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Abstract

Control Theory and its applications span a broad spectrum of disciplines, Electrical
Engineering at one end to Life Sciences at the other end. In this doctoral dissertation,
research problems in Overhead Power Transmission Lines and HIV/AIDS (Human
Immunodeficiency Virus /Acquired Immune Deficiency Syndrome) infection are chosen,
from these vastly varied domains, for synthesizing and developing Advanced Control
Strategies. This research aims to provide optimum solutions through the application of
Singular Perturbation and Time Scale (SPaTS) methods, specifically, Time Scale
Analysis and Synthesis. Measles, another infectious disease in Life Sciences, is briefly
investigated for the application of SPaTS methods. These methods achieve model order
reduction by a time scale separation procedure that guarantees excellent eigenvalue
approximations of the original system. Moreover, decoupling of dynamics facilitates
simple, lower order, slow and fast controllers designs, thereby enhancing the reliability of
controllers and significant reduction in real-time computations. The model
approximation, using this methodology does not impair the system dynamics in any way.
The analysis and synthesis is carried out for deterministic optimal control problems with
the objective of, mitigating perturbations in the transmission line, and developing a
feasible long term HIV treatment plan with minimum side effects. The proposed control
strategies are validated through extensive simulations. The results of the simulations and
research provide valuable insights into the development of closed-loop, real-time, optimal
controllers that are computationally more efficient and feasible for Smart Grid /Dynamic

Line Rating technology and long term treatments of HIV infection.
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Chapter 1

Background & Purpose of Research

1.1 Introduction

This doctoral dissertation encompasses two research problems, one in the field of
Electrical Engineering and the other in the field of Life Sciences. In Electrical
Engineering, the focus is on electric power systems, specifically, Overhead Power
Transmission Lines. This research opportunity was presented as a funded internship® at
the Idaho National Laboratory, Idaho Falls, ID from Summer 2014 — Summer 2015. The
second research problem is in the context of Life Sciences, specifically, Infectious
Diseases, with focus on Human Immunodeficiency Virus (HIV) Infection. Measles,
another serious infectious disease, is briefly investigated. The research aims at designing
and developing Advanced Control Strategies to provide optimum solutions using
Singular Perturbation and Time Scale (SPaTS) methods, specifically, Time Scale
Analysis and Synthesis. The Doctoral Dissertation further expands on the author’s
Master’s research interests where the control principles were previously applied to
Renewable Energy Systems. This chapter introduces the research problems in Electrical
Engineering and Life Sciences, followed by the formulation of problem statements and
purpose of research. An outline of the subsequent chapters in the report is provided at the

end of this chapter.

! The research was supported by the U.S. Department of Energy Wind Energy Technologies Office contract
with the Idaho National Laboratory.



1.1.1 Research Problem 1 — Overhead Power Transmission Lines

The energy demands of the modern world and extreme weather conditions have brought
about high stresses on the existing energy infrastructure. Power outages due to severe
weather conditions are likely to increase in the future as climatic changes alter the
frequency and intensity of natural events [1]. These growing concerns have led to the
research and development of ‘smart’ electric grids that will efficiently manage power
demands while providing a reliable and resilient power grid for tomorrow. One of the
Smart Grid Transmission & Distribution Infrastructure Metrics outlined by the U.S.
Department of Energy to monitor the progress of smart grid implementation was

Dynamic Line Rating (DLR) technology [2].

Overhead transmission lines are currently operated based on static ampacity ratings
which limit the amount of electrical current that the lines can safely carry, without
overheating the line and violating clearance requirements. They are determined using
steady-state heat balance equations, as outlined in the national standard defined by the
Institute of Electrical and Electronics Engineers (IEEE). The IEEE Standard 738 [3]
provides guidelines for calculating the current—temperature relationship of bare overhead
line conductors, under the assumption that electrical current, conductor temperature, and
weather conditions remain constant. In other words, the static ratings are based on “near”
worst case scenarios and pre-load conditions and utilities/power systems do not operate at

their potential transmission capacity.

Dynamic line ratings of transmission lines, on the other hand, are determined based on



real-time weather and load flow conditions, enabling utilities to take advantage of the
additional line capacity when it is available. A simple graphic in Figure 1.1 demonstrates
the concept of DLR. In areas where wind plants are being deployed, there is potential to
take advantage of concurrent cooling, where wind enables wind plants to produce

electricity while also cooling the existing transmission lines [4].

Figure 1.1: Dynamic Line Rating — concurrent cooling enables increased transmission

line capacity and renewable energy integration [4]

Concurrent cooling is advantageous for power companies as it helps increasing
transmission capacity limits thereby reducing operating costs for power companies and
wind facilities. Figure 1.2 shows the unused headroom in transmission lines that is

possible with DLR without violating the thermal limits of the conductor [5].
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Figure 1.2: Dynamic line ratings vs. static line ratings for transmission lines [5], [6]

Weather components such as air temperature, solar radiation, wind speed and direction
have a significant impact on the current carrying capacity of transmission lines. Research
conducted at the Idaho National Laboratory (INL) corroborates this fact by showing that
the cooling effect of wind, on power transmission lines could increase the current

carrying capacity of the power lines by 10 to 40% [7].

Implementation of DLR technology entails real-time monitoring, management and
control of power through transmission lines. Real-time monitoring becomes crucial in
understanding the true ampacity of a transmission line, which requires calculations of
instantaneous values of line current and line temperature. Line current and line
temperature are two important dynamic variables in a transmission line that decide the
amount of power that could be safely transmitted. Calculations of these two variables in
real-time are considerably challenging as transmission lines involve complex electrical
and thermal dynamic interactions. A thorough literature review did not result in
significant information on transmission line models, which would account for both the
electrical and thermal dynamics. A good reference in literature for understanding the line
temperature dynamics is the IEEE Standard 738 [3]. Even though it describes the

4



dynamics of transmission line temperature in detail, it fails to capture the electrical
dynamics. This exists simultaneously and interacts with the thermal dynamics. Electrical
dynamics operate at a faster time scale than thermal dynamics by virtue of its response
characteristics. The simultaneous presence of slow and fast dynamics renders any system
‘stiff” for computations. The inherent time scale characteristics of a transmission line
need to be captured to ensure efficient and accurate computations of line ampacity,

during normal times of operation and in the event of system perturbations.

As the existing electric grid evolves into a ‘smart’ grid, power management decisions will
become part of controller strategies to meet daily power demands. For example, utilities
supplying power based on real-time demand metrics, and increasing ampacity levels of
existing transmission lines based on real-time weather conditions [8]. These utility
operations will be associated with the controller strategies in Energy Management
Systems (EMS) and Supervisory Control And Data Acquisition (SCADA) systems, to
meet daily power demands. Software control and decision making become deeply
integrated into the electric power system. However, the increased dependence on cyber
infrastructure in today’s digital age, makes it vulnerable to malicious cyber-attacks. Thus,
in addition to efficient power management, the control strategies in place must be

resilient to electrical faults and malicious attacks.

This work focuses on developing a dynamic model that accounts for the electrical and
thermal dynamics in a transmission line to assist implementing DLR technology. The
proposed model is subjected to time scale analysis through which separation of the slow

and fast dynamics is achieved. A controller design, employing Singular Perturbation and



Time Scale Methods (SPaTS), particularly, Time Scale Analysis and Synthesis is
proposed that facilitates real-time implementations, while assuring stability, reliability,

and resiliency of transmission lines in the event of failure/cyber-attacks.

1.1.2 Research Problem 2 — Human Immunodeficiency Virus (HIV) Infection

The second research problem is rooted in the field of Life Sciences. One might ask a
question here: How can Engineering play a pivotal role in Life Sciences? A recent study
in IEEE Transactions on Biomedical Engineering [9] underscores the importance of
Engineering oriented solutions in Physical and Life Sciences. Advances in technological
innovations in the field of Engineering bring cutting edge solutions that are changing how
treatments are designed and drugs are delivered. This research also predicts, for the next
20 years, the direction in which research in Life Sciences is headed and the inevitable

convergence of the three branches — Life Sciences, Physical Sciences and Engineering.

One of the branches of Life Sciences, is the study of Infectious Diseases, an
interdisciplinary field that links biology, mathematics and engineering for the control and
treatment of infections. Throughout human history, infectious diseases have caused
suffering and mortality to large portions of the human population. ‘Black Death or the
Bubonic Plague’, ‘Spanish Flu’ and Cholera epidemics, to name a few. A recent report of
Global Health Estimates (GHE) by the World Health Organization (WHO) shows that
infectious diseases claimed about 8.9 million lives in 2015, accounting for 15.7% of all
deaths (56.4 million) in the same year [10]. These diseases are caused by pathogenic

microorganisms, such as bacteria, viruses, parasites or fungi, and can be spread directly



or indirectly, from one person to another.

Figure 1.3 [10] illustrates the infectious disease mortality in 2015 where major death tolls
were incurred by respiratory infections, diarrheal diseases, tuberculosis and Acquired
Immune Deficiency Syndrome (AIDS). Measles was reported as one of the leading
causes of death among children globally and is categorized under ‘Childhood-cluster
diseases’ in the figure. One of the diseases that caused about 1 million deaths in 2016 and
which continues to be a pandemic is the Human Immunodeficiency Virus (HIV)

infection/AIDS.

INFECTIOUS DISEASE MORTALITY 2015
WHO - GHE 2615

Other infectious diseases : 0.358 million -~

Encephalitis : 0.089 mill% \I

STDs excluding HIV : 0.094 million

Hepatitis : 0.145 million

e aN
Childhcod-clusterdiseases:O.ZTSmiIIion/""‘ \
Meningitis : 0.315 million /’ l \

/

Respiratory Infections : 3.199 million

Parasitic and vector diseases : 0.61 million

HIV/AIDS : 1.06 million

Tuberculosis : 1.373 million
Diarrhoeal diseases : 1.389 million

I Respiratory Infections Ml Diarrhoeal diseases [l Tuberculosis [l HIV/AIDS [l Parasitic and vector diseases [l Meningitis
L Childhood-cluster diseases Il Hepatitis [l STDs excluding HIV I Encephalitis Il Other infectious diseases

Figure 1.3: Mortality in 2015 due to infectious diseases [10]

HIV, the etiological agent for AIDS is a virus that attacks the immune system by
depleting the key immune cells (CD4" T cells) that fight off infections and diseases. Loss
of CD4" T cells makes the person susceptible to opportunistic infections and leads to the
immunodeficiency that characterizes AIDS [11]. Even though HIV/AIDS was not
reported in the WHO’s list of ‘2015’s top 10 leading causes of death’ [12], an estimated

36.7 million people were living with HIV, including 1.8 million children, by the end of



2016 [13]. Figure 1.4 depicts the distribution of HIV infected individuals around the
globe. Eastern and southern African regions were reported to have the highest number of

infected individuals compared to other parts of the world.
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Figure 1.4: Global estimates of adults and children living with HIV in 2016 [14]

Since the start of the epidemic, an estimated 78 million people have become infected with
HIV and 35 million people have died of AIDS-related illnesses [15]. The advent of
Highly Active Antiretroviral Therapy (HAART), or Antiretroviral Therapy (ART), in
1996, was a major breakthrough in the treatment of HIV that transformed, what was once
a fatal diagnosis, to a chronically managed disease [16]. HAART is a combination of
different classes of medications that control viral load, delay or prevent the onset of
symptoms or progression to AIDS, thereby prolonging survival in people infected with
HIV and reducing the risk of HIV transmission. [16]. Figures 1.5 and 1.6 show that there
has been a 16% reduction in the number of new infections since 2010 across the globe,
and a reduction in AIDS related deaths from 1.5 million in the year 2000 to 1 million in
2016. A major milestone was achieved in 2016, when it was found for the first time, that

8



more than half of all the people currently living with HIV (53%) have access to life-

saving treatment [13].
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Figure 1.5: Number of new infections and percent changes globally since 2010 [17]
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Figure 1.6: AIDS related deaths, all ages, global, 2000-2016 [15]

The success of ART is attributed in part, to the significant research milestones achieved
in the last couple of decades and clinical trials that helped in designing these treatment
strategies. ART would not be a success without the efforts undertaken by various

governments and health organizations across the globe in making the treatment accessible



to people in need. Mathematical modeling combined with clinical and experimental data
analysis have made significant contributions towards understanding HIV dynamics,
especially in areas of viral pathogenesis, virus interactions with the host, immune
response to infection and ART. An abundance of mathematical models of varying
complexity are found in literature that describes the HIV dynamics, immune system’s
response to infection, and various treatment strategies. Publications referenced in [11, 18,
19, 20, 21] are a few examples. Analysis and synthesis of optimal scheduling of drugs for
HIV treatment are also a mainstream area of research, as ART comes at the cost of
significant side-effects from its potent drugs. Since ART cannot clear the body of HIV,
the treatment has to be continued for life [16] while minimizing its harmful side effects.
This necessitates a long term, optimal chemotherapy schedule that suppresses the viral
load (or boosts the patient's uninfected CD4" T cells) and minimizes the harmful effects
that chemotherapy might incur. Several optimal treatment strategies have been proposed
in literature that achieves this balance; a few examples are presented in [22], [23] and
[24]. One of the optimal control schemes of interest due to its simplicity and robustness
properties is the Linear Quadratic Regulator (LQR) [25], [26]. Even though the design
procedure is straightforward for low order HIV models, the design process becomes
computationally intensive when comprehensive HIV models are involved, and
implementing higher order control laws for treatments may not be feasible. Models
ranging from a 1% order [11] to 8" order [27] are reported in literature that takes into
account of the various aspects of an HIV infection. (A list of HIV model dimensions and
their references in literature are, 2" order - [28] in 3" order - [25], 4" order - [26], 5"

order - [29], 6™ order - [11], 7™ order - [30], 8" order - [27]). Developing an optimal
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control law with thorough models becomes a tedious and computationally challenging

task, without the aid of much needed model order reduction techniques.

One of the intrinsic features of HIV dynamics and the host systems’ interactions is the
time scale at which the dynamics occur. As pointed out in the pioneering research work
by Perelson and Nelson [11], the disease AIDS, which develops on an average time span
of 10 years, is characterized by very rapid dynamical processes that occur on time scales
of a few hours to days, and slower processes that occur on a time scale of weeks to
months. This realization was brought forth when clinical data obtained through drug
trials, were interpreted by simple mathematical models of HIV dynamics. As revealed in
[11] and in other publications [31, 32, 33], the slow process was identified as the
declination of uninfected T-cells in the body and the fast processes were identified as
rapid multiplication of virus in the body and rapid clearance rate of virus with
antiretroviral drugs [11]. This slow and fast behavior categorizes the HIV dynamics into
time scale systems, a special group of systems that comprehends elegant model order

reduction features.

SPaTS methods are recognized in Control Theory literature [34], [35] for its exquisite
model order reduction capabilities that facilitates design of simple and feasible control
strategies, and guarantees excellent eigenvalue and time response approximations of the
original system. The intrinsic time scale feature of the HIV dynamics provides an
opportunity to design an optimal control strategy that minimizes the cost of therapy for

HIV treatment, through the application of Time Scale Analysis and Synthesis. Potential
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applications of SPaTS methods are briefly investigated for measles.

1.2 Research Problem Statements

1.2.1 Overhead Power Transmission Lines

Overhead power transmission lines are characterized by complex electrical and thermal
dynamics. The presence of slow and fast dynamics and their interactions results in
‘stiffness’ in numerical computations of line current and line temperature. Transmission
line models that account for both the dynamics and its interactions are seldom found in
literature, including the IEEE Standard 738, which defines the guidelines for calculating
the static and dynamic ratings for transmission lines. The time scale characteristic renders
real-time monitoring and controller implementation very challenging for achieving
progress in DLR efforts. True ampacity values have to be calculated in real-time, and
maintained at nominal values, during normal times of operation and in the event of

perturbations or failures.

Investigating a dynamic model that captures the inherent electrical and thermal dynamics
of a transmission line, and designing a stable and reliable, optimal control strategy
utilizing SPaTS methods, for mitigating perturbations in a transmission line in the event

of faults/attacks.

1.2.2 HIV Infection/AIDS
Mathematical modeling has played a key role in designing and evaluating the treatment

strategies for controlling HIV/AIDS. Due to potency of the ART, long term optimal
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control schemes are being investigated that suppresses viral loads while keeping the side
effects to a minimum. Comprehensive mathematical models accounting for various
aspects of an HIV infection, could offer more insights into designing better and effective
treatment plans, but the high model dimensions associated with detailed modeling pose a
significant design challenge. Design of feasible and optimal treatment strategies that
minimizes the viral load and cost of treatment become a complex and computationally

intensive task.

Investigating an optimal control design, through the application of Time Scale Analysis

and Synthesis, for suppressing viral loads while minimizing the cost of HIV treatment.

1.3 Purpose of Research

e To investigate and simulate, a dynamic model that accounts for the electrical and
thermal dynamics of a transmission line, and perform analysis and synthesis of
controllers for mitigating perturbations in transmission lines using SPaTS methods.

e To investigate and identify the inherent time scale behavior in a HIV model and
design an optimal treatment scheme, for suppressing viral loads and minimizing the

treatment’s side effects, through the application of SPaTS methods.

The effectiveness of time scale methods is tested by designing reduced order optimal
controllers (Linear Quadratic Regulators) for the proposed transmission line model and
HIV infection model using SPaTS methods, and comparing it to a general, full order

control design.
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1.4 Chapter Outline

This research is organized as follows:

Chapter 2 forms the mathematical framework for the SPaTS methods. The standard
representations of singularly perturbed/ time scale systems are presented, and the criteria
for identifying slow-fast behavior in dynamic models are discussed. Time scale analysis
method involving separation of physical systems into independent slow and fast
subsystems is provided. These slow and fast subsystems form the basis of Time Scale
Synthesis which results in control laws that are suitable for real-time implementations.
Time scale synthesis is demonstrated for standard control laws such as state feedback and
optimal control. A formulation of the general (full order) control design is also provided

for comparison with the time scale design.

Chapter 3 presents the applications of time scale methods in Electrical Engineering,
where the primary focus is on Overhead Power Transmission Lines. Time domain
modeling of transmission lines is presented that accounts for the inherent dynamics of
transmission lines. System analyses are performed, to mathematically identify the slow
and fast behavior of the system. Time scale synthesis of an optimal control law for
mitigating perturbations in a transmission line is presented. The efficacy of this design
approach is compared to that of a general, full order, optimal control through MATLAB®
simulations. Reliability and resiliency of the time scale optimal control design are also
evaluated. A brief account of the research work done in the field of Renewable Energy is

provided to exemplify the significance of SPaTS methods in Electrical Engineering.
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Chapter 4 addresses Infectious Diseases in Life Sciences and the role of SPaTS methods
in achieving an optimal treatment strategy. HIV infection is the major focus of this
chapter where a time domain model of an HIV infection is analyzed and simulated to
understand the dynamics of an HIV infection. The time scale behavior is explicitly
indicated in the HIV model through suitable mathematical procedures. An optimal long
term treatment strategy for the HIV infection is developed using time scale methods. The
effectiveness of this control approach is compared to that of a full order optimal control
scheme. A preliminary research on measles, conducted during the initial research period

is also presented in this chapter.

Chapter 5 summarizes the significant findings of this research and the directions of future

work.
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Chapter 2

Time Scale Analysis and Synthesis

This chapter delves into the mathematical concepts underlying the theory of Singular
Perturbation and Time Scales (SPaTS). A literature survey is conducted in the areas of
science and engineering which emphasizes the extent of this theory’s applications.
Mathematical representations of singularly perturbed/ time scale systems are provided
and the criteria for identifying slow-fast behavior in dynamic models are discussed.
SPaTS methods, specifically Time Scale Analysis and Synthesis are presented in this
research that entails separation of full order systems into slow and fast subsystems, and
design of separate slow and fast controllers. The time scale design, that renders lower
order control laws for achieving the desired system performance, is demonstrated for

state feedback control and deterministic optimal control.

2.1  SPaTS Theory in Engineering & Science

SPaTS are well recognized in Control Theory, and its applications span a multitude of
fields in science and engineering. An extensive survey conducted by authors in [35] is
proof that SPaTS is an evolving and very active research area in systems and control
engineering. This theory has presented itself as a suitable method for modeling and
understanding the intricacies of physical systems in the fields of science and engineering;
for example biological systems, chemical systems, nuclear systems, electrical and
electronics circuits, power systems, aerospace systems, fluid dynamics and renewable

energy systems [35]. SPaTS methods offer excellent model order reduction and
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significant computational savings, which facilitates online, real-time implementation of
controllers [34]. Some of the applications of SPaTS theory in Electrical Engineering and

Life Sciences are discussed below.

2.1.1 SPaTS in Electrical Engineering

In Electrical Engineering, an electric power system is an example where multiple time
scales are observed. Dynamic processes in a power system range from lightning
discharges in microseconds, to thermal dynamics in minutes [36]. Figure 2.1 portrays the

various time scale phenomena in electric power systems.
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Figure 2.1: Time scale phenomena in electric power systems [36]

Time scales arise due to difference in speeds of response of devices. This is very evident
in electro-mechanical systems. For instance, in [37], a permanent-magnet synchronous
generator (PMSG) was modeled, where mechanical variables (such as generator speed,
drive train torque and rotor rotational speed) constituted the slow dynamics, and electrical

variables (such as generator stator currents) constituted the fast dynamics. However, time
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scales could also exist within purely mechanical or electrical subsystems.

Authors in [38] observed time scale nature within the mechanical systems of a wind
energy conversion system. This was by virtue of the difference in inertia of the large
wind turbine rotor and the relatively small inertia of the generator - drive train systems.
Time scales are also observed within electrical systems, for example, in individual power
system components, like transformers and IEEE Exciters [39]. In a transformer, the slow
dynamics was associated to flux linkage and the fast dynamics was associated to electric

voltage.

Systems identified with time scale behavior often adopt SPaTS theory to achieve model
order reduction for control design purposes. Consequently, literature provides ample
proof of power system models that employs SPaTS theory for reducing model
dimensions. A few examples are provided here. One of them is the publication [40] in
which the authors presented a method based on singular perturbation approach for sliding
mode control of an induction machine. The development of control law was based on the
separation of slow and fast and modes of the system. The fast dynamics of the system

was assigned to zero which simplified the control design process.

A multi time-scale power system model was considered in [41] which described the
dynamics of a synchronous generator, transmission line, transformer, and an induction
motor load. Model order reduction of this large model was achieved by neglecting the
fast dynamics (generator damping winding flux, load electromotor rotor flux) in the

system. Another publication on power system modeling was presented in [42] which
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performed voltage stability analysis of a general power system model using SPaTS
theory. The power system was represented in a standard singular perturbation (SP) form
(with the small perturbation parameter, &) where the fast dynamic variables were equated
to zero to derive a quasi-steady state model (i.e. the reduced order model obtained by

neglecting the small parameter).

DC-DC converters were analyzed in [43] where singular perturbation theory, specifically
time scale separation method (of interest in this research), was employed to improve the
performance of power factor correction (PFC) converters. The simulations indicated that
extremely simple controllers derived from time scale separation techniques on a PFC

converter produced good line current waveforms.

2.1.2 Time Scales in Biology and L.ife Sciences

As seen in Electrical Engineering, SPaTS theory are employed in a multitude of
modelling and control design scenarios, in various disciplines, and Life Sciences is no
exception. A literature survey in the field of Biology and Life Sciences presented an
astounding number of publications that employed SPaTS methods. A few interesting

examples are discussed here.

Singular perturbation theory has been applied to solve modeling problems in biological
systems. Research presented in [44] deals with a complex biological phenomenon
featuring a multi-time scale behavior, a photosynthetic process coupled with irradiance

for the growth of microalgae. While the characteristic time of micro algal growth is in
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hours, light and dark reactions occur in milliseconds. The dynamic second order model of
the system is reduced to a single dimensional model by regulating the fast dynamics. The
reduced model was used to compute an optimal control law to maximize algal biomass

production.

Another interesting example of SPaTS theory is in the work [45], where retroactivity
phenomena in bio-molecular systems were studied. Retroactivity are ‘impedance — like
effects’ at interconnections in biomolecular systems, both upstream and downstream, that
have to be minimized for seamless signal propagation. The authors demonstrated that for
an interconnected molecular system, whenever the dynamics of a system evolves on a
timescale faster than its upstream system dynamics, the retroactivity to the output can be
arbitrarily attenuated. This realization was achieved as a result of quasi-steady state
approximations of bio-molecular system’s time scale model by the application of singular
perturbation techniques. Stochastic modeling and signal processing of a nano-scale
protein based biosensor was presented in [46] where the theory of time scales was used to
understand the conductance levels of the ion channels in response to analyte

concentrations.

Epidemiology, one of the major branches of biology that studies the factors affecting the
health of populations, was seen to be benefitted by the SPaTS theory. Mathematical
modeling in infectious disease epidemiology was significant in identifying possible
approaches to control, including vaccination programs. Time scale theory was seen in

literature as preferred tools for developing control strategies of infectious diseases. For
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example, authors in [47] presented an epidemic model of measles for which optimal
vaccination strategies were realized using the theory of time scales. Time scale behaviour
stems from the fact that the disease dynamics (short periodic outbursts) operates much
faster than the human population dynamics (host’s life span — births and deaths). A quasi-
steady state approximation of the measles model was derived by assigning the singular
perturbation parameter to zero. A similar application of time scales was observed in [48]
where Song et.al. presented a model of tuberculosis to investigate the role of close and
casual contacts in disease transmission. The theory of time scales was introduced in this
paper to reduce the high model dimensions incurred by the addition of both types of

contacts’ dynamics in the disease model.

Time Scales in HIVV Modeling

Most of the search results returned by search engines/databases with the keyword ‘time
scale’ referred to the durations of the distinct phases in HIV disease progression (acute
infection (2-4 weeks), clinical latency (10 years or longer) and AIDS (3 years) [49]).
However, time scales with reference to singular perturbations or slow-fast behavior
yielded only a few publications. One of them [50] presented a nonlinear feedback control
of HIV infection with a singular perturbation approach. The presence of two time scales
in HIV dynamics was identified graphically. The feedback control law was designed
using singular perturbation theory which reduced the ODE of the fast viral dynamics to

an algebraic equation, thereby facilitating simple control law.

A model incorporating HIV mutation and treatment with enzyme inhibitors were
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presented in [51] to study the long term dynamics and multiscale aspects of HIV. The
model was reorganized into a standard singularly perturbed form, which was reduced into

lower dimensions by equating the viral dynamics to zero.

2.1.3 Summary of Literature Review

From the various contributions in literature, both in Electrical Engineering and in Life
Sciences, it was observed that SPaTS theory was widely adapted for reducing model
dimensions of a complex slow-fast system. This was achieved by neglecting the fast
dynamics in an effort to make control designs more tractable. Complexities arise due to
the interactions between the slow and fast modes resulting in ‘stiffness’ for mathematical
computations (numeric solvers). Even though neglecting the fast dynamics facilitates
ease of controller design, the solutions obtained from such a reduced order model does

not satisfy all the boundary conditions of the original system [34].

SPaTS methods —Time Scale Analysis and Synthesis discussed in this work are employed
to overcome the loss of boundary conditions, preserve the system dynamics and at the

same time reduce model orders [34], [52].

2.2 Mathematical Definition of Singularly Perturbations and Time Scale Systems
Mathematically, singularly perturbed systems are described by differential equations with
a small parameter ‘e’ multiplying the highest derivative of the dependent variable. The
small parameter can be small time constants, masses, moments of inertias, resistances,

inductances or capacitances which are responsible for increasing the order of the system.

22



Consider a system described by a linear second order boundary value problem [34], [52],
X+ X(t) +x(t) =0, (2.1)
with boundary conditions,
Xt=0)=x, x(t=1)=x,, (2.2)
where the small parameter, & multiplies the highest derivative X . As ¢ tends to zero either
from positive or negative values,

lim {x(t,&)} =x,e%", 0 <t<1,

-0,

; - (2.3)
‘gllﬁrgi{x(t,g)} =xe", 0< t<],
the degenerate (unperturbed) problem,
xOt)+x@(t) =0, (2.4)

obtained by suppressing the small parameter, & (in (2.1)), has the boundary condition
xO(t=1)=x, if etends to 0, and xX?(t=1)=x if & tends to O_. In either case, one

boundary condition is sacrificed in the process of degeneration.

The important features of singular perturbations are summarized as follows:

1. The problem (2.1) where the small parameter ¢ is multiplying the highest derivative is
called a “singularly perturbed” problem if the order of the problem becomes lower
for ¢ =0than fore #0.

2. There exists a boundary layer where the solution changes rapidly (Figure 2.2).
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Figure 2.2: Boundary layer (shaded regions) represented by 0(¢) [52]

3. The degenerate problem, also called the “unperturbed” problem, is of reduced order
and cannot satisfy all the given boundary conditions of the original (full, or perturbed)
problem. The dashed line in Figure 2.2 represents the solution of the system (2.1)
with ¢=0 and does not satisfy the original boundary conditions of the system,
X(t=0)=x.

4. The singularly perturbed problem (2.1) has two widely separated characteristic roots
giving rise to “slow” and “fast” modes in its solution. Thus, the singularly perturbed
problem possesses a “two time-scale” property. The simultaneous presence of “slow”
and “fast” phenomena makes the problem “stiff” from the numerical solution point of
view.

The slow and fast phenomena are characterized by small and large time constants, or by

system eigenvalues that are clustered into two disjoint sets [53]. The slow system

variables correspond to the set of the eigenvalues closer to the imaginary axis, and the
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fast system variables are represented by the set of eigenvalues located far from the
imaginary axis (Figure 2.3). The real part of the furthest eigenvalues should be at least 5

times away from the real part of the smallest eigenvalue in the group [34].
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Figure 2.3: Eigenvalue separation for a time scale system

2.2.1 Standard Singular Perturbation Model
A nonlinear system exhibiting time scale behavior is expressed in the standard singular
perturbation form as [34],

X(t) = f(x,z,u,¢,1),
, (2.5)
et(t)=9(x,z,u,¢,t),
where x and z are the m- and n- dimensional state vectors, u is an r-dimensional control
vector and ¢ is the small, scalar, positive parameter responsible for causing singular

perturbation in the sense that when & is neglected, the order of the system is reduced.

A linear singularly perturbed system is of the form,

X=AX+A,z+B,u,

, (2.6)
g1=AXx+A,z+B,u,
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where x and z are the m- and n- dimensional state vectors, u is an r-dimensional control

vector and the matrices A;; and B;; are of appropriate dimensions.

2.3 Time Scale Analysis

The main goal of the SPaTS theory is to separate the slow and fast signals and process
them independently. Time Scale Analysis is used to decouple a full order system into
reduced order subsystems. The decoupling procedure relieves the system of its ‘stiffness’
as the subsystems are now independent and interactions between them are minimized.
This method also facilitates control design with lower order subsystems compared to a
single higher order model offering significant computational savings. The other
advantages of decoupling the dynamics are:

1) Reduction in on-line and off-line computational requirements,

2) Parallel and distributed processing of information,

3) Processing information independently with corresponding sampling rates (slow with
slow sampling rate, fast with fast sampling rate).

4) Improved reliability of the system, due to the presence of multiple controllers in place

of a single or centralized controller.

For performing a time scale analysis, the time scale system need not be in the singularly
perturbed form (Section 2.2.1), i.e. a small parameter multiplying the highest derivative
or some of the state variables multiplied by a small parameter. The primary requirement
is that the linear system should possess widely separated groups of eigenvalues. A

singularly perturbed structure is only one form of the two-time scale systems [34].
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2.3.1 Standard Two-Time Scale System

A general representation of the two-time scale, linear system is given as [34],

X=Ax+Az+Bu, 27)
2=Ax+Az+Byu, '
where x and z are the m- and n- dimensional state vectors, u is an r-dimensional control

vector and the matrices A and B, are of appropriate dimensions. In this representation, n

eigenvalues of the system are assumed to be small and the remaining m eigenvalues are

large, giving rise to slow and fast responses respectively.

2.3.2 Decoupling Process
The decoupling into slow and fast subsystems is achieved using a two-stage linear

transformation [34],

X, =X—Mz,,
Z, =7+Lx, (2.8)
where the subscripts ‘s’ and ‘f* denote slow and fast respectively, and L (nxm) and
M (mxn) are solutions of the nonlinear Lyapunov-type equations,
LA+A -LAL-AL=0, 2.9)
(A=AL)M-M (A +LA))+A, =0. '
The slow and fast subsystems after decoupling can be represented as,
X, (t) = Ax (t)+B.u(t),
(2.10)

2.(t)= Az, (t)+B,u(),

where,
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A=A-AL

A=A +LA,
L (2.11)
B, =B, - MLB, - MB,,
B, =B, + LB,

The calculation of L and M are described in the following section. From the decoupled
subsystems (2.10), it is seen that variables X;and Z; can be solved independently of each

other.

2.3.3 Calculation of L and M Matrices

The L and M matrices are calculated iteratively using the high accuracy Newton method
[53]. Newton’s algorithm converges quadratically in the neighborhood of the sought
solution, at the rate of O(ezi)where i =1, 2... imax. This rate of convergence makes it

faster than the fixed point algorithm which is another commonly found iterative method

in literature with a rate of convergence ofO(¢). The sufficient condition for the

convergence of Newton’s algorithm is given in reference [54]. The iterative procedure to
calculate the L and M values is given below:
Step 1: Choose the sample number of maximum iterations (imax) for running the

algorithm.

Step 2: Initialize the value of L and M as L' = A,'A.and M© = A A respectively.

Step 3: In the iterative loop, calculate the following:
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Q(i) — A3 +8L(i)A2L(i),

D" = A, +¢L"A,

DY = —5(A-AL"). @.12)
DOLIY 4 DO QW

1 2

M (i+1) Dl(i+l) + Dz(i+l)M (i+1) — AZ,
Note: The solutions of the last two equations in (2.12) are solved as Sylvester type

equations which has the form,

AX +XB+C =0. (2.13)
2.4  Time Scale Synthesis
Once the full order system is decoupled, control laws can be implemented on the slow
and fast subsystems to achieve the desired system performance. Control laws such as
Proportional-Integral-Derivative (PID) control, state feedback control, optimal LQR

control [38], [55], optimal Linear Quadratic Gaussian (LQG) control [38], robust H_

control [56], and model predictive control [57] can be implemented with the time scale
approach. Time scale control design differs from the conventional design process in that
control laws are designed separately for each of the slow and fast subsystems, instead of
one central control. This unique procedure minimizes the ‘stiffness’ involved in the
controller design as the slow and fast controllers process system data independently. The
following sections demonstrate time scale synthesis of two standard control strategies —
state feedback control and optimal LQR control. The conventional, full order control

designs are presented alongside for comparison purposes.

2.4.1 State Feedback Control

One of the common and simplest design approaches for physical systems represented in
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state space form is the state feedback control. The poles of the system are chosen to
achieve a desired system response and the control law is developed such that the closed
loop system delivers the desired system response. A general state feedback control is

described first which is then compared to its corresponding time scale design.

State Feedback Control — Full Order Design
The single-input system dynamics are given by,

X(t) = Ax(t) + Bu(t),

0-00. 219
where A, B and C are the system, control and output matrices respectively. The poles of
the system are given by the eigenvalues of system matrix, A which influence the dynamic
characteristics of the system such as sensitivity to disturbances, stability, and decay of

oscillations. The goal of state feedback control is to influence the system (A) such that it

modifies its eigenvalues to achieve the desired system response. The block diagram

representing the state feedback control is represented in Figure 2.4 [58].

r_b: u(t) AB.C y(t)

x(t)

Figure 2.4: Simple schematic of a state-feedback control system [58]

The full-state feedback for the system is defined as,
u(t) =r—Kx(t), (2.15)

where, r is an external reference input having the same dimensions as u(t) and K is the
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feedback gain of the closed loop system. When r =0, the state feedback control becomes

a state regulator. The closed loop dynamics with the state feedback control is obtained as,

%(t) = (A— BK)x(t) + Br,

y(t) = Cx(t). (2.16)

The necessary and sufficient condition for arbitrary pole placement is that the pair (A, B)

must be controllable, and it is assumed that all the states are measurable.

Simple Design Example

The control objective is to design a state feedback matrix K for the system defined by,

X(t) = E ﬂ x(t) +[ﬂ u (2.17)

such that the poles of the closed loop system x(t)=(A-BK)x(t) is stable with the

desired poles at s = -5 and -25 and no overshoot.

Design:
The stability of the open loop system was evaluated through the roots of its characteristic
equation,

sl —Al=(s-1)(s-2)-1=5"-35+1=0

2.18
= $=2.616;0.382 = unstable! ( )

A unit step input response of the linear system (2.17) in MATLAB® (Figure 2.5) shows

To Workspace

x1
X' = Ax+Bu -

To Workspace1

A

Step

Linear System

Figure 2.5: Simulink model for open loop system
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that both the state responses were observed to be unstable as predicted by its eigenvalues

(Figure 2.6).
X 107 Open Loop Control
—x1(t)
: : —x
LRI S CEEEEEEELEP e i AL
ol R R TR R PP PP P PP
g 6 _________________________________________________________________
e e PR PR E e
2 T R
0 i ' '
0 5 10 15

t
Figure 2.6: State response with no feedback control
The state feedback control law is defined as,

u=—[k  k,]x(t)

o, (2.19)

where K is the state feedback gain that results in the closed loop system

X(t) = (A—BK)x(t) + Br. The closed loop dynamics is defined as,

111 1 1-k  1-k,
e N S e 2.20)

which has the characteristic equation,

Is1 —(A—BK)|= (s - 1 k))(5—2) - (1—k,) =0

) (2.21)
=5 +5s(k, —3)+(-2k, +k, +1) =0
The characteristic equation with the desired poles at s = -5 and -25 is given by,
(s+5)(s+25) =s*+30s+125=0; (2.22)

Comparing this equation to the closed loop characteristic equation (2.21) results in,
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k,—3=30 }:) k, =33

K =|33 190].
-2k, +k, +1=125 k, =190 = [ ] (2.23)

The linear system (2.17) with feedback control (full order) was simulated in MATLAB®

and is shown in Figure 2.7. The gain block in the model holds the value of —K.

To'W ok spacel1l

®1_full
* = AxaBu | To Workspace2
o y = Cx+Du v
Step
To Workspaced
Linear Systermn1 l:l

*‘ xl,x2

Figure 2.7: Simulink model for state feedback control — full order case

The step response of the closed loop feedback system is provided in Figure 2.8. Both
states of the closed loop system were observed to be stable, with a slight overshoot for

state x, (t) and zero overshoot for state x,(t).

Full Order State Feedback
0.05 T , , , , T :

—

Figure 2.8: States of the full order system with feedback control
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State Feedback Control - Time Scale Synthesis

The time scale synthesis involves separate feedback control for each of the slow and fast
subsystems. The control laws for the slow and fast subsystems, x(t) andX,(t),

respectively, are defined as,

u, (t) = K x,(t),
U (t) Z_fof (t):

(2.24)
where K and K, are the slow and fast gains of the corresponding subsystems. The slow
and fast control is combined to form a composite state feedback control, u,(t) which is
fed back to the linear system, i.e.,

u, (t) =ug (t) +u, (). (2.25)
The time scale synthesis of state feedback control is illustrated in Figure 2.9.

(1) _( y(7)
r Q u X 4 B C |—>

Time-scale
Decomposition

u, (1)

Figure 2.9: Time scale synthesis of state feedback control

Slow and Fast Subsystems
The eigenvalues of the system (2.17) were evaluated to verify time scale behavior for
performing time scale analysis. The eigenvalues were found to be 0.38197 and 2.618,

which are different from each other by an order of magnitude thereby verifying time
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scales in the system. The linear system (2.17) was then decoupled into slow and fast
subsystems through time scale analysis (described in Section 2.3.2). The 1% order

subsystems were obtained as,

A =[0.38197], A, =[2.618],

2.26
B, =[0.72361], B, =[0.61803], (2.26)

The characteristic equation of the slow subsystem is formulated as,

Isl,— (A -BK,)|=0
s—(0.3819-0.723K,)| =0 (2.27)
s+(-0.3819+0.723K,) =0

and for the fast subsystem it is,
sl —(A -B,K,)[=0
|s—(2.618-0.618K )| =0 (2.28)
s+(—2.618+.618K;)=0
The desired eigenvalues have an eigenvalue separation ratio of 1:5. Keeping the same
separation ratio, the eigenvalues for the time scale design were chosen as -20 (slow
eigenvalue) and -100 (fast eigenvalue). The corresponding desired characteristic
equations are,

slow subsystem: (s+20) =0

fast subsystem: (s+100) =0 (2.29)

Comparison of closed loop and desired characteristic equation results in single order

matrices K and K, as,

$+(—0.3819+0.723K,) = s+ 20; $+(-2.618+.618K;) = (s +100)
= —0.3819+0.723K, = 20; — —2.618+.618K, =100 (2.30)
= K, =28.191. = K, =166.05.
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A Simulink® model for the time scale synthesis was implemented to observe the

controllers’ performance (Figure 2.10).

G
To Works pacel

"

To Workspaced

® = Ax+Bu
y = Gt Du
*2

Linear System

Gain2 To Workspaced

Figure 2.10: Simulink model for state feedback control — reduced order case

The state responses in Figure 2.11 indicates that the composite state feedback control was

able to render the system stable, with overshoot values very similar to the full order case,

i.e. zero overshoot for x,(t) and a slight overshoot for x,(t).

Reduced Order State Feedback

0.05

0.05 i ' '
0 05 1 15 2 25 3 35 4

001 T I I I I I I

0.005

x2(t)

Figure 2.11: States of the reduced order system with feedback control
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Comparison of Full Order and Reduced Order Design

The state feedback design for the full order system resulted in a 2" order gain matrix,

K=[33 190] while the time scale design resulted in two single order gains,

K, =28.191and K, =166.05. Both the designs were able to stabilize the system, and met

a ‘zero overshoot’ requirement for one of the states. The state responses and control

performance are compared in Figure 2.12. The results manifests the capabilities of the

time scale synthesis that a very comparable control performance was achieved with lower

order controllers. This design example could certainly be extended to complex, higher

order systems for designing feasible controllers that require less online and offline

computations.

x1(t)

x2(t)

Full Order vs. Reduced Order

0.05 ! ! ! ! ' T
: | m—— x1-full
: X1-red |
P I N
0 05 1.5 2 25 3 3.5 4
t
0.01 ; ;
P b Rkt i ISR x2-full |
0.005 45" e S e x2-red
0 i | | i | b
0 05 1.5 2 2.5 3 35 4
t
1 ! T ! T
= ; : u-full
Al e e P : u-red
A i | i i
02 0.4 06 0.8 1

Figure 2.12: Full order vs. reduced order state feedback control design

2.4.2 Optimal Control Time Scale Systems

Time scale synthesis was successfully applied to state feedback control. Another example

chosen to demonstrate the scope of this design is Optimal Control. The formulation of
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control laws are provided in this section, and the simulation and results are presented in

Chapters 3 and 4, as part of the transmission line and HIV research.

In general, an optimal control design provides the best possible performance for a given
performance index or cost function. When the performance index is quadratic, and the
optimization is over an infinite horizon, the resulting optimal control law obtained by
minimizing the cost function is called a Linear Quadratic Regulator (LQR). In the event
of perturbations, the objective of an LQR control is to bring the perturbed states to zero.
It is assumed that 1) all the states are measurable, 2) the control signal is unconstrained
for design purposes and 3) the system is controllable. The performance index is chosen to
minimize the error between the perturbed state and the desired state (which is zero) for an

infinite time period.

Conventional optimal control design involves design of a single controller for the full
order system. In the following sections, time scale synthesis of LQR control is presented
where separate LQR controllers are formulated for each of the slow and fast subsystems.
In the following sections, LQR design of a full order transmission line is presented as a

comparison for the reduced order LQR design (time scale approach).

LQR — Full Order Design
Given, a linear system of the form,
X(t) = AX(t) + Bu(t), (2.31)

where x and u are the state vector and control input respectively, the performance index,
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J as,
J= %]O.[XT (tQX(t)+u’ (t)Ru(t)] dt, (2.32)

where Q and R are the symmetric positive definite matrices, and the boundary conditions
as X' (t,); x"(:0)=[0 0], the optimal state, x*(t)and the optimal control signal u*(t)
are defined as [59],
x*(t) =] A-BR™B"P ] (1), (2.33)
u*(t) =—R'B"PX*(t) =—K X*(t), (2.34)
where P is the solution of the algebraic Riccati equation,
PA+A"P+Q-PBR'B'P =0, (2.35)
and K is the regulator gain. A block diagram describing the optimal control of a full order

linear system is shown in Figure 2.13. As seen in figure, all states of the system are fed to

a single controller for processing the control signal.

O u* Linear Xx*
System

Figure 2.13: LQR control block diagram for the full order, linear system

LQR - Reduced Order Design
In the time scale design, the eigenvalues of the original system are first verified and

subjected to time scale analysis (Section 2.3.2) which extracts the slow and fast
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subsystems. The control laws are derived separately for the slow and fast subsystems, and
they work in parallel towards bringing the system perturbations to zero. The slow

subsystem, x(t) defined in (2.10), has a performance index,
1 0
=3 % QX0 +u] ®Ru,®)] dt, (2.36)
f

where Q, and R_are the weighting matrices for the slow subsystem. The control signal

U, (t) for the slow subsystem is defined as,

U, (t) =—K x (t) =—R. "B, P (t), (2.37)
where K_ is the regulator gain of the slow subsystem and P, is the solution of the slow
algebraic Riccati equation,

PA+A'P.+Q,—PBR,'B/P, =0 (2.38)
Similarly, for the fast subsystem, LQR control is derived as,

U (t) =K, x, (t) =—R, "B, P, X, (t), (2.39)
where K, is the regulator gain of the fast subsystem, and P, is the solution of the fast
algebraic Riccati equation,

P.A +A'P +Q, -P,B,R,"B,"P, =0. (2.40)

Q; and R, are the weighting matrices for the fast subsystem. The slow and fast control

signals are processed independently, and fed back to the system as a composite control
signal,u”(t) i.e.,

u"(t) =u (t) +u; (t). (2.41)

A block diagram describing the time scale LQR design is presented in Figure 2.14.
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Figure 2.14: LQR control design using time scale approach

2.5  Conclusion

SPaTS methods are well recognized in control theory and its applications span numerous
fields in science and engineering. Literature surveys in the field of Power System
Engineering and Life Sciences revealed that these methods were applied as a means of
model order reduction to make control designs more tractable. Once the model was
realized in the standard singular perturbation form, the fast dynamics were neglected to
simplify control design, or system information is lost in the process. To overcome the
loss of system information, SPaTS methods are presented that achieve model reduction
while keeping the fast dynamics intact. A decoupling process separates the full order
system into slow and fast subsystems, guaranteeing excellent eigenvalue approximations
of the original system. The reduced order approximations are key in designing software
controllers that can be implemented real-time, as the separated subsystems are of lower
order and require less computational efforts. The applications of SPaTS methods are well
suited for controller design in DLR technology and smart grids, especially for power
management and control, and also for designing feasible treatment strategies for an HIV

infection.
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Chapter 3

Time Scale Analysis and Synthesis in Electrical Energy

This chapter presents the applications of Time Scale Analysis and Synthesis in Electrical
Engineering, with focus on Overhead Power Transmission Lines. Time domain models of
overhead power transmission lines are developed and simulated to gain insights into its
inherent dynamic behavior. A second order, nonlinear state space model that accounts for
both electrical and thermal dynamics is presented. The eigenvalues of the system were
analyzed, which indicate the slow - fast behavior of the transmission line system. Using
time scale analysis, a full order transmission line model is decoupled into independent,
lower order, slow and fast subsystems. These decoupled subsystems are the basis for the
Time Scale Synthesis of an optimal control scheme for state regulation (Linear Quadratic
Regulator). The efficacy of this control approach is compared to that of a full order
optimal control design. Reliability and resiliency of Time Scale Synthesis are also
discussed in this chapter. A brief overview of the application of SPaTS methods in Wind
Energy Conversion Systems is provided to highlight the extent of time scale methods in

Renewable Energy.

3.1 Introduction to Overhead Power Transmission Lines

In an electric grid, energy flows from the power generating stations to the customers over
a network of overhead and underground transmission lines. Figure 3.1 [60] demonstrates
various elements of a power supply network. Overhead power lines are either high

voltage transmission lines (69 kV to 765 kV) that connect power plants to substations, or
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local distribution lines (4 kV to 69 kV) that cover shorter distances, from substations to
residential/commercial customers. Overhead transmission lines are a reliable, low cost,
easily maintained, and established method to transport bulk electricity across long
distances. Underground transmission, on the other hand, costs approximately 4 to 14
times more than overhead lines of the same voltage and same distance, and is more
complicated to construct than overhead lines due to their different physical,

environmental, and construction requirements [61].

1]
I \\N
4 High-Voltage Bl NN
/ [ X| Transmission Lines .
o

Sub-Transmission Lines

\
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Generation Stepup Transmission P Distribut Industrial
Plant Station Tr Customer
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1]

Local Distribution Lines

-

Residential Commercial Industrial Distribution

| J 10N
Underground Distribution Lines Underground Customer Customer Customer Substation piIsTRIBUTION N

Irrigation Customer

Figure 3.1: Electric power supply network [60]

Two significant technical challenges for underground power transmission are,

1) providing sufficient insulation so that cables can be within inches of grounded
material; and 2) dissipating the heat produced during the operation of the electrical cables
[61]. For these reasons, additional cabling, insulations and cooling materials are required
to achieve the same reliability as overhead lines, which also translate to higher costs of
installation. In contrast, overhead lines are air cooled and widely spaced for safety. Figure

3.2 [62] shows the size comparison of an underground cable to an overhead cable.
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Figure 3.2: Underground cable and smaller overhead conductor [62]

For reasons mentioned earlier, only overhead power transmission lines are considered in

this research.

3.1.1 Components of Overhead Power Lines
Overhead power lines are employed for transmission and distribution of electric power. A

typical transmission line is displayed in Figure 3.3.

Figure 3.3: Components of an overhead power line [63]

In general, the main components of an overhead line are,
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e Conductors — carry electric power from the generating station to the receiving end
station.

e Supports — structures such as poles or towers that keep the conductors at a suitable
height above the ground.

e Insulators — dead end structures that are attached to supports and insulate the
conductors from the ground.

e Cross arms — provide support to the insulators.

e Dampers — reduce the vibrations and oscillations on the transmission lines due to
wind.

e Spacers — prevent wind induced conductor motion damages.

3.1.2 Conductor Materials

Aluminum, copper, and steel are the materials commonly used in conductors. The utility
industry initially transmitted electricity over copper conductors, but eventually converted
to conductors made from aluminum and steel, since copper weighs and usually costs
considerably more than aluminum conductor of the same resistance. Modern overhead
transmission line conductors are bare, and stranded with two to four layers of aluminum
over a galvanized steel core in a configuration known as Aluminum Conductor, Steel
Reinforced (ACSR). Other classes of aluminum conductors that are currently employed
in transmission lines are, AAC — All Aluminum Conductors, AAAC — All Aluminum
Alloy Conductor and ACAR — Aluminum Conductor, Alloy Reinforced. Figure 3.4

displays the conventional conductor configurations in industry today.
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ACSR is significantly stronger than AAC, AAAC and copper conductors with the same
dc resistance with a minor penalty of increased external diameter and increased weight
per unit length [64]. Aluminum is chosen for its excellent conductivity, low weight and
low cost. The center strands of steel provide additional strength in supporting the weight
of the conductor. Steel also has lower elastic and inelastic deformation (permanent
elongation) due to mechanical loading (e.g. wind and ice) as well as a lower coefficient
of thermal expansion under current loading. These properties allow ACSR to sag

significantly less than all-aluminum conductors [65].

AAC Conductor:
— ﬂ“ idll”‘\l”“nl \A\‘)I((IH\'-{\"
AAAC conductor :
" all aluminum alloy conductor
ACSR conductor:
1. aluminum conductor
2.steel reinforced core
/ = \

[

/
ACAR conductor |

1. aluminum alloy reinforced _—
//

\

2. aluminum conductor —

Figure 3.4: Overhead AAC, AAAC, ACSR and ACAR configurations [66]

This research adopts an ACSR configured overhead conductor for modeling and
simulations. The numerical data provided in [3] is for a 795 kcmil 26/7 Drake ACSR

conductor. The structure of an ACSR cable is provided in Figure 3.5.
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Figure 3.5: ACSR configuration with 26 outer strands of aluminum and 7 core strands of

steel [66]

3.2 Modeling of Overhead Transmission Lines

Transmission lines are subjected to various dynamic physical processes in the field. Some
of which that cause a noticeable impact are, current flow in the line, heating effects due to
line resistance, effects of weather on the line such as line cooling due to wind flow or line

heating due to solar radiation.

The amount of line current (ampacity) results in a desired limiting line temperature. Line
temperature on the other hand is influenced by various environmental factors. These two
variables are dependent on each other and are very critical in deciding the amount of
power that can be safely transmitted through a transmission line. The dynamic
interactions between them are characterized by different speeds of response, which
results in a slow-fast/time scale behavior. The dynamics of line current and line
temperature have to be captured in transmission line models to understand their slow-fast
behavior. This characteristic could be utilized to calculate real-time ampacity and limiting

temperatures necessary for dynamically rating transmission lines.
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3.2.1 Literature Review of Transmission Line Models

An extensive survey was conducted in the IEEE Xplore Digital Library for time domain
models that describe the complete transmission line dynamics, or time scale nature of
transmission lines. The results of the survey indicated that state space models have been
studied that describe either line current dynamics or line temperature dynamics, but not

both.

Authors in [67, 68, 69] present state space models of transmission lines that describe the
electrical dynamics involving line currents and line voltages. These models do not
include the line temperature dynamics, and hence do not offer a complete model for this
research. Line temperature dynamics on the other hand, is addressed in the IEEE
Standard 738 [3], which offers guidelines for calculating the current-temperature
relationship of bare overhead line conductors. A single order differential equation of line
temperature describes the heat exchange between the conductor and the environment, in
which line current contributes towards heat gain in the conductor. In this equation, line
current is a static variable and hence its dynamics is unaacounted for. The dynamic
interactions between the variables or the slow-fast behavior of transmission lines are not

addressed in the standard.

A literature search was also conducted on the topic of time scales in transmission lines.
The results presented references that considered time scales in a general power system or
in power system components. Authors in [70] addressed time scales in a single-machine
infinite bus system, which is an approximation of real power systems. Power systems
consist of single or multiple generators connected through transmission lines to a very

large power network which is approximated by an infinite bus. The fast dynamics were
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identified as the flux linkages of rotor windings along direct and quadrature axes, and the
slow dynamics were identified as emf, generator rotor angle and rotor speed variables.

The transmission line component was not specifically accounted for in this publication.

The publication in [71] presented a three machine interconnected power system which
was modeled with flux linkage and voltage regulator dynamics, and the time scales were
analyzed for the whole power system. The work in [39] presented time scales on a single
power system component, a transformer. Here, the slow variable had dimensions of a flux
linkage and the fast variable had dimensions of a voltage.There was minimal literature on

the time scale behaviour of a transmission line component.

3.2.2 Overhead Transmission Line Model

The lack of suitable transmission line models (electrical + thermal dynamics) in existing
literature encouraged the formulation of a transmission line model from basic principles.
Since the temperature dynamics was already established in the IEEE Std. 738, the
electrical dynamics had to be developed. The equations for electrical dynamics were
formulated through the application of Kirchhoff’s laws on equivalent circuits of
transmission lines. The temperature dynamics is then combined with the line current

dynamics to form the suitable transmission line model for this study.

Equivalent Circuit of a Transmission Line
The electrical performance of overhead transmission lines are characterized by four

parameters, namely resistance R, inductance L, capacitance C and conductance G.
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Parameters R and L constitute the series impedance, Z, and C and G constitute the shunt
admittance, Y. These parameters are distributed along the entire line and are used to
model the behavior of the voltage V and current | signals as they travel throughout the
line, as represented in Figure 3.6 [72]. The subscripts ‘S’ and ‘R’ stand for the sending
and receiving side respectively. The conductance, G accounts for the leakage current in
the insulation and active power losses due to corona effect. For a bare overhead
conductor, leakage currents flow to the ground through the surface of an insulator. As
leakage currents are considerably small when compared to nominal currents, the

parameter G is not considered in the transmission line model [64].

-

Figure 3.6: General representation of a transmission line [72]

Transmission line models are classified based on the length of the lines.

— Short line: 0 < length < 80 km (0 < 50 miles)

— Medium line: 80 km < length < 250 km ( 50miles < length < 155 miles)

— Long lines: length > 250 km (length > 155 miles)
Depending on the length of the transmission line, various factors come into play that
limits the amount of power through a line. In short lines, resistive heating limits the
amount of power that the transmission line can supply. The thermal limits are intended to
to limit the conductor temperature and the resulting sag and loss of tensile strength. In

longer lines, electrical phase shifts and voltage drops across the line are usually the
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limiting factors. DLR technology is considered primarily for short length lines where

conductor temperature is the limiting factor for line ampacity.

Accurate representations of transmission lines require uniformly distributed parameters
(series resistance, series inductance, and shunt capacitance). However, short lines and
medium lines could be represented using lumped parameters without any appreciable loss
of accuracy as well as equivalent circuits with lumped parameters [64]. In this research, a
short transmission line is chosen for analysis. The equivalent circuit is drawn using a
lumped parameter model consisting of only series resistance and series inductance, as the

shunt capacitance at 50 or 60 Hz is very negligible.

3.3  State Space Modeling of Transmission Lines
A non-linear, time domain model of a short length transmission line is presented in this
section. The equivalent circuit for a short line is provided in Figure 3.7.

R{Tavg) L
apan

* AMN—
L +

Figure 3.7: Equivalent circuit of a short line

In the above figure, Vsource IS the source voltage representing a generator and i, is the

current flowing through the line. The resistance of the transmission line, R is a function

of conductor temperature, T, which determines the amount of current flowing through

the line. The commonly used ACSR cable consists of a solid or stranded steel core
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surrounded by one or more layers of strands of aluminum. T, denotes the average

temperature of aluminum strand layers, which has excellent electrical conductivity. The
line inductance, L is assumed to be independent of line temperature, as observed from the

datasheet values of an ACSR cable (Appendix A - Table A.3). V,_, is the voltage drop

due to a resistive load R__, at the receiving end of the line.

load

3.3.1 Line Current Dynamics
Applying Kirchhoff’s voltage and current laws to the equivalent circuit, the dynamics of

line current is described as,

di (t) (Tavg) s RIoad Vsource
- i (t) 1 i, (t) o, (3.1)

3.3.2 Line Temperature Dynamics

Figure 3.8 [8] illustrates the physical processes involved in the heat balance of an
overhead transmission line. Joule effect and solar heating contributes to heat gain in the
conductor, while convection (wind cooling) and radiation results in heat loss in the

conductor.

Radiative Coaoling
Wind Coacling

Solar Heating
Joule Effect
Heating

Figure 3.8: Heat balance within a conductor [8]
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The temperature dynamics of the line is described using the non-steady state heat balance

equation [3],

dT,, (t) _ 1
dt mC

p

[R(Tavg(t))ii(t)+qs_qc_qrj|’ (32)

where m is mass per unit length of the conductor and C, is the specific heat of the

conductor material. Since the conductor consists of more than one material (i.e. ACSR),
the conductor heat capacity is equal to the sum of the heat capacities of the core and the

outer strands, each defined in this way, i.e.,
mC,=> m-C,. (3.3)
For an ACSR conductor, the conductor heat capacity is defined as,
mC,=m, -C 4 +mg-Cq, (3.4)
where m, and mgare the mass per unit length of the outer aluminum and steel core
respectively, and C_, and C  are the specific heats of aluminum and steel respectively.
T, (t) is the average temperature of the line conductor which is a function of line current
i, solar heat gain (q,),convection heat loss (g.) and radiation heat loss(q,). The physical

processes involved in the heat balance of the transmission line are described in detail

below.

Joule Heating, i{ -R(T,,,)

Joule heating or resistive/ohmic heating, is the process where the energy of an electric
current is converted into heat as it flows through a resistance. The resistivity of a

conductor material generally increases nonlinearly with temperature. However, for the
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usual operating conditions at temperatures ranging from -40°C to 75°C, the variation in

resistance can be considered linear without any appreciable error [64]. The electrical

resistance, R(T.

avg

) is assumed to be a linear function of line temperature, and is defined

as [3],

R. —R
R(Tu) = { T T }'(Tavg (O =T ) R @5)
high —

low

low

where T, and T, are the low and high average conductor temperatures, respectively,
for which ac resistance is specified. RT.DW and RThigh are the resistance values corresponding

to T,,and Ty, respectively.

low

Solar Heat Gain, g,
The solar heat gain, q,is defined as [3],
g, =a-Q, -sin(8)- A (3.6)

where «,Q.,f0and A’are the solar absorptivity of the conductor, total solar and sky

se’?

radiated heat flux with corrected solar heat intensity, effective angle of incidence of the

sun, and projected area of conductor per unit length. This g, factor along with Joule

heating, i’ (t)- R(Tavg) , contributes to the increase in conductor temperature.

The angle incidence, @ is calculated using the formula,
6 = arccos| cos(H,)-cos(Z,-2,)], (3.7)
where H_is the solar altitude of the sun in degrees, Z_is the solar azimuth angle in

degrees, and Z, is 90°, the azimuth of the transmission line in the east — west direction.
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Solar altitude, H_is given by,
H, = arcsin[ cos(Lat)-cos(&)-cos(w)-sin(Lat)-sin(5)], (3.8)
where Lat is the conductor latitude in degrees, ¢ is the solar declination in degrees given

by,

284+N

5= 23.46-sin{ -360}, (3.9)

@ 1s the hour angle which is the number of hours from noon times 15°, and N is the day
of the year. Solar azimuth, Z_ is calculated using the equation,

Z,=C+arctan( ), (3.10)
where 4, the solar azimuth variable is,

B sin(w)
Z_sin(Lat)-cos(a))—cos(Lat).cos((g)' (3.11)

C is the solar azimuth constant in degrees, a function of hour angle, » and y as shown in

Table 3.1.

Table 3.1: Solar azimuth constant C — Lookup table

Hour Angle, o, degrees | C if y >0degrees | Cif y <0degrees

-180<w<0 0 180

0<w<180 180 360

Convective Heat Loss, g
The convection heat loss g, is defined in terms of forced convection and natural

convection processes.
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e Forced convection heat loss equations are defined at low wind speeds (q,,) and high
wind speeds (g, ), and the larger of the two is used for calculating forced convective heat

loss. The equations for q,, and g_,are [3],

Q. = Kangle [101+135 NR90.52:|. kf '(Tavg _Ta)’

(3.12)
qc2 = Kangle -0.754- NReQ6 ’ kf ‘(Tavg —Ta),

where K kK, Ng.,and T, are the wind direction factor, thermal conductivity of air,

angle ! Re!

Reynolds number and ambient air temperature, respectively. Wind direction factor, K

angle
is defined as,

K. . =1.194—cos(¢)+0.194cos(2¢) +0.368sin(2¢), (3.13)

angle
where ¢ is the angle between the wind direction and conductor axis. Thermal

conductivity of air, k is calculated using the equation,

~ s (Tt T ) o Tag + T Y
k, =2.42-107%+7.477-10 > 4.407-10 > (3.14)

The Reynolds number N ,is a dimensionless quantity which describes convective heat

Re?
loss, and is defined as,

DO'pf 'Vw

Nge =—, (3.15)
Hi

where D, is the outside diameter of the conductor and V,, is the wind velocity. Air

density, p, and dynamic viscosity of air, x, are determined using equations,

 1.293-1.525-10*H, +6.379-10°H ?
Tos o j | (3.16)

Pt

1+ 0.00367(
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—6 Tavg +Ta N
1.458-10 5 +273
(3.17)

ol Tav +Ta ,
g2 +383.4

where H_ is the elevation of conductor above sea level.
e Natural convective heat loss (q,,) dominates at zero wind speeds and is defined as,
qcn = 3645 ’ pf o ’ DOOI75 ’ (Tavg _Ta)llzs' (318)

where p, is the air density and D, is the outside diameter of the conductor. As

recommended in [3], the larger of the forced and natural convection heat loss is used at

low wind speeds, for calculating the convection heat loss, g, .

Radiative Heat Loss, g,

Heat loss due to radiation becomes significant when the conductor is heated above the

ambient temperature. Radiative heat loss, g, is defined as,

T +273) (T, +273Y)
=17.8-D, -g, - &9 —| -2 A1
g 0" €0 [( 100 j ( 100 J (3.19)

where ¢, is the conductor emissivity.

3.3.3 Nonlinear State Space Model
Combining equations (3.1) — (3.19), the nonlinear state space equations for a short length

transmission line are,
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dl (t) (Tavg) . M Vso&
g OT ORI (3.20)
t .
a(;i() 1 ——[i2(t) R(T,,, (©) + 0, ~ 0, —q, |;

P
Comparing the state-space model (3.20) to the standard representation of a nonlinear

system, x = f (X, u), the state vector x and input vector uare defined as,

i, (t)
- [Tavg (t)} (3.21)
U =[Vepuree | (3.22)

where i is the current flowing through the line, T, is the average conductor temperature

and v___is the source voltage. The model data for all the transmission line parameters

source

are taken from the 795 kcmil 26/7 Drake ACSR conductor which were obtained through

reference [3]. The model data are provided in Appendix A.

3.4  System Analysis of Short Transmission Line Model

The nonlinear equations of the short transmission line were simulated in MATLAB® to
understand its dynamic behavior. The system was perturbed by a step change in source
voltage at the origin, and the state responses were observed. The parameter values for
simulating the system are listed in Table 3.2. A sample line length of 60 km was chosen
for this simulation, as lengths of short transmission lines range from 0 to 80 km.

Table 3.2: Initial conditions for the short line model

Parameter Numerical Value
VSOUI’CG (t) source (O) 80 kV
i (t) i (0)=0A
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Parameter Numerical Value

Tavg (t) Tavg (0) =0°C

Line conductor parameters Appendix A

Environmental Parameters Appendix A

3.4.1 State Response Plots

The plots of states with respect to time are displayed in Figure 3.9 and Figure 3.10. It was
observed that the line current’s step response was much faster than that of the line
temperature, corresponding to the physical nature of electrical and thermal responses.
Observing the rise time of current (near the origin), revealed it to be in the order of
milliseconds, while that of temperature was in the order of minutes. This difference in the
speed of variables indicates the presence of two time scales in the system, one slow and
one fast. The slow variable corresponds to the thermal dynamics or line temperature and

the fast dynamics corresponds to the electrical dynamics or line current.

Current i{f) Current i(f)
900 : . .
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Figure 3.9: Plot of line current i, with respect to time (left); Detailed view of state near

the origin (right)
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Figure 3.10: (a) Plot of line temperature Tavg with respect to time

3.4.2 Verification with the IEEE Std. 738 Results

The non-steady state heat balance equation (3.2) is numerically implemented in the IEEE
Std. 738 for a sample set of conductor and environmental parameters. A plot of the
transient temperature response to a step increase in line current is provided in the
standard and is shown in Figure 3.11. Line current, a static variable in the standard, is
stepped from a pre-load current of 800 A to 1200 A. The initial line temperature is set at
80°C as mentioned in the standard. A simulation of the proposed dynamic model (3.20) is
run in MATLAB® with the same initial conditions to compare its step responses with the
IEEE standard. The results are provided in Figure 3.12. It is observed that the conductor
temperature varies exponentially with time after the step change in line current, as seen in
the IEEE plot. It reaches a steady state value of 127.97°C at time t = 3600s and is very
comparable to the value of 128°C provided in the standard. Thermal time constant of the
conductor was also evaluated in the standard using a couple of methods; one was through

a linear approximation of the heat balance equation (3.2) which yielded a theoretical
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value of 14 minutes, and the other method determined the time constant graphically from
the step response plot, which yielded a value of 13 minutes. The time constant of the
proposed model is observed to be 14.12 minutes which is in accordance with the

theoretical calculations in the standard.

|EEE Std 738-2012
|IEEE Standard for Calculating the Cumrent-Temperature Relationship of Bare Overhead Conductors

130

F——f———-——=——="==-|Tf=128°C —— | ——|——————
125 / /...-—-—;-"_...-——
120 =
8]
o //1200 A
g 15 /
g 110 4 0.63(128-80) = 110 Vd
g 105 | Ir = 800 A pre-load current
=% T If = 1200 A step increase
g ! 26/7 DRAKE ACSR
': 100 F 0.61 m/sec (2 fps) crosswind
8 I 40C air temperature
g % | Sun for 11AM on June 10
2 | 60 sec. calculation interval
Qo 90
o [
/ | Thermal Time
85 I Constant = 13 min
80 P | |
0 5 10 15 20 25 30 35 40 45 50 55 60

Time - Minutes

Figure 3.11: Transient temperature response to a step increase in line current [3]
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Figure 3.12: Conductor temperature response of the proposed model (3.20)
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The simulation is also carried out for a different initial line temperature of 40°C, a value
closer to that of ambient temperature. The results are observed (Figure 3.13) and the final

temperature was observed to be 126.8°C at t = 3600s.

Line T t T t
130 r ine Temperature, alvg( )
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Tavg(t) | -
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Figure 3.13: Temperature response of the proposed model (3.20) at T, (0) =40°C

3.4.3 Linearization of Nonlinear Model

To further investigate on the time scale nature of the transmission line, the nonlinear
model was linearized about various time instants and the eigenvalues were evaluated. The
results are tabulated in Table 3.3.

Table 3.3: Linearization of transmission line model at various time instants

Time instant Eigenvalues
t=0s -2.6561*10"3; -2.6102*10"-4
t =1000s -2.6682*10"3; -1.4177*10"-3
t = 2000s -2.6712*10"3; -1.4478*10"-3
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Time instant Eigenvalues
t = 3000s -2.6719*%10"3; -1.4551*10"-3
t = 3500s -2.6795*%10"3; -1.4015*10"-3
t = 6000s -2.6866*10"3; -1.4901*10"-3
t = 8000s -2.6868*10"3; -1.4923*10"-3
t =10000s -2.6868*10"3; -1.4923*10"-3

From the table, it can be seen that the eigenvalues are different from each other by orders
of magnitude. Systems characterized by such widely separated groups of eigenvalues are
examples of systems with slow and fast dynamics [34]. The clearly distinct eigenvalues at
any time instant signifies that the transmission line model exhibits time scales. The larger
absolute eigenvalue corresponds to the faster time scale which is the line current
dynamics (electrical dynamics) and the smaller absolute eigenvalue corresponds to the
slower time scale which is the line temperature dynamics (thermal dynamics). Since the
transmission line has variables which change at different speeds and interact with one
another, it is an ideal candidate for Time Scale Analysis. The reduced order
approximations obtained from this procedure are key in designing software controllers
that can be implemented real-time, especially for power management and control

purposes in DLR/smart grids.

3.5  Time Scale Analysis of Transmission Lines
The transmission line model is subjected to time scale analysis described previously in

Section 2.3, where it is decoupled into lower order, slow and fast subsystems. Once
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separated, optimal control laws (LQR) are designed for each of the subsystems, with the

objective of minimizing any perturbations in the transmission line.

3.5.1 Decomposition of Transmission Line Dynamics
The nonlinear model in (3.20) was linearized about a nominal operating point and the

resulting linear system was of the form x(t) = Ax(t) + Bu(t) , where the system and control

matrices, A and B were obtained as,

Al —2687 4853 | o 25.39]
10.0001684 —0.001462 |’ | o |

Comparing the above linear system to the standard time scale system in (2.7) (recalled

here for convenience),

Standard Time Scale Xx=Ax+Az+By,
Model (2.7) 2=AX+Az+B,u.

the elements of A and B are assigned as,

A =[-2687], A, =[-485.3], B, =[25.39],

A, =[0.0001684], A, =[-0.001462], B, =[0]. (3.23)

L and M were calculated iteratively using Newton’s Algorithm [54]. Applying the two-
stage transformation in Section 2.3.2 results in 1% order decoupled matrices,

A =[-2687], A, =[-0.0010289],
B, =[25.39], B, =[-2.2658¢-05],

and the decoupled transmission line is of the form (2.10).

To ensure that the decoupled systems x_(t) and X, (t) retain the slow and fast dynamics,

the eigenvalues of the full order and reduced order systems were compared. The results
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are provided in Table 3.4. The results confirm that the time scale method decouples the
system dynamics almost perfectly. The accuracy parameter of Newton’s algorithm could
be adjusted to get the exact same eigenvalues for both the systems.

Table 3.4: Comparison of full order and reduced order eigenvalues

Full Order Eigenvalues
A eig (A) = -2687,
-0.0014924
Reduced Order Eigenvalues
A, - slow subsystem eig (A,) =-2687
A, - fast subsystem eig (A,) =-0.0010289

With the decoupled subsystems, control laws like optimal control, Proportional-Integral-
Derivative (PID) control, state feedback control, etc. can be implemented to achieve the
desired system performance. In the following sections, time scale synthesis of an optimal

control law is presented for minimizing perturbations in a transmission line.

3.6 Optimal Control Design of Transmission Lines

Transmission lines are subjected to various perturbations in the field. These could be due
to the sudden loading effects by a set of electric motors, or lightning strikes, or abrupt
changes in the source voltage. In such events, control strategies have to be in place that
returns the system to its nominal state of operation. The control law that is implemented
here is the optimal LQR control, with the objective of minimizing the perturbations to

Zero.
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Time scale synthesis of LQR involves design of separate LQR control laws for the slow
and fast subsystems. These separate controllers work in parallel and independently,
towards bringing the system perturbations to zero. This reduced order design is

compared to the conventional LQR design of a full order transmission line.

3.6.1 LQR Control of Full Order Transmission Line
The linear transmission line model is of the form,

X = AX(t) + Bu(t), (3.24)

where X" =[i (t) T, (t)]Tandu:[vsource]. The quadratic performance index, J is

avg

defined as,

J= %]O'[XT ®QAX(t) +u’ (t)Ru(t)] dt, (3.25)

with boundary conditions, X (t,)=[i (0) T, (0)]T and X" () =[0 0] . The optimal

avg
state, x*(t)and the optimal control signal, u*(t)are defined as [59],

x*(t) =] A-BR'B'P | x(t), (3.26)

u*(t) =-R™B"PX*(t) =—K X*(t), (3.27)

All the variables in the above equations are defined in Section 2.4.2. The optimal LQR

control of a full order, linear transmission line is illustrated in Figure 3.14.
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Figure 3.14: LQR control block diagram for the full order transmission line

3.6.2 Time Scale Synthesis of LQR Control

The optimal control law u (t) for the slow subsystem is defined as,
U, (t) =—K x (t) =—R,“B,' P (t), (3.28)
and for the fast subsystem,
Ut (£) = =K X (t) =—R, "B, TP x; (1), (3.29)
where K and K, are the regulator gains of the slow and fast subsystems respectively.

The derivation of control laws for the time scale LQR design is provided in Section 2.4.2.
A block diagram describing the proposed design for the reduced order transmission line
model is presented in Figure 3.15. The line current and line temperature states are
separated from each other and fed to their respective controller gains, where the control
signals are processed independently, and fed back to the system as a composite control

signal.
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Figure 3.15: LQR control design for reduced order transmission line model

3.6.3 Simulation Results
All the controllers were designed in MATLAB® and implemented in Simulink®. Model
data for simulations were taken from [3] for a 795 kcmil 26/7 Drake ACSR conductor.

Matrices A, B, A, B, A, and B, for LQR control design were provided in Section 3.5.1.
The weighting matrices Q, R, Q,, R,, Q; and R, were chosen such that they minimize

the time taken by the states to get to zero. These matrices were chosen from multiple
iterations. The controllability conditions for both the cases were tested before designing

the control law.

Full Order LQR Control — Results
The controllability condition of the linear transmission line model system was verified
using MATLAB®’s ‘ctrb (2, B)’ command. The controllability matrix was found to

have a full rank of 2 and the full order system was therefore controllable. The weighting
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matrices were chosen as,

Q= 100007, R=[0.5] 3.30
1o 1] Y (3:30)
which lead to a LQR gain,

K= [9.0613 -1.4792]. (3.31)

The linear transmission line model is defined using the state-space block in the Simulink®
library (Figure 3.16). The two states of the system are directed to the scope viewers using
a multiplexer block ‘mux’. The state and control vectors were saved as variables in
MATLAB®’s workspace using the ‘simout’ blocks. The optimal control vector is
obtained by applying the LQR gain, K to both the states by using a de-

multiplexer/‘demux’ block. The gain block holds a value of —K.

]

>

line current, iL

! iL_full

To Workspace2
To Workspace7 iL¢ty |
X = Ax+Bu
‘ u_ful " y = Cx+Du Tavg(t)

Txn Line_Full Order System

=

— line temp, Tavg
K" uvec
» Tavg_full
Gain3

To Workspace8

Figure 3.16: Simulink® model for the full order transmission line model
The plots of the states and control signal are provided in Figure 3.17. From the simulation
results, it is seen that when the state variables are perturbed by some disturbances, the full

order LQR control u(t) brings all the states to zero.
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Figure 3.17: State and control responses of the full order transmission line

Reduced Order LQR Control — Results

The controllability matrices for each of the slow and fast subsystems were verified. A full
rank of 1 was obtained for the controllability matrices for both the subsystems, and the
reduced orders systems were therefore controllable. By choosing the weighting matrices
as,

Q, =[10], R, =[0.25],

(3.32)
Q :[1]' R, :[1]’
the slow and fast gains were calculated to be,
K = [ 0.18882]; K, = [-0.017092], (3.33)

respectively. The Simulink® model was built for the reduced order transmission line as
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shown in Figure 3.18. The slow optimal gain, K was applied to T (t) (line
temperature) and K, was applied to i (t) (line current). The plots of the states and control

signal are provided in Figure 3.19 . The perturbed states of the reduced order system tend

to zero as time tends to infinity.
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Figure 3.18: Simulink® model for the reduced order transmission line
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Figure 3.19: State responses and control signal of the reduced order transmission line
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Comparison of Full Order and Reduced Order LQR Design

A comparison between the full order and reduced order LQR design was performed and
the results are provided in Figure 3.20. It was observed that the controller regulates the
perturbed states to zero, for both full order and reduced order cases. A very close
matching between the full order and reduced order states was observed, which manifests
the effectiveness of the time scale method that almost the same performance was
obtained with lower order controllers. The lower order controllers demand lesser
computational efforts and could be implemented online for DLR technology that

necessitates real-time monitoring and control.
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Figure 3.20: Comparison of full order and reduced order LQR control

When realistic models of power systems are considered, for example, a simple 1-machine
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infinite bus system presented in [70] or a 3 machine, 9 bus system in [71], the model

dimensions were found to be 6 and 20 respectively (Figure 3.21).
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Figure 3.21: 1-machine, infinite bus model [70] and 3 machine, 9 bus model [71]
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Figure 3.22:10-Machine, 39-bus New England power system model [70]

Designing any control law for a simple 6™ order model becomes very cumbersome, and
for higher order models it may become unfeasible. A practical power system model such
as the 10-Machine, 39-bus model shown in Figure 3.22 would have to rely on powerful
model order reduction techniques. Quasi-steady state approximations were used for
analyzing the New England system in [70], i.e. the fast dynamics were neglected for
model reduction. Time scale synthesis presented in this research achieves model order
reduction without losing any system dynamics.
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3.7 Resiliency of Time Scale Control

Resilience of controller operations is of paramount concern in today’s highly
interconnected and networked society. With smart grid technology, software control and
decision making becomes deeply integrated into the electric power system. However, the
increased dependence on cyber infrastructure makes it highly vulnerable to malicious
cyber-attacks. Hence, to improve the security of the smart grid, control strategies have to

be devised that are resilient to faults and malicious attacks.

In the event of a cyber-attack or failure of a controller, especially for critical and sensitive
applications, implementing a decentralized control scheme will be highly beneficial. This
would guarantee some control action to be still in place which would avoid critical failure
of the entire system. In the event of controller outages, it could be possible to control the
plant/system using any one of the multiple controllers designed using Time Scale
Methods. Such a control system designed to tolerate failures of controllers, while

retaining desired control system properties, is a “reliable” control system.

The decoupling of slow and fast dynamics in a transmission line facilitates
implementation of a decentralized control scheme. Here, it is shown how a single
controller (either slow or fast) by itself gives nearly original performance, thereby
making the system more reliable or ‘resilient’ in case of either controller malfunction.
The linear transmission line with the LQR feedback control was tested for two additional
control scenarios, as listed below:

- Control signal = slow control + fast control (composite control) — Section 3.6.2
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- Control signal = only fast control

- Control signal = only slow control

3.7.1 Simulation Results of Resiliency Test
A Simulink® model was built to test the three cases mentioned above, and is shown in
Figure 3.23. In the case with only slow control, the fast control gain is made zero and

vice versa.
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Figure 3.23: Simulink® model to test reliability of the reduced order LQR
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The results of simulation for the three cases of control are given in Figure 3.24. The last
plot displays the three cases of control inputs. The first two plots display the responses of
line current and temperature to the three control inputs. It is observed that the states’
response to the single control input (either slow or fast) is close to that of the composite
control input. The case with only the slow control is very comparable to the case with the
combined control. This shows that even in the absence/failure of one of the controllers,
the remaining control effort does provide comparable control to the whole system. This
reiterates the strength of the time-scale control design approach (multiple controllers),

which provides resiliency to the systems as compared to a centralized control design.
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3.8  Transmission Line Modeling and Potential DLR Applications

Researchers at the Idaho National Laboratory (INL) are working towards developing a
Java-based software package called General Line Ampacity State Solver (GLASS),
which calculates real-time ampacity and thermal conductor limits [73]. A schematic
representation of GLASS is provided in Figure 3.25. The real-time ampacity and
conductor thermal limits are calculated based on current weather conditions at sparsely
located weather stations. This is done by combining Geographic Information System
(GIS) data with historic weather information and pre-computed Computational Fluid
Dynamics (CFD) models. INL collaborates with WindSim, a wind energy simulation
software company, for CFD modeling and verification. INL also partners with regional

utilities including ldaho Power for performing transmission line data verification [73].
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Figure 3.25: Real-time data flow and forecast calculations of the GLASS software [73]
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The processed real-time weather information is fed to the GLASS software which uses
algorithms from the IEEE 738 Standard [3] to yield real-time ampacity and thermal
conductor limits. However, the calculations are based on steady-state equations which do

not account for the dynamic behavior of the transmission line [8].

The nonlinear model presented in this research accounts for both the electrical and
thermal dynamics in transmission lines, thus depicting more realistic behaviors for
dynamic line ratings. This implies that in the event of a step change in current due to a
perturbation, the temperature response to this step change will be observed from the
simulations. This will help the operator/utility determine the duration for which the new
current levels can be safely allowed through the transmission line, before the
instantaneous temperature attain unsafe limits [8]. The availability of such valuable
information would assist the operator or a decision making controller in an Energy
Management System (EMS) or Supervisory Control And Data Acquisition (SCADA)
systems, and would help establish safe line ampacity levels based on real-time conductor

temperature.

Furthermore, the lower order, slow and fast optimal controllers designed for mitigating
perturbations in a transmission line, facilitate on-line/ real-time control implementations,

and could be embedded in the utility’s Energy Management System (EMS).

3.9  SPaTS Methods in Renewable Energy
Innovation and technological developments in the renewable energy sector are forging

pathways which will establish them as a major stakeholder in electricity generation. Wind
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energy has grown significantly over the last few decades and continues to lead in
electricity generation among the other renewable sources. Data released in March, 2017
[74] revealed that for the first time in the U. S., wind and solar energy accounted for 10
percent of all electricity generation, with wind contributing 8 percent and solar at 2

percent (Figure 3.26).
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Figure 3.26: Monthly net electricity generation from selected fuels (Source: EIA) [74]

Great advances in control strategies have been significant in harnessing the maximum
power of the wind, a highly intermittent energy source, at safe operating conditions. Due
to its erratic nature, mechanical systems of the wind turbine are subjected to fatigues and
perturbations from the wind, for example, a gust of wind. Optimal control techniques
have been researched greatly that maximizes the power harnessed from the wind while
minimizing the perturbations in the system. Such optimal control strategies are often
associated with high model dimensions and might become unfeasible for real-time

implementations due to the complexity of numerical calculations involved.

SPaTS methods are well equipped to address such problems. The applications of SPaTS

methods in Wind Energy Conversion Systems (WECS) were investigated in [38, 55, 75].
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A brief overview of these methods in WECS is provided in the following sections as an
illustration of the extent and flexibility of these unique methods in renewable wind
energy systems. In particular, a singular perturbation method developed by A. B.
Vasileva [76, 52] is applied towards solving WECS as a nonlinear initial value problem
(IVP), and synthesis of time scale, optimal control laws for deterministic and stochastic

WECS models.

3.9.1 WECS - Dynamic Modeling and Time Scales

WECS could be summarized as a structure that transforms the kinetic energy of the wind
into electrical energy. A wind turbine rotor serves as the transducer that harvests the wind
energy, and it drives the generator, which outputs electric power. The research involves
the study of a Horizontal Axis Wind Turbine (HAWT). Its dynamic model accounts for

the turbine rotor dynamics and the drive train and generator shaft dynamics (Figure 3.27).

anemometer '|'
Jp
LN nacelle

9
gear box '~

Rotor Generator

side

controller— s / blade
‘\“/\ ~ /brakc

———
rotor

Ty

power cable

o=
tower

Figure 3.27: Structure of HAWT (left); Schematic of wind turbine rotor and drive train
dynamics (right)

A third order, nonlinear state-space model is used to describe the dynamics of the WECS.

80



The eigenvalues of the linearized model are analyzed, and the clearly separated groups of
eigenvalues indicate the slow - fast behavior of the wind energy system. A scaling
operation and a ‘change of time scale’ procedures identified the singular perturbation
(SP) parameter ‘£ in the WECS to be a ratio of the mechanical time constants of the
generator and turbine rotor (Figure 3.28). Generally, if one infers time scale nature in a
wind energy system, the ‘slow’ mode would be by virtue of the mechanical systems and a
‘fast’ mode by virtue of electrical systems. But this research highlights the fact that time
scales arise within mechanical systems, due to the large differences in inertia of the
turbine and generator. The time scale behavior is due to the slow turbine rotor dynamics

and the fast drive train-generator dynamics.
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3.9.2 Initial Value Problem (1VP) of WECS

The nonlinear model of WECS is solved as an IVP using Vasileva’s singular perturbation
method, which involves a combination of asymptotic expansions, power series and
Taylor series [76]. The total series solution of the system of nonlinear ODEs in the

WECS model is given as,
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Total Solution = Outer series + Inner Series — Intermediate Series,
up to a 1% order approximation (Figure 3.29). The approximate total series solution
provides in most cases, analytical solutions of nonlinear I\VVPs up to a zeroth order or first
order approximation. From these analytical expressions, the behavior of the system can
be well understood and suitable predictions of the system can be deduced. Also, these
approximations accurately capture the dynamics of the system without sacrificing any of
the system’s original boundary conditions. This is brought forth by incorporating ‘& in
the series solutions of the WECS model, and is not neglected as observed in the
conventional approach to singularly perturbed systems. The response of one of the states
of the WECS model, turbine rotor speed, is illustrated in Figure 3.29, where the zeroth
order approximation alone fails to capture the dynamics in the boundary layer (t <
0.012s), but when combined with its 1® order approximation, provides a very good

approximation of the actual solution.
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Figure 3.29: IVP of WECS using Vasileva’s singular perturbation method

3.9.3 Deterministic and Stochastic Time Scale Optimal Control

Time scale synthesis of optimal controllers is performed for both deterministic and
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stochastic WECS models, with the objective of minimizing perturbations in a wind

energy system. For the deterministic WECS model, system perturbations are regulated

through a composite control of the slow and fast LQR controllers.

For the stochastic WECS model (which accommodates practical scenarios such as

unavailability of states for measurement, and corruption of available states with noise),

the time scale LQG design involves a non-singular transformation [53] that decomposes

the Kalman filter into slow and fast Kalman filters and the LQR gain into slow and fast

gains. The slow and fast Kalman state estimates are fed to the respective LQR gains for

achieving the desired state regulation. Time scale synthesis and simulation results of

LQR and LQG optimal control are provided in Figure 3.30 and Figure 3.31, respectively.
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Figure 3.31: Time scale synthesis of LQG control for WECS (left); Simulation results

(right)

The simulation results indicate that the performance of the reduced-order model matches
the performance of the full order model very closely. Also, a careful observation of the
LQG results reveals that the amplitudes of oscillation of the state responses have been
reduced in the time scale design. These results hold far reaching implications in that,
SPaTS methods could assist with control strategies for WECS that are computationally

efficient and suitable for real time applications.

3.10 Conclusion

The applications of SPaTS methods for the design of control strategies in Electrical
Engineering, namely Overhead Power Transmission Lines and Wind Energy Conversion
Systems were investigated. The major focus of the chapter was on Overhead Power
Transmission Lines where time scale analysis and synthesis were performed. A second
order, nonlinear time domain model was developed that captures the electrical and

thermal dynamics of transmission lines. This model renders instantaneous values of line
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current and line temperature, which are very useful information for Dynamic Line Rating
of transmission lines. The availability of this information to an operator or a decision
making controller in Energy Management System (EMS) or SCADA systems, would

help establish the safe line ampacity levels based on real-time conductor temperature.

Time scale techniques were presented which enabled computationally efficient control
designs. The simulation results confirm that comparable control action can be achieved
with independent, lower-order, slow and fast controllers. In detailed power system
models, such as the one in [70], where various components of a power chain are modeled
(typically comprising of generators, transmission lines and power electronic interfaces),
the combined model order could be very high, and evaluating control designs or their
online implementations, may become unfeasible. With the time scale approach, standard
control laws like optimal control, state feedback control, model predictive control and

robust control can still be realized for higher order systems.

Finally, it was demonstrated that the presence of multiple controllers in place of one
central controller guarantees comparable control action during failure of one of the
controllers in the system, thereby ensuring reliability of the transmission line system.
Research work on WECS reinstated that SPaTS methods were effective in gaining better
insights into the system behaviour by solving WECS as a singularly perturbed IVP, and
for simplifying optimal control designs. Realistic models of WECS (accounting for
aerodynamics, drive train dynamics, electrical generator dynamics, power interface

dynamics, and load dynamics) would be able to benefit from SPaTS methods in
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achieving feasible real-time control solutions.

Future work would investigate modeling transmission lines with distributed parameter

models (medium and long length) for any unaccounted line current dynamics and

enhance the computational accuracy of line ampacity levels.
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Chapter 4

Time Scale Analysis and Synthesis in Life Sciences

This chapter introduces the biological aspects of a Human Immunodeficiency Virus
(HIV) infection, followed by mathematical modeling of the viral dynamics. A third order,
nonlinear, state space model is adopted from literature to analyze and study the nature of
an HIV infection. The inherent time scale characteristics of the HIV dynamics are
investigated and identified through linearization and non-dimensionalization procedures.
An optimal treatment strategy for the HIV infection is developed using time scale
separation methods, where a full order linear HIV model is decoupled into independent,
lower order, slow and fast subsystems. The efficacy of this control approach is compared
to that of a general, full order optimal control design. A preliminary study of measles,
another serious infectious disease that primarily affects children, was conducted during
the initial research period and findings of this brief study are presented at the end of the

chapter.

4.1  The Biology of HIV Infection

The biological aspects of an HIV infection are imperative in the mathematical modeling
and control of the disease. The immune system response and its interactions with HIV
form the basis of the dynamic model. Biological events that mark the HIV’s life cycle are
important in identifying and pursuing potential control strategies. Hence, an overview of
the high level processes in a typical immune system response and the basics of an HIV

infection are provided in the following sections.
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4.1.1 Human Immune System

The immune system is a remarkable, complex network of cells, tissues and organs that
work together to defend the body against foreign particles (bacteria, viruses and fungi)
that can cause infections. When an antigen or a foreign particle is introduced into the
human body, the immune system responds immediately in an attempt to discard the
object from the body. This immune response is characterized by a cellular immune

response and a humoral immune response [77].

Macrophages, the cells that scavenge, ingest, and process foreign particles, encounter the
antigen first and present the antigen information to the CD4" T cells. The CD4" T cells
are commonly referred to as ‘helper T cells’ and serve as the command center for the
immune system. ‘CD4’ denotes a protein on the surface of the T cell, and ‘T’ refers to
thymus, the organ in which these cells mature after migration from the bone marrow
where they are created. On an average, there are 1000 CD4" cells per mm? of blood. In
the event of an attack, macrophages, through chemical alarm signals, activate the helper
T cells, which in turn proliferate to elicit both cellular and humoral responses. In the
cellular immune response, the helper T cells activate a second type of T cells, called the
CD8" T cells. These cells are referred to as killer T cells that seek and destroy cells
infected by pathogens. In the humoral immune response, commonly known as the
antibody response, the helper T cells signal a third set of cells, called B cells. B cells
produce chemical weapons called antibodies that are specifically designed to attack and
destroy antigens in the body [77]. Figure 4.1 shows the schematic of an immune response

process.
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Figure 4.1: Stages of a typical human immune response [78]

Once the immune response is successful, certain cells of each type retain knowledge of
the attack. These cells are referred to as memory cells. If the same or a similar pathogen
is introduced into the body again, a much quicker and more aggressive response is
enforced, and the antigen is eradicated more accurately and at a much faster rate. If the
individual becomes infected with a more aggressive relative, then the response is

instantaneous and potent, and the pathogen does not take hold [77].

4.1.2 HIV Infection and Timeline
HIV is a retrovirus, belonging to the family Retroviridae, which carries its genetic
information in Ribonucleic Acid or RNA, unlike most organisms which carry their

genetic material in Deoxyribonucleic Acids (DNA). Like most viruses, HIV does not
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have the ability to reproduce independently, and therefore relies on a host to aid
reproduction. Figure 4.2 depicts the structure of an HIV particle.
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Figure 4.2: Structure of a Human Immunodeficiency Virus [79]

There are two major types of the human immunodeficiency virus, HIV-1 and HIV-2.
HIV-1, which was discovered first, is the most widespread type worldwide. HIV-2 is
relatively uncommon and mostly concentrated in West Africa. It is 55% genetically
different from HIV-1 [80]. Both types can lead to AIDS, but the HIV-2 takes a slower

course in progressing to AIDS than HIV-1. In this work, mention of HIV refers to HIV-1.

When HIV infects the body, it targets the CD4" T cells, the main regulators of the
immune system — the primary cause of HIV’s devastating impact. A protein (GP120) on
the surface of the virus binds to the CD4 protein on the T cell surface and the contents of
the HIV is injected into the host T cell. HIV being a retrovirus first transcribes its genetic
RNA into viral DNA using its enzyme, reverse transcriptase. The viral DNA is then
integrated into the host cell DNA using enzyme integrase. The host’s normal

transcription process transcribes viral DNA into multiple copies of new HIV RNA. Some
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of this RNA becomes the genome of a new virus, while the host cell uses other copies of
the RNA to make new HIV proteins. The newly formed viral RNA and HIV proteins
move to the surface of the cell, where a new, immature (noninfectious) HIV is formed.
Finally, the immature virus pushes itself out of the host cell (budding), and releases an
enzyme protease that reassembles the new HIV proteins to create a mature infectious
virus. The budding can either take place slowly, sparing the host cell or rapidly, bursting

and killing the host cell [77].
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Figure 4.3: HIV replication cycle [81]

Timeline of Disease Progression

There are three main stages in the progression of an HIV infection [82]. Acute HIV

infection is the earliest stage where HIV multiplies rapidly and spreads throughout the
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body. The virus attacks and destroys the infection-fighting CD4 cells of the immune
system. The second stage is the chronic HIV infection, or asymptomatic phase or clinical
latency. During this phase, HIV continues to multiply in the body but at very low levels.
The final and most severe stage of HIV infection is AIDS during which HIV has severely
damaged the immune system and the body is vulnerable to opportunistic infections.
People with HIV are diagnosed with AIDS if they have a CD4 count less than 200
cellssmm?®or if they have certain opportunistic infections. Without treatment, people with

AIDS typically survive about 3 years [82]. The timeline of the HIV infection is provided

in Figure 4.4.
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Figure 4.4: Time course of a typical HIV infection [83]

4.1.3 HIV Treatment
To date, ART cannot cure HIV, but HIV medicines help infected individuals live longer
and healthier lives, and also reduce the risk of HIV transmission [49]. Currently,

treatment of an HIV infection is through a combination of different class of antiretroviral
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drugs that are used to slow down the rate at which HIV multiplies in the body. An
overview of currently adopted antiretroviral drugs and their points of inhibition in HIV

are depicted in Figure 4.5.

reverse transcriptase
inhibitors
NRTIs — abacavir, didanosine,
emtricitabine, lamivudine,
tenofovir, zalcitabine, zidovudine
NNRTIs - atevirdine, delavirdine,
efavirenz, nevirapine, pyridinones

integrase inhibitors
raltegravir

co-receptor inhibitors —_
maraviroc

fusion inhibitors

enfuvirtide protease inhibitors
- atazanavir, darunavir,
S fosamprenavir, indinavir,
gp120 inhibitors—" \ lopinavir, nelfinavir,

ritonavir, saquinavir

CD4
inhibitors

2
Figure 4.5: Inhibition of HIV-1 replication at different steps in the viral life cycle [84]
The combination of medicines is called an HIV regimen and a person's initial HIV
regimen generally includes three HIV medicines from at least two different drug
classes. Treatment with a single drug failed as the HIV replicated and mutated very
rapidly and drug resistance was developed in the early days of drug intake. The six

classes of antiretroviral drugs that are currently used in ART are [49],
e Nucleoside Reverse Transcriptase Inhibitors (NRTI)
— block reverse transcriptase, an enzyme that facilitates transcription of viral RNA
to viral DNA. E.g. abacavir, zidovudine — azidothymidine or AZT (1* drug to treat

HIV in 1987)
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e Non-Nucleoside Reverse Transcriptase Inhibitors (NNRTI)
— bind to and alter reverse transcriptase; E.g. efavirenz, etravirine
e Fusion Inhibitors
— block HIV-1 from entering the CD4 cells of the immune system; E.qg. enfuvirtide
e CCRS5 Antagonists or Entry Inhibitors
— block CCRS5, a protein on the CD4 cells that a certain type of HIV-1 needs to
enter the cell; E.g. maraviroc
e Protease Inhibitors (PI)
— block HIV-1 protease, an enzyme HIV-1 needs to process the HIV proteins to
create a mature infectious virus; E.g. atazanavir, ritonavir
e Integrase Strand Transfer Inhibitors (INSTI)
— block HIV-1 integrase, an enzyme HIV-1 needs to integrate its DNA into the host
cell DNA,; E.qg. dolutegravir, elvitegravir
New antiretroviral drug classes like entry inhibitors and integrase inhibitors that were
recently approved for clinical use will increase the number of possible drug combinations
and provide more options for effective treatment [84]. However, with each new
combination, the prospect of adverse side effects that could affect adherence to the

therapy remains an important concern.

4.2 Modeling an HIV Infection
Mathematical modeling combined with experimental and clinical data analysis has
offered critical insights towards the understanding of viral and immune system dynamics,

and ART. To date there are a multitude of dynamic models in literature that describe an
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HIV infection. Different aspects of the disease are explained in each model, but none of
the models exhibit all that is observed clinically. This is partly due to the fact that much

about this disease’s mechanics is still unknown [77].

The basic and simplest models of viral infection account for only the key players of an
HIV infection, namely the uninfected CD4" T cells, infected CD4" T cells and free
virions. These models come under the class of ‘target-cell limited” models meaning that
the HIV-1 infection is limited by the availability of target T cells, and also lacks an
explicit representation of the immune response. Despite this deficit, the model fits viral
kinetic data obtained both during natural infection and while patients are on therapy [85].
Thus purely target cell limited models remain a popular form of HIV infection in
literature and have been frequently used in the pharmacodynamic studies of ART [11, 25,
26, 77, 86, 87, 88]. Moadification to this model was made by authors in [89], where they
supplemented this basic model with dynamics of latently infected and actively infected T

cells.

Another set of HIV models found in literature fall under the group of ‘immune limited’
models, where the HIV infection is limited by specific anti-HIV cellular immune
response i.e. the virus is a prey that is controlled by CD8" lymphocytes, an immune
response predator. While many models have included CD8" responses [19, 90, 91] they
tend to lack comparisons with experimental data leaving the field without good estimates

for the parameters that govern the CD8" cells’ effects [85].
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In this research, a target-cell limited model, which captures the dynamics of uninfected

CD4" T cells, infected CD4T cells and free virions, is used for analysis and design.

4.2.1 Nonlinear HIV Model
A third order, nonlinear, state space model of an HIV infection is presented. The control
variables (denoting antiretroviral drugs used in the treatment) are not included in this

model, and will be dealt in Section 4.4. The dynamic equations [25] are,

% =5 Dx, (1) - A% () (1),

%:ﬁ&(t)&(t)_ﬂzxz(t)’ 4
d

—X(;t(t) = kX, (t) — 4.%,(1),

where x,(t)denotes the concentration of uninfected CD4" T-cells; x,(t) denotes the
concentration of infected CD4" T-cells, and x,(t) represents free virus particles. It is

assumed that the body produces healthy and uninfected CD4" T cells from the thymus at
a constant rate s. The T cells are also assumed to have a finite life span and die with the

rate D per cell. The term Sx, (t)x,(t) models the rate at which free virus infects healthy T
cells. When a T cell becomes infected, it becomes an infected T cell, thus the term
Bx,(t)x,(t) is subtracted from the 1* equation and added to the 2" equation. Infected T
cells (x,(t) ) have a natural death rate, 2z, and can be expected to die sooner due to the

additional stress put on the cell by the virus. The third equation models the population of
free virus. It is assumed that when an infected CD4" T cell becomes stimulated through
exposure to antigen, replication of virus is initiated, and viruses are produced with a rate

k before the host cell dies. The term z4x,(t) records the loss of virions through death
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and/or immune clearance. The numerical values of the constant parameters in the model

are listed in Table 4.1.

Table 4.1: HIV Model Parameters [25]

Parameter Description Numerical Value
S Source of healthy T- cells 10 per mm°per day
D Death rate of healthy T- cells 0.02 per day
)72 Death rate of viruses 0.24 per day
y7A Death rate of infected T- cells 2.4 per day
B Rate at which T-cells become infected by free 2.4x107° per (mm® x

viruses day)

k Rate of virions produced per infected T-cell 100 per cell

4.3  Analysis of the Nonlinear HIVV Model

4.3.1 Equilibrium Points

The equilibrium points of the HIV model are determined by setting the derivatives of

(4.1) to zero and solving the algebraic equations in (4.2) as,

s—Dx; (t) - A% ()% (1) =0,
Bx ()% (t) — %, (t) =0,
kx, (£) — 4% (1) = 0.

(4.2)

The equilibrium points are calculated for an ‘infection free’ and ‘infection bound’

scenarios, and are found to be,

(x;a,x;a,x;a)z(%,o,oj=(5oo,o,o) and

(x;,x;b,x;b)=[“l”2 s _Dn s —Bj=(24o,2.167,902.78),

kKB "1, B,
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respectively. For an infection free equilibrium or the uninfected steady state, the virus is
not present and the body maintains a steady count of healthy T cells at 500 per mm?®. In
the case of an infection, the healthy T cell count stabilizes at 240 cells per mm®, a value
slightly lower than the threshold for AIDS, and a viral count of about 902 virions per
mm? of blood. During this period, the body is in an endemically infected state, where
both virus and infected T cells are present [92], but with a lower T cell count than that of
the virus. Even though the body is constantly producing T cells, there seems to be a

balance between the body's efforts and the rate of infection by the virus.

4.3.2 State Response Plots
To gain insights into its dynamic behavior, the nonlinear HIV model (4.1) is simulated
with the numerical parameters in Table 4.1. The initial conditions for the state variables

are set as in Table 4.2. The simulations were performed in MATLAB® and Simulink®

software.
Table 4.2: Initial conditions for nonlinear HIVV model simulation
Parameter Description Numerical Value
x,(0) Healthy T- cell population 1000 per mm?®
X, (0) Infected T- cell population 0 per mm?
X;(0) Free HIV population 1 per mm?

The responses of the states to the initial conditions are provided in Figure 4.6. From the
plots it is observed that by introducing just one virus particle per mm®, as set in the initial

conditions, x(0)=[1000, 0, 1], the concentration of virus in the body proliferates to 12,000
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virions per mm? in about 25 days. The infected T cell concentration also increases to 40
cells per mm? in the same amount of time. The uninfected/healthy T cell count falls to a
drastically low value less than 100 cells mm?® from its initial concentration but stabilizes
to 240 cells per mm? in about 200 days. This slight increase in the healthy T cell count
could be due to the immune system’s response in fighting off the virus. The other two

states also reach equilibrium in about 200 days after the initial infection.

Healthy T-cell Population Infected T-cell Population

1000 ; 45
[ R S SRR I ESOGEECEEEELEEEEERE T S N S S
LU o e I """"""""""" o) A O SRt s R S
11 :. ......................
; ) . St R S S
L e S o
E ; o e S .
= 520- ------------------------------------------------------ b
; 15/
: 101
i o
0 ; ; ; ; T
0 100 200 300 400 500 0
t (days) t(days)
Free Virus Population
12000 T
10000 [~ {f------=-7---=-===-e- R b
8000 [-{{-------i-eeeeee . .
F‘g 1 1 1 1
i L o P AR bl REb b 1
4000 -}-
2000 -
UJ i i i H
0 100 200 300 400 500

t (days)

Figure 4.6: State response plots of the nonlinear HIV model

The behavior of the states as observed from the plots after 200 days is in agreement with
the fact that the body enters an endemically infected state, and the final values of the

states match the second equilibrium point. The period of 25 days since the initial
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infection was characterized by large dynamic changes, and constitutes the ‘acute

infection’ phase.

Another observation made at this point was that there is not enough evidence to support
the presence of time scales graphically. In the previous work with transmission lines, the
slowly responding line temperature plot was easily distinguishable from the fast line
current plot. In this case, eigenvalues have to be evaluated to mathematically establish the

presence of time scales.

4.3.3 Linearization
The nonlinear HIV model was linearized at various instants of time and the
corresponding eigenvalues were evaluated. Linearization was carried out in MATLAB®

and Simulink®. The data provided in Table 4.1 were used for simulations.

Table 4.3: Linearization of HIV model at various time instants

Time instant (in days) Eigenvalues

-3.2085
t=0 -0.019993
0.56847

-3.1461
t=10 -0.01866
0.50062

-2.5397

t=25 -0.18407 + 0.15678i

-0.18407 — 0.15678i
-2.564

t=50 -0.052968 + 0.031887i

-0.052968 — 0.031887i
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Time instant (in days) Eigenvalues

-2.677
t=280 0.0052643 + 0.025293i
0.0052643 — 0.025293i

-2.6894
t=100 0.0057475 + 0.053418i
0.0057475 — 0.053418i

-2.6273
t=150 -0.027151 + 0.065469i
-0.027151 — 0.065469i

-2.6473
t=200 -0.017061 + 0.065242i
-0.017061 — 0.065242i

-2.6419

t = 400 -0.01986 + 0.065713i

-0.01986 — 0.065713i
-2.6418

t =500 -0.019924 + 0.065777i

-0.019924 — 0.065777i

The results indicate that the eigenvalues obtained for all time instants are clearly
separated into groups, which differ by at least an order of magnitude from each other.
This is clearly indicative of time scale behavior in the HIV model. The larger (absolute)
eigenvalue corresponds to the faster time scale which is the viral dynamics and the
smaller (absolute) eigenvalue corresponds to the slower time scale which is the
uninfected T cell dynamics [11, 31, 32, 33]. These results are in accord with the findings
of Perelson et.al. in [11], where the existence of slow and fast processes in the HIV
dynamics were first confirmed through a combination of clinical data analysis and
mathematical interpretation of this data. Since the HIV model has variables that change at
different speeds, and interact with one another, it is well suited for Time Scale Analysis
that facilitates design of optimal treatment strategies.
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4.3.4 Non-Dimensionalization and Singular Perturbation Parameter

Having confirmed the existence of time scales through eigenvalues, the HIV model was
further investigated for the explicit presence of a singular perturbation parameter, the
causative agent for slow-fast behavior. This required a non-dimensionalization procedure

on the model (4.1), which is recalled here for convenience.

% = 5—Dx (1) - AX (O X (1),
D _ %0 - 0 @4
d_Xé t(t) = K, (1) — 244 (1),

The variables of the dimensionless HIV model were chosen as T, X,, X,and X,

corresponding to the original system variables t, x,, x,and x, respectively, where,

T =Dt
D

()

X, :(&j X, (4.5)
S

XS:(%:ZJX3

Insights into the choice of reference variables for this analysis were obtained from
reference [93]. The expected life times of healthy T cells, infected T cells and virus

particles — 1/D, 1/ 4, , and 1/ x4, respectively, were possible choices for the dimensionless

time variable, but since the ratio 1/D was the longest compared to others, it was chosen as
the reference variable for time. The reference variable for healthy T cells was chosen

with the reasoning that in the disease free equilibrium, x, = s/D, and for the infected cells,

the reference quantity was chosen as x,= s/ z,. The reference quantity for the virus is
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chosen so that at equilibrium X, = X, [93].

Substituting% = D% and x,, x,and x,from (4.5), the dimensionless HIV model is
obtained as,
% =1- X, -bX,X,,
gdﬁz _bX,X,~ X,, (4.6)
e-g% =X, - X,,
where, b:—’gkS , E _D and =42 Substituting the numerical values of ¢ and 8,
Do, 2 th
results in,

£ =0.0083, 4=10,

4.7
0-5=0.0833 ot

Rearranging @ as a factor (1/10) into the right hand side of X3 results in the standard

singular perturbation form of the HIV model,

%:1— X, —bX,X,,
dX

e =bX X=X, (4.8)
dX, 1

K _Lix _x
e T

where &is a ‘small parameter’ or the ‘singular perturbation parameter’ responsible for
imparting time scale characteristics to the HIV model. By definition, & is a ratio of
reference times, i.e. ratio of the lifetime of an infected T cell to the lifetime of a healthy T

cell. Comparing (4.8) to the standard singular perturbation form of equations,
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x(t) = f(x,z,u,&,t) = slow state

ez(t)=9g(x,z,u,¢&,t) = fast state (4.9)

the slow state of the HIV model is identified to be the uninfected T cell, and the fast

states are identified to be the infected T cell and free virus states.

Thus, the time scale nature of HIV model was identified through linearization and non-
dimensionalization procedures. The presence of time scales in HIV dynamics provides an
opportunity to investigate the effectiveness of the well-recognized SPaTS methods in
designing treatment plans for HIV. The following section discusses the current optimal
treatment plans for HIV, followed by the investigation of Time Scale Analysis and

Synthesis in simplifying the existing treatment solutions.

4.4  Optimal Control Strategies for the Treatment of HIV Infection

Currently, the treatment of an HIV infection involves a combination of mechanisms
inhibiting HIV enzymes, reverse transcriptase and protease. When reverse transcriptase
is inhibited, HIV can enter a T cell but will not successfully infect it. When protease is
inhibited, assembling of viral proteins fails to occur, and viral particles will be made that

lack functional HIV enzymes, or new ‘noninfectious’ viral particles will be created [11].

Although an HIV infection is not yet curable, adherence to ART for long periods of time
offer the best chance of effectively managing the disease. Since the antiretroviral drugs
cannot get rid of the virus from the body, the treatment has to be continued for life.
Patients on reverse transcriptase inhibitors (RTI) and protease inhibitors (PI) experience

adverse side effects due to the potency of drugs [21] and this makes adherence to the
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therapy very difficult. Several optimal treatment strategies have been proposed in
literature that achieves viral load suppression (or boosting of immune cells) while
minimizing the cost of therapy. References [30] and [94] proposed a cost functional that
minimize the virus population and cost of drug treatment, while authors in [22], [23] and
[24] performed maximization of the T cells while minimizing the cost of drug treatment.
LQR control methods have been also proposed in literature for designing long term
treatments for HIV due to its simplicity and robustness properties [26], [87] and are of

interest in this research.

4.4.1 Long Term Optimal Treatment Strategy

A treatment model incorporating combinations of RTI and PI classes of antiretroviral
drugs is presented. A long term, optimal treatment strategy proposed by Radisavljevic-
Gajic in [25] is adopted for this study, for investigating the efficacy of time scale design.
The treatment strategy is such that the dosage of drugs is minimized while keeping the
patient in a ‘clinically stable steady state’ for long periods of time. This is achieved with
a two controllers — 1) a steady state control (nominal solution) that maintains the body at
the desired steady state and 2) an optimal control (LQR) that minimizes any deviations

from the desired steady state values in an optimal manner.

4.4.2 Nonlinear HIVV Model with Control

The HIV model is equipped with two control variables, u,(t)andu,(t), corresponding to

RTI and PI categories of antiretroviral drugs. The nonlinear state space model with

control variables [25] is given as,
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B4 _ s 1) - (1- 1, (1) B O 1),

dt
9%§2=a—wa»ﬂaawxn—uﬂxw, (4.10)
% = (L—u, () k%, (8) — 1%, (1).

The descriptions of all model parameters are provided in Table 4.1. Control of viral load
in the body is achieved by reducing the parameter £ (virus infectivity rate) and/or
parameter k (infected T-cell productivity of free virus particles). In the ART, this is

achieved by RTI (u,) acting on gand PI (u,) acting on k. The control variables are

normalized to the range OSUj <1, j=1, 2, with 1 corresponding to the maximal dosage

and 0 corresponding to the situation where the drug is not administered.

Comparing the state-space model (4.10) to the representation of a standard nonlinear

system, x = f (X, u), the state vector, x and input vector, u are defined as,

X, Uninfected CD4 Tcell
X=|X, |=| Infected CD4'Tcell |,
Xa Free virus

u=[u, u,]=[RTI PI].

(4.11)

4.4.3 Steady State (Nominal) Control and LQR Control
The steady state controller maintains the concentration of uninfected T cells, infected T
cells and free virus at the desired steady states, and an optimal controller minimizes any

deviations from the steady states to zero, i.e.,
U () =u +Au(t), i=12 (4.12)

where ui*denotes the steady state control inputs and Au,(t) are small time varying
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components that will be determined by the LQR control. Similarly, the state variables

satisfy the relation,
X(t)=x +Ax(t), i=12,3 (4.13)

where Xi* denotes the constant values of states and Ax; (t) are the state deviations that are

controlled optimally.

Steady State (Nominal) Control
By setting the derivatives of (4.10), the desired steady state values in terms of control
inputs are obtained as,

0=5-Dx; —(1-u)Bxx;,

0=(-u)Bx % — 1%, (4.14)
0= (1-up)kx; — 4.

From the above equations, relationships between Xf and X; can be derived as,

X;:s—Dxl
H,

(4.15)

The above relationship is independent of the state x;. Therefore, once the target values of

x, (andx,) are defined — Xftar (and X;ar respectively), the target value for x, (i.e. X;ar) can

be easily determined from (4.15). The control inputs required to maintain the states at

their target values are obtained from (4.14) as,

* Hy X;t
Uy = 1- * ir
ﬁxltar Xstar (4 16)
* lulx;
Uptar = 1- * =
kx

2tar
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Full Order LQR Control

To design LQR control, the nonlinear, HIV model with control (4.10) is first linearized

about an operating point ([@a,,xztar,x;a,], [U:tar,u;tar 1). (The choice of this operating

point is discussed in the following section). Thus, for small perturbations near the target

values,
X, = Xy + X,
X, = X +AX,, (4.17)
X3 = X;tar + AX3’

corresponding to small adjustments in the control variables,

*

ltar + Aul’ (4 18)
uZ = u;tar + AUZ' .

U =u

and neglecting the higher order terms in the Taylor’s approximation, one can write

AX = ﬁ AX + ﬁ Au (4.19)
X, i) (6 i)
or,
Axl (t) -D- (1 - u;tar )ﬂx;ar 0 _(1 - u:tar )ﬂX;ar Axi (t)
AXZ (t) = (1 - u:tar )ﬂxgtar —H, (1 - u:tar )ﬂxftar AXZ (t)
AX, (1) 0 (LU Dk ! AX4(t)
(4.20)

+ _ﬂxl*tar X;tar AU (t)
2

X, 0
ﬂxltar 3tar {Aul (t):|
0 —kx;,

2tar

The linear HIV model (4.20) is of the form AX = AAX+BAU and is in terms of the target

states and target control inputs.

The quadratic performance criterion for optimal LQR control is given as,
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J= %I[AXT (DQAX(t) + Aug, ()RAUZ, (1) ] dt, (4.21)

and the optimal control deviations AU, () is defined as,
AU, (t) =—R™BTPAX(t) = —KAX(t). (4.22)

The reader is referred to Section 2.4.2 for a detailed formulation of a full order LQR

design. The LQR component of the long term strategy is described in Figure 4.7.

A": Linear Ax(t

HIV Model

LQR Gain,‘ .
N

Figure 4.7: LQR control for the full order HIVV model

The combination of the steady state control and LQR control in the long term treatment
strategy is illustrated in Figure 4.8. The nominal solution block represents the steady state

controller.

u(t) Nonlinear HIV x(t)

Model —
Linear Closed Loop |
Optimal Controller <_Cﬁ)
Au,, (1) A, =—K Ax(r) Ax(r) =
(1) x'(1)

Nominal Solution of Nonlinear HIV Model

Figure 4.8: Long term optimal treatment strategy for HIV
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Selection of Target Values
The U.S. Department of Health and Human Services offers guidelines for the

antiretroviral treatment of HIV [82]. Desired levels of healthy T-cells(x,) and viral load
(x,) are recommended for several phases of treatment. The normal CD4" T cell count

ranges from 500 — 1000 per mm?®. The guidelines recommend the viral load to be

suppressed below 50 per mm®. Based on these guidelines, target values for the states are

*

chosen as X, = 490 per mm® and X, = 30 per mm® [25]. Target values of X, and

tar

*

control inputs, u;ar and u,.., are calculated from equations (4.15) and (4.16) respectively.

2tar

The target steady state values (operating points) are,

* * * T T
[ Xt Ko Xor | =[490,0.0833,30] ;
(4.23)
(U Upr | =[0.4333,0.1356] ;

The A and B matrices of the linear HIV model about the operating point (4.23) were

obtained as,
—0.0204 0 -0.006664 03528 0
A=|0.000041 -2.4 0.006664 |: B=|-0.3528 0 (4.24)
0 86.44  —0.24 0 ~8.33 '

45  Time Scale Analysis and Synthesis of HIV Model

The ultimate objective of time scale synthesis is to apply the slow and fast control laws in
the long term treatment strategy and evaluate its effectiveness in maintaining the patient
at the desired target values. Figure 4.9 highlights the role of time scale synthesis in the
long term strategy, where the full order LQR gain block is transformed into slow and fast

gains through time scale synthesis.
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Figure 4.9: Time scale synthesis of LQR control in HIV treatment

But as a preliminary evaluation, the performance of time scale LQR design is first
assessed outside the long term strategy, i.e. on the linear HIV model to see if the slow
and fast controllers are capable of regulating small deviations in the system. To achieve
this, the linear HIV model is subjected to time scale analysis that results in slow and fast
subsystems, each of which are assigned a quadratic performance index. The
corresponding slow and fast control laws are derived and combined to form a composite
control. The performance of this time scale design is compared to a full order LQR

design on the linear HIV model, which was described in Section 4.4.3.

45.1 Time Scale Analysis of Linear HIV Model

The eigenvalues of the linear model in (4.24) are evaluated and found to be different from
each other by an order of magnitude, thereby confirming the presence of time scales
(Table 4.4). The linear model was then subjected to Time Scale Analysis described in

Section 2.3. When rewritten in the standard time scale form,

X=Ax+Az+Bu,

, (4.25)
7=AX+Az+B,uU,

the states of the linear HIV model are, x =[x, (t)] and z =[x,(t), x,(t)]", and the matrices
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A to A and B, to B, were defined as,

A =[-0.0204], A, =[0 -0.006664], B, =[0.3528 0],
_ 0.0000411 _[-24  0.006664 | _[-03528 0  (4.26)
0 86.44  —0.24 2 0 -8.33

4.5.2 Separation of HIV dynamics
The slow and fast subsystems, x (t) and X, (t) obtained after applying the two-stage

transformation (Section 2.3.2) are,

X,() = Ax, () + Bu(t),

2,(t)= Az, (t)+B,u(t), (4.27)

where, the matrices were obtained as,

03507 0
0.7482 -8.33|

{—2.4 0.006626}
A = ,

(4.28)
B, =[9.5868 6.4536], B, {

The decoupled HIV /&nodel dynamics is represented as,

5 5

................................................

................................................
..........................................................

................................

! !
The eigenvalues of the full order and reduced order systems were compared to ensure that

the decoupled subsystems retain the slow and fast dynamics. The results in Table 4.4
confirm that an almost perfect decoupling was performed on the HIV dynamics. The
accuracy parameter of Newton’s algorithm could be adjusted to get the exact same
eigenvalues for both the systems. The decoupled HIV subsystems are now utilized for the
time scale synthesis of optimal LQR control.
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Table 4.4: Comparison of eigenvalues of full order and reduced order HIV model

Full order system Eigenvalues

eig(A) = -0.0063276

A -0.014025
-2.64
Reduced order systems Eigenvalues
A, (Slow subsystem) eig( A) =-0.006267

eig( A, ) = -0.014085
-2.64

A, (Fast subsystem)

45.3 Slow and Fast LQR Control

The slow subsystem defined in (4.27), has a performance index,
1% T T
Js =EI[AXS (HQ.AX (1) + AT (OR AU (1) ] dt, (4.30)
0

opt

whose optimal control signal Au,™ (t) for the slow subsystem is derived as,

AUP (t) = —K A (t) =—R. "B, PAX (t). (4.31)
Similarly, for the fast subsystem (4.27), the LQR control is derived as,

Au ™ (t) = -K, Ax, (t) =—R, "B, P, Ax, (t), (4.32)
The control fed back to the system is a composite control signal of the form,

Aug, (t) = Au” (t) + Auf™ (1) (4.33)

All the parameters in the above equations and their detailed formulations are provided in
Section 2.4.2. The independent processing of control laws highlights the fact that

computational ‘stiffness’ associated with the HIV dynamics was handled effectively. Also
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the two LQR gains, K.and K, are now of lower orders, 1 and 2" order matrices

respectively, compared to the full order gain, K which is a 3" order matrix. The time

scale synthesis of LQR is presented in Figure 4.10.
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Figure 4.10: LQR control for linear HIVV model using time scale separation

4.6  Simulations and Results of LQR Control

The LQR design is performed in MATLAB® and Simulink® for full order and reduced

order cases. The numerical values of the system parameters are provided in Table 4.1 and

the weights for the optimal control Q,,Q; , R and R are chosen based on trial and error.

The controllability conditions for both the cases are tested using MATLAB®s

‘ctrb (A, B)’ command.

4.6.1 Full Order LQR Results

The controllability matrix was found to have a full rank of 3 and the linear HIV model is

therefore controllable. The weighting matrices are chosen as,
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0001 O 0 Lo
Q=| 0 0001 0 |; R:{ } (4.34)
0 0 0001

which lead to a LQR gain,

0.0060723 -0.76054 -0.022914
(4.35)

~ |-0.0010398 -0.54206 -0.017779

A Simulink® model for the full order linear HIV model is built as shown in Figure 4.11.
The full order gain, K is applied to all the states. The saturation block in the model has
upper and lower limits set to one and zero, respectively, due to the fact that the control

variables in (4.10) are normalized to the interval 0<u, <1 j=12 [25]. The initial

conditions of the simulations are chosen to denote small deviations from the desired

steady state values.

o]
> |:| To Workspace3 >J x1_full

u_fullsat To Workspace2
|
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X3 To Workspace1

v

Saturation

HIV Full Order - Linear Model

p 1
-K* uvec }C—E; M x3_full
Gain3 u To Workspace8

Figure 4.11: Simulink model - full order LQR design of linear HIVV model

The results of the simulation are provided in Figure 4.12. From the plots, it is observed

that all the state deviations are brought to zero by dispensing small amounts of control.
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Figure 4.12: LQR control response of the full order, linear HIV model

The state deviation AXx,(t)is observed to take a longer time to reach zero compared to

other states. This could be due to the slow time scale characteristic of the state ,(t). The

time taken for the states to decline to zero could be further minimized by adjusting the Q

matrix of the quadratic function.

4.6.2 Reduced Order LQR Results
The controllability matrices for the slow and fast subsystems are verified. A full rank of 1
and 2 were obtained for the controllability matrices of the slow and fast subsystems,

respectively, thereby rendering them controllable. By choosing the weighting matrices as,
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Q. =[0.001], Rs:[l O},
0 1

(4.36)
o - 0001 O . 10
"I o o001 " |0 1/
the slow and fast gains are calculated to be,
_ [0.025787]. _[-0.72262 -0.021494 La7
* 10017359 " |-0.54855 -0.01788 |’ (4.37)

respectively. The Simulink® model is built for the reduced order transmission line as

shown in Figure 4.13. The slow optimal gain, K_is applied to the state x (uninfected T

cell) and the fast gain, K, is applied to the states x,(infected T cell) and x, (free virus).

GainZ

Kg* uvecIL.. ' P ®1_red |

TaWWaorkspaces
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HIY Linear Model

Tovorkspaced
K uvec -

Gaint To Workspace! 0

Figure 4.13: Simulink model - reduced order LQR design of linear HIV model

The saturation block enforces the upper and lower bounds for the normalized control
inputs as in the previous case. The plots of the states and control signal are provided in

Figure 4.13.
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Figure 4.14: LQR control response of the reduced order, linear HIV model

The slow and fast controllers are observed to successfully minimize the deviations to
zero. It is observed that small deviations in the states demanded only small control efforts
to regulate them to zero as in the previous case. The time taken for the states to decline
to zero could be further minimized by adjusting the weights Q, and Q; of the respective

quadratic functions.

4.6.3 Comparison of Full order and Reduced Order LQR Results
Each of the state plots and control signals in the full order system are compared to their

reduced order counterparts and the results are provided in Figures 4.15 and 4.16.
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Figure 4.16: Comparison of full order and composite LQR control signals
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The plots verify the closeness of full order LQR and reduced order control which
establishes the efficacy of time scale methods, that almost identical control action was
obtained with lower order controllers. The reduced order design demands lesser
computational effort than its full order counterparts, and the resulting control laws are
relatively simple. The strengths of this approach become substantial when HIV model
dimensions exceed a third order or a fourth order, which is mostly the case with HIV
treatment models. In such scenarios, the proposed control approach, that facilitates model

order reductions, becomes inevitable for designing simple and practical treatment plans.

4.7 Long Term Treatment of HIV with Composite LQR Control

In the previous sections, the LQR component of the long term treatment plan was
evaluated on the linear HIV model (i.e. LQR gains were fed back to linear HIV model)
and the results indicated that the time scale design was at par with that of the full order
design. In this section, a more practical scenario is investigated where the composite
(slow + fast) LQR control is fed back to the nonlinear HIVV model as part of the optimal

long term treatment plan.

The ability of the composite LQR controller to maintain the states at the desired target
values is investigated. A block diagram describing the LQR feedback on the nonlinear
HIV treatment model is provided in Figure 4.17. The steady state values are provided by
the nominal solution block. The block and dashed arrows describes the decomposition
procedures that led to the design of slow and fast gains, Ks and K;. The solid arrows
indicate the flow of signals in the model. A Simulink model is built to implement the

long term treatment strategy with composite control (Figure 4.18).
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Figure 4.17: Time scale synthesis of long term treatment strategy with nonlinear HIV

model

The ‘Nonlinear HIV Model’ block implements the dynamic equations in the HIV
treatment model (4.10). The ‘nominal solution’ block supplies the desired steady state

values of [490; 0.0833; 30] for x,(t), x,(t) and x,(t), and [0.4333, 0.1356] for u,(t) and
u,(t) . These values meet the U.S. Department of Health and Human Services HIV
Therapy Guidelines. The slow and fast state deviations, Ax,(t)and Ax, (t) are fed to the
respective gains. The composite LQR control Au,, (t) is combined with the nominal

control and fed back to the nonlinear HIV block.
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Figure 4.18: Simulink model for composite LQR control of nonlinear HIV model

The initial conditions for this simulation are obtained from [25] and were chosen such

that they are outside the range of the desired target values. Table 4.5 lists the choice of

initial conditions.

Table 4.5: Initial conditions for simulating nonlinear HIV model [25]

Parameter Description Numerical Value
x,(0) Healthy T- cell population 560 per mm®
X, (0) Infected T- cell population 0.084 per mm?
X, (0) Infectious HIV population 60 per mm?®

The results of simulation — state and control responses are displayed in Figure 4.19 and

Figure 4.20, respectively. It can be observed from the plots that the composite LQR

controller was successful in maintaining the states of the nonlinear model at the desired
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levels. The state x (t)was observed to reach the target value in approximately 150 days.

The virus population was brought down to the steady state value very rapidly in slightly
less than 3 days, and it remains at that level for the rest of the simulation period of 500

days. The concentration of infected T cells remained at the target value of 0.08 per mm®.

From the control responses in Figure 4.20, it was observed that u,(t) or RTI drug was not

administered for an initial duration of 80 days and was increased to a value of 0.43 after a

period of about 170 days. The second control, u, (t) or the Pl drug was administered at
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Figure 4.19: States of nonlinear HIV model with composite LQR control

the maximum dosage (u,(t) =1) for less than 3 days, which later on waned to a value of

0.136, the control input necessary to keep the states on target. This is evident from the
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detailed plot of the control response near the origin. An earlier observation on the very
rapid decline of virus concentration (< 3 days) could be linked to the high Pl dosage for
the same amount of time. Since RTIs were not administered during that period, maximum
dosage of PI was required to suppress the initial viral load in the body. After about 200

days the control dosage stabilizes to the designed target values.

> Contral - ut) Control - u(t

----- € o5t

300 400 500 0 5 10 15 20 25 30 35 40
t(days) t (days)

Figure 4.20: Control inputs of the optimal control of nonlinear HIV model (left);

Detailed plot of control inputs near origin (right)

The results imply that lower order control laws were very effective in maintaining the
patient in a clinically stable state. The implications of time scale methods become
pronounced when comprehensive models of HIV dynamics are considered, such as
models involving addition of immune system interactions (i.e. CD8" T cell or “killer T
cell” dynamics) to the existing viral and uninfected CD4" T cell dynamics [20]. This
modeling approach supports investigations of a new treatment plan called Structured
Treatment Interruption (STI) which is a planned interruption of drugs at ‘favorable’ times
in the course of ART. The addition of CD8" dynamics renders the simplest model with an
order 6. Time scale methods presented in this research could help in pursuing effective

control strategies even with such detailed models that yield simple and effective feasible
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treatment plans.

4.8 Research Work on Measles Infection

A brief amount of time was spent studying the measles disease model during the initial
research period. The disease model couldn’t be analyzed thoroughly for the application of
SPaTS methods, as there was difficulty in assessing the time scale behavior of the model
with certainty. Standard procedures like linearization and eigenvalue calculations were
performed on this model, but a uniform time scale behavior couldn’t be established from
the simulation results. A brief overview of measles, the issues encountered and the

summary of the work performed is provided in the following sections.

4.8.1 Disease Background

Measles, a highly contagious disease among children, is one of the most common and
often a fatal disease in the world. It is caused by the measles virus, a single stranded RNA
virus of the genus Morbillivirus that infects the respiratory system and attacks the
immune system. The infected individuals transmit the virus to over 90% of unprotected
close contacts, making children under the age of 5 very vulnerable [95]. There is no
specific treatment for measles, but unlike HIV/AIDS, measles is preventable by the
Measles Mumps-Rubella (MMR) vaccine, and routine measles vaccination for children is

the key public health strategy to prevent the disease.

However, WHO reported this disease, in 2017, as one of the leading causes of death

among young children globally, despite the availability of a safe and effective vaccine
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[96]. Consequently, modeling of transmission dynamics and optimal vaccination schemes
are mainstream research areas of this infectious disease. This research work was
conducted with the objective of investigating the optimal vaccination strategy for control

of this disease through the application of time scale methods.

4.8.2 Measles Transmission and Control Dynamics

Epidemiological models have been widely used in literature for understanding the
transmission of diseases and for testing various prevention and control therapy schemes
[97], [98]. These models stratify the population into compartments which represent the
status of their health with respect to the pathogen in the system. The Susceptible-
Infectious-Recovered (SIR) model is one of the common compartmental models,
consisting of three compartments representing the number of susceptible, infectious and
recovered/immune individuals. The dynamic model for this research is adopted from
literature [47], and is a SIR model with vaccination schemes.

The state space model for the measles transmission and control is described as [47],

Z—?:b—,us —w()S - A()SI,
%z_m +ADSI —al, (4.38)

z—T:—yR-l-y/(t)S +al,

where S, | and R are the state variables. The total population is defined as,
N(t) =S(t) + 1 (t) + R(t). (4.39)
The influx rate into the population is denoted by b, s is the exit rate from the population

compartment (rather than mortality) and « is the recovery rate. The vaccination rate
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(control) is expressed by the term w(t) and is assumed to be periodic. The contact rate is
given by £(t) and is assumed to be periodic with annual periodicity T, as the population

considered here is a large population that is well mixed like the children of several large
schools located close together [47]. The numerical values of the parameters are listed in

Table 4.6.

Table 4.6: Measles Model Parameters [47], [99]

Parameter Description Numerical Value
b Population influx/birth rate 0.02 Sl'fe expectancy

=50 years)
M Death rate 0.02
a Recovery rate 100

Contact rate: A, =1800

£O ; =05

B(t) = B, (1+&sin( 27t :

0 ( ( % )) T=1year

4.8.3 Model Simulation

The nonlinear model in (4.38) was simulated in MATLAB® and Simulink® with the
parameters in Table 4.6. The initial conditions were chosen based on the assumptions that
a very small percentage of the population is infected, there is no recovery of the infected
individuals, and N(t) =S(t)+ 1(t)+ R(t) =1. The initial conditions were[0.999,0.001,0].
The control variable y (t) was assumed to be zero, as the inherent dynamics of the model

is independent of the control input. The plots of the states with respect to time are

displayed in Figure 4.21.
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Figure 4.21: State responses of the measles model ( B(t) = 8,1+ sin(2zt/T)))

4.8.4 Linearization and Eigenvalues

The presence of slow and fast dynamics couldn’t be inferred from the system responses
(Figure 4.21), and therefore its eigenvalues were evaluated. The nonlinear model was
linearized at various instants of time, and the results obtained indicated some
discrepancies in the eigenvalues. Table 4.9 displays the eigenvalues obtained after
linearization. The eigenvalues obtained for time instants, t = 1 and t = 2, displayed only
two eigenvalues for a (3x3) system matrix A. This was an unexpected result from the
MATLAB® simulations, and the version of the software used then was recalled to be
‘R2007b".

Table 4.7: Linearization of measles model at various time instants

Time instant

P 0 0.004 0.006 | 0.01 | 0.03 | 0.006 0.1 1 p
t’ in years

-0.02 -0.02 -0.02 | -0.02 | -0.02| -0.02 | -0.02 | -0.02 | -0.02
) 0.0861 | -2.5+ 2881 | -106 | -100 | -100 | -8.19 | -0.199 | -65.8 | -30.8
Eigenvalues | 1700 | -2.5-288i | -1360 | -1030 | -147 | -99 | -97.2

128



To investigate further on this discrepancy, one of the model parameters was modified to
see if the system gives appropriate eigenvalues, i.e. 3 sets of eigenvalues for all time

instants. The contact rate parameter, S(t)was changed to a constant value from a
sinusoidal periodic function, i.e. B(t) = 8, =1800. The eigenvalues were evaluated again,

and are provided in Table 4.8. The system responses were also observed for this case and
did not seem to vary much from that of the periodic contact rate’s case (Figure 4.22).
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Figure 4.22: State responses of the measles dynamic model with S(t) =1800

Table 4.8: Linearization of measles model with S(t) =1800

Time instant

ces i 0 0.004 0.006 | 0.01 | 0.03 | 0.06 0.1 1 2
t’ in years
0 0 0 0 0 0 0 0 0
Eigenvalues | 0.106 | 15.9 +283i | -106 | -100 | -100 | -6 | -0.124 | -100 | -0.298
1700 | 15.9—283i | -1320| -999 | -135 | -100 | -100 -100

The new eigenvalues indicated that for time t = 2, there were 3 eigenvalues, but for t = 1,
there were only two eigenvalues. Also another observation made was that one of the
eigenvalues was zero for all time constants. The MATLAB code was ‘run’ several times
with different solvers (variable and fixed step) but the same results were repeated. The
discrepancies in the results might be associated with the specific MATLAB version and
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the toolboxes that were available at that time. The author recalls that during the initial
research work in life sciences, a few mathematical models were shortlisted for pursuing
research, and measles and HIVV models were a priority. The technical difficulty with the

measles model led to continuation of research with the HIVV model.

The measles model was revisited after completion of HIV research and the eigenvalue
analysis was performed again with the current MATLAB® version (used for transmission
line and HIV research), ‘R2013a’. The linearization m-file is run again in the new version

for both periodic and constant cases of contact rate, A(t), with no code modifications,

and the results are observed to be more appropriate and relevant. There are three sets of
eigenvalues as expected for a 3" order system, at all time instants, and all of them are

non-zero. The results are provided in Table 4.9.

Table 4.9: Linearization results of measles model with MATLAB®- R2013a

Time instant ‘t° . .
. Eigenvalues Eigenvalues
(in years)
Periodic contact rate Constant contact rate
At = B, (l+gsin (Zﬂ%)) A(t) =1800
-0.02 -0.02
t=0 0.0861 0.0861
1696.3 1696.3
-0.02 -0.02
t =0.004 -2.4961+ 288i 15.912+ 282.62i
-2.4961 - 288i 15.912+ 282.62i
-0.02 -0.02
t =0.006 -105.84 -106.43
-1358.4 -1323.5
-0.02 -0.02
t=001 -100.08 -100.09
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Time instant ‘t° . .
. Eigenvalues Eigenvalues
(in years)
Periodic contact rate Constant contact rate
M) =5, (1+gsin (27%)) A(t) =1800
-1027.9 -999.47
-0.02 -0.02
t=0.03 -100.4 -100.4
-147.35 -134.98
-0.02 -0.02
t=0.06 -8.192 -6.9251
-98.98 -99.118
-0.02 -0.02
t=0.1 -0.199 -0.155
-97.23 -97.81
-0.02 -0.02
t=1 -65.8 -65.75
-0.02 -0.02
-0.02 -0.02
t=2 -30.8 -30.788
-0.02 -0.02

The eigenvalues clearly indicates time scale behavior, and SPaTS methods can be easily
applied for the measles model. The design of optimal vaccination schemes through time

scale analysis and synthesis is a topic of future research.

49  Conclusion

A time domain model describing the dynamics of HIV infection is presented, and is
analyzed for its inherent time scale behavior. The presence of time scales is identified
through linearization and non-dimensionalization procedures, which qualified the HIV
model for application of SPaTS methods. Acknowledged in literature for its model order

reduction, stiffness relief properties, and flexibility with control laws, SPaTS methods are
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applied for the synthesis of an optimal HIV treatment strategy in this study. The
simulation results manifests the effectiveness of this method in that comparable control
was achieved with the lower order slow and fast controllers (in the time scale approach)
compared to the conventional full order design. Lower order control laws translate to

simple treatment plans that can be implemented in practice.

Even though mathematical modeling, experimental data and clinical data analysis were
critical in transforming this fatal disease to a chronically managed disease, many aspects
of the disease still remains unknown today. Extensive models incorporating various
aspects of HIV dynamics might offer better insights towards inhibiting viral production.
One example is the model incorporating the dynamics of the immune system, specifically
the CD8+ ‘killer’ T cells which are beneficial towards investigating Structured Treatment
Interruptions (STI). Development of control laws with such detailed models demand
substantial computational efforts, and SPaTS methods could assist with the design of

feasible control strategies.

Eradicating HIV from the body or assisting the body to fight the infection remains the
ultimate goal. Future work would investigate revision of the current model to incorporate
the immune system dynamics for a STI approach, which enhances the immune system
responses to decimating the virus in the body. Analysis and design of measles model is
another area of future research in the area of Life Sciences, where time scale methods
will be applied for design of optimal vaccination schemes for controlling the disease

transmission.
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Chapter 5

Summary, Conclusions and Future Work

5.1  Summary and Conclusions

In this Dissertation, dynamic models of an overhead power transmission line and an HIV
infection were analyzed. Nonlinear state space models were used for describing the
dynamical processes. The eigenvalues of the linearized system were observed to be in
distinct groups which indicated that the system had inherent slow and fast dynamics. In
the transmission line model, time scale behavior was by virtue of the slow temperature
dynamics and the fast electrical dynamics, whereas in the HIV infection model, it was
due to the slow dynamics of the uninfected T cells compared to the very rapid viral
dynamics. This made, the selected models, prime candidates for time scale analysis and

design.

The SPaTS theory was very effective in designing linear optimal controllers with reduced

model orders, for both transmission line and HIV dynamics.

1) In the case of transmission lines, a second order linear model was decoupled into two
1% order, independent slow and fast subsystems. LQR optimal controllers were
designed with these reduced order models, with the control objective of minimizing
perturbations in transmission lines, which could arise from loading of electric motors
or abrupt changes in source voltages or lighting strikes to the line. The performance
of the time scale LQR design was evaluated by comparing the linear model’s

performance to that of a general full order design.
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2)

3)

(@)

For the HIV infection model, a third order linear system was decoupled into a 1% and
2" order, independent slow and fast subsystems, respectively. A long term treatment
strategy incorporating LQR optimal control for maintaining the patient at steady state
levels was investigated, with the objective of minimizing any deviations from the
steady state values to zero. Time scale synthesis of the long term strategy was
performed where the composite (slow + fast) control was fed back to the original
nonlinear HIV model, to test its efficacy in maintaining the patient at steady state

values (long term treatment strategy).

In both the cases, it was seen from simulation results that the performance of the
reduced-order control matched the performance of the full order control very closely.
These results hold far reaching implications in that, SPaTS could be used to reduce
the very high model dimensions into lower order subsystems which would
significantly reduce online and offline computation requirements. The stiffness
associated with time scale systems is greatly reduced by the separation procedure, and
this enhances the computational efficacy of control designs. Also, the independent
slow and fast controllers allow for parallel and distributed processing of information
with corresponding sampling rates i.e. slow system with slow sampling rate and fast

system with fast sampling rate.

In the context of transmission lines, this would imply that SPaTS methods would be
well-suited for designing software controllers for DLR technology that can be

implemented real-time. SCADA systems which form the backbone of modern
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industrial processes will be a key component of the evolving smart grid, for real-time
monitoring, management and control of power transmission. The online controllers in
SCADA systems for calculating real-time ampacity and corresponding line
temperatures could benefit from the SPaTS design methods as the reduced order
controllers offer significant computational savings compared to their full order

counterparts.

(b) For the HIV model, the lower order control laws translate to simpler treatment

4)

5.2

schemes compared to the higher order control laws that are complex and difficult to
implement.

Furthermore, when it comes to reliability of the control system, time scale synthesis
provides more reliability with two controllers for subsystems instead of one central
controller for the original system. The simulation results indicated that the
performance of a transmission line model with a single controller, either slow or fast,
by itself gives a performance nearly close to that with the combined (composite)
controller performance. The reliability feature of the time scale synthesis becomes
very significant for transmission lines in the event of faults in the line or controller
failure. The multiple controllers in place are able to keep the system stable while the

other controller has failed due to a fault or due to malicious cyber-attacks.

Future Work

In this study, several strengths of the SPaTS method are presented: decoupling of slow

and fast dynamics, model order reduction while preserving system dynamics which

facilitated reduction in online and offline computational requirements, processing slow
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subsystems with low sampling rate and fast subsystems with higher sampling rate and

increased reliability of systems with two independent controllers for the subsystems.

However, the controller design studied here was limited in scope, as it was applied to a
linear system only. This is due to the fact that decoupling of slow and fast subsystems is
currently possible only for linear singularly perturbed systems. For optimal regulation
and tracking of nonlinear systems, the closed-loop optimal control strategies are obtained
using State-Dependent Differential or Algebraic Riccati Equations (SD-DRE or ARE) for
finite and infinite horizon cases [100]. A topic for future investigation is to apply the
theory of SPaTS to closed-loop nonlinear optimal control problems using SD-DRE

technique.

Furthermore, detailed models of medium and long length transmission lines with
distributed parameter modeling would be considered in future research for any
unaccounted line current dynamics to enhance the computational accuracy of line
ampacity levels. Also, integration of forecasted weather information into the existing
time domain models of transmission lines would be a potential enhancement for the
GLASS software at INL. Comprehensive power system models for transient analysis
studies (incorporating generator, transmission line and load dynamics) would be another

interesting area for the application of SPaTS methods.

Another potential area of interest would be the investigation of optimal treatment

strategies for HIV infection where models incorporate stochastic components of viral
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dynamics and the host’s immune system (CD8" T cell) dynamics. This would offer better
insights into the viral dynamics and the host interactions, and would help in designing
STI schemes for controlling the HIV infection. Investigation of SPaTS in developing
optimal control strategies for measles is another avenue for future research in Life

Sciences.
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Appendix A

A.l  Transmission Line Model Data

ACSR — Drake 26/7 20
(Aluminum Conductor Steel Reinforced) - ©/ it -

Conductor type 26 outer Aluminum conductors & 7 Steel : &
core conductors

Table A.1: Parameter values used in the transmission line model [3]
Property Variable Value

Line length len 60 km

Wind speed Vi 0.61m/s

Prc;Je.cted area of conductor A 0.02814 m

(m*/linear m)

Solar absorptivity a 0.8

Emissivity £ 0.8

Ambient air temperature Ta 40 °C

Conductor outside diameter Do 28.14mm

Resistance @ low temperature | R(Tiow) | R(25 °C) = 7.283 10-5 Q/m

Resistance @ high temperature | R(Thign) | R(75 °C) = 8.688 10-5 Q2/m

Azimuth of line -

_2|ml_Jt of line - east to west 2, 7, = 90°
direction
Latitude Lat 30° North
. Calculated for 11:00 am on June 10

Solar altitude H. (Day 161)

Day of the year N 161

Line elevation He Om

Hour angle 1) -15°

Mass_ per unit length of M 1,116 kg/m

aluminum

Mass per unit length of steel Msteel 0.5119 kg/m

Specific heat of aluminum Coal 955 J/kg .°C

Specific heat of steel Cp.steel 476 J/kg .°C

Angle between wind and o

. ¢ 90
conductor axis
Load resistance Rioad 100 Q
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Property Variable Value
6.565 * 107 H — Calculated from ACSR
Datasheet [101]

Line Inductance L

Line Inductance Calculation

L=2x10"1In D, x1609 Q/mile
GMR

Using D, = 1ft and GMR = 0.0375 ft from the datasheet in Table A.2 and

converting units to per meter, the value of L was found to be 6.565x107"H.

A.2  Data Sheet for ACSR - Drake 26/7 Conductor [102]

Table A.2: ACSR 795 kcmil 26/7 Datasheet — Inductance and GMR Information

Aluminum Conductor Steel Reinforced

Electrical Properties

SIZE & STRANDING RESISTANCE 60 HZ REACTANCE 1 FOOT EQUIVALENT SPACING
1] AC-§0-HZ [0 hms/ 1000 Ft | | Inductive (01000 Ft.)
AWG Bluminm! {Ohan=1000 Ft.) Capacitive

CODE WORD or kcmil Stesl e a8%° ¢ @50° ¢ @T5°C (Megohms-1000 Ft) a5 ¢ a5 ¢ &%
TURKEY B &1 0sd1 0.6553 0TS0 0E158 07513 o 0.1380 01439
SWAN 4 61 04032 04118 04784 05218 07148 D152 0.1314 10,1368
SWANATE L} m 03889 04072 04533 05185 oTe D153 01238 01303
SPARROW 2 B 0753 0.2581 0.3080 03380 DETES 01100 01235 LINFir)
SPARATE 2 m L2506 0.2563 0.7986 k) 0673 (R[] 0.1176 01206
ROBIN 1 B 0211 0.2058 0.2474 0703 0680 D.1058 01181 0124
RAVEN 1w B 01583 (IR 2] nagr2 02181 DB421 01040 o 0.1182
aualL 40 61 01285 0.1300 01818 01760 06241 o107 oy 01135
PIGEDN 30 B 01003 0.1024 01208 D445 DE0SS D02 0.1082 0.1086
PENGLUIN L] B 00795 0.0872 0.1086 01157 05966 D.0884 DM 10.1053

Inductive (0 hme/1000 FL) GMR FL)

WAKWING W68 181 00544 0.0657 00723 n.o7ER 0578 D034 omsr
PARTRIDGE R 267 00837 0.0652 0oma naoTre 0.585 DueEz1 o7
MERLIN 34 181 00510 0.0523 00574 00625 0.560 00877 ez
LINNET ke 1) 267 L0506 0.0517 0.0558 0018 0548 D054 D024
ORIOLE %4 37 00502 0.0513 0.0563 0084 058 D043 00255
CHICKADEE 475 181 00432 0.0443 0.0487 noE2e 054 D.0E56 0.0240
IBIS W5 67 00428 00432 0.0481 00625 0538 D.0E35 00285
LARK Wis w7 00425 0.0434 0.477 0019 053 D24 oo
PELICAN Cheli] 181 0.0360 0.0368 00405 00441 052 0.0E35 [lie
FLICKER Lreli] 7 00358 0.0387 0.0403 0043 05M D.ie1g {1 T}
HAWK 4770 87 00357 0.0386 0.0402 00438 0522 D4 0.02%0
HEN Lreli] £ 00354 0.0382 00388 00434 0517 0003 .03
OSPREY 5565 1 00309 00318 00348 o 0512 ooEg 0.0z
PARAKEET SEES nu7 00307 0024 ooz [liery) sz o0 00208
DOVE 5565 w7 00305 0.0314 0.0345 0.0a7s 0510 0.0785 00313
EAEBLE 5565 7 10,0300 n.osn ooz oo 0505 00786 D03z
PEACOCK B50 w1 00282 0.02%0 00378 00347 0505 ooraz o018
SWIFT B%0 381 00267 0.0221 00307 00334 0508 0.0E06 0.0300
KINGBIRD B%0 181 00269 0.0278 0.0306 oo 0507 0.0805 0.0301
RODK 6350 7 0.0268 0.2 0.0300 00330 0502 00786 .03z
GROSBEAK B30 w7 00267 0.0275 0.0301 00328 0.500 0.0780 00335
EGRET E%0 e 00266 0.0273 0.02e8 00226 0485 ouo7es moast
FLAMINGD BEE 7 10.0256 0.0263 0.0280 oo a8 0.0780 0.0335
STARLING TIs5 267 00238 0.0244 0.0268 ouoes2 0480 o.ore? 00355
REDWING TISS ung 00236 002 0.0267 00280 0486 0.0756 naar2
oot 70 1 o7 00225 00247 00268 D482 00780 et
TERN 7950 457 o216 0.0025 0.0246 n.oe? DAz D.0764 0.0352
CUCKDD T80 k) o215 0.0223 0.0243 00256 DAz 00783 0.0361
CONDOR 7850 57 s 0.0222 0.0244 D.02e5 D424 0.0758 003628
DRAKE T¥0 267 o214 00222 D242 D.ag2 00756 00375
MALLARD 7850 e o113 0.0220 Doz 0.0t 0T D074 0.03%2
RUDDOY 800.0 457 o 0.0200 n.o2ig Dozt 0.AT8 D.0755 10,0374
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Table A.3: ACSR 795 kcmil 26/7 Datasheet — Inductance at different temperatures [101]

Electrical Data for ACSR Conductors

Resistance Reoctance ot 60 Hz **
Inductive Tndurfive Tnductive
Size DCot20°C  ACot25°C  ACot50°C  ACat75°C  (opodive at 25°C ot 50°C otf5°C Ampodity®
Codeword ~ (AWG/Kemil) — (ohmAft)  (obm/kf)  (ohmdt)  (obm/kft)  (megohmkfi) (ohm/kft)  (ohm/kf)  (ohm/kt) (A)

Turkey -] 0.642 0.655 0.750 0816 0751 0.120 0139 0.144 105
Swan 4 0.403 0.412 0.479 0.522 0715 0.115 0,131 0137 140
Swanate 4 0.399 0.407 0.463 0.516 0710 0.113 0.124 0.130 140
Sparraw 2 0.253 0.259 0.308 0.336 0.678 0.110 0,123 0.128 185
Sparate 2 0.251 0.256 0.297 0.330 0.674 0.109 0,118 0021 185
Robin 1 0.201 0.206 0.247 0.270 0.660 0.107 0119 0.122 210
Raven 1/0 0.159 0.163 0.197 0.216 0.642 0.104 0,114 0116 240
Quail 2/0 0.12¢ 0.130 0.162 0.176 0.624 0.102 0112 0113 275
Pigeon 3/0 0.100 0.103 0.121 0.145 0.606 00992 0,108 0.109 315

Penguin 4/0 0.0795 0.0822 0.107 0116 0597 0094 0105 0.105 365
Waxwing 266.8  0.0644 0.0657 0.0723 00788 0576 00903 0.0903 0.0903 445
Partridge  266.8 0.0637 0.0652 0.0714 00778 0565 00881 0.0881 0.0881 455
Merlin 3364 0.0510 00523 0.0574 00625 0560 00826 00826 0.0826 515
Linnet 3364 0.0506 00517 0.0568 00619 0549 0.0854 0.0854 0.0854 530
Criole 3364 0.0502 00513 0.0563 00814 0544 0.0843 0.0843 0.0842 530
Chickadee 397.5 0.0432 0.0443 0.0487 0.0528 0544 0.0856 0.0856 0.0856 575

Ibis 3975 0.0428 0.0438 0.0481 00525 0539 00835 0.0835 0.0835 590
Pelican 477 0.0360 0.0369 0.0405 0.0441 0.528 0.0835 0.0835 0.0835 640
Flicker 477 0.0358 00347 0.0403 00439 0524 0.0818 00818 0.0818 4670
Hawk 477 0.0357 0.0366 0.0402 00438 0522 0.0814 0.0814 0.0814 660
Hen 477 0.0354 00362 0.0398 0.0434 0517 00803 0.0803 0.0803 660

Osprey 556.5 0.0309 00318 0.0348 00379 0518 00818 00818 0.0818 710
Parakest  556.5  0.0307 0.0214 0.0347 00377 0512 00801 0.0801 0.0801 720

Dove 556.5 0.0305 00314 0.0345 00375 0510 00795 00795 0.0795 730
Rook 636 0.0268 00277 0.0303 0.0330 0502 00786 0.0786 0.0786 780
Grosbeak 636 0.0267 00275 0.0301 0.0328 0499 00780 0.0780 0.0780 790
Drake 795 0.0214 00222 0.0242 0.0263 0482 0075 0.0756 0.0756 910
Tern 795 0.0216 00225 0.0246 00267 0488 0.0769 0.0769 0.0769 890
Rail 954 0.0180 00188 0.0206 00223 0474 0.0748 0.0748 0.0748 970

Cardinal 954 0.0179 00186 0.0205 0.0222 0470 00737 0.0737 0.0737 990
Curlew 10335 0.0165 00172 0.0189 00205 0464 00729 0.0729 0.0729 1040
Bluejay 1112 0.0155 00163 0.0178 00193  0.461 0.0731 00731 0.0731 1070
Bittern 1272 0.0135 00144 0.0157 00170  0.45] 00716 00716 0.0716 1160
Lapwing 1590  0.0108 0.0117 0.0128 00138 0.434 0.0689 0.0689 0.0689 1340
Bluebird 2156 0.00801 0.00903 0.00977 00105 0409 00652 0.0652 0.0652 1610

* Ampacity is with sun and wind at 2 ft/s
** Reactance at 1 foot equivalent spacing

Nexans
5
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