

Figure 5.31: Velocity control in LabVIEW code.

Figure 5.32 shows the circuit connections to read encoder signals

Figure 5.33 connections for controlling motor with Arduino

xi

List of Tables

Table 2.1: CRS robot Axis

Table 2.2: CRS robot Axis Maximum Speed

Table 3.1: Arduino MEGA Specifications

Table 4.1: LabVIEW 2014 Development Environment

Table 5.1: Encoder pin description

1

Chapter 1

Introduction

1.1 Introduction

The objective of this thesis is to control the CRS PLUS A150 robotic arm using

different options: NI cRIO-9074 and LabVIEW programming and Arduino with L298N

motor driver module.

CRS PLUS A150 robotic arm is manufactured by CRS Robotics Corporation. The

company was acquired by Thermo Electron Corporation in 2002. Further Thermo Electron

Corporation became defunct from 2006. As a result, there is no support from the

manufacturer for this Robot. Moreover, there are very few manuals available online. The

CRS PLUS A150 robotic arm came with CRSPLUS robot system controller uses

programming software called ROBCOMM-II. Lack of proper documentation made

CRSPLUS A150 robotic arm almost a black box and made it next to impossible to use the

controller. This became a challenge to other academics as well. Dr. Saeid saeidi a faculty

member of Hakim Sabzevari University mentioned that “We have got some CRS plus A150

robot here but no one can work with them and their catalog and software are lost,

unfortunately. Can you or your TA help us on this problem?” [16] the same issue we had

at ISU. There is only one technical paper published related to CRS PLUS robotic arm [17].

It is a challenging task to bring such machine into working condition. So, it was

opted to use cRIO controller to control the robot with LabVIEW Coding. Advantage with

LabVIEW coding is that LabVIEW can interface with ROS. Once the CRS PLUS A150 robot

arm is ready to use, this system can be configured so that ROS will send and receive data

packages from the local network and LabVIEW code will work as a mediator to these

packages for ROS.

2

Later in this thesis, it was released that along with digital I/O, Driver should be

procured as the cRIO cannot handle the voltage and current rage. Alternatively, L298N

is selected to drive the motors. Further the controller is changed to Arduino. Selecting

Arduino will not affect the aim of the thesis, as Arduino can be interface with LabVIEW.

Thus, ROS can still be used even by using the Arduino.

1.2 Thesis overview

The report contains all the information to bring the CRS PLUS A150 to working

conditions. Chapter-2 gives details of the CRS PLUS A150 Robot arm, motors and

encoders of the robot. Chapter-3 is about other important components and their

specifications. Chapter-4 gives the step by step procedure for installation of the

important software used in this thesis. Chapter-5 is about the experiments conducted

and results. At the end of the report are all the available manuals related to CRS PLUS

robot, that have been collected from various resources collected over time.

3

Chapter-2
CRS Robotic Arm

 This chapter discusses CRS Robotic Arm used in this thesis. All the technical
details that are needed are given.

2.1 CRS-PLUS A150 robot arm

This robotic ARM belongs to A150 series of small industrial robot system, and was
given with a RSC-P8 controller and configured to run with ROBCOMM communication
package.

Figure 2.1: CRS-PLUS A150 robot arm labeled with Axis (edited from [7])

4

The company manufacturing is no more functional. As a result, information about
this Robot is difficult to find. As well spare parts including the motors are to be ordered
and not available off the desk.

This CRS robotic arm consists of six degrees of freedom. One translation, five are
revolute joints and one gripper. These axes are labeled from Axis 1 to Axis 6 as this is a
six-axis machine and for our understanding the axis is given with a name identical to the
human hand. The details are tabulated in table 2.1. Later in this report the axis are
specified by the same axis numbers.

Table 2.1: CRS robot Axis

The Robotic Arm is with the above details is shown in the Figure 2.1[7]. It is
suspended from the from the Axis-1 which is a linear axis, just below it is the rotational
Axis-5 which can rotate from zero to 350 degrees and back to zero. Note Axis-5 can’t go
over 350. Figure 2.2 gives the elevation view of CRS-PLUS A150 robot arm

Axis Number Joint Motion

_ Gripper _

Axis-1 Column Translational

Axis-2 Wrist roll Rotational

Axis-3 Wrist pitch Rotational

Axis-4 Elbow Rotational

Axis-5 Shoulder Rotational

Axis-6 Base Translational

5

Figure 2.2: Elevation view of CRS-PLUS A150 robot arm (CRS PLUS A150 Manual)

Second, third, and fourth axis are Chain driven. Care must be taken in maintaining
the chain system; the chain must be properly lubricated and should be checked. Figure
2.3 gives the plan view of CRS-PLUS A150 robot arm.

Figure 2.3: Plan view of CRS-PLUS A150 robot arm (CRS PLUS A150 Manual)

CRS-PLUS A150 robot arm can bear up to pay load of 2.2Pounds (1Kilogram) at
Maximum speed or 100% duty and a pay load of 4.4 pounds(2Kilograms) at Reduced
speed i.e. 80% duty.

The base is projected from a beam or column, the distance from the column to
the base of the CRSPULS A150 Arm. The distance between base mounting surfaces to
shoulder is 10 inches. The length of the joint from Shoulder to elbow is 10 inches. The
length between elbow to wrist pivot is 10 inches.

6

 The length between wrist pivot to tool flange surface is 2inches. The total length
of the bot from its base is about 194mm including the gripper and a stroke length of
660mm. Proper care must be taken while running the motor as there are good chances
of accident if we don’t put soft end limits in the program (note that there are no end
limiting sensors or limit switches on this robotic arm). To the range of motion of the robot
arm and the maximum speed of each axis (motor) are tabulated in table 2.2.

Table 2.2: CRS robot Axis Maximum Speed

Axis Number Range of motion Maximum joint speed(Deg/sec)

Axis-1 1250mm _

Axis-2 ±180 Deg 300

Axis-3 ±110 Deg 180

Axis-4 -130 to 0 Deg 100

Axis-5 47-0 to 100Deg 62

Axis-6 ±175Deg 100

Figure 2.4: Dimension of CRS-PLUS A150 robot arm (Edited from CRS PLUS A150 Manual)

7

2.2 Motors

 CRS-PLUS A150 robot arm is driven with Brushless DC servo motors manufactured
by Torque Systems. Before going in to the details of the specific motors used, here is a
review of basic information about with Brushless DC servo motors. Brushless DC servo
motors are more reliable, more efficient and less noisy. The recent industrial trend is to
use Brushless DC servo motors where the operations demand long life and reliability. They
are also lighter and need less maintenance than Brushed Motors with equivalent power
output.

Now let’s have a glance on operational principle of a brushless DC servo motors. The
stator of this type of motor has permanent magnets. Rotor has Cu (copper) coil wound as
shown in figure 2.5. Electrical energy is provided to so that preceding winding(pole) have
opposite magnetic polarity to that of permanent magnet and previous pole that just
passed will get same polarity to that of permanent magnet.

Figure 2.5: Stator and rotor of DC Brushless motor.

 Now let’s have a glance on operational principle of a brushless DC servo motors.
The stator of this type of motor has permanent magnets. Rotor has Cu (copper) coil
wound as shown in figure 2.5. Electrical energy is provided to so that preceding
winding(pole) have opposite magnetic polarity to that of permanent magnet and previous
pole that just passed will get same polarity to that of permanent magnet.

Thus, two forces push the rotor converting magnetic energy to mechanical energy.
To identify exact point of time to change the polarity of the poles by switch the current
brushless DC servo motor accomplishes commutation electronically using rotor position

8

feedback. The main disadvantage of brushless DC servo motor is cost; construction of a
BLDC motor is actually simpler than that of brushed DC motor or AC induction motor. The
higher cost of BLDC motor is caused by the additional driver circuit for BLDC motor.

All the motors in CRS-PLUS A150 robot arm are TORQUEMASTER 2110 Series of
brush servo motors. They have fast response, accurate control and high torque-to-inertia
ratios, capability to provide smooth operation throughout its range of operations. Speed
-Torque Characters of motor are shown in figure 2.6.

Figure 2.6: Speed -Torque Characters of TORQUEMASTER 2110 Series (TORQUEMASTER
2110 Series manual)

Motor connections were directly given to the Controller provided along with CRS-
PLUS A150 robot arm. Because of very little information available about this bot, and for
upgrading to better control, National instruments CRio-9074 controller used. So, the
cables were detached from previous control board, and for identification of power cables
for each axis the cable is cut open and labeled according to the Axis number.

9

2.3 Encoders

Encoder is electromechanical device that is used for sensing and provide feedback.
TORQUEMASTER 2110 Series motor of CRS-PLUS A150 robot arm have incremental
optical encoder. Digital signals are generated by this encoder in response to rotary
moment of the motor, thus converting mechanical moment in to electrical signal to obtain
position or speed measurement. There will be a LED or infrared Diode in the circuit and a
LED or infrared sensor separated by a metal or glass grating disc. This disc is connected to
the shaft of the motor and so, rotates along with the motor. The Light or Infrared rays are
sensed by the sensor each time the Light passes through grating. Sensed signal is then
converted to measurable electrical pulse by encoder.

The resolution of the encoder depends on number of increments per revolution.
A picture of optical sensor is given in Figure 2.7[6](the picture is taken from an internet
resource[6], author of this report doesn’t claim credit for this Figure 2.7). Model/part
number of the encoder on TORQUEMASTER 2110 Series motor is unknown; however in
the manual of the CRSPLUS A150 robot Arm specifies that there are 1000 lines per
revolution. (Refer page C-12 in the manual). So 1000 pulses for each revolution of shaft
can be read at A and B and 1 pulse can be read at Z. One may contact Torque System for
any further details if needed. As depicted in the figure 2.7, we have three signals for this
optical sensor, namely A,B and Z. pulse signals from A and B are used to find the direction
of rotation and measuring speed/position. Whereas, Z pulse signal indicates zero
reference of the motor (note that there will be only one Z pulse signal per revolution).

Figure 2.7: Optical Encoder (CRSPLUS A150 Manual, [6])

10

Figure 2.8 shows the relation between A, B and Z pulses of the encoder. This
information is very necessary to understand and write the code for designed control of
the robotic arm.

Figure 2.8: A, B and Z encoder pulses

Observe that the A and B are out of phase, this helps in determining the direction.
For example, if A is high followed by B pulse, gives the direction of motor to be clockwise
then B pulse getting high followed by A pulse gives the opposite direction i.e. counter
clockwise. The number of pulses is counted for the speed or to identify the position of
the motor. As discussed earlier Z is to give the reference signal.

11

Chapter-3

Other Components needed
This chapter discusses about the important electrical components that are needed

for controlling/ operating the CRS-PLUS A150 robot arm. The following components are
described thoroughly.

3.1 NI cRIO Controller
3.2 Driver module for motor
3.3 Other controllers
3.4 Regulated Power supply

3.1 National Instrument Compact RIO Controller (NI cRIO-9704)

The NI cRIO-9074 is an efficient integrated system. It is a combination of real-time
processor and a reconfigurable FPGA (field-programmable gate array).The chassis is
available with eight slots which can be used for NI C series Digital I/O, Analogue I/O, Motor
Drive module, DAQ systems which can be used for embedded, machine control and
monitoring applications. The real-time processor is of industrial grade worked with a
frequency of 400MHz and 2M gate FPGA. This system features 128 MB of DRAM for
embedded operation and 512 MB of nonvolatile memory for data logging. NI cRIO-9074 is
powered by the NI LabVIEW reconfigurable I/O (RIO) architecture.

Figure 3.1: cRIO-9074(edited from NI website)

The cRIO-9074 features two Ethernet ports that you can use to conduct
programmatic communication over the network and built-in Web (HTTP) and file (FTP)

12

servers as well as to add expansion and distributed I/O to the system. Picture of cRIO-
9704 is shown in figure 3.1.[8].

To the cRIO-9704 six input modules are connected, the following of the details of the
modules

1. Digital output module- NI 9476
2. Digital input module-NI 9425
3. Analogue output module- NI 9263
4. Analogue input module- NI9223
5. Analogue output module- NI 9263
6. Analogue input module- NI9223

3.1.1 Digital output module- NI 9476

NI 9476 is a 32 channel that operates on 24VDC; the output range is from 6V to
36V sourcing digital output with a maximum current of 0.25A.

Figure 3.2: NI 9476 and pinouts/front panel connections (NI 9476 manual)

This works at industrial logic level signals to wide range of relays actuators and
motors. Figure 3.2[9] gives pin connection details of NI 9476.

13

The plan for this thesis is to write LabVIEW code to generate PWM signal from this
module to control the Robot arm. But Note that the max current output is very low for
CRS plus A150 Robot Arm, so we have to use an external driver for controlling CRS plus
A150 Robot Arm.

3.1.2 Digital input module- NI 9425

NI 9425 is a sinking Digital input with 32-Channel. NI 9425 can read a signal in the
range of 10VDC to 24 VDC. Proper signal conditioning is to be done before you expect to
read any signal. Specifically in this thesis the quadrature encoder is to be read to control
the CRS plus A150 Robotic Arm. The output of the encoder is 5VDC and if we connect it
directly to the NI 9425 it can’t read the signal. So, we need to amplify the signal before
we provide the signal to the Ni 9425. Proper care should be taken while amplifying the
signal as there is chance of amplifying the noise signal as well. Further more details are
given in next chapters about signal conditioning.

Figure 3.3: NI 9425 and Pinouts/Front Panel Connections(NI 9425 manual)

This report doesn’t discuss about the Analogue modules as on cRIO, as we are not
using them for now. But the technical manuals can be found in national instruments
support website [11]. Once the modules are installed on to the cRIO we have to initialize
cRIO and other software required to use cRIO, A detailed initialization procedure is given
in chapter 4 of this report.

14

3.2 Driver module for motor
To control the motor direction of rotation, speed or position, we need a driver, as in

this thesis we are using cRIO-9074 we can opt for a National instruments Driver module
that is compatible with cRIO and the torque system Motors of the CRS Plus A150 robot
Arm. But the issue is we need six driver modules and this is an expensive approach. The
alternative is approach for an economical solution is to use H-bridge. H bridges are being
used for a long time for controlling the motors. L298N is a known and reliable DC motor
drive that is available of the desk and for a few bucks. We now have other issue here,
that is the current and voltage rating of the motor. The motor at higher load/ speed
requires a current more that 2Amps and voltage up to 30VDC or more. As we neither
require handling high payloads nor high velocity, we fix the operation range from 7VDC
to 12Vdc and max current to 2Amps.

3.2.1 L298N Driver module

L298N is Dual-channel, H-bridge motor driver module. It has high working
efficiency, is capable of driving two DC motors simultaneously. And can provide an output
of continuous 5VDC when you input more than 5VDC as driving voltage. It can proved a
continuous current of 2A and can bear up to 3A MAX. It has inbuilt capacity filter, after
flow protection diode, so it is more stable and reliable.

Figure 3.4 gives L298N H-bridge module

15

Three L298N Modules are to be used to control six-axis of the CRS plus A150 robot
arm. Figure 3.4 gives L298N H-bridge module the necessary input and output connections
details.

3.3 Other controllers

Further while doing experiments, there were issues generating PWM from digital
output module NI 9476 using LabVIEW. The details are given in chapter five of this report.
For this other controllers are tested and used to generate PWM. A brief introduction of
following controllers is given here.

a. ARM controller board
b. Arduino

3.3.1 ARM controller board

After through research on generating PWM in LabVIEW, NXP 1768 board is
selected to generate PWM signal to control the motor. It is an ARM Cortex-M3 based
microcontroller that operates up to 120MHz CPU frequency. The ARM Cortex-M3 CPU works with
a 3-stage pipeline that makes it a better operating microcontroller. The ARM Cortex-M3 CPU also
has the ability to an internal pre-fetch unit that supports speculative branches. This board can
interface through both Ethernet and USB. It can have the capability of motor control with PWM
and Quadrature Encoder interface [12].Picture for NXP 1768 board and its pin configuration
is shown in figure 3.5(taken from internet resource [13]). We can use pins p5 to pin p30
as digital I/O interfaces.

Figure 3.5: Arm mbed 1768 board (NXP 1768 manual)

16

This controller can an ability to generate 6 PWM signals and is specially allocated
from pin P21 to pin P26. Sufficient for controlling CRS plus A150 robot arm. We can read
the sensor from digital I/O pins. The tests done and code written on this controller are in
chapter 5.

3.3.2 Arduino

 Arduino is one of the most common microcontroller board that is used in
academic projects. Arduino has onboard Analog I/O and Digital I/O. IT uses embedded
programs which are called sketches. Arduino hardware and programming language are
open source. It can interface with Pc through USB. There are multiple external plugin
modules, adding them to can extend functionality of the Arduino. One more advantage is
that the Arduino can also be interfaced with LabVIEW.

Figure 3.6: Arduino MEGA

17

Table 3.1 Arduino MEGA Specifications

Microcontroller ATmega1280

Operating Voltage 5V

Input Voltage (recommended) 7-12V

Input Voltage (limits) 6-20V

Digital I/O Pins

39

15 -PWM output (can also be
used as Digital I/O)

Analog Input Pins 16

DC Current per I/O Pin 40 mA

DC Current for 3.3V Pin 50 mA

Flash Memory 128 KB

SRAM 8 KB

EEPROM 4 KB

Clock Speed 16 MHz

LabVIEW must be version 9 or more to interface with Arduino. Moreover,
feedback signals from encoder need not be amplified as Arduino can efficiently read
pulses of 5VDC. An Arduino Uno is good enough to generate 6 PWM Signals but we need
12 also enable signals apart from reading encoder signals. So, Arduino MEGA is better as
it has more number of I/O ports. Arduino MEGA has 54 Digital IO, 16 Analog IO. Other
details are tabulated in table 3.1 and figure 3.6 [14] shows the Arduino MEGA.

18

3.4 Regulated Power supply

 3.4.1 Introduction to regulated power supply

 Regulated Power supply or power supply unit (PSU) is a device or system that
supplies electrical energy. A power supply unit can be considered as source but it doesn’t
generate electric power. It just converts the electric energy to the level and type we need.
For example Arduino needs 5VDC, Motors need 6 to 36VDC. Etc. but the voltage we have
in our socket is 120VAC. So we need to step down the voltage to the required level and
convert this in to direct current (DC), that doesn’t have any ripples. For understanding the
process take an example that 5VDC is needed. This whole process is divided into following
steps

Step1:-First step is to convert high voltage to lower voltage level. In USA the mains are
120VAC, with frequency of 60Hz. In this step we have to bring this 120VAC to 12VAC.For
this purpose we use a step down transformer, shown in figure 3.7. Step down transformer
will step down the voltage at secondary and increases the current at secondary. There by
maintaining constant power at both primary and secondary. Note that frequency is not
affected. So we have a 12VAC with a frequency of 60HZ.

Figure 3.7: Step down transformer

Step2:- Now 12VAC is to be converted to DC Voltage. For the 12VAC is given to Bridge
rectifier. Bridge rectifier converts AC to DC. But he output is not pure DC there is some
AC Components and little ripples in to the output of the Bridge rectifier. These AC
components are filtered by introducing a capacitor at output and then this voltage is to
be regulated by a regulator LM7805 which gives a pure 5VDC. The circuit is shown in figure
3.8.

19

Figure 3.8:- Circuit to convert 24VAC to 5VDC

3.4.2 SMPS

These there are switching mode power supplies readily available. They are capable
to tune the voltage to the required level. Not only the voltage even the current can be
adjusted depending on the requirement. Figure3.9 shows the SMPS in the lab, just
adjusting the nobs we can adjust the voltage. But at a time we can only get one output.
5Vdc and 12Vdc both are needed as discussed earlier. But fortunately the L298N will
generate 5VDC which is used for energizing Quadrature encoders and Arduino.

Figure 3.9: SMPS at lab (MCERC lab 122)

20

Chapter-4

 Software Installation and Configuration

4.1 Measurement & Automation Explorer
Measurement & Automation Explorer (MAX) provides access to your National

Instruments CAN, DAQ, Field Point, GPIB, IMAQ, IVI, Modular Instruments, Motion, NI
Switch Executive, VI Logger, VISA, and VXI devices. Like other NI software products, NI-
DNET uses MAX as the centralized location for all configuration and tools.

4.1.1 MAX

Following are few aspects that can be achieved through MAX implementation:

 Configure your National Instruments hardware and software

 Back up or replicate configuration data

 Create and edit channels, tasks, interfaces, scales, and virtual instruments

 Execute system diagnostics and run test panels

 View devices and instruments connected to your system

 Update your National Instruments software

This document is needed to learn how to install MAX and use it to configure ones VXI
system.

4.1.2 Prerequisites for Installation

 MAX automatically installs with the NI-VISA version 2.5/higher or NI-VXI version
3.0/higher.

 MAX is available for only Win-32 based Operating Systems.
 MAX cannot be downloaded by itself.
 It can be downloaded as a package with National Instruments drivers (NI-VISA,

NI-DAQmx, etc.) and in the NI System Configuration package.

21

4.1.3 Configuring MAX

 Select Measurement & Automation under National Instruments in Programs.
o Start Programs National Instruments Measurement &

Automation
 The program can also be launched by double clicking on the desktop icon,

shortcut for the same.
 After the above step, MAX displays the below dialog box. This dialog box is used

to configure MAX to search for new devices each time this is launched.
o This dialog can also be configured to appear next time MAX is launched

with the help of the check box (See in the dialog box Figure 4.1).

Figure 4.1: Dialogue box at before MAX launch

o In the dialog box above, the first radio button is selected which means MAX

is not configured to show updated system view when there are any changes.
o Hence the system has to be refreshed after performing any changes.
o If these preferences have to be changed, this dialog box can be accessed by

selecting User Preferences under Tools option.

 In the Configuration section on the left hand side, for the Devices and Interfaces
option under My System, click on the plus (+) sign to expand the options further
down. From the resulting options, expand the VXI System 0 option too in the
same way by clicking on the plus sign (+) and then expand Frame 0. The MAX
interface appears as in the below screenshot in Figure 4.2:

22

Figure 4.2: MAX launch configuration

Configuration Tree: The Configuration tree shows a hierarchical view of the
instruments in the system. In the above figure, MAX shows below instruments:

 VXI System with one VXI chassis (Frame 0)
 A National Instruments VXIpc-870 embedded controller
 A Wavetek 1375 arbitrary waveform generator
 A National Instruments MIO-64E-1 multifunction data acquisition

board

 The below MAX toolbar appears when the VXI system is selected in the
configuration tree.

o The Properties from the toolbar displays properties of the selected VXI
system.

o Run VXI Resource Manager runs VXI Resource Manager (Resman) for the
selected VXI system.

23

o NI-VXI 3.0 or higher supports multiple VXI systems and both the
properties and Resman apply to only the currently selected VXI system.
To check properties and run Resman for all VXI systems, select Tools
NI-VXI VXI Resource Manager.

System Properties:

 Properties option can be selected from the tools bar to view the properties for
the selected VXI system. Properties can also be viewed by right clicking on a
specific VXI system as shown in figure 4.3 and selecting Properties option from
there.

Figure 4.3: MAX system properties

 Additional options when right clicked on VXI system include:
o Run VXI source Manager to launch Resman
o Hardware Configuration to access hardware configuration for the system

controller
o Create new VME device to create a VME device as the name suggests.

 View the properties for the VXI system 0 by right clicking and selecting
Properties. Below in the figure 4.4, is the Properties dialog box that shows up:

24

Figure 4.4: Setting MAX system general properties

 Following options can be viewed further under General tab:
o Device type is displayed.
o Device status is mentioned.
o There is a Troubleshoot option to fetch online help when there is a

problem with the system.
o Device enabled status is shown at the bottom.

 Select Settings tab - the second tab, which is as shown in Figure 4.5 below:

25

Figure 4.5: Setting MAX system properties

 Following points can be inferred from the above Settings dialog:
o VXI system number and Resman delay for a specific VXI system can be

changed.
 Select the Interrupt Levels tab which is as in figure 4.6 below:

Figure 4.6: Setting MAX system properties interrupt level settings

26

 This tab can be used for the following:
o Assign interrupts to specific controllers and set mappings for each

interrupt level.
o For the Assignment field, below 4 options can be selected from the

drop down menu:
 Auto – Automatically assign to a programmable handler.
 Local – Assign interrupt level to a local controller.
 Choose LA – Choose logical address for the controller that will

handle the interrupt.
 None – Do not assign the interrupt level to any controller.

o For the Mapping field, we have following options in the dropdown:
 Auto – Map automatically to root if root is the handler, else

does not map.
 Source – Map away from the root (Source the interrupt)
 None – Do not map.

o On clicking on Assist Me, Interrupt Levels dialog box appears as given
in Figure 4.7 below:

Figure 4.7: Setting MAX system interrupts levels properties

o This dialog box can be used for detailed descriptions of all settings and to
set options separately for each interrupt.

Configuration View: Configuration view shows registers/address spaces
requested by various devices in A16, A24 and A32 space. [For further details -
999]

27

 Various items in the configuration tree can be selected to review the
information in the task list. The task list contents change according to the
interface and device selected.

4.1.4 Device Properties in MAX

 Select Wavetek 1375 in the configuration tree. It provides information on the
device in the Attributes tab of the configuration view shown as figure 4.8.

 Properties information for the Wavetek 1375 can be reviewed by right
clicking on Wavetek 1375 and selecting Properties.

Figure 4.8: Setting MAX Wavetek 1375 properties

4.1.5 Configuring Devices in MAX
 VXI devices can be configured through the software. MAX can be used for

that purpose.
 Right clicking on the VXIpc-870 controller in the configuration tree and

selecting Hardware Configuration shows the below dialog box figure 4.9:

28

Figure 4.9: Setting for VXIpc-870

 Each tab starting from General to SMB allows to carry out specific
activities/configure for the hardware related to specific controller. [For
further details - 999]

 By selecting the options Tools NI-VXI VXI Options, MAX can be
customized to meet the system needs through the VXI options displayed.
Below is the screenshot in figure 4.10:

Figure 4.10: VXIpc Options

29

 With the help of the options Tools NI-VISA VISA, NI-VISA options can
be set and driver can be set to run Resman on startup. Below is the
screenshot in figure 4.11:

Figure 4.11: Setting Visa options

4.1.6 Help in MAX
 Online support from MAX helps with common questions that are collated

from:
o Several years of technical support calls
o Helpful hints
o References to application notes
o Procedures to setup large variety of systems.

 If the MAX is residing on a network, there is a web link offered that links to
the technical support home pages of National Instruments, NI-VISA and NI-
VXI.

 Following can be accessed for help and information from the above links:
o Online Problem Solving and Diagnostic Resources that include:

 Knowledge Base
 Ttroubleshooting wizards
 Product Manuals
 Hardware Reference Databases
 Application Notes

o Software Related Resources that include:
 Instrument Driver Network

30

 Example Programs Database
 Software Library

 For further help, we can get it from Help Help Topics NI-VXI

4.1.7 Software Information
 Information about the system can be viewed by Expand Software folder in the

Configuration Tree Expand NI-VISA icon Select visa32.dll.
 The below window in figure 4.12 appears with the Software information:

Figure 4.12: Setting Visa32.dll options

 Information on all the National Instruments versions of the drivers in the system
is viewed here.

 This information aids during troubleshooting of the system to identify for any
gaps.

31

4.2 LabVIEW Installation

LabVIEW (Laboratory Virtual Instrument Engineering Workbench) is a system-design
platform and development environment for a visual programming language from
National Instruments.

4.2.1 Prerequisites:

 Following are the prerequisites to be met to install the LabVIEW 2014
Development Environment in the Windows Operating System based computer,
that is given in table 4.1:

Table 4.1: LabVIEW 2014 Development Environment

Windows Run – Time Engine Development Environment
Processor Pentium III/Celeron 866 MHz or

equivalent
Pentium 4/M or equivalent

RAM 256 MB 1GB
Screen
Resolution

1024 x 768 Pixels 1024 x 768 Pixels

Operating
System

Windows 7/Vista (32-bit and 64-bit)
Windows XP SP3 (32-bit)
Windows Server 2003 R2 (32-bit)
Windows Server 2008 R2 (64-bit)

Windows 7/Vista (32-bit and 64-bit)
Windows XP SP3 (32-bit)
Windows Server 2003 R2 (32-bit)
Windows Server 2008 R2 (64-bit)

Disk Space 353 MB 3.67 GB (includes default drivers from
the NI Device Drivers DVD)

Color
Palette

Not Applicable LabVIEW and the LabVIEW Help
contain 16-bit color graphics. LabVIEW
requires a minimum color palette
setting of 16-bit color.

Temporary
Files
Directory

Not Applicable LabVIEW uses a directory for storing
temporary files. National Instruments
recommends that you have several
megabytes of disk space available for
this temporary directory.

Adobe
Reader

Not Applicable You must have Adobe Reader installed
to search PDF versions of all LabVIEW
manuals.

32

 Following are the restrictions for installing or using LabVIEW on windows:
o LabVIEW is not supported in the Windows 2000/NT/Me/98/95 Operating

systems and in Windows XP 64 bit systems.
o LabVIEW cannot be used or installed in Windows systems by logging in

with a Guest account.

4.2.2 Installation Procedure:
 Insert the LabVIEW platform installation DVD and run it.
 Click on the Install LabVIEW 2014 option.
 When prompted for a serial key, enter the serial key of the corresponding

version of the LabVIEW and continue.
 Provide the folder where the LabVIEW is to be installed when prompted and

continue further.
 Continue the installation by selecting the default options listed and at the end in

the License Agreement page, be sure to check the license terms check box and
click on Next.

 There is a prompt to install the hardware support which is the device drivers.
This is needed if there is any external software being used or to be used. Else
click decline and continue.

 This completes the installation.
 There is a prompt to restart the system. Continue with the restart and open the

application to start using it.
 There may be a need for additional modules/toolkits to start using the particular

version of LabVIEW installed.
 To check and confirm if the system meets minimum requirements to start using

the LabVIEW, locate the module or toolkit readme in the LabVIEW Platform
readme file on the installation DVD and clarify the same. The file is named as
readme_platform.html.

4.3 Installing and Using NI cRIO-9074

Description cRIO (CompactRIO) is a real-time embedded industrial controller made by
National Instruments for industrial control systems. The CompactRIO is a combination of
a real-time controller, reconfigurable IO Modules (RIO), FPGA module and an Ethernet
expansion chassis.

4.3.1 Prerequisites for Installation

 LabVIEW 8.6 version or the latest, not any earlier LabVIEW

33

 MAX (Measurement & Automation Explorer) software installed with
LabVIEW 8.6

 NI cRIO-9074 chassis and its power cord
 cRIO software installation disk (NI-RIO)

4.3.2 Installing cRIO – Procedure

 Install LabView 8.6/ later versions and NI-RIO. MAX (Measurement &
Automation Explorer) should be automatically installed with LabView 8.6/
later versions, and is the program you will use to initialize the cRIO. NI-RIO
is a collection of drivers for the cRIO, and is located on a CD that comes
with the cRIO.

 Open Windows Firewall and follow the below steps to add LabView 8.6/
later versions and MAX to Windows Firewall’s list of exceptions as shown
in figure 4.13.

Figure 4.13: Firefox Setting

 Click on Add Program and from the resulting set of programs add either or
both of the below :
o National Instruments LabVIEW 8.2/ later versions
o National Instruments LabVIEW 8.6/ later versions

 Once you get the below screen, it means that MAX is successfully added to
Windows Firewall.

 Change your laptop’s IP address to the fixed value 192.168.0.1. For this:
o Locate the internet connection properties.

34

o Go to the Control Panel, open Network Settings, then right click on the
network connection you are interested in [LAN] and choose Properties.
The below screen given in figure 4.14 pops up :

Figure 4.14: LAN settings

 Select Internet Protocol (TCP/IP) in the window above and click
Properties.

 Choose Use the following IP address and provide the IP as
192.168.0.1.

 Once communicating with the cRIO is completed, change the
setting back to Obtain an IP address automatically shown in
figure 4.15.

35

Figure 4.15: IP settings

 Connect the cRIO chassis to the system with an Ethernet cable and
connect the power cord to the cRIO to power on the cRIO.

 Set the IP RESET switch on the cRIO to the ON position and press the
RESET button on the cRIO; this resets the cRIO and assigns it a fixed IP
address of 0.0.0.0.

 Once the cRIO is on, set the IP RESET switch back to the OFF position.
If not, the cRIO will reset it’s IP address every time it is powered on or
reset.

 Open MAX and press F5 to refresh the left display pane. MAX should
find the cRIO and display it in the left display pane.

 Select the respective cRIO in the left pane of MAX and using the right
pane, change the following settings:
 cRIO IP = 192.168.02
 cRIO gateway = 192.168.0.1
 Subnet mask = 255.255.0.0

 Click apply to save these changes. This will change the cRIO’s IP
address.

36

5 Experiments and Results

5.1 Identification of power cables

The power cable identification for CRSPLUS A150 is the first task to get robot to
work. The identification and labeling of the power cables was done by Mr. Abdulrahman
Alshankiti (Grad student of ISU, who worked on this thesis earlier). Later necessary
changes to cable labeling are done for convenience. The main moto of writing this as a
part of thesis report is to give the future students a clear idea about the cables and fro
ease of axis, so, that they may not need to start research over the cables to the axis
motors.

Unlike other Axis, Axis-1 has a separate cable. It is the only cable that has both
power and encoder wires together. Generally encoder cables are not combined with
power cables to protect the Encoder signals. Also a part of industrial standards, any
sensor cables are generally shielded to protect encoder signals from interference from
other signals or power transmission lines and to reduce the effect of noise from
surrounding environment. For instance, a Japan based company by name Fanuc adopted
optical communication for all the feedback signals in its machines including encoder
signals from motor. For safety it is recommended power cables with different power
levels are to be run with 90 degree angle between the cables. A current carrying
conductor will get will have magnetic energy. Axis-1 cable is labeled with its axis number
as shown in figure 5.1.

Figure 5.1: Axis-1

But the other Axis motor power connection wires are all together in a single cable.
Identifying each power cable for an axis is an easy task, first a cable is selected then power
of 12VDC is given directly to the cable. Now the ground cable from the 12VDC is

37

connected to the rest of unknown cables till motor rotates and then pair of cables can be
identified. They are well labeled with their axis numbers/joint numbers as shown in figure
5.2.

Figure 5.2: Motor power cables

We need not do any calculations for the dimensions of the cable the manufacture
should have already taken care of these. But when we connect them with through
another wire to our drive or controller care must be taken for the dimensions of the cable
being used. The following are the formula to calculate diameter/ size of the cable, for
both single phase and three phase circuits.

Calculating Wire/Cable Size formula for single Phase Circuits

Wire Circular mils =
2 x ρ x I x L

 %Allowable Voltage drop of source voltage

Calculating Wire/Cable Size formula for Three Phase Circuits

 =
√

 %

Where;

ρ = Specific resistance of the metal used

D = half the total circuit length

I = Load Current in Amps

% Allowable Voltage drop of source voltage should not be more than 2.5% according to
according to IEEE rule B-23.

38

Note: the Value of ρ = Specific resistance or resistivity of Conductor is used here for
copper and aluminum is 11.2 and 17.4 respectively at 53° C (127° F).

5.2 Identification of encoder cables

 Identification of encoder cables is not as simple as it looks and also very time
consuming process. The complexity is each encoder has 5 cables to be identified as
tabulated in table 5.1.

Table 5.1: Encoder pin description

SL No. Encoder cable

1 +5V DC

2 GND

3 A

4 B

5 Z

Table 5.1: List of cables for each encoder

Figure 5.3: Encoder cable

39

The encoder may break if 5Vdc is given a wrong pin/wire. To avoid any mishap, a
different approach is followed. First the 5Vdc and ground cable of each encoder is
identified. This is done by opening the cap of the encoder, then identify the 5Vdc and
GND wires(generally Red and Black wires)and then check the connectivity at the point of
contact to encoder and end of encoder wire.(note that all cables connected to encoder
is then connected to a cable with 57 wires of 0.5mm diameter. So we can’t go with the
color code of the cable. After find ding the power of each cable A and B are identified for
each cable.

5.3 Signal conditioning

5.3.1 Some basics of signal conditioning

Signal condition is an essential aspect of today’s industrial automation,
measurement and control; that enables us to effectively measure, maintain or improve
sensor signals and thus helps in efficiently controlling the system. Signal conditioning
converts input signals into the signals acceptable to digitization hardware. Here are
some examples where signal conditioning comes in aid:

 Isolation— to provide a protective barrier between sensors and other digital
equipment or controller. In specific when handling with high voltage equipment.

 Noise reduction-To prevent noise produced due to ground loops, which decrease
signal quality.

 Filtering—Filtering process reduce noise and remove unwanted signal
frequencies arising from external sources.

 Amplification—Amplification is a process to increases a signal’s amplitude or
voltage level. This process increases measurement accuracy of small signals.

 Attenuation- Attenuation is to reduce signal’s amplitude. It is equally important
as amplification in systems that produce higher voltage sensor signals levels.

 Switching relays—one of the best examples and most used application of signal
conducting is switching relays, to control a very high voltage Ac motor with a
digital controller is almost impossible without Relays. Relays accept control
signals as low as 5VDC and can control a 1000VAC three phase motors.

5.3.2 Encoder signal conditioning

The encoder generates a train of 5V pulses in synchronous to the rotation of the
motor. But the NI cRIO can’t read signals of 5V, hence can’t read quadrature encoder
feedback signals. To overcome this situation the feedback signal is to be amplified to
a higher level. Operational amplifier (in short Op-amp) can be used to amplify the
signal. Op-amp is an integrated circuit that is perfect for DC amplification applications.

40

Ideally it has infinite input impedance, zero output impedance, infinite bandwidth and
zero offset voltage. Using Op-amp in non-inverting mode we can amplify this encoder
signals the required level.

Figure 5.4: Operational amplifier

` For a non-inverting amplifier the input is given at non- inverting terminal that is
pin 3 and the output is taken from the pin 6. Pin 2 is grounded with through R1 and
feedback resistor is connected between pin 2 and pin 6.

Figure 5.5: Non-inverting Amplifier circuit diagram

The output of the non-inverting amplifier is given by = 1 + ……..Eq 5.1

41

The input signal is 5V the aim is to double the voltage. This can be achieved by taking =
. So let = = 1KΩ.

= (1 + 1)

= (2)5

= 10V

Figure 5.6: Non-inverting Amplifier connections

5.3.3 Other signal conditioning

The operational voltage for motor of CRS PLUS A150 robot arm is 6VDC to 36VDC.
But for this thesis we are operating in the range of 6VDC to 12VDC. So the SMPS is set
to 12VDC. But the encoder needs 5VDC for energizing it. There are multiple ways to
get a constant 5 VDC to supply power to Encoder.

5.3.3.1 Voltage Divider circuit

A simple voltage divider circuit can be used to reduce the voltage from 12VDC to 5VDC.
Voltage divider circuit is shown below in figure 5.7

42

Figure 5.7: Voltage divider circuit

The output voltage Vo is given by the equation V =
()

…….....Eq 5.2.

V =
12 ∗ 1.5

(2 + 1.5)
= 5V

5.3.3.2 Voltage Regulator

The voltage regulator is an IC that will give a constant voltage as output. Generally
voltage has three pins. Pin 1 is source voltage, Pin 2 is GND and Pin 3 is output voltage.
L78S05CV is a voltage regulator that will give a constant 5VDC output. The input for this
regulator cam varies from 5 VDC to18VDC. Irrespective of input the output voltage is
always maintained constant.

Figure 5.8: Voltage Regulator L78S05CV

43

5.4 LabVIEW Experiments

Once the LabVIEW is set up and cRIO is successfully connected to the system, we
can create projects and write the required code. Go to start on your windows desktop
screen and search for LabVIEW, Select the desired LabVIEW version in case if you have
more than one LabVIEW versions installed on your system. You can rum both the versions
simultaneously with two different codes or by using different instruments at the same
time.

Figure 5.9: Starting LabVIEW

Once you double click on LabVIEW, it will initializes plugins and opens LabVIEW as
shown in figure 5.1. If one wants to open the previously opened or written code, can go
to open existing and select the code needed. Or can create a new project by selecting the
needed from the options below Create Project soft button.

44

Figure 5.10: Open LabVIEW

Select the LabVIEW FPGA Compact RIO Embedded System or LabVIEW FPGA
Project and press next

Figure 5.11: Creating new LabVIEW FPGA Project.

Select Discover existing system and click on next. This will enable the computer
to detect the NI cRIO that is already physically connected to the computer.

45

Figure 5.12: Discover existing system.

Once the system is detected it prompts to select the device that we want to
establish connection. We only have one cRIO connected to computer so select the NI
cRIO9074 and lick next button on the screen.

Figure 5.13: Selecting NI CRIO as controller

46

Now the connection is established successfully, click on finish and project will be
readily available.

Figure 5.14: LabVIEW FPGA Project Preview

The figure 5.15 shows the new project that is created; verify if the modules on
cRIO are identified correctly in the project window both FPGA and normal LabVIEW
code can be written. Care must be taken, before writing code as code must be written in
FPGA Target if inputs or outputs on the modules of cRIO are used. Once the code is
written; it has to be saved and compiled before running the code. Code written in a
project is saved to project.

47

Figure 5.15: Project Explorer window

Go to file and select a new Vi or by the short key Ctrl+n. to create a new FPGA
target VI, click on FPGA Target on the project explorer window and select new VI from
there.

48

Figure 5.16: Creating new Vi file.

Once the new VI is selected, two windows called front panel and Block diagram
will pop up as shown in figure 5.17. LabVIEW code is written in Block Diagram window
and all the controls and indicators of the code will be on front panel.

Figure 5.17: LabVIEW Front panel and Block diagram.

49

In figure 5.18 an example code is written. The code is to on the virtual LED when
the virtual pushbutton is pressed.

Figure 5.18: Example to LabVIEW code.

One the code is done, before the code is run, both project and the code must be
saved.

Figure 5.19: Save LabVIEW project

50

Figure 5.20: Saving LabVIEW Code

The saved code is then complied. Once the compilation is done the code is ready
to run.

Figure 5.21: LabVIEW Compile

51

In the figure5.22 the code is compiled sucessifully and is running, even if a minor
change done to the code later, the code must be compiled again

Figure 5.22: LabVIEW ready to run

In figure 5.22 the LED is off as the Switch is off. Where as in figure 5.23 when the
switch is togelled the LED is on.

Figure 5.23: Reading virtual pushbutton and energize virtual LED

Code to test if the cRio is ready and connected successfully. Care must be taken
while connecting the wires. The details of connections are given the manual also in the
chapter 3 of this report. Note that there must be a common ground otherwise the cRIO
will not be able to read the Digital input signals.

In the code in figure 5.25, DI23 and DO23are selected and when you give an
input of more than 5VDC is given to DI23 the virtual LED should switch to ON state. LED
will continue to be in ON state as long as the input is given to DI23. Similarly, when the

52

virtual pushbutton is toggled we should get an output at DO23. A stop button present in
the code is used to break the loop.

Figure 5.24: Code to read I/O from Crio

Figure 5.25: Reading cRIO I/O

5.5 Reading encoder signals with LabVIEW

LabVIEW code is written to read the encoder signal from NI ELVIS II. The NI Elvis is
a training kit for students to learn. Elvis II has multiple functionalities; it can read digital
and analogue I/O. Generate a constant 5VDC and 15VDC. It has an onboard DMM,
function generator and so on.

53

A code to measure the encoder signals with LabVIEW is shown in figure 5.26. There
are two functions i.e. waveform graph and waveform chart. The functionality of both the
blocks is same but the X- axis scale is set to different values. The output of waveform
graph is shown in figure 5.26 and output for waveform chart is in figure 5.27

Figure 5.26: Reading encoder signals.

Figure 5.27: Encoder Output for A and B

54

Figure 5.28: Encoder Output for A and B

Code to read encoder pulses is shown in figure 5.29, the code reads the encoder
pulses, identifies the direction of motion of the motor and the counts the positon on the
encoder. The encoder gives 1000 pulses per one revolution we can count the number of
pulses and by using the gear ratio related motor and the joint we can precisely measure
the position of the joint. As the encoder is an incremental type, it doesn’t remember the
previous position. There is a position reset button available in the code. By resetting the
position we can set any position of joint to zero.

Figure 5.29: Counting Encoder Output at A and B pulses

55

Figure 5.30: Counting Encoder position

5.6 Controlling robot with NI CRIO

The bot requires 6 to 36VDc and a current from 0 to 2AMS, how cRIO is not capable
of handling this range of currents. So we have to use a L298N as a drive, for higher
currents. A control system design is to be made to adopt an approach for controlling the
CRS PLUS robotic arm. To control a robotic arm, that is to move it to one point to other in
the work space, a smooth motion and a precise motion is needed. Movement of the arm
is combined effect of movement of each axis. Controlling each of the motor will have a
cumulative effect on the arm. To make a smoot trajectory, the initial and final velocity
needs to be zero. Also we need to have initial and final position. So, we have

Θ(0)= initial position ……….Eq 5.3

Θ()=final position (is final time) ……….Eq 5.4

Differentiation of the above initial and final position, we have initial and final velocities.

Θʹ(0)= 0 ……….Eq 5.5

Θʹ()=0 ……….Eq 5.6

The cubic polynomial [15] is taken with four coefficients that satisfy equations from 5.3
to 5.4.

Θ (t)= + + + ………. Eq 5.7

56

So the joint velocity is differentiation of the equation 5.7

Θʹ (t) = + 2 + 3 ………. Eq 5.8

So the joint acceleration is differentiation of the equation 5.8

Θʹʹ (t) = 2 + 6 ………. Eq 5.9

Using Equation 5.7, 5.8 and 5.9 one can control position, velocity or acceleration of one

joint.

For instance let us drive the motor to position +100, in a time frame of 10 Sec. To

calculate the equation from velocity, substitute t and position in equation 5.7 and 5.8

Θ (0)= + (0) + (0) + (0) = 0

=> = 0

Θ (10)= (10) + (10) + (10) = 100

=> + 10 + 100 = 10

Θʹ (0) = + 2 (0) + 3 (0) = 0

=> = 0

Θʹ (10) = 20 + 3 (10) =0

=>2 + 30 =0

After solving we have

= 0;

= 0;

= 3;

=
−1
5

So the equation for velocity control will be

Θʹ (t) =6t-

57

LabVIEW code is written for this velocity equation.

Figure 5.31: Velocity control in LabVIEW code.

The output of this code can be given to control the motor through PWM. LabVIEW
code for PWM was not successful so, Arduino is chosen as alternative approach for
controlling the CRS plus A150 robotic Arm was chosen. Arduino has a capability to
interface with LabVIEW and hence the idea of controlling the robot with ROSS can be
achieved.

5.7 Reading encoder signals Arduino

Arduino coding also called sketch is very similar to C programming language. As it
is an open source language there is lot that can be done with Arduino.

Figure 5.32 shows the circuit connections to read encoder signals

58

Coming to reading encoder, the most important parameters are reading pulses
from A, B and identify the direction of the motor and finally increment or decrement
position depending on pulses and direction of rotation. Figure 5.32 shows the circuit
connections needed. Here we need not do any additional signal conditioning as the
Arduino is capable of reading 5V pulses from A and B pins of encoder.

A simple code for to read encoder and output is given in Appendix.

5.8 Controlling robot with NI Arduino

Once the encoder readings were precisely measured, the next step is to control
the robot. For this the Arduino cannot produce the voltage and current required for the
motor. So L298n is to be used. We can generate required PWM signal and control the
robot motion very precisely. The various codes experimented and the results are given
in Appendix.

Figure 5.33 connections for controlling motor with Arduino

Figure 5.33, shows the connections between motor, Arduino and L298N that required to
control a motor using Arduino. Note that common ground is to be maintained.

59

6 Conclusion and future work

6.1 Conclusion

In this thesis, CRS A150 Robot Arm is controlled using Arduino. Additionally, to
increase the efficiency two Arduinos are connected in I2C (serial communication) and CRS
A150 Robot Arm is controlled in master slave combination. Arduino processor is
comparably slower in process than NI cRIO but is capable enough to command the robot.
The robot is tested with both position control and velocity control successfully.

6.2 Future work

The following are to be achieved to improve and use this CRS A150 robot arm.

1. Serial communication can be extended to six Arduinos to control six axis
simultaneously.

2. LabVIEW and Arduino can be interfaced for better control of the robot.

3. ROS and Arduino can be interfaced for more robust and efficient control of CRS
A150 Robot ARM

60

Appendix
//Arduino program to read an input from key board

long i=0;// input variable

void setup()
{
 Serial.begin(9600);
 Serial.setTimeout(10);
}
void loop()
{
 while (Serial.available()==0){}
 i= Serial.parseInt();

Serial.println(i);

}

Output

61

//Arduino program to read an encoder signal

int val;
 int encoder0PinA = 10;
 int encoder0PinB = 11;
 int encoder0Pos = 0;
 int encoder0PinALast = LOW;
 int n = LOW;

 void setup() {
 pinMode (encoder0PinA,INPUT);
 pinMode (encoder0PinB,INPUT);
 Serial.begin (9600);
 }

 void loop() {
 n = digitalRead(encoder0PinA);
 if ((encoder0PinALast == LOW) && (n == HIGH)) {
 if (digitalRead(encoder0PinB) == LOW) {
 encoder0Pos--;
 } else {
 encoder0Pos++;
 }
 Serial.print (encoder0Pos);
 Serial.print ("\n");
 }
 encoder0PinALast = n;
 }

62

63

Output:

64

//Arduino program to run a motor in open loop control

#define InA1 11 // INA motor pin
#define InB1 12 // INB motor pin
#define PWM1 13 // PWM motor pin

void setup() {
 pinMode(InA1, OUTPUT);
 pinMode(InB1, OUTPUT);
 pinMode(PWM1, OUTPUT);
 }

void loop() {
 motorForward(250); //(25%=64; 50%=127; 100%=255)
 delay(2000);

 motorStop();
 delay(5000);

 motorBackward(250);
 delay(2000);

 motorStop();
 delay(5000);

}

void motorForward(int PWM_val)
{
 analogWrite(PWM1, PWM_val);
 digitalWrite(InA1, LOW);
 digitalWrite(InB1, HIGH);
 }

void motorBackward(int PWM_val) {
 analogWrite(PWM1, PWM_val);
 digitalWrite(InA1, HIGH);
 digitalWrite(InB1, LOW);

}
 void motorStop() {
 analogWrite(PWM1, 0);
 digitalWrite(InA1, LOW);
 digitalWrite(InB1, LOW);
}

65

//Arduino program to run a motor with encoder
feedback

long i=0;// input variable FROM CODE 1

 int encoder0PinA = 2;// FROM CODE 2
 int encoder0PinB = 3;// FROM CODE 2
 int encoder0Pos = 0;// FROM CODE 2
 int encoder0PinALast = LOW;// FROM CODE 2
 int n = LOW;

#define InA1 11 // INA motor pin
#define InB1 12 // INB motor pin
#define PWM1 13 // PWM motor pin

void setup()
{
 pinMode (encoder0PinA,INPUT);// FROM CODE 2
 pinMode (encoder0PinB,INPUT);// FROM CODE 2

 pinMode(InA1, OUTPUT);// FROM CODE 3
 pinMode(InB1, OUTPUT);// FROM CODE 3
 pinMode(PWM1, OUTPUT);// FROM CODE 3

 Serial.begin(9600);// FROM CODE 1
 Serial.setTimeout(10);// FROM CODE 1
}
void loop()
{
 while (Serial.available()==0){}
 i= Serial.parseInt();
 Serial.println(i);

 n = digitalRead(encoder0PinA);
 if ((encoder0PinALast == LOW) && (n == HIGH)) {
 if (digitalRead(encoder0PinB) == LOW) {
 encoder0Pos--;
 } else {
 encoder0Pos++;
 }
 Serial.print (encoder0Pos);
 Serial.print ("\n");
 }
 encoder0PinALast = n;

66

 if(i>=0){
 while (n<=i)
 {
 motorForward(250);
 }
 motorStop();
 }
 else
 {
 while (n>=i)
 {
 motorBackward(250);
 }
 motorStop();
}

67

//Arduino program to control the position for 4th axis

long j=0;
long i=0;
 int encoder0PinA = 2;
 int encoder0PinB = 3;
 int encoder0Pos = 0;
 int encoder0PinALast = LOW;
 int n = LOW;
 #define InA1 11
#define InB1 12
#define PWM1 13
 void setup()
{
 pinMode (encoder0PinA,INPUT);
 pinMode (encoder0PinB,INPUT);
 pinMode(InA1, OUTPUT);
 pinMode(InB1, OUTPUT);
 pinMode(PWM1, OUTPUT);
 Serial.begin(9600);
 Serial.setTimeout(10);
}
void loop()
{
 Serial.println("Let's begin!");
 while (Serial.available()==0){}
 j= Serial.parseInt();
 Serial.println(j);
 i=1.6*j;
 while(i>=0){
 n = digitalRead(encoder0PinA);
 if ((encoder0PinALast == LOW) && (n == HIGH)) {
 if (digitalRead(encoder0PinB) == LOW) {
 encoder0Pos--;
 } else {
 encoder0Pos++;
 }
 Serial.print (encoder0Pos);

68

 Serial.print ("\n");
 }
 encoder0PinALast = n;
 motorForward(250);
 if (encoder0Pos>=j){
 motorStop();
 } }
while(i<=0){
 n = digitalRead(encoder0PinA);
 if ((encoder0PinALast == LOW) && (n == HIGH)) {
 if (digitalRead(encoder0PinB) == LOW) {
 encoder0Pos--;
 } else {
 encoder0Pos++;
 }
 Serial.print (encoder0Pos);
 Serial.print ("\n");
 }
 encoder0PinALast = n;

 motorBackward(250);
 if (encoder0Pos<=j){
 motorStop();
 }
 }
}
void motorForward(int PWM_val)
{
 analogWrite(PWM1, PWM_val);
 digitalWrite(InA1, LOW);
 digitalWrite(InB1, HIGH);
 }

void motorBackward(int PWM_val) {
 analogWrite(PWM1, PWM_val);
 digitalWrite(InA1, HIGH);
 digitalWrite(InB1, LOW);

69

}

void motorStop() {
 analogWrite(PWM1, 0);
 digitalWrite(InA1, LOW);
 digitalWrite(InB1, LOW);
}

70

//Arduino serial communication With LED

//Master code

//i2c Master Code(UNO)
#include <Wire.h>
void setup()
{
 Serial.begin(9600);
 Wire.begin();
}
void loop()
{
 while(Serial.available())
 {
 char c = Serial.read();
 if(c == 'H')
 {
 Wire.beginTransmission(5);
 Wire.write('H');
 Wire.endTransmission();
 }
 else if(c == 'L')
 {
 Wire.beginTransmission(5);
 Wire.write('L');
 Wire.endTransmission();
 }
 }
}

71

//Slave code

//i2c Slave Code(Leonardo)

#include <Wire.h>
void setup()
{
 Wire.begin(5);
 Wire.onReceive(receiveEvent);
 pinMode(13,OUTPUT);
 digitalWrite(13,LOW);
}
void loop()
{
}
void receiveEvent(int howMany)
{
 while(Wire.available())
 {
 char c = Wire.read();
 if(c == 'H')
 {
 digitalWrite(13,HIGH);
 }
 else if(c == 'L')
 {
 digitalWrite(13,LOW);
 }
 }
}

72

//Arduino I2c Code for robot control

//Master

#include <Wire.h>

int q=0;

long a=0;//for angle

long b,i;

 int encoder0PinA = 2;

 int encoder0PinB = 3;

 int encoder0Pos = 0;

 int encoder0PinALast = LOW;

 int n = LOW;

#define InA1 11

#define InB1 12

#define PWM1 13

void setup()

{

 pinMode (encoder0PinA,INPUT);

 pinMode (encoder0PinB,INPUT);

 pinMode(InA1, OUTPUT);

 pinMode(InB1, OUTPUT);

 pinMode(PWM1, OUTPUT);

 Serial.begin(9600);

Wire.begin();

}

73

void loop()

{

 while(q==0){

 Serial.println("first axis");

 while (Serial.available()==q){}

 i= Serial.parseInt();

 Serial.println(i);

Wire.beginTransmission(5);

 Wire.write(i);

 Wire.endTransmission();

q++;

 exit;
 }
Serial.println("axis 2");
 delay (1000);
 while (Serial.available()==0){}
 a= Serial.parseInt();
 Serial.println(a);
 b=1.6*i;
 while(b>=0){
 n = digitalRead(encoder0PinA);
 if ((encoder0PinALast == LOW) && (n == HIGH)) {
 if (digitalRead(encoder0PinB) == LOW) {
 encoder0Pos--;
 } else {
 encoder0Pos++;
 }
 Serial.print (encoder0Pos);
 Serial.print ("\n");
 }
 encoder0PinALast = n;
 motorForward(150);

74

 if (encoder0Pos>=a){
 motorStop();
 }
 }
while(b<=0){
 n = digitalRead(encoder0PinA);
 if ((encoder0PinALast == LOW) && (n == HIGH)) {
 if (digitalRead(encoder0PinB) == LOW) {
 encoder0Pos--;
 } else {
 encoder0Pos++;
 }
 Serial.print (encoder0Pos);
 Serial.print ("\n");
 }
 encoder0PinALast = n;
 motorBackward(150);
 if (encoder0Pos<=b){
 motorStop();
 }
 }
}
void motorForward(int PWM_val)
{
 analogWrite(PWM1, PWM_val);
 digitalWrite(InA1, LOW);
 digitalWrite(InB1, HIGH);
 }
 void motorBackward(int PWM_val) {
 analogWrite(PWM1, PWM_val);
 digitalWrite(InA1, HIGH);
 digitalWrite(InB1, LOW);
 }
 void motorStop() {
 analogWrite(PWM1, 0);
 digitalWrite(InA1, LOW);
 digitalWrite(InB1, LOW);
}

75

//Slave
 #include <Wire.h>
long i=0;
 int encoder0PinA = 2;
 int encoder0PinB = 3;
 int encoder0Pos = 0;
 int encoder0PinALast = LOW;
 int n = LOW;
#define InA1 11
#define InB1 12
#define PWM1 13
void setup()
{
 Wire.begin(5);
 Wire.onReceive(receiveEvent);
 pinMode (encoder0PinA,INPUT);
 pinMode (encoder0PinB,INPUT);
 pinMode(InA1, OUTPUT);
pinMode(InB1, OUTPUT);
 pinMode(PWM1, OUTPUT);
 Serial.begin(9600);
 }
void loop()
{ }
void receiveEvent(int howMany)
{
 while(Wire.available())
 {
 long i = Wire.read();
 while(i>=0){
 n = digitalRead(encoder0PinA);
 if ((encoder0PinALast == LOW) && (n == HIGH)) {
 if (digitalRead(encoder0PinB) == LOW) {
 encoder0Pos--;
 } else {
 encoder0Pos++;
 }
 Serial.print (encoder0Pos);

76

 Serial.print ("\n");
 }
 encoder0PinALast = n;
 motorForward(250);
 digitalWrite(8, HIGH); //for led not important
 if (encoder0Pos>=i){
 motorStop();
 }
}
 while(i<=0){
 n = digitalRead(encoder0PinA);
 if ((encoder0PinALast == LOW) && (n == HIGH)) {
 if (digitalRead(encoder0PinB) == LOW) {
 encoder0Pos--;
 } else {
 encoder0Pos++;
 }
 Serial.print (encoder0Pos);
 Serial.print ("\n");
 }
 encoder0PinALast = n;

 motorBackward(150);
 if (encoder0Pos<=i){
 motorStop();
 }
 }
 }
}
void motorForward(int PWM_val)
{
 analogWrite(PWM1, PWM_val);
 digitalWrite(InA1, LOW);
 digitalWrite(InB1, HIGH);
 }
 void motorBackward(int PWM_val) {
 analogWrite(PWM1, PWM_val);
 digitalWrite(InA1, HIGH);

77

 digitalWrite(InB1, LOW);
 }
 void motorStop() {
 analogWrite(PWM1, 0);
 digitalWrite(InA1, LOW);
 digitalWrite(InB1, LOW);
}

78

REFFERENCE

[1] http://www.digital-circuitry.com/MyLAB_Robotics_CRS-M1.htm

[2] http://www.torquesystems.com

[3]. Muhammad Mubeen, “Brushless DC Motor Primer,” Motion Tech Trends, July, 2008.

[4]. Derek Liu, “Brushless DC Motors Made Easy,” Freescale, 2008.

[5]. Padmaraja Yedamale, “Hands-on Workshop: Motor Control Part 4 -Brushless DC (BLDC)
Motor Fundamentals,” Microchip AN885, 2003.

[6] http://nptel.ac.in/courses/112103174/module2/lec3/3.html

[7] http://specimens.iri.isu.edu/etd/GetFile.aspx?exid=97&etid=1&mtid=1

[8] http://sine.ni.com/psp/app/doc/p/id/psp-822/lang/en

[9] http://sine.ni.com/nips/cds/view/p/lang/en/nid/208824

[10] http://sine.ni.com/nips/cds/view/p/lang/en/nid/208815

[11] http://www.ni.com/en-us/support.html

[12] http://www.nxp.com/documents/user_manual/UM10360.pdf

[13] https://developer.mbed.org/platforms/mbed-LPC1768/

[14] https://www.arduino.cc/en/Main/arduinoBoardMega

[15] http://dallaskasaboski.blogspot.com/2012/01/fencing-aikido-robots-chuck-and-
friends.html

[16] http://dallaskasaboski.blogspot.com/2012/01/fencing-aikido-robots-chuck-and-
friends.html

[17] Arseneau. S.c., R.J. Nicholls, M.Farooq, and A.Hopkinson. “Robotic mimicking control
system.” Proceedings of the 44th IEEE 2001 Midwest Symposium on Circuit and Systems.
MWSCAS 2001.

