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ABSTRACT 

 

Idaho is listed as the sixth most seismically active state in the United States. Seismic 

design of bridges is based on ductile behavior of bridge components when subjected to large 

ground motions. Bridges are typically designed such that the columns act as the ductile link 

between the deck and the foundation. The reinforcing steel bars in concrete bridge columns are 

prone to low cycle fatigue damage. During an earthquake, the reinforcing steel can undergo large 

inelastic strains of up to six percent (0.06) and fail due to plastic deformation. In this project, 

three bridges in Idaho are analyzed for seismic conditions of the city of Montpelier, which is the 

most seismically active location in Idaho. Computer models are created for these bridges with 

reinforced concrete deck and columns in OpenSees. These bridges are subjected to lateral 

seismic forces in the longitudinal and transverse directions and their corresponding column drifts 

are calculated. The Idaho Transportation Department is using ASTM A615 Grade 60 steel in the 

bridge columns. AASHTO recommends the use of both ASTM A615 and A706 reinforcing steel. 

In this study, the fatigue models from different researchers are considered for ASTM A615 and 

ASTM A706 reinforcing steel bars. The number of cycles to failure at different strain levels is 

estimated for both ASTM A615 and ASTM A706 reinforcing steel bars in the bridge columns 

based on the material properties. Comparison between the ASTM A615 and ASTM A706 rebars 

is made based on their low-cycle fatigue behavior in bridge columns. ASTM A706 reinforcing 

bars performed better than ASTM A615 bars.
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CHAPTER 1 -  INTRODUCTION 

1.1. Background and Description 

 

During an earthquake, the components of a structure will be exposed to inconsistent 

strains which will have varying tension and compression values. This kind of repeated loading 

weakens the material and is known as fatigue. A material subjected to cyclic loading may fail at 

stress levels much lower than the material yield or ultimate strength. Fatigue failure is a 

cumulative process of crack formation, spreading and fracture. Fatigue life of a material is 

estimated as number of cycles to failure, 𝑁𝑓  (Stephens & Fuchs, 2001). Failure is defined as the 

fracture of the material (cracks propagate to complete fracture) when it is repeatedly loaded in 

tensile or compressive stress (Koh & Stephens, 1991). Majority of the mechanical engineering 

applications deal with high-cycle fatigue (103 – 107 cycles). For this type of testing, the strain 

amplitudes rarely exceed 0.01 (Mander, Panthaki, & Kasalanati, 1994). However, the strain 

reversals during an earthquake can have high stress levels and yet low number of cycles. For 

materials that have elastic-plastic properties, such as reinforcing steel, the fatigue-life curve can 

be broken up into two distinct regions. The first describes low-cycle fatigue behavior (less than 

1000 cycles to failure) and is controlled by plastic deformations (Brown & Kunnath, 2000). The 

second describes high-cycle fatigue behavior and is controlled primarily by elastic deformation. 

The structural components of bridges can undergo large inelastic strains up to 0.06 and fail due 

to plastic deformation. This type of failure is known as low-cycle fatigue (LCF) failure.  

When a component is subject to low cycle fatigue, it is repeatedly plastically deformed. 

For example, if a part were to be loaded in tension until it is permanently deformed (plastically 

deformed), that would be considered one-half cycle of low cycle fatigue. In order to complete a 
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full-cycle, the part would need to be deformed back into its original shape. The number of LCF 

cycles that a part can withstand before failing is much lower than that of regular fatigue 

(DeLuca, 2001). The response of reinforced-concrete structures to seismic forces can be 

predicted using a moment-curvature analysis by estimating the cyclic stress-strain behavior of 

the reinforcing steel in the critical region of the member (Dodd & Restrepo-Posada, 1995). 

Seismic design of bridges is based on the ductile behavior of the bridge components 

under large earthquake loads. These ductile damage modes generally involve yielding of various 

structural members and the corresponding plastic deformation in these members. The maximum 

displacements in a bridge can be predicted using conventional elastic analysis techniques. This is 

based on various time-history analyses of yielding structures. This means, in many bridges, the 

displacements assuming elastic behavior are about the same as for a yielding bridge 

(𝛥𝐼𝑛𝑒𝑙𝑎𝑠𝑡𝑖𝑐 𝑚𝑎𝑥 = 𝛥𝐸𝑙𝑎𝑠𝑡𝑖𝑐 𝑚𝑎𝑥) in Figure 1.1  (Marsh, Buckle, & Kavazanjian Jr, 2014). 

 

 

Figure 1.1  Maximum Elastic and Inelastic Displacements (Marsh, et al., 2014)) 

 

The capacity design concept developed by (Paulay & Priestley, 1992) can be illustrated 

using a chain analogy shown in Figure 1.2. If one link of the chain is ductile and the tensile 

strength of that link is less than the strength of the other links, which may even be brittle, the 

chain will exhibit ductile behavior based on the behavior of the one ductile link. However, if any 
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of the brittle links have strengths lower than that of the ductile link, then the chain will exhibit 

brittle behavior. In the case of a bridge, the entire lateral load path is analogous to the chain, and 

individual elements, such as columns, foundations, abutments, and superstructure comprise the 

links in the chain. This pertains to the columns acting as the link between the deck and the 

foundation in a bridge. Any deformation during an earthquake should likely occur in the columns 

rather than the deck or the foundation. 

 

Figure 1.2  Chain Analogy for Capacity-Protected Design (Paulay and Priestly, 1992) 

 

One notable incident in which the failure was due to low-cycle fatigue was the 1994 

Northridge earthquake. Many buildings and bridges collapsed, and as a result over 9,000 people 

were injured (Taylor, 2016). Researchers at the University of Southern California analyzed the 

main areas of a ten-story building that were subjected to low-cycle fatigue. Unfortunately, there 

was limited experimental data available to directly construct a S-N curve for low-cycle fatigue, 

so most of the analysis consisted of plotting the high-cycle fatigue behavior on a S-N curve and 

extending the line for that graph to create the portion of the low-cycle fatigue curve using the 

Palmgren-Miner method. Ultimately, this data was used to more accurately predict and analyze 
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similar types of damage that the ten-story steel building in Northridge faced (Nastar, Anderson, 

Brandow, & Nigbor, 2010). 

 

AASHTO permits the use of ASTM A615 Grade 60 and ASTM A706 Grade 60 steel 

bars in regions that fall into Seismic Design Categories (SDC) B and C. It also states, for SDC D, 

ASTM A706 shall be used in members where plastic hinging is expected (American Association 

of State Highway and Transportation Officials, 2015). ASTM A706 bars were initially produced 

to only Grade 60 with a minimum yield strength 𝑓𝑦 = 60,000 𝑝𝑠𝑖 (420 𝑀𝑃𝑎), while ASTM 

A615 bars can have different grades ranging from Grade 40 to 80. However, ASTM A706 bars 

are currently produced in Grades 60 and 80. In broad terms, ASTM A706 steel is more 

demanding and includes requirements for controlled tensile properties and restrictions on 

chemical composition, while ASTM A615 steel does not include comparable requirements. 

Idaho Transportation Department (ITD) has been using ASTM A615 Grade 60 bars in many of 

the bridges in Idaho.  

 

1.2. Objectives 

 

Idaho is listed as the 6th most seismically active state in the United States. Around the 

world, low-cycle fatigue is not a new topic for research, yet it is still very new in terms of the 

amount of data that can be found for reinforcing bars. The objective of this research is to analyze 

the low-cycle fatigue behavior of the reinforcing bars in bridge columns in Idaho. Bridges from 

Preston, Parma, and Dubois were modeled in OpenSees and subjected to lateral seismic forces in 

the longitudinal and transverse directions. The corresponding displacements and drifts were 

calculated for the top of the columns. These bridges were analyzed for seismic conditions of the 
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city of Montpelier, that happens to be in the most seismically active region in Idaho. The number 

of cycles to failure for different levels of strains are estimated based on available data for both 

ASTM A615 Grade 60 and ASTM A706 Grade 60 reinforcing bars. This is based on the 

possibility of using ASTM A706 bars in Idaho bridges, replacing ASTM A615 bars. 

 

1.3. Thesis Overview 

 

This thesis document consists of five chapters in total. Chapter 1 provides the roadmap 

and brief introduction for the research. Chapter 2 provides a detailed literature review of relevant 

research associated with this thesis. The literature review chapter consists of study on fatigue life 

and low-cycle fatigue. It also comprises of studies made by different researchers on low-cycle 

fatigue behavior for ASTM A615 and ASTM A706 reinforcing steels and their corresponding 

fatigue models. The methodology for the seismic analyses of the three Idaho bridges is provided 

in Chapter 3. This chapter includes the assumptions for the procedure and computer modeling of 

these bridges in OpenSees (University of California, Berkeley, 2016). The three bridges 

considered were subjected to the seismic conditions for Montpelier, Idaho. Chapter 4 contains all 

the results associated with the bridge analyses. This comprises of the drift values for the top of 

the bridge columns. Drift is defined as the ratio of the displacement to the height of the structure. 

The results chapter also includes the low-cycle fatigue results at different strain levels using both 

ASTM A615 and ASTM A706 reinforcing steels for all three bridges. The low-cycle fatigue 

behaviors of these steels were compared. Chapter 5 summarizes the thesis and the results with 

appropriate conclusions and recommendations.  
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CHAPTER 2 -  LITERATURE REVIEW 

 

This chapter provides a literature review relevant to the study of low cycle fatigue 

behavior of reinforcing steel. Fatigue has always been one of the most important mechanisms of 

failure in reinforcing steel. During a seismic event, structural members can experience large 

strain reversals. This kind of strain reversals during an earthquake can have high levels of stress, 

but still low number of cycles. This can lead to failure of the structural components, which can 

be termed as low cycle fatigue failure. 

AASHTO permits the use of ASTM A615 Grade 60 and ASTM A706 Grade 60 rebars in 

regions that fall into Seismic Design Categories (SDC) B and C. AASHTO also states that for 

SDC D, ASTM A706 Grade 60 rebar shall be used in members where plastic hinging is expected 

(American Association of State Highway and Transportation Officials, 2015). Idaho 

Transportation Department (ITD) has been mostly using ASTM A615 Grade 60 in their bridge 

columns. One of the objectives of this thesis is to compare the low cycle fatigue behavior and 

cost differences of ASTM A615 Grade 60 and ASTM A706 Grade 60 rebars.  

 

2.1. Fatigue Life and Low-cycle Fatigue 

 

Fatigue life analysis using low cycle fatigue behavior has been used in research and 

design for many years. The low cycle fatigue is affected by the residual and mean stresses and 

has been presented in various ways over the years. Fatemi & Stephens studied the mean stress 

relaxation and the influence of mean strain/stress on the cyclic stress-strain relationship for a 

material (Fatemi & Stephens, 1987). The mean strain doesn’t have any positive or negative effect 

on the fatigue life unless it produces a mean stress (Koh & Stephens, 1991). The study by Koh & 
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Stephens performed comprehensive investigation into the influence of mean strain-stress under 

strain-controlled low-cycle fatigue conditions with both positive and negative mean strains using 

high strength thick-walled pressure vessel steel. In this research, strain ratios of 𝑅 =

 −2,−1, 0, 0.5,0.75 were used to investigate the mean strain and mean stress effects on the low 

cycle fatigue behavior. 𝑅 is defined as the ratio of minimum strain to maximum strain, 
𝜀𝑚𝑖𝑛

𝜀𝑚𝑎𝑥
.  

Representative hysteresis loops for strain ratios under both large and small strain-

controlled amplitudes are shown in Figures 2.1 and 2.2. For a negative mean strain test with 𝑅 =

 −2 and a relatively large strain amplitude of 0.008, Figure 2.1(a), shows continuous increase of 

minimum compressive stress resulting in significant relaxation of negative mean stress. 

However, for a negative mean strain test with a relatively small strain amplitude of 0.004, as 

shown in Figure 2.1(b), the cyclic stress and strain response in essentially elastic, and no 

significant compressive mean stress relaxation is seen. Very similar mean stress behavior was 

observed in the tensile mean strain tests. For example, Figure 2.2(a) for the larger strain 

amplitude with 𝑅 =  0.5 shows typical tensile mean stress relaxation during the initial cycles 

throughout the fatigue life. The tests of high mean tensile strain, but with a relatively small strain 

amplitude in Figure 2.2 (b) shows the same mean stress relaxation at the very beginning of the 

test, but followed by stabilized behavior. Under 𝑅 =  −1 test conditions mean stresses were 

essentially zero until just before fracture.  
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Figure 2.1 Typical hysteresis loops for R = -2 (Koh & Stephens, 1991) 
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Figure 2.2 Typical hysteresis loops for R = 0.5 (Koh & Stephens, 1991) 

 

 

The hysteresis loops of strain amplitudes below 0.005 were elastic during testing with all 

𝑅 ratios. At 0.005, a small plastic strain appeared. This confirms that the mean or residual stress 

is relaxed by plastic deformation. The mean stresses in higher strain amplitude tests dropped 

quickly to a steady-state low value of mean stress. 
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The cyclic stress-strain curve which represents the cyclic properties of a material was 

obtained using the companion specimen method that connects the maximum stress of the 

stabilized half-life hysteresis loops of the 𝑅 =  −1, low cycle fatigue tests.  

 

The cyclic stress-strain curve is represented by 

𝛥𝜀

2
=
𝛥𝜀𝑒
2
+
𝛥𝜀𝑝
2

(2.1) 

where, 𝜀𝑒 = 𝑒𝑙𝑎𝑠𝑡𝑖𝑐 𝑠𝑡𝑟𝑎𝑖𝑛, 𝜀𝑝 = 𝑝𝑙𝑎𝑠𝑡𝑖𝑐 𝑠𝑡𝑟𝑎𝑖𝑛 

The 𝑅 =  −1 cyclic stress-strain curve, and all data points from the mean strain tests are 

shown in Figure 2.3. 

 

Figure 2.3 Monotonic and cyclic stress-strain behavior for all strain ratios. (Koh & 

Stephens, 1991) 

The usual low cycle fatigue curve for 𝑅 =  −1 is shown in Figure 2.4.  
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A log-log scale total strain-life model used by Stephens and Koh for A356-T6 cast 

aluminum alloy was used to improve the conventional 𝑅 =  −1 strain-life model given by 

𝛥𝜀

2
= 𝑀(2𝑁𝑓)

𝑚
(2.2) 

where, 

 
𝛥𝜀

2
= 𝑠𝑡𝑟𝑎𝑖𝑛 𝑎𝑚𝑝𝑙𝑖𝑡𝑢𝑑𝑒 

𝑁𝑓 = 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑦𝑐𝑙𝑒𝑠 𝑡𝑜 𝑓𝑎𝑖𝑙𝑢𝑟𝑒 

𝑀,𝑚 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡𝑠 
 

 

 

 

 

Figure 2.4 Low cycle fatigue behavior for R = -1. (Koh & Stephens, 1991) 

 

 

Total strain-life curves of the low cycle fatigue tests for each strain ratio are shown in 

Figure 2.5. Figure 2.6 shows the superposition of data from all strain ratios. The difference in 

fatigue life for the same strain amplitude can be attributed to the mean stress. The larger the 
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magnitude of mean stress, the greater the difference in the fatigue life at the same strain 

amplitude (see Figure 2.6). This means, the mean strain with zero mean stress does not 

significantly affect the fatigue life, while means strain with considerable mean stress does affect 

the fatigue life significantly. Therefore, the mean stress can be considered as a major factor in 

low cycle fatigue. Tensile mean stress is detrimental to the fatigue life, while the compressive 

mean stress is beneficial. 

To account for the mean stress in low cycle fatigue, Morrow (Morrow, 1968) modified 

the equation as:  

𝛥𝜀 

2
=
𝜎𝑓
′ − 𝜎𝑚

𝐸
 (2𝑁𝑓 )

𝑏
+ 𝜀𝑓

′  (2𝑁𝑓 )
𝑐

(2.3) 

 

Coffin (1954) and Manson (1953) were among the first to propose an equation relating 

strain amplitude to the number of cycles to failure (Coffin, 1954) (Manson, 1953): 

𝜀𝑝 = 𝜀𝑓(2𝑁𝑓)
𝑐

(2.4) 

where; 𝜀𝑝 = 𝑝𝑙𝑎𝑠𝑡𝑖𝑐 𝑠𝑡𝑟𝑎𝑖𝑛 𝑎𝑚𝑝𝑙𝑖𝑡𝑢𝑑𝑒 

 𝜀𝑓
′ = 𝑎 𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 𝑡𝑜 𝑏𝑒 𝑑𝑒𝑡𝑒𝑟𝑚𝑖𝑛𝑒𝑑 𝑏𝑦 𝑓𝑎𝑡𝑖𝑔𝑢𝑒 𝑡𝑒𝑠𝑡𝑖𝑛𝑔  

𝑐 = 𝑓𝑎𝑡𝑖𝑔𝑢𝑒 𝑒𝑥𝑝𝑜𝑛𝑒𝑛𝑡 
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Figure 2.5 Log-log strain amplitude vs reversals to failure for each strain ratio. (Koh & 

Stephens, 1991) 
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Figure 2.6 Low cycle fatigue behavior for all strain ratios. (Koh & Stephens, 1991) 

 

Comparison of fatigue lives using Morrow’s equation with experimental fatigue lives is 

shown in Figure 2.7. 

 

Figure 2.7 Correlation of Morrow’s model for mean stress. (Morrow, 1968) 
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Smith et al, proposed another popular model as (Smith, Topper, & Watson, 1970): 

√𝜎𝑚𝑎𝑥𝜀𝑎𝐸 = 𝑓(2𝑁𝑓) (2.9) 

 

and 

𝜎𝑚𝑎𝑥𝜀𝑎 =
(𝜎𝑓

′)
2

𝐸
(2𝑁𝑓)

2𝑏
+ 𝜎𝑓

′𝜀𝑓
′(2𝑁𝑓)

𝑏+𝑐
(2.10) 

 

= 𝐴(𝑁𝑓)
𝛼
+ 𝐵(𝑁𝑓)

𝛽
(2.11) 

 

 

The study by Koh & Stephens (1991) concluded that the cyclic stress-strain response 

based upon half-life hysteresis loop peaks were very similar for all strain 𝑅 values. Only a slight 

amount of additional cyclic softening occurred with strain 𝑅 ratios not equal to -1. Additionally, 

Mean strains did not affect low cycle fatigue life unless they were accompanied by half-life 

mean stress. Tensile mean stress was detrimental to low cycle fatigue life while compressive 

mean stress did not have much effect. All these equations derived from various studies are used 

for estimating the fatigue life of reinforcing steel under different strain level.  

 

2.2. Low-cycle Fatigue in Reinforcing Steel Bars 

 

One of the earliest and most common practices of low-cycle fatigue testing of reinforcing 

steel comprises of the test specimens usually machined to form a smooth reduced section. 

However, the reinforcing steel used for concrete structures have deformations for better bond to 

concrete formed as a part of the steel rolling process. Thus, to reflect the actual behavior of the 

bar, it is important to leave the original cross section of the deformed reinforcing bar unaltered 

during testing. This is to directly capture the inelastic bucking that occurs in the compression 

region of a structural concrete element (Mander, Panthaki, & Kasalanati, 1994). The study by 
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Mander et al. (1994) is one of the most significant in terms of low-cycle behavior of reinforcing 

steel and this paper is being referenced in many of the sections in this thesis. The physical 

modeling of the reinforcing steel behavior for Mander et al. (1994) is shown in Figure 2.8. 

 

Figure 2.8 Physical modeling of reinforcing steel behavior: (a) in-situ conditions of 

reinforcing bar; and (b) specimen fabrication procedure. (Mander et al., 1994) 
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Mander (1994) tested two different types of steel with various specimens in each type. 

ASTM A722 type II hot-rolled and proof-stressed alloy-steel bar having a specified minimum 

ultimate tensile strength of 1083 MPa, represented by P was the first type of material that was 

used. Whereas, the second type of material used, represented by R was ASTM A615 Grade 40 

deformed billet-steel reinforcing bar having a minimum specified yield strength of 276 𝑀𝑃𝑎.  

Mean stress effects come into play for longer fatigue lives that have a predominantly 

elastic strain component. For cases that have low strain amplitudes (< 0.005), the fatigue life 

may increase or decrease depending on the sign of the mean stress being compressive or tensile 

(Koh & Stephens, 1991). As shown earlier in Figure 2.6, at higher strain amplitudes, where 

plastic strains are significant, mean stress relaxation occurs, which tends to reduce any 

mechanically or thermally induced mean stresses toward zero or a very small value such that it 

has no perceptible effect on the fatigue life. Thus, for the range of strain amplitudes used for the 

study of low-cycle fatigue (1 − 6 %), mean stress effects are negligible.  

Mander’s study found that for high-strength bars under cyclic-strain reversals, the peak 

cycle stress drops quickly in the first few cycle, i.e., softening occurs. Whereas, for reinforcing 

bars, cycling causes hardening over the first few cycle, after which the peak cycle stress 

decreases very gradually to almost constant value over many cycle until incipient failure occurs 

at the onset of a fatigue crack. Cycling can continue, but the crack propagates quickly with the 

peak stress dropping rapidly until fracture occurs. For low-cycle fatigue tests on ordinary 

deformed reinforcing steel bar or high-strength prestressing-steel thread bar with large strain 

amplitudes (1 − 5 %) typical of segments from longitudinal reinforcement histories under strong 

seismic excitations, mean stress and mean strain have negligible effect on low-cycle fatigue life. 
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For seismic design, conventional wisdom requires ductile detailing that maximizes the 

displacement/curvature ductility in the structural elements. In Mander’s study, the displacement 

ductility of the high-strength steel threaded bar is only 17% of the deformed mild-steel bar. It is 

therefore not surprising that seismic codes limit the yield strength of the reinforcing steel to 

grade 60 (𝑓𝑦 = 414 𝑀𝑃𝑎). 

Low-cycle fatigue of the longitudinal reinforcing steel is one of the most important 

failure modes of seismic damage in reinforced concrete bridge columns. Brown and Kunnath 

(2000) performed low-cycle fatigue tests on ASTM A615 Grade 60 steel to develop a fatigue-life 

relationship for typical longitudinal reinforcement that aid the development of cumulative 

damage models.  (Brown & Kunnath, 2000). A typical fatigue-life curve for a material is shown 

in Figure 2.9. 

 

Figure 2.9 Typical Fatigue-life Curve for an Engineering Alloy (Brown and Kunnath, 2000) 
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Brown and Kunnath (2000) tested reinforcing bars (#6, #7, and #8) for a strain range of 

+/-0.015 and +/-0.030. The results for the low-cycle fatigue tests for these reinforcing bars are 

shown in Tables 2.1, 2.2, and 2.3 and a visual representation in shown in Figure 2.10. 

Table 2.1 #6 Specimens: Low-cycle Fatigue Results for A615 steel (Brown and Kunnath, 

2000) 

Strain, ε Number of half cycles to failure, 2Nf 

0.0150 174 

0.0175 122 

0.0200 98 

0.0225 88 

0.0250 60 

0.0300 44 

 

 

 

Table 2.2 #7 Specimens: Low-cycle Fatigue Results for A615 steel (Brown and Kunnath, 

2000) 

Strain, ε Number of half cycles to failure, 2Nf 

0.0125 308 

0.0150 184 

0.0175 122 

0.0175 190 

0.0200 92 

0.0225 84 

0.0250 76 

0.0250 76 

0.0275 44 

0.0300 48 

 

 

Table 2.3 #8 Specimens: Low-cycle Fatigue Results for A615 steel (Brown and Kunnath, 

2000) 

Strain, ε Number of half cycles to failure, 2Nf 

0.0150 222 

0.0175 156 

0.0200 122 

0.0225 88 

0.0250 56 
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Figure 2.10 Strain vs Number of Half Cycles to Failure for A615 steel (Brown and 

Kunnath, 2000) 

 

Another experimental study on low-cycle fatigue behavior for steel reinforcing bars was 

conducted by Zhou (2008) using five different kinds of #8 size steel bars (Zhou, 2008). One of 

these five different steel types was ASTM A706 Grade 60 steel. The results for the low-cycle 

fatigue tests for A706 steel are shown in Table 2.4 and in Figure 2.11. 
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Table 2.4 #8 Specimens: Low-cycle Fatigue Results for A706 steel (Zhou, 2008) 

Strain, ε  Number of half cycles to failure 2Nf 

0.02614 136 

0.02437 158 

0.02074 218 

0.01393 368 

0.01407 475 

0.01461 529 

0.0139 485 

0.01022 944 

0.00744 1600 

0.00673 2372 

 

 

Figure 2.11 Strain vs Number of Half Cycles to Failure for A706 steel (Zhou, 2008) 
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Hawileh et al. (2009) evaluated the low-cycle fatigue life in #6 sizes ASTM A706 and 

A615 steel bars, both of Grade 60, and compared these steel bars in hybrid precast frame 

connections (Hawileh, Rahman, & Tabatabai, 2009). The deformed bars were subjected to cyclic 

strains ranging from zero to a peak strain that varied between 2 and 8%. Although this study was 

aimed at evaluating the condition of steel bars in precast hybrid frame connections, the results 

can equally apply to other similar applications.  

The low-cycle fatigue results for A615 and A706 steel bars are shown in Tables 2.5 and 

2.6. The graphs showing strain and number of half cycles in log scale are shown in Figures 2.12 

and 2.13 for A615 and A706 steel bars respectively.  

The number of cycles to failure was comparable between A706 and A615 bars but was 

generally higher in A615 bars. This is even though A706 bars exhibit higher ductility in 

monotonic tests. 

Figure 2.14 shows the low-cycle fatigue results from Brown & Kunnath (2000), Zhou 

(2008), and Hawileh (20009) for A615 and A706 steels all in a same graph. 

 

Table 2.5 #6 Specimens: Low-cycle Fatigue Results for A615 steel (Hawileh et al., 2009) 

Strain, ε  Number of Half Cycles to Failure, 2Nf 

0.02 208 

0.02 306 

0.04 48 

0.04 48 

0.06 18 

0.06 18 

0.08 10 

0.08 12 
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Figure 2.12 Strain vs Number of Half Cycles to Failure for A615 steel (Hawileh et al., 2009) 
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Table 2.6 #6 Specimens: Low-cycle Fatigue Results for A706 steel (Hawileh et al., 2009) 

Strain, ε Number of Half Cycles to Failure, 2Nf 

0.02 248 

0.02 206 

0.02 224 

0.03 74 

0.03 82 

0.04 36 

0.04 36 

0.04 39 

0.05 18 

0.05 22 

0.05 24 

0.06 14 

0.06 14 

0.07 10 

0.07 10 

0.07 10 

0.08 8 

0.08 8 

 

 

 

Figure 2.13 Strain vs Number of Half Cycles to Failure for A706 steel (Hawileh et al., 2009) 
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Figure 2.14 Strain vs Number of Half Cycles to Failure for A615 and A706 steels (Brown 

and Kunnath, 2000) (Zhou, 2008) (Hawileh et al., 2009) 

 

 

 

2.3. Comparison of ASTM A615 and ASTM A706 reinforcing steel bars 

 

AASHTO has permitted the use of ASTM A615 Grade 60 or ASTM A706 Grade 60 

reinforcing steel bars in bridge columns. Table 2.7 shows the stress properties of ASTM A615 

Grade 60 and ASTM A706 Grade 60 rebars (American Association of State Highway and 

Transportation Officials, 2015). Idaho Transportation Department (ITD) has been using ASTM 

A615 bars for the bridge columns in Idaho. ASTM A615 rebar is most commonly used in low-
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tremendous level of tensile strength is not necessarily needed. Its strength and performance 

characteristics are grade-dependent, and A615 rebar is available in a full range of standard sizes, 

including:  #3 through #11, #14 and #18. ASTM A706 rebar is a specification given to low-alloy 

reinforcing bars in either standard lengths or coiled configurations. This rebar grade is processed 

in open hearths, electric furnaces, or basic oxygen furnaces and is available in numerous grades, 

including grade 60 and grade 80. A706 steel is especially recommended for capacity-protected 

structures, and it is commonly used in bent caps, footings, joints, and oversized shafts (Harris 

Supply Solutions, 2017). While manufacturing A706 steel, the tensile strength shall not be less 

than 1.25 times the actual yield strength. This specification limits chemical composition and 

carbon equivalent of the steel to enhance the weldability of the material, and thus A706 steel is 

known as a weldable rebar (ASTM International, 2017). 

 

Table 2.7 Stress properties of ASTM A706 Grade 60 and ASTM A615 Grade 60 

reinforcing steel bars (AASHTO Seismic Guide, 2015). 

Property Notation Bar Size 

ASTM 

A706 

Grade 60 

ASTM 

A615 

Grade 60 

Specified minimum yield stress (𝑘𝑠𝑖) 𝑓𝑦 #3-#18 60 60 

Expected yield stress (𝑘𝑠𝑖) 𝑓𝑦𝑒 #3-#18 68 68 

Expected tensile strength (𝑘𝑠𝑖) 𝑓𝑢𝑒 #3-#18 95 95 

Expected yield strain 𝜀𝑦𝑒 #3-#18 0.0023 0.0023 

Onset of strain hardening 𝜀𝑠ℎ 

#3-#8 0.0150 0.0150 

#9 0.0125 0.0125 

#10 & #11 0.0115 0.0115 

#14 0.0075 0.0075 

#18 0.0050 0.0050 

Reduced ultimate tensile strain 𝜀𝑠𝑢
𝑅  

#4-#10 0.090 0.060 

#11-#18 0.060 0.040 

Ultimate tensile strain 𝜀𝑠𝑢 
#4-#10 0.120 0.090 

#11-#18 0.090 0.060 
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ASTM A706 steel provides larger values of minimum elongation than those in ASTM 

A615 steel. A comparison of the requirements for the two specifications is shown in Table 2.8 

(Gustafson, 2007). 

 

Table 2.8 Comparison of minimum percent elongation in ASTM A706 and A615 rebars 

(Gustafson, 2007) 

Bar size 

Minimum elongation, % 

A706 A615 

#3 to #6 14 9 

#7 and #8 12 8 

#9 to #11 12 7 

#14 and #18 10 7 

 

 

ASTM A615 rebars are more common and almost all the suppliers carry A615 steel. 

A706 bars are comparatively newer but, the production and availability has been growing. 

Considering material cost only, A706 bars cost about $40 to $60 𝑝𝑒𝑟 𝑡𝑜𝑛 (1 𝑡𝑜𝑛 =  2000 𝑙𝑏) 

more than A615 bars. The average price (material cost) nationwide for steel reinforcing bars was 

about $700 𝑝𝑒𝑟 𝑡𝑜𝑛 in 2007, which was presumed to be the price for A615 bars. The premium 

for A706 bars translated into a 6 𝑡𝑜 9% increase in material cost over A615 bars. To put the 

premium in perspective, it should be related to the total in-place cost of the reinforcing bars that 

would include the cost of the material, detailing, fabrication, accessories, transportation, and 

placing (installing) the bars in the forms. According to the price index issued by the California 

Department of Transportation, the total in-place cost of reinforcing steel was as high as 

$2000 𝑝𝑒𝑟 𝑡𝑜𝑛 in 2007. For the sake of this discussion, let’s assume the in-place cost is 
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$1500 𝑝𝑒𝑟 𝑡𝑜𝑛. The premium for using A706 bars instead of A615 bars would be only about 

3 𝑡𝑜 4% (Gustafson, 2007). 

A recent price quote provided by American Construction Supply (ACS), Inc. located in 

Pocatello, ID presented us with valuable information. According to ACS, the cost for Grade 60 

ASTM A615 and A706 steel bars depended upon the bar sizes and their weights. We asked the 

ACS for price quotes for bar sizes of #9, #10, and #11 with a length of 60 𝑓𝑡. The weights for 

60 𝑓𝑡. rebars of #9, #10, and #11 were 204 𝑙𝑏. , 258 𝑙𝑏., and 318 𝑙𝑏. respectively. As per ACS, 

the price for ASTM A706 and ASTM A615 rebars at 60 𝑓𝑡. would be $40.60 𝑝𝑒𝑟 100 𝑙𝑏. 

($0.41/𝑙𝑏.) and $39.98 𝑝𝑒𝑟 100 𝑙𝑏. ($0.40/𝑙𝑏.) respectively. The costs for #9, #10, and #11 

rebars at 60 𝑓𝑡. are shown in Table 2.9 (American Construction Supply, Inc., 2017). 

 

Table 2.9 Cost comparison for ASTM A706 and ASTM A615 rebars at 60 ft. (American 

Construction Supply, Inc., 2017) 

Bar Sizes 
Cost at 60 ft. 

ASTM A706 ASTM A615 

#9 $82.91 $81.56 

#10 $104.85 $103.15 

#11 $129.24 $127.14 

 

Concrete Construction Supply (CCS) located in Meridian, ID provided us with another 

valuable information regarding ASTM A615 and A706 rebars. According to them, the weights 

for #9, #10, and #11 size rebars are 3.4 𝑙𝑏/𝑓𝑡, 4.3 𝑙𝑏/𝑓𝑡, and 5.3 𝑙𝑏/𝑓𝑡 respectively. The weights 

for #9, #10, and #11 at 60 𝑓𝑡. would be 204 𝑙𝑏. , 258 𝑙𝑏., and 318 𝑙𝑏. respectively, which are the 

same as what the American Construction Supply provided. According to CCS, the price for these 

rebars would be $0.80/𝑙𝑏 and there was no difference in cost between A615 and A706 rebars 
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(Concrete Construction Supply, 2017). Steel West Inc. located in Chubbuck, ID also gave up 

some price quotes regarding A615 and A706 rebars. According to them, the prices are the same 

for both A615 and A706 rebars (about $0.70/𝑙𝑏) (Steel West Inc., 2017). 

 

2.4. Summary 

 

This chapter presented a review of literature to the study of low-cycle fatigue of steel 

including reinforcing steel bars. A summary of significant points is presented: 

• The cyclic stress-strain curve is represented by a total strain amplitude, which is a 

combination of elastic and plastic strains. 

• When the strain ratio, 𝑅 = −1, the mean stress would be zero. 

• Low-cycle fatigue test data for both ASTM A615 and A706 rebars are tabulated 

and graphed.  

• Low-cycle fatigue results for ASTM A615 rebars were collected from studies by 

Brown & Kunnath (2000) and Hawileh et al. (2009). 

• Low-cycle fatigue results for ASTM A706 rebars were collected from studies by 

Zhou (2008) and Hawileh et al. (2009). 

• Comparison of ASTM A615 and ASTM A706 bars was made based on the 

availability and cost of these reinforcing steel bars. 
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CHAPTER 3 -  METHODOLOGY 

 

This chapter provides the basic methodology for OpenSees modeling of three bridges in 

Idaho. The bridge modeled in the FHWA “Seismic Design of Bridges Design Example No. 1” 

document is used as a reference for the modeling of the bridges (Mast, et al., 1996). The use of 

grouted couplers in the plastic hinge regions of the bridge columns was the agenda for the project 

of Idaho Transportation Department (ITD) (Ebrahimpour, Earles, Maskey, Tangarife, & 

Sorensen, 2016). The ITD project employed three models for each of the three ITD bridges 

selected for the study. These are: (a) bridge with linear-elastic cast-in-place columns, (b) bridge 

with nonlinear cast-in-place columns (CIP), and (c) bridge with nonlinear precast columns and 

grouted couplers (GCNP). Since the CIP and the GCNP models did not have much difference in 

the results, only the former will be included in this chapter along with the linear-elastic model.  

 

3.1. Methods and Assumptions in Modeling the Three Idaho Bridges 

 

The selected bridges were subjected to the ground acceleration of the most seismically 

active location in Idaho. We found that Montpelier, located in southeast Idaho, is the most 

seismically active city in Idaho. Site soil classification D (stiff soil) was assumed for all three 

bridges. Using the USGS seismic design map, this combination of conditions gives a design 

short duration acceleration of 𝑆𝐷𝑆  =  0.907 and a one-second design acceleration of 𝑆𝐷1  =

 0.486 (United States Geological Survey, 2016). 

For simplicity, the bridges were assumed to have zero skew. Column bases were assumed 

to be fixed. For the model with cracked linear-elastic columns, the columns were assumed to 

extend half the footing depth below the top of the footing (as per FHWA Bridge Design Example 

1) (Mast, et al., 1996). For the models with nonlinear materials for columns, the actual length of 
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the columns was used, but bond-slip elements were added at the bottom and top of the columns. 

In addition, in the nonlinear models only the columns were assumed to behave in a nonlinear 

manner; the superstructure was assumed to be linear-elastic. 

For the linear-elastic bridge models (i.e., models with cracked linear-elastic columns), the 

effective column section properties were obtained using a procedure outlined in Section 5.6 of 

the AASHTO Guide Specifications for LRFD Seismic Bridge Design. For torsional behavior of 

columns, 20 percent of torsional stiffness of the columns was used. (See Section 5.6.5 of the 

AASHTO Guide)  (American Association of State Highway and Transportation Officials, 2015). 

For the nonlinear column’s bending and axial behavior, there was no need to use the 

procedure outlined in Section 5.6 of AASHTO Seismic Design Guide. Nonlinear materials were 

used for the unconfined concrete, confined concrete, and longitudinal steel bars. In the nonlinear 

models, the torsional behavior was assumed to be linear-elastic. Similar to the linear model, 20 

percent of torsional stiffness of the columns was “aggregated” with (i.e., added to) the nonlinear 

bending and axial effects. 

 

3.2. Material Properties in Nonlinear Columns 

 

For longitudinal steel reinforcing bars the appropriate material properties for ASTM 

A706 steel were used as per Table 8.4.2-1 of the LRFD Seismic Bridge Design Guide (American 

Association of State Highway and Transportation Officials, 2015). OpenSees ReinforcingSteel 

model was used to model steel stress-strain behavior. It should be noted that ITD is currently 

using ASTM A615 Grade 60 rebars for longitudinal steel reinforcing. The only difference 

between ASTM A706 and ASTM A615 steel bars is the ultimate strain value. For the bar sizes 

that we considered for the Idaho bridges, the ultimate strains are 0.09 for A706 steel and 0.06 for 
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A615 steel. As it will be seen in the later sections, the most stressed bar is in the Parma bridge 

with a steel strain of approximately 0.01. Using the ASTM A706 steel in our models will allow 

us to compare the low-cycle fatigue of steel reinforcing bars. We will predict the number of 

cycles to fracture of the steel bars for both types of steel. 

For unconfined concrete, the strength values of cast-in-place concrete as specified in the 

bridge plans were used. OpenSees Concrete01 stress-strain model was used for unconfined 

concrete. As per Sec. 8.4.4 of the LRFD Seismic Bridge Design Guide, a compressive strain of 

0.002 at maximum unconfined concrete compressive strength was used (American Association 

of State Highway and Transportation Officials, 2015). 

For the confined concrete, OpenSees Concrete04 stress-strain model was used. Also, as 

per Sec. 8.4.4 of the LRFD Seismic Bridge Design Guide, this stress-strain model was used with 

concrete confined strength and strain values determined by Mander’s model (American 

Association of State Highway and Transportation Officials, 2015) (Mander, Priestley, & Park, 

Theoretical Stress-Strain Model for Confined Concrete, 1988). 

 

3.3. Method of Seismic Analysis 

 

To keep the analysis simple, the single-mode spectral method was used for all three 

bridge analyses. In addition, the abutment stiffness values were obtained using the bridge model 

with cracked linear-elastic columns and the procedure used by ITD shown in Appendix A. The 

same abutment stiffness values were assumed in the bridge models with nonlinear columns. 

To obtain the longitudinal and transverse seismic loads, the bridge model with cracked 

linear-elastic columns was analyzed. This was done by following the single-mode spectral 

procedure outlined in the FHWA Seismic Design Example 1 (Mast, et al., 1996). The only 
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difference was that, as per ITD Technical Advisory Committee recommendation, column bases 

were assumed to be fixed. 

The same longitudinal and transverse seismic loads obtained from the bridge with 

cracked linear-elastic columns were also used for the bridge models with nonlinear columns (i.e., 

one with cast-in-place columns, and the other with precast columns and grouted couplers). In 

accordance with the LRFD Bridge Seismic Reference Manual (2014), the use of the uniform 

load method or single-mode method is one of the two options in “nonlinear static analysis” 

(Marsh, Buckle, & Kavazanjian Jr, 2014). Obviously, the procedure in the “nonlinear static 

analysis” is much less tedious than the “nonlinear dynamic analysis.” 

 

3.4.Bridge on SH-36 over Bear River at Preston 

 

The bridge at Preston is a two-span bridge with a three-column bent. The superstructure 

is made up of an 8-inch deck thick deck that rests on 5 prestressed bulb tee girders. The 

substructure is made up of a pier cap, three columns, and their footings all of which are cast-in-

place (CIP). Figure 3.1 and 3.2 show the plan and elevation views of the bridge respectively. 

Columns are octagonal with a distance between two opposite sides of 4 𝑓𝑡. with a height of 

29.25 𝑓𝑡. The column reinforcing is shown in Figure 3.3. 

Using the iterative method outlined in Appendix A and the model with cracked linear-

elastic columns, the bridge integral abutment stiffness values were estimated in the longitudinal 

and transverse directions. These stiffness values were used in all three models of the bridge. 

Appendix B presents the details of bridge seismic load calculations using the single-mode 

spectral method and the model with cracked linear-elastic columns. 
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Figure 3.1 Plan View of SH-36 over Bear River Bridge at Preston (NTS) 

 

 

 

 

 

 

 
 

Figure 3.2 Elevation View of SH-36 over Bear River Bridge at Preston (NTS) 
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Figure 3.3 Preston Bridge Column Section 

 

 

3.5. Bridge on US-95 over US-20/26 and UPRR at Parma 

 

The bridge at Parma is a two-span bridge with a three-column bent. The skew in the 

bridge was removed for ease of modeling. The overall dimensions of the bridge were maintained 

and the bent and abutment lengths were shortened to match the deck width. The superstructure is 

made up of an 8-inch-thick deck that rests on 5 prestressed WF66G girders. The substructure is 

made up of a pier cap, three columns, and their footings all of which are cast-in-place (CIP). 

Figure 3.4 and 3.5 show the plan and elevation views of the bridge respectively. The bridge has a 

non-integral superstructure-pier connection. Columns are 3.5 ft. in diameter with a height of 25.6 
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ft.  The column reinforcing is shown in Figure 3.6. The original section with 32 No. 10 steel 

reinforcing bars were replaced with 16 No. 14 steel bars. This scheme better allows the use of 

grouted couplers for the bridge with precast columns and grouted couplers. 

 

 

Figure 3.4 Plan View of SH-36 over US-20/26 and UPRR at Parma (NTS) 

 

 

Figure 3.5 Elevation View of SH-36 over US-20/26 and UPRR at Parma (NTS) 
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Figure 3.6 Parma Bridge Column Section 

 

 

 

 

3.6. Bridge on SH-22 over I-15 at Dubois 

 

The bridge at Dubois is a two-span bridge with a four-column bent. The superstructure is 

made up of an 8-inch deck thick deck that rests on 8 steel girders. The substructure is composed 

of the pier cap, 4 columns, and half of the footings all being cast in place (CIP). Figure 3.7 and 

3.8 show the plan and elevation views of the bridge respectively. This bridge also has a non-

integral superstructure-pier connection. The Columns are 3.5 ft. in diameter with a height of 

14.05 ft. The column reinforcing is shown in Figure 3.9. The column section has 13 No. 11 steel 

reinforcing bars. 
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Figure 3.7 Plan View of SH-22 over I-15 Bridge at Dubois (NTS) 

 

 

Figure 3.8 Elevation View of SH-22 over I-15 Bridge at Dubois (NTS) 

 

 

 

Figure 3.9 Dubois Bridge Column Section 
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The same process of data analysis used for the bridge at Preston was also used for the 

Parma and Dubois bridges. The schematics of their computer models and the output 

displacements, column base reactions, and the top of the column drift values can be found in the 

Appendix E of the ITD Report (Ebrahimpour, Earles, Maskey, Tangarife, & Sorensen, 2016). 
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CHAPTER 4 -  RESULTS 

 

This chapter presents all the results from the computer analyses for the Preston Bridge 

and some results for the Parma and Dubois bridges. The graphs for combination of Strain to 

Number of half cycles to failure for ASTM A615 and ASTM A706 steel bars can also be found 

in this chapter. The numbers of cycles to failure on various column drifts and strains are 

estimated with both A615 and A706 bars for the Preston Bridge. Since Parma and Dubois 

bridges were considered by the ITD Report, all the data analyses are found in that report 

(Ebrahimpour, Earles, Maskey, Tangarife, & Sorensen, 2016). However, for completeness, the 

pertinent results from these two bridges are also shown in this chapter.  

 

4.1. Results for Computer Analyses 

 

Using the iterative method outlined in Appendix A and the model with cracked linear-

elastic columns, the Preston bridge integral abutment stiffness values were estimated in the 

longitudinal and transverse directions. These stiffness values were used in all three models of the 

bridge. Appendix B presents details of bridge seismic load calculations using the single-mode 

spectral method and the model with cracked linear-elastic columns. As noted above in the 

section “Method of Seismic Analysis,” the same seismic transverse and longitudinal forces were 

used with the two bridge models with nonlinear columns. The bond-slip moment-rotation values 

were obtained similar to the approach used to duplicate University of Nevada, Reno’s bond-slip 

parameters (Haber, Saiidi, & Sanders, 2013). The bond-slip values for Preston bridge are given 

in Appendix B. Appendix B also presents the schematics of the Preston bridge computer models, 

OpenSees input files, and the resulting displacements, column base reactions, and the top of the 
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column drift values. Table 4.1 shows a summary of the column displacements, drifts, and base 

reactions at the maximum design load for both transverse and longitudinal loading directions. As 

it can be seen in Table 4.1, in both linear and non-linear cases, the displacements, drifts, and 

reactions for the transverse loading controlled. In the longitudinal direction, because of small 

displacement, cracked linear-elastic model gives smaller reactions and slightly larger 

displacement. The column drift was obtained by dividing the displacement by the column height. 

 

Table 4.1 Preston Bridge Displacements, Drifts, and Column Base Reactions 

 Column Model 

 Cracked Linear-elastic Nonlinear CIP 

Longitudinal   

Top of the Column Displacement, 𝑓𝑡 0.099 0.097 

Column Drift, % 0.339 0.331 

Column Base Shear, 𝑘 80.08 94.23 

Column Base Moment, 𝑘 𝑓𝑡 1358 1612 

Transverse   

Top of the Column Displacement, 𝑓𝑡 0.419 0.561 

Column Drift, % 1.434 1.919 

Column Base Shear, 𝑘 377.41 175.19 

Column Base Moment, 𝑘 𝑓𝑡 6158 2975 

 

Figures 4.1 and 4.2 show the percent of longitudinal and transverse seismic loads versus 

the top of the column displacement for the linear-elastic and the Nonlinear CIP models 

considered. 
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Figure 4.1 Preston Bridge Column Displacements/Drifts under Longitudinal Load 

 

 

 

Figure 4.2 Preston Bridge Column Displacements/Drifts under Transverse Load 
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Figure 4.3 shows the stress-strain values in the most stressed steel bar in the Preston 

bridge model with precast columns. 

 

 
 

Figure 4.3 Preston Bridge Stress-strain Values in the Most Stressed Steel Bar in the CIP 

Column 
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4.2. Comparison of Results with AASHTO Guide Specifications 

 

In this section, we will compare the displacement/drift results with the displacement/drift 

capacity and demand as per AASHTO Seismic Guide Specifications (American Association of 

State Highway and Transportation Officials, 2015). The three bridges considered for this study 

were placed in the most seismically active location in Idaho with soil Site Class D. Using the 

USGS seismic design map (see Appendix B, Figure B.7), this combination of conditions results 

in a design short duration acceleration of 𝑆𝐷𝑆 = 0.907 and a design one-second acceleration of 

𝑆𝐷1 = 0.486. According to the Seismic Guide Table 3.5-1, 𝑆𝐷1 of 0.486 (i.e., in the range of 

0.30 ≤  𝑆𝐷1  ≤  0.50) places the structure in Seismic Design Category (SDC) C. 

Using the approximate equation given in Seismic Guide Articles 4.8.1 for Type 1 

structure (ductile substructure with essentially elastic superstructure) in SDC C, the displacement 

capacity, ∆𝐶, in inches is: 

 

Δ𝐶 = 0.12𝐻𝑜{−2.32 ln(𝑥) − 1.22} ≥ 0.12𝐻𝑜 (4.1) 

 

Where, 𝑥 =
Λ𝐵𝑜

𝐻0
, 𝐻𝑜 = clear column height in 𝑓𝑡,  𝐵𝑜 = column diameter in 𝑓𝑡, and Λ = 

end restraint factor (Λ = 2.0 for fixed top and bottom and Λ = 1.0 for fixed-free). 

The displacement demand may be obtained through elastic analysis and multiplied by 

displacement magnification factor, 𝑅𝑑, as per Seismic Guide’s Article 4.3.3 and used with 

combination of orthogonal seismic displacements as per Seismic Guide’s Article 4.4. Since the 

transverse displacement is larger in all our bridge models, we need to use the orthogonal 

combination of the longitudinal displacement. The demand becomes: 
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Δ𝐷,𝐿𝑖𝑛𝑒𝑎𝑟 𝑀𝑎𝑔𝑛𝑖𝑓𝑖𝑒𝑑 = (𝑅𝑑Δ𝐷,𝐿𝑖𝑛𝑒𝑎𝑟)𝑇 + 0.3(𝑅𝑑Δ𝐷,𝐿𝑖𝑛𝑒𝑎𝑟)𝐿
(4.2) 

 

Where, Δ𝐷,𝐿𝑖𝑛𝑒𝑎𝑟 𝑀𝑎𝑔𝑛𝑖𝑓𝑖𝑒𝑑 = magnified displacement demand through linear-elastic 

analysis, (𝑅𝑑Δ𝐷,𝐿𝑖𝑛𝑒𝑎𝑟)𝑇 = magnified transverse displacement demand, and (𝑅𝑑Δ𝐷,𝐿𝑖𝑛𝑒𝑎𝑟)𝐿 = 

magnified longitudinal displacement demand. 𝑅𝑑 is obtained as follows: 

𝑅𝑑 = (1 −
1

𝜇𝐷
)
𝑇∗

𝑇
+
1

𝜇𝐷
≥ 1.0 𝑓𝑜𝑟

𝑇∗

𝑇
> 1.0 (4.3) 

𝑅𝑑 = 1.0 𝑓𝑜𝑟
𝑇∗

𝑇
≤ 1.0 (4.4)  

 

Where, 𝑇∗ = 1.25𝑇𝑆, 𝜇𝐷 = maximum local member displacement demand = 3.0 for SDC 

C, and 𝑇𝑆 =
𝑆𝐷1

𝑆𝐷𝑆
. 

Alternatively, one may use the transverse and longitudinal displacements obtained 

through nonlinear analysis. With the combination of orthogonal displacements, the nonlinear 

demand becomes: 

 

Δ𝐷,𝑁𝑜𝑛𝑙𝑖𝑛𝑒𝑎𝑟 = (Δ𝐷,𝑁𝑜𝑛𝐿𝑖𝑛𝑒𝑎𝑟)𝑇 + 0.3(Δ𝐷,𝑁𝑜𝑛𝑖𝑛𝑒𝑎𝑟)𝐿
(4.5) 

 

Where, Δ𝐷,𝑁𝑜𝑛𝑙𝑖𝑛𝑒𝑎𝑟 = displacement demand through nonlinear analysis, (Δ𝐷,𝑁𝑜𝑛𝐿𝑖𝑛𝑒𝑎𝑟)𝑇 

= transverse nonlinear displacement demand, and (Δ𝐷,𝑁𝑜𝑛𝑖𝑛𝑒𝑎𝑟)𝐿 = longitudinal nonlinear 

displacement demand. 
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Following the above steps, Table 4.2 summarizes the displacement demand and capacity 

of the three bridge columns in this research project. 

 

Table 4.2 Displacement and Drift Capacity versus Demand for Bridge Columns 

 Preston Parma Dubois 

Capacity    

𝐻𝑜 , 𝑓𝑡  34.57a 25.6 14.05 

𝐵𝑜 , 𝑓𝑡  4 3.5 3.5 

𝛥𝐶 , 𝑓𝑡  0.752 0.458 -b 

Drift = 𝛥𝐶/𝐻𝑜 ,% 2.18 1.79 -b 

Demand, Magnified Linear-elastic Analysis    

Transverse 𝑅𝑑 1.177 1.149 1.711 

Longitudinal 𝑅𝑑 1.530 1.632 2.077 

𝛥𝐷,𝐿𝑖𝑛𝑒𝑎𝑟 𝑀𝑎𝑔𝑛𝑖𝑓𝑖𝑒𝑑 , 𝑓𝑡  0.539 0.402 0.159 

Drift = (𝛥𝐷,𝐿𝑖𝑛𝑒𝑎𝑟 𝑀𝑎𝑔𝑛𝑖𝑓𝑖𝑒𝑑)/𝐻𝑜 ,% 1.56 1.57 1.13 

Demand, Nonlinear Analysis    

𝛥𝐷,𝑁𝑜𝑛𝑙𝑖𝑛𝑒𝑎𝑟 , 𝑓𝑡  0.590 0.400 0.128 

Drift = (𝛥𝐷,𝑁𝑜𝑛𝑙𝑖𝑛𝑒𝑎𝑟)/𝐻𝑜 , % 1.71 1.56 0.91 
 

a For bridges with bents comprising single or multiple drilled shaft columns in which plastic hinging may occur 

below such that the clear height dimension would be at the point of fixity in the soil. 

 
b LRFD Bridge Seismic Guide Article 4.8.1 equations may only be used for clear heights ≥ 15 𝑓𝑡  
 

 

 

As it can be seen from Table 4.2, the drift demand for Preston, Parma, and Dubois bridge 

columns estimated using the magnified linear-elastic approach are 1.56 percent, 1.57 percent, 

and 1.13 percent, respectively. The corresponding values obtained through nonlinear approach 

are 1.71 percent, 1.56 percent, and 0.91 percent, respectively. It should be noted that most 

departments of transportation use the cracked linear-elastic approach with magnification factors 

to estimate the nonlinear behavior of the bridge columns. 
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4.3. Low-cycle fatigue results 

 

In this section, the low cycle fatigue results from Section 2.2 were evaluated and 

combined to get single strain vs number of half cycles to failure graphs for both ASTM A706 

and ASTM A615 steel bars. The plots for ASTM A706 steel from Zhou (2008) in Figure 2.11 

and from Hawileh et al. (2009) in Figure 2.13 were found to be very similar. Figure 4.4 shows 

the combined plot of strain vs number of half cycles to failure for ASTM A706 steel from Zhou 

(2008) and Hawileh et al. (2009) plots. The equation for the combined strain vs number of half 

cycles to failure for ASTM A706 plot is shown in Equation (4.6): 

𝜀 = 0.1903(2𝑁𝑓)
−0.426

(4.6) 

 
Figure 4.4 Combined Strain vs Number of Half Cycles to Failure plot for ASTM A706 steel 

from Zhou (2008) and Hawileh et al. (2009) 
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Unlike the strain vs number of half cycles to failure for ASTM A706 steel plots from 

Zhou (2008) and Hawileh (2009), the number of half cycles to failure for ASTM A615 steel 

plots from Brown and Kunnath (2000) in Figure 2.10 and Hawileh (2009) in Figure 2.12 are very 

dissimilar. Brown and Kunnath’s values for number of half cycles to failure are found to be 

considerably lower than Hawileh’s. Therefore, we estimated the number of cycles to failure for 

ASTM A615 steel in two ways. (i) To be more conservative, Brown and Kunnath’s plot for 

strain vs number of half cycles to failure in Figure 2.10 is used for fatigue behavior of ASTM 

A615 steel, which is shown in Equation (4.7). (ii) To not disregard Hawileh’s research on ASTM 

A615, the plots from Hawileh (2009) and Brown & Kunnath (2000) are combined as shown in 

Figure 4.5. The equation for the combined strain vs number of half cycles to failure for ASTM 

A615 plot is shown in Equation (4.8). 

𝜀  =  0.1514(2𝑁𝑓)
−0.433

(4.7) 

𝜀  =  0.2468(2𝑁𝑓)
−0.522

(4.8) 

 
Figure 4.5 Combined Strain vs Number of Half Cycles to Failure plot for ASTM A615 steel 

from Brown and Kunnath (2000) and Hawileh et al. (2009) 
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Figure 4.6 shows the combination plots for A615 and A706 steels in the same graph. 

Equations (4.6), (4.7), and (4.8) are used to find the number of half cycles to failure for various 

strain values for ASTM A706 and ASTM A615 steel bars respectively. Tables 4.3, 4.4. and 4.5 

show the stress and strain values in the most stressed steel bar and the number of half cycles for 

steel bar fatigue failure for a column in the Preston, Parma, and Dubois bridges respectively. 

Only steel strain values larger than 0.01 were used to estimate the number of half cycles. Stress 

and strain values in the most stressed steel bar and the number of half cycles for steel bar fatigue 

failure for the columns in the Parma and Dubois bridges can also be found in the ITD Report 

(Ebrahimpour, Earles, Maskey, Tangarife, & Sorensen, 2016). 

 
Figure 4.6 Combined Strain vs Number of Half Cycles to Failure plot for ASTM A615 and 

ASTM A706 steel (Brown and Kunnath, 2000) (Zhou, 2008) (Hawileh et al., 2009) 
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Table 4.3 Stress and Strain in Steel Bar and Number of Half Cycles for Steel Bar Fatigue 

Failure for a Preston Bridge Column. 

 Steel Bar  No. of Half Cycles to Fracture for Grade 60 Steel 

Nonlinear 
Stress, ksi Strain ASTM A706  

ASTM A615 

Drift, % (i) (ii) 

0.25 28.55 0.0010 - - - 

0.5 60.10 0.0021 - - - 

0.75 67.98 0.0042 - - - 

1 69.94 0.0139 465 248 247 

1.5 84.28 0.0303 75 41 56 

2 85.97 0.0331 61 33 47 

2.5 87.64 0.0363 49 27 39 

3 89.10 0.0396 40 22 33 

3.5 90.43 0.0432 33 18 28 

4 91.64 0.0471 26 15 24 

4.5 92.64 0.0513 22 12 20 

5 93.84 0.0630 13 8 14 
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Table 4.4 Stress and Strain in Steel Bar and Number of Half Cycles for Steel Bar Fatigue 

Failure for a Parma Bridge Column. 

 Steel Bar  No. of Half Cycles to Fracture for Grade 60 Steel 

Nonlinear 
Stress, ksi Strain ASTM A706  

ASTM A615 

Drift, % (i) (ii) 

0.25 16.32 0.0006 - - - 

0.5 43.40 0.0015 - - - 

0.75 65.16 0.0025 - - - 

1 67.99 0.0045 - - - 

1.5 73.51 0.0123 619 329 313 

2 76.78 0.0156 354 190 198 

2.5 80.14 0.0195 210 113 129 

3 83.14 0.0236 134 73 90 

3.5 86.12 0.0285 86 47 63 

4 88.64 0.0338 58 32 45 

4.5 90.43 0.0386 42 23 35 
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Table 4.5 Stress and Strain in Steel Bar and Number of Half Cycles for Steel Bar Fatigue 

Failure for a Dubois Bridge Column. 

 Steel Bar  No. of Half Cycles to Fracture for Grade 60 Steel 

Nonlinear 
Stress, ksi Strain ASTM A706  

ASTM A615  

Drift, % (i) (ii) 

0.25 33.79 0.0012 - - - 

0.5 66.25 0.0026 - - - 

0.75 66.80 0.0028 - - - 

1 67.24 0.0029 - - - 

1.5 67.73 0.0032 - - - 

2 67.92 0.0037 - - - 

2.5 67.99 0.0044 - - - 

3 68.00 0.0056 - - - 

3.5 68.00 0.0088 - - - 

4 73.59 0.0165 312 168 178 

4.5 84.44 0.0294 80 44 59 

5 87.92 0.0360 50 28 40 
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CHAPTER 5 -  SUMMARY AND CONCLUSIONS 

 

 

The objectives of this research were to (a) analyze three bridges from various locations in 

Idaho under the most severe Idaho seismic conditions; and (b) to compare the fatigue behavior of 

ASTM A615 and ASTM A706 reinforcing steel bars in these bridge columns. 

In the introduction and background section, we discussed the failure of structural 

components at stress levels much lower than the material yield or ultimate strength. A material 

subjected to cyclic loading may fail at stress levels much lower than the material yield strength. 

Most engineering applications that deal with high-cycle fatigue (103 − 107 cycles) and the strain 

amplitudes rarely exceed 0.01 in the testing. During an earthquake, the strain reversals can have 

high stress levels and yet still have low number of cycles. The structural components for bridges 

can undergo large inelastic strains up to 0.06 and fail due to plastic deformations. This type of 

failure is known as low-cycle fatigue (LCF) failure.  

ASTM A615 and ASTM A706 steel bars are used in the columns for most of the bridges 

in the United States. ASTM A706 bars were initially produced to only one strength level (Grade 

60) with a minimum yield strength 𝑓𝑦 = 60,000 𝑝𝑠𝑖 (420 𝑀𝑃𝑎), while ASTM A615 can have 

different grades. However, A706 steel is found in Grades 60 and 80 currently. In broad terms, the 

production process of ASTM A706 steel is more demanding and includes requirements for 

controlled tensile properties and restrictions on chemical composition, while ASTM A615 steel 

does not include comparable requirements. Idaho Transportation Department (ITD) has been 

using ASTM A615 steel in most of the bridge designs in Idaho. One of the objectives of this 

research was to consider the possibility of using ASTM A706 bars for Idaho bridge columns, 

replacing ASTM A615 bars. 
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In the literature review section, we discussed the fatigue life of a material and low-cycle 

fatigue for reinforcing steel. Fatemi & Stephens studied the mean stress relaxation and the 

influence of mean strain/stress on the cyclic stress-strain relationship for a material (Fatemi & 

Stephens, 1987). However, Koh & Stephens’ study concluded that the mean strain doesn’t have 

any positive or negative effect on the fatigue life unless it produces a mean stress (Koh & 

Stephens, 1991). In this section, we looked at various strain versus number of cycles to fatigue 

failure plots and how it was modified over the years by different researchers. 

Mander’s paper initiated the study about low-cycle fatigue behavior in reinforcing steel 

(Mander, Panthaki, & Kasalanati, Low-Cycle Fatigue Behavior of Reinforcing Steel, 1994). His 

study is one of the most significant in terms of low-cycle behavior of reinforcing steel and this 

paper is being referenced in many of the sections in this thesis. This study tested two types of 

steel which included ASTM A722 type II hot-rolled and proof-stressed alloy-steel bar; and 

ASTM A615 Grade 40 deformed billet-steel reinforcing bar having a minimum specified yield 

strength of 276 𝑀𝑃𝑎. 

 We also wrote about various studies conducted for ASTM A615 and ASTM A706 steel 

bars in the literature review section. Brown and Kunnath tested the ASTM A615 reinforcing 

steel and estimated the number of half cycles to failure for different strain level in his paper 

(Brown & Kunnath, 2000). Similarly, Zhou conducted similar research using the ASTM A706 

reinforcing steel (Zhou, 2008). Hawileh tested both ASTM A615 and ASTM A706 rebars in his 

paper and compared the results (Hawileh, Rahman, & Tabatabai, 2009). Low-cycle fatigue 

results for ASTM A615 and A706 rebars were both tabulated and graphed from all the respective 

studies. 
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In the comparison of ASTM A615 and A706 rebars section of the literature review, we 

looked at the differences in availability and cost for these two types of steel bars. The production 

and availability of ASTM A706 steel has been increasing. The cost for A706 bars are found to be 

very close when compared to A615 bars. 

As a part of the methodology section, using OpenSees we developed computer models of 

the cast-in-place (CIP) column used in the experimental project at the University of Nevada, 

Reno (UNR) and the Idaho Transportation Department (ITD) report (Haber, Saiidi, & Sanders, 

2013), (Ebrahimpour, Earles, Maskey, Tangarife, & Sorensen, 2016).  

Using computer simulations, we performed seismic analyses of three highway bridges in 

Idaho by placing them in the most seismically active location in Idaho. In each case, two models 

were considered; these are: (a) a bridge with cracked linear-elastic columns, (b) a bridge with 

cast-in-place columns having nonlinear material behavior. Although none of the bridges were 

designed for the seismic condition considered in this study, using computer simulations, columns 

from all three bridges performed well. The stresses in the longitudinal reinforcing steel bars were 

well within the acceptable range. The highest drift experienced was in the transverse direction of 

the Preston bridge at about 1.71 percent when considering combination of orthogonal 

displacements. The AASHTO Guide Specifications for LRFD Seismic Bridge Design equations 

for estimating the magnified linear-elastic drift demand resulted in resulted in almost the same 

values compared to the corresponding drift demand values obtained using nonlinear analysis 

(American Association of State Highway and Transportation Officials, 2015). 

For the strain versus number of half cycles to fatigue failure graphs, we combined Zhou’s 

and Hawileh’s graphs for ASTM A706 steel because they were very similar. However, Brown 

and Kunnath’s graphs were more conservative as compared to Hawileh’s for ASTM A615 steel. 
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We estimated number of half cycles to failure for ASTM A615 steel in two ways. The first one 

was using Brown and Kunnath’s plots for ASTM A615 steel. The second one was a combination 

of Brown and Kunnath and Hawileh’s graphs for ASTM A615 steel. 

We performed pushover analyses of all three bridges under large drifts to obtain relations 

between column drift and the low cycle fatigue of the steel reinforcing. The low cycle fatigue life 

analysis indicates that at higher strains, only a few half cycles is endured by the steel reinforcing 

before fatigue failure. From Tables 4.3, 4.4, and 4.5, it can be seen that the use of ASTM A706 

steel will improve the low cycle fatigue life of the steel reinforcing bars. However, the research 

by Hawileh (2009) predicted higher number of cycles to failure for ASTM A615 than ASTM 

A706 steel.  Disregarding Hawileh’s (2009) data for ASTM A615 steel will result in more 

conservative fatigue life estimates. When considering a combination for Brown and Kunnath and 

Hawileh’s graphs for ASTM A615, ASTM A706 still performs better in low-cycle fatigue than 

ASTM A615 for the most part. Given the low-cycle fatigue aspect and the cost of using ASTM 

A706 steel over ASTM A615 steel is almost the same, it is advisable for ASTM A706 steel to be 

used in Idaho bridge columns. However, further extensive research is needed in terms of low-

cycle fatigue behavior of these steel types to better recommend one over the other.  
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APPENDIX A -  Procedures for Estimating Integral Abutment Stiffness Values 

 

The procedures for estimating bridge transverse and longitudinal abutment stiffness 

values are presented in this appendix. These procedures are currently used by the Idaho 

Transportation Department. For simplicity, in the procedures outlined below, it is assumed that 

both abutments have: (a) the same pile lateral force-displacement behavior, (b) identical 

wingwalls (if present), and (c) identical abutment wall area. In the bridge under consideration, 

some of these assumptions may not apply and procedure may have to be slightly revised. For 

example, in one of the Idaho bridges considered, the abutments of the bridge had different pile 

force-displacement behavior. Also, the procedures below assume that the strong direction of H-

piles is oriented longitudinally, while weak direction is oriented in transverse direction. 

 

Longitudinal Stiffness 

This procedure assumes the same value of longitudinal abutment stiffness for both 

abutments. This longitudinal stiffness is half of the sum of the longitudinal stiffness values from 

the two sets of abutment piles and the stiffness of one abutment backfill. As shown in Figure 

A.1, a linear relation is assumed between the abutment backfill reaction and the corresponding 

displacement from zero displacement to 0.02𝐻𝑎𝑤 where, 𝐻𝑎𝑤 = ℎ𝑒𝑖𝑔ℎ𝑡 𝑜𝑓 𝑎𝑏𝑢𝑡𝑚𝑒𝑛𝑡 𝑤𝑎𝑙𝑙. 

The corresponding maximum force to mobile the full passive backfill resistance of 7.7 𝑘/𝑓𝑡2 is 

(7.7
𝑘

𝑓𝑡2
)𝐴𝑎𝑤 . Where, 𝐴𝑎𝑤  𝑖𝑠 𝑡ℎ𝑒 𝑎𝑟𝑒𝑎 𝑜𝑓 𝑡ℎ𝑒 𝑎𝑏𝑢𝑡𝑚𝑒𝑛𝑡 𝑤𝑎𝑙𝑙 = 𝐻𝑎𝑤𝐿𝑎𝑤  𝑤𝑖𝑡ℎ 𝐿𝑎𝑤 being the 

length of the abutment wall. It is further assumed that the full maximum force remains constant 

beyond the displacement of 0.02𝐻𝑎𝑤. 
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Figure A.1 Abutment Backfill Reaction Force versus Displacement 

 

Figure A.2 shows a typical top of the pile lateral force versus displacement while the pile 

is bending about the strong axis. In the bridge model, the initial longitudinal pile stiffness is 

assumed based on Δ0 = 1 𝑖𝑛. Here, subscript "0" indicates initial estimates. From the pile force 

versus displacement in the strong direction, the initial force in the strong direction corresponding 

to displacement of 1 𝑖𝑛. is estimated as 𝐹𝑠0. The initial pile stiffness in the strong direction is 

𝑘𝑠0 =
𝐹𝑠0

Δ0
. 
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Figure A.2 Top of the Pile Lateral Force versus Displacement, Bending about the Strong 

Axis 

 

The initial abutment longitudinal stiffness Kl0, to be used for both abutments, is estimated 

as: 

Kl0 =
(n1 + n2)ks0 + (

7.7Aaw
d

)

2
(𝐴. 1) 

where, n1= the number of piles in Abutment 1, n2= the number of piles in Abutment 2, 

ks0= the initial pile stiffness in the strong direction, Aaw= the area of the abutment wall = 

HawLaw, Haw= height of the abutment wall, Law= length of the abutment wall, and d =

0.02Haw= deflection needed to mobilize the full passive resistance of 7.7 k/ft2. 

After loading the bridge linear-elastic model in the longitudinal direction, the average of 

the bridge longitudinal abutment displacement, ∆𝑙, is obtained. The average value of longitudinal 

displacements is used since in this direction the abutment displacements are very close to one 

another. In addition, determine the longitudinal seismic forces 𝑅𝑙1 and 𝑅𝑙2 for Abutments 1 and 

2. Let’s assume that ∆𝑙 is less than 1 𝑖𝑛. As shown in Figures A.1 and A.2, with the new ∆𝑙 

value, an abutment backfill reaction force 𝐹𝑏𝑓 and a revised pile lateral reaction force, 𝐹𝑠 is 

obtained. Check to see if the equilibrium is reached between the sum of longitudinal seismic 
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forces and abutment backfill resistance, and the lateral pile resistance forces as shown by 

Equation A.2 

𝑅𝑙1 + 𝑅𝑙2 ≅ (𝑛1 + 𝑛2)𝐹𝑠 + 𝐹𝑏𝑓 (𝐴. 2) 

The symbol ≅ is used to indicate whether the two sides are approximately equal. If 

Equation A.2 is not satisfied, change the value of longitudinal abutment stiffness and find the 

revised average value of longitudinal displacements and abutment seismic forces. With the 

revised average displacement, find the longitudinal abutment backfill resistance force and the 

lateral pile resistance forces and see if Equation A.2 is satisfied. This process is repeated a few 

times until the two sides of Equation A.2 are within 10%. When evaluating a pier, it is 

recommended to keep the abutment stiffness on the lower side. This would generally result in 

higher forces and displacements at the pier(s). 

 

Example 

Let’s assume the initial springs based on 1” displacement result in 3 4⁄ ” displacement and 

the corresponding force of 600 𝑘𝑖𝑝𝑠 at each abutment (1200 𝑘𝑖𝑝𝑠 total longitudinal force to be 

resisted by abutments). Let’s also assume we have 10 piles at each abutment and they resist 

30 𝑘𝑖𝑝𝑠 each at 3 4⁄ ” displacement, so the total pile resistance from both abutments would be 2∗

10 ∗ 30 = 600 𝑘𝑖𝑝𝑠, leaving 1200 − 600 = 600 𝑘𝑖𝑝𝑠 to be resisted by one abutment backfill. 

Now we need to check how much backfill resistance we get from 3 4⁄ ” displacement, assuming 

linear relation from 0” (0 𝑘𝑖𝑝𝑠) to 𝑑 = 0.02𝐻” (7.7𝐴𝑎𝑤). (Any displacement higher than 

0.02𝐻” will result in a constant backfill resistance of 7.7𝐴𝑎𝑤). If 3 4⁄ ” displacement results in 

backfill resistance considerably higher than 600 𝑘𝑖𝑝𝑠, we might increase abutment stiffness, 

which would give us higher acting seismic force, but smaller displacements. On the other hand, 
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if 3 4⁄ ” results in backfill resistance quite lower than 600 𝑘𝑖𝑝𝑠, we may need to soften the 

abutment springs to reduce the acting force, but increase the displacement and associated 

resistance from piles and backfill. We repeat the process until we get good correlation (within 

10%) between abutment acting seismic forces and resulting resistance from piles and backfill 

based on acting displacement. 

 

Traverse Stiffness 

In this procedure abutment forces and displacements are evaluated individually. The wing 

shear capacity can only be considered effective if it is larger than the difference between acting 

seismic forces and the piles reaction under given displacement. If otherwise, it is assumed that 

the wingwall has failed and it does not contribute to the transverse stiffness or resistance. The 

shear force 𝑉𝑐 is calculated using Equation A.3: 

Vc = 0.0316β√fc′bvdv (𝐴. 3) 

Where, 𝛽 = 2, 𝑓𝑐′= compressive strength of the concrete, 𝑘𝑠𝑖, 𝑏𝑣= the height of the 

wingwall at the interface of wing and abutment, 𝑑𝑣 = max [𝑑𝑒 −
𝑎

2
, 0.9𝑑𝑒, 0.72ℎ] , 𝑑𝑒= the 

effective depth = distance to the center of the back reinforcement from the face of the wingwall = 

ℎ − 𝑐𝑜𝑣𝑒𝑟 − 𝑏𝑎𝑟
𝑑𝑖𝑎𝑚𝑒𝑡𝑒𝑟

2
, 𝑎 =

𝐴𝑠𝑓𝑦

0.85𝑓𝑐
′𝑏𝑣

 = depth of the equivalent compression block; 𝐴𝑠 = area 

of the flexural reinforcement on the backfill side; 𝑓𝑦 = 60 𝑘𝑠𝑖 = yield strength of the flexural 

reinforcement, and ℎ = the depth of the wingwall (typically 12 𝑖𝑛.). 

Figure A.3 shows a typical top of pile lateral force versus displacement while the pile is 

bending about the weak axis. Note that here the force values are shown smaller compared to 
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Figure A.2 (i.e., less force required for a given displacement in the weak direction compared to 

the strong direction). 

In the bridge model, the initial transverse pile stiffness is assumed based on ∆0=  1 𝑖𝑛. 

Here, again the subscript “0” indicates initial estimates. From the pile force versus displacement 

in the weak direction (Figure A.3), the initial force in the weak direction corresponding to 

displacement of 1 𝑖𝑛. is estimated as 𝐹𝑤0. The initial pile stiffness in the weak direction is 𝑘𝑤0  =

𝐹𝑤0

𝛥0
. 

 

Figure A.3 Top of the Pile Lateral Force versus Displacement, Bending about the Weak 

Axis 

  

For one of the two abutments, let’s say Abutment 1, the initial value for the transverse 

stiffness is estimated using Equation A.4. Here, initially the contribution of the wing is not 

included. 

𝐾𝑡1,0 = 𝑛1𝑘𝑤0 (𝐴. 4) 

Where, n1= the number of piles in Abutment 1, and kw0= the initial pile stiffness in the 

weak direction. Repeat the same process for Abutment 2 to obtain initial value for its traverse 

stiffness, Kt2,0: 
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𝐾𝑡2,0 = 𝑛2𝑘𝑤0 (𝐴. 5) 

Where, n2= the number of piles in Abutment 2. 

With the above initial estimates for the abutment transverse stiffness values, load the 

bridge linear-elastic model in the transverse direction. Determine the transverse displacements 

and the corresponding seismic forces for Abutments 1 and 2. Note, here unlike the longitudinal 

direction, the abutment displacements may be significantly different and the use of average value 

may not be suitable. Let’s call the transverse displacements ∆𝑡1 and ∆𝑡2 and call the transverse 

forces 𝑅𝑡1 and 𝑅𝑡2. Let's also assume that the displacements are both less than 1 𝑖𝑛. with the 

corresponding top of the pile reactions in the weak direction as 𝐹𝑤1 and 𝐹𝑤2 as shown in 

Equation A.3. Now, examine to see if the force equilibrium is maintained as shown by Equations 

A.6 and A.7. 

𝑅𝑡1 ≅ 𝑛1𝐹𝑤1 + 𝐹𝑤𝑖𝑛𝑔 (𝐴. 6) 

𝑅𝑡2 ≅ 𝑛2𝐹𝑤2 + 𝐹𝑤𝑖𝑛𝑔 (𝐴. 7) 

Where, Fwing is the shear force demand on a single wing with a value Fwing ≤ Vc. 

If the left-hand sides of Equations A.6 and A.7 are larger than the right-hand side, reduce 

the transverse spring stiffness values 𝐾𝑡1 and 𝐾𝑡2. This will result in larger transverse 

displacements and thus lead to larger values for 𝐹𝑤1 and 𝐹𝑤2 (see Figure A.3). This process is 

repeated a few times until the two sides of Equations A.6 and A.7 are within 10%. Again, it is 

recommended to keep the abutment stiffness values on the lower side. This would generally 

result in higher forces and displacements at the pier(s). The numerical example below assumes a 

symmetrical bridge with the same number of piles in each abutment (i.e., 𝑛1  =  𝑛2). 
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Example 

Let’s assume the initial springs based on 1” displacement result in 1 2⁄ ” movement with 

400 𝑘𝑖𝑝𝑠 of acting seismic force at each abutment. Assuming that 1 2⁄ ” top of pile movement 

results in 20 𝑘𝑖𝑝𝑠 resistance, we would get 10 ∗ 20 = 200 𝑘𝑖𝑝𝑠 of pile resistance at each 

abutment, leaving 400 −  200 = 200 𝑘𝑖𝑝𝑠 to be resisted by one wing. If one wing can resist 

only 100 𝑘𝑖𝑝𝑠, we might try to reduce abutment springs as to reduce the acting seismic force, 

but increase displacement, which in turn will increase pile reactions and reduce demand on the 

wing. Assume that softer springs would result in the movement of 3 4⁄ ” and the acting force of 

350 𝑘𝑖𝑝𝑠 per abutment. Now the resistance from piles may be increased to let’s say 10 ∗

30
𝑘𝑖𝑝𝑠

𝑝𝑖𝑙𝑒
= 300𝑘𝑖𝑝𝑠 leaving 350 − 300 = 50 𝑘𝑖𝑝𝑠 to be resisted by a wing, which is ok, since the 

wing resistance is 100 𝑘𝑖𝑝𝑠. If on other hand we conclude that acting seismic force is higher 

than combined resistance of piles and one wing (despite the softening of abutment springs) we 

may assume the wing will be sheared off and we may have to adjust the abutment springs based 

on piles alone, until we get good convergence again between acting force and pile resistance 

under given displacement. 
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APPENDIX B -  Bridge Computer Models and Output Data 

 

In this appendix, the details of computer modeling and seismic analyses of the Preston 

bridge are presented. The computer modeling, analyses, and results about Parma and Dubois 

bridges can be found in Appendix E of the ITD Report (Ebrahimpour, Earles, Maskey, 

Tangarife, & Sorensen, 2016). 

 

Bridge on SH-36 over Bear River at Preston, Idaho 

 

The bridge at Preston is a two-span bridge with a three-column bent. The superstructure 

is made up of an 8-inch deck thick deck that rests on 5 prestressed bulb tee girders. The 

substructure is made up of a pier cap, three columns, and their footings all of which are cast-in-

place. 

 

Soil Spring Stiffness 

The abutment walls have 14" 𝜙 steel shell piles (pipe piles) and the center pier has 24" 𝜙 steel 

shell piles. The dimensions of the abutment walls are: 

𝐻𝑎𝑤 = 15 𝑓𝑡    Height of abutment wall 

𝐿𝑎𝑤 = 40 𝑓𝑡    Length of abutment wall 

 

The soil spring stiffness for the steel shell piles were derived from the Phase IV Foundation 

Investigation Report. Figures B.1 and B.2 show force and deflection for a pipe pile. Since spring 

stiffness equals force divided by deflection (𝐾 =
𝐹

𝑑
) the spring stiffness can be estimated by 
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determining the force at 1 𝑖𝑛 of deflection. The force at 1 in of deflection for both the Northeast 

and the Southwest Abutments is 66.4 𝑘𝑖𝑝𝑠.  

𝑘 = 66.4
𝑘𝑖𝑝𝑠

𝑖𝑛
= 796.8

𝑘𝑖𝑝𝑠

𝑓𝑡
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Figure B.1 Preston Bridge Lateral Deflection vs. Depth of a pipe pile (Northeast Abutment) 
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Figure B.2 Preston Bridge Lateral Deflection vs. Depth of a pipe pile (Southwest 

Abutment) 
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The initial value due to abutments-spring stiffness in the longitudinal direction is calculated by  

𝐾𝑙 =
2𝑛𝑘 + (

7.7𝐴𝑎𝑤
𝑑

)

2
 

Where 

 𝐾𝑙 = The abutments spring stiffness in the longitudinal direction 

 𝑛 = The number of sheet piles in one abutment wall = 8 

 𝑘 = The spring stiffness for one sheet = 796.8
𝑘𝑖𝑝𝑠

𝑓𝑡
 

 𝐴𝑎𝑤  = The area of the abutment wall = 𝐻𝑎𝑤𝐿𝑎𝑤 = 600 𝑓𝑡
2 

 𝑑 = deflection needed to mobilize full passive resistance = 0.02𝐻𝑎𝑤  =  0.3 𝑓𝑡. 

Initial value for the soil spring stiffness in the transverse direction is calculated by 

𝐾𝑡 = 𝑛𝑘 

Where: 

𝐾𝑡 = The spring stiffness in the transverse direction 

𝑘 = The spring stiffness for one sheet pile = 796.8
𝑘𝑖𝑝𝑠

𝑓𝑡
 

 

𝐾𝑙 = 14,074.4
𝑘𝑖𝑝𝑠

𝑓𝑡
    Spring stiffness at abutments the transverse direction 

𝐾𝑡 = 6,374.4
𝑘𝑖𝑝𝑠

𝑓𝑡
    Spring stiffness at abutments the transverse direction 

 

If the reactions at the ends of the bridge are greater than the force needed to 

displace the sheet piles times the number of piles in a wingwall the excess seismic load will 

be resisted by the shear capacity of one wingwall, 𝑉𝑐. If the excess seismic force is greater 
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than 𝑉𝑐 it can be assumed that the wingwall has broken off and only the sheet pile capacity 

resists the seismic force. 

A large spring stiffness (1𝑒12 𝑘𝑖𝑝𝑠/𝑓𝑡) was used for all other degrees of freedom 

(DOF’s) except the rotation about the centerline (C. L.) of the abutments, which were 

assigned a value of zero. 

𝑉𝑐 = 𝑠ℎ𝑒𝑎𝑟 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦 𝑜𝑓 𝑜𝑛𝑒 𝑤𝑖𝑛𝑔𝑤𝑎𝑙𝑙 = 0.0316𝛽(√𝑓′𝑐)𝑏𝑣𝑑𝑣 

Where, 

𝛽 = 2.0 

𝑏𝑣 = ℎ𝑒𝑖𝑔ℎ𝑡 𝑜𝑓 𝐸𝑎𝑠𝑡 𝑤𝑖𝑛𝑔𝑤𝑎𝑙𝑙 = 9.94 𝑓𝑡 

𝑑𝑣 = 𝑡ℎ𝑖𝑐𝑘𝑛𝑒𝑠𝑠 𝑜𝑓 𝑤𝑖𝑛𝑔𝑤𝑎𝑙𝑙 𝑚𝑖𝑛𝑢𝑠 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑓𝑟𝑜𝑚 𝑏𝑎𝑐𝑘𝑓𝑖𝑙𝑙 𝑓𝑎𝑐𝑒 𝑡𝑜 𝑚𝑎𝑖𝑛 𝑓𝑒𝑥𝑢𝑟𝑎𝑙 𝑟𝑒𝑖𝑛𝑓.

= 1.5 𝑓𝑡 

𝑓𝑐
′ = 4 𝑘𝑠𝑖 = 576 𝑘𝑠𝑓 

 

𝑉𝐶 = 0.0316 ∗ 2 ∗ √576 ∗ 9.94 ∗ 1.5 = 22.615 𝑘𝑖𝑝𝑠 
 

 

Superstructure 

Properties of the superstructure and its elements are as follows 

𝐿 = 274′ 2"    Overall length of the bridge 

𝐴𝑆𝑢𝑝 = 48.35 𝑓𝑡
2   Cross-sectional area of superstructure without parapets 

𝐴𝑔𝑆𝑢𝑝 = 53.67 𝑓𝑡
2 Gross cross-sectional area of superstructure including 

parapets for weight calculations 

𝑓𝑐𝐶𝐼𝑃
′ = 4.0 𝑘𝑠𝑖   Compressive strength of cast-in-place concrete 
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𝑓𝑐𝑃𝑟𝑒𝑠𝑡𝑟𝑒𝑠𝑠𝑒𝑑
′ = 8.5 𝑘𝑠𝑖  Compressive strength of prestressed concrete 

𝐸𝐶𝐼𝑃 = 33000 ∗ 0.1451.5√𝑓𝑐𝐶𝐼𝑃
′ = 33000(0.1451.5)√4.0 = 3,644 𝑘𝑠𝑖  

Modulus of elasticity of cast-in-place concrete 

𝐸𝑃𝑟𝑒𝑠𝑡𝑟𝑒𝑠𝑠𝑒𝑑 = 33000(0.14 + 0.001𝑓𝑐𝑃𝑟𝑒𝑠𝑡𝑟𝑒𝑠𝑠𝑒𝑑
′ )1.5√𝑓’𝑐  = 33000(0.14 + (0.001 ∗

8.5))
1.5
√8.5 = 5505.71 𝑘𝑠𝑖  

Modulus of elasticity of prestressed concrete 

𝑛 =
𝐸𝑃𝑟𝑒𝑠𝑡𝑟𝑒𝑠𝑠𝑒𝑑

𝐸𝐶𝐼𝑃
=

5505.71

3644
= 1.511 Modular ratio of elasticity 

 

The moments of inertia of the superstructure were determined by calculating the 

moments of inertia of the prestressed girders and the transformed moment of inertia of the deck 

and using the parallel axis theorem, 

𝐼𝑠 = ∑𝐼𝑜 + 𝐴𝑑
2 

where: 

 𝐼𝑠  = the moment of inertia of the superstructure 

 𝐼𝑜 = the moment of inertia of a section (girder or deck) of the superstructure 

𝐴 = the area of a section of the superstructure 

 𝑑 = the distance from the centroid of the section to the centroid of the superstructure 

 

𝐴𝐺𝑖𝑟𝑑𝑒𝑟 = 8.43 𝑓𝑡
2   Cross-sectional area one girder 

𝐼𝑦𝐺𝑖𝑟𝑑𝑒𝑟 = 22.09 𝑓𝑡
4 Moment of inertia of one girder about the y-axis 

 𝐼𝑧𝐺𝑖𝑟𝑑𝑒𝑟 = 34.57 𝑓𝑡
4 Moment of inertia of one girder about the z-axis 
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The transformed moment of inertia and area for the deck was calculated by dividing the 

value of 𝐼𝑧𝐷𝑒𝑐𝑘 , 𝐼𝑦𝐷𝑒𝑐𝑘 and 𝐴𝐷𝑒𝑐𝑘 by the modular ratio, 𝑛. The parapets on the outside edge of the 

deck were not included in these calculations. 

 

𝐴𝑡𝐷𝑒𝑐𝑘 = 17.65 𝑓𝑡
2   Transformed area of deck 

𝐼𝑦𝐷𝑒𝑐𝑘 = 2353.11 𝑓𝑡
4 Transformed moment of inertia of the deck about the y axis 

 𝐼𝑧𝐷𝑒𝑐𝑘 = 0.6537 𝑓𝑡
4 Transformed moment of inertia of the deck about the z axis 

𝑑𝑧𝐺𝑖𝑟𝑑𝑒𝑟 = 1.36 𝑓𝑡 Distance from the centroid of the girder to centroid of 

superstructure along the y-axis 

𝑑𝑧𝐷𝑒𝑐𝑘 = 0.73 𝑓𝑡 Distance from the centroid of the deck to centroid of 

superstructure along the y-axis 

𝑑𝑧𝐺𝑖𝑟𝑑𝑒𝑟1,5 = 16.34 𝑓𝑡 Distance from the centroid of the first and fifth girders to 

the centroid of the superstructure along the z-axis 

𝑑𝑧𝐺𝑖𝑟𝑑𝑒𝑟2,4 = 8.17 𝑓𝑡 Distance from the centroid of the second and fourth girders 

to the centroid of the superstructure along the z-axis 

𝑑𝑦𝐺𝑖𝑟𝑑𝑒𝑟3 = 0 𝑓𝑡 Distance from the centroid of the third girder to the 

centroid of the superstructure along the z-axis 

𝑑𝑦𝐺𝐷𝑒𝑐𝑘 = 0 𝑓𝑡 Distance from the centroid of the deck to the centroid of 

superstructure along the z-axis 

𝐼𝑦𝑆𝑢𝑝 = 2353.11 𝑓𝑡
4 + 5(22.09 𝑓𝑡4) + 8.43 𝑓𝑡2[2(16.34 𝑓𝑡)2 + 2(8.17 𝑓𝑡)2] = 8090.49 𝑓𝑡4  

Transformed moment of inertia of the superstructure about 

the y-axis 
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𝐼𝑧𝑆𝑢𝑝 = 0.6537 𝑓𝑡4 + 17.65 𝑓𝑡2(0.73 𝑓𝑡)2 + 5[34.57 𝑓𝑡4 + 8.43 𝑓𝑡2(1.36 𝑓𝑡)2] =

260.87 𝑓𝑡4    

Transformed moment of inertia of the superstructure about   

the z-axis 

𝐴𝑡𝑆𝑢𝑝 = 𝐴𝑡𝐷𝑒𝑐𝑘 + ∑𝐴𝐺𝑖𝑟𝑑𝑒𝑟 = 17.65 𝑓𝑡
2 + 5(8.43 𝑓𝑡2) = 59.8 𝑓𝑡2  

Transformed area of the superstructure 

 

The modulus of rigidity, 𝐺, for the cast-in-place and prestressed concrete are calculated by 

𝐺 =
𝐸

2(1 + 𝜈)
 

where: 

 𝜈 = Poisson’s ratio, typically from 0.15 – 0.2. 

 𝐺𝑝𝑟𝑒𝑠𝑡𝑟𝑒𝑠𝑠𝑒𝑑 =
5505.71

2(1+0.2)
= 2,294.05 𝑘𝑠𝑖 = 330,343.2 𝑘𝑠𝑓 

 𝐺𝐶𝐼𝑃 =
3644

2(1+0.2)
= 1,518.3 𝑘𝑠𝑖 = 218,640 𝑘𝑠𝑓 

 

 

Substructure 

Properties of the substructure and its elements are as follows 

𝐿𝑝  =  40 𝑓𝑡  Length of pier cap 

𝐴𝑝𝑦𝑧  =  22.5 𝑓𝑡
2  Cross-sectional area of pier cap in the x-y plane 

𝐿𝑐  =  29’ 3”  Column height 

𝑑𝑐  =  4 𝑓𝑡 Distance between two sides of the octagonal 

column 



 77 

𝐴𝑐𝑔  =  13.248 𝑓𝑡2   Cross-sectional area of one column 

𝐼𝑐𝑔  = 14.08 𝑓𝑡4   Gross moment of inertia of one column 

 

Column Reinforcement 

The columns are reinforced with 20 #9 bars and a #5 spiral with a 4 𝑖𝑛 pitch. There is 

2 𝑖𝑛 of cover concrete as shown in Figure B.3. 

 

 

Figure B.3 Preston Bridge Reinforced Column Detail 
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𝐴𝑟9  =  1 𝑖𝑛
2  Cross-sectional area of a #9 bar  

𝑑𝑠  =  0.625” Diameter of spiral reinforcing 

𝐴𝑠𝑡9  =  20𝐴𝑟9  =  0.138 𝑓𝑡2 Total longitudinal steel in one column with #9 bars 

𝑅9  =  1.74 𝑓𝑡 Distance from the center of the column to the center of the 

#9 bars 

 

Effective Moment of Inertia and Torsional Moment of Inertia of the Columns 

 

For the effective moment of inertia, the gross moment of inertia is multiplied by the 

Elastic Stiffness Ratio (
Ieff

Icg
). This is obtained from Figure B.4 with the Axial Load Ratio and the 

ratio of reinforcing steel to concrete.  

𝐴𝑥𝑖𝑎𝑙 𝐿𝑜𝑎𝑑 𝑅𝑎𝑡𝑖𝑜 =
𝑃

𝑓𝑐′𝐴𝑐𝑔
 

Where:  

𝑃 = The axial load to the column from the self-weight of the bridge = 527.771 𝑘𝑖𝑝𝑠 

The axial load on one column is from half the weight of each span divided by three plus 

the weight on the node in the pier cap above the column plus half the weight of one column. The 

dead load to each node is given in Table B.1. 

𝑃

𝑓𝑐
′𝐴𝑐𝑔

 =
527.771

4∗144∗13.248
= 0.07  

𝐴𝑠𝑡

𝐴𝑐𝑔
 =

0.138 𝑓𝑡2

13.248 𝑓𝑡2
 =  0.01  

𝐼𝑒𝑓𝑓

𝐼𝑐𝑔
 =  0.34  

𝐼𝑐𝑒𝑓𝑓  =  0.34 ∗  𝐼𝑐𝑔  =  4.787 𝑓𝑡
4  Effective moment of inertia of one column 
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𝐽𝑔𝑟𝑜𝑠𝑠  = 1.2762 ∗ 𝑑𝑐
4 = 326.707𝑓𝑡4 Gross torsional moment of inertia 

𝐽𝑒𝑓𝑓  = 0.2𝐽𝑔𝑟𝑜𝑠𝑠 = 65.34 𝑓𝑡
4  Effective torsional moment of inertia 

 

 

Figure B.4 Preston Bridge Column Elastic Stiffness Ratio (Koh & Stephens, 1991) 

 

 

Table B.1 Preston Bridge Weight of Structure to Nodes from Deck, Pier Cap, and Top Half 

of Columns 

Section 
Cross-sectional 

area (𝒇𝒕𝟐) 

Length 

(𝒇𝒕) 

Weight of 

material (
𝒌𝒊𝒑𝒔

𝒇𝒕𝟑
) 

Overall 

weight (𝒌𝒊𝒑𝒔) 

Weight per foot 

(
𝒌𝒊𝒑𝒔

𝒇𝒕
) 

Future Wearing 

Surface 
    0.028 

Deck 26.667 274.167 0.150 1096.68 4.000 

Utilities     0.020 

Future Utilities     0.020 

Girders 21.680 274.167 0.150 891.59 3.252 

Parapets 5.330 274.167 0.150 219.20 0.800 

Columns 39.744 29.25 0.150 697.51 47.693 

Pier Cap 22.500 40 0.150 135.00 3.375 
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Superstructure Length (𝒇𝒕) 
Materials 

involved 

Weight to 

node (𝒌𝒊𝒑𝒔) 
  

Node 1 17.135 
Concrete, steel, 

wearing surface 
139.13   

Node 2 34.271 
Concrete, steel, 

wearing surface 
278.27   

Node 3 34.271 
Concrete, steel, 

wearing surface 
278.27   

Node 4 34.271 
Concrete, steel, 

wearing surface 
278.27   

Node 5 34.271 
Concrete, steel, 

wearing surface 
278.27   

Node 6 34.271 
Concrete, steel, 

wearing surface 
278.27   

Node 7 34.271 
Concrete, steel, 

wearing surface 
278.27   

Node 8 34.271 
Concrete, steel, 

wearing surface 
278.27   

Node 9 17.135 
Concrete, steel, 

wearing surface 
139.13   

      

Substructure Length (𝒇t) 
Materials 

involved 

Weight to node 

(𝒌𝒊𝒑𝒔) 
Notes  

Node 13 10.000 Concrete 150.001 10.000  

Node 17 12.000 Concrete 156.751 12.000  

Node 21 10.000 Concrete 150.001 10.000  

  TOTAL 2682.866   

  𝒘(𝒙) in 
𝑘𝑖𝑝

𝑓𝑡
 11.665   

      

Axial Load to 

one Interior 

Column 

527.771   
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Linear Elastic Model of the Structure 

 

Each span of the superstructure is modeled as four elements (35.275’ each) attached end 

to end from south to north. A rigid element with a large moment of inertia attaches the 

superstructure to the pier bent at the midpoint of both. This element starts at the center of gravity 

of the pier bent and ends at the center of gravity of the superstructure (7.273’). At the top of each 

column there is another rigid element that starts at the top of the column and ends at the center of 

gravity of the pier bent (2.25’). The footings of the columns are modeled as an element at the 

bottom of the columns with the same properties as the columns, except that they are rigid, and 

are half the depth of the footings in length (2.75’). To model the spring support-condition an 

extra node and zeroLength element is assigned to the abutment ends of the superstructure. 

 
 

  Figure B.5 Preston Bridge Linear Elastic Model with Node Numbers. 
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Figure B.6 Preston Bridge Linear Elastic Model with Element Numbers. 
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Calculation of Seismic Loads 

 

The bridge will be subject to more seismically active conditions than that found near 

Preston, ID. Montpelier, ID is the most seismically active city in Idaho where there might be a 

bridge. Figure B.7 shows the Design Maps Summary Report for Montpelier, ID. 

 

 

Figure B.7 USGS Design Maps Summary Report 
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To calculate the seismic loads on the deck of the bridge the displacements at the deck nodes from 

a uniformly distributed load of 10 kip/ft in the longitudinal and transverse direction are 

determined and used to calculate the factors α, β, and γ. The factors are used to calculate the 

loads (𝑝𝑒  (𝑥)) at the nodes on the deck. The distributed seismic loads on each element is the 

average of the loads on the nodes. These loads are shown in column 9 of Tables B.2 and B.3. 

 

𝛼 = ∫ 𝑣𝑠(𝑥) 𝑑𝑥
𝐿

0

 

𝛽 = ∫ 𝑤(𝑥)𝑣𝑠(𝑥)𝑑𝑥
𝐿

0

 

𝛾 = ∫ 𝑤(𝑥)𝑣𝑠 (𝑥)
2𝑑𝑥

𝐿

0

 

where 

𝑣𝑥 (𝑥) = Displacement due to a uniformly distributed load of 10 𝑘𝑖𝑝𝑠/𝑓𝑡. 

 𝑤(𝑥) = Weight of the bridge per unit length = 11.665 𝑘𝑖𝑝/𝑓𝑡 

 𝑑𝑥 = Tributary length 

 𝐿 = Total length of bridge 

𝑝𝑒(𝑥) = 𝛽𝐶𝑠𝑚𝑤(𝑥) ∗
𝑣𝑠(𝑥)

𝛾
 

where 

 𝐶𝑠𝑚  =  𝑆𝐷𝑆   =  0.907 for  𝑇𝑜  <  𝑇𝑚  <  𝑇𝑠 and 

 𝐶𝑠𝑚  =  𝑆𝐷1/𝑇𝑚  =  1.303 for  𝑇𝑚  >  𝑇𝑠 

 

where 

 𝑇𝑚 = 2𝜋√
𝛾

𝑃0𝑔𝛼
= 0.373 𝑠 for longitudinal loads 

 𝑇𝑚 = 2𝜋√
𝛾

𝑃0𝑔𝛼
= 0.529 𝑠 for transverse loads 
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 𝑇𝑠 = 𝑆𝐷1/𝑆𝐷𝑆 = 0.5358 

 𝑇𝑜 = 0.2𝑇𝑆 = 0.1072 

 𝑔 = 32.2
𝑓𝑡

𝑠2
 

 𝑃0 = 10
𝑘𝑖𝑝𝑠

𝑓𝑡
 

 

 

Table B.2 Preston Bridge Calculation of Seismic Loads in the Longitudinal Direction. 

Nodes 
𝒙  
(𝒇𝒕) 

𝒅𝒙  
(𝒇𝒕) 

𝒗𝒔(𝒙) 
(𝒇𝒕) 

𝜶(𝒙) 
(𝒇𝒕𝟐) 

𝜷(𝒙) 
(𝒌 𝒇𝒕) 

𝜸(𝒙) 
(𝒌 𝒇𝒕𝟐) 

𝒑𝒆(𝒙) 

(
𝒌

𝒇𝒕
) 

𝒂𝒗𝒆.  

(
𝒌

𝒇𝒕
) 

1 0.00 0.000 0.08985 0.000 0.000 0.000 11.164  

2 34.27 34.27 0.09064 3.093 38.553 3.479 11.262 11.213 

3 68.54 34.27 0.09118 3.115 38.838 3.531 11.329 11.296 

4 102.81 34.27 0.09148 3.130 39.017 3.563 11.366 11.348 

5 137.08 34.27 0.09152 3.136 39.090 3.577 11.372 11.369 

6 171.35 34.27 0.09148 3.136 39.090 3.577 11.366 11.369 

7 205.62 34.27 0.09118 3.130 39.017 3.563 11.329 11.348 

8 239.89 34.27 0.09064 3.115 38.838 3.531 11.262 11.296 

9 274.16 34.27 0.08985 3.093 38.553 3.479 11.164 11.213 

 Totals 274.16  24.947 310.994 28.300   
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Table B.3 Preston Bridge Calculation of Seismic Loads in the Transverse Direction. 

Nodes 
𝒙  
(𝒇𝒕) 

𝒅𝒙  
(𝒇𝒕) 

𝒗𝒔(𝒙) 
(𝒇𝒕) 

𝜶(𝒙) 
(𝒇𝒕𝟐) 

𝜷(𝒙) 
(𝒌 𝒇𝒕) 

𝜸(𝒙) 
(𝒌 𝒇𝒕𝟐) 

𝒑𝒆(𝒙) 

(
𝒌

𝒇𝒕
) 

𝒂𝒗𝒆.  

(
𝒌

𝒇𝒕
) 

1 0.00 0.00 -0.17498 0.000 0.000 0.000 10.570  

2 34.27 34.27 -0.17803 -6.049 -75.404 13.309 10.754 10.662 

3 68.54 34.27 -0.18361 -6.197 -77.248 13.968 11.091 10.922 

4 102.81 34.27 -0.18793 -6.366 -79.361 14.743 11.352 11.221 

5 137.08 34.27 -0.18937 -6.465 -80.591 15.203 11.439 11.395 

6 171.35 34.27 -0.18793 -6.465 -80.591 15.203 11.352 11.395 

7 205.62 34.27 -0.18361 -6.366 -79.361 14.743 11.091 11.221 

8 239.89 34.27 -0.17803 -6.197 -77.248 13.968 10.754 10.922 

9 274.16 34.27 -0.17498 -6.049 -75.404 13.309 10.570 10.662 

 Totals 274.16  -50.153 -625.208 114.446 10.997  

 

 

Linear Elastic OpenSees Input File for Seismic Load in Transverse Direction 

 
#Two-span Bridge on SH-36 over Bear River at Preston, Idaho 
 
wipe  
 
#Create model with 3 dimensions and 6 DOF 
 
model BasicBuilder -ndm 3 -ndf 6 
 
#Units are kips and feet 
 
#Create 6 DOF nodes 
 
#Superstructure nodes 
#       tag         x             y            z 
 
node     1         0.0         39.273         0.0 
node     2        34.270       39.273         0.0 
node     3        68.540       39.273         0.0 
node     4       102.810       39.273         0.0 
node     5       137.080       39.273         0.0 
node     6       171.350       39.273         0.0 
node     7       205.620       39.273         0.0 
node     8       239.890       39.273         0.0 
node     9       274.160       39.273         0.0 
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#Substructure nodes 
 
node    10       137.080        0.0          12.000 
node    11       137.080        2.75         12.000 
node    12       137.080       32.000        12.000 
node    13       137.080       34.250        12.000 
node    14       137.080        0.0           0.0 
node    15       137.080        2.75          0.0 
node    16       137.080       32.000         0.0 
node    17       137.080       34.250         0.0 
node    18       137.080        0.0         -12.000 
node    19       137.080        2.75        -12.000 
node    20       137.080       32.000       -12.000 
node    21       137.080       34.250       -12.000 
 
#Spring support nodes 
 
node    22         0.0         39.273         0.0 
node    23       274.160       39.273         0.0 
 
#Specify geometric transformation 
 
geomTransf Linear 1  0  0  1 
geomTransf Linear 2 -1  0  0 
geomTransf PDelta 3  0  0  1 
 
# Fix column bases and abutments in all DOF's 
 
fix 22 1 1 1 1 1 1 
fix 23 1 1 1 1 1 1 
fix 10 1 1 1 1 1 1 
fix 14 1 1 1 1 1 1 
fix 18 1 1 1 1 1 1 
 
 
# Create deck elements 
 
# element elasticBeamColumn $eleTag $iNode $jNode $A $E $G $J $Iy $Iz $transfTag 
 
element elasticBeamColumn 1  1  2  59.80 792822.24  330343.2  1e10  8090.49  260.87  1 
element elasticBeamColumn 2  2  3  59.80 792822.24  330343.2  1e10  8090.49  260.87  1 
element elasticBeamColumn 3  3  4  59.80 792822.24  330343.2  1e10  8090.49  260.87  1 
element elasticBeamColumn 4  4  5  59.80 792822.24  330343.2  1e10  8090.49  260.87  1 
element elasticBeamColumn 5  5  6  59.80 792822.24  330343.2  1e10  8090.49  260.87  1 
element elasticBeamColumn 6  6  7  59.80 792822.24  330343.2  1e10  8090.49  260.87  1 
element elasticBeamColumn 7  7  8  59.80 792822.24  330343.2  1e10  8090.49  260.87  1 
element elasticBeamColumn 8  8  9  59.80 792822.24  330343.2  1e10  8090.49  260.87  1 
 
# Create pier bent elements 
  
element elasticBeamColumn  9  5 17  196.00   524736  218640  1e10  1e10  1e10  3 
element elasticBeamColumn 10 13 17   22.50   524736  218640  1e10  1e10  1e10  2 
element elasticBeamColumn 11 17 21   22.50   524736  218640  1e10  1e10  1e10  2 
 
# Create column elements 
 
element elasticBeamColumn 12 10 11  13.248  524736  218640  1e10   4.787  4.787 3 
element elasticBeamColumn 13 11 12  13.248  524736  218640  65.34  4.787  4.787 3 
element elasticBeamColumn 14 12 13  1e10    524736  218640  1e10   1e10   1e10  3 
element elasticBeamColumn 15 14 15  13.248  524736  218640  1e10   4.787  4.787 3 
element elasticBeamColumn 16 15 16  13.248  524736  218640  65.34  4.787  4.787 3 
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element elasticBeamColumn 17 16 17  1e10    524736  218640  1e10   1e10   1e10  3 
element elasticBeamColumn 18 18 19  13.248  524736  218640  1e10   4.787  4.787 3 
element elasticBeamColumn 19 19 20  13.248  524736  218640  65.34  4.787  4.787 3 
element elasticBeamColumn 20 20 21  1e10    524736  218640  1e10   1e10   1e10  3 
 
# Create spring elements 
 
# Initial abutment stiffnesses to be used with the uniform loads to determine the seismic 
loads 
 
#uniaxialMaterial Elastic 1 17.202e3;   # Translational stiffness along local x axis of the 
abutments, kip/ft 
#uniaxialMaterial Elastic 3 5.52e3;   # Translational stiffness along local z axis of the 
abutments, kip/ft 
 
# Final abutment stiffnesses 
 
uniaxialMaterial Elastic 1 14074.4;# Translational stiffness along local x axis of the 
abutments, kip/ft 
uniaxialMaterial Elastic 2 1e12;   # Translational stiffness along local y axis of the 
abutments, kip/ft 
uniaxialMaterial Elastic 3 2300; # Translational stiffness along local z axis of the 
abutments, kip/ft 
uniaxialMaterial Elastic 4 1e12;   # Rotational stiffness about local x axes of the abutments, 
kip.ft/radian  
uniaxialMaterial Elastic 5 1e12;   # Rotational stiffness about local y axis of the abutments, 
kip.ft/radian 
uniaxialMaterial Elastic 6 0;      # Rotational stiffness about the local z axis of the 
abutment, kip.ft/radian 
 
 
# Spring elements using above stiffness values 
# element zeroLength $eleTag $iNode $jNode -mat $matTag1 $matTag2 ... -dir $dir1 $dir2 ... 
 
element zeroLength 21 22  1 -mat 1 2 3 4 5 6 -dir 1 2 3 4 5 6  
element zeroLength 22  9 23 -mat 1 2 3 4 5 6 -dir 1 2 3 4 5 6  
 
# Create recorder files 
 
#recorder Node -file Nodes1-9DispLong_BR_elastic.out -time -nodeRange 1 9 -dof 1 disp 
recorder Node -file Nodes1-9DispTrans_BR_elastic.out -time -nodeRange 1 9 -dof 3 disp 
#recorder Node -file Long_BR_Column_Displacement_Long.out -time -node 12 16 20 -dof 1 disp 
#recorder Node -file Long_BR_Column_Reactions_Long.out -time -node 10 14 18 -dof 1 2 6 
reaction 
recorder Node -file Long_BR_Column_Displacement_Trans.out -time -node 12 16 20 -dof 3 disp 
recorder Node -file Long_BR_Column_Reactions_Trans.out -time -node 10 14 18 -dof 3 2 4 
reaction 
recorder Node -file Node22_Reaction_Trans_BR_elastic.out -time -node 22 -dof 3 reaction 
recorder Node -file Node23_Reaction_Trans_BR_elastic.out -time -node 23 -dof 3 reaction 
 
# Assign gravity loads 
 
pattern Plain 1 Constant { 
#    tag    FX       FY      FZ   MX   MY   MZ 
load  1     0.0    -139.130  0.0  0.0  0.0  0.0 
load  2     0.0    -278.270  0.0  0.0  0.0  0.0 
load  3     0.0    -278.270  0.0  0.0  0.0  0.0 
load  4     0.0    -278.270  0.0  0.0  0.0  0.0 
load  5     0.0    -278.270  0.0  0.0  0.0  0.0 
load  6     0.0    -278.270  0.0  0.0  0.0  0.0 
load  7     0.0    -278.270  0.0  0.0  0.0  0.0 



 89 

load  8     0.0    -278.270  0.0  0.0  0.0  0.0 
load  9     0.0    -139.130  0.0  0.0  0.0  0.0 
load 13     0.0    -150.001  0.0  0.0  0.0  0.0 
load 17     0.0    -156.751  0.0  0.0  0.0  0.0 
load 21     0.0    -150.001  0.0  0.0  0.0  0.0 
} 
 
constraints Plain 
 
numberer Plain 
 
system BandGeneral 
 
test NormDispIncr 1.0e-8  6 
 
algorithm Newton 
 
integrator LoadControl 1 
 
analysis Static 
 
analyze 1 
 
#Reset time to perform pushover analysis 
 
loadConst -time 0.0 
 
 
# Create load pattern for horizontal loading 
#The 10 kip/ft load should be activated when placing a uniform load of 10 kip/ft in the 
longitudinal or transverse direction 
#These loads should be used with the initial abutment stiffnesses 
 
#pattern Plain 2 Linear { 
 #eleLoad -ele $eleTag1 <$eleTag2 ....> -type -beamUniform $Wy $Wz <$Wx> 
 #eleLoad -ele 1 2 3 4 5 6 7 8 -type beamUniform 0 0 10 
#} 
 
#pattern Plain 3 Linear { 
# eleLoad -ele $eleTag1 <$eleTag2 ....> -type -beamUniform $Wy $Wz <$Wx> 
 #eleLoad -ele 1 2 3 4 5 6 7 8 -type beamUniform 0 -10 0 
#} 
 
#Transverse seismic loads 
 
pattern Plain 4 Linear {  
eleLoad -ele 1 -type beamUniform 0 10.662 0 
} 
 
pattern Plain 5 Linear {  
eleLoad -ele 2 -type beamUniform 0 10.922 0 
} 
  
pattern Plain 6 Linear { 
eleLoad -ele 3 -type beamUniform 0 11.221 0  
} 
 
pattern Plain 7 Linear { 
eleLoad -ele 4 -type beamUniform 0 11.395 0 
} 
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pattern Plain 8 Linear { 
eleLoad -ele 5 -type beamUniform 0 11.395 0 
} 
 
pattern Plain 9 Linear { 
eleLoad -ele 6 -type beamUniform 0 11.221 0 
} 
 
pattern Plain 10 Linear { 
eleLoad -ele 7 -type beamUniform 0 10.922 0  
} 
 
pattern Plain 11 Linear { 
eleLoad -ele 8 -type beamUniform 0 10.662 0  
} 
 
# The following eight loading patterns should be activated instead of the previous eight, when 
loading in the longitudinal direction 
 
#pattern Plain 12 Linear { 
#eleLoad -ele 1 -type beamUniform 0 0 10.000 
#} 
 
#pattern Plain 13 Linear { 
#eleLoad -ele 2 -type beamUniform 0 0 10.000 
#} 
 
#pattern Plain 14 Linear { 
#eleLoad -ele 3 -type beamUniform 0 0 10.000  
#} 
 
#pattern Plain 15 Linear { 
#eleLoad -ele 4 -type beamUniform 0 0 10.000 
#} 
 
#pattern Plain 16 Linear { 
#eleLoad -ele 5 -type beamUniform 0 0 10.000   
#}  
 
#pattern Plain 17 Linear { 
#eleLoad -ele 6 -type beamUniform 0 0 10.000   
#}  
      
#pattern Plain 18 Linear { 
#eleLoad -ele 7 -type beamUniform 0 0 10.000 
#} 
 
#pattern Plain 19 Linear { 
#eleLoad -ele 8 -type beamUniform 0 0 10.000 
#} 
 
constraints Plain 
 
numberer Plain 
 
system BandGeneral 
 
test NormDispIncr  1.0e-8  6 
 
algorithm Newton 
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integrator LoadControl 0.01 
 
analysis Static 
 
analyze 100 
 
 
 
 
 

 

Determination of Final Soil Spring Stiffness  

The final estimations of the bridge transverse and longitudinal abutment stiffness values are 

accomplished with an iterative process. In the longitudinal direction, the backfill behind the 

abutment wall as well as the embedded piles resist the seismic forces at the ends of the deck. The 

following procedure is used to achieve a correlation between these. 

1. Determine the displacements and OpenSees reactions at the end nodes of the deck. 

2. Add the OpenSees reactions from both abutments. This sum is the total longitudinal 

demand force on an abutment. 

3. Determine the force that each pile resists based on the displacements and multiply it by 

the total number of piles from both abutments. 

4. Determine the abutment wall force by subtracting the pile resistance from the total 

demand on the abutment. 

5. Compare the displacement at the end nodes to 0.02Haw. 

a. If it is greater – the wall force is 7.7Aaw. 

b. If it is smaller – the wall force is calculated by a linear interpolation             

 𝐹 = Δ(
7.7𝐴𝑎𝑤

0.02𝐻𝑎𝑤
) 

i. F = the wall capacity, 

ii. Δ = the displacement of the end node. 
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6. Compare the abutment demand to the abutment capacity (i.e., sum of the forces of the 

piles and the backfill force). 

a. If it is greater, increase abutment stiffness. 

b. If it is smaller, decrease abutment stiffness. 

7. Repeat process until the combined backfill force and pile force is within 10% of the value 

of the longitudinal demand force. 

 

 

Longitudinal Direction: 

The reactions at the abutments, Node 22 and 23 = 𝑅1  =  𝑅2  =  1429.77 𝑘𝑖𝑝𝑠 

The deflections at the abutments, Node 1 and 9 = 0.101587𝑓𝑡 

From Figures: 

𝐹𝑁𝐸  =  70 𝑘 𝑎𝑛𝑑 𝐹𝑆𝑊  = 70 𝑘  

So, Demand Force = 𝑅1  +  𝑅2  =  2859.54 𝑘𝑖𝑝𝑠  

 

Now, (𝐹𝑁𝐸 + 𝐹𝑆𝑊) ∗ 8 𝑝𝑖𝑙𝑒𝑠 = 1120 𝑘𝑖𝑝𝑠 

Comparing deflections at abutments to 0.02𝐻𝑎𝑤: 

0.101587 𝑓𝑡 < 0.02𝐻𝑎𝑤  

Backfill Wall force, 𝐹𝑏𝑓 =
Δ(7.7𝐴𝑎𝑤)

0.02𝐻𝑎𝑤
=

0.101587∗7.7∗15∗40

0.02∗15
= 1564.44 𝑘𝑖𝑝𝑠 

Capacity = 1120 + 1564.44 = 2684.44 𝑘𝑖𝑝𝑠 
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Table B.4 Preston Bridge Final Abutment Stiffness Calculation for Longitudinal Direction 

 Longitudinal 

Displacement (ft) 
    

Iteration node 1 node 10 
Total Demand 

(𝒌𝒊𝒑𝒔) 

Total 

Capacity 

(𝒌𝒊𝒑s) 

𝑲 (
𝒌𝒊𝒑𝒔

𝒇𝒕
) 

Correlation 

(%) 

1 0.101587 0.101587 2859.54 2684.44 14074.4 6.123 

 

The transverse abutment stiffness values depend only on the resistance of the piles in one 

abutment wall. The procedure is simple because the abutments are similar and there are no 

wingwalls. 

1. Determine the displacements and OpenSees reactions at the end nodes of the deck. The 

OpenSees reactions are the demand forces on each abutment. 

2. Based on the displacements determine the force that one pile resists. 

3. Multiply the force that one pile resists by the number of piles in each abutment. 

4. Compare the total force that the piles from one abutment resist to the demand. 

a. If it is greater, increase abutment stiffness. 

b. If it is smaller, decrease abutment stiffness.  

5. Repeat procedure until the pile resistance is within 10% of the abutment demand. 

 

 

Transverse Direction: 

The reactions at the one abutment = 𝐷𝑒𝑚𝑎𝑛𝑑 = 𝑅 =  1115.36 𝑘  

Displacement at the one abutment = 0.174976 𝑓𝑡. 

From Figure: 

𝐹 =  78.7 𝑘  
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Now, 𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦 =  8 ∗ 𝐹 =  8(78.7 𝑘)  =  629.6 𝑘   

Since, 𝐷𝑒𝑚𝑎𝑛𝑑 − 𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦 = 485.76 > 𝑉𝑐 , the wingwall breaks and the wingwall capacity 

cannot be added  

 

Table B.5 Preston Bridge Final Abutment Stiffness Calculation for Transverse Direction 

 Transverse 

Displacement (ft) 
    

Iteration node 1 node 10 
Total Demand 

(𝒌𝒊𝒑𝒔) 

Total 

Capacity 

(𝒌𝒊𝒑s) 

𝑲 (
𝒌𝒊𝒑𝒔

𝒇𝒕
) 

Correlation 

(%) 

1 0.174976 0.174976 1115.360 629.60 6374.40 43.5519 

2 0.277215 0.277215 1120.060 759.88 4000.00 32.1572 

3 0.3299 0.3299 1055.680 822.35 3200.00 22.1027 

4 0.362159 0.362159 1014.040 860.80 2800.00 15.1118 

5 0.450205 0.450205 900.410 964.16 2000.00 7.0801 

6 0.41259 0.41259 948.957 919.88 2300.00 3.0641 

 

 

The final estimation for the abutment stiffness values are 

𝐾𝑙 = 14,074.4 𝑘𝑖𝑝𝑠/𝑓𝑡   Longitudinal abutment stiffness 

𝐾𝑡 = 2,300 𝑘𝑖𝑝𝑠/𝑓𝑡    Transverse abutment stiffness 

As a check, the final abutment stiffness values were used in the OpenSees program with the 

uniformly distributed load used for calculating the seismic loads to see how the new stiffness 

values would affect the calculation of the seismic loads. The results are shown in the Tables B.7 

and B.8. The longitudinal stiffness values didn’t change and the difference in the transverse 

values was less than 5%. The final transverse stiffness values were softer than the initial values 

and this produced less of a difference in the seismic forces from the end of the deck to the center 

so that the characteristic trapezoidal shape of the seismic forces was flatter than before. 
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Table B.6 Preston Bridge Comparison of Updated and Original Transverse Design Loads 

Updated 

Design 

Loads 

(
𝒌𝒊𝒑𝒔

𝒇𝒕
) 

Original 

Design 

Loads 

(
𝒌𝒊𝒑𝒔

𝒇𝒕
) 

10.970 10.662 

11.036 10.922 

11.099 11.221 

11.123 11.395 

11.123 11.395 

11.099 11.221 

11.036 10.922 

10.970 10.662 

 

 

Table B.7 Preston Bridge Linear Elastic Displacements and Column Base Reactions for 

Seismic Loads in the Longitudinal Direction 

Nodes 
Displacement 

(𝒇𝒕. ) 
 Columns 

Shear 

(𝒌) 

Axial 

(𝒌) 

Moment 

(𝒌 𝒇𝒕) 
Deck  1 -80.080 609.786 1357.590 

1 0.10159  2 -80.080 609.786 1357.590 

2 0.10248  3 -80.080 609.786 1357.590 

3 0.10310      

4 0.10343      

5 0.10349      

6 0.10343      

7 0.10310      

8 0.10248      

9 0.10159      

Top of the Columns      

12 0.09903      

16 0.09903      

20 0.09903      
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Table B.8 Preston Bridge Linear Elastic Displacements and Column Base Reactions for 

Seismic Loads in the Transverse Direction 

Nodes 
Displacement 

(𝒇𝒕. ) 
 Columns 

Shear 

(𝒌) 

Axial 

(𝒌) 

Moment 

(𝒌 𝒇𝒕) 
Deck  1 -377.069 609.812 -6152.560 

1 0.41259  2 -377.414 609.776 -6158.190 

2 0.41455  3 -377.069 609.812 -6152.560 

3 0.41760      

4 0.41927      

5 0.41944      

6 0.41927      

7 0.41760      

8 0.41455      

9 0.41259      

Top of the Columns      

12 0.41906      

16 0.41944      

20 0.41906      

 

The column height is 29.25 𝑓𝑡 and the drift in the longitudinal and transverse directions for top 

of the columns are shown in Table B.9. 

 

 

Table B.9 Preston Bridge Linear Elastic Calculated Drift for Top of the Columns 

Node 12 16 20 

Long. drift (%) 0.3386 0.3386 0.3386 

Trans. drift (%) 1.4327 1.4340 1.4327 
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Nonlinear CIP Model of the Structure 

The non-linear model of the bridge superstructure and the column bent is the same as that 

of the linear elastic model. The columns are modeled with a nonlinearBeamColumn and a fiber 

section which describes the dimensions and properties of the reinforcing steel in the column. 

Additionally, a zeroLength element is placed at the top and bottom of the columns to model 

bond-slip at the column- footing and column-bent interfaces and the footing is removed from the 

model. 

 

Figure B.8 Preston Bridge Nonlinear Cast-in-place Model with Node Numbers 
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Figure B.9 Preston Bridge Nonlinear Cast-in-place Model with Element Numbers 

 

The following dimensions are required for modeling the fiber section. 

𝑑𝑟9  =  1.128 𝑖𝑛  Diameter of a #9 reinforcing bar 

𝑑𝑠  =  0.625”  Diameter of spiral reinforcing 

𝑅9  =  1.74 𝑓𝑡  Distance from the center of the column to the center of the #9 bars 

 

 

Material Properties 

Unconfined Concrete 

As previously determined the modulus of elasticity, 𝐸, and the modulus of rigidity, 𝐺, for 

cast-in-place concrete are: 

𝐸𝐶𝐼𝑃  =  3,644 𝑘𝑠𝑖 =  524,736 𝑘𝑠𝑓  Modulus of elasticity of cast-in-place concrete 

𝐺𝐶𝐼𝑃  =  218,640 𝑘𝑠𝑓    Modulus of rigidity of cast-in-place concrete 
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Peak strain for 4000 𝑝𝑠𝑖 concrete is 0.002 and ultimate strain is 0.005. 

 

Reinforcing Steel 

The grade of the steel is specified in the plans. For the Preston Bridge the steel is Grade 

60. The following properties are found in Table 8.4.2-1 in the AASHTO Guide Specifications for 

LRFD Seismic Bridge Design, 2011, Sec. 8-4. 

𝑓𝑦  =  68 𝑘𝑠𝑖 =  9,792 𝑘𝑠𝑓  

𝑓𝑢  =  95 𝑘𝑠𝑖 =  13,680 𝑘𝑠𝑓  

The strain for a #9 bar at strain hardening is 

𝑒𝑠ℎ  =  0.0125  

The ultimate strain is 

𝑒𝑢  =  0.09  

The modulus of elasticity for steel is 

𝐸 =  29,000 𝑘𝑠𝑖 =  4,176,000 𝑘𝑠𝑓  

The slope of the line at strain hardening is  

𝐸𝑠ℎ  =  1,247 𝑘𝑠𝑖 =  179,568 𝑘𝑠𝑓  

 

Confined Concrete Strength Using Theoretical Stress-Strain Model Developed by Mander et al. 

AASHTO Guide Specifications for LRFD Seismic Bridge Design, 2011, Sec. 8.4.4, Concrete 

Modeling, specifies that confined concrete should be modeled based on Mander’s stress-stain 

model. Following the procedure outlined by Mander et al., we obtained the following properties 

for the confined concrete (Mander, Priestley, & Park, Theoretical Stress-Strain Model for 

Confined Concrete, 1988). 
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𝑓𝑐𝑐
′ = 5.604 𝑘𝑠𝑖 = 806.976 𝑘𝑠𝑓  Confined concrete compressive strength  

𝜀𝑐𝑐 = 0.006     Confined concrete strain at maximum strength 

𝜀𝑐𝑢 = 0.016     Confined concrete ultimate strain 

 

 

 

Modeling Bond-slip 

To model the bond-slip of the reinforcing steel at the interfaces between the footing and column 

and the bent and the column a zeroLength element with hysteretic material properties is used. 

The uniaxialMaterial Hysteretic command in OpenSees requires values from a moment-

curvature analysis of the cross-section of the column. A zeroLength element with the same cross-

section as that of the reinforced column was created in a separate tcl file to analyze the material’s 

behavior. An axial load equal to the average axial load seen by the columns and a moment of 

1 𝑘𝑖𝑝 𝑖𝑛 was applied to the element. The stresses and strains in the reinforcing steel on the 

tension and compression side of the section as well as the concrete at the same location were 

recorded. The reaction was also recorded.  The slip can be calculated using equations from 

Section 8.2.3.1 in the Haber report (Haber Z. B., 2013). 

𝛿𝑠𝑙𝑖𝑝 =

{
 

 
𝜀𝑠𝐿1
2
                              𝑖𝑓  𝜀𝑠 ≤ 𝜀𝑦             

𝜀𝑦𝐿1
2

+
(𝜀𝑠 + 𝜀𝑦)𝐿2

2
      𝑖𝑓   𝜀𝑠 > 𝜀𝑦            

 

Where: 

εs = strain in the reinforcing steel on the tension side of the column 

εy = yield strain of the reinforcing steel 

L1 and L2 can be determined by 
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𝐿1 =
𝑓𝑠𝑑𝑏
4𝑢

 

𝐿2 =
(𝑓𝑠 − 𝑓𝑦)𝑑𝑏

4𝑢
 

Where: 

fs = stress in the reinforcing steel on the tension side of the column 

fy = maximum stress of the reinforcing steel 

db = diameter of one reinforcing bar 

u can be calculated by 

𝑢 =
9.5√𝑓𝑐′

𝑑𝑏
≤ 800 𝑝𝑠𝑖 

Where: 

f’c = the compressive strength of concrete 

Once the slip is found the rotation of the column that corresponds to each moment is calculated 

by 

𝜃𝑠𝑙𝑖𝑝 = 𝑡𝑎𝑛
−1 (

𝛿𝑠𝑙𝑖𝑝
𝑐 − 𝑑

) 

Where: 

c = neutral axis location determined from moment-curvature analysis  

   d = column diameter 

 

A graph of the moment vs. rotation with an idealized bilinear curve for the Preston Bridge is 

shown in Figure B.10. 
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Figure B.10 Preston Bridge Moment vs Rotation 

 

The uniaxialMaterial Hysteretic command in OpenSees requires the stress and strain at the first 

point of inflection and the ultimate stress and strain on the bilinear approximation of the 

moment-rotation curve. These values are  

s1p = 35,300 𝑘 𝑖𝑛 = 2,941.67 𝑘 𝑓𝑡 Moment at the first point of the envelope in the positive 

direction 

e1p = 0.00089 Angle at the first point of the envelope in the positive 

direction 

s2p = 36,200 𝑘 𝑖𝑛 = 3,016.67 𝑘 𝑓𝑡 Moment at the second point of the envelope in the positive 

direction 
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e2p = 0.009866 Angle at the second point of the envelope in the positive 

direction 

Because of the symmetry of the column the moments and rotations in the negative direction are 

the same as those in the positive direction.  

 

Moment-curvature OpenSees Input File 

 
#Clear cached data existing in the program 
 
wipe 
 
#Values in kips and feet 
 
#Create Model with 2 dimensions and 3 degrees of freedom 
 
model BasicBuilder -ndm 2 -ndf 3 
 
#Create 3 DOF nodes 
 
#       tag   x     y      
node     1    0.0   0.0    
node     2    0.0   0.0    
 
#Fix node 1 in all DOF and node 2 in the y direction 
 
fix  1  1  1  1   
 
fix  2  0  1  0 
 
 
#Create uniaxial materials for Concrete and Steel 
 
# uniaxialMaterial Concrete01 $matTag $fpc $epsc0 $fpcu $epsU 
 
uniaxialMaterial Concrete01  1  -4.0  -0.002  0  -0.005 
 
# uniaxialMaterial Concrete04 $matTag $fc $ec $ecu $Ec <$ft $et> <$beta> 
 
uniaxialMaterial Concrete04  2  -5.604   -0.006  -0.016  3644  
 
# uinaxialMaterial ReinforcingSteel $matTag $fy $fu $Es $Esh $esh $eult   
 
uniaxialMaterial ReinforcingSteel  3  68   95   29000   1247   0.0125   0.09 
  
 
#Create fiber section with Defined Concrete and Rebar 
 
section Fiber  1  { 
#patch circ $matTag $numSubdivCirc $numSubdivRad $yCenter $zCenter $intRad $extRad <$startAng 
endAng> 
patch circ 2  44  10  0  0  0   20.88  0  360 
patch circ 1 44 2  0  0  20.88  24.64  0  360  
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#layer circ $matTag $numBar $areaBar $yCenter $zCenter $radius <$startAng $endAng> 
layer circ 3  20  1  0  0  20.88 0 360  
} 
 
#Create zero length element between nodes 1 and 2 
 
element zeroLengthSection 1  1  2  1   
 
 
#Set up time series 
 
timeSeries Linear 1 
 
#Create recorder files: displacements and reactions 
 
recorder Node  -file MomentSection-BR.out -node 1 -dof 3 reaction 
recorder Element  -file TensionStrain_steel-BR.out -ele 1 section fiber -20.88 0 3 
stressStrain 
recorder Element  -file TensionStrain_concrete-BR.out -ele 1 section fiber -20.88 0 2 
stressStrain 
recorder Element  -file CompressiveStrain-steel-BR.out -ele 1 section fiber 20.88 0 3 
stressStrain 
recorder Element  -file CompressiveStrain-concrete-BR.out -ele 1 section fiber 20.88 0 2 
stressStrain 
 
 
pattern Plain 1 Constant { 
load 2  -622  0  0 
} 
 
integrator LoadControl 0.0 
system SparseGeneral -piv 
test NormUnbalance 1.0e-9 10 
numberer Plain 
constraints Plain 
algorithm Newton 
analysis Static 
analyze 1 
 
 
pattern Plain 2 Linear { 
load 2 0.0 0.0 -1.0 
} 
 
integrator DisplacementControl 2 3 0.000005 
analyze 500 
 

 

 

 

 

 

 

 

 

 



 105 

Non-Linear Cast-in-Place OpenSees Input File for Seismic Load in Transverse Direction 

 
#Two-span Bridge on SH-36 over Bear River at Preston, Idaho 
 
wipe  
 
#Create model with 3 dimensions and 6 DOF 
 
model BasicBuilder -ndm 3 -ndf 6 
 
#Units are kips and feet 
 
#Create 6 DOF nodes 
 
#Superstructure nodes 
#       tag         x             y            z 
 
node     1         0.0         39.273         0.0 
node     2        34.270       39.273         0.0 
node     3        68.540       39.273         0.0 
node     4       102.810       39.273         0.0 
node     5       137.080       39.273         0.0 
node     6       171.350       39.273         0.0 
node     7       205.620       39.273         0.0 
node     8       239.890       39.273         0.0 
node     9       274.160       39.273         0.0 
 
#Substructure nodes 
 
node    10       137.080        0.0          12.000 
node    11       137.080        0.0          12.000 
node    12       137.080       32.000        12.000 
node    13       137.080       32.000        12.000 
node    14       137.080       34.250        12.000 
node    15       137.080        0.0           0.0 
node    16       137.080        0.0           0.0 
node    17       137.080       32.000         0.0 
node    18       137.080       32.000         0.0 
node    19       137.080       34.250         0.0 
node    20       137.080        0.0         -12.000 
node    21       137.080        0.0         -12.000 
node    22       137.080       32.000       -12.000 
node    23       137.080       32.000       -12.000 
node    24       137.080       34.250       -12.000 
 
#Spring support nodes 
 
node    25         0.0         39.273         0.0 
node    26       274.160       39.273         0.0 
 
#Specify geometric transformation 
 
geomTransf Linear 1  0  0  1 
geomTransf Linear 2 -1  0  0 
geomTransf PDelta 3  0  0  1 
 
# Fix column bases and abutments in all DOF's 
 
fix 25 1 1 1 1 1 1 
fix 26 1 1 1 1 1 1 
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fix 10 1 1 1 1 1 1 
fix 15 1 1 1 1 1 1 
fix 20 1 1 1 1 1 1 
 
#Create uniaxial materials for concrete and steel 
 
# uniaxialMaterial Concrete01 $matTag $fpc $epsc0 $fpcu $epsU  
 
uniaxialMaterial Concrete01  1  -576.0  -0.002  0  -0.005   
 
# uniaxialMaterial Concrete04 $matTag $fc $ec $ecu $Ec <$ft $et> <$beta> 
 
uniaxialMaterial Concrete04 2  -806.976  -0.006  -0.016  524736  
  
# uinaxialMaterial ReinforcingSteel $matTag $fy $fu $Es $Esh $esh $eult  
 
uniaxialMaterial ReinforcingSteel  3  9792  13680  4176000  179568  0.0125  0.09 
 
#Create hysteretic uniaxial material to model bond-slip 
 
# uniaxialMaterial Hysteretic $matTag $s1p $e1p $s2p $e2p $s1n $e1n $s2n $e2n $pinchX $pinchY 
$damage1 $damage2 <$beta> 
 
uniaxialMaterial Hysteretic 4  2941.67  0.00089  3016.67  0.009866  -2941.67  -0.00089  -
3016.67  -0.009866    1  1  0  0  0.35  
 
uniaxialMaterial Elastic 5  1e12 
 
#Create fiber section with Defined Concrete and Rebar 
 
section Fiber  1  { 
#patch circ $matTag $numSubdivCirc $numSubdivRad $yCenter $zCenter $intRad $extRad <$startAng 
endAng> 
patch circ 2  44  10  0  0  0  1.74  0  360 
patch circ 1 44 2  0  0  1.74 2.05 0  360  
#layer circ $matTag $numBar $areaBar $yCenter $zCenter $radius <$startAng $endAng> 
layer circ 3  20  6.9444e-3  0  0  1.74 0 360  
} 
 
# Define shear stiffness (GJ) elastic material 
 
set Gc 218640 
set Jc  326.7 
set GJ [expr $Gc*$Jc] 
uniaxialMaterial Elastic 6  $GJ 
 
section Aggregator 2  6 T -section  1 
 
# Create deck elements 
 
# element elasticBeamColumn $eleTag $iNode $jNode $A $E $G $J $Iy $Iz $transfTag 
 
element elasticBeamColumn 1  1  2  59.80 792822.24  330343.2  1e10  8090.49  260.87  1 
element elasticBeamColumn 2  2  3  59.80 792822.24  330343.2  1e10  8090.49  260.87  1 
element elasticBeamColumn 3  3  4  59.80 792822.24  330343.2  1e10  8090.49  260.87  1 
element elasticBeamColumn 4  4  5  59.80 792822.24  330343.2  1e10  8090.49  260.87  1 
element elasticBeamColumn 5  5  6  59.80 792822.24  330343.2  1e10  8090.49  260.87  1 
element elasticBeamColumn 6  6  7  59.80 792822.24  330343.2  1e10  8090.49  260.87  1 
element elasticBeamColumn 7  7  8  59.80 792822.24  330343.2  1e10  8090.49  260.87  1 
element elasticBeamColumn 8  8  9  59.80 792822.24  330343.2  1e10  8090.49  260.87  1 
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# Create pier bent elements 
  
element elasticBeamColumn  9  5 19   1e10    524736  218640  1e10  1e10  1e10  3 
element elasticBeamColumn 10 14 19   25.23   524736  218640  1e10  1e10  1e10  2 
element elasticBeamColumn 11 19 24   25.23   524736  218640  1e10  1e10  1e10  2 
 
# Create column elements 
 
# element nonlinearBeamColumn $eleTag $iNode $jNode $numintgrPts $secTag $transfTag 
# element zeroLength $eleTag $iNode $jNode -mat $matTag1 $matTag2 ... -dir $dir1 $dir2 ... 
 
element zeroLength 12 10  11 -mat 5 5 5 4 4 4 -dir 1 2 3 4 5 6 
element nonlinearBeamColumn 13 11 12 9 2 3 
element zeroLength 14  12  13 -mat 5 5 5 4 4 4 -dir 1 2 3 4 5 6 
element elasticBeamColumn 15  13  14  1e10  524736  218640  1e10  1e10  1e10  3 
element zeroLength 16  15  16 -mat 5 5 5 4 4 4 -dir 1 2 3 4 5 6 
element nonlinearBeamColumn 17  16  17 9 2 3 
element zeroLength 18  17  18 -mat 5 5 5 4 4 4 -dir 1 2 3 4 5 6 
element elasticBeamColumn 19  18  19  1e10  524736  218640  1e10  1e10  1e10  3 
element zeroLength 20  20  21 -mat 5 5 5 4 4 4 -dir 1 2 3 4 5 6 
element nonlinearBeamColumn 21  21  22 9 2 3 
element zeroLength 22  22  23 -mat 5 5 5 4 4 4 -dir 1 2 3 4 5 6 
element elasticBeamColumn 23  23  24  1e10  524736  218640  1e10  1e10  1e10  3 
 
# Create spring elements 
 
uniaxialMaterial Elastic 7 14074.4; # Translational stiffness along X axis of the abutments, 
kip/ft 
uniaxialMaterial Elastic 8 1e12;    # Translational stiffness along Y axis of the abutments, 
kip/ft 
uniaxialMaterial Elastic 9 2300;    # Translational stiffness along Z axis of the abutments, 
kip/ft 
uniaxialMaterial Elastic 10 1e12;   # Rotational stiffness about X axes o10f the abutments, 
kip.ft/radian  
uniaxialMaterial Elastic 11 1e12;   # Rotational stiffness about Y axis of the abutments, 
kip.ft/radian 
uniaxialMaterial Elastic 12 0;      # Rotational stiffness about the Z axis of the abutment, 
kip.ft/radian 
 
 
# Spring elements using above stiffness values 
# element zeroLength $eleTag $iNode $jNode -mat $matTag1 $matTag2 ... -dir $dir1 $dir2 ... 
 
element zeroLength 24 25  1 -mat 7 8 9 10 11 12 -dir 1 2 3 4 5 6  
element zeroLength 25  9 26 -mat 7 8 9 10 11 12 -dir 1 2 3 4 5 6  
 
# Create recorder files 
 
#recorder Node -file Nodes1-9_NonLin_Disp_Long_BR.out -time -nodeRange 1 9 -dof 1 disp 
recorder Node -file Nodes1-9_NonLin_Disp_Trans_BR.out -time -nodeRange 1 9 -dof 3 disp 
#recorder Node -file Column_Reactions_Long_BR.out -time -node 10 15 20 -dof 1 2 6 reaction 
#recorder Node -file Column_Displacement_Long_BR.out -time -node 12 17 22 -dof 1 disp 
recorder Node -file Column_Reactions_Trans_BR.out -time -node 10 15 20 -dof 3 2 4 reaction 
recorder Node -file Column_Displacement_Trans_BR.out -time -node 12 17 22 -dof 3 disp 
recorder Element -file Stress-Strain_Steel_Tension_Long.out -time -ele 17 section 1 fiber 1.74 
0 3 stressStrain 
recorder Element -file Stress-Strain_Steel_Compression_Long.out -time -ele 17 section 1 fiber 
-1.74 0 3 stressStrain 
recorder Element -file Stress-Strain_Concrete_Compression_Long.out -time -ele 17 section 1 
fiber -1.74 0 2 stressStrain 
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# Assign gravity loads 
 
pattern Plain 1 Constant { 
#    tag    FX       FY      FZ   MX   MY   MZ 
load  1     0.0    -139.130  0.0  0.0  0.0  0.0 
load  2     0.0    -278.270  0.0  0.0  0.0  0.0 
load  3     0.0    -278.270  0.0  0.0  0.0  0.0 
load  4     0.0    -278.270  0.0  0.0  0.0  0.0 
load  5     0.0    -278.270  0.0  0.0  0.0  0.0 
load  6     0.0    -278.270  0.0  0.0  0.0  0.0 
load  7     0.0    -278.270  0.0  0.0  0.0  0.0 
load  8     0.0    -278.270  0.0  0.0  0.0  0.0 
load  9     0.0    -139.130  0.0  0.0  0.0  0.0 
load 14     0.0    -150.001  0.0  0.0  0.0  0.0 
load 19     0.0    -156.751  0.0  0.0  0.0  0.0 
load 24     0.0    -150.001  0.0  0.0  0.0  0.0 
} 
 
 
constraints Plain 
 
numberer Plain 
 
system BandGeneral 
 
test NormDispIncr 1.0e-8  6 
 
algorithm Newton 
 
integrator LoadControl 1 
 
analysis Static 
 
analyze 1 
 
#Reset time to perform pushover analysis 
 
loadConst -time 0.0 
 
# Create horizontal load patterns 
#Transverse seismic loads 
 
pattern Plain 4 Linear {  
eleLoad -ele 1 -type beamUniform 0 10.662 0 
} 
 
pattern Plain 5 Linear {  
eleLoad -ele 2 -type beamUniform 0 10.922 0 
} 
  
pattern Plain 6 Linear { 
eleLoad -ele 3 -type beamUniform 0 11.221 0  
} 
 
pattern Plain 7 Linear { 
eleLoad -ele 4 -type beamUniform 0 11.395 0 
} 
 
pattern Plain 8 Linear { 
eleLoad -ele 5 -type beamUniform 0 11.395 0 
} 



 109 

pattern Plain 9 Linear { 
eleLoad -ele 6 -type beamUniform 0 11.221 0 
} 
 
pattern Plain 10 Linear { 
eleLoad -ele 7 -type beamUniform 0 10.922 0  
} 
 
pattern Plain 11 Linear { 
eleLoad -ele 8 -type beamUniform 0 10.662 0  
} 
 
# The following eight loading patterns should be activated instead of the previous eight, when 
loading in the longitudinal direction 
 
#pattern Plain 12 Linear { 
#eleLoad -ele 1 -type beamUniform 0 0 10.000 
#} 
 
#pattern Plain 13 Linear { 
#eleLoad -ele 2 -type beamUniform 0 0 10.000 
#} 
 
#pattern Plain 14 Linear { 
#eleLoad -ele 3 -type beamUniform 0 0 10.000  
#} 
 
#pattern Plain 15 Linear { 
#eleLoad -ele 4 -type beamUniform 0 0 10.000 
#} 
 
#pattern Plain 16 Linear { 
#eleLoad -ele 5 -type beamUniform 0 0 10.000   
#}  
 
#pattern Plain 17 Linear { 
#eleLoad -ele 6 -type beamUniform 0 0 10.000   
#}  
      
#pattern Plain 18 Linear { 
#eleLoad -ele 7 -type beamUniform 0 0 10.000 
#} 
 
#pattern Plain 19 Linear { 
#eleLoad -ele 8 -type beamUniform 0 0 10.000 
#} 
 
 
constraints Plain 
 
numberer RCM 
 
system BandSPD 
 
algorithm Linear 
 
integrator LoadControl 0.01 
 
analysis Static 
 
analyze 100 
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Nonlinear CIP Model Analysis Results 

 

Tables B.10 and B.11 show the displacements and column base reactions for the longitudinal and 

transverse directions, respectively. 
 

 

Table B.10 Preston Bridge Nonlinear CIP Displacements and Column Base Reactions for 

Seismic Loads in the Longitudinal Direction 

Nodes 
Displacement 

(𝒇𝒕. ) 
 Columns 

Shear 

(𝒌) 
Axial (𝒌) 

Moment 

(𝒌 𝒇𝒕) 
Deck  1 -94.230 610.280 1612.030 

1 0.10008  2 -94.230 610.280 1612.030 

2 0.10096  3 -94.230 610.280 1612.030 

3 0.10156      

4 0.10188      

5 0.10192      

6 0.10188      

7 0.10156      

8 0.10096      

9 0.10008      

Top of the Columns      

12 0.09673      

17 0.09673      

22 0.09673      
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Table B.11 Preston Bridge Nonlinear CIP Displacements and Column Base Reactions for 

Seismic Loads in the Transverse Direction 

Nodes 
Displacement 

(𝒇𝒕. ) 
 Columns 

Shear 

(𝒌) 
Axial (𝒌) 

Moment 

(𝒌 𝒇𝒕) 
Deck  1 -175.192 613.812 -2975.300 

1 0.54432  2 -175.191 613.837 -2975.340 

2 0.54787  3 -175.192 613.812 -2975.300 

3 0.55441      

4 0.55956      

5 0.56131      

6 0.55956      

7 0.55441      

8 0.54787      

9 0.54432      

Top of the Columns      

12 0.56116      

17 0.56131      

22 0.56116      

 

 

 

The column height is 29.25 𝑓𝑡 and the drift in the longitudinal and transverse directions for top 

of the columns are in Table B.12. 

 

Table B.12 Preston Bridge Nonlinear CIP Calculated Drift for Top of the Columns 

Node 12 17 22 

Long. drift (%) 0.3307 0.3307 0.3307 

Trans. drift (%) 1.9185 1.9190 1.9185 
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