
In presenting this thesis in partial fulfillment of the requirements for an advanced degree

at Idaho State University, I agree that the Library shall make it freely available for

inspection. I further state that permission for extensive copying of my thesis for scholarly

purposes may be granted by the Dean of the Graduate School, Dean of my academic

division, or by the University Librarian. It is understood that any copying or publication

of this thesis for financial gain shall not be allowed without my written permission.

Signature

Date

i



High Order Parallel FFT-Type Algorithms

Ronald Gonzales

A thesis submitted in partial fulfillment of the

requirements for the degree of Master of Science in the

Department of Mathematics and Statistics Idaho State University

Fall 2017

ii



To the Graduate Faculty:

The members of the committee appointed to examine the thesis of Ronald Gonzales find

it satisfactory and recommend that it be accepted.

Dr. Yury Gryazin,
Major Adviser

Dr. Tracy Payne,
Committee Member

Dr. Glenn Thackray,
Graduate Faculty Representative

iii



Contents

List of Figures v

List of Tables v

Abstract vi

1 Introduction 1

2 Two Dimensional Test Problem 5

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2 OpenMP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.3 MPI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.4 CUDA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3 Discretization 24

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.2 A Second Order Compact Scheme . . . . . . . . . . . . . . . . . . . . . 25

3.3 A Fourth Order Compact Scheme . . . . . . . . . . . . . . . . . . . . . . 31

3.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4 Parallelization 37

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.2 Sequential Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.3 OpenMP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

iv



4.4 MPI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.5 CUDA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.6 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

5 Future Work 48

Acronyms 50

Glossary 51

List of Figures

2.1 2D OpenMP Acceleration . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.2 2D Transfer of Information between MPI Processes . . . . . . . . . . . . 19

2.3 2D MPI Acceleration by Processors on One Node . . . . . . . . . . . . . 20

2.4 2D MPI Acceleration by Nodes . . . . . . . . . . . . . . . . . . . . . . . 21

4.1 3D OpenMP Acceleration . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.2 3D Transfer of Information between MPI Processes . . . . . . . . . . . . 43

4.3 3D MPI Acceleration by Processors on One Node . . . . . . . . . . . . . 44

List of Tables

2.1 2D CUDA Acceleration . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4.1 3D MPI Acceleration by Nodes . . . . . . . . . . . . . . . . . . . . . . . 45

4.2 3D CUDA Acceleration . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

v



Abstract

In recent years the progress of parallel technologies on both personal computers and large

clusters renders sequential numerical algorithms a thing of the past. The following thesis

will establish how the use of parallel programming is essential in comparison to running

calculations sequentially on a single processor. This will be demonstrated by calculating

the approximate solution to the three dimensional Helmholtz equation using multiple

central processing units and a combination of both central and graphics processing units.

The second and fourth order compact schemes for approximating solutions to the three

dimensional Helmholtz equation are developed. In addition, the resulting algorithms are

shown. Finally, a presentation of the results of the parallelization of these algorithms

from both Idaho National Laboratories computer clusters and personal computers is

provided.

vi



Chapter 1

Introduction

This thesis will consider parallel algorithms for the approximate solution of the two and

three dimensional Helmholtz equations. These are discretized by high-order compact

finite-difference schemes. The matching order compact non-reflecting boundary condi-

tions are applied to preserve the high accuracy of the numerical solution. This thesis

does not present the convergence of these algorithms. For detail on the convergence see

[10]. The methods developed here can be applied to Krylov-FFT type high-resolution

algorithms for subsurface electromagnetic scattering problems.

The focus of this thesis is to demonstrate efficient parallel implementation of the

proposed algorithms for approximating the solution to the three-dimensional Helmholtz

equation in both a shared and distributed memory environment of a machine’s central

processing unit (CPU). In addition, the efficiency will be examined on a machine’s

graphics processing unit (GPU) that has its own memory. The parallelization of the

algorithms used to approximate the solution will demonstrate the necessity of parallel

computing in numerical solvers.

The high resolution of the iterative method is achieved by two contributing factors.

Firstly, the application of a higher order scheme, the standard fourth order Padé ap-

proximation [2]. Note that this scheme is not restricted to the use of uniform grid size.

The other contributing factor is the ability to use finer computational grids due to the

increased computational power of computer clusters.

1



A parallel algorithm refers to either an algorithm or section of an algorithm, in which,

an individual calculation is completely independent of all other calculations within that

algorithm or section. In theory, many computationally expensive parallel algorithms can

see a linear speed up in calculation time with an increase in the number of processors.

That is, if the number of processors is doubled, then the work done by each is cut in

half. This would ideally reduce the calculation time to half of its original time. The

reduction in calculation time will be referred to as acceleration throughout this paper.

This perfectly linear acceleration is typically not observed in practice as the increase

in number of processors also increases the amount of communication between these

processes. Thus, there is a limit to the acceleration as the latency, the delay due to

communication, can outweigh the benefit of reducing the number of computations done

by a process. Regarding acceleration of computation time, the hardware called a GPU

can accelerate without the addition of multiple processors. Therefore, it is logical to

examine the use of three parallel technologies: Open Multi-Processing (OpenMP) for

shared memory, Message Passing Interface (MPI) for distributed memory and Compute

Unified Device Architecture (CUDA) for use of GPUs.

In the area of high performance computing there are typically two programming

languages used, FORTRAN and C. In the development of programs for the algorithms

considered in this thesis, C is utilized. For reasons explained in detail later, these

algorithms require the use of Fast Fourier Transforms (FFT). These transforms were

calculated using an open source C subroutine library developed at Massachusetts In-

stitute of Technology, namely FFTW [4]. This subroutine is currently considered the

standard in FFT calculation. It should be noted that the number of grid points used

in this thesis are powers of two. This was done to use FFT as efficiently as possible to

better examine the effects of the parallel tools.

OpenMP is a tool that can automatically divide the calculation among a set number

2



of threads. A thread is a separate processing unit that can access the same memory

as all other threads, yet all threads can do separate computations simultaneously. On

the surface OpenMP is easily implemented into C code. However, one has to make

several considerations. That is, the section of code must truly be parallelizable and

a phenomenon known as a race condition must be avoided. A race condition is the

updating of a variable’s value in the incorrect order. OpenMP makes use of shared

memory architecture and thus allowing every thread to access the same variables in the

computation. The use of shared memory in OpenMP contributes to its value, but also

presents limitations. Since OpenMP requires all threads to have access to the same

memory it can only be used on a single computer or node. A node is a single computer

within a cluster of computers. Therefore, OpenMP is a great tool for parallelizing

relatively small computations. However, once computations require more memory than

is available on one machine, other tools are required.

MPI is currently the standard for message, or data, passing between processors. The

most important aspect of this is that the processors do not need to share memory and

therefore can be on separate nodes. This is ideal for large scale computations that would

overload the memory of a single node. These computations can then be run on several

nodes simultaneously.

The final parallel computing platform implemented is CUDA. This tool allows the

use of GPUs for computations. The benefit of a GPU relative to a CPU is that it

can perform multiple calculations simultaneously, that is, performing the calculations as

vector operations. It should be noted that this is not as widely available as the previous

tools, as it requires a specific architecture. To use CUDA the machine must have a

GPU with its own memory to run computations entirely separately from the CPU.

This structure is common among large clusters that have GPUs, but not on personal

computers.

3



In this thesis, parallelization will refer to the dividing of a for-loop’s iterations among

separate processing units. In a shared memory environment a processing unit will be

referred to as an OpenMP thread or thread. In a distributed memory environment this

will be called a MPI process or process. When working with GPUs there is shared

memory with respect to the device itself. To avoid ambiguity, a processing unit on a

GPU will be referred to as a CUDA thread.

To begin, this thesis will investigate a relatively simple two dimensional problem

similar to the three-dimensional Helmholtz equation, the Laplace equation. This will be

followed by the derivation of the second and fourth order schemes for approximating the

solution to the three dimensional Helmholtz equation. The next chapter will give details

of the sequential algorithm prior to any parallelization. Finally, a detailed demonstration

of the parallelization of the schemes using all three parallel technologies, OpenMP, MPI

and CUDA, is provided.

4



Chapter 2

Two Dimensional Test Problem

2.1 Introduction

This chapter will derive the discretization of the two dimensional Laplace equation

∂2u

∂x2
+
∂2u

∂y2
= 1, on Ω, (2.1)

where Ω = [x0, y0]× [x1, y1] = [0, 1]× [0, 1] is the two dimensional domain with boundary

conditions on ∂Ω, defined by u(0, y) = u(1, y) = 1
4y(y − 1) and u(x, 0) = u(x, 1) =

1
4x(x− 1). These boundary conditions were chosen for simplicity. The three previously

mentioned parallel technologies will be implemented with this problem to find the best

approach for implementing them in the three dimensional problem.

Let Nx and Ny be the number of steps in the x and y directions respectively. Also,

let hx = (x1 − x0)/(Nx + 1) and hy = (y1 − y0)/(Ny + 1) be the number of grid steps in

the x and y directions respectively. Then the computational grid is defined as

ΩG = {(xi, yj) | xi = x0 + ihx, yj = y0 + jhy, 1 ≤ i ≤ Nx, 1 ≤ j ≤ Ny, }.

Taylor expansion gives

ui±1,j = ui,j ±
∂ui,j
∂x

hx +
1

2

∂2ui,j
∂x2

h2x ±
1

6

∂3ui,j
∂x3

h3x +
1

24

∂4ui,j
∂x4

h4x ± . . .

where ui,j = u(xi, yj).

5



Then in the addition of ui−1,j and ui+1,j the odd terms will cancel, that is

ui−1,j + ui+1,j = 2ui,j +
∂2ui,j
∂x2

h2x +O(h4x).

So −∂
2ui,j
∂x2

h2x = −ui−1,j + 2ui,j − ui+1,j +O(h4x)

∂2ui,j
∂x2

=
1

h2x
(ui−1,j − 2ui,j + ui+1,j) +O(h2x).

The same can be done with the expansion with respect to y. From these, the following

second order scheme for the approximation of (2.1) can be obtained:

ui−1,j − 2ui,j + ui+1,j

h2x
+
ui,j−1 − 2ui,j + ui,j+1

h2y
= 1

h2y
h2x

(ui−1,j − 2ui,j + ui+1,j) + ui,j−1 − 2ui,j + ui,j+1 = h2y

(
−2− 2

h2y
h2x

)
ui,j +

h2y
h2x

(ui−1,j + ui+1,j) + ui,j−1 + ui,j+1 = h2y, (2.2)

for 1 ≤ i ≤ Nx and 1 ≤ j ≤ Ny. Let Uj =
[
u1,j u2,j · · · uNx,j

]T
, let

Fj =
[
h2y −

h2y
4h2x

y(y − 1) h2y · · · h2y h2y −
h2y
4h2x

y(y − 1)
]T
∈ RNx and let A1 = (an,m) ∈

RNx×Nx be such that an,m = 1 if n − 1 = m or n + 1 = m, and an,m = 0 otherwise. If

A is defined by

A =
h2y
h2x
A1 +

(
−2− 2

h2y
h2x

)
I

then (2.2) can be written as

Uj−1 +AUj + Uj+1 = Fj . (2.3)

Theorem 2.1.1. Let B = (bij) ∈ RNx×Nx . Suppose bi,j = 1 when i + 1 = j or

i − 1 = j and bi,j = 0 otherwise. Let βln = sin
(

nπ
Nx+1 · l

)
where 1 ≤ n, l ≤ Nx. Define

vl =
[
βl1 βl2 · · · βlNx

]T
. Then vl is an eigenvector of B with corresponding eigenvalue

λ = 2 cos
(

π
Nx+1 · l

)
.

Proof. Let B, vl, λ and βln be defined as above. It needs to be shown that Bvl = λvl.

Also, recall the trigonometric identity 2 sin(x) cos(y) = sin(x−y)+sin(x+y) for x, y ∈ R

6



[8]. Then

λβln = 2 cos

(
π

Nx + 1
· l
)

sin

(
nπ

Nx + 1
· l
)

= sin

(
(n− 1)

π

Nx + 1
· l
)

+ sin

(
(n+ 1)

π

Nx + 1
· l
)

= βln−1 + βln+1.

Note that βlNx+1 = 0 = βl0. Thus

Bvl =
[
βl2 βl1 + βl3 · · · βlNx−2 + βlNx βlNx−1

]T
= λvl.

Theorem 2.1.2. Let v and λi be an eigenpair of the matrix Ai for 1 ≤ i ≤ n. Then

n∑
i=1

λi is an eigenvalue of the matrix
n∑
i=1

Ai with corresponding eigenvector v.

Proof. Let Ai, λi and v be as defined above. Then(
n∑
i=1

Ai

)
v =

n∑
i=1

Aiv =

n∑
i=1

λiv =

(
n∑
i=1

λi

)
v.

Now consider the eigenpairs, that is, the corresponding eigenvalues and eigenvectors,

of A. Note that any nonzero vector is an eigenvector of the identity matrix. Thus(
−2− 2

h2y
h2x

)
and any nonzero vector in RNx is an eigenpair of

(
−2− 2

h2y
h2x

)
I. Hence

for each 1 ≤ l ≤ Nx the vector vl from Theorem 2.1.1 is an eigenvector of A1 with

corresponding eigenvalue 2 cos
(

π
Nx+1 · l

)
. It follows that 2

h2y
h2x

cos
(

π
Nx+1 · l

)
and vl form

an eigenpair of the matrix
h2y
h2x
A1. Let λl =

(
−2− 2

h2y
h2x

)
+ 2

h2y
h2x

cos
(

π
Nx+1 · l

)
. Then λl

and vl form an eigenpair of A by Theorem 2.1.2.

Lemma 2.1.3. Let vl be as in Theorem 2.1.1. Then ||vl||22 = 〈vl, vl〉 = (Nx + 1)/2 for

1 ≤ l ≤ Nx.

Proof. Let l ∈ {1, . . . , Nx}. Recall the trigonometric identity 2 sin(x) sin(y) = cos(x −

y) − cos(x + y) [8]. Note that eiα = cosα + i sinα where i =
√
−1. Also, consider the

7



geometric series
n∑
k=1

zk = 1−zn+1

1−z − 1 for z ∈ C [1]. Then

〈vl, vl〉 =

Nx∑
n=1

(
βln

)2

=

Nx∑
n=1

[
sin

(
nπ

Nx + 1
l

)]2

=
1

2

Nx∑
n=1

[
1− cos

(
2nπ

Nx + 1
l

)]

=
Nx

2
− 1

2

Nx∑
n=1

cos

(
2nπ

Nx + 1
l

)

=
Nx

2
− 1

2

Nx∑
n=1

Re
(
e

2nπi
Nx+1

l
)

=
Nx

2
− 1

2
Re

[
1− e2lπi

1− e
2πi
Nx+1

l
− 1

]

=
Nx + 1

2
− 1

2
Re

[
1− e2lπi

1− e
2πi
Nx+1

l

]
.

Now let σ = 1− e2lπi and η = 1− e
2πi
Nx+1

l. Then

Re

[
1− e2lπi

1− e
2πi
Nx+1

l

]
=
Re(σ) ·Re(η)− Im(σ) · Im(η)

Re(η)2 + Im(η)2

=
(1− cos(2lπ)) ·Re(η)− (sin(2lπ)) · Im(η)

Re(η)2 + Im(η)2

= 0.

Thus ||vl||22 = 〈vl, vl〉 = Nx+1
2 for l ∈ {1, . . . , Nx}.

8



Lemma 2.1.4. Let vl be as in Theorem 2.1.1. If l 6= l′ then vl and vl′ are orthogonal

vectors.

Proof. Let vl and vl′ be as defined above. Suppose l 6= l′. Then

〈vl, vl′〉 =

Nx∑
n=1

βlnβ
l′
n

=

Nx∑
n=1

sin

(
nπ

Nx + 1
· l
)

sin

(
nπ

Nx + 1
· l′
)

=
1

2

Nx∑
n=1

[
cos

(
[l − l′] nπ

Nx + 1

)
− cos

(
[l + l′]

nπ

Nx + 1

)]

=
1

2

Nx∑
n=1

[
Re

(
e
i
(
[l−l′] nπ

Nx+1

))
−Re

(
e
i
(
[l+l′] nπ

Nx+1

))]

=
1

2
Re

(
Nx∑
n=1

e
i
(
[l−l′] nπ

Nx+1

)
−

Nx∑
n=1

e
i
(
[l+l′] nπ

Nx+1

))

=
1

2
Re

(
1− ei[l−l′]π

1− ei
(
[l−l′] nπ

Nx+1

) − 1− ei[l+l′]π

1− ei
(
[l+l′] nπ

Nx+1

)
)
.

Now consider the case in which l − l′ is even. It follows l + l′ is even as well. Thus

〈vl, vl′〉 = 0 since

Re
(

1− ei[l−l′]π
)

= 1− cos([l − l′]π) = 0 = 1− cos([l + l′]π) = Re
(

1− ei[l−l′]π
)
.

Now consider the case in which l − l′ is odd and hence l + l′ is odd. Then

Re
(

1− ei[l−l′]π
)

= 1− cos([l − l′]π) = 2 = 1− cos([l + l′]π) = Re
(

1− ei[l−l′]π
)
.

9



It follows

〈vl, vl′〉 = Re

[
1

1− ei
(
[l−l′] nπ

Nx+1

) − 1

1− ei
(
[l+l′] nπ

Nx+1

)
]

= Re

 1− e
iπ(l+l′)
Nx+1 −

(
1− e

iπ(l−l′)
Nx+1

)
(

1− e
iπ(l−l′)
Nx+1

)(
1− e

iπ(l+l′)
Nx+1

)


= Re

 e
iπ(l−l′)
Nx+1 − e

iπ(l+l′)
Nx+1(

1− e
iπ(l−l′)
Nx+1

)(
1− e

iπ(l+l′)
Nx+1

)


= Re

 e
iπl

Nx+1

(
e
−iπl′
Nx+1 − e

iπl′
Nx+1

)
e
iπ(l−l′)
2(Nx+1)

(
e
−iπ(l−l′)
2(Nx+1) − e

iπ(l−l′)
2(Nx+1)

)
e
iπ(l+l′)
2(Nx+1)

(
e
−iπ(l+l′)
2(Nx+1) − e

iπ(l+l′)
2(Nx+1)

)


= Re

 e
iπl

Nx+1

(
e
−iπl′
Nx+1 − e

iπl′
Nx+1

)
e

iπl
Nx+1

(
e
−iπ(l−l′)
2(Nx+1) − e

iπ(l−l′)
2(Nx+1)

)(
e
−iπ(l+l′)
2(Nx+1) − e

iπ(l+l′)
2(Nx+1)

)


= Re

 −2i sin
(

πl′

Nx+1

)
2i sin

(
π(l−l′)
2(Nx+1)

)
· 2i sin

(
π(l+l′)
2(Nx+1)

)


= Re

 i sin
(

πl′

Nx+1

)
2 sin

(
π(l−l′)
2(Nx+1)

)
· sin

(
π(l+l′)
2(Nx+1)

)


=
Re
[
i sin

(
πl′

Nx+1

)]
2 sin

(
π(l−l′)
2(Nx+1)

)
· sin

(
π(l+l′)
2(Nx+1)

) = 0.

Thus 〈vl, vl′〉 =
Nx∑
n=1

sin
(

nπ
Nx+1 · l

)
sin
(

nπ
Nx+1 · l

′
)

= 0 when l 6= l′.

These lemmas show the relationship between these eigenvectors with respect to their

inner product. Note that Lemma 2.1.4 holds for the normalized eigenvectors. Now con-

sider the following theorems that are essential to the derivation of this two dimensional

scheme.

10



Theorem 2.1.5. Let vl be as in Theorem 2.1.1. Define wl = ||vl||−1vl. Let V =[
w1 w2 · · · wNx

]
∈ RNx×Nx . Then V is an orthogonal matrix.

Proof. Let V be as defined above. It needs to be shown that V TV = I. Note that this

implies V V T = I as a left inverse of a matrix must also be a right inverse [7]. Observe

that

V TV = V T
[
w1 w2 · · · wNx

]

=
[
V Tw1 V Tw2 · · · V TwNx

]

=


〈w1, w1〉 〈w1, w2〉 · · · 〈w1, wNx〉
〈w2, w1〉 〈w2, w2〉

...
. . .

...

〈wNx , w1〉 〈wNx , w2〉 · · · 〈wNx , wNx〉



= I

by Lemmas 2.1.4 and 2.1.3. Thus V is orthogonal.

Theorem 2.1.6. Let B ∈ Rn×n for any n > 0. For 1 ≤ i ≤ n let vi and λi be eigenpairs

of B. Define V =
[
v1 · · · vn

]
. If V is orthogonal then V TBV = Λ where Λ is the

diagonal matrix
[
λ1 · · · λn

]
I.

Proof. Let B, λi, vi and V be defined as above. Then

BV =
[
Bv1 · · · Bvn

]
=
[
λ1v1 · · · λnvn

]
= V Λ.

Where Λ is the diagonal matrix
[
λ1 · · · λn

]
I. Thus V TBV = V TV Λ = Λ.

Let A be as defined in (2.3), Uj−1 + AUj + Uj+1 = Fj . Let V and Λ be defined by

A as in Theorem 2.1.6. So V TAV = Λ. Then (2.3) can be written as

V TUj−1 + V TAV V TUj + V TUj+1 = V TFj

Wj−1 + ΛWj +Wj+1 = Fj (2.4)

11



where Fj = V TFj and Wj = V TU . This tridiagonal system can be solved using the LU

decomposition [6], which yields Nx independent systems

λiwi,1 + wi,2 = Fi,1

wi,j−1 + λiwi,j + wi,j+1 = Fi,j for j = 2, 3, . . . , Ny − 1

wi,Ny−1 + λiwi,Ny = Fi,Ny

for i = 1, 2, . . . , Nx. The solution can be parallelized with respect to the x direction of

the computational domain. Prior to solving this system, F j = V TFj must be found. To

calculate this transformed vector, consider the eigenvectors that are the columns of V .

Definition 2.1.7. The discrete sine transform (DST) of the vector x =
[
x1 . . . xn

]T
∈

Rn is given by x =
[
x1 . . . xn

]T
where

xk =

n∑
l=1

sin

(
πk

n+ 1
· l
)
xl

for 1 ≤ k ≤ n [6].

Thus the modified right hand side, F j = V TFj , is simply the DST of the right hand

side Fj times a scalar that normalizes the columns of V . To see how this is calculated,

consider the following definition. Note that i =
√
−1 and is not an index in the following

computations.

Definition 2.1.8. The discrete Fourier transform (DFT), of the real vector

y =
[
y1 . . . yn

]T
∈ Rn is given by y =

[
y1 . . . yn

]T
where

yk =

n∑
l=0

e
−2πi
n

(l−1)(k−1)yl

for 1 ≤ k ≤ n [6].

Now consider

yk =

N−1∑
l=0

e
−πilk
N/2 yl =

N−1∑
l=0

[
cos

(
πlk

N/2

)
− i sin

(
πlk

N/2

)]
yl

for 0 ≤ k ≤ N − 1. Let N/2 = n+ 1, that is N = 2n+ 2. Define y0 = 0, yn+1 = yn+2 =

12



· · · = y2n+1 = 0 and yl = xl for 1 ≤ l ≤ n. Then

−Im(yk) = −Im

(
2n+1∑
l=0

[
cos

(
πlk

N/2

)
− i sin

(
πlk

N/2

)])
yl =

n∑
l=1

sin

(
πlk

n+ 1

)
xl = xk

for 1 ≤ k ≤ n. Therefore, to find the DST of some x ∈ Rn define y =
[
y0 . . . y2n+1

]T
∈

R2n+2 such that y0 = yn+1 = yn+2 = · · · = y2n+1 = 0 and yl = xl for 1 ≤ l ≤ n. Then

calculate the DFT of y, namely y. Then x =
[
−Im(y1) · · · −Im(yn)

]T
. It is essential

to note that calculating the DFT and hence the DST, is independent with respect to

the y direction and therefore can be parallelized.

Given the DST of the right hand side, (2.4) can be solved. Note that the solution,

Wj = V TUj , is the DST of Uj . So to find Uj consider the following

VWj = V V TUj = Uj

since V is orthogonal. Note that VW is simply the DST of W . Finding the DST of

W will be referred to throughout this paper as the reverse transform and the forward

transform will refer to the DST of original the right hand side, Fj . Both the forward

and reverse transforms are independent with respect to the y direction in the domain.

In conclusion, to solve (2.1) one must compute the DST of the right hand side using

the DFT. Solve the tridiagonal system using the LU decomposition. This step will be

referred to as the tridiagonal solver. Then find the reverse transform to that solution.

These three steps will collectively be referenced to as the solver. This is outlined in

Algorithm 1.

13



Algorithm 1 Sequential 2D Laplace Solver

1: for k = 1, . . . , Ny do

2: 1D forward DST in x−direction

3: end for

4: for i = 1, . . . , Nx; j = 1, . . . , Ny do

5: Solve the tridiagonal system using LU decomposition

6: end for

7: for k = 1, . . . , Ny do

8: 1D reverse DST in x−direction

9: end for

As noted previously the forward and reverse DST calculations are independent with

respect to the y direction and the tridiagonal solver is independent with respect to the x

direction. Therefore, these three computations must be parallelized separately. Starting

with this sequential solver algorithm the parallel tools OpenMP, MPI and CUDA, can

now be implemented.

2.2 OpenMP

The solver was first parallelized using OpenMP with the luxury of a shared memory

structure. As previously mentioned this tool is relatively easy to implement with careful

planning. That is, the calculations within the for-loops must be independent with respect

to each iteration. In addition, there must be no possibility of a race condition. In the

derivation of the scheme it is apparent that the for-loops in Algorithm 1 are indeed

parallelizable. The creation of private variables protects against race conditions. A

private variable is a variable that is only accessible to a single thread [3]. It should

be noted that only variables subject to race conditions should be made private as the

creations of private variables can increase the time required to complete the calculation.

Algorithm 2 does not explicitly show the use of private variables, but they are essential

for the correct calculation.

OpenMP, by default, automatically divides the iterations of a for-loop evenly across

14



threads [3]. Unless specified, a program using this tool will run sequentially, on a single

thread. The parallel sections of the code must be defined by the programmer with the

use of compiler directives. Only the parallel section will be executed on multiple threads.

To parallelize a for-loop with OpenMP a directive is placed prior to the loop of interest.

Algorithm 2 demonstrates an abridged version of the directives used in the program.

Algorithm 2 OpenMP 2D Laplace Solver

1: #pragma omp parallel for

2: for k = 1, . . . , Ny do

3: 1D forward DST in x−direction

4: end for

5: #pragma omp parallel for

6: for i = 1, . . . , Nx; j = 1, . . . , Ny do

7: Solve the tridiagonal system using LU decomposition

8: end for

9: #pragma omp parallel for

10: for k = 1, . . . , Ny do

11: 1D reverse DST in x−direction

12: end for

Algorithm 2 was successfully programmed in C and run on Idaho National Labora-

tories (INL) clusters Falcon and Falconviz as well as several personal computers. The

results that follow are those recorded from Falconviz and use uniform computational

grids. It should be noted that this program was successfully tested on nonuniform grids

as well.

15



Figure 2.1: 2D OpenMP Acceleration

Acceleration is the Sequential Time Divided by Parallel Time

The graph in Figure 2.1 shows the acceleration from one to sixteen threads, utilizing

three separate computational grids Nx = Ny = 4096, Nx = Ny = 8192, and Nx = Ny =

16384. These results are promising. As the number of threads increases, an acceleration

of the computation time is observed. This acceleration is approximately linear in all

three grid sizes. It should be noted that the acceleration is measured with respect to the

computation time with one thread. For example, if the computation time was 40 seconds

on one thread and 10 seconds on four threads then the accelerations is 40/10 = 4.

2.3 MPI

Although Figure 2.1 shows desirable results, OpenMP, by itself, is limited to single

machine where the CPU’s share memory. For a large enough computational grid the

memory required to allocate the necessary arrays can overrun the random access mem-

ory (RAM) of the node or machine. Thus there is a need to spread the work across

multiple nodes on a cluster. This can be accomplished using MPI. This is a standard-

16



ized and portable means of passing messages or data between processors whether they

share memory or not. The use of this tool, although not as intuitive as OpenMP, should

allow for a decrease in computation time while having the capability to use larger com-

putational grids.

Unlike OpenMP, a program utilizing MPI does not have specific sections of paral-

lelization. Each process runs the entire program and only communicates with another

when explicitly specified by the programmer [5]. Therefore, the program must be modi-

fied to only perform the appropriate calculations and communicate the information back

and forth as efficiently as possible. Each process in MPI is assigned a unique positive

integer value starting with zero, called a rank. The rank is used to determine which

calculations need to be executed on that process.

As an example, consider a for-loop with n iterations running on p MPI processes.

For simplicity, assume that p divides n. Let r be the rank of the process. Then the

start and end positions are r · n/p and (r + 1) · n/p respectively. Thus the for-loop in a

typical sequential program would be written as for i = 0, . . . , n− 1 while the same loop

modified for MPI would be written as for i = r · n/p, . . . , (r + 1) · n/p− 1. The case in

which p does not divide n is considered in Chapter 4.

In the implementation of OpenMP the only modified section was shown in Algorithm

2. MPI, however, required modification to the entire program. The arrays were reduced

to only allocate the specific length required for each process to perform its respective

calculations. In addition, the LU factorization parallelized as described in the previous

process. This was not done to accelerate its computation, but to adapt to the reduced

length of the arrays. The section of interest, the solver, was parallelized as shown in

Algorithm 3.

17



Algorithm 3 MPI 2D Laplace Solver

1: Find startx, starty, endx, and endy

2: for k = starty, . . . , endy do

3: 1D forward DST in x−direction

4: end for

5: Send and receive data via MPI functions

6: for i = startx, . . . , endx; j = 1, . . . , Ny do

7: Solve the tridiagonal system using LU decomposition

8: end for

9: Send and receive data via MPI functions

10: for k = starty, . . . , endy do

11: 1D reverse DST in x−direction

12: end for

13: Send and receive data via MPI functions

Figure 2.2 gives a visual example of how the transfer of data between processes

was achieved. For ease of illustration the figure assumes the use of three processes.

The processes are denoted P0, P1 and P2. The computational domain, in its whole, is

displayed in the center of Figure 2.2. The first step shows how the domain is divided

as evenly as possible among the three processes with respect to the y direction. This is

where the forward transform is computed since the calculations do not depend on y.

Once the FFT is computed the domain needs to be divided with respect to the x

direction since the tridiagonal solver is independent in this direction. To accomplish

this division, parts of the domain need to be sent to different processes. As an example,

examine P0. To solve the tridiagonal system P0 needs a portion of the information that

currently resides on P1 and P2. Also, P0 has information that processes P1 and P2 need.

To reduce memory and communication only the necessary parts of the arrays are sent

and the memory that is no longer needed is released. The second step illustrates the

specific sections that need to be sent and their destination process. The sections along

the diagonal will not be sent, as they currently reside on the appropriate process.

The third step shows the sections of the domain assembled on the appropriate pro-

cess after receiving the messages sent in the second step. Now the domain is divided as

18



evenly as possible among the processes with respect to x direction so that the tridiagonal

solver can be executed in parallel. The fourth step is simply the reverse of step two.

The fifth and final step has domain divided with respect to the y direction and can now

calculate the reverse transform.

Figure 2.2: 2D Transfer of Information between MPI Processes

This program was run in two ways. Firstly, it was run on one node to compare

against OpenMP. Then several nodes were used, testing the ability to utilize very large

computational grids. In the case of running on one node or machine, a personal com-

puter can be used. However, to use several, a cluster of machines is needed. As in the

case of OpenMP, the MPI program was successfully run on INLs clusters Falcon and Fal-

conviz, as well as several personal computers. The results that follow are those recorded

19



from Falconviz and use the following uniform computational grids, Nx = Ny = 4096,

Nx = Ny = 8192, and Nx = Ny = 16384.

Figure 2.3: 2D MPI Acceleration by Processors on One Node

Acceleration is the Sequential Time Divided by Parallel Time

The graph in Figure 2.3 shows the acceleration on a single node ranging from one to

sixteen processes. With respect to the consistency for all three grid sizes these results

are not as desirable as those in the implementation of OpenMP. However, the accelera-

tion is approximately linear and the final acceleration is greater than that in OpenMP

except for the case of 163842.

20



Figure 2.4: 2D MPI Acceleration by Nodes

Acceleration is the Sequential Time Divided by Parallel Time

For comparison, Figure 2.4 shows the acceleration by use of one to sixteen nodes,

rather than processors. This illustrates the addition of more nodes is not necessarily

beneficial. Examining the acceleration of the 40962 and 81922 grids reveals the addi-

tion of more nodes actually hindered the performance after eight nodes. This can be

explained by the increased latency outweighing the benefit of using more computational

processes. The extreme acceleration from eight to sixteen nodes on the 163842 grid can

be explained by more of the appropriate data fitting in the CPU’s cache. Therefore,

drastically reducing the amount of latency on an individual node. More detail on a

machine’s cache is given in Chapter 4.

2.4 CUDA

The last parallel technology considered in this chapter is CUDA. This allows for potential

acceleration by utilizing a machines GPU. The benefit of calculating on a GPU is that it

can simultaneously carry out hundreds of floating point operations. The exact number

21



is dependent on the specific GPU. A program can not be executed solely on a GPU.

Thus the implementations of CUDA will take the original sequential program and place

certain functions on the GPU. A function that is run on a GPU is called kernel function.

As previously mentioned, the use of CUDA requires the GPU to have its own memory

[3]. This means that the GPU will not be able to access any arrays or variables being

used by the CPU. Thus any arrays needed in a kernel function must be allocated on

both the CPU and GPU. Then the data from the array on the CPU is copied into the

array on the GPU. This processes is reversed after the kernel function is executed so

that the CPU can use the data computed by the kernel function.

The algorithm that outlines the implementation of the CUDA program is the same

as the sequential program, Algorithm 1. CUDA has designed libraries that include

FFT functions that, in theory, are implemented identically to the functions in FFTW

libraries [9]. This allowed for the ability to simply change the libraries used to compile

the program without changing any code. These functions perform the FFT calculation

on a machines GPU rather than a CPU. Unlike OpenMP and MPI, CUDA does not

possess the ability to add more CUDA threads. Including a GPU is either all or nothing.

For this reason a table is used, rather than, a graph as in the previous sections. The

following results were computed using INL’s Falconviz.

Grid Size Acceleration

40962 1.136

81922 1.126

163842 1.376

Table 2.1: 2D CUDA Acceleration

Acceleration is the Sequential Time Divided by Parallel Time

This findings are not as impressive as in the use of MPI and OpenMP. Note that

22



the use of CUDA’s libraries that mimic FFTW accelerates the forward and reverse

transforms, but leaves the tridiagonal solver untouched. This suggests that further steps

must be taken in the implementation of CUDA for the three dimensional equation.

2.5 Conclusion

This chapter has developed a second order scheme for approximating the solution to

the two dimensional Laplace equation. The three parallel technologies, OpenMP, MPI

and CUDA, were used to create three variant programs. A comparison of all three was

reviewed.

23



Chapter 3

Discretization

3.1 Introduction

The subsurface scattering problem in consideration is formulated in the form of the

Helmholtz equation

∇2u+ k2(z)u = f(x, y, z), in Ω, (3.1)

with the Dirichlet, Neumann or Sommerfeld-like boundary conditions

Γu = g, on ∂Ω, (3.2)

where k(x, y, z) is a complex valued variable coefficient, Ω is a three dimensional rect-

angular domain, ∂Ω is the boundary of Ω and Γ is a differential operator corresponding

to the Dirichlet, Neumann or Sommerfeld-like boundary conditions. It is assumed that

k is constant throughout any plane in the x and y direction.

In this chapter, both second and fourth order compact approximation finite-differences

schemes are developed. To introduce these compact schemes for the solution of the three

dimensional Helmholtz equation (3.1) with boundary conditions (3.2) consider the fol-

lowing. The computational domain is Ω = [x0, x1] × [y0, y1] × [z0, z1]. Let Nx, Ny,

and Nz be the number of grid points in the x, y, and z directions respectively. Let

hx = (x1 − x0)/(Nx + 1), hy = (y1 − y0)/(Ny + 1), and hz = (z1 − z0)/(Nz + 1) be

the grid steps in the x, y, and z directions respectively. Then the computational grid is

24



defined by

ΩG = {(xi, yj , zl) | xi = x0 + ihx, yj = y0 + jhy, zl = z0 + lhz,

1 ≤ i ≤ Nx, 1 ≤ j ≤ Ny, 1 ≤ l ≤ Nz}.

Consider the cases with Dirichlet or Neumann boundary conditions on ∂Ω. That is,

u(0, y, z) = u(a, y, z) = u(x, 0, z) = u(x, a, z) = 0 or ∂u
∂x

∣∣
x=0

= ∂u
∂x

∣∣
x=a

= ∂u
∂y

∣∣∣
y=0

=

∂u
∂y

∣∣∣
y=a

= 0 where z = a and z = 0 at the top and bottom of the Ω respectfully. The

second order central finite-difference approximation of the first derivative on all bound-

aries is utilized. The second order central finite-difference approximation of the first

derivative on all boundaries is utilized for the Neumann and Sommerfeld-like boundary

conditions. The following notation will be used for the second order central differences

at the (i, j, l)−th grid point,

δ2xui,j,l =
ui−1,j,l − 2ui,j,l + ui+1,j,l

h2x
,

δ2yui,j,l =
ui,j−1,l − 2ui,j,l + ui,j+1,l

h2y
and

δ2zui,j,l =
ui,j,l−1 − 2ui,j,l + ui,j,l+1

h2z

where ui,j,l = u(xi, yj , zl).

3.2 A Second Order Compact Scheme

Consider the three dimensional Helmholtz equation (3.1). That is

∂2u

∂x2
+
∂2u

∂y2
+
∂2u

∂z2
+ k2u = f. (3.3)

Recall the Taylor expansion

ui±1,j,l = ui ±
∂ui,j,l
∂x

hx +
1

2

∂2ui,j,l
∂x2

h2x ±
1

6

∂3ui,j,l
∂x3

h3x +
1

24

∂4ui,j,l
∂x4

h4x ± . . . .

25



The addition of ui−1,j,l and ui+1,j,l shows that the odd terms will cancel, that is

ui−1,j,l + ui+1,j,l = 2ui,j,l +
∂2ui,j,l
∂x2

h2x +O(h4x), so

−
∂2ui,j,l
∂x2

h2x = −ui−1,j,l + 2ui,j,l − ui+1,j,l +O(h4x)

∂2ui,j,l
∂x2

=
1

h2x
(ui−1,j,l − 2ui,j,l + ui+1,j,l) +O(h2x)

∂2ui,j,l
∂x2

= δ2xui,j,l +O(h2x).

This argument can be repeated for both the y and z derivatives. Then by substituting

these approximations into (3.3) the following second order scheme is obtained

δ2xui,j,l + δ2yui,j,l + δ2zui,j,l + k2l ui,j,l = fi,j,l. (3.4)

Now consider the following manipulations to Equation (3.4). Let Rzx = h2z/h
2
x and

Rzy = h2z/h
2
y. Then the scheme can be written as

h2zfi,j,l = Rzx (ui−1,j,l − 2ui,j,l + ui+1,j,l) +Rzy (ui,j−1,l − 2ui,j,l + ui,j+1,l)

+ (ui,j,l−1 − 2ui,j,l + ui,j,l+1) + h2zk
2
l ui,j,l

= −
(
2Rzx + 2Rzy + 2 + h2zk

2
l

)
ui,j,l

+Rzx (ui−1,j,l + ui+1,j,l) +Rzy (ui,j−1,l + ui,j+1,l) + ui,j,l−1 + ui,j,l+1.

(3.5)

Note that it is assumed that k2l is constant for a fixed l. Let αl = − (2Rzx + 2Rzy + 2 +

h2zk
2
l

)
and Ul =

[
u1,1,l u2,1,l · · · uNx,1,l u1,2,l u2,2,l · · · uNx,2,l · · · uNx,Ny ,l

]T
.

Define A1 = αI where I is the identity matrix in RNx·Ny×Nx·Ny . Let A2 = (ai,j) ∈

RNx·Ny×Nx·Ny be such that ai,j = 1 when |i − j| = 1 and ai,j = 0 otherwise. Also,

let A3 = (ai,j) ∈ RNx·Ny×Nx·Ny be such that ai,j = 1 when |i − j| = Nx and ai,j = 0

otherwise. Now define A = A1 + RzxA2 + RzyA3. Then Equation (3.5) can be written

as

Ul−1 +AUl + Ul+1 = h2zfl. (3.6)

Now examine the eigenpairs of A.

26



Theorem 3.2.1. Let B = (bij) ∈ RNx·NY ×Nx·NY . Let

βl,kn,m = sin
(

nπ
Nx+1 · l

)
sin
(

mπ
Ny+1 · k

)
where 1 ≤ n, l ≤ Nx and 1 ≤ m, k ≤ Ny. Define

vl,k =
[
βl,k1,1 βl,k2,1 · · · βl,kNx,1 βl,k1,2 · · · βl,kNx,Ny

]T
. Suppose bi,j = 1 when i+ 1 = j or

i − 1 = j and bi,j = 0 otherwise. Then vl,k is an eigenvector of B with corresponding

eigenvalue λ = 2 cos
(

π
Nx+1 · l

)
.

Proof. Let B, vl,k, λ and βl,kn,m be as defined above. Recall the trigonometric identity

2 sin(x) cos(y) = sin(x− y) + sin(x+ y) for x, y ∈ R [8]. Then

λβl,kn,m = 2 cos

(
π

Nx + 1
· l
)

sin

(
nπ

Nx + 1
· l
)

sin

(
mπ

Ny + 1
· k
)

=

[
sin

(
(n− 1)

π

Nx + 1
· l
)

+ sin

(
(n+ 1)

π

Nx + 1
· l
)]

sin

(
mπ

Ny + 1
· k
)

= βl,kn−1,m + βl,kn+1,m.

Note that βl,kNx+1,m = 0 = βl,k0,m. Thus

Bvl,k =
[
βl,k2,1 βl,k1,1 + βl,k3,1 · · · βl,kNx−1,1 + βl,k1,1 βl,kNx,2 + βl,k2,2 · · · βl,kNx−1,Ny

]T
= λvl,k.

Define vl,k as in Theorem 3.2.1. As a result, vl,k is an eigenvector of A2 with cor-

responding eigenvalue 2 cos
(

π
Nx+1 · l

)
. It follows that λl = 2Rzx cos

(
π

Nx+1 · l
)

and vl,k

form an eigenpair of RzxA2. To find an eigenpair of A3 consider the following theorem.

Theorem 3.2.2. Using the same set up as Theorem 3.2.1, suppose bi,j = 1 when

i + Nx = j or i−Nx = j and bi,j = 0 otherwise. Then vl,k is an eigenvector of B with

corresponding eigenvalue λ = 2 cos
(

π
Ny+1 · k

)
.

27



Proof. First, observe that

λβl,kn,m = 2 cos

(
π

Ny + 1
· k
)

sin

(
nπ

Nx + 1
· l
)

sin

(
mπ

Ny + 1
· k
)

=

[
sin

(
(m− 1)

π

Ny + 1
· k
)

+ sin

(
(m+ 1)

π

Ny + 1
· k
)]

sin

(
nπ

Nx + 1
· l
)

= βl,kn,m−1 + βl,kn,m+1.

Note that βl,kn,Ny+1 = 0 = βl,kn,0. Thus

Bvl,k =
[
βl,k1,2 βl,k2,2 · · · βl,kNx,2 βl,k1,1 + βl,k1,3 · · · βl,kNx,Ny−1

]T
= λvl,k.

Theorem 3.2.2 shows that vl,k is an eigenvector of RzyA3 with corresponding eigen-

value λk = 2Rzy cos
(

π
Nx+1 · k

)
. Note (α, vl,k) is an eigenpair of A1. Thus (αl + λl +

λk, vl,k) is an eigenpair of A by Theorem 2.1.2. Consider the following lemmas.

Lemma 3.2.3. Let vl,k be as in Theorem 3.2.1. Then ||vl,k||22 = 〈vl,k, vl,k〉 = (Nx +

1)(Ny + 1)/4 for 1 ≤ l ≤ Nx and 1 ≤ k ≤ Ny.

Proof. Let l ∈ {1, . . . , Nx} and k ∈ {1, . . . , Ny}. Then

〈vl,k, vl,k〉 =

Nx∑
n=1

Ny∑
m=1

(
βl,kn,m

)2

=

Nx∑
n=1

Ny∑
m=1

[
sin

(
nπ

Nx + 1
· l
)

sin

(
mπ

Ny + 1
· k
)]2

=

Nx∑
n=1

sin2

(
nπ

Nx + 1
· l
) Ny∑

m=1

sin2

(
mπ

Ny + 1
· k
)

=

Nx∑
n=1

sin2

(
nπ

Nx + 1
· l
)[

Ny + 1

2

]
by Lemma 2.1.3

=
Ny + 1

2

Nx∑
n=1

sin2

(
nπ

Nx + 1
· l
)

=

(
Ny + 1

2

)(
Nx+ 1

2

)
by Lemma 2.1.3.

Thus ||vl,k||22 = 〈vl,k, vl,k〉 = (Nx + 1)(Ny + 1)/4 for 1 ≤ l ≤ Nx and 1 ≤ k ≤ Ny.

28



Lemma 3.2.4. Let vl,k be as in Theorem 3.2.1. If l 6= l′ or k 6= k′ then vl,k and vl′,k′

are orthogonal vectors.

Proof. Let vl,k and vl′,k′ as defined above. Suppose k 6= k′. Let

αl,l
′

n = sin

(
l · nπ

Nx + 1

)
sin

(
l′ · nπ

Nx + 1

)
.

Note that αl,l
′

n does not depend on m and

Ny∑
m=1

sin

(
k · mπ

Ny + 1

)
sin

(
k′ · mπ

Ny + 1

)
= 0

by Lemma 2.1.4. Then

〈vl,k, vl′,k′〉 =

Nx∑
n=1

Ny∑
m=1

βl,kn,mβ
l′,k′
n,m

=

Nx∑
n=1

Ny∑
m=1

αl,l
′

n sin

(
k · mπ

Ny + 1

)
sin

(
k′ · mπ

Ny + 1

)

=

Nx∑
n=1

αl,l′n Ny∑
m=1

sin

(
k · mπ

Ny + 1

)
sin

(
k′ · mπ

Ny + 1

)

=

Nx∑
n=1

[
αl,l

′
n · 0

]
= 0.

The same can be shown for l 6= l′.

These lemmas show the relationship between these eigenvectors with respect to their

inner product. Note that Lemma 3.2.4 holds for the normalized eigenvectors. Now

consider the following theorems that are essential to the derivation of both the second

and fourth order schemes.

Theorem 3.2.5. Let vl,k be as in Theorem 3.2.1. Define wi,j = ||vi,j ||−1vi,j . Let V =[
w1,1 w2,1 · · · wNx,1 w1,2 · · · wNx,Ny

]
∈ RNx·Ny×Nx·Ny . Then V is an orthogonal

matrix.

29



Proof. Let V be as defined above. Then

V TV = V T
[
w1,1 w2,1 · · · wNx,1 w1,2 · · · wNx,Ny

]

=
[
V Tw1,1 V Tw2,1 · · · V TwNx,1 V Tw1,2 · · · V TwNx,Ny

]

=


〈w1,1, w1,1〉 〈w1,1, w2,1〉 · · · 〈w1,1, wNx,Ny〉
〈w2,1, w1,1〉 〈w2,1, w2,1〉

...
. . .

...

〈wNx,Ny , w1,1〉 〈wNx,Ny , w2,1〉 · · · 〈wNx,Ny , wNx,Ny〉



= I

by Lemmas 3.2.4 and 3.2.3. Thus V is orthogonal.

Let V be the matrix defined in Theorem 3.2.5 and let Wl = V TUl. Then

Ul−1 +AUl + Ul+1 = h2zfl

V TUl−1 + V TAV V TUl + V TUl+1 = h2zV
T fl

Wl−1 + ΛWl +Wl+1 = Fl

where Λ = V TAV is the diagonal matrix of eigenvalues by Theorem 2.1.6 and Fl =

h2zV
T fl. This yields Nx ·Ny independent systems

λiwi,1 + wi,2 = Fi,1

wi,l−1 + λiwi,l + wi,l+1 = Fi,l for l = 2, 3, . . . , Nz − 1

wi,Nz−1 + λiwi,Nz = Fi,Nz

for i = 1, 2, . . . , Nx ·Ny.

These systems can be solved using the LU decomposition of the generated tridiagonal

matrix. The computations in this solution are independent with respect to both x and

y direction of the computational domain. Therefore, it can now be parallelized with

respect to the either direction.

Prior to solving this system, F l = V TFl must be found. This differs from the two

30



dimensional test problem in that it F l is a DST in two directions, x and y. Therefore,

to find F l the DST is calculated in one direction, then the other. The process is then

the same as the two dimensional case: find the DST of the right hand side, solve the

tridiagonal system and find the reverse transform of the result. This will be outlined in

Algorithm 4.

3.3 A Fourth Order Compact Scheme

Consider an equivalent alteration to the three dimensional Helmholtz equation,

− ∂2u

∂x2
− ∂2u

∂y2
− ∂2u

∂z2
− k2u = f. (3.7)

Recall the Taylor expansion

ui±1,j,l = ui,j,l±
∂ui,j,l
∂x

hx+
h2x
2

∂2ui,j,l
∂x2

±h
3
x

3!

∂3ui,j,l
∂x3

+
h4x
4!

∂4ui,j,l
∂x4

±h
5
x

5!

∂5ui,j,l
∂x5

+
h6x
6!

∂6ui,j,l
∂x6

+. . . .

In the addition of ui−1,j,l and ui+1,j,l the odd terms will cancel, that is

ui−1,j,l + ui+1,j,l = 2ui,j,l +
∂2ui,j,l
∂x2

h2x +
1

12

∂4ui,j,l
∂x4

h4x +O(h6x)

1

h2x
(ui−1,j,l − 2ui,j,l + ui+1,j,l) =

∂2ui,j,l
∂x2

+
1

12

∂4ui,j,l
∂x4

h2x +O(h4x)

δ2xui,j,l =
∂2ui,j,l
∂x2

+
h2x
12
· 1

h2x
δ2x
∂2ui,j,l
∂x2

+O(h4x)

δ2xui,j,l =

(
I +

1

12
δ2x

)
∂2ui,j,l
∂x2

+O(h4x)

∂2ui,j,l
∂x2

=

(
I +

1

12
δ2x

)−1
δ2xui,j,l +O(h4x).

This process can be repeated for both the y and z derivatives. Then by substituting

these approximations into (3.7) the following fourth order scheme is obtained

−
(
I +

h2x
12
δ2x

)−1
δ2xui,j,l −

(
I +

h2y
12
δ2y

)−1
δ2yui,j,l

−
(
I +

h2z
12
δ2z

)−1
δ2zui,j,l − k2l ui,j,l = fi,j,k. (3.8)

31



Theorem 3.3.1. The terms
(
I + h2x

12 δ
2
x

)
and

(
I +

h2y
12 δ

2
y

)
commute.

Proof. Let u be a vector. First note that the operators δ2x and δ2y commute since

δ2xδ
2
yui,j,l = δ2x

(
ui,j−1,l − 2ui,j,l + ui,j+1,l

h2y

)
=

1

h2y

(
δ2xui,j−1,l − 2δ2xui,j,l + δ2xui,j+1,l

)
=

1

h2y

1

h2x
([ui−1,j−1,l − 2ui,j−1,l + ui+1,j−1,l]

−2 [ui−1,j,l − 2ui,j,l + ui+1,j,l] + [ui−1,j+1,l − 2ui,j+1,l + ui+1,j+1,l])

=
1

h2x

1

h2y
([ui−1,j−1,l − 2ui−1,j,l + ui−1,j+1,l]

−2 [ui,j−1,l − 2ui,j,l + ui,j+1,l] + [ui+1,j−1,l − 2ui+1,j,l + ui+1,j+1,l])

=
1

h2x

(
δ2yui−1,j,l − 2δ2yui,j,l + δ2yui+1,j,l

)
= δ2y

(
ui−1,j,l − 2ui,j,l + ui+1,j,l

h2x

)
= δ2yδ

2
xui,j,l.

Thus(
I +

h2x
12
δ2x

)(
I +

h2y
12
δ2y

)
ui,j,l =

(
I +

h2y
12
δ2y

)
ui,j,l +

h2x
12
δ2x

(
I +

h2y
12
δ2y

)
ui,j,l

= ui,j,l +
h2y
12
δ2yui,j,l +

h2x
12
δ2xui,j,l +

h2x
12

h2y
12
δ2xδ

2
yui,j,l

= ui,j,l +
h2x
12
δ2xui,j,l +

h2y
12
δ2yui,j,l +

h2y
12

h2x
12
δ2yδ

2
xui,j,l

=

(
I +

h2x
12
δ2x

)
ui,j,l +

h2y
12
δ2y

(
I +

h2x
12
δ2x

)
ui,j,l

=

(
I +

h2y
12
δ2y

)(
I +

h2x
12
δ2x

)
ui,j,l.

Note that the theorem holds for all combinations of the terms
(
I + h2x

12 δ
2
x

)
,
(
I +

h2y
12 δ

2
y

)
and

(
I + h2z

12 δ
2
z

)
as the proof is not dependent on the choice of x, y or z. To remove the

terms with inverses in (3.8), left multiply the equation by
(
I + h2x

12 δ
2
x

)(
I +

h2y
12 δ

2
y

)(
I + h2z

12 δ
2
z

)
.

32



Then using Theorem 3.3.1 gives

−

(
I +

h2y
12
δ2y

)(
I +

h2z
12
δ2z

)
δ2xui,j,l

−
(
I +

h2x
12
δ2x

)(
I +

h2z
12
δ2z

)
δ2yui,j,l

−
(
I +

h2x
12
δ2x

)(
I +

h2y
12
δ2y

)
δ2zui,j,l

−
(
I +

h2x
12
δ2x

)(
I +

h2y
12
δ2y

)(
I +

h2z
12
δ2z

)
k2l ui,j,l

=

(
I +

h2x
12
δ2x

)(
I +

h2y
12
δ2y

)(
I +

h2z
12
δ2z

)
fi,j,l. (3.9)

Now multiply out and drop all terms with h2xh
2
y, h

2
yh

2
z, h

2
xh

2
x and h2xh

2
yh

2
z. This is justified

as the fourth order approximation scheme is considered and only the second order terms

need to remain. It follows that

−
[
δ2x + δ2y + δ2z

]
ui,j,l − 1

12

[
h2x + h2z

]
δ2xδ

2
z − 1

12

[
h2x + h2y

]
δ2xδ

2
y

− 1
12

[
h2y + h2z

]
δ2yδ

2
z − k2l ui,j,l −

1
12

(
h2xδ

2
x + h2yδ

2
y + h2zδ

2
z

)
k2l ui,j,l

= fi,j,l + 1
12

(
h2xδ

2
x + h2yδ

2
y + h2zδ

2
z

)
fi,j,l. (3.10)

Let δx
2
ui,j,l = h2xδ

2
xui,j,l = ui−1,j,l − 2ui,j,k + ui+1,j,l, δy

2
ui,j,l = h2yδ

2
yui,j,l and δz

2
ui,j,l =

h2zδ
2
zui,j,l. Now, multiply both sides of Equation (3.10) by h2z. Let Rzx = h2z/h

2
x and

Rzy = h2z/h
2
y. Then

−
[
Rzxδ

2
x +Rzyδ

2
y + δ

2
z

]
ui,j,l

− 1

12
[1 +Rzx] δ

2
xδ

2
zui,j,l −

1

12
[Rzx +Rzy] δ

2
xδ

2
yui,j,l −

1

12
[1 +Rzy] δ

2
yδ

2
zui,j,l

− h2zk2l ui,j,l −
h2z
12

(
δ
2
x + δ

2
x + δ

2
z

)
k2l ui,j,l

= h2zfi,j,l +
h2z
12

(
δ
2
x + δ

2
x + δ

2
z

)
fi,j,l.

Now rewrite this scheme to group the coefficients of l − 1, l and l + 1 layers in the

33



following form,

−
[
I + 1

12

(
[1 +Rzx] δ

2
x + [1 +Rzy] δ

2
y

)]
ui,j,l∓1 − 1

12k
2
i,j,k∓1ui,j,k∓1

−
[(
Rzxδ

2
x +Rzyδ

2
y − 2I

)
− 2

12 [1 +Rzx] δ
2
x

+ 1
12 [Rzx +Rzy] δ

2
xδ

2
yδ

2
x − 2

12 [1 +Rzy] δ
2
y

+k2i,j,lI + 1
12

[
δ
2
x + δ

2
y − 2I

]
k2l

]
ui,j,l = Fi,j,l, (3.11)

where Fi,j,l = h2zfi,j,l + h2z
12

(
δ
2
x + δ

2
x + δ

2
z

)
fi,j,l. Now consider the fact that k2 depends

only on the level l in the z direction. Recall the definitions of A2 and A3 from the

previous section: A2 = (ai,j) ∈ RNx·Ny×Nx·Ny be such that ai,j = 1 when |i − j| = 1

and ai,j = 0 otherwise and A3 = (ai,j) ∈ RNx·Ny×Nx·Ny be such that ai,j = 1 when

|i− j| = Nx and ai,j = 0 otherwise. Now define the matrices C1, C2 and C3 by

C1 = −
[
I +

1

12
([1 +Rzx]A2 + [1 +Rzy]A3) +

1

12
k2l−1I

]
,

C2 = −
[(
−2 + k2l −

1

6
k2l

)
I +

(
Rzx −

1

6
− 1

6
Rzx +

1

12
k2l

)
A2

+

(
Rzy −

1

6
− 1

6
Rzy +

1

12
k2l

)
A3 +

1

12
[Rzx +Rzy]A2A3

]
and

C3 = −
[
I +

1

12
([1 +Rzx]A2 + [1 +Rzy]A3) +

1

12
k2l+1I

]
.

Also, let Ul =
[
u1,1,l u2,1,l · · · uNx,1,l u1,2,l · · · uNx,Ny ,l

]T
. Thus (3.3) can be

written as

C1Ul−1 + C2Ul + C3Ul+1 = Fl. (3.12)

Now analyze the eigenpairs of C1, C2 and C3.

Theorem 3.3.2. Let B1, B2 ∈ Rn×n for n > 1. If (λ1, v) and (λ2, v) are eigenpairs of

B1 and B2 respectively then (λ2λ1, v) is an eigenpair of B1B2.

Proof. Let B1 and B2 be as defined above. Let (λ1, v) and (λ2, v) be eigenpairs of B1

34



and B2 respectively. Then

B1B2v = B1(B2v) = B1(λ2v) = λ2B1v = λ2λ1v.

Let βl,kn,m = sin
(

nπ
Nx+1 · l

)
sin
(

mπ
Ny+1 · k

)
where 1 ≤ n, l ≤ Nx and 1 ≤ m, k ≤ Ny and

define vl,k =
[
βl,k1,1 βl,k2,1 · · · βl,kNx,1 βl,k1,2 · · · βl,kNx,Ny

]T
. Then vl,k is an eigenvector

of A2, A3 and A2A3 by Theorems 3.2.1, 3.2.2 and 3.3.2 respectively. Thus vl,k is an

eigenvector of C1, C2 and C3 by Theorem 2.1.2. Then C1, C2 and C3 can be diagonalized

simultaneously. Let V =
[
w1,1 w2,1 · · · wNx,1 w1,2 · · · wNx,Ny

]
∈ RNx·Ny×Nx·Ny

where wi,j = ||vi,j ||−1vi,j . Note that V is orthogonal by Theorem 3.2.5. Reformulate

(3.12) as follows

C1Ul−1 + C2Ul + C3Ul+1 = Fl

V C1V
TV Ul−1 + V C2V

TV Ul + V C3V
TV Ul−1 = V Fl

Λ1Wl−1 + Λ2Wl + Λ3Wl+1 = F l. (3.13)

Where Λ1 = V C1V
T , Λ2 = V C2V

T , Λ3 = V C3V
T , Wl = V Ul and F l = V Fl.

This provides a tridiagonal system that can be solved using the LU decomposition.

As in the second order scheme, the computations in this solution are independent with

respect to both x and y direction of the computational domain. Therefore, it can now

be parallelized with respect to the either direction. As the eigenvectors are the same

as the second order scheme, the process in solving this system is the same. That is,

find the DST of the right hand side, solve the tridiagonal system and find the reverse

transform of the result.

3.4 Conclusion

Chapter 3 presented the problem that is the focus of this thesis, the three dimensional

Helmholtz equation. The second and fourth order schemes for approximating the so-

35



lution to the equation were developed. These schemes included forward and reverse

transforms that are independent in the z direction and a tridiagonal solver that is inde-

pendent with respect to the y direction. As a result, these sections can be parallelized.

36



Chapter 4

Parallelization

4.1 Introduction

This chapter provides a detailed examination of the parallelization of second and fourth

order compact algorithms for approximating solutions to the three dimensional Helmholtz

equation. The results found in this chapter will show the accelerations and the immense

benefit for implementing parallel technologies. In development, the program was run

on several variations of computational grid size and number of threads and processes.

However, for the results displayed in this chapter only grid sizes that are powers of two

are utilized. This optimized the FFT calculation and therefore making the study of

acceleration due to parallelization more direct [6].

The goal of implementing OpenMP and MPI is to observe near linear acceleration

with the addition of threads or processes respectively. The work must be divided as

evenly as possible among the threads or processes. To elaborate, consider a for-loop

with n iterations and let p be the number of MPI processes or OpenMP threads. Only

consider the case where n > p as in practice n will be very large and p is limited by the

hardware. If p divides n the number of iterations performed by each process or thread is

simply p/k. On the other hand, if n mod p = r 6= 0 then one of the remaining iterations

is given to r processes. This prevents one process from doing significantly more work

than the others.

37



4.2 Sequential Algorithm

This section will outline and identify sections of the algorithm for approximating the

solution to (3.1) to communicate the process of parallelization efficiently. Several steps

must first be taken prior to the actual approximation. Firstly, the domain and the

medium coefficients, k, must be defined. The analytic solution is calculated at each

grid point for error checking. Finally, the right hand side of the system is defined

and the LU decomposition is computed. The primary area of focus is the solver, the

section of code where the approximation is calculated. This consists of three parts;

the forward transformation, the tridiagonal solver and the reverse transformation. The

following algorithm details this solver and the remainder of this chapter will refer to

these sections as such.

Algorithm 4 Sequential 3D Helmholtz Solver

1: for k = 1, . . . , Nz do
2: 2D forward DST in x−, y−direction
3: end for
4: for j = 1, . . . , Ny; i = 1, . . . , Nx; k = 1, . . . , Nz do
5: Solve the tridiagonal system using LU decomposition
6: end for
7: for k = 1, . . . , Nz do
8: 2D reverse DST in x−, y−direction
9: end for

The most computationally expensive sections in the solver are the forward and re-

verse transformations. Thus making these sections the primary concern in accelerating

the calculation time. The methods in which they were modified will be elaborated on

later on in this chapter. After the transforms were successfully parallelized and a de-

sirable acceleration observed, the focus turned to the tridiagonal solver. Two different

options were considered for the parallelization of the tridiagonal solver.

Prior to discussing the differences in the options, consider a machine’s processor.

There is very quick memory on a processor called a cache. This is where the data that

the processor is working on is stored. Data is loaded into the cache from the RAM of the

38



machine. When this is done a section of memory is transferred to fill the entire cache.

This process is not instantaneous. Thus it is wise to arrange the needed arrays in such

a way that the required information for the next computation is already in the cache.

With this concept in mind, the first option organizes the arrays in a way that more

relevant data is on the cache. This provides a relatively short computation time when

run sequentially. However, this did not accelerate well when parallelized. The second

option reorganized the for-loops in a way that would parallelize well. This increases the

calculation time in serial, but a near linear acceleration was observed in parallel. When

considering the acceleration of the entire solver it was the second options that performed

slightly better. Therefore, the results that follow only consider the second option.

4.3 OpenMP

During the first implementation of OpenMP into the solver the anticipated linear acceler-

ation of the forward and reverse transforms was not observed. After several experiments

the cause was found to be the immense expense of creating FFTW plans. A FFTW plan

is a function that sets up the calculations of the FFT [4]. The solution was to minimize

the creation of these plans reducing the number down to only two plans. This led to

another issue in that the creation of the plans are not thread safe. For a function to be

thread safe it must be free of race conditions [3]. The functions written by the devel-

opers of FFTW can not be modified to use private variables as is the typical solution

for a race condition. To fix this issue in both the forward and reverse transforms, the

two FFTW plan creations were defined within a critical region. A critical region is a

location in the code in which all the threads must reach prior to any other computations

[5]. This fixed the issue and near linear acceleration was observed in both the forward

and reverse transforms. The creation of the FFTW plans aside, the forward and reverse

transforms contain many variables that are subject to race conditions. As in the two

39



dimensional problem these variables were made private. Note that the use of the private

variables is omitted from Algorithm 5.

Algorithm 5 OpenMP 3D Helmholtz Solver

1: #pragma omp parallel for

2: for k = 1, . . . , Nz do

3: 2D forward DST in x−, y−direction

4: end for

5: #pragma omp parallel for

6: for j = 1, . . . , Ny; i = 1, . . . , Nx; k = 1, . . . , Nz do

7: Solve the tridiagonal system using LU decomposition

8: end for

9: #pragma omp parallel for

10: for k = 1, . . . , Nz do

11: 2D reverse DST in x−, y−direction

12: end for

Algorithm 5 was coded in C and successfully run with a near linear acceleration.

These results are displayed in Figure 4.1. Despite finding desirable results, different

strategies were examined to look for significant improvements.

A benefit in the implementation of OpenMP is that it automatically distributes the

work as evenly as possible among the threads by default. This does come at a cost

as it takes time for OpenMP to divide the for-loops. However, this tool does include

the ability to manually divide the number of iterations among threads. Despite having

desirable results with the automatic division a manual version was tested in hope to

observe an increase in acceleration. After several experiments with various grid sizes

and number of threads it was found to make no significant difference. Therefore, the

results given in Figure 4.1 are found using the default division.

In another attempt to improve upon the observed acceleration a different plan was

created for FFTW. This original OpenMP program used an FFTW plan that calculated

the forward and reverse transforms using one dimensional FFT of a single column in

a x, y plane of the domain. The FFTW subroutine has a function that allows for the

one dimensional FFT of the entire x, y plane in a single execution. In addition, there is

40



the ability to included multithreading without explicitly adding OpenMP directives [5].

This technique was implemented and accelerations was observed. However, the original

method had a much larger acceleration in every case and this technique was abandoned.

Figure 4.1: 3D OpenMP Acceleration

Acceleration is the Sequential Time Divided by Parallel Time

Figure 4.1 displays the acceleration in calculation time for both the second and fourth

order programs. These programs used default OpenMP loop division and calculates the

forward and reverse transforms using one dimensional FFT of a single column in a x, y

plane of the domain. The results come from INL’s Falconviz cluster using two uniform

computational grids, Nx = Ny = Nz = 256 and Nx = Ny = Nz = 512. These results

show the desired approximately linear acceleration.

4.4 MPI

In this section a process will refer to either an individual processor or a compute node

of a cluster as both can be used in MPI. As described in Chapter 2, large enough

41



computational grid sizes require the use of MPI. Therefore, the sequential program was

modified to run on several nodes allocating only the minimum required memory on each.

This was accomplished by dividing the computational domain as evenly as possible as

described in the introduction section of this chapter. In turn, this enables the ability to

run with much larger computational grids, as the program is no longer limited by the

memory of a single node.

Algorithm 6 MPI 3D Helmholtz Solver

1: Find starty, startz, endy, and endz

2: for k = startz, . . . , endz do

3: 2D forward DST in x−, y−direction

4: end for

5: Send and receive data via MPI functions

6: for j = starty, . . . , endy; i = 1, . . . , Nx; k = 1, . . . , Nz do

7: Solve the tridiagonal system using LU decomposition

8: end for

9: Send and receive data via MPI functions

10: for k = startz, . . . , endz do

11: 2D reverse DST in x−, y−direction

12: end for

13: Send and receive data via MPI functions

A major difference from the OpenMP implementation is that the entire program

must be parallelized, including the LU decomposition. The reasoning is the L and U

arrays are length Nx ×Ny ×Nz, requiring vast amount of memory for large grid sizes.

To successfully run on multiple nodes, each node needs only the necessary parts of the

arrays.

Figure 4.2 gives a graphical example of the transfer of data between processes. For

ease of illustration the figure assumes the use of three processes. The processes are

denoted P0, P1 and P2. The three dimensional computational domain, in its whole, is

displayed in the center of Figure 4.2. The first step shows how the domain is divided as

evenly as possible among the three processes with respect to the vertical, z direction.

This is where the forward transform is computed since the calculations do not depend on

42



z. Once the FFT is computed, certain parts of the domain need to be sent to different

processes as the tridiagonal solver is independent with respect to the y direction. The

second step illustrates the specific sections that need to be sent and their destination

process. The sections along the diagonal will not be sent as they currently reside on

the appropriate process. The third step shows the sections of the domain assembled

on the appropriate process after receiving the messages sent in the second step. Now

the domain is divided as evenly as possible among the processes with respect to the y

direction so that the tridiagonal solver can be calculated in parallel. The fourth step is

simply the reverse of step two. The fifth and final step has domain divided with respect

to the z direction and can now calculate the reverse transform.

Figure 4.2: 3D Transfer of Information between MPI Processes

43



As in the implementation of the two dimensional MPI algorithm, this program was

run in two ways. Firstly, it was run on one machine to compare to OpenMP. Then

several compute nodes were used to test the ability to approximate with very large com-

putational grids. The results that follow are those recorded from Falconviz and use the

uniform computational grids, Nx = Ny = Nz = 256 and Nx = Ny = Nz = 512. Both

second and fourth order are shown.

Figure 4.3: 3D MPI Acceleration by Processors on One Node

Acceleration is the Sequential Time Divided by Parallel Time

The graph in Figure 4.3 shows the acceleration on a single node ranging from one

to sixteen processes. Similar to the two dimensional case, these accelerations are not as

consistent as in the implementation of OpenMP. However, the acceleration is roughly

linear.

44



Order Grid Size Acceleration

Second 10243 1.2167

Fourth 10243 1.1074

Table 4.1: 3D MPI Acceleration by Nodes

Acceleration is the Sequential Time Divided by Parallel Time

Arguably the greatest attribute of MPI is that it can be used to run calculations

across several nodes. The memory of a single node on INL’s Falconviz is overrun when

running the program with a grid size of 10243. To run such a memory intense compu-

tation more nodes are needed. With this grid size, the program was run using one to

sixteen nodes. The required memory was too great to complete the computations until

the number of nodes reached eight. The results in Table 4.1 show the accelerations from

eight to sixteen nodes.

4.5 CUDA

The final parallel technology considered is CUDA. This is used to perform calcula-

tions on a GPU. This provides great potential for accelerating algorithms. As stated in

Chapter 2, a program utilizing CUDA can not be executed solely on a GPU. In the two

dimensional case the only the forward and reverse transforms were calculated on the

GPU. In this section, the implementation moves the computation of both forward and

reverse transforms to a kernel function. In addition, the tridiagonal solver is computed

in a kernel function on the GPU. There is significant latency when transferring data be-

tween the CPU and GPU. Therefore, this communication must be minimized to observe

a better acceleration. The following results were computed using INL’s Falconviz and

demonstrate the benefit of using GPUs to acclerate a normally sequential program.

45



Order Grid Size Acceleration

Second
2563 2.792

5123 4.0543

Fourth
2563 2.9019

5123 3.4775

Table 4.2: 3D CUDA Acceleration

Acceleration is the Sequential Time Divided by Parallel Time

The accelerations displayed in Table 4.2 show a drastic improvement over those in the

two dimensional case. This improvement is made possible by computing the tridiagonal

solver on a GPU. It is possible that the kernel functions perform better than the use of

CUDA’s functions that mimic those in FFTW.

4.6 Results

The results of these three different parallelizations demonstrated the impressive improve-

ments in computation time verses the sequential run time. It should be noted that the

presented implementations of the algorithms were successfully run on several personal

computers and several clusters, including: Idaho State Universitys Leibniz, the Falcon,

Falconviz and Bechler clusters at INL and the Blue Waters cluster funded by the Na-

tional Center for Supercomputing Applications. The Falconviz cluster was chosen to

compare results in this thesis for several reasons, primarily, its ability to run CUDA

programs. In addition, the Falconviz cluster has relatively low traffic and it has a large

memory capacity. Another noteworthy feature is it has four NVIDIA Quadro K6000

GPUs available for calculation. The Falconviz cluster has one terabyte of RAM with

eight sixteen core 2499.799 MHz processors making it incredibly powerful tool in testing

the speed up provided by doubling the number of OpenMP threads or MPI processes.

46



4.7 Conclusion

This chapter has shown the power of parallel computing when applied to numerical

algorithms. The three parallel technologies, OpenMP, MPI and CUDA, were used to

create three variant programs. A comparison of all three was reviewed.

47



Chapter 5

Future Work

There are several ways to expand upon the work done in this thesis. Firstly, the CUDA

implementation can be expanded to include the use of more than just one GPU. Though

it is uncommon among clusters and especially personal computers to have more than one

GPU per node there is the ability to include multiple GPUs per node. INL’s Falconviz

cluster includes four GPUs on each node allowing the investigation of acceleration due

to multiple GPUs.

In this thesis the second and fourth order approximations were considered. There

is a plan to implement a sixth order approximation algorithm. This will be done with

methods similar to the methods already presented. That is, the sixth order scheme will

be programmed to use OpenMP, MPI and CUDA. The accelerations found will then be

compared to those presented in this thesis.

OpenMP was shown to be of great use on a single node of a cluster, but in the

use of multiple nodes, MPI is required. It is possible to combine the two into a hybrid

program. MPI can be used to divide the work up among multiple nodes and OpenMP

then used to divide the work among the threads to each processor on the node. Future

work will examine the benefits of such an implementation.

As mentioned in Section 4.3, a function in the FFTW subroutine using multithread-

ing for a shared memory structure was investigated. There is a similar FFTW function

for distributed memory. This was not considered in this thesis and future research will

48



look for a benefit over the current method.

This thesis considered methods that can be applied to parallel Krylov-FFT type

high-resolution algorithms for subsurface electromagnetic scattering problems. The de-

velopment of this iterative method is an implementation of a fast multigrid solver for

the convection-diffusion part of the discretized Navier-Stokes system. Future work will

implement the methods developed in this thesis into this system.

The results presented in the previous chapter demonstrated the power of parallel

computing. Not only can the presented algorithms be expanded to use in the discretized

Navier-Stokes system, but in countless other algorithms. The development of sequential

numerical algorithms should become a thing of the past to give way for the development

of parallelizable numerical algorithms.

49



Acronyms

CPU Central Processing Unit.

CUDA Compute Unified Device Architecture.

DFT Discrete Fourier Transform.

DST Discrete Sine Transform.

FFT Fast Fourier Transform.

GPU Graphics Processing Unit.

MPI Message Passing Interface.

OpenMP Open Multi-Processing.

RAM Random Access Memory.

50



Glossary

acceleration Reduction in calculation time.

FFTW Open source C subroutine library for calculating FFT.

parallel Running computations across multiple computational units simultaneously.

race condition The updating of a variable’s value in the incorrect order.

51



Bibliography

[1] L. Ahlfors, Complex analysis, Third Edition, McGraw-Hill, Inc., 1979.

[2] I. Babuska and S. Sauter, Is the pollution effect of the FEM avoidable for the Helmholtz equation

considering high wave numbers?, SIAM Journal on Applied Mathematics 42 (2000), pp. 451–484.

[3] V. Eijkhout, Introduction to high performance scientific computing, Second Edition, Lulu, 2015.

[4] M. Frigo and S. Johnson, FFTW Manual, Massachusetts Institute of Technology, 2003.

[5] G. Hager and G. Wellein, Introduction to high performance computing for scientists and engineers,

First Edition, CRC Press, 2010.

[6] R. Kress, Numerical analysis, First Edition, Springer, 1998.

[7] S. Lang, Linear algebra, Third Edition, Springer, 1987.

[8] R. Larson and R. Hostetler, Trigonometry, Fifth Edition, Houghton Mifflin Company, 2001.

[9] CUDA Manual, NVIDIA Corporation, 2017.

[10] Y. Gryazin, Preconditioned Krylov subspace methods for sixth order compact approximations of the

Helmholtz equation, unpublished manuscript (2012).

52


	List of Figures
	List of Tables
	Abstract
	Introduction
	Two Dimensional Test Problem
	Introduction
	OpenMP
	MPI
	CUDA
	Conclusion

	Discretization
	Introduction
	A Second Order Compact Scheme
	A Fourth Order Compact Scheme
	Conclusion

	Parallelization
	Introduction
	Sequential Algorithm
	OpenMP
	MPI
	CUDA
	Results
	Conclusion

	Future Work
	Acronyms
	Glossary

