
Time Scale Analysis and Synthesis in  

Electrical Energy and Life Sciences 

 

 

 

 

by 

Shaleena Jaison 

 

 

 

 

A dissertation 

submitted in partial fulfillment 

 of the requirements for the degree of 

Doctor of Philosophy in Engineering and Applied Science 

College of Science and Engineering, 

Idaho State University 

December 2017



i 

Photocopy and Use Authorization 

In presenting this dissertation in partial fulfillment of the requirements for an advanced 

degree at Idaho State University, I agree that the library shall make it freely available for 

inspection. I further state that permission for extensive copying of this dissertation for 

scholarly purposes may be granted by the Dean of the Graduate Studies, Dean of the 

College of Science and Engineering, or by the University Librarian. It is understood that 

any copying and publication of this dissertation for financial gain shall not be allowed 

without my written permission. 

Signature:  

Date:     11-19-2017



Shaleena
Text Box
    

Shaleena
Typewritten Text
ii



iii 

 

Acknowledgements 

I would like to thank Dr. Naidu, very much and very sincerely, for being a great 

advisor. I have been very fortunate to have had the opportunity to work with him for both 

my Master’s and Ph.D. His greatness, in my eyes, has been his readiness to always make 

time for me, to discuss various challenging as well as the very trivial questions I might 

have had. In my opinion, I have come across very few professors, like him, who have 

students as their first priority. Even though he moved to the University of Minnesota, 

Duluth, during the early years of my Ph.D., I was very fortunate, and honored, to have 

continued to work with him as my advisor. I have always cherished meeting with him in 

person for any questions or discussions. But even while he was away, his promptness in 

replying to my emails, and the detailed feedback he provides through emails, relayed a 

sense of priority and commitment that he has towards his students. Thank you very much 

Dr. Naidu for your endless support and guidance, it has been a rewarding experience 

working with you. 

I would also like to thank Dr. Stuffle, my co-advisor, for helping me with the 

class registrations and internship paper work. Thank you for being so kind and always 

ready to help.  

I would also like to thank Dr. Mousavinezhad for helping me in my endeavors 

and his ceaseless support, especially with the Internship at Rambus, CA during my 

Master’s. I would also like to thank him for being extraordinarily kind and for having 

only my best interests at heart.  

I would also like to thank Dr. Bosworth for I have not seen a professor whose 

classes are so much fun. Being in his class I never felt intimidated by all the really 



iv 

 

menacing problems, he always had a way to explain them in a very effective and 

convivial manner. 

I would also like to thank Dr. Creelman for accepting my request to be the GFR 

on my committee and for the insightful discussions at my presentation. 

Besides all my professors at ISU, I am very grateful to Jake to having offered me 

an internship at the Idaho National Laboratory (INL) in Idaho Falls, ID, and to work for 

the Dynamic Line Rating Project under his mentorship.  I would also like to acknowledge 

the U.S. Department of Energy Wind Energy Technologies Office for supporting my 

internship. As an engineering student, it was a fantastic industry experience to see the 

theoretical and research aspects getting implemented in practice. I would also like to 

express my sincere gratitude to Dr. Ellis for recommending me for this tremendous 

opportunity to work at INL. 

Finally and most importantly, I am profoundly grateful to my family for their 

love, support and prayers. I would like to express my deep appreciation to my husband 

for being my best critic. His ideas and feedback were invaluable in every step. I am very 

blessed to having reached this juncture in life, and, the years of my Ph.D. have been made 

very special, as we welcomed little Augustus into our lives. I have no words to thank my 

husband for the countless hours he watched over our baby while I dwelled in my 

research. I thank you very much for your unwavering love and support, and for the 

ceaseless words of encouragement. 

 

 



v 

 

Publications 

1. S. Jaison, J. P. Gentle, D. S. Naidu, “Time Scale Analysis and Synthesis for Electrical 

Transmission Lines in a Smart Grid”, SusTech 2015: IEEE Conference on 

Technologies for Sustainability, Utah, USA, 2015. 

2. J. P. Gentle, W. L. Parsons, M. R. West and S. Jaison, "Modernizing An Aging 

Infrastructure Through Real-Time Transmission Monitoring," in 2015 IEEE Power & 

Energy Society General Meeting, Denver, CO, 2015. 

3. S. Jaison, D. S. Naidu, J. P. Gentle, “Divide and Conquer Strategies for Enhanced 

Resiliency in Electrical Transmission Lines”, 6
th

 Resilience Engineering Association 

(REA) Symposium, Lisbon, Portugal, 2015. 

4. S. Jaison, D. S. Naidu, D. Zydek, “Time Scale Analysis and Synthesis of 

Deterministic and Stochastic Wind Energy Conversion Systems”, WSEAS 

Transactions on Systems and Control, 2014. 

5.  S. Jaison, D. S. Naidu, D. Zydek, “Time Scale Analysis and Synthesis of Wind 

Energy Conversion Systems”, WSEAS – 4th International Conference on Circuits, 

Systems, Control and Signals, Valencia, Spain, 2013.  

 



vi 

 

Table of Contents 

Publications ....................................................................................................................... v 

List of Figures ................................................................................................................... xi 

List of Tables ................................................................................................................... xv 

List of Abbreviations ..................................................................................................... xvi 

Nomenclature ............................................................................................................... xviii 

Abstract ......................................................................................................................... xxiii 

Chapter 1    Background & Purpose of Research .......................................................... 1 

1.1 Introduction ................................................................................................................ 1 

1.1.1 Research Problem 1 – Overhead Power Transmission Lines ........................ 2 

1.1.2 Research Problem 2 – Human Immunodeficiency Virus (HIV) Infection .... 6 

1.2 Research Problem Statements .................................................................................. 12 

1.2.1 Overhead Power Transmission Lines .......................................................... 12 

1.2.2 HIV Infection/AIDS..................................................................................... 12 

1.3 Purpose of Research ................................................................................................. 13 

1.4 Chapter Outline ........................................................................................................ 14 

Chapter 2    Time Scale Analysis and Synthesis ........................................................... 16 

2.1 SPaTS Theory in Engineering & Science ................................................................ 16 

2.1.1 SPaTS in Electrical Engineering .................................................................. 17 

2.1.2 Time Scales in Biology and Life Sciences .................................................. 19 

2.1.3 Summary of Literature Review .................................................................... 22 



vii 

 

2.2 Mathematical Definition of Singularly Perturbations and Time Scale Systems...... 22 

2.2.1 Standard Singular Perturbation Model......................................................... 25 

2.3 Time Scale Analysis ................................................................................................ 26 

2.3.1 Standard Two-Time Scale System ............................................................... 27 

2.3.2 Decoupling Process ...................................................................................... 27 

2.3.3 Calculation of L and M Matrices ................................................................. 28 

2.4 Time Scale Synthesis ............................................................................................... 29 

2.4.1 State Feedback Control ................................................................................ 29 

2.4.2 Optimal Control Time Scale Systems .......................................................... 37 

2.5 Conclusion ............................................................................................................... 41 

Chapter 3    Time Scale Analysis and Synthesis in Electrical Energy ....................... 42 

3.1 Introduction to Overhead Power Transmission Lines ............................................. 42 

3.1.1 Components of Overhead Power Lines ....................................................... 44 

3.1.2 Conductor Materials..................................................................................... 45 

3.2 Modeling of Overhead Transmission Lines ............................................................. 47 

3.2.1 Literature Review of Transmission Line Models ........................................ 48 

3.2.2 Overhead Transmission Line Model ............................................................ 49 

3.3 State Space Modeling of Transmission Lines .......................................................... 51 

3.3.1 Line Current Dynamics ................................................................................ 52 

3.3.2 Line Temperature Dynamics........................................................................ 52 

3.3.3 Nonlinear State Space Model....................................................................... 57 

3.4 System Analysis of Short Transmission Line Model .............................................. 58 

3.4.1 State Response Plots .................................................................................... 59 



viii 

 

3.4.2 Verification with the IEEE Std. 738 Results ............................................... 60 

3.4.3 Linearization of Nonlinear Model ............................................................... 62 

3.5 Time Scale Analysis of Transmission Lines ............................................................ 63 

3.5.1 Decomposition of Transmission Line Dynamics ......................................... 64 

3.6 Optimal Control Design of Transmission Lines ...................................................... 65 

3.6.1 LQR Control of Full Order Transmission Line ........................................... 66 

3.6.2 Time Scale Synthesis of LQR Control......................................................... 67 

3.6.3 Simulation Results ....................................................................................... 68 

3.7 Resiliency of Time Scale Control ............................................................................ 74 

3.7.1 Simulation Results of Resiliency Test ......................................................... 75 

3.8 Transmission Line Modeling and Potential DLR Applications ............................... 77 

3.9 SPaTS Methods in Renewable Energy .................................................................... 78 

3.9.1 WECS - Dynamic Modeling and Time Scales ............................................ 80 

3.9.2 Initial Value Problem (IVP) of WECS ........................................................ 81 

3.9.3 Deterministic and Stochastic Time Scale Optimal Control ......................... 82 

3.10 Conclusion ............................................................................................................... 84 

Chapter 4    Time Scale Analysis and Synthesis in Life Sciences ............................... 87 

4.1 The Biology of HIV Infection.................................................................................. 87 

4.1.1 Human Immune System ............................................................................... 88 

4.1.2 HIV Infection and Timeline ......................................................................... 89 

4.1.3 HIV Treatment ............................................................................................. 92 

4.2 Modeling an HIV Infection ...................................................................................... 94 

4.2.1 Nonlinear HIV Model .................................................................................. 96 



ix 

 

4.3 Analysis of the Nonlinear HIV Model ..................................................................... 97 

4.3.1 Equilibrium Points ....................................................................................... 97 

4.3.2 State Response Plots .................................................................................... 98 

4.3.3 Linearization .............................................................................................. 100 

4.3.4 Non-Dimensionalization and Singular Perturbation Parameter ................. 102 

4.4 Optimal Control Strategies for the Treatment of HIV Infection ............................ 104 

4.4.1 Long Term Optimal Treatment Strategy.................................................... 105 

4.4.2 Nonlinear HIV Model with Control ........................................................... 105 

4.4.3 Steady State (Nominal) Control and LQR Control .................................... 106 

4.5 Time Scale Analysis and Synthesis of HIV Model ............................................... 110 

4.5.1 Time Scale Analysis of Linear HIV Model ............................................... 111 

4.5.2 Separation of HIV dynamics ...................................................................... 112 

4.5.3 Slow and Fast LQR Control ....................................................................... 113 

4.6 Simulations and Results of LQR Control .............................................................. 114 

4.6.1 Full Order LQR Results ............................................................................. 114 

4.6.2 Reduced Order LQR Results ..................................................................... 116 

4.6.3 Comparison of Full order and Reduced Order LQR Results ..................... 118 

4.7 Long Term Treatment of HIV with Composite LQR Control ............................... 120 

4.8 Research Work on Measles Infection .................................................................... 125 

4.8.1 Disease Background................................................................................... 125 

4.8.2 Measles Transmission and Control Dynamics ........................................... 126 

4.8.3 Model Simulation....................................................................................... 127 

4.8.4 Linearization and Eigenvalues ................................................................... 128 



x 

 

4.9 Conclusion ............................................................................................................. 131 

Chapter 5    Summary, Conclusions and Future Work ............................................ 133 

5.1 Summary and Conclusions .................................................................................... 133 

5.2 Future Work ........................................................................................................... 135 

Appendix A .................................................................................................................... 138 

A.1 Transmission Line Model Data .............................................................................. 138 

A.2 Data Sheet for ACSR – Drake 26/7 Conductor [102]............................................ 139 

References ...................................................................................................................... 141 

 

 



xi 

 

List of Figures 

Figure 1.1: Dynamic Line Rating – concurrent cooling enables increased transmission 

line capacity and renewable energy integration [4] ............................................................ 3 

Figure 1.2: Dynamic line ratings vs. static line ratings for transmission lines [5], [6] ...... 4 

Figure 1.3: Mortality in 2015 due to infectious diseases [10] ........................................... 7 

Figure 1.4: Global estimates of adults and children living with HIV in 2016 [14] ........... 8 

Figure 1.5: Number of new infections and percent changes globally since 2010 [17] ...... 9 

Figure 1.6: AIDS related deaths, all ages, global, 2000-2016 [15] .................................... 9 

Figure 2.1: Time scale phenomena in electric power systems [36] ................................. 17 

Figure 2.2: Boundary layer (shaded regions) represented by 0( )  [52] .......................... 24 

Figure 2.3: Eigenvalue separation for a time scale system .............................................. 25 

Figure 2.4: Simple schematic of a state-feedback control system [58] ........................... 30 

Figure 2.5: Simulink model for open loop system ........................................................... 31 

Figure 2.6: State response with no feedback control ....................................................... 32 

Figure 2.7: Simulink model for state feedback control – full order case......................... 33 

Figure 2.8: States of the full order system with feedback control ................................... 33 

Figure 2.9: Time scale synthesis of state feedback control .............................................. 34 

Figure 2.10: Simulink model for state feedback control – reduced order case ............... 36 

Figure 2.11: States of the reduced order system with feedback control.......................... 36 

Figure 2.12: Full order vs. reduced order state feedback control design ......................... 37 

Figure 2.13: LQR control block diagram for the full order, linear system ...................... 39 

Figure 2.14: LQR control design using time scale approach ........................................... 41 

Figure 3.1: Electric power supply network [60] .............................................................. 43 



xii 

 

Figure 3.2: Underground cable and smaller overhead conductor [62] ............................ 44 

Figure 3.3: Components of an overhead power line [63] ................................................ 44 

Figure 3.4: Overhead AAC, AAAC, ACSR and ACAR configurations [66] .................. 46 

Figure 3.5: ACSR configuration with 26 outer strands of aluminum and 7 core strands of 

steel [66]............................................................................................................................ 47 

Figure 3.6: General representation of a transmission line [72] ........................................ 50 

Figure 3.7: Equivalent circuit of a short line ................................................................... 51 

Figure 3.8: Heat balance within a conductor [8] .............................................................. 52 

Figure 3.9: Plot of line current 
Li  with respect to time (left); Detailed view of state near 

the origin (right) ................................................................................................................ 59 

Figure 3.10: (a) Plot of line temperature avgT with respect to time .................................. 60 

Figure 3.11: Transient temperature response to a step increase in line current [3] ......... 61 

Figure 3.12: Conductor temperature response of the proposed model (3.20) .................. 61 

Figure 3.13: Temperature response of the proposed model (3.20) at (0) 40avgT C   ..... 62 

Figure 3.14: LQR control block diagram for the full order transmission line ................. 67 

Figure 3.15: LQR control design for reduced order transmission line model ................. 68 

Figure 3.16: Simulink
®
 model for the full order transmission line model ....................... 69 

Figure 3.17: State and control responses of the full order transmission line ................... 70 

Figure 3.18: Simulink
®
 model for the reduced order transmission line .......................... 71 

Figure 3.19: State responses and control signal of the reduced order transmission line . 71 

Figure 3.20: Comparison of full order and reduced order LQR control .......................... 72 

Figure 3.21: 1-machine, infinite bus model [70] and 3 machine, 9 bus model [71] ........ 73 

Figure 3.22:10-Machine, 39-bus New England power system model [70] ..................... 73 



xiii 

 

Figure 3.23: Simulink
®
 model to test reliability of the reduced order LQR .................... 75 

Figure 3.24: Results of the reliability test of time scale control design ........................... 76 

Figure 3.25: Real-time data flow and forecast calculations of the GLASS software [73]

........................................................................................................................................... 77 

Figure 3.26: Monthly net electricity generation from selected fuels (Source: EIA) [74] 79 

Figure 3.27: Structure of HAWT (left); Schematic of wind turbine rotor and drive train 

dynamics (right) ................................................................................................................ 80 

Figure 3.28: WECS - Dynamic model in SP form (left) and eigenvalues (right) ............ 81 

Figure 3.29: IVP of WECS using Vasileva’s singular perturbation method ................... 82 

Figure 3.30: Time scale synthesis of LQR for WECS (left); Simulation results (right) . 83 

Figure 3.31: Time scale synthesis of LQG control for WECS (left); Simulation results 

(right) ................................................................................................................................ 84 

Figure 4.1: Stages of a typical human immune response [78] ......................................... 89 

Figure 4.2:  Structure of a Human Immunodeficiency Virus [79] ................................... 90 

Figure 4.3:  HIV replication cycle [81] ............................................................................ 91 

Figure 4.4:  Time course of a typical HIV infection [83] ................................................ 92 

Figure 4.5:  Inhibition of HIV-1 replication at different steps in the viral life cycle [84] 93 

Figure 4.6: State response plots of the nonlinear HIV model .......................................... 99 

Figure 4.7: LQR control for the full order HIV model .................................................. 109 

Figure 4.8: Long term optimal treatment strategy for HIV ........................................... 109 

Figure 4.9: Time scale synthesis of LQR control in HIV treatment .............................. 111 

Figure 4.10: LQR control for linear HIV model using time scale separation ............... 114 

Figure 4.11: Simulink model - full order LQR design of linear HIV model ................. 115 



xiv 

 

Figure 4.12: LQR control response of the full order, linear HIV model ....................... 116 

Figure 4.13: Simulink model - reduced order LQR design of linear HIV model ......... 117 

Figure 4.14: LQR control response of the reduced order, linear HIV model ................ 118 

Figure 4.15: Comparison of full order and reduced order LQR - states 
1 2 3,  and   x x x  119 

Figure 4.16: Comparison of full order and composite LQR control signals ................. 119 

Figure 4.17: Time scale synthesis of long term treatment strategy with nonlinear HIV 

model............................................................................................................................... 121 

Figure 4.18: Simulink model for composite LQR control of nonlinear HIV model ..... 122 

Figure 4.19: States of nonlinear HIV model with composite LQR control ................... 123 

Figure 4.20: Control inputs of the optimal control of nonlinear HIV model (left); 

Detailed plot of control inputs near origin (right) ........................................................... 124 

Figure 4.21: State responses of the measles model (
0( ) (1 sin(2 / ))t t T     ) ...... 128 

Figure 4.22: State responses of the measles dynamic model with ( ) 1800t   ........... 129 

 

 



xv 

 

List of Tables 

Table 3.1: Solar azimuth constant C – Lookup table ....................................................... 55 

Table 3.2: Initial conditions for the short line model ....................................................... 58 

Table 3.3: Linearization of transmission line model at various time instants.................. 62 

Table 3.4: Comparison of full order and reduced order eigenvalues ............................... 65 

Table 4.1: HIV Model Parameters [25] ........................................................................... 97 

Table 4.2: Initial conditions for nonlinear HIV model simulation .................................. 98 

Table 4.3: Linearization of HIV model at various time instants .................................... 100 

Table 4.4: Comparison of eigenvalues of full order and reduced order HIV model ...... 113 

Table 4.5: Initial conditions for simulating nonlinear HIV model [25] ......................... 122 

Table 4.6: Measles Model Parameters [47], [99] ........................................................... 127 

Table 4.7: Linearization of measles model at various time instants .............................. 128 

Table 4.8: Linearization of measles model with ( ) 1800t   ....................................... 129 

Table 4.9: Linearization results of measles model with MATLAB
®
- R2013a .............. 130 

Table A.1: Parameter values used in the transmission line model [3] ........................... 138 

Table A.2: ACSR 795 kcmil 26/7 Datasheet – Inductance and GMR Information ....... 139 

Table A.3: ACSR 795 kcmil 26/7 Datasheet – Inductance at different temperatures [101]

......................................................................................................................................... 140 

  



xvi 

 

List of Abbreviations 

AAC - All Aluminum Conductor 

AAAC - All Aluminum Alloy Conductor 

ACAR - Aluminum Conductor, Alloy Reinforced 

ACSR - Aluminum Conductor, Steel Reinforced 

AIDS - Acquired Immune Deficiency Syndrome 

ARE - Algebraic Riccati Equation 

ART - Antiretroviral Therapy 

CFD - Computational Fluid Dynamics 

DLR - Dynamic Line Rating 

DNA - DeoxyriboNucleic Acid 

EMS - Energy Management System 

GHE - Global Health Estimates 

GIS - Geographic Information Systems 

GLASS - General Line Ampacity State Solver 

HAART - Highly Active Antiretroviral Therapy 

HAWT - Horizontal Axis Wind Turbine 

HIV - Human Immunodeficiency Virus 

IEEE - Institute of Electrical and Electronics Engineers 

ISTI - Integrase Strand Transfer Inhibitors 

IVP - Initial Value Problem 

LQG - Linear Quadratic Gaussian 



xvii 

 

LQR - Linear Quadratic Regulator 

NRTI - Nucleoside Reverse Transcriptase Inhibitors 

NNRTI - Non-Nucleoside Reverse Transcriptase Inhibitors 

ODE - Ordinary Differential Equations 

PI - Protease Inhibitors 

PFC - Power Factor Correction 

RNA - RiboNucleic Acid 

RTI - Reverse Transcriptase Inhibitors 

SCADA - Supervisory Control And Data Acquisition 

SD-DRE - State Dependent – Differential Riccati Equation 

SIR - Susceptible-Infectious-Recovered 

SP - Singular Perturbation 

SPaTS  Singular Perturbation and Time Scales 

WECS - Wind Energy Conversion Systems 

WHO - World Health Organization 

   

 

 



xviii 

 

Nomenclature  

Time Scale Analysis and Synthesis 

Symbol Description 

A State matrix of high-order system 

fA ,
sA  State matrices of reduced-order, fast and slow subsystems 

B Control matrix 

fB ,
sB  Control matrices of reduced-order, fast and slow subsystems 

C Output matrix 

J Performance index of full-order  system 

,f sJ J  Performance indices of reduced-order, slow and fast subsystems 

K Regulator gain of full-order system 

fK  , 
sK  Regulator gain of reduced-order, fast and slow subsystems 

P Algebraic Riccati equation matrix of the full-order system 

,f sP P  Algebraic Riccati equation matrices for fast and slow subsystems 

Q, R Weights of full-order system 

, ,

,

f s

f s

Q Q

R R
 Weights of reduced order subsystems 

u Control vector of full order system 

fu ,
su  Fast and slow subsystems’ control vectors 

x Slow state vector 

fx ,
sx  State vectors of fast and slow subsystems 

z Fast state vector 



xix 

 

Time Scale Analysis and Synthesis 

Symbol Description 

  Singular perturbation parameter or small parameter 

 

Overhead Power Transmission Lines 

Symbol Description SI Units 

A  Projected area of conductor (m
2
/linear m) 

m
2
/linear 

m 

C Solar azimuth constant deg 

Cpi Specific heat of i
th

 conductor material J/kg-°C 

D0 Outside diameter of conductor m 

Hc Altitude of sun (0 to 90) deg 

He Elevation if conductor above sea level m 

Li  Line current A 

Kangle Wind direction factor - 

Ksolar Solar altitude correction factor - 

kf Thermal conductivity of air W/(m-°C) 

L Line inductance H 

Lat Degrees of latitude deg 

mCp Total heat capacity of conductor J/(m-°C) 

mi Mass per unit length of ith conductor material kg/m 

N Day of the year - 

NRe Dimensionless Reynolds number - 

qcn, qc1, qc2, qc Convection heat loss rate per unit length W/m 



xx 

 

Overhead Power Transmission Lines 

Symbol Description SI Units 

qr Radiated heat loss rate per unit length W/m 

qs Heat gain rate from sun W/m 

Qs Total solar and sky radiated heat intensity W/m
2
 

Qse 
Total solar and sky radiated heat intensity corrected 

for elevation 
W/m

2
 

R(Tavg) AC resistance of conductor at temperature, Tavg Ω/m 

Ta Ambient air temperature °C 

Tavg Average temperature of aluminum strand layers °C 

Ts Conductor surface temperature °C 

Tfilm Average temperature of the boundary layer (Ts + Ta)/2 °C 

Tlow 
Low average conductor temperature for which ac 

resistance is specified 
°C 

Thigh 
High average conductor temperature for which ac 

resistance is specified 
°C 

sourcev  Source voltage of the transmission line V 

Vload Voltage drop due to a resistive load Rload V 

Vw Speed of air stream at conductor m/s 

Zc Azimuth of sun deg 

Zl Azimuth of line deg 

  Solar absorptivity (.23 to .91) - 

δ Solar declination (–23.45 to +23.45) deg 

  Emissivity (.23 to .91) - 

ø Angle between wind and axis of conductor deg 



xxi 

 

Overhead Power Transmission Lines 

Symbol Description SI Units 

f  Density of air kg/m
3
 

θ Effective angle of incidence of the sun’s rays deg 

μf Absolute (dynamic) viscosity of air kg/m-s 

χ Solar azimuth variable - 

ω 
Hour angle relative to noon, 15*(Time-12), at 11AM, 

Time = 11 and the Hour angle= –15 deg 
deg 

 

Human Immunodeficiency Virus (HIV) Infection 

Symbol Description SI Units 

D Death rate of healthy T- cells no. per day 

k Virus productivity rate no. per cell 

s Source of healthy T- cells 

no. per 

mm
3 

per 

day 

1 2,u u  Control variables corresponding to RTI and PI drugs - 

* *

1 2,tar taru u  Target control values  

,opt opt

s fu u   Optimal control laws for slow and fast subsystems  

1x ,
2x ,

3x  
Concentration of uninfected CD4

+
 T-cells, infected 

CD4
+
 T-cells and free virus  

no. per 

mm
3
 

* * *

1 2 3, ,x x x ;  

* * *

1 2 3, ,tar tar tarx x x  
Steady state  and target values of states  

1X ,
2X ,

3X  Dimensionless variables of state variables
1x , 

2x and
3x  - 

  Singular perturbation parameter - 



xxii 

 

Human Immunodeficiency Virus (HIV) Infection 

Symbol Description SI Units 

1  Death rate of viruses no. per day 

2  Death rate of infected T- cells no. per day 

  Infectivity rate 

no. per 

(mm
3
 × 

day) 

  
Ratio of death rate of infected T cells to death rate of 

free virus- 
- 

 

Measles Infection 

Symbol Description 

b Population influx/birth rate 

I Infected population 

R Recovered population 

S Susceptible population 

  Death rate  

  Recovery rate 

( )t  Periodic contact rate function 

0  Constant contact rate 

T Time period of infection 

 

 

  



xxiii 

 

Abstract 

Control Theory and its applications span a broad spectrum of disciplines, Electrical 

Engineering at one end to Life Sciences at the other end. In this doctoral dissertation, 

research problems in Overhead Power Transmission Lines and HIV/AIDS (Human 

Immunodeficiency Virus /Acquired Immune Deficiency Syndrome) infection are chosen, 

from these vastly varied domains, for synthesizing and developing Advanced Control 

Strategies. This research aims to provide optimum solutions through the application of 

Singular Perturbation and Time Scale (SPaTS) methods, specifically, Time Scale 

Analysis and Synthesis. Measles, another infectious disease in Life Sciences, is briefly 

investigated for the application of SPaTS methods. These methods achieve model order 

reduction by a time scale separation procedure that guarantees excellent eigenvalue 

approximations of the original system. Moreover, decoupling of dynamics facilitates 

simple, lower order, slow and fast controllers designs, thereby enhancing the reliability of 

controllers and significant reduction in real-time computations. The model 

approximation, using this methodology does not impair the system dynamics in any way. 

The analysis and synthesis is carried out for deterministic optimal control problems with 

the objective of, mitigating perturbations in the transmission line, and developing a 

feasible long term HIV treatment plan with minimum side effects. The proposed control 

strategies are validated through extensive simulations. The results of the simulations and 

research provide valuable insights into the development of closed-loop, real-time, optimal 

controllers that are computationally more efficient and feasible for Smart Grid /Dynamic 

Line Rating technology and long term treatments of HIV infection.
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Chapter 1   

Background & Purpose of Research 

 

1.1 Introduction 

This doctoral dissertation encompasses two research problems, one in the field of 

Electrical Engineering and the other in the field of Life Sciences. In Electrical 

Engineering, the focus is on electric power systems, specifically, Overhead Power 

Transmission Lines. This research opportunity was presented as a funded internship
1
 at 

the Idaho National Laboratory, Idaho Falls, ID from Summer 2014 – Summer 2015. The 

second research problem is in the context of Life Sciences, specifically, Infectious 

Diseases, with focus on Human Immunodeficiency Virus (HIV) Infection. Measles, 

another serious infectious disease, is briefly investigated. The research aims at designing 

and developing Advanced Control Strategies to provide optimum solutions using 

Singular Perturbation and Time Scale (SPaTS) methods, specifically, Time Scale 

Analysis and Synthesis. The Doctoral Dissertation further expands on the author’s 

Master’s research interests where the control principles were previously applied to 

Renewable Energy Systems. This chapter introduces the research problems in Electrical 

Engineering and Life Sciences, followed by the formulation of problem statements and 

purpose of research. An outline of the subsequent chapters in the report is provided at the 

end of this chapter. 

  

                                                 
1
 The research was supported by the U.S. Department of Energy Wind Energy Technologies Office contract 

with the Idaho National Laboratory. 
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1.1.1 Research Problem 1 – Overhead Power Transmission Lines 

The energy demands of the modern world and extreme weather conditions have brought 

about high stresses on the existing energy infrastructure. Power outages due to severe 

weather conditions are likely to increase in the future as climatic changes alter the 

frequency and intensity of natural events [1]. These growing concerns have led to the 

research and development of ‘smart’ electric grids that will efficiently manage power 

demands while providing a reliable and resilient power grid for tomorrow. One of the 

Smart Grid Transmission & Distribution Infrastructure Metrics outlined by the U.S. 

Department of Energy to monitor the progress of smart grid implementation was 

Dynamic Line Rating (DLR) technology [2].  

 

Overhead transmission lines are currently operated based on static ampacity ratings 

which limit the amount of electrical current that the lines can safely carry, without 

overheating the line and violating clearance requirements. They are determined using 

steady-state heat balance equations, as outlined in the national standard defined by the 

Institute of Electrical and Electronics Engineers (IEEE). The IEEE Standard 738 [3] 

provides guidelines for calculating the current–temperature relationship of bare overhead 

line conductors, under the assumption that electrical current, conductor temperature, and 

weather conditions remain constant. In other words, the static ratings are based on “near” 

worst case scenarios and pre-load conditions and utilities/power systems do not operate at 

their potential transmission capacity.  

 

Dynamic line ratings of transmission lines, on the other hand, are determined based on 
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real-time weather and load flow conditions, enabling utilities to take advantage of the 

additional line capacity when it is available. A simple graphic in Figure 1.1 demonstrates 

the concept of DLR. In areas where wind plants are being deployed, there is potential to 

take advantage of concurrent cooling, where wind enables wind plants to produce 

electricity while also cooling the existing transmission lines [4]. 

 

Figure 1.1: Dynamic Line Rating – concurrent cooling enables increased transmission 

line capacity and renewable energy integration [4] 

 

Concurrent cooling is advantageous for power companies as it helps increasing 

transmission capacity limits thereby reducing operating costs for power companies and 

wind facilities. Figure 1.2 shows the unused headroom in transmission lines that is 

possible with DLR without violating the thermal limits of the conductor [5].  
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Figure 1.2: Dynamic line ratings vs. static line ratings for transmission lines [5], [6] 

Weather components such as air temperature, solar radiation, wind speed and direction 

have a significant impact on the current carrying capacity of transmission lines. Research 

conducted at the Idaho National Laboratory (INL) corroborates this fact by showing that 

the cooling effect of wind, on power transmission lines could increase the current 

carrying capacity of the power lines by 10 to 40% [7].   

Implementation of DLR technology entails real-time monitoring, management and 

control of power through transmission lines. Real-time monitoring becomes crucial in 

understanding the true ampacity of a transmission line, which requires calculations of 

instantaneous values of line current and line temperature. Line current and line 

temperature are two important dynamic variables in a transmission line that decide the 

amount of power that could be safely transmitted.  Calculations of these two variables in 

real-time are considerably challenging as transmission lines involve complex electrical 

and thermal dynamic interactions. A thorough literature review did not result in 

significant information on transmission line models, which would account for both the 

electrical and thermal dynamics. A good reference in literature for understanding the line 

temperature dynamics is the IEEE Standard 738 [3]. Even though it describes the 
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dynamics of transmission line temperature in detail, it fails to capture the electrical 

dynamics. This exists simultaneously and interacts with the thermal dynamics. Electrical 

dynamics operate at a faster time scale than thermal dynamics by virtue of its response 

characteristics. The simultaneous presence of slow and fast dynamics renders any system 

‘stiff’ for computations. The inherent time scale characteristics of a transmission line 

need to be captured to ensure efficient and accurate computations of line ampacity, 

during normal times of operation and in the event of system perturbations.  

As the existing electric grid evolves into a ‘smart’ grid, power management decisions will 

become part of controller strategies to meet daily power demands. For example, utilities 

supplying power based on real-time demand metrics, and increasing ampacity levels of 

existing transmission lines based on real-time weather conditions [8]. These utility 

operations will be associated with the controller strategies in Energy Management 

Systems (EMS) and Supervisory Control And Data Acquisition (SCADA) systems, to 

meet daily power demands. Software control and decision making become deeply 

integrated into the electric power system. However, the increased dependence on cyber 

infrastructure in today’s digital age, makes it vulnerable to malicious cyber-attacks. Thus, 

in addition to efficient power management, the control strategies in place must be 

resilient to electrical faults and malicious attacks.  

 

This work focuses on developing a dynamic model that accounts for the electrical and 

thermal dynamics in a transmission line to assist implementing DLR technology. The 

proposed model is subjected to time scale analysis through which separation of the slow 

and fast dynamics is achieved. A controller design, employing Singular Perturbation and 
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Time Scale Methods (SPaTS), particularly, Time Scale Analysis and Synthesis is 

proposed that facilitates real-time implementations, while assuring stability, reliability, 

and resiliency of transmission lines in the event of failure/cyber-attacks.  

 

1.1.2 Research Problem 2 – Human Immunodeficiency Virus (HIV) Infection 

The second research problem is rooted in the field of Life Sciences. One might ask a 

question here: How can Engineering play a pivotal role in Life Sciences? A recent study 

in IEEE Transactions on Biomedical Engineering [9] underscores the importance of 

Engineering oriented solutions in Physical and Life Sciences. Advances in technological 

innovations in the field of Engineering bring cutting edge solutions that are changing how 

treatments are designed and drugs are delivered. This research also predicts, for the next 

20 years, the direction in which research in Life Sciences is headed and the inevitable 

convergence of the three branches – Life Sciences, Physical Sciences and Engineering.   

 

One of the branches of Life Sciences, is the study of Infectious Diseases, an 

interdisciplinary field that links biology, mathematics and engineering for the control and 

treatment of infections. Throughout human history, infectious diseases have caused 

suffering and mortality to large portions of the human population. ‘Black Death or the 

Bubonic Plague’, ‘Spanish Flu’ and Cholera epidemics, to name a few. A recent report of 

Global Health Estimates (GHE) by the World Health Organization (WHO) shows that 

infectious diseases claimed about 8.9 million lives in 2015, accounting for 15.7% of all 

deaths (56.4 million) in the same year [10]. These diseases are caused by pathogenic 

microorganisms, such as bacteria, viruses, parasites or fungi, and can be spread directly 
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or indirectly, from one person to another.  

Figure 1.3 [10] illustrates the infectious disease mortality in 2015 where major death tolls 

were incurred by respiratory infections, diarrheal diseases, tuberculosis and Acquired 

Immune Deficiency Syndrome (AIDS). Measles was reported as one of the leading 

causes of death among children globally and is categorized under ‘Childhood-cluster 

diseases’ in the figure. One of the diseases that caused about 1 million deaths in 2016 and 

which continues to be a pandemic is the Human Immunodeficiency Virus (HIV) 

infection/AIDS.  

 

Figure 1.3: Mortality in 2015 due to infectious diseases [10] 

HIV, the etiological agent for AIDS is a virus that attacks the immune system by 

depleting the key immune cells (CD4
+
 T cells) that fight off infections and diseases. Loss 

of CD4
+
 T cells makes the person susceptible to opportunistic infections and leads to the 

immunodeficiency that characterizes AIDS [11]. Even though HIV/AIDS was not 

reported in the WHO’s list of ‘2015’s top 10 leading causes of death’ [12], an estimated 

36.7 million people were living with HIV, including 1.8 million children, by the end of 
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2016 [13]. Figure 1.4 depicts the distribution of HIV infected individuals around the 

globe. Eastern and southern African regions were reported to have the highest number of 

infected individuals compared to other parts of the world. 

 

Figure 1.4: Global estimates of adults and children living with HIV in 2016 [14] 

Since the start of the epidemic, an estimated 78 million people have become infected with 

HIV and 35 million people have died of AIDS-related illnesses [15]. The advent of 

Highly Active Antiretroviral Therapy (HAART), or Antiretroviral Therapy (ART), in 

1996, was a major breakthrough in the treatment of HIV that transformed, what was once 

a fatal diagnosis, to a chronically managed disease [16]. HAART is a combination of 

different classes of medications that control viral load, delay or prevent the onset of 

symptoms or progression to AIDS, thereby prolonging survival in people infected with 

HIV and reducing the risk of HIV transmission. [16]. Figures 1.5 and 1.6 show that there 

has been a 16% reduction in the number of new infections since 2010 across the globe, 

and a reduction in AIDS related deaths from 1.5 million in the year 2000 to 1 million in 

2016. A major milestone was achieved in 2016, when it was found for the first time, that 
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more than half of all the people currently living with HIV (53%) have access to life-

saving treatment [13].  

 

Figure 1.5: Number of new infections and percent changes globally since 2010 [17] 

 

Figure 1.6: AIDS related deaths, all ages, global, 2000-2016 [15] 

The success of ART is attributed in part, to the significant research milestones achieved 

in the last couple of decades and clinical trials that helped in designing these treatment 

strategies. ART would not be a success without the efforts undertaken by various 

governments and health organizations across the globe in making the treatment accessible 
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to people in need. Mathematical modeling combined with clinical and experimental data 

analysis have made significant contributions towards understanding HIV dynamics, 

especially in areas of viral pathogenesis, virus interactions with the host, immune 

response to infection and ART. An abundance of mathematical models of varying 

complexity are found in literature that describes the HIV dynamics, immune system’s 

response to infection, and various treatment strategies. Publications referenced in [11, 18, 

19, 20, 21] are a few examples. Analysis and synthesis of optimal scheduling of drugs for 

HIV treatment are also a mainstream area of research, as ART comes at the cost of 

significant side-effects from its potent drugs. Since ART cannot clear the body of HIV, 

the treatment has to be continued for life [16] while minimizing its harmful side effects. 

This necessitates a long term, optimal chemotherapy schedule that suppresses the viral 

load (or boosts the patient's uninfected CD4
+
 T cells) and minimizes the harmful effects 

that chemotherapy might incur. Several optimal treatment strategies have been proposed 

in literature that achieves this balance; a few examples are presented in [22], [23] and 

[24]. One of the optimal control schemes of interest due to its simplicity and robustness 

properties is the Linear Quadratic Regulator (LQR) [25], [26]. Even though the design 

procedure is straightforward for low order HIV models, the design process becomes 

computationally intensive when comprehensive HIV models are involved, and 

implementing higher order control laws for treatments may not be feasible. Models 

ranging from a 1
st
 order [11]  to 8

th
 order [27] are reported in literature that takes into 

account of the various aspects of an HIV infection. (A list of HIV model dimensions and 

their references in literature are, 2
nd

 order - [28] in 3
rd

 order - [25], 4
th

 order - [26], 5
th

 

order - [29], 6
th

 order - [11], 7
th

 order - [30], 8
th

 order - [27]). Developing an optimal 
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control law with thorough models becomes a tedious and computationally challenging 

task, without the aid of much needed model order reduction techniques. 

 

One of the intrinsic features of HIV dynamics and the host systems’ interactions is the 

time scale at which the dynamics occur. As pointed out in the pioneering research work 

by Perelson and Nelson [11], the disease AIDS, which develops on an average time span 

of 10 years, is characterized by very rapid dynamical processes that occur on time scales 

of a few hours to days, and slower processes that occur on a time scale of weeks to 

months. This realization was brought forth when clinical data obtained through drug 

trials, were interpreted by simple mathematical models of HIV dynamics. As revealed in 

[11] and in other publications [31, 32, 33], the slow process was identified as the 

declination of uninfected T-cells in the body and the fast processes were identified as 

rapid multiplication of virus in the body and rapid clearance rate of virus with 

antiretroviral drugs [11]. This slow and fast behavior categorizes the HIV dynamics into 

time scale systems, a special group of systems that comprehends elegant model order 

reduction features.  

 

SPaTS methods are recognized in Control Theory literature [34], [35] for its exquisite 

model order reduction capabilities that facilitates design of simple and feasible control 

strategies, and guarantees excellent eigenvalue and time response approximations of the 

original system. The intrinsic time scale feature of the HIV dynamics provides an 

opportunity to design an optimal control strategy that minimizes the cost of therapy for 

HIV treatment, through the application of Time Scale Analysis and Synthesis.  Potential 
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applications of SPaTS methods are briefly investigated for measles.   

 

1.2 Research Problem Statements 

1.2.1 Overhead Power Transmission Lines 

Overhead power transmission lines are characterized by complex electrical and thermal 

dynamics. The presence of slow and fast dynamics and their interactions results in 

‘stiffness’ in numerical computations of line current and line temperature. Transmission 

line models that account for both the dynamics and its interactions are seldom found in 

literature, including the IEEE Standard 738, which defines the guidelines for calculating 

the static and dynamic ratings for transmission lines. The time scale characteristic renders 

real-time monitoring and controller implementation very challenging for achieving 

progress in DLR efforts. True ampacity values have to be calculated in real-time, and 

maintained at nominal values, during normal times of operation and in the event of 

perturbations or failures.  

 

Investigating a dynamic model that captures the inherent electrical and thermal dynamics 

of a transmission line, and designing a stable and reliable, optimal control strategy 

utilizing SPaTS methods, for mitigating perturbations in a transmission line in the event 

of faults/attacks. 

 

1.2.2 HIV Infection/AIDS 

Mathematical modeling has played a key role in designing and evaluating the treatment 

strategies for controlling HIV/AIDS. Due to potency of the ART, long term optimal 
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control schemes are being investigated that suppresses viral loads while keeping the side 

effects to a minimum. Comprehensive mathematical models accounting for various 

aspects of an HIV infection, could offer more insights into designing better and effective 

treatment plans, but the high model dimensions associated with detailed modeling pose a 

significant design challenge. Design of feasible and optimal treatment strategies that 

minimizes the viral load and cost of treatment become a complex and computationally 

intensive task.  

 

Investigating an optimal control design, through the application of Time Scale Analysis 

and Synthesis, for suppressing viral loads while minimizing the cost of HIV treatment. 

 

1.3 Purpose of Research 

 To investigate and simulate, a dynamic model that accounts for the electrical and 

thermal dynamics of a transmission line, and perform analysis and synthesis of 

controllers for mitigating perturbations in transmission lines using SPaTS methods. 

 To investigate and identify the inherent time scale behavior in a HIV model and 

design an optimal treatment scheme, for suppressing viral loads and minimizing the 

treatment’s side effects, through the application of SPaTS methods. 

The effectiveness of time scale methods is tested by designing reduced order optimal 

controllers (Linear Quadratic Regulators) for the proposed transmission line model and 

HIV infection model using SPaTS methods, and comparing it to a general, full order 

control design. 
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1.4 Chapter Outline 

This research is organized as follows: 

Chapter 2 forms the mathematical framework for the SPaTS methods. The standard 

representations of singularly perturbed/ time scale systems are presented, and the criteria 

for identifying slow-fast behavior in dynamic models are discussed. Time scale analysis 

method involving separation of physical systems into independent slow and fast 

subsystems is provided.  These slow and fast subsystems form the basis of Time Scale 

Synthesis which results in control laws that are suitable for real-time implementations. 

Time scale synthesis is demonstrated for standard control laws such as state feedback and 

optimal control. A formulation of the general (full order) control design is also provided 

for comparison with the time scale design. 

 

Chapter 3 presents the applications of time scale methods in Electrical Engineering, 

where the primary focus is on Overhead Power Transmission Lines. Time domain 

modeling of transmission lines is presented that accounts for the inherent dynamics of 

transmission lines. System analyses are performed, to mathematically identify the slow 

and fast behavior of the system. Time scale synthesis of an optimal control law for 

mitigating perturbations in a transmission line is presented. The efficacy of this design 

approach is compared to that of a general, full order, optimal control through MATLAB
®

 

simulations. Reliability and resiliency of the time scale optimal control design are also 

evaluated. A brief account of the research work done in the field of Renewable Energy is 

provided to exemplify the significance of SPaTS methods in Electrical Engineering. 
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Chapter 4 addresses Infectious Diseases in Life Sciences and the role of SPaTS methods 

in achieving an optimal treatment strategy. HIV infection is the major focus of this 

chapter where a time domain model of an HIV infection is analyzed and simulated to 

understand the dynamics of an HIV infection. The time scale behavior is explicitly 

indicated in the HIV model through suitable mathematical procedures. An optimal long 

term treatment strategy for the HIV infection is developed using time scale methods. The 

effectiveness of this control approach is compared to that of a full order optimal control 

scheme. A preliminary research on measles, conducted during the initial research period 

is also presented in this chapter. 

 

Chapter 5 summarizes the significant findings of this research and the directions of future 

work.  
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Chapter 2  

Time Scale Analysis and Synthesis 

 

This chapter delves into the mathematical concepts underlying the theory of Singular 

Perturbation and Time Scales (SPaTS). A literature survey is conducted in the areas of 

science and engineering which emphasizes the extent of this theory’s applications. 

Mathematical representations of singularly perturbed/ time scale systems are provided 

and the criteria for identifying slow-fast behavior in dynamic models are discussed. 

SPaTS methods, specifically Time Scale Analysis and Synthesis are presented in this 

research that entails separation of full order systems into slow and fast subsystems, and 

design of separate slow and fast controllers. The time scale design, that renders lower 

order control laws for achieving the desired system performance, is demonstrated for 

state feedback control and deterministic optimal control. 

 

2.1 SPaTS Theory in Engineering & Science 

SPaTS are well recognized in Control Theory, and its applications span a multitude of 

fields in science and engineering. An extensive survey conducted by authors in [35] is 

proof that SPaTS is an evolving and very active research area in systems and control 

engineering. This theory has presented itself as a suitable method for modeling and 

understanding the intricacies of physical systems in the fields of science and engineering; 

for example biological systems, chemical systems, nuclear systems, electrical and 

electronics circuits, power systems, aerospace systems, fluid dynamics and renewable 

energy systems [35]. SPaTS methods offer excellent model order reduction and 
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significant computational savings, which facilitates online, real-time implementation of 

controllers [34]. Some of the applications of SPaTS theory in Electrical Engineering and 

Life Sciences are discussed below. 

 

2.1.1 SPaTS in Electrical Engineering 

In Electrical Engineering, an electric power system is an example where multiple time 

scales are observed. Dynamic processes in a power system range from lightning 

discharges in microseconds, to thermal dynamics in minutes [36]. Figure 2.1 portrays the 

various time scale phenomena in electric power systems. 

 

Figure 2.1: Time scale phenomena in electric power systems [36] 

Time scales arise due to difference in speeds of response of devices. This is very evident 

in electro-mechanical systems. For instance, in [37], a permanent-magnet synchronous 

generator (PMSG) was modeled, where mechanical variables (such as generator speed, 

drive train torque and rotor rotational speed) constituted the slow dynamics, and electrical 

variables (such as generator stator currents) constituted the fast dynamics. However, time 
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scales could also exist within purely mechanical or electrical subsystems.  

Authors in [38] observed time scale nature within the mechanical systems of a wind 

energy conversion system. This was by virtue of the difference in inertia of the large 

wind turbine rotor and the relatively small inertia of the generator - drive train systems. 

Time scales are also observed within electrical systems, for example, in individual power 

system components, like transformers and IEEE Exciters [39]. In a transformer, the slow 

dynamics was associated to flux linkage and the fast dynamics was associated to electric 

voltage. 

 

Systems identified with time scale behavior often adopt SPaTS theory to achieve model 

order reduction for control design purposes. Consequently, literature provides ample 

proof of power system models that employs SPaTS theory for reducing model 

dimensions. A few examples are provided here. One of them is the publication [40] in 

which the authors presented a method based on singular perturbation approach for sliding 

mode control of an induction machine. The development of control law was based on the 

separation of slow and fast and modes of the system. The fast dynamics of the system 

was assigned to zero which simplified the control design process.  

 

A multi time-scale power system model was considered in [41] which described the 

dynamics of a synchronous generator, transmission line, transformer, and an induction 

motor load. Model order reduction of this large model was achieved by neglecting the 

fast dynamics (generator damping winding flux, load electromotor rotor flux) in the 

system. Another publication on power system modeling was presented in [42] which 
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performed voltage stability analysis of a general power system model using SPaTS 

theory.  The power system was represented in a standard singular perturbation (SP) form 

(with the small perturbation parameter, ε) where the fast dynamic variables were equated 

to zero to derive a quasi-steady state model (i.e. the reduced order model obtained by 

neglecting the small parameter). 

 

DC-DC converters were analyzed in [43] where singular perturbation theory, specifically 

time scale separation method (of interest in this research), was employed to improve the 

performance of power factor correction (PFC) converters. The simulations indicated that 

extremely simple controllers derived from time scale separation techniques on a PFC 

converter produced good line current waveforms. 

 

2.1.2 Time Scales in Biology and Life Sciences 

As seen in Electrical Engineering, SPaTS theory are employed in a multitude of 

modelling and control design scenarios, in various disciplines, and Life Sciences is no 

exception. A literature survey in the field of Biology and Life Sciences presented an 

astounding number of publications that employed SPaTS methods. A few interesting 

examples are discussed here.  

 

Singular perturbation theory has been applied to solve modeling problems in biological 

systems. Research presented in [44] deals with a complex biological phenomenon 

featuring a multi-time scale behavior, a photosynthetic process coupled with irradiance 

for the growth of microalgae. While the characteristic time of micro algal growth is in 
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hours, light and dark reactions occur in milliseconds. The dynamic second order model of 

the system is reduced to a single dimensional model by regulating the fast dynamics. The 

reduced model was used to compute an optimal control law to maximize algal biomass 

production.  

 

Another interesting example of SPaTS theory is in the work [45], where retroactivity 

phenomena in bio-molecular systems were studied. Retroactivity are ‘impedance – like 

effects’ at interconnections in biomolecular systems, both upstream and downstream, that 

have to be minimized for seamless signal propagation. The authors demonstrated that for 

an interconnected molecular system, whenever the dynamics of a system evolves on a 

timescale faster than its upstream system dynamics, the retroactivity to the output can be 

arbitrarily attenuated. This realization was achieved as a result of quasi-steady state 

approximations of bio-molecular system’s time scale model by the application of singular 

perturbation techniques. Stochastic modeling and signal processing of a nano-scale 

protein based biosensor was presented in [46] where the theory of time scales was used to 

understand the conductance levels of the ion channels in response to analyte 

concentrations. 

 

Epidemiology, one of the major branches of biology that studies the factors affecting the 

health of populations, was seen to be benefitted by the SPaTS theory. Mathematical 

modeling in infectious disease epidemiology was significant in identifying possible 

approaches to control, including vaccination programs. Time scale theory was seen in 

literature as preferred tools for developing control strategies of infectious diseases. For 
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example, authors in [47] presented an epidemic model of measles for which optimal 

vaccination strategies were realized using the theory of time scales. Time scale behaviour 

stems from the fact that the disease dynamics (short periodic outbursts) operates much 

faster than the human population dynamics (host’s life span – births and deaths). A quasi-

steady state approximation of the measles model was derived by assigning the singular 

perturbation parameter to zero. A similar application of time scales was observed in [48] 

where Song et.al. presented a model of tuberculosis to investigate the role of close and 

casual contacts in disease transmission. The theory of time scales was introduced in this 

paper to reduce the high model dimensions incurred by the addition of both types of 

contacts’ dynamics in the disease model. 

 

Time Scales in HIV Modeling 

Most of the search results returned by search engines/databases with the keyword ‘time 

scale’ referred to the durations of the distinct phases in HIV disease progression (acute 

infection (2-4 weeks), clinical latency (10 years or longer) and AIDS (3 years) [49]).  

However, time scales with reference to singular perturbations or slow-fast behavior 

yielded only a few publications. One of them [50] presented a nonlinear feedback control 

of HIV infection with a singular perturbation approach. The presence of two time scales 

in HIV dynamics was identified graphically. The feedback control law was designed 

using singular perturbation theory which reduced the ODE of the fast viral dynamics to 

an algebraic equation, thereby facilitating simple control law. 

  

A model incorporating HIV mutation and treatment with enzyme inhibitors were 



22 

 

presented in [51] to study the long term dynamics and multiscale aspects of HIV. The 

model was reorganized into a standard singularly perturbed form, which was reduced into 

lower dimensions by equating the viral dynamics to zero. 

 

2.1.3 Summary of Literature Review 

From the various contributions in literature, both in Electrical Engineering and in Life 

Sciences, it was observed that SPaTS theory was widely adapted for reducing model 

dimensions of a complex slow-fast system. This was achieved by neglecting the fast 

dynamics in an effort to make control designs more tractable. Complexities arise due to 

the interactions between the slow and fast modes resulting in ‘stiffness’ for mathematical 

computations (numeric solvers). Even though neglecting the fast dynamics facilitates 

ease of controller design, the solutions obtained from such a reduced order model does 

not satisfy all the boundary conditions of the original system [34].  

 

SPaTS methods –Time Scale Analysis and Synthesis discussed in this work are employed 

to overcome the loss of boundary conditions, preserve the system dynamics and at the 

same time reduce model orders [34], [52].  

 

2.2 Mathematical Definition of Singularly Perturbations and Time Scale Systems 

Mathematically, singularly perturbed systems are described by differential equations with 

a small parameter ‘ɛ’ multiplying the highest derivative of the dependent variable.  The 

small parameter can be small time constants, masses, moments of inertias, resistances, 

inductances or capacitances which are responsible for increasing the order of the system.  
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Consider a system described by a linear second order boundary value problem [34], [52], 

 ( ) ( ) 0,x x t x t     (2.1) 

with boundary conditions, 

 ( 0) ,    ( 1) ,i fx t x x t x     (2.2) 

where the small parameter, multiplies the highest derivative x . As  tends to zero either 

from positive or negative values,   

 

 

 

(1 )

0

0

lim ( , ) ,  0 1,

lim ( , ) ,  0  1,

t

f

t

i

x t x e t

x t x e t





















  

  
 (2.3) 

the degenerate (unperturbed) problem, 

 (0) (0)( ) ( ) 0,x t x t   (2.4) 

obtained by suppressing the small parameter,   (in (2.1)), has the boundary condition 

(0) ( 1) fx t x   if  tends to 0  and 
(0) ( 1) ix t x 

 
if   tends to 0 . In either case, one 

boundary condition is sacrificed in the process of degeneration.  

 

The important features of singular perturbations are summarized as follows: 

1. The problem (2.1) where the small parameter is multiplying the highest derivative is 

called a “singularly perturbed” problem if the order of the problem becomes lower 

for 0  than for 0  . 

2. There exists a boundary layer where the solution changes rapidly (Figure 2.2). 
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Figure 2.2: Boundary layer (shaded regions) represented by 0( )  [52] 

3. The degenerate problem, also called the “unperturbed” problem, is of reduced order 

and cannot satisfy all the given boundary conditions of the original (full, or perturbed) 

problem. The dashed line in Figure 2.2 represents the solution of the system (2.1) 

with 0   and does not satisfy the original boundary conditions of the system, 

( 0) ix t x  . 

4. The singularly perturbed problem (2.1)  has two widely separated characteristic roots 

giving rise to “slow” and “fast” modes in its solution. Thus, the singularly perturbed 

problem possesses a “two time-scale” property. The simultaneous presence of “slow” 

and “fast” phenomena makes the problem “stiff” from the numerical solution point of 

view. 

The slow and fast phenomena are characterized by small and large time constants, or by 

system eigenvalues that are clustered into two disjoint sets [53]. The slow system 

variables correspond to the set of the eigenvalues closer to the imaginary axis, and the 
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fast system variables are represented by the set of eigenvalues located far from the 

imaginary axis (Figure 2.3). The real part of the furthest eigenvalues should be at least 5 

times away from the real part of the smallest eigenvalue in the group [34].  

 

Figure 2.3: Eigenvalue separation for a time scale system 

2.2.1 Standard Singular Perturbation Model  

A nonlinear system exhibiting time scale behavior is expressed in the standard singular 

perturbation form as [34], 

 
  ( ) ( , , , , ),

( ) ( , , , , ),

x t f x z u t

z t g x z u t



 




 (2.5) 

where x and z are the m- and n- dimensional state vectors, u is an r-dimensional control 

vector and   is the small, scalar, positive parameter responsible for causing singular 

perturbation in the sense that when  is neglected, the order of the system is reduced. 

 

A linear singularly perturbed system is of the form,  
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 (2.6) 
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where x and z are the m- and n- dimensional state vectors, u is an r-dimensional control 

vector and the matrices Aij and Bij are of appropriate dimensions. 

 

2.3 Time Scale Analysis 

The main goal of the SPaTS theory is to separate the slow and fast signals and process 

them independently. Time Scale Analysis is used to decouple a full order system into 

reduced order subsystems. The decoupling procedure relieves the system of its ‘stiffness’ 

as the subsystems are now independent and interactions between them are minimized. 

This method also facilitates control design with lower order subsystems compared to a 

single higher order model offering significant computational savings. The other 

advantages of decoupling the dynamics are: 

1) Reduction in on-line and off-line computational requirements,  

2) Parallel and distributed processing of information, 

3) Processing information independently with corresponding sampling rates (slow with 

slow sampling rate, fast with fast sampling rate). 

4) Improved reliability of the system, due to the presence of multiple controllers in place 

of a single or centralized controller. 

 

For performing a time scale analysis, the time scale system need not be in the singularly 

perturbed form (Section 2.2.1), i.e. a small parameter multiplying the highest derivative 

or some of the state variables multiplied by a small parameter. The primary requirement 

is that the linear system should possess widely separated groups of eigenvalues. A 

singularly perturbed structure is only one form of the two-time scale systems [34]. 
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2.3.1 Standard Two-Time Scale System 

A general representation of the two-time scale, linear system is given as [34],  

 
1 2 1

3 4 2

,

,

x A x A z B u

z A x A z B u

  

  
 (2.7) 

where x and z are the m- and n- dimensional state vectors, u is an r-dimensional control 

vector and the matrices 
iA and 

iB  are of appropriate dimensions. In this representation, n 

eigenvalues of the system are assumed to be small and the remaining m eigenvalues are 

large, giving rise to slow and fast responses respectively. 

 

2.3.2 Decoupling Process 

The decoupling into slow and fast subsystems is achieved using a two-stage linear 

transformation [34],  

 
,

,

s f

f

x x Mz

z z Lx

 

 
 (2.8) 

where the subscripts ‘s’ and ‘f’ denote slow and fast respectively, and L ( n m ) and  

M ( m n ) are solutions of the nonlinear Lyapunov-type equations, 

 
   

1 3 2 4

1 2 4 2 2

0,

0.

LA A LA L A L

A A L M M A LA A

   

    
 (2.9) 

The slow and fast subsystems after decoupling can be represented as,  

 
( ) ( ) ( ),

( ) ( ) ( ),

s s s s

f f f f

x t A x t B u t

z t A z t B u t

 

 
 (2.10) 

where, 
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1 2

4 2

1 1 2

2 1

,

,

,

.

s

f

s

f

A A A L

A A LA

B B MLB MB

B B LB

 

 

  

 

 (2.11) 

The calculation of L and M are described in the following section. From the decoupled 

subsystems (2.10), it is seen that variables s
x and fz can be solved independently of each 

other. 

 

2.3.3 Calculation of L and M Matrices 

The L and M matrices are calculated iteratively using the high accuracy Newton method 

[53]. Newton’s algorithm converges quadratically in the neighborhood of the sought 

solution, at the rate of 
2( )

i

O  where i = 1, 2... imax. This rate of convergence makes it 

faster than the fixed point algorithm which is another commonly found iterative method 

in literature with a rate of convergence of ( )O  . The sufficient condition for the 

convergence of Newton’s algorithm is given in reference [54]. The iterative procedure to 

calculate the L and M values is given below: 

Step 1: Choose the sample number of maximum iterations (imax) for running the 

algorithm. 

Step 2: Initialize the value of L and M as
(0) 1

4 3L A A and 
(0) 1

2 4M A A respectively. 

Step 3: In the iterative loop, calculate the following:  
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  

( ) ( ) ( )

3 2

( ) ( )

1 4 2

( ) ( )

2 1 2

( ) ( 1) ( 1) ( ) ( )

1 2

( 1) ( 1) ( 1) ( 1)

1 2 2

,

,

,

,

.

i i i

i i

i i

i i i i i

i i i i

Q A L A L

D A L A

D A A L

D L L D Q

M D D M A







 

   

 

 

  

 

 

 (2.12) 

Note: The solutions of the last two equations in (2.12) are solved as Sylvester type 

equations which has the form, 

 0.AX XB C    (2.13) 

2.4 Time Scale Synthesis 

Once the full order system is decoupled, control laws can be implemented on the slow 

and fast subsystems to achieve the desired system performance. Control laws such as 

Proportional-Integral-Derivative (PID) control, state feedback control, optimal LQR 

control [38], [55], optimal Linear Quadratic Gaussian (LQG) control [38], robust H

control [56], and model predictive control [57] can be implemented with the time scale 

approach. Time scale control design differs from the conventional design process in that 

control laws are designed separately for each of the slow and fast subsystems, instead of 

one central control. This unique procedure minimizes the ‘stiffness’ involved in the 

controller design as the slow and fast controllers process system data independently. The 

following sections demonstrate time scale synthesis of two standard control strategies – 

state feedback control and optimal LQR control. The conventional, full order control 

designs are presented alongside for comparison purposes.  

 

2.4.1 State Feedback Control 

One of the common and simplest design approaches for physical systems represented in 
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state space form is the state feedback control. The poles of the system are chosen to 

achieve a desired system response and the control law is developed such that the closed 

loop system delivers the desired system response. A general state feedback control is 

described first which is then compared to its corresponding time scale design. 

 

State Feedback Control – Full Order Design 

The single-input system dynamics are given by, 

 
( ) ( ) ( ),

( ) ( ),

x t Ax t Bu t

y t Cx t

 


 (2.14) 

where A, B and C are the system, control and output matrices respectively. The poles of 

the system are given by the eigenvalues of system matrix, A which influence the dynamic 

characteristics of the system such as sensitivity to disturbances, stability, and decay of 

oscillations. The goal of state feedback control is to influence the system (A) such that it 

modifies its eigenvalues to achieve the desired system response. The block diagram 

representing the state feedback control is represented in Figure 2.4 [58]. 

  

Figure 2.4: Simple schematic of a state-feedback control system [58] 

The full-state feedback for the system is defined as,  

 ( ) ( ),u t r Kx t   (2.15) 

where, r is an external reference input having the same dimensions as ( )u t and K is the 
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feedback gain of the closed loop system. When 0,r  the state feedback control becomes 

a state regulator. The closed loop dynamics with the state feedback control is obtained as, 

 
( ) ( ) ( ) ,

( ) ( ).

x t A BK x t Br

y t Cx t

  


 (2.16) 

The necessary and sufficient condition for arbitrary pole placement is that the pair (A, B) 

must be controllable, and it is assumed that all the states are measurable. 

 

Simple Design Example 

The control objective is to design a state feedback matrix K for the system defined by, 

 
1 1 1

( ) ( )
1 2 0

x t x t u
   

    
   

 (2.17) 

such that the poles of the closed loop system ( ) ( ) ( )x t A BK x t   is stable with the 

desired poles at s = -5 and -25 and no overshoot.  

Design: 

The stability of the open loop system was evaluated through the roots of its characteristic 

equation, 

 
2( 1)( 2) 1 3 1 0

2.616;0.382

sI A s s s s

s    unstable!

        

  
 (2.18) 

A unit step input response of the linear system (2.17) in MATLAB
®
 (Figure 2.5) shows 

 

Figure 2.5: Simulink model for open loop system 
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that both the state responses were observed to be unstable as predicted by its eigenvalues 

(Figure 2.6). 

 

Figure 2.6: State response with no feedback control 

The state feedback control law is defined as, 

 
 1 2 ( )

  ( ),

u k k x t

Kx t

 

 
 (2.19) 

where K is the state feedback gain that results in the closed loop system 

( ) ( ) ( )x t A BK x t Br   . The closed loop dynamics is defined as,  

   1 2

1 2

1 1 1 1 1

1 2 0 1 2

k k
A BK k k

      
        

     
 (2.20) 

which has the characteristic equation, 

 
1 2

2

1 1 2

( ) ( (1 ))( 2) (1 ) 0

                       ( 3) ( 2 1) 0

sI A BK s k s k

s s k k k

        

       
 (2.21) 

The characteristic equation with the desired poles at s = -5 and -25 is given by, 

 2( 5)( 25) 30 125 0;s s s s       (2.22) 

Comparing this equation to the closed loop characteristic equation (2.21) results in, 
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  1 1

1 2 2

3 30 33
    33 190 .

2 1 125 190

k k
K

k k k

  
  

    

 (2.23) 

The linear system (2.17) with feedback control (full order) was simulated in MATLAB
®
 

and is shown in Figure 2.7. The gain block in the model holds the value of –K. 

 

Figure 2.7: Simulink model for state feedback control – full order case 

The step response of the closed loop feedback system is provided in Figure 2.8. Both 

states of the closed loop system were observed to be stable, with a slight overshoot for 

state
1( )x t and zero overshoot for state 

2 ( ).x t  

 

Figure 2.8: States of the full order system with feedback control 
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State Feedback Control - Time Scale Synthesis 

The time scale synthesis involves separate feedback control for each of the slow and fast 

subsystems. The control laws for the slow and fast subsystems, ( )
s

x t  and ( )
f

x t , 

respectively, are defined as,  

 
( ) ( ),

( ) ( ),

s s s

f f f

u t K x t

u t K x t

 

 
 (2.24) 

where 
sK and fK are the slow and fast gains of the corresponding subsystems. The slow 

and fast control is combined to form a composite state feedback control, ( )cu t which is 

fed back to the linear system, i.e., 

 ( ) ( ) ( ).c s fu t u t u t   (2.25) 

 The time scale synthesis of state feedback control is illustrated in Figure 2.9. 

 

Figure 2.9: Time scale synthesis of state feedback control 

Slow and Fast Subsystems 

The eigenvalues of the system (2.17) were evaluated to verify time scale behavior for 

performing time scale analysis. The eigenvalues were found to be 0.38197 and 2.618, 

which are different from each other by an order of magnitude thereby verifying time 
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scales in the system. The linear system (2.17) was then decoupled into slow and fast 

subsystems through time scale analysis (described in Section 2.3.2). The 1
st
 order 

subsystems were obtained as, 

 
   

   

0.38197 ,    2.618 ,

0.72361 ,     0.61803 ,

s f

s f

A A

B B

 

 
 (2.26) 

The characteristic equation of the slow subsystem is formulated as, 

 

( ) 0

(0.3819 0.723 ) 0

( 0.3819 0.723 ) 0

s s s s

s

s

sI A B K

s K

s K

  

  

   

 (2.27) 

and for the fast subsystem it is,  

 

( ) 0

(2.618 0.618 ) 0

( 2.618 .618 ) 0

f f f f

f

f

sI A B K

s K

s K

  

  

   

 (2.28) 

The desired eigenvalues have an eigenvalue separation ratio of 1:5. Keeping the same 

separation ratio, the eigenvalues for the time scale design were chosen as -20 (slow 

eigenvalue) and -100 (fast eigenvalue). The corresponding desired characteristic 

equations are, 

 
 : ( 20) 0

 : ( 100) 0

slow subsystem s

fast subsystem s

 

 
 (2.29) 

Comparison of closed loop and desired characteristic equation results in single order 

matrices
sK and 

fK as, 

( 0.3819 0.723 ) 20;

0.3819 0.723 20;

28.191.

s

s

s

s K s

K

K

    

   

 

 

( 2.618 .618 ) ( 100)

2.618 .618 100

166.05.

f

f

f

s K s

K

K

    

   

 

 (2.30) 
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A Simulink
®
 model for the time scale synthesis was implemented to observe the 

controllers’ performance (Figure 2.10).  

 
Figure 2.10: Simulink model for state feedback control – reduced order case 

The state responses in Figure 2.11 indicates that the composite state feedback control was 

able to render the system stable, with overshoot values very similar to the full order case, 

i.e. zero overshoot for 
2( )x t and a slight overshoot for 

1( )x t . 

 

Figure 2.11: States of the reduced order system with feedback control 
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Comparison of Full Order and Reduced Order Design 

The state feedback design for the full order system resulted in a 2
nd

 order gain matrix, 

 33 190K   while the time scale design resulted in two single order gains, 

28.191sK  and 166.05fK  . Both the designs were able to stabilize the system, and met 

a ‘zero overshoot’ requirement for one of the states. The state responses and control 

performance are compared in Figure 2.12. The results manifests the capabilities of the 

time scale synthesis that a very comparable control performance was achieved with lower 

order controllers. This design example could certainly be extended to complex, higher 

order systems for designing feasible controllers that require less online and offline 

computations. 

 

Figure 2.12: Full order vs. reduced order state feedback control design  

2.4.2 Optimal Control Time Scale Systems 

Time scale synthesis was successfully applied to state feedback control. Another example 

chosen to demonstrate the scope of this design is Optimal Control. The formulation of 
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control laws are provided in this section, and the simulation and results are presented in 

Chapters 3 and 4, as part of the transmission line and HIV research. 

 

In general, an optimal control design provides the best possible performance for a given 

performance index or cost function. When the performance index is quadratic, and the 

optimization is over an infinite horizon, the resulting optimal control law obtained by 

minimizing the cost function is called a Linear Quadratic Regulator (LQR). In the event 

of perturbations, the objective of an LQR control is to bring the perturbed states to zero. 

It is assumed that 1) all the states are measurable, 2) the control signal is unconstrained 

for design purposes and 3) the system is controllable. The performance index is chosen to 

minimize the error between the perturbed state and the desired state (which is zero) for an 

infinite time period. 

 

Conventional optimal control design involves design of a single controller for the full 

order system. In the following sections, time scale synthesis of LQR control is presented 

where separate LQR controllers are formulated for each of the slow and fast subsystems. 

In the following sections, LQR design of a full order transmission line is presented as a 

comparison for the reduced order LQR design (time scale approach). 

 

LQR – Full Order Design 

Given, a linear system of the form,  

 ( ) ( ) ( ),t A t Bu t x x  (2.31) 

where x and u are the state vector and control input respectively, the performance index, 
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J as, 

 
0

1
( ) ( ) ( ) ,

2
( )  x xT T

t

J t Q u t Ru t dtt


     (2.32) 

where Q and R are the symmetric positive definite matrices, and the boundary conditions 

as 0( )T tx ;  ( ) 0 0
TT  x , the optimal state, ( )tx* and the optimal control signal *( )u t

are defined as [59], 

 
1( ) ( ),Tt A BR B P tx* x     (2.33) 

 
1*( ) ( ) ( ),Tu t R B P t K t     x* x*  (2.34) 

where P is the solution of the algebraic Riccati equation, 

 
1 0,T TPA A P Q PBR B P     (2.35) 

and K is the regulator gain. A block diagram describing the optimal control of a full order 

linear system is shown in Figure 2.13. As seen in figure, all states of the system are fed to 

a single controller for processing the control signal.  

 

Figure 2.13: LQR control block diagram for the full order, linear system 

LQR – Reduced Order Design  

In the time scale design, the eigenvalues of the original system are first verified and 

subjected to time scale analysis (Section 2.3.2) which extracts the slow and fast 
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subsystems. The control laws are derived separately for the slow and fast subsystems, and 

they work in parallel towards bringing the system perturbations to zero. The slow 

subsystem, ( )sx t defined in (2.10), has a performance index, 

 
0

1
( ) ( ) ( ) ( )  ,

2

T T

s s s s s s s

t

J x t Q x t u t R u t dt



     (2.36) 

where
sQ and

sR are the weighting matrices for the slow subsystem. The control signal 

*( )su t for the slow subsystem is defined as, 

 
* 1( ) ( ) ( ),T

s s s s s s su t K x t R B P x t     (2.37) 

where
sK is the regulator gain of the slow subsystem and 

sP  is the solution of the slow 

algebraic Riccati equation, 

 
1 0T T

s s s s s s s s s sP A A P Q P B R B P      (2.38) 

Similarly, for the fast subsystem, LQR control is derived as, 

 
* 1( ) ( ) ( ),T

f f f f f f fu t K x t R B P x t     (2.39) 

where fK is the regulator gain of the fast subsystem, and fP is the solution of the fast 

algebraic Riccati equation, 

 
1 0.T T

f f f f f f f f f fP A A P Q P B R B P     (2.40) 

fQ and fR are the weighting matrices for the fast subsystem. The slow and fast control 

signals are processed independently, and fed back to the system as a composite control 

signal, *( )u t  i.e., 

 
* * *( ) ( ) ( ).s fu t u t u t   (2.41) 

A block diagram describing the time scale LQR design is presented in Figure 2.14. 
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Figure 2.14: LQR control design using time scale approach 

2.5 Conclusion 

SPaTS methods are well recognized in control theory and its applications span numerous 

fields in science and engineering. Literature surveys in the field of Power System 

Engineering and Life Sciences revealed that these methods were applied as a means of 

model order reduction to make control designs more tractable. Once the model was 

realized in the standard singular perturbation form, the fast dynamics were neglected to 

simplify control design, or system information is lost in the process. To overcome the 

loss of system information, SPaTS methods are presented that achieve model reduction 

while keeping the fast dynamics intact. A decoupling process separates the full order 

system into slow and fast subsystems, guaranteeing excellent eigenvalue approximations 

of the original system. The reduced order approximations are key in designing software 

controllers that can be implemented real-time, as the separated subsystems are of lower 

order and require less computational efforts. The applications of SPaTS methods are well 

suited for controller design in DLR technology and smart grids, especially for power 

management and control, and also for designing feasible treatment strategies for an HIV 

infection. 
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Chapter 3  

Time Scale Analysis and Synthesis in Electrical Energy 

 

This chapter presents the applications of Time Scale Analysis and Synthesis in Electrical 

Engineering, with focus on Overhead Power Transmission Lines. Time domain models of 

overhead power transmission lines are developed and simulated to gain insights into its 

inherent dynamic behavior. A second order, nonlinear state space model that accounts for 

both electrical and thermal dynamics is presented. The eigenvalues of the system were 

analyzed, which indicate the slow - fast behavior of the transmission line system. Using 

time scale analysis, a full order transmission line model is decoupled into independent, 

lower order, slow and fast subsystems. These decoupled subsystems are the basis for the 

Time Scale Synthesis of an optimal control scheme for state regulation (Linear Quadratic 

Regulator). The efficacy of this control approach is compared to that of a full order 

optimal control design. Reliability and resiliency of Time Scale Synthesis are also 

discussed in this chapter. A brief overview of the application of SPaTS methods in Wind 

Energy Conversion Systems is provided to highlight the extent of time scale methods in 

Renewable Energy. 

 

3.1 Introduction to Overhead Power Transmission Lines 

In an electric grid, energy flows from the power generating stations to the customers over 

a network of overhead and underground transmission lines. Figure 3.1 [60] demonstrates 

various elements of a power supply network. Overhead power lines are either high 

voltage transmission lines (69 kV to 765 kV) that connect power plants to substations, or 
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local distribution lines (4 kV to 69 kV) that cover shorter distances, from substations to 

residential/commercial customers. Overhead transmission lines are a reliable, low cost, 

easily maintained, and established method to transport bulk electricity across long 

distances. Underground transmission, on the other hand, costs approximately 4 to 14 

times more than overhead lines of the same voltage and same distance, and is more 

complicated to construct than overhead lines due to their different physical, 

environmental, and construction requirements [61].  

 

Figure 3.1: Electric power supply network [60] 

Two significant technical challenges for underground power transmission are,  

1) providing sufficient insulation so that cables can be within inches of grounded 

material; and 2) dissipating the heat produced during the operation of the electrical cables 

[61]. For these reasons, additional cabling, insulations and cooling materials are required 

to achieve the same reliability as overhead lines, which also translate to higher costs of 

installation. In contrast, overhead lines are air cooled and widely spaced for safety. Figure 

3.2 [62] shows the size comparison of an underground cable to an overhead cable. 
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Figure 3.2: Underground cable and smaller overhead conductor [62] 

For reasons mentioned earlier, only overhead power transmission lines are considered in 

this research. 

 

3.1.1 Components of Overhead Power Lines 

Overhead power lines are employed for transmission and distribution of electric power. A 

typical transmission line is displayed in Figure 3.3. 

 

Figure 3.3: Components of an overhead power line [63] 

In general, the main components of an overhead line are, 
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 Conductors – carry electric power from the generating station to the receiving end 

station. 

 Supports – structures such as poles or towers that keep the conductors at a suitable 

height above the ground. 

 Insulators – dead end structures that are attached to supports and insulate the 

conductors from the ground. 

 Cross arms – provide support to the insulators. 

 Dampers – reduce the vibrations and oscillations on the transmission lines due to 

wind. 

 Spacers – prevent wind induced conductor motion damages. 

 

3.1.2 Conductor Materials 

Aluminum, copper, and steel are the materials commonly used in conductors. The utility 

industry initially transmitted electricity over copper conductors, but eventually converted 

to conductors made from aluminum and steel, since copper weighs and usually costs 

considerably more than aluminum conductor of the same resistance. Modern overhead 

transmission line conductors are bare, and stranded with two to four layers of aluminum 

over a galvanized steel core in a configuration known as Aluminum Conductor, Steel 

Reinforced (ACSR). Other classes of aluminum conductors that are currently employed 

in transmission lines are, AAC – All Aluminum Conductors, AAAC – All Aluminum 

Alloy Conductor and ACAR – Aluminum Conductor, Alloy Reinforced. Figure 3.4 

displays the conventional conductor configurations in industry today.  
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ACSR is significantly stronger than AAC, AAAC and copper conductors with the same 

dc resistance with a minor penalty of increased external diameter and increased weight 

per unit length [64]. Aluminum is chosen for its excellent conductivity, low weight and 

low cost. The center strands of steel provide additional strength in supporting the weight 

of the conductor. Steel also has lower elastic and inelastic deformation (permanent 

elongation) due to mechanical loading (e.g. wind and ice) as well as a lower coefficient 

of thermal expansion under current loading. These properties allow ACSR to sag 

significantly less than all-aluminum conductors [65]. 

  

Figure 3.4: Overhead AAC, AAAC, ACSR and ACAR configurations [66] 

This research adopts an ACSR configured overhead conductor for modeling and 

simulations. The numerical data provided in [3] is for a 795 kcmil 26/7 Drake ACSR 

conductor. The structure of an ACSR cable is provided in Figure 3.5. 
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Figure 3.5: ACSR configuration with 26 outer strands of aluminum and 7 core strands of 

steel [66] 

3.2 Modeling of Overhead Transmission Lines 

Transmission lines are subjected to various dynamic physical processes in the field. Some 

of which that cause a noticeable impact are, current flow in the line, heating effects due to 

line resistance, effects of weather on the line such as line cooling due to wind flow or line 

heating due to solar radiation.  

The amount of line current (ampacity) results in a desired limiting line temperature. Line 

temperature on the other hand is influenced by various environmental factors. These two 

variables are dependent on each other and are very critical in deciding the amount of 

power that can be safely transmitted through a transmission line. The dynamic 

interactions between them are characterized by different speeds of response, which 

results in a slow-fast/time scale behavior. The dynamics of line current and line 

temperature have to be captured in transmission line models to understand their slow-fast 

behavior. This characteristic could be utilized to calculate real-time ampacity and limiting 

temperatures necessary for dynamically rating transmission lines. 
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3.2.1 Literature Review of Transmission Line Models 

An extensive survey was conducted in the IEEE Xplore Digital Library for time domain 

models that describe the complete transmission line dynamics, or time scale nature of 

transmission lines. The results of the survey indicated that state space models have been 

studied that describe either line current dynamics or line temperature dynamics, but not 

both.  

Authors in [67, 68, 69] present state space models of transmission lines that describe the 

electrical dynamics involving line currents and line voltages. These models do not 

include the line temperature dynamics, and hence do not offer a complete model for this 

research.  Line temperature dynamics on the other hand, is addressed in the IEEE 

Standard 738 [3], which offers guidelines for calculating the current-temperature 

relationship of bare overhead line conductors. A single order differential equation of line 

temperature describes the heat exchange between the conductor and the environment, in 

which line current contributes towards heat gain in the conductor. In this equation, line 

current is a static variable and hence its dynamics is unaacounted for. The dynamic 

interactions between the variables or the  slow-fast behavior of transmission lines are not 

addressed in the standard. 

A literature search was also conducted on the topic of time scales in transmission lines. 

The results presented references that considered time scales in a general power system or 

in power system components. Authors in [70] addressed time scales in a single-machine 

infinite bus system, which is an approximation of real power systems. Power systems 

consist of single or multiple generators connected through transmission lines to a very 

large power network which is approximated by an infinite bus. The fast dynamics were 
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identified as the flux linkages of rotor windings along direct and quadrature axes, and the 

slow dynamics were identified as emf, generator rotor angle and rotor speed variables. 

The transmission line component was not specifically accounted for in this publication. 

 

The publication in [71] presented a three machine interconnected power system which 

was modeled with flux linkage and voltage regulator dynamics, and the time scales were 

analyzed for the whole power system.  The work in [39] presented time scales on a single 

power system component, a transformer. Here, the slow variable had dimensions of a flux 

linkage and the fast variable had dimensions of a voltage.There was minimal literature on 

the time scale behaviour of a transmission line component.  

 

3.2.2 Overhead Transmission Line Model 

The lack of suitable transmission line models (electrical + thermal dynamics) in existing 

literature encouraged the formulation of a transmission line model from basic principles. 

Since the temperature dynamics was already established in the IEEE Std. 738, the 

electrical dynamics had to be developed. The equations for electrical dynamics were 

formulated through the application of Kirchhoff’s laws on equivalent circuits of 

transmission lines. The temperature dynamics is then combined with the line current 

dynamics to form the suitable transmission line model for this study. 

 

Equivalent Circuit of a Transmission Line 

The electrical performance of overhead transmission lines are characterized by four 

parameters, namely resistance R, inductance L, capacitance C and conductance G. 
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Parameters R and L constitute the series impedance, Z, and C and G constitute the shunt 

admittance, Y. These parameters are distributed along the entire line and are used to 

model the behavior of the voltage V and current I signals as they travel throughout the 

line, as represented in Figure 3.6 [72]. The subscripts ‘S’ and ‘R’ stand for the sending 

and receiving side respectively. The conductance, G accounts for the leakage current in 

the insulation and active power losses due to corona effect. For a bare overhead 

conductor, leakage currents flow to the ground through the surface of an insulator. As 

leakage currents are considerably small when compared to nominal currents, the 

parameter G is not considered in the transmission line model [64]. 

 

Figure 3.6: General representation of a transmission line [72] 

Transmission line models are classified based on the length of the lines. 

 Short line: 0 <  length < 80 km (0 < 50 miles) 

 Medium line: 80 km < length < 250 km  ( 50miles < length < 155 miles) 

 Long lines: length > 250 km (length > 155 miles) 

Depending on the length of the transmission line, various factors come into play that 

limits the amount of power through a line. In short lines, resistive heating limits the 

amount of power that the transmission line can supply. The thermal limits are intended to 

to limit the conductor temperature and the resulting sag and loss of tensile strength. In 

longer lines, electrical phase shifts and voltage drops across the line are usually the 
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limiting factors. DLR technology is considered primarily for short length lines where 

conductor temperature is the limiting factor for line ampacity. 

  

Accurate representations of transmission lines require uniformly distributed parameters 

(series resistance, series inductance, and shunt capacitance). However, short lines and 

medium lines could be represented using lumped parameters without any appreciable loss 

of accuracy as well as equivalent circuits with lumped parameters [64]. In this research, a 

short transmission line is chosen for analysis. The equivalent circuit is drawn using a 

lumped parameter model consisting of only series resistance and series inductance, as the 

shunt capacitance at 50 or 60 Hz is very negligible.  

 

3.3 State Space Modeling of Transmission Lines 

A non-linear, time domain model of a short length transmission line is presented in this 

section. The equivalent circuit for a short line is provided in Figure 3.7.  

 

Figure 3.7: Equivalent circuit of a short line 

In the above figure, vsource is the source voltage representing a generator and 
Li is the 

current flowing through the line. The resistance of the transmission line, R is a function 

of conductor temperature, 
avgT which determines the amount of current flowing through 

the line. The commonly used ACSR cable consists of a solid or stranded steel core 
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surrounded by one or more layers of strands of aluminum. 
avgT denotes the average 

temperature of aluminum strand layers, which has excellent electrical conductivity. The 

line inductance, L is assumed to be independent of line temperature, as observed from the 

datasheet values of an ACSR cable (Appendix A - Table A.3). 
loadV is the voltage drop 

due to a resistive load 
loadR at the receiving end of the line. 

 

3.3.1 Line Current Dynamics 

Applying Kirchhoff’s voltage and current laws to the equivalent circuit, the dynamics of 

line current is described as, 

 
( )( )

( ) ( ) .
avg load sourceL

L L

R T R vdi t
i t i t

dt L L L
     (3.1) 

3.3.2 Line Temperature Dynamics 

Figure 3.8 [8] illustrates the physical processes involved in the heat balance of an 

overhead transmission line. Joule effect and solar heating contributes to heat gain in the 

conductor, while convection (wind cooling) and radiation results in heat loss in the 

conductor. 

 

Figure 3.8: Heat balance within a conductor [8] 
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The temperature dynamics of the line is described using the non-steady state heat balance 

equation [3], 

 
2

( ) 1
( ( )) ( ) ,

avg

avg L s c r

p

dT t
R T t i t q q q

dt mC
       (3.2) 

where m is mass per unit length of the conductor and pC  is the specific heat of the 

conductor material. Since the conductor consists of more than one material (i.e. ACSR), 

the conductor heat capacity is equal to the sum of the heat capacities of the core and the 

outer strands, each defined in this way, i.e., 

 .p i p i
mC m C   (3.3) 

For an ACSR conductor, the conductor heat capacity is defined as, 

 ,p Al p Al St pStmC m C m C     (3.4) 

where Alm and Stm are the mass per unit length of the outer aluminum and steel core 

respectively, and 
p AlC and 

pStC are the specific heats of aluminum  and steel respectively. 

 ( )avgT t is the average temperature of the line conductor which is a function of line current 

Li , solar heat gain ( ),sq convection heat loss ( )cq and radiation heat loss ( ).rq  The physical 

processes involved in the heat balance of the transmission line are described in detail 

below. 

 

Joule Heating, 2
( )

L avg
i R T  

Joule heating or resistive/ohmic heating, is the process where the energy of an electric 

current is converted into heat as it flows through a resistance. The resistivity of a 

conductor material generally increases nonlinearly with temperature. However, for the 
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usual operating conditions at temperatures ranging from -40°C to 75°C, the variation in 

resistance can be considered linear without any appreciable error [64]. The electrical 

resistance, ( )avgR T  is assumed to be a linear function of line temperature, and is defined 

as [3], 

  ( ) . ( ) ,
high low

low

T T

avg avg low T

high low

R R
R T T t T R

T T

 
   

  

 (3.5) 

where 
lowT and highT are the low and high average conductor temperatures, respectively, 

for which ac resistance is specified. 
lowTR and 

highTR are the resistance values corresponding 

to 
lowT and highT respectively. 

 

Solar Heat Gain, sq  

The solar heat gain, 
sq is defined as [3], 

 sin( ) ,s seq Q A       (3.6) 

where  ,
seQ , and Aare the solar absorptivity of the conductor, total solar and sky 

radiated heat flux with corrected solar heat intensity, effective angle of incidence of the 

sun, and projected area of conductor per unit length. This 
sq factor along with Joule 

heating, 
2 ( ) ( )L avgi t R T , contributes to the increase in conductor temperature.  

The angle incidence,   is calculated using the formula, 

    arccos cos cos ,c c lH Z Z       (3.7) 

where
cH is the solar altitude of the sun in degrees, 

cZ is the solar azimuth angle in 

degrees, and 
lZ is 90°, the azimuth of the transmission line in the east – west direction. 
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Solar altitude, 
cH is given by, 

          arcsin cos cos cos sin sin ,cH Lat Lat          (3.8) 

where Lat is the conductor latitude in degrees,  is the solar declination in degrees given 

by,  

 
284

23.46 sin 360 ,
365

N


 
   

 
 (3.9) 

  is the hour angle which is the number of hours from noon times 15°, and N is the day 

of the year. Solar azimuth, 
cZ is calculated using the equation, 

  arctan ,cZ C    (3.10) 

where  , the solar azimuth variable is, 

 
 

       

sin
.

sin cos cos cosLat Lat




 


  
 (3.11) 

C is the solar azimuth constant in degrees, a function of hour angle,  and  as shown in 

Table 3.1. 

Table 3.1: Solar azimuth constant C – Lookup table 

Hour Angle,  , degrees C if 0  degrees C if 0  degrees 

180 0    0 180 

0 180   180 360 

 

Convective Heat Loss, cq  

The convection heat loss 
cq  is defined in terms of forced convection and natural 

convection processes.  
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 Forced convection heat loss equations are defined at low wind speeds (
1cq ) and high 

wind speeds (
2cq ), and the larger of the two is used for calculating forced convective heat 

loss. The equations for 
1cq  and 

2cq are [3],  

 
 

 

0.52

1 Re

0.6

2 Re

1.01 1.35 ,

0.754 ,

c angle f avg a

c angle f avg a

q K N k T T

q K N k T T

        

     
 (3.12) 

where 
angleK , 

fk , 
Re ,N and 

aT are the wind direction factor, thermal conductivity of air, 

Reynolds number and ambient air temperature, respectively. Wind direction factor, 
angleK  

is defined as, 

 1.194 cos( ) 0.194cos(2 ) 0.368sin(2 ),angleK        (3.13) 

where   is the angle between the wind direction and conductor axis. Thermal 

conductivity of air, 
fk is calculated using the equation, 

 

2

2 5 92.42 10 7.477 10 4.407 10
2 2

avg a avg a

f

T T T T
k   

    
        

   
 (3.14) 

The Reynolds number 
Re ,N is a dimensionless quantity which describes convective heat 

loss, and is defined as, 

 
0

Re ,
f w

f

D V
N





 
  (3.15) 

where 
0D  is the outside diameter of the conductor and 

wV  is the wind velocity. Air 

density, 
f  and dynamic viscosity of air, 

f  are determined using equations, 

 

4 9 21.293 1.525 10 6.379 10
,

1 0.00367
2

e e
f

avg a

H H

T T


    


 
  

 

 
(3.16) 
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1.5

61.458 10 273
2

,

383.4
2

avg a

f

avg a

T T

T T



  

   
  
 

 
 

 (3.17) 

where 
eH  is the elevation of conductor above sea level. 

 Natural convective heat loss (
cnq ) dominates at zero wind speeds and is defined as,  

 
0.5 0.75 1.25

03.645 ( ) ,cn f avg aq D T T      (3.18) 

where 
f  is the air density and 

0D  is the outside diameter of the conductor. As 

recommended in [3], the larger of the forced and natural convection heat loss is used at 

low wind speeds, for calculating the convection heat loss, 
cq . 

 

Radiative Heat Loss, rq  

Heat loss due to radiation becomes significant when the conductor is heated above the 

ambient temperature. Radiative heat loss, 
rq  is defined as, 

 

4 4

0 0

273 273
17.8

100 100

avg a
r

T T
q D 

    
        

    

 (3.19) 

where 
0 is the conductor emissivity. 

 

3.3.3 Nonlinear State Space Model 

Combining equations (3.1) – (3.19), the nonlinear state space equations for a short length 

transmission line are, 
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2

( )( )
( ) ( ) ,

( ) 1
( ) ( ( )) ;

avg load sourceL
L L

avg

L avg s c r

p

R T R vdi t
i t i t

dt L L L

dT t
i t R T t q q q

dt mC

   

      

 (3.20) 

Comparing the state-space model (3.20) to the standard representation of a nonlinear 

system, ( , ),fx x u  the state vector x  and input vector u are defined as, 

 
( )

( )

L

avg

i t

T t

 
  
 

x  (3.21) 

  sourcevu  (3.22) 

where 
Li is the current flowing through the line, 

avgT is the average conductor temperature 

and 
sourcev is the source voltage. The model data for all the transmission line parameters 

are taken from the 795 kcmil 26/7 Drake ACSR conductor which were obtained through 

reference [3]. The model data are provided in Appendix A. 

 

3.4 System Analysis of Short Transmission Line Model 

The nonlinear equations of the short transmission line were simulated in MATLAB
®
 to 

understand its dynamic behavior. The system was perturbed by a step change in source 

voltage at the origin, and the state responses were observed. The parameter values for 

simulating the system are listed in Table 3.2. A sample line length of 60 km was chosen 

for this simulation, as lengths of short transmission lines range from 0 to 80 km. 

Table 3.2: Initial conditions for the short line model 

Parameter Numerical Value 

( )sourcev t  (0)sourcev = 80 kV 

( )Li t  (0)Li = 0 A 
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Parameter Numerical Value 

( )avgT t  (0)avgT  = 0°C 

Line conductor parameters Appendix A 

Environmental Parameters Appendix A 

 

3.4.1 State Response Plots 

The plots of states with respect to time are displayed in Figure 3.9 and Figure 3.10. It was 

observed that the line current’s step response was much faster than that of the line 

temperature, corresponding to the physical nature of electrical and thermal responses.  

Observing the rise time of current (near the origin), revealed it to be in the order of 

milliseconds, while that of temperature was in the order of minutes. This difference in the 

speed of variables indicates the presence of two time scales in the system, one slow and 

one fast. The slow variable corresponds to the thermal dynamics or line temperature and 

the fast dynamics corresponds to the electrical dynamics or line current. 

   

Figure 3.9: Plot of line current 
Li  with respect to time (left); Detailed view of state near 

the origin (right) 



60 

 

 

Figure 3.10: (a) Plot of line temperature avgT with respect to time 

 

3.4.2 Verification with the IEEE Std. 738 Results 

The non-steady state heat balance equation (3.2) is numerically implemented in the IEEE 

Std. 738 for a sample set of conductor and environmental parameters. A plot of the 

transient temperature response to a step increase in line current is provided in the 

standard and is shown in Figure 3.11. Line current, a static variable in the standard, is 

stepped from a pre-load current of 800 A to 1200 A. The initial line temperature is set at 

80°C as mentioned in the standard. A simulation of the proposed dynamic model (3.20) is 

run in MATLAB
®

 with the same initial conditions to compare its step responses with the 

IEEE standard. The results are provided in Figure 3.12. It is observed that the conductor 

temperature varies exponentially with time after the step change in line current, as seen in 

the IEEE plot. It reaches a steady state value of 127.97°C at time t = 3600s and is very 

comparable to the value of 128°C provided in the standard. Thermal time constant of the 

conductor was also evaluated in the standard using a couple of methods; one was through 

a linear approximation of the heat balance equation (3.2) which yielded a theoretical 
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value of 14 minutes, and the other method determined the time constant graphically from 

the step response plot, which yielded a value of 13 minutes. The time constant of the 

proposed model is observed to be 14.12 minutes which is in accordance with the 

theoretical calculations in the standard. 

 

Figure 3.11: Transient temperature response to a step increase in line current [3] 

 

Figure 3.12: Conductor temperature response of the proposed model (3.20) 

Thermal time constant 
=14.12 minutes 

Tavg_final = 127.97°C 
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The simulation is also carried out for a different initial line temperature of 40°C, a value 

closer to that of ambient temperature. The results are observed (Figure 3.13) and the final 

temperature was observed to be 126.8°C at t ꞊ 3600s. 

 

Figure 3.13: Temperature response of the proposed model (3.20) at (0) 40avgT C   

 

3.4.3 Linearization of Nonlinear Model 

To further investigate on the time scale nature of the transmission line, the nonlinear 

model was linearized about various time instants and the eigenvalues were evaluated. The 

results are tabulated in Table 3.3. 

Table 3.3: Linearization of transmission line model at various time instants 

Time instant Eigenvalues 

t = 0s -2.6561*10^3;  -2.6102*10^-4 

t = 1000s -2.6682*10^3;  -1.4177*10^-3 

t = 2000s -2.6712*10^3;  -1.4478*10^-3 
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Time instant Eigenvalues 

t = 3000s -2.6719*10^3;  -1.4551*10^-3 

t = 3500s -2.6795*10^3;  -1.4015*10^-3 

t = 6000s -2.6866*10^3;  -1.4901*10^-3 

t = 8000s -2.6868*10^3;  -1.4923*10^-3 

t = 10000s -2.6868*10^3;  -1.4923*10^-3 

 

From the table, it can be seen that the eigenvalues are different from each other by orders 

of magnitude. Systems characterized by such widely separated groups of eigenvalues are 

examples of systems with slow and fast dynamics [34]. The clearly distinct eigenvalues at 

any time instant signifies that the transmission line model exhibits time scales. The larger 

absolute eigenvalue corresponds to the faster time scale which is the line current 

dynamics (electrical dynamics) and the smaller absolute eigenvalue corresponds to the 

slower time scale which is the line temperature dynamics (thermal dynamics). Since the 

transmission line has variables which change at different speeds and interact with one 

another, it is an ideal candidate for Time Scale Analysis. The reduced order 

approximations obtained from this procedure are key in designing software controllers 

that can be implemented real-time, especially for power management and control 

purposes in DLR/smart grids. 

 

3.5 Time Scale Analysis of Transmission Lines 

The transmission line model is subjected to time scale analysis described previously in 

Section 2.3, where it is decoupled into lower order, slow and fast subsystems. Once 
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separated, optimal control laws (LQR) are designed for each of the subsystems, with the 

objective of minimizing any perturbations in the transmission line.  

 

3.5.1 Decomposition of Transmission Line Dynamics 

The nonlinear model in (3.20) was linearized about a nominal operating point and the 

resulting linear system was of the form ( ) ( ) ( )x t Ax t Bu t  , where the system and control 

matrices, A and B were obtained as,  

2687 485.3 25.39
;           ;

0.0001684 0.001462 0
A B

    
    

   
 

Comparing the above linear system to the standard time scale system in (2.7) (recalled 

here for convenience), 

Standard Time Scale  

Model (2.7) 

1 2 1

3 4 2

,

.

x A x A z B u

z A x A z B u

  

  
 

the elements of A and B are assigned as, 

 
     

     
1 2 1

3 4 2

2687 ,               485.3 ,                25.39 ,

0.0001684 ,        0.001462 ,         0 .

A A B

A A B

    

   
 (3.23) 

L and M were calculated iteratively using Newton’s Algorithm [54]. Applying the two-

stage transformation in Section 2.3.2 results in 1
st
 order decoupled matrices, 

   

   

-2687 ,    -0.0010289 ,

25.39 ,     -2.2658e-05 ,

s f

s f

A A

B B

 

 
 

and the decoupled transmission line is of the form (2.10). 

 

To ensure that the decoupled systems ( )sx t and ( )fx t retain the slow and fast dynamics, 

the eigenvalues of the full order and reduced order systems were compared.  The results 
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are provided in Table 3.4. The results confirm that the time scale method decouples the 

system dynamics almost perfectly. The accuracy parameter of Newton’s algorithm could 

be adjusted to get the exact same eigenvalues for both the systems. 

Table 3.4: Comparison of full order and reduced order eigenvalues 

Full Order Eigenvalues 

A 
eig (A) =  -2687; 

                -0.0014924 

Reduced Order Eigenvalues 

sA - slow subsystem eig (
sA )  = -2687 

fA - fast subsystem eig ( fA ) = -0.0010289 

 

With the decoupled subsystems, control laws like optimal control, Proportional-Integral-

Derivative (PID) control, state feedback control, etc. can be implemented to achieve the 

desired system performance. In the following sections, time scale synthesis of an optimal 

control law is presented for minimizing perturbations in a transmission line. 

 

3.6 Optimal Control Design of Transmission Lines 

Transmission lines are subjected to various perturbations in the field. These could be due 

to the sudden loading effects by a set of electric motors, or lightning strikes, or abrupt 

changes in the source voltage. In such events, control strategies have to be in place that 

returns the system to its nominal state of operation. The control law that is implemented 

here is the optimal LQR control, with the objective of minimizing the perturbations to 

zero.  
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Time scale synthesis of LQR involves design of separate LQR control laws for the slow 

and fast subsystems. These separate controllers work in parallel and independently, 

towards bringing the system perturbations to zero. This reduced order design is 

compared to the conventional LQR design of a full order transmission line. 

 

3.6.1 LQR Control of Full Order Transmission Line 

The linear transmission line model is of the form,  

 ( ) ( ),A t Bu t x x  (3.24) 

where ( ) ( )
T

T

L avgi t T t   x and  sourceu v . The quadratic performance index, J is 

defined as, 

 
0

1
( ) ( ) ( ) ,

2
( )T T

t

J t Q u t Ru t dtt


     x x  (3.25) 

with boundary conditions, 
0( ) (0) (0)

T
T

L avgt i T   x and  ( ) 0 0
TT  x . The optimal 

state, ( )tx* and the optimal control signal, *( )u t are defined as [59], 

 
1( ) ( ),Tt A BR B P tx* x     (3.26) 

 
1

*( ) ( ) ( ),
T

u t R B P t K t


     x* x*  (3.27) 

All the variables in the above equations are defined in Section 2.4.2. The optimal LQR 

control of a full order, linear transmission line is illustrated in Figure 3.14.  
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Figure 3.14: LQR control block diagram for the full order transmission line 

 

3.6.2 Time Scale Synthesis of LQR Control 

The optimal control law 
*( )su t for the slow subsystem is defined as, 

 
* 1( ) ( ) ( ),T

s s s s s s su t K x t R B P x t     (3.28) 

and for the fast subsystem,  

 
* 1( ) ( ) ( ),T

f f f f f f fu t K x t R B P x t     (3.29) 

where 
sK and 

fK are the regulator gains of the slow and fast subsystems respectively. 

The derivation of control laws for the time scale LQR design is provided in Section 2.4.2. 

A block diagram describing the proposed design for the reduced order transmission line 

model is presented in Figure 3.15. The line current and line temperature states are 

separated from each other and fed to their respective controller gains, where the control 

signals are processed independently, and fed back to the system as a composite control 

signal. 
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Figure 3.15: LQR control design for reduced order transmission line model 

 

3.6.3 Simulation Results 

All the controllers were designed in MATLAB
®

 and implemented in Simulink
®
. Model 

data for simulations were taken from [3] for a 795 kcmil 26/7 Drake ACSR conductor. 

Matrices ,  ,  ,  ,   and s s f fA B A B A B for LQR control design were provided in Section 3.5.1. 

The weighting matrices ,  ,  ,  ,   and s s f fQ R Q R Q R  were chosen such that they minimize 

the time taken by the states to get to zero. These matrices were chosen from multiple 

iterations. The controllability conditions for both the cases were tested before designing 

the control law. 

 

Full Order LQR Control – Results 

The controllability condition of the linear transmission line model system was verified 

using MATLAB
®
’s ‘ctrb(A,B)’ command. The controllability matrix was found to 

have a full rank of 2 and the full order system was therefore controllable. The weighting 
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matrices were chosen as, 

  
1000 0

;    0.5
0 1

Q R
 

  
 

 (3.30) 

which lead to a LQR gain, 

    9.0613  -1.4792 .K   (3.31) 

The linear transmission line model is defined using the state-space block in the Simulink
®
 

library (Figure 3.16). The two states of the system are directed to the scope viewers using 

a multiplexer block ‘mux’. The state and control vectors were saved as variables in 

MATLAB
®
’s workspace using the ‘simout’ blocks. The optimal control vector is 

obtained by applying the LQR gain, K to both the states by using a de-

multiplexer/‘demux’ block. The gain block holds a value of –K. 

 

Figure 3.16: Simulink
®
 model for the full order transmission line model 

The plots of the states and control signal are provided in Figure 3.17. From the simulation 

results, it is seen that when the state variables are perturbed by some disturbances, the full 

order LQR control ( )u t brings all the states to zero. 
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Figure 3.17: State and control responses of the full order transmission line 

Reduced Order LQR Control – Results 

The controllability matrices for each of the slow and fast subsystems were verified. A full 

rank of 1 was obtained for the controllability matrices for both the subsystems, and the 

reduced orders systems were therefore controllable. By choosing the weighting matrices 

as, 

 
   

   

10 ,   0.25 ,

1 ,   1 ,

s s

f f

Q R

Q R

 

 
 (3.32) 

the slow and fast gains were calculated to be,  

      0.18882 ;    -0.017092 ,s fK K   (3.33) 

respectively. The Simulink
®
 model was built for the reduced order transmission line as 
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shown in Figure 3.18. The slow optimal gain, 
sK was applied to ( )avgT t  (line 

temperature) and 
fK was applied to ( )Li t (line current). The plots of the states and control 

signal are provided in Figure 3.19 . The perturbed states of the reduced order system tend 

to zero as time tends to infinity.  

 
Figure 3.18: Simulink

®
 model for the reduced order transmission line 

 

Figure 3.19: State responses and control signal of the reduced order transmission line 
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Comparison of Full Order and Reduced Order LQR Design 

A comparison between the full order and reduced order LQR design was performed and 

the results are provided in Figure 3.20. It was observed that the controller regulates the 

perturbed states to zero, for both full order and reduced order cases. A very close 

matching between the full order and reduced order states was observed, which manifests 

the effectiveness of the time scale method that almost the same performance was 

obtained with lower order controllers. The lower order controllers demand lesser 

computational efforts and could be implemented online for DLR technology that 

necessitates real-time monitoring and control.  

    

 

Figure 3.20: Comparison of full order and reduced order LQR control 

When realistic models of power systems are considered, for example, a simple 1-machine 
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infinite bus system presented in [70] or a 3 machine, 9 bus system in [71], the model 

dimensions were found to be 6 and 20 respectively (Figure 3.21).  

 

 

Figure 3.21: 1-machine, infinite bus model [70] and 3 machine, 9 bus model [71] 

 

Figure 3.22:10-Machine, 39-bus New England power system model [70] 

Designing any control law for a simple 6
th

 order model becomes very cumbersome, and 

for higher order models it may become unfeasible. A practical power system model such 

as the 10-Machine, 39-bus model shown in Figure 3.22 would have to rely on powerful 

model order reduction techniques. Quasi-steady state approximations were used for 

analyzing the New England system in [70], i.e. the fast dynamics were neglected for 

model reduction. Time scale synthesis presented in this research achieves model order 

reduction without losing any system dynamics.  
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3.7 Resiliency of Time Scale Control 

Resilience of controller operations is of paramount concern in today’s highly 

interconnected and networked society. With smart grid technology, software control and 

decision making becomes deeply integrated into the electric power system. However, the 

increased dependence on cyber infrastructure makes it highly vulnerable to malicious 

cyber-attacks. Hence, to improve the security of the smart grid, control strategies have to 

be devised that are resilient to faults and malicious attacks. 

 

In the event of a cyber-attack or failure of a controller, especially for critical and sensitive 

applications, implementing a decentralized control scheme will be highly beneficial. This 

would guarantee some control action to be still in place which would avoid critical failure 

of the entire system. In the event of controller outages, it could be possible to control the 

plant/system using any one of the multiple controllers designed using Time Scale 

Methods. Such a control system designed to tolerate failures of controllers, while 

retaining desired control system properties, is a “reliable” control system.  

 

The decoupling of slow and fast dynamics in a transmission line facilitates 

implementation of a decentralized control scheme. Here, it is shown how a single 

controller (either slow or fast) by itself gives nearly original performance, thereby 

making the system more reliable or ‘resilient’ in case of either controller malfunction. 

The linear transmission line with the LQR feedback control was tested for two additional 

control scenarios, as listed below: 

    - Control signal = slow control + fast control (composite control) – Section 3.6.2 
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    - Control signal = only fast control  

    - Control signal = only slow control 

 

3.7.1 Simulation Results of Resiliency Test 

A Simulink
®
 model was built to test the three cases mentioned above, and is shown in 

Figure 3.23. In the case with only slow control, the fast control gain is made zero and 

vice versa. 

 

Figure 3.23: Simulink
®
 model to test reliability of the reduced order LQR 
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The results of simulation for the three cases of control are given in Figure 3.24. The last 

plot displays the three cases of control inputs. The first two plots display the responses of 

line current and temperature to the three control inputs. It is observed that the states’ 

response to the single control input (either slow or fast) is close to that of the composite 

control input. The case with only the slow control is very comparable to the case with the 

combined control. This shows that even in the absence/failure of one of the controllers, 

the remaining control effort does provide comparable control to the whole system. This 

reiterates the strength of the time-scale control design approach (multiple controllers), 

which provides resiliency to the systems as compared to a centralized control design. 

 

 

Figure 3.24: Results of the reliability test of time scale control design 
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3.8 Transmission Line Modeling and Potential DLR Applications 

Researchers at the Idaho National Laboratory (INL) are working towards developing a 

Java-based software package called General Line Ampacity State Solver (GLASS), 

which calculates real-time ampacity and thermal conductor limits [73]. A schematic 

representation of GLASS is provided in Figure 3.25. The real-time ampacity and 

conductor thermal limits are calculated based on current weather conditions at sparsely 

located weather stations. This is done by combining Geographic Information System 

(GIS) data with historic weather information and pre‐computed Computational Fluid 

Dynamics (CFD) models. INL collaborates with WindSim, a wind energy simulation 

software company, for CFD modeling and verification. INL also partners with regional 

utilities including Idaho Power for performing transmission line data verification [73]. 

 

Figure 3.25: Real-time data flow and forecast calculations of the GLASS software [73] 
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The processed real-time weather information is fed to the GLASS software which uses 

algorithms from the IEEE 738 Standard [3] to yield real-time ampacity and thermal 

conductor limits. However, the calculations are based on steady-state equations which do 

not account for the dynamic behavior of the transmission line [8].  

 

The nonlinear model presented in this research accounts for both the electrical and 

thermal dynamics in transmission lines, thus depicting more realistic behaviors for 

dynamic line ratings. This implies that in the event of a step change in current due to a 

perturbation, the temperature response to this step change will be observed from the 

simulations. This will help the operator/utility determine the duration for which the new 

current levels can be safely allowed through the transmission line, before the 

instantaneous temperature attain unsafe limits [8]. The availability of such valuable 

information would assist the operator or a decision making controller in an Energy 

Management System (EMS) or Supervisory Control And Data Acquisition (SCADA) 

systems, and would help establish safe line ampacity levels based on real-time conductor 

temperature.  

Furthermore, the lower order, slow and fast optimal controllers designed for mitigating 

perturbations in a transmission line, facilitate on-line/ real-time control implementations, 

and could be embedded in the utility’s Energy Management System (EMS). 

 

3.9 SPaTS Methods in Renewable Energy 

Innovation and technological developments in the renewable energy sector are forging 

pathways which will establish them as a major stakeholder in electricity generation. Wind 
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energy has grown significantly over the last few decades and continues to lead in 

electricity generation among the other renewable sources. Data released in March, 2017 

[74] revealed that for the first time in the U. S., wind and solar energy accounted for 10 

percent of all electricity generation, with wind contributing 8 percent and solar at 2 

percent (Figure 3.26). 

 

Figure 3.26: Monthly net electricity generation from selected fuels (Source: EIA) [74] 

Great advances in control strategies have been significant in harnessing the maximum 

power of the wind, a highly intermittent energy source, at safe operating conditions. Due 

to its erratic nature, mechanical systems of the wind turbine are subjected to fatigues and 

perturbations from the wind, for example, a gust of wind. Optimal control techniques 

have been researched greatly that maximizes the power harnessed from the wind while 

minimizing the perturbations in the system. Such optimal control strategies are often 

associated with high model dimensions and might become unfeasible for real-time 

implementations due to the complexity of numerical calculations involved.  

 

SPaTS methods are well equipped to address such problems. The applications of SPaTS 

methods in Wind Energy Conversion Systems (WECS) were investigated in [38, 55, 75]. 
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A brief overview of these methods in WECS is provided in the following sections as an 

illustration of the extent and flexibility of these unique methods in renewable wind 

energy systems. In particular, a singular perturbation method developed by A. B. 

Vasileva [76, 52] is applied towards solving WECS as a nonlinear initial value problem 

(IVP), and synthesis of time scale, optimal control laws for deterministic and stochastic 

WECS models.  

 

3.9.1 WECS - Dynamic Modeling and Time Scales 

WECS could be summarized as a structure that transforms the kinetic energy of the wind 

into electrical energy. A wind turbine rotor serves as the transducer that harvests the wind 

energy, and it drives the generator, which outputs electric power. The research involves 

the study of a Horizontal Axis Wind Turbine (HAWT). Its dynamic model accounts for 

the turbine rotor dynamics and the drive train and generator shaft dynamics (Figure 3.27).  

          

Figure 3.27: Structure of HAWT (left); Schematic of wind turbine rotor and drive train 

dynamics (right) 

A third order, nonlinear state-space model is used to describe the dynamics of the WECS. 
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The eigenvalues of the linearized model are analyzed, and the clearly separated groups of 

eigenvalues indicate the slow - fast behavior of the wind energy system. A scaling 

operation and a ‘change of time scale’ procedures identified the singular perturbation 

(SP) parameter ‘ε’ in the WECS to be a ratio of the mechanical time constants of the 

generator and turbine rotor (Figure 3.28). Generally, if one infers time scale nature in a 

wind energy system, the ‘slow’ mode would be by virtue of the mechanical systems and a 

‘fast’ mode by virtue of electrical systems. But this research highlights the fact that time 

scales arise within mechanical systems, due to the large differences in inertia of the 

turbine and generator. The time scale behavior is due to the slow turbine rotor dynamics 

and the fast drive train-generator dynamics. 

 
 

Figure 3.28: WECS - Dynamic model in SP form (left) and eigenvalues (right) 

 

3.9.2 Initial Value Problem (IVP) of WECS 

The nonlinear model of WECS is solved as an IVP using Vasileva’s singular perturbation 

method, which involves a combination of asymptotic expansions, power series and 

Taylor series [76].  The total series solution of the system of nonlinear ODEs in the 

WECS model is given as, 
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Total Solution = Outer series + Inner Series – Intermediate Series, 

up to a 1
st
 order approximation (Figure 3.29). The approximate total series solution 

provides in most cases, analytical solutions of nonlinear IVPs up to a zeroth order or first 

order approximation. From these analytical expressions, the behavior of the system can 

be well understood and suitable predictions of the system can be deduced. Also, these 

approximations accurately capture the dynamics of the system without sacrificing any of 

the system’s original boundary conditions. This is brought forth by incorporating ‘ε’ in 

the series solutions of the WECS model, and is not neglected as observed in the 

conventional approach to singularly perturbed systems. The response of one of the states 

of the WECS model, turbine rotor speed, is illustrated in Figure 3.29, where the zeroth 

order approximation alone fails to capture the dynamics in the boundary layer (t < 

0.012s), but when combined with its 1
st
 order approximation, provides a very good 

approximation of the actual solution. 

 

 

Figure 3.29: IVP of WECS using Vasileva’s singular perturbation method 

3.9.3 Deterministic and Stochastic Time Scale Optimal Control  

Time scale synthesis of optimal controllers is performed for both deterministic and 
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stochastic WECS models, with the objective of minimizing perturbations in a wind 

energy system. For the deterministic WECS model, system perturbations are regulated 

through a composite control of the slow and fast LQR controllers.  

 

For the stochastic WECS model (which accommodates practical scenarios such as 

unavailability of states for measurement, and corruption of available states with noise), 

the time scale LQG design involves a non-singular transformation [53] that decomposes 

the Kalman filter into slow and fast Kalman filters and the LQR gain into slow and fast 

gains. The slow and fast Kalman state estimates are fed to the respective LQR gains for 

achieving the desired state regulation. Time scale synthesis and simulation results of 

LQR and LQG optimal control are provided in Figure 3.30 and Figure 3.31, respectively. 

 

 

Figure 3.30: Time scale synthesis of LQR for WECS (left); Simulation results (right) 
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Figure 3.31: Time scale synthesis of LQG control for WECS (left); Simulation results 

(right) 

The simulation results indicate that the performance of the reduced-order model matches 

the performance of the full order model very closely. Also, a careful observation of the 

LQG results reveals that the amplitudes of oscillation of the state responses have been 

reduced in the time scale design. These results hold far reaching implications in that, 

SPaTS methods could assist with control strategies for WECS that are computationally 

efficient and suitable for real time applications.  

 

3.10 Conclusion 

The applications of SPaTS methods for the design of control strategies in Electrical 

Engineering, namely Overhead Power Transmission Lines and Wind Energy Conversion 

Systems were investigated. The major focus of the chapter was on Overhead Power 

Transmission Lines where time scale analysis and synthesis were performed. A second 

order, nonlinear time domain model was developed that captures the electrical and 

thermal dynamics of transmission lines. This model renders instantaneous values of line 
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current and line temperature, which are very useful information for Dynamic Line Rating 

of transmission lines. The availability of this information to an operator or a decision 

making controller in Energy Management System (EMS) or SCADA systems, would 

help establish the safe line ampacity levels based on real-time conductor temperature. 

 

Time scale techniques were presented which enabled computationally efficient control 

designs. The simulation results confirm that comparable control action can be achieved 

with independent, lower-order, slow and fast controllers. In detailed power system 

models, such as the one in [70], where various components of a power chain are modeled 

(typically comprising of generators, transmission lines and power electronic interfaces), 

the combined model order could be very high, and evaluating control designs or their 

online implementations, may become unfeasible. With the time scale approach, standard 

control laws like optimal control, state feedback control, model predictive control and 

robust control can still be realized for higher order systems.  

 

Finally, it was demonstrated that the presence of multiple controllers in place of one 

central controller guarantees comparable control action during failure of one of the 

controllers in the system, thereby ensuring reliability of the transmission line system. 

Research work on WECS reinstated that SPaTS methods were effective in gaining better 

insights into the system behaviour by solving WECS as a singularly perturbed IVP, and 

for simplifying optimal control designs. Realistic models of WECS (accounting for 

aerodynamics, drive train dynamics, electrical generator dynamics, power interface 

dynamics, and load dynamics) would be able to benefit from SPaTS methods in 
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achieving feasible real-time control solutions. 

 

Future work would investigate modeling transmission lines with distributed parameter 

models (medium and long length) for any unaccounted line current dynamics and 

enhance the computational accuracy of line ampacity levels.  
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Chapter 4  

Time Scale Analysis and Synthesis in Life Sciences 

 

This chapter introduces the biological aspects of a Human Immunodeficiency Virus 

(HIV) infection, followed by mathematical modeling of the viral dynamics. A third order, 

nonlinear, state space model is adopted from literature to analyze and study the nature of 

an HIV infection. The inherent time scale characteristics of the HIV dynamics are 

investigated and identified through linearization and non-dimensionalization procedures. 

An optimal treatment strategy for the HIV infection is developed using time scale 

separation methods, where a full order linear HIV model is decoupled into independent, 

lower order, slow and fast subsystems. The efficacy of this control approach is compared 

to that of a general, full order optimal control design. A preliminary study of measles, 

another serious infectious disease that primarily affects children, was conducted during 

the initial research period and findings of this brief study are presented at the end of the 

chapter. 

 

4.1 The Biology of HIV Infection 

The biological aspects of an HIV infection are imperative in the mathematical modeling 

and control of the disease. The immune system response and its interactions with HIV 

form the basis of the dynamic model. Biological events that mark the HIV’s life cycle are 

important in identifying and pursuing potential control strategies. Hence, an overview of 

the high level processes in a typical immune system response and the basics of an HIV 

infection are provided in the following sections. 
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4.1.1 Human Immune System 

The immune system is a remarkable, complex network of cells, tissues and organs that 

work together to defend the body against foreign particles (bacteria, viruses and fungi) 

that can cause infections. When an antigen or a foreign particle is introduced into the 

human body, the immune system responds immediately in an attempt to discard the 

object from the body. This immune response is characterized by a cellular immune 

response and a humoral immune response [77].  

 

Macrophages, the cells that scavenge, ingest, and process foreign particles, encounter the 

antigen first and present the antigen information to the CD4
+
 T cells. The CD4

+
 T cells 

are commonly referred to as ‘helper T cells’ and serve as the command center for the 

immune system. ‘CD4’ denotes a protein on the surface of the T cell, and ‘T’ refers to 

thymus, the organ in which these cells mature after migration from the bone marrow 

where they are created. On an average, there are 1000 CD4
+
 cells per mm

3
 of blood. In 

the event of an attack, macrophages, through chemical alarm signals, activate the helper 

T cells, which in turn proliferate to elicit both cellular and humoral responses. In the 

cellular immune response, the helper T cells activate a second type of T cells, called the 

CD8
+
 T cells. These cells are referred to as killer T cells that seek and destroy cells 

infected by pathogens. In the humoral immune response, commonly known as the 

antibody response, the helper T cells signal a third set of cells, called B cells. B cells 

produce chemical weapons called antibodies that are specifically designed to attack and 

destroy antigens in the body [77]. Figure 4.1 shows the schematic of an immune response 

process. 
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Figure 4.1: Stages of a typical human immune response [78] 

Once the immune response is successful, certain cells of each type retain knowledge of 

the attack. These cells are referred to as memory cells. If the same or a similar pathogen 

is introduced into the body again, a much quicker and more aggressive response is 

enforced, and the antigen is eradicated more accurately and at a much faster rate. If the 

individual becomes infected with a more aggressive relative, then the response is 

instantaneous and potent, and the pathogen does not take hold [77]. 

 

4.1.2 HIV Infection and Timeline 

HIV is a retrovirus, belonging to the family Retroviridae, which carries its genetic 

information in Ribonucleic Acid or RNA, unlike most organisms which carry their 

genetic material in Deoxyribonucleic Acids (DNA). Like most viruses, HIV does not 
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have the ability to reproduce independently, and therefore relies on a host to aid 

reproduction. Figure 4.2 depicts the structure of an HIV particle.  

 

Figure 4.2:  Structure of a Human Immunodeficiency Virus [79] 

There are two major types of the human immunodeficiency virus, HIV-1 and HIV-2. 

HIV-1, which was discovered first, is the most widespread type worldwide. HIV-2 is 

relatively uncommon and mostly concentrated in West Africa. It is 55% genetically 

different from HIV-1 [80]. Both types can lead to AIDS, but the HIV-2 takes a slower 

course in progressing to AIDS than HIV-1. In this work, mention of HIV refers to HIV-1. 

 

When HIV infects the body, it targets the CD4
+
 T cells, the main regulators of the 

immune system – the primary cause of HIV’s devastating impact. A protein (GP120) on 

the surface of the virus binds to the CD4 protein on the T cell surface and the contents of 

the HIV is injected into the host T cell. HIV being a retrovirus first transcribes its genetic 

RNA into viral DNA using its enzyme, reverse transcriptase. The viral DNA is then 

integrated into the host cell DNA using enzyme integrase. The host’s normal 

transcription process transcribes viral DNA into multiple copies of new HIV RNA. Some 
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of this RNA becomes the genome of a new virus, while the host cell uses other copies of 

the RNA to make new HIV proteins. The newly formed viral RNA and HIV proteins 

move to the surface of the cell, where a new, immature (noninfectious) HIV is formed. 

Finally, the immature virus pushes itself out of the host cell (budding), and releases an 

enzyme protease that reassembles the new HIV proteins to create a mature infectious 

virus. The budding can either take place slowly, sparing the host cell or rapidly, bursting 

and killing the host cell [77]. 

 

Figure 4.3:  HIV replication cycle [81] 

Timeline of Disease Progression 

There are three main stages in the progression of an HIV infection [82]. Acute HIV 

infection is the earliest stage where HIV multiplies rapidly and spreads throughout the 
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body. The virus attacks and destroys the infection-fighting CD4 cells of the immune 

system. The second stage is the chronic HIV infection, or asymptomatic phase or clinical 

latency. During this phase, HIV continues to multiply in the body but at very low levels. 

The final and most severe stage of HIV infection is AIDS during which HIV has severely 

damaged the immune system and the body is vulnerable to opportunistic infections. 

People with HIV are diagnosed with AIDS if they have a CD4 count less than 200 

cells/mm
3 

or if they have certain opportunistic infections. Without treatment, people with 

AIDS typically survive about 3 years [82]. The timeline of the HIV infection is provided 

in Figure 4.4. 

 

Figure 4.4:  Time course of a typical HIV infection [83] 

4.1.3 HIV Treatment 

To date, ART cannot cure HIV, but HIV medicines help infected individuals live longer 

and healthier lives, and also reduce the risk of HIV transmission [49]. Currently, 

treatment of an HIV infection is through a combination of different class of antiretroviral 
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drugs that are used to slow down the rate at which HIV multiplies in the body. An 

overview of currently adopted antiretroviral drugs and their points of inhibition in HIV 

are depicted in Figure 4.5. 

 

Figure 4.5:  Inhibition of HIV-1 replication at different steps in the viral life cycle [84] 

The combination of medicines is called an HIV regimen and a person's initial HIV 

regimen generally includes three HIV medicines from at least two different drug 

classes. Treatment with a single drug failed as the HIV replicated and mutated very 

rapidly and drug resistance was developed in the early days of drug intake. The six 

classes of antiretroviral drugs that are currently used in ART are [49],  

 Nucleoside Reverse Transcriptase Inhibitors (NRTI) 

 block reverse transcriptase, an enzyme that facilitates transcription of viral RNA 

to viral DNA. E.g. abacavir, zidovudine – azidothymidine or AZT (1
st
 drug to treat 

HIV in 1987) 
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 Non-Nucleoside Reverse Transcriptase Inhibitors (NNRTI) 

 bind to and alter reverse transcriptase; E.g. efavirenz, etravirine  

 Fusion Inhibitors 

 block HIV-1 from entering the CD4 cells of the immune system; E.g. enfuvirtide  

 CCR5 Antagonists or Entry Inhibitors 

 block CCR5, a protein on the CD4 cells that a certain type of HIV-1 needs to 

enter the cell; E.g. maraviroc 

 Protease Inhibitors (PI) 

 block HIV-1 protease, an enzyme HIV-1 needs to process the HIV proteins to 

create a mature infectious virus; E.g. atazanavir, ritonavir 

 Integrase Strand Transfer Inhibitors (INSTI) 

 block HIV-1 integrase, an enzyme HIV-1 needs to integrate its DNA into the host 

cell DNA; E.g. dolutegravir, elvitegravir 

New antiretroviral drug classes like entry inhibitors and integrase inhibitors that were 

recently approved for clinical use will increase the number of possible drug combinations 

and provide more options for effective treatment [84]. However, with each new 

combination, the prospect of adverse side effects that could affect adherence to the 

therapy remains an important concern.  

 

4.2 Modeling an HIV Infection 

Mathematical modeling combined with experimental and clinical data analysis has 

offered critical insights towards the understanding of viral and immune system dynamics, 

and ART. To date there are a multitude of dynamic models in literature that describe an 

https://aidsinfo.nih.gov/drugs/269/efavirenz/0/patient
https://aidsinfo.nih.gov/drugs/398/etravirine/0/patient
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HIV infection. Different aspects of the disease are explained in each model, but none of 

the models exhibit all that is observed clinically. This is partly due to the fact that much 

about this disease’s mechanics is still unknown [77].  

 

The basic and simplest models of viral infection account for only the key players of an 

HIV infection, namely the uninfected CD4
+
 T cells, infected CD4

+ 
T cells and free 

virions. These models come under the class of ‘target-cell limited’ models meaning that 

the HIV-1 infection is limited by the availability of target T cells, and also lacks an 

explicit representation of the immune response. Despite this deficit, the model fits viral 

kinetic data obtained both during natural infection and while patients are on therapy [85]. 

Thus purely target cell limited models remain a popular form of HIV infection in 

literature and have been frequently used in the pharmacodynamic studies of ART [11, 25, 

26, 77, 86, 87, 88]. Modification to this model was made by authors in [89], where they 

supplemented this basic model with dynamics of latently infected and actively infected T 

cells. 

 

Another set of HIV models found in literature fall under the group of ‘immune limited’ 

models, where the HIV infection is limited by specific anti-HIV cellular immune 

response i.e. the virus is a prey that is controlled by CD8
+
 lymphocytes, an immune 

response predator. While many models have included CD8
+
 responses [19, 90, 91] they 

tend to lack comparisons with experimental data leaving the field without good estimates 

for the parameters that govern the CD8
+
 cells’ effects [85].  
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In this research, a target-cell limited model, which captures the dynamics of uninfected 

CD4
+
 T cells, infected CD4

+
T cells and free virions, is used for analysis and design. 

 

4.2.1 Nonlinear HIV Model 

A third order, nonlinear, state space model of an HIV infection is presented. The control 

variables (denoting antiretroviral drugs used in the treatment) are not included in this 

model, and will be dealt in Section 4.4. The dynamic equations [25] are,  
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where
1( )x t denotes the concentration of uninfected CD4

+
 T-cells; 

2( )x t denotes the 

concentration of infected CD4
+
 T-cells, and 

3( )x t represents free virus particles. It is 

assumed that the body produces healthy and uninfected CD4
+
 T cells from the thymus at 

a constant rate s. The T cells are also assumed to have a finite life span and die with the 

rate D per cell. The term 
1 3( ) ( )x t x t models the rate at which free virus infects healthy T 

cells. When a T cell becomes infected, it becomes an infected T cell, thus the term 

1 3( ) ( )x t x t  is subtracted from the 1
st
 equation and added to the 2

nd
 equation. Infected T 

cells (
2( )x t ) have a natural death rate,

2  and can be expected to die sooner due to the 

additional stress put on the cell by the virus. The third equation models the population of 

free virus. It is assumed that when an infected CD4
+
 T cell becomes stimulated through 

exposure to antigen, replication of virus is initiated, and viruses are produced with a rate 

k before the host cell dies. The term 
1 3( )x t  records the loss of virions through death 
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and/or immune clearance. The numerical values of the constant parameters in the model 

are listed in Table 4.1. 

Table 4.1: HIV Model Parameters [25] 

Parameter Description Numerical Value 

s Source of healthy T- cells 10 per mm
3
per day 

D Death rate of healthy T- cells 0.02 per day 

1  Death rate of viruses 0.24 per day 

2  Death rate of infected T- cells 2.4 per day 

  
Rate at which T-cells become infected by free 

viruses 

52.4 10 per (mm
3
 × 

day) 

k Rate of virions produced per infected T-cell 100 per cell 

 

4.3 Analysis of the Nonlinear HIV Model 

4.3.1 Equilibrium Points 

The equilibrium points of the HIV model are determined by setting the derivatives of 

(4.1) to zero and solving the algebraic equations in (4.2) as, 

 

* * *

1 1 3

* * *

1 3 2 2

* *

2 1 3

( ) ( ) ( ) 0,

( ) ( ) ( ) 0,

( ) ( ) 0.

s Dx t x t x t

x t x t x t

kx t x t



 



  

 

 

 (4.2) 

The equilibrium points are calculated for an ‘infection free’ and ‘infection bound’ 

scenarios, and are found to be, 

 

   

   

* * *

1 2 3

* * * 1 2 1
1 2 3

2 1 2

, , ,0,0 500,0,0  and

, , , , 240,2.167,902.78 ,

a a a

b b b

s
x x x

D

Ds sk D
x x x

k

  

     

 
  
 

 
    
 

 (4.3) 
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respectively. For an infection free equilibrium or the uninfected steady state, the virus is 

not present and the body maintains a steady count of healthy T cells at 500 per mm
3
. In 

the case of an infection, the healthy T cell count stabilizes at 240 cells per mm
3
, a value 

slightly lower than the threshold for AIDS, and a viral count of about 902 virions per 

mm
3
 of blood. During this period, the body is in an endemically infected state, where 

both virus and infected T cells are present [92], but with a lower T cell count than that of 

the virus. Even though the body is constantly producing T cells, there seems to be a 

balance between the body's efforts and the rate of infection by the virus.  

 

4.3.2 State Response Plots 

To gain insights into its dynamic behavior, the nonlinear HIV model (4.1) is simulated 

with the numerical parameters in Table 4.1. The initial conditions for the state variables 

are set as in Table 4.2. The simulations were performed in MATLAB
®
 and Simulink

®
 

software.  

Table 4.2: Initial conditions for nonlinear HIV model simulation 

Parameter Description Numerical Value 

1(0)x  Healthy T- cell population 1000 per mm
3
 

2 (0)x  Infected T- cell population 0 per mm
3
 

3(0)x  Free HIV population 1 per mm
3
 

 

The responses of the states to the initial conditions are provided in Figure 4.6. From the 

plots it is observed that by introducing just one virus particle per mm
3
, as set in the initial 

conditions, x(0)=[1000, 0, 1], the concentration of virus in the body proliferates to 12,000 
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virions per mm
3
 in about 25 days. The infected T cell concentration also increases to 40 

cells per mm
3
 in the same amount of time. The uninfected/healthy T cell count falls to a 

drastically low value less than 100 cells mm
3
 from its initial concentration but stabilizes 

to 240 cells per mm
3
 in about 200 days. This slight increase in the healthy T cell count 

could be due to the immune system’s response in fighting off the virus. The other two 

states also reach equilibrium in about 200 days after the initial infection.  

  

 

Figure 4.6: State response plots of the nonlinear HIV model 

The behavior of the states as observed from the plots after 200 days is in agreement with 

the fact that the body enters an endemically infected state, and the final values of the 

states match the second equilibrium point. The period of 25 days since the initial 
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infection was characterized by large dynamic changes, and constitutes the ‘acute 

infection’ phase.  

 

Another observation made at this point was that there is not enough evidence to support 

the presence of time scales graphically. In the previous work with transmission lines, the 

slowly responding line temperature plot was easily distinguishable from the fast line 

current plot. In this case, eigenvalues have to be evaluated to mathematically establish the 

presence of time scales. 

 

4.3.3 Linearization 

The nonlinear HIV model was linearized at various instants of time and the 

corresponding eigenvalues were evaluated. Linearization was carried out in MATLAB
®

 

and Simulink
®
. The data provided in Table 4.1 were used for simulations. 

Table 4.3: Linearization of HIV model at various time instants 

Time instant (in days) Eigenvalues 

t = 0 

               -3.2085 

-0.019993 

0.56847 

t = 10 

               -3.1461 

-0.01866 

0.50062 

t = 25 

-2.5397 

-0.18407 + 0.15678i 

-0.18407 – 0.15678i 

t = 50 

-2.564 

-0.052968 + 0.031887i 

-0.052968 – 0.031887i 
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Time instant (in days) Eigenvalues 

t = 80 

-2.677 

0.0052643 + 0.025293i 

0.0052643 – 0.025293i 

t = 100 

-2.6894 

0.0057475 + 0.053418i 

0.0057475 – 0.053418i 

t = 150 

-2.6273 

-0.027151 + 0.065469i 

-0.027151 – 0.065469i 

t = 200 

-2.6473 

-0.017061 + 0.065242i 

-0.017061 – 0.065242i 

t = 400 

-2.6419 

-0.01986 + 0.065713i 

-0.01986 – 0.065713i 

t = 500 

-2.6418 

-0.019924 + 0.065777i 

-0.019924 – 0.065777i 

 

The results indicate that the eigenvalues obtained for all time instants are clearly 

separated into groups, which differ by at least an order of magnitude from each other. 

This is clearly indicative of time scale behavior in the HIV model. The larger (absolute) 

eigenvalue corresponds to the faster time scale which is the viral dynamics and the 

smaller (absolute) eigenvalue corresponds to the slower time scale which is the 

uninfected T cell dynamics [11, 31, 32, 33]. These results are in accord with the findings 

of Perelson et.al. in [11], where the existence of slow and fast processes in the HIV 

dynamics were first confirmed through a combination of clinical data analysis and 

mathematical interpretation of this data. Since the HIV model has variables that change at 

different speeds, and interact with one another, it is well suited for Time Scale Analysis 

that facilitates design of optimal treatment strategies. 
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4.3.4 Non-Dimensionalization and Singular Perturbation Parameter 

Having confirmed the existence of time scales through eigenvalues, the HIV model was 

further investigated for the explicit presence of a singular perturbation parameter, the 

causative agent for slow-fast behavior. This required a non-dimensionalization procedure 

on the model (4.1), which is recalled here for convenience. 

 

1
1 1 3

2
1 3 2 2

3
2 1 3

( )
( ) ( ) ( ),

( )
( ) ( ) ( ),

( )
( ) ( ),

dx t
s Dx t x t x t

dt

dx t
x t x t x t

dt

dx t
kx t x t

dt



 



  

 

 

 (4.4) 

The variables of the dimensionless HIV model were chosen as T, 
1,X 2X and

3 ,X

corresponding to the original system variables t,
1x , 

2x and 
3x respectively, where, 

 

1 1

2
2 2

1 2
3 3

T Dt

D
X x

s

X x
s

X x
s



 



 
  
 

 
  
 

 
  
 

 (4.5) 

Insights into the choice of reference variables for this analysis were obtained from 

reference [93]. The expected life times of healthy T cells, infected T cells and virus 

particles – 1/D, 1/
2 , and 1/

1  respectively, were possible choices for the dimensionless 

time variable, but since the ratio 1/D was the longest compared to others, it was chosen as 

the reference variable for time. The reference variable for healthy T cells was chosen 

with the reasoning that in the disease free equilibrium, 
1x = s/D, and for the infected cells, 

the reference quantity was chosen as 
2x = s/

2 . The reference quantity for the virus is 
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chosen so that at equilibrium 
2 3X X  [93]. 

Substituting
d d

D
dt dT

  and
1x ,

2x and
3x from (4.5), the dimensionless HIV model is 

obtained as,  

 

1
1 1 3

2
1 3 2

3
2 3

1 ,

,

,

dX
X bX X

dT

dX
bX X X

dT

dX
X X

dT



 

  

 

  

 (4.6) 

where, 
1 2

ks
b

D



 
 , 

2

D



  and 2

1





 . Substituting the numerical values of   and  , 

results in,  

 
0.0083,  10,

   0.0833

 

 

 

 
 (4.7) 

Rearranging   as a factor (1/10) into the right hand side of 3X  results in the standard 

singular perturbation form of the HIV model,  

 

 

1
1 1 3

2
1 3 2

3
2 3

  1 ,

,

1
,

10

dX
X bX X

dT

dX
bX X X

dT

dX
X X

dT





  

 

 

 (4.8) 

where  is a ‘small parameter’ or the ‘singular perturbation parameter’ responsible for 

imparting time scale characteristics to the HIV model. By definition,   is a ratio of 

reference times, i.e. ratio of the lifetime of an infected T cell to the lifetime of a healthy T 

cell. Comparing (4.8) to the standard singular perturbation form of equations, 
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  ( ) ( , , , , )   

( ) ( , , , , )   

x t f x z u t slow state

z t g x z u t fast state



 

 

 
 (4.9) 

the slow state of the HIV model is identified to be the uninfected T cell, and the fast 

states are identified to be the infected T cell and free virus states.  

 

Thus, the time scale nature of HIV model was identified through linearization and non-

dimensionalization procedures. The presence of time scales in HIV dynamics provides an 

opportunity to investigate the effectiveness of the well-recognized SPaTS methods in 

designing treatment plans for HIV. The following section discusses the current optimal 

treatment plans for HIV, followed by the investigation of Time Scale Analysis and 

Synthesis in simplifying the existing treatment solutions. 

 

4.4 Optimal Control Strategies for the Treatment of HIV Infection 

Currently, the treatment of an HIV infection involves a combination of mechanisms 

inhibiting HIV enzymes, reverse transcriptase and protease. When reverse transcriptase 

is inhibited, HIV can enter a T cell but will not successfully infect it. When protease is 

inhibited, assembling of viral proteins fails to occur, and viral particles will be made that 

lack functional HIV enzymes, or new ‘noninfectious’ viral particles will be created [11].  

 

Although an HIV infection is not yet curable, adherence to ART for long periods of time 

offer the best chance of effectively managing the disease. Since the antiretroviral drugs 

cannot get rid of the virus from the body, the treatment has to be continued for life.  

Patients on reverse transcriptase inhibitors (RTI) and protease inhibitors (PI) experience 

adverse side effects due to the potency of drugs [21] and this makes adherence to the 
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therapy very difficult. Several optimal treatment strategies have been proposed in 

literature that achieves viral load suppression (or boosting of immune cells) while 

minimizing the cost of therapy. References [30] and [94] proposed a cost functional that 

minimize the virus population and cost of drug treatment, while authors in [22], [23] and 

[24] performed maximization of the T cells while minimizing the cost of drug treatment. 

LQR control methods have been also proposed in literature for designing long term 

treatments for HIV due to its simplicity and robustness properties [26], [87] and are of 

interest in this research. 

 

4.4.1 Long Term Optimal Treatment Strategy 

A treatment model incorporating combinations of RTI and PI classes of antiretroviral 

drugs is presented. A long term, optimal treatment strategy proposed by Radisavljevic-

Gajic in [25] is adopted for this study, for investigating the efficacy of time scale design. 

The treatment strategy is such that the dosage of drugs is minimized while keeping the 

patient in a ‘clinically stable steady state’ for long periods of time. This is achieved with 

a two controllers – 1) a steady state control (nominal solution) that maintains the body at 

the desired steady state and 2) an optimal control (LQR) that minimizes any deviations 

from the desired steady state values in an optimal manner. 

4.4.2 Nonlinear HIV Model with Control 

The HIV model is equipped with two control variables, 
1( )u t and

2( )u t , corresponding to 

RTI and PI categories of antiretroviral drugs. The nonlinear state space model with 

control variables [25] is given as, 
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( ) (1 ( )) ( ) ( ),
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

 



   

  
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 (4.10) 

The descriptions of all model parameters are provided in Table 4.1. Control of viral load 

in the body is achieved by reducing the parameter  (virus infectivity rate) and/or 

parameter k (infected T-cell productivity of free virus particles).  In the ART, this is 

achieved by RTI (
1u ) acting on  and PI (

2u ) acting on k. The control variables are 

normalized to the range 0 1,  1,  2,ju j   with 1 corresponding to the maximal dosage 

and 0 corresponding to the situation where the drug is not administered. 

 

Comparing the state-space model (4.10) to the representation of a standard nonlinear 

system, ( , ),fx x u  the state vector, x  and input vector, u  are defined as,  

 

   

,

.

+

1

+

2

3

1 2

x Uninfected CD4 Tcell

x Infected CD4 Tcell

x Free virus

u u RTI PI

  
  

    
     

 

x

u

 (4.11) 

4.4.3 Steady State (Nominal) Control and LQR Control 

The steady state controller maintains the concentration of uninfected T cells, infected T 

cells and free virus at the desired steady states, and an optimal controller minimizes any 

deviations from the steady states to zero, i.e., 

 
*( ) ( ),    1,2,i i iu t u u t i    (4.12) 

where 
*

iu denotes the steady state control inputs and ( )iu t are small time varying 
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components that will be determined by the LQR control. Similarly, the state variables 

satisfy the relation, 

 
*( ) ( ),    1,2,3i i ix t x x t i    (4.13) 

where 
*

ix denotes the constant values of states and ( )ix t are the state deviations that are 

controlled optimally. 

 

Steady State (Nominal) Control 

By setting the derivatives of (4.10), the desired steady state values in terms of control 

inputs are obtained as, 

 

* * * *

1 1 1 3

* * * *

1 1 3 2 2

* * *

2 2 1 3

0 (1 ) ,

0 (1 ) ,

0 (1 ) .

s Dx u x x

u x x x

u kx x



 



   

  
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 (4.14) 

From the above equations, relationships between 
*

1x and 
*

2x can be derived as, 

 

*
* 1
2

2

s Dx
x




  (4.15) 

The above relationship is independent of the state 
*

3x . Therefore, once the target values of 

1x  (and
3x ) are defined – 

*

1tarx (and 
*

3tarx respectively), the target value for 
2x (i.e.

*

2tarx ) can 

be easily determined from (4.15).  The control inputs required to maintain the states at 

their target values are obtained from (4.14) as, 

 

*
* 2 2
1 * *

1 3

*
* 1 3
2 *

2
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1

tar
tar

tar tar

tar
tar

tar

x
u

x x

x
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
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

 
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 (4.16) 
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Full Order LQR Control 

To design LQR control, the nonlinear, HIV model with control (4.10) is first linearized 

about an operating point ([
* * *

1 2 3, ,tar tar tarx x x ], [
* *

1 2,tar taru u ]). (The choice of this operating 

point is discussed in the following section). Thus, for small perturbations near the target 

values, 

 

*

1 1 1

*

2 2 2

*

3 3 3

,

,

,

tar

tar

tar

x x x

x x x

x x x

  

  

  

 (4.17) 

corresponding to small adjustments in the control variables, 

 

*

1 1 1

*

2 2 2

,

,

tar

tar

u u u

u u u

  
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 (4.18) 

and neglecting the higher order terms in the Taylor’s approximation, one can write 

 
* * * *( , ) ( , )

  

tar tar tar tarx u x u

f f
x x u

x u

 

 
      (4.19) 

or, 
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 (4.20) 

The linear HIV model (4.20) is of the form x A x B u      and is in terms of the target 

states and target control inputs.  

 

The quadratic performance criterion for optimal LQR control is given as, 
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1
( ) ( ) ( ) ,

2
( )T T T

opt optJ t Q u t R u t dtt


        x x  (4.21) 

and the optimal control deviations ( )optu t is defined as, 

 
1( ) ( ) ( ).T

optu t R B P t K tx x        (4.22) 

The reader is referred to Section 2.4.2 for a detailed formulation of a full order LQR 

design. The LQR component of the long term strategy is described in Figure 4.7.   

 

Figure 4.7: LQR control for the full order HIV model 

The combination of the steady state control and LQR control in the long term treatment 

strategy is illustrated in Figure 4.8. The nominal solution block represents the steady state 

controller. 

 

Figure 4.8: Long term optimal treatment strategy for HIV 
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Selection of Target Values 

The U.S. Department of Health and Human Services offers guidelines for the 

antiretroviral treatment of HIV [82]. Desired levels of healthy T-cells
1( )x  and viral load

3( )x are recommended for several phases of treatment. The normal CD4
+
 T cell count 

ranges from 500 – 1000 per mm
3
. The guidelines recommend the viral load to be 

suppressed below 50 per mm
3
. Based on these guidelines, target values for the states are 

chosen as 
*

1tarx = 490 per mm
3
 and 

*

3tarx = 30 per mm
3
 [25]. Target values of 

*

2tarx  and 

control inputs, 
* *

1 2 and tar taru u , are calculated from equations (4.15) and (4.16) respectively. 

The target steady state values (operating points) are, 
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   
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 (4.23) 

The A and B matrices of the linear HIV model about the operating point (4.23) were 

obtained as,  

 

0.0204 0 0.006664 0.3528 0

0.000041 2.4 0.006664 ;     0.3528 0

0 86.44 0.24 0 8.33

A B

    
   

   
   
       

 
(4.24) 

4.5 Time Scale Analysis and Synthesis of HIV Model 

The ultimate objective of time scale synthesis is to apply the slow and fast control laws in 

the long term treatment strategy and evaluate its effectiveness in maintaining the patient 

at the desired target values. Figure 4.9 highlights the role of time scale synthesis in the 

long term strategy, where the full order LQR gain block is transformed into slow and fast 

gains through time scale synthesis.  
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Figure 4.9: Time scale synthesis of LQR control in HIV treatment 

But as a preliminary evaluation, the performance of time scale LQR design is first 

assessed outside the long term strategy, i.e. on the linear HIV model to see if the slow 

and fast controllers are capable of regulating small deviations in the system. To achieve 

this, the linear HIV model is subjected to time scale analysis that results in slow and fast 

subsystems, each of which are assigned a quadratic performance index. The 

corresponding slow and fast control laws are derived and combined to form a composite 

control. The performance of this time scale design is compared to a full order LQR 

design on the linear HIV model, which was described in Section 4.4.3. 

 

4.5.1 Time Scale Analysis of Linear HIV Model 

The eigenvalues of the linear model in (4.24) are evaluated and found to be different from 

each other by an order of magnitude, thereby confirming the presence of time scales 

(Table 4.4). The linear model was then subjected to Time Scale Analysis described in 

Section 2.3.  When rewritten in the standard time scale form,   

 
1 2 1

3 4 2

,

,

x A x A z B u

z A x A z B u

  

  
 (4.25) 

the states of the linear HIV model are, 
1[ ( )]x x t  and 

2 3[ ( ), ( )] ,Tz x t x t and the matrices 
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1A  to 
4A and 

1B  to 
2B  were defined as, 

     1 2 1

3 4 2

0.0204 ,           0 -0.006664 ,               0.3528 0 ,  

0.000041 2.4 0.006664 0.3528 0
,        ,        .

0 86.44 0.24 0 8.33

A A B

A A B

   

      
       

      

 

(4.26) 

4.5.2 Separation of HIV dynamics 

The slow and fast subsystems, ( )
s

x t  and ( )
f

x t  obtained after applying the two-stage 

transformation (Section 2.3.2) are, 

 
( ) ( ) ( ),

( ) ( ) ( ),

s s s s

f f f f

x t A x t B u t

z t A z t B u t

 

 
 (4.27) 

where, the matrices were obtained as, 

 

 

 

2.4 0.006626
0.006267 ,              ,

86.44 0.2541

0.3507 0
9.5868 6.4536 ,     .

0.7482 8.33

s f

s f

A A

B B

 
    

 

 
   

 

 (4.28) 

The decoupled HIV model dynamics is represented as, 

 
1 1

1

2 2

2

3 3

0.006267 0 0 9.5868 6.4536

0 2.4 0.006626 0.3507 0

0 86.44 0.2541 0.7482 8.33

x x
u

x x
u

x x

         
        

                                 

 (4.29) 

The eigenvalues of the full order and reduced order systems were compared to ensure that 

the decoupled subsystems retain the slow and fast dynamics. The results in Table 4.4 

confirm that an almost perfect decoupling was performed on the HIV dynamics. The 

accuracy parameter of Newton’s algorithm could be adjusted to get the exact same 

eigenvalues for both the systems. The decoupled HIV subsystems are now utilized for the 

time scale synthesis of optimal LQR control. 
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Table 4.4: Comparison of eigenvalues of full order and reduced order HIV model 

Full order system Eigenvalues 

A 

eig(A) =  -0.0063276 

             -0.014025 

     -2.64                      

Reduced order systems Eigenvalues 

sA (Slow subsystem)   eig( sA ) = -0.006267 

fA (Fast subsystem) 
                 eig( fA ) = -0.014085 

            -2.64                  

 

4.5.3 Slow and Fast LQR Control 

The slow subsystem defined in (4.27), has a performance index, 

 
0

1
( ) ( ) ( ) ( )  ,

2

T T

s s s s s s sJ x t Q x t u t R u t dt



        (4.30) 

whose optimal control signal ( )opt

su t for the slow subsystem is derived as, 

 
1( ) ( ) ( ).opt T

s s s s s s su t K x t R B P x t        (4.31) 

Similarly, for the fast subsystem (4.27), the LQR control is derived as, 

 
1( ) ( ) ( ),opt T

f f f f f f fu t K x t R B P x t        (4.32) 

The control fed back to the system is a composite control signal of the form,  

 ( ) ( ) ( ).opt opt

opt s fu t u t u t      (4.33) 

All the parameters in the above equations and their detailed formulations are provided in 

Section 2.4.2. The independent processing of control laws highlights the fact that 

computational ‘stiffness’ associated with the HIV dynamics was handled effectively. Also 
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the two LQR gains, 
sK and 

fK , are now of lower orders, 1
st
 and 2

nd
 order matrices 

respectively, compared to the full order gain, K which is a 3
rd

 order matrix. The time 

scale synthesis of LQR is presented in Figure 4.10. 

 

Figure 4.10: LQR control for linear HIV model using time scale separation 

4.6 Simulations and Results of LQR Control 

The LQR design is performed in MATLAB
® 

and Simulink
®
 for full order and reduced 

order cases. The numerical values of the system parameters are provided in Table 4.1 and 

the weights for the optimal control
sQ , fQ ,

sR and
 fR are chosen based on trial and error. 

The controllability conditions for both the cases are tested using MATLAB
®
’s 

‘ctrb(A,B)’ command. 

 

4.6.1 Full Order LQR Results 

The controllability matrix was found to have a full rank of 3 and the linear HIV model is 

therefore controllable. The weighting matrices are chosen as, 
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0.001 0 0
1 0

0 0.001 0 ;    
0 1

0 0 0.001

Q R

 
  

    
   

 (4.34) 

which lead to a LQR gain,  

 
0.0060723 -0.76054 -0.022914

             
-0.0010398 -0.54206 -0.017779

K
 

  
 

 (4.35) 

A Simulink
®
 model for the full order linear HIV model is built as shown in Figure 4.11. 

The full order gain, K is applied to all the states. The saturation block in the model has 

upper and lower limits set to one and zero, respectively, due to the fact that the control 

variables in (4.10) are normalized to the interval 0 1, 1, 2
j

u j    [25]. The initial 

conditions of the simulations are chosen to denote small deviations from the desired 

steady state values. 

 
Figure 4.11: Simulink model - full order LQR design of linear HIV model 

The results of the simulation are provided in Figure 4.12.  From the plots, it is observed 

that all the state deviations are brought to zero by dispensing small amounts of control. 
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Figure 4.12: LQR control response of the full order, linear HIV model 

 

The state deviation 1( )x t is observed to take a longer time to reach zero compared to 

other states. This could be due to the slow time scale characteristic of the state 1( ).x t  The 

time taken for the states to decline to zero could be further minimized by adjusting the Q  

matrix of the quadratic function. 

 

4.6.2 Reduced Order LQR Results 

The controllability matrices for the slow and fast subsystems are verified. A full rank of 1 

and 2 were obtained for the controllability matrices of the slow and fast subsystems, 

respectively, thereby rendering them controllable. By choosing the weighting matrices as, 
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 
1 0

0.001 ,   ,
0 1

0.001 0 1 0
,   ,

0 0.001 0 1

s s

f f

Q R

Q R

 
   

 

   
    
   

 (4.36) 

the slow and fast gains are calculated to be,  

 
0.025787 -0.72262 -0.021494

 ;    ,  
0.017359 -0.54855 -0.01788

s fK K
   

    
   

 (4.37) 

respectively. The Simulink
®
 model is built for the reduced order transmission line as 

shown in Figure 4.13. The slow optimal gain, 
sK is applied to the state 

1x (uninfected T 

cell) and the fast gain, fK is applied to the states 
2x (infected T cell) and 

3x (free virus). 

 

Figure 4.13: Simulink model - reduced order LQR design of linear HIV model 

The saturation block enforces the upper and lower bounds for the normalized control 

inputs as in the previous case. The plots of the states and control signal are provided in 

Figure 4.13.  
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Figure 4.14: LQR control response of the reduced order, linear HIV model 

 

The slow and fast controllers are observed to successfully minimize the deviations to 

zero. It is observed that small deviations in the states demanded only small control efforts 

to regulate them to zero as in the previous case.  The time taken for the states to decline 

to zero could be further minimized by adjusting the weights 
sQ and fQ of the respective 

quadratic functions.  

 

4.6.3 Comparison of Full order and Reduced Order LQR Results 

Each of the state plots and control signals in the full order system are compared to their 

reduced order counterparts and the results are provided in Figures 4.15 and 4.16.  
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Figure 4.15: Comparison of full order and reduced order LQR - states 

1 2 3,  and   x x x  

 

 

Figure 4.16: Comparison of full order and composite LQR control signals 
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The plots verify the closeness of full order LQR and reduced order control which 

establishes the efficacy of time scale methods, that almost identical control action was 

obtained with lower order controllers. The reduced order design demands lesser 

computational effort than its full order counterparts, and the resulting control laws are 

relatively simple. The strengths of this approach become substantial when HIV model 

dimensions exceed a third order or a fourth order, which is mostly the case with HIV 

treatment models. In such scenarios, the proposed control approach, that facilitates model 

order reductions, becomes inevitable for designing simple and practical treatment plans.  

4.7 Long Term Treatment of HIV with Composite LQR Control 

In the previous sections, the LQR component of the long term treatment plan was 

evaluated on the linear HIV model (i.e. LQR gains were fed back to linear HIV model) 

and the results indicated that the time scale design was at par with that of the full order 

design. In this section, a more practical scenario is investigated where the composite 

(slow + fast) LQR control is fed back to the nonlinear HIV model as part of the optimal 

long term treatment plan. 

 

The ability of the composite LQR controller to maintain the states at the desired target 

values is investigated. A block diagram describing the LQR feedback on the nonlinear 

HIV treatment model is provided in Figure 4.17. The steady state values are provided by 

the nominal solution block. The block and dashed arrows describes the decomposition 

procedures that led to the design of slow and fast gains, Ks and Kf. The solid arrows 

indicate the flow of signals in the model. A Simulink model is built to implement the 

long term treatment strategy with composite control (Figure 4.18). 
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Figure 4.17: Time scale synthesis of long term treatment strategy with nonlinear HIV 

model 

The ‘Nonlinear HIV Model’ block implements the dynamic equations in the HIV 

treatment model (4.10). The ‘nominal solution’ block supplies the desired steady state 

values of [490; 0.0833; 30] for 
1( )x t , 

2( )x t  and 
3( ),x t  and [0.4333, 0.1356] for 

1( )u t  and 

2( )u t . These values meet the U.S. Department of Health and Human Services HIV 

Therapy Guidelines. The slow and fast state deviations, ( )sx t and ( )fx t  are fed to the 

respective gains. The composite LQR control ( )optu t is combined with the nominal 

control and fed back to the nonlinear HIV block.  
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Figure 4.18: Simulink model for composite LQR control of nonlinear HIV model 

The initial conditions for this simulation are obtained from [25] and were chosen such 

that they are outside the range of the desired target values. Table 4.5 lists the choice of 

initial conditions. 

Table 4.5: Initial conditions for simulating nonlinear HIV model [25]  

Parameter Description Numerical Value 

1(0)x  Healthy T- cell population 560 per mm
3
 

2 (0)x  Infected T- cell population 0.084 per mm
3
 

3(0)x  Infectious HIV population 60 per mm
3
 

 

The results of simulation – state and control responses are displayed in Figure 4.19 and 

Figure 4.20, respectively. It can be observed from the plots that the composite LQR 

controller was successful in maintaining the states of the nonlinear model at the desired 
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levels. The state 
1( )x t was observed to reach the target value in approximately 150 days. 

The virus population was brought down to the steady state value very rapidly in slightly 

less than 3 days, and it remains at that level for the rest of the simulation period of 500 

days. The concentration of infected T cells remained at the target value of 0.08 per mm
3
.  

 

From the control responses in Figure 4.20, it was observed that 
1( )u t  or RTI drug was not 

administered for an initial duration of 80 days and was increased to a value of 0.43 after a 

period of about 170 days. The second control,
2( )u t or the PI drug was administered at  

  

 
Figure 4.19: States of nonlinear HIV model with composite LQR control 

the maximum dosage (
2 ( ) 1u t  ) for less than 3 days, which later on waned to a value of 

0.136, the control input necessary to keep the states on target. This is evident from the 
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detailed plot of the control response near the origin. An earlier observation on the very 

rapid decline of virus concentration (< 3 days) could be linked to the high PI dosage for 

the same amount of time. Since RTIs were not administered during that period, maximum 

dosage of PI was required to suppress the initial viral load in the body. After about 200 

days the control dosage stabilizes to the designed target values.  

  

Figure 4.20: Control inputs of the optimal control of nonlinear HIV model (left); 

Detailed plot of control inputs near origin (right) 

The results imply that lower order control laws were very effective in maintaining the 

patient in a clinically stable state. The implications of time scale methods become 

pronounced when comprehensive models of HIV dynamics are considered, such as 

models involving addition of immune system interactions (i.e. CD8
+
 T cell or “killer T 

cell” dynamics) to the existing viral and uninfected CD4
+
 T cell dynamics [20]. This 

modeling approach supports investigations of a new treatment plan called Structured 

Treatment Interruption (STI) which is a planned interruption of drugs at ‘favorable’ times 

in the course of ART. The addition of CD8
+
 dynamics renders the simplest model with an 

order 6. Time scale methods presented in this research could help in pursuing effective 

control strategies even with such detailed models that yield simple and effective feasible 
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treatment plans. 

 

4.8 Research Work on Measles Infection 

A brief amount of time was spent studying the measles disease model during the initial 

research period. The disease model couldn’t be analyzed thoroughly for the application of 

SPaTS methods, as there was difficulty in assessing the time scale behavior of the model 

with certainty. Standard procedures like linearization and eigenvalue calculations were 

performed on this model, but a uniform time scale behavior couldn’t be established from 

the simulation results. A brief overview of measles, the issues encountered and the 

summary of the work performed is provided in the following sections. 

 

4.8.1 Disease Background 

Measles, a highly contagious disease among children, is one of the most common and 

often a fatal disease in the world. It is caused by the measles virus, a single stranded RNA 

virus of the genus Morbillivirus that infects the respiratory system and attacks the 

immune system. The infected individuals transmit the virus to over 90% of unprotected 

close contacts, making children under the age of 5 very vulnerable [95]. There is no 

specific treatment for measles, but unlike HIV/AIDS, measles is preventable by the 

Measles Mumps-Rubella (MMR) vaccine, and routine measles vaccination for children is 

the key public health strategy to prevent the disease.  

 

However, WHO reported this disease, in 2017, as one of the leading causes of death 

among young children globally, despite the availability of a safe and effective vaccine 
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[96]. Consequently, modeling of transmission dynamics and optimal vaccination schemes 

are mainstream research areas of this infectious disease. This research work was 

conducted with the objective of investigating the optimal vaccination strategy for control 

of this disease through the application of time scale methods. 

 

4.8.2 Measles Transmission and Control Dynamics 

Epidemiological models have been widely used in literature for understanding the 

transmission of diseases and for testing various prevention and control therapy schemes 

[97], [98]. These models stratify the population into compartments which represent the 

status of their health with respect to the pathogen in the system. The Susceptible-

Infectious-Recovered (SIR) model is one of the common compartmental models, 

consisting of three compartments representing the number of susceptible, infectious and 

recovered/immune individuals. The dynamic model for this research is adopted from 

literature [47], and is a SIR model with vaccination schemes.  

The state space model for the measles transmission and control is described as [47], 

 

( ) ( ) ,

( ) ,

( ) ,

dS
b S t S t SI

dt

dI
I t SI I

dt

dR
R t S I

dt

  

  

  

   

   

   

 (4.38) 

where S, I and R are the state variables. The total population is defined as, 

 ( ) ( ) ( ) ( ).N t S t I t R t    (4.39) 

The influx rate into the population is denoted by b,  is the exit rate from the population 

compartment (rather than mortality) and  is the recovery rate. The vaccination rate 
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(control) is expressed by the term ( )t and is assumed to be periodic. The contact rate is 

given by ( )t  and is assumed to be periodic with annual periodicity T, as the population 

considered here is a large population that is well mixed like the children of several large 

schools located close together [47]. The numerical values of the parameters are listed in 

Table 4.6. 

Table 4.6: Measles Model Parameters [47], [99] 

Parameter Description Numerical Value 

b Population influx/birth rate 
0.02 (life expectancy 

= 50 years) 

  Death rate  0.02 

  Recovery rate 100 

( )t  

Contact rate: 

  0
2( ) 1 sin tt

T
     

0  = 1800 

  = 0.5 

T = 1 year 

 

4.8.3 Model Simulation 

The nonlinear model in (4.38) was simulated in MATLAB
®
 and Simulink

®
 with the 

parameters in Table 4.6. The initial conditions were chosen based on the assumptions that 

a very small percentage of the population is infected, there is no recovery of the infected 

individuals, and ( ) ( ) ( ) ( ) 1N t S t I t R t    . The initial conditions were[0.999,0.001,0] . 

The control variable ( )t was assumed to be zero, as the inherent dynamics of the model 

is independent of the control input. The plots of the states with respect to time are 

displayed in Figure 4.21. 



128 

 

 

Figure 4.21: State responses of the measles model (
0( ) (1 sin(2 / ))t t T     ) 

 

4.8.4 Linearization and Eigenvalues 

The presence of slow and fast dynamics couldn’t be inferred from the system responses 

(Figure 4.21), and therefore its eigenvalues were evaluated. The nonlinear model was 

linearized at various instants of time, and the results obtained indicated some 

discrepancies in the eigenvalues. Table 4.9 displays the eigenvalues obtained after 

linearization. The eigenvalues obtained for time instants, t = 1 and t = 2, displayed only 

two eigenvalues for a (3 3)  system matrix A. This was an unexpected result from the 

MATLAB
®
 simulations, and the version of the software used then was recalled to be 

‘R2007b’. 

Table 4.7: Linearization of measles model at various time instants 

 



129 

 

To investigate further on this discrepancy, one of the model parameters was modified to 

see if the system gives appropriate eigenvalues, i.e. 3 sets of eigenvalues for all time 

instants. The contact rate parameter, ( )t was changed to a constant value from a 

sinusoidal periodic function, i.e. 
0( ) 1800.t   The eigenvalues were evaluated again, 

and are provided in Table 4.8. The system responses were also observed for this case and 

did not seem to vary much from that of the periodic contact rate’s case (Figure 4.22). 

 

Figure 4.22: State responses of the measles dynamic model with ( ) 1800t   

Table 4.8: Linearization of measles model with ( ) 1800t   

 

The new eigenvalues indicated that for time t = 2, there were 3 eigenvalues, but for t = 1, 

there were only two eigenvalues. Also another observation made was that one of the 

eigenvalues was zero for all time constants. The MATLAB code was ‘run’ several times 

with different solvers (variable and fixed step) but the same results were repeated.  The 

discrepancies in the results might be associated with the specific MATLAB version and 
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the toolboxes that were available at that time. The author recalls that during the initial 

research work in life sciences, a few mathematical models were shortlisted for pursuing 

research, and measles and HIV models were a priority. The technical difficulty with the 

measles model led to continuation of research with the HIV model. 

 

The measles model was revisited after completion of HIV research and the eigenvalue 

analysis was performed again with the current MATLAB
®
 version (used for transmission 

line and HIV research), ‘R2013a’. The linearization m-file is run again in the new version 

for both periodic and constant cases of contact rate, ( )t , with no code modifications,  

and the results are observed to be more appropriate and relevant. There are three sets of 

eigenvalues as expected for a 3
rd

 order system, at all time instants, and all of them are 

non-zero. The results are provided in Table 4.9. 

Table 4.9: Linearization results of measles model with MATLAB
®
- R2013a 

Time instant ‘t ’  

(in years) 
Eigenvalues Eigenvalues 

 

Periodic contact rate 

  0
2( ) 1 sin tt

T
     

Constant contact rate 

( ) 1800t   

t = 0 

-0.02 

0.0861 

1696.3 

-0.02 

0.0861 

1696.3 

t = 0.004 

-0.02 

-2.4961+ 288i 

-2.4961 - 288i 

-0.02 

15.912+ 282.62i 

15.912+ 282.62i 

t = 0.006 

-0.02 

-105.84 

-1358.4 

-0.02 

-106.43 

-1323.5 

t = 0.01 
-0.02 

-100.08 

-0.02 

-100.09 
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Time instant ‘t ’  

(in years) 
Eigenvalues Eigenvalues 

 

Periodic contact rate 

  0
2( ) 1 sin tt

T
     

Constant contact rate 

( ) 1800t   

-1027.9 -999.47 

t = 0.03 

-0.02 

-100.4 

-147.35 

-0.02 

-100.4 

-134.98 

t = 0.06 

-0.02 

-8.192 

-98.98 

-0.02 

-6.9251 

-99.118 

t = 0.1 

-0.02 

-0.199 

-97.23 

-0.02 

-0.155 

-97.81 

t = 1 

-0.02 

-65.8 

-0.02 

-0.02 

-65.75 

-0.02 

t = 2 

-0.02 

-30.8 

-0.02 

-0.02 

-30.788 

-0.02 

 

The eigenvalues clearly indicates time scale behavior, and SPaTS methods can be easily 

applied for the measles model. The design of optimal vaccination schemes through time 

scale analysis and synthesis is a topic of future research. 

 

4.9 Conclusion 

A time domain model describing the dynamics of HIV infection is presented, and is 

analyzed for its inherent time scale behavior. The presence of time scales is identified 

through linearization and non-dimensionalization procedures, which qualified the HIV 

model for application of SPaTS methods. Acknowledged in literature for its model order 

reduction, stiffness relief properties, and flexibility with control laws, SPaTS methods are 
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applied for the synthesis of an optimal HIV treatment strategy in this study. The 

simulation results manifests the effectiveness of this method in that comparable control 

was achieved with the lower order slow and fast controllers (in the time scale approach) 

compared to the conventional full order design. Lower order control laws translate to 

simple treatment plans that can be implemented in practice.  

 

Even though mathematical modeling, experimental data and clinical data analysis were 

critical in transforming this fatal disease to a chronically managed disease, many aspects 

of the disease still remains unknown today. Extensive models incorporating various 

aspects of HIV dynamics might offer better insights towards inhibiting viral production. 

One example is the model incorporating the dynamics of the immune system, specifically 

the CD8+ ‘killer’ T cells which are beneficial towards investigating Structured Treatment 

Interruptions (STI). Development of control laws with such detailed models demand 

substantial computational efforts, and SPaTS methods could assist with the design of 

feasible control strategies.  

 

Eradicating HIV from the body or assisting the body to fight the infection remains the 

ultimate goal. Future work would investigate revision of the current model to incorporate 

the immune system dynamics for a STI approach, which enhances the immune system 

responses to decimating the virus in the body. Analysis and design of measles model is 

another area of future research in the area of Life Sciences, where time scale methods 

will be applied for design of optimal vaccination schemes for controlling the disease 

transmission. 
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Chapter 5  

Summary, Conclusions and Future Work 

 

5.1 Summary and Conclusions 

In this Dissertation, dynamic models of an overhead power transmission line and an HIV 

infection were analyzed. Nonlinear state space models were used for describing the 

dynamical processes. The eigenvalues of the linearized system were observed to be in 

distinct groups which indicated that the system had inherent slow and fast dynamics. In 

the transmission line model, time scale behavior was by virtue of the slow temperature 

dynamics and the fast electrical dynamics, whereas in the HIV infection model, it was 

due to the slow dynamics of the uninfected T cells compared to the very rapid viral 

dynamics. This made, the selected models, prime candidates for time scale analysis and 

design. 

 

The SPaTS theory was very effective in designing linear optimal controllers with reduced 

model orders, for both transmission line and HIV dynamics.  

1) In the case of transmission lines, a second order linear model was decoupled into two 

1
st
 order, independent slow and fast subsystems. LQR optimal controllers were 

designed with these reduced order models, with the control objective of minimizing 

perturbations in transmission lines, which could arise from loading of electric motors 

or abrupt changes in source voltages or lighting strikes to the line. The performance 

of the time scale LQR design was evaluated by comparing the linear model’s 

performance to that of a general full order design. 
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2) For the HIV infection model, a third order linear system was decoupled into a 1
st
 and 

2
nd

 order, independent slow and fast subsystems, respectively. A long term treatment 

strategy incorporating LQR optimal control for maintaining the patient at steady state 

levels was investigated, with the objective of minimizing any deviations from the 

steady state values to zero. Time scale synthesis of the long term strategy was 

performed where the composite (slow + fast) control was fed back to the original 

nonlinear HIV model, to test its efficacy in maintaining the patient at steady state 

values (long term treatment strategy). 

  

3) In both the cases, it was seen from simulation results that the performance of the 

reduced-order control matched the performance of the full order control very closely. 

These results hold far reaching implications in that, SPaTS could be used to reduce 

the very high model dimensions into lower order subsystems which would 

significantly reduce online and offline computation requirements. The stiffness 

associated with time scale systems is greatly reduced by the separation procedure, and 

this enhances the computational efficacy of control designs. Also, the independent 

slow and fast controllers allow for parallel and distributed processing of information 

with corresponding sampling rates i.e. slow system with slow sampling rate and fast 

system with fast sampling rate. 

 

(a) In the context of transmission lines, this would imply that SPaTS methods would be 

well-suited for designing software controllers for DLR technology that can be 

implemented real-time. SCADA systems which form the backbone of modern 
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industrial processes will be a key component of the evolving smart grid, for real-time 

monitoring, management and control of power transmission. The online controllers in 

SCADA systems for calculating real-time ampacity and corresponding line 

temperatures could benefit from the SPaTS design methods as the reduced order 

controllers offer significant computational savings compared to their full order 

counterparts. 

(b) For the HIV model, the lower order control laws translate to simpler treatment 

schemes compared to the higher order control laws that are complex and difficult to 

implement. 

4) Furthermore, when it comes to reliability of the control system, time scale synthesis 

provides more reliability with two controllers for subsystems instead of one central 

controller for the original system. The simulation results indicated that the 

performance of a transmission line model with a single controller, either slow or fast, 

by itself gives a performance nearly close to that with the combined (composite) 

controller performance. The reliability feature of the time scale synthesis becomes 

very significant for transmission lines in the event of faults in the line or controller 

failure. The multiple controllers in place are able to keep the system stable while the 

other controller has failed due to a fault or due to malicious cyber-attacks. 

 

5.2 Future Work 

In this study, several strengths of the SPaTS method are presented: decoupling of slow 

and fast dynamics, model order reduction while preserving system dynamics which 

facilitated reduction in online and offline computational requirements, processing slow 
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subsystems with low sampling rate and fast subsystems with higher sampling rate and 

increased reliability of systems with two independent controllers for the subsystems. 

 

However, the controller design studied here was limited in scope, as it was applied to a 

linear system only. This is due to the fact that decoupling of slow and fast subsystems is 

currently possible only for linear singularly perturbed systems. For optimal regulation 

and tracking of nonlinear systems, the closed-loop optimal control strategies are obtained 

using State-Dependent Differential or Algebraic Riccati Equations (SD-DRE or ARE) for 

finite and infinite horizon cases [100]. A topic for future investigation is to apply the 

theory of SPaTS to closed-loop nonlinear optimal control problems using SD-DRE 

technique.  

 

Furthermore, detailed models of medium and long length transmission lines with 

distributed parameter modeling would be considered in future research for any 

unaccounted line current dynamics to enhance the computational accuracy of line 

ampacity levels. Also, integration of forecasted weather information into the existing 

time domain models of transmission lines would be a potential enhancement for the 

GLASS software at INL. Comprehensive power system models for transient analysis 

studies (incorporating generator, transmission line and load dynamics) would be another 

interesting area for the application of SPaTS methods.   

 

Another potential area of interest would be the investigation of optimal treatment 

strategies for HIV infection where models incorporate stochastic components of viral 
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dynamics and the host’s immune system (CD8
+
 T cell) dynamics. This would offer better 

insights into the viral dynamics and the host interactions, and would help in designing 

STI schemes for controlling the HIV infection. Investigation of SPaTS in developing 

optimal control strategies for measles is another avenue for future research in Life 

Sciences. 
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Appendix A 

A.1 Transmission Line Model Data  

Conductor type 

ACSR – Drake 26/7 

(Aluminum Conductor Steel Reinforced) - 

26 outer Aluminum  conductors & 7 Steel 

core conductors 

 

Table A.1: Parameter values used in the transmission line model [3] 

Property Variable Value 

Line length len 60 km 

Wind speed vw 0.61m/s 

Projected area of conductor 

(m
2
/linear m) 

A  0.02814 m 

Solar absorptivity   0.8 

Emissivity   0.8 

Ambient air temperature Ta 40 °C 

Conductor outside diameter D0 28.14mm 

Resistance @ low temperature R(Tlow) R(25 °C) = 7.283 10-5 Ω/m 

Resistance @ high temperature R(Thigh) R(75 °C) = 8.688 10-5 Ω/m 

Azimuth of line  - east to west 

direction 
Zl Zl = 90° 

Latitude Lat 30° North 

Solar altitude Hc 
Calculated for 11:00 am on June 10 

(Day 161) 

Day of the year N 161 

Line elevation He 0 m 

Hour angle   -15° 

Mass per unit length of 

aluminum 
mAl 1.116 kg/m 

Mass per unit length of steel mSteel 0.5119 kg/m 

Specific heat of aluminum Cp,Al 955 J/kg .°C 

Specific heat of steel Cp,Steel 476 J/kg .°C 

Angle between wind and 

conductor axis 
  90° 

Load resistance Rload 100 Ω 
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Property Variable Value 

Line Inductance L 
6.565 * 10

-7 
H – Calculated from ACSR 

Datasheet [101] 

 

Line Inductance Calculation 

72 10 ln 1609 /milemD
L

GMR

  
    

 
 

Using Dm = 1ft and GMR = 0.0375 ft from the datasheet in Table A.2 and 

converting units to per meter, the value of L was found to be 76.565 10 .H  

 

A.2 Data Sheet for ACSR – Drake 26/7 Conductor [102]  

Table A.2: ACSR 795 kcmil 26/7 Datasheet – Inductance and GMR Information 
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Table A.3: ACSR 795 kcmil 26/7 Datasheet – Inductance at different temperatures [101] 
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