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ABSTRACT 

Fast Dynamics Analysis and Active Control of Spike-type Stall Inception in a One Stage Axial 

Compressor System 

Thesis Abstract--Idaho State University (2017) 

The research presented in this thesis details the system identification, modelling and control of 

the fast dynamics of a one stage axial compressor system. A control strategy to delay the onset of 

rotating stall is proposed. The system identification is focused on the relationship between the 

compressor flow coefficient and pressure rise coefficient as well as the compressor dynamics in 

and around the rotor blade passages. Transfer function and state-space models are developed to 

model the compressor fast dynamics for different flow coefficients. An overall model 

incorporating a variable flow coefficient is proposed. The derivation of this proposed overall 

model employs a map of identified eigenvalues corresponding to different flow coefficients. An 

active control strategy is proposed to delay the onset of rotating stall using a Linear Quadratic 

Gaussian controller and air injection into the blade passage. Simulation results based on the 

proposed overall model and dynamic controller indicate that the compressor characteristics 

within a blade passage can be controlled to the extent that problematic regions can be stabilized. 

Future work includes the testing of the proposed system on a one stage axial compressor system.  
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CHAPTER 1 INTRODUCTION 

 

1.1: Axial Flow Compressor 

Most modern aircrafts are powered by jet engines which employ compressors to increase the 

pressure of the incoming air. There are mainly two types of compressors namely Axial and 

Centrifugal. The basic difference between an axial flow compressor and a centrifugal compressor 

is that in an axial flow compressor the working fluid flows parallel to the axis of rotation while in 

a centrifugal compressor the working fluid may enter axially, but exits the compressor radially. 

In this thesis the main interest is limited to axial flow compressors. Compressor performance has 

a large impact on the overall performance of the jet engine and thus it is of significant 

importance to have a compressor working at or near its maximum performance for engineering, 

economic, and environmental benefits.  

 In axial flow compressors, the pressure rise is obtained by first accelerating the working fluid 

and then having it diffused. The acceleration is done by a row of rotating airfoils (blades) called 

the rotor and the diffusion is attained by a row of stationary blades called the stator [1].  The 

schematic of a one stage axial flow compressor is shown in Figure 1.1.  The fluid is fed through 

the inlet and served to the compressor where the working fluid is compressed. After the 

compressor stage, the flow is guided in to the plenum via the exit duct. A throttle is used at the 

end of the duct in order to vary the operating point of the compressor. This is done by changing 

the size of the opening of the outlet [2].  



2 
 

 

Figure 1.1: One Stage Axial Flow Compressor Schematics [2] 

Boyce in [1] suggests that axial flow compressors— by producing low pressure increases of 

order 1.1:1 to 1.4:1— are able to attain very high efficiencies. This can be seen from Table 1.1 

Table 1.1: Axial Flow Compressor Characteristics [1] 

Type of 

Application 

Type of Flow Inlet Relative 

velocity Mach 

Number 

Pressure Ratio 

per stage 

Efficiency per 

stage 

Industrial Subsonic  0.4-0.8 1.05-1.2 88%-92% 

Aerospace Transonic 0.7-1.1 1.15-1.6 80%-85% 

Research Supersonic 1.05-2.5 1.8-2.2 75%-85% 

 

The axial flow compressor in an advanced gas turbine these days usually consists of a multistage 

compressor having about 17-22 stages with exceedingly high-pressure ratio [1]. Figure 1.2 shows 

a multistage axial flow compressor rotor. 

  

  

  

  

  

  Inlet                     Exit Duct         Plenum                 Throttle   

  

  

Compressor   
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Figure 1.2: Multistage Axial Flow Compressor Rotor [1] 

1.2: Compressor Instabilities: Rotating Stall and Surge 

Compressor rotating stall and surge are the primary instabilities affecting the 

performance of a compressor and an engine altogether. The type and the degree of instability 

depends on the dynamics of the compressor [3].  Both of these phenomena are very difficult to 

predict accurately during design stage and can largely impact the performance of a compressor. 

Both rotating stall and surge can induce vibration, which can cause rapid airfoil failure and 

destruction of the compressor [4]. Rotating stall is a two-dimensional occurrence in which one or 

more regions of stalled flow keep rotating around the circumference of the compressor [5].  The 

regions circulate in the same course as the blades. The speed of the same is often between 1/5 

and 1/2 of the wheel speed [6]. Rotating stall often occurs only in some parts of the machine. It is 

also regarded by many as an inception of a potentially more dangerous compressor instability 

called the surge. Surge occurs when the pressure in the plenum exceeds the compressor pressure 

rise [7]. Depending on the pressure fluctuations and amplitude of the flow many researchers have 
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distinguished surge in four categories [8]: mild surge, classic surge, modified surge, and deep 

surge. Mild surge is a phenomenon having small pressure fluctuations while a classic surge is the 

one with larger oscillations and a lower frequency than the mild surge. Modified surge is a mix 

of rotating stall and classic surge. A deep surge is a more severe form of the classic surge and the 

only one from all the other types where there is a possibility of a flow reversal. The transition 

from mild surge to other forms are characterized by flow fluctuations and increase in the 

amplitudes of the pressure.  The transition from a normal compressor operation to stall is 

depicted in Figure 1.3 where, ɸ is a dimensionless parameter designated as the flow coefficient 

and Ψ is the dimensionless parameter pressure rise. The two parameters are defined by Equations 

1.1 and 1.2 [2]. 

ɸ =
𝐶𝑥

𝑈
                                                            (1.1) 

Ψ =
𝛥𝑃
1

2
𝜌𝑈2

                                                                    (1.2) 

Here, 𝐶𝑥 is the axial flow velocity, U is the mean rotor velocity, 𝛥𝑃 is the change in pressure 

from inlet atmospheric pressure to plenum pressure, and 𝜌 is the density of the fluid passing 

through the compressor. The pressure rise increases as the flow coefficient is decreased. This 

pattern continues until the system goes in to rotating stall or surge. For rotating stall, the 

compressor can operate at the peak of the characteristic at point A. A sudden transition in to 

rotating stall occurs at point B. During the transition from A to B (segment A-B) a significant 

drop in pressure rise and decrease in flow coefficient occurs. This trend will continue until the 

flow is again increased to point C [9]. At present, the only remedy to get out of rotating stall and 

surge is to shut down the engine and restart it [10]. For the reasons stated above, it is of utmost 
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importance to minimize the effect of these instabilities for the optimum performance of a 

compressor. 

 

 

Figure 1.3: Compressor Characteristics of Rotating Stall [9] 

1.3: Research History on Rotating Stall and Surge 

Research on minimizing the effects of rotating stall and surge in compressors has been of 

high interest since the 1950’s.  For a volute type centrifugal pump, [11] found that the onset of 

surge is due to premature diffusion of the flow entering the tongue (part of the volute near the 

diffuser) region along with the destabilizing behavior of the diffuser. According to [12-14] the 

rotating stall is caused by the flow moving slower than the rotors around the compressor annulus. 

[13] found that the flow separation inside the blade passage was the reason for the onset of stall. 

In [15], it is suggested that for high speed multi stage axial compressors, the reason for rotating 

stall and surge is the blast wave originating from the back of the machine due to a sudden change 

triggered by the machine, whereas in [16], the author argues that the short rotating stall cells 

originating from the front of the machine is the reason for the onset of fully developed rotating 

stall cells. Rotating stall and surge causes rapid heating of the blades and the unsteady excitation 
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causes additional loads on the blades which consequently results in severe blade vibration and 

fatigue— which may also cause severe damage to the engine due to unacceptable levels of 

system vibration [8]. Hence, it appears that several factors are responsible for the onset of 

rotating stall and surge and all of them have not been identified yet.  

Several measures are presently used to minimize the effects of surge [17] — which can be 

classified as follows: 

1. Surge control or avoiding surge: Here the basic concept is to operate the machine in a 

region near and beyond the line of surge. This is often called as an open-loop strategy. 

The conventional anti-surge control is widely used with variable speed centrifugal 

compressors. The method is based on the proportionality between the signal from the 

flow element (differential pressure ∆𝑝0 ) and the differential pressure across the 

compressor (∆𝑝𝑐). The relationship is given by Equation 1.3, where ∆𝑝0 is the flow 

element which is the differential pressure and ∆𝑝𝑐 is the differential pressure across the 

compressor [17] 

∆𝑝0 = 𝑘1. ∆𝑝𝑐 + 𝑘2                                                   (1.3) 

There have been many variations proposed in this basic concept of surge control. One 

such method is discussed in [18], where the researchers propose a drive torque assisted 

anti surge control scheme where along with the understanding of the traditional control 

scheme, drive torque is used to prevent the onset of surge. 

2.  Surge detection and control/avoidance: Here the surge avoidance/control system starts 

acting right at the inception of surge in the system. This is regarded as the closed-loop 

strategy. There have been numerous techniques and methods proposed for the detection 

of surge which are generally based on the variations in the parameters such as 
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temperature, pressure, flow etc. The strategies based on the monitoring of the vibrations 

in the compressor are not much reliable and usually fail because it gets difficult to 

distinguish between the vibrations caused by the onset of surge and the vibration from 

other sources in the system. One technique is proposed in [19], where the inlet pressure is 

sensed and used to detect surge. The temperature rate of change signal which is compared 

to a pre-calculated value maybe a function of other system parameters such as 

compressor discharge pressure or rotor speed. Several techniques have been proposed for 

surge control or detection. However, each of these techniques proposed have been rather 

specific to the machine in discussion and typically fails to be successfully applied to all 

the systems in general. A general model applicable to all compressor systems is yet to be 

invented. 

3. Active surge control: A considerable amount of work has been done to identify and 

understand the different phenomenon causing rotating stall and surge. For active control, 

it is of utmost importance to have working knowledge of the compressor dynamics to be 

able to better predict the onset of stall and surge. 

A breakthrough research in development of a model describing rotating stall and surge 

occurred in 1950’s by E.M.Greitzer at the Massachusetts Institute of Technology. The 

research carried out is published in [20-21]. A collaborative research with F.K. Moore led to 

further refining of the Greitzer’s model. The important aspect of this model was to integrate 

blade passage flow in Greitzer’s original model. The results of the research are published in 

[10]. The collaborative model now widely known as the Moore-Greitzer model has been 

extensively used for further developments in this area of research. The resulting model has 
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been highly successful in capturing rotating stall and surge and has been widely used as the 

mathematical base model for further developments.  

 

 

Figure 1.4: Scheme Showing Active Control Strategy [5] 

 

Epstein et al. [22] proposed an active control theory where compressor dynamics were altered by 

feeding back disturbances (A small change in movement or behavior) in to the flow field. The 

performance of the compressor can be improved due to extension of the stable operating region 

as shown in Figure 1.4. A number of researchers used the bifurcation theory in order to validate 

the Moore-Greitzer model. An example of such is given in [23], where a generic nonlinear 

control scheme was proposed. A similar experiment was conducted by Mansoux et al. in [24], 

where three different experimental low speed compressors exhibiting different stall inception 

behavior were modelled and the results were compared with the nonlinear simulation. During 

late 1990’s another control research area was developing which made use of air injectors as 
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actuators to increase the operating range of the compressor. In [25], Behnken et al. analyzed the 

effects of steady state compressor characteristic actuation scheme on a three state Moore-

Greitzer model. A closed-loop controller was designed, and experiments were performed on a 

specific compressor. The experimental findings were compared with the simulation and both the 

results were found to be quite similar in nature. The designed injection controller was shown to 

have removed the hysteresis region associated with rotating stall. W kang et al. in [28] proposes 

a bifurcation stabilization method with a linear feedback control to eliminate surge. The 

stabilization results are demonstrated via numerical simulations.  

In early 2000’s Paduano et al in [29], presented methods to stabilize rotating stall and surge in a 

transonic single stage axial compressor. Their two different approaches involved one— where 

they find a way to actively damp the system while the other involved manipulating system 

dynamics to keep the operating range of the compressor near the instability.  
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1.4: Axial Compressor Fast Dynamics 

The fast dynamics are referred to as the flow dynamics in and around the rotor blade. In 

axial compressors, stall inception is hypothesized to occur in two different forms—namely spike 

stall inception and modal stall inception. Spike type stall inception is a short length scale 

disturbance that occurs suddenly and develops in to rotating stall, while modal stall is a long 

length scale disturbance which gradually develops in to rotating stall [30]. Figure 1.5 shows 

spike type stall where one can see a sudden spike appearing on the velocity traces. As the spike 

begins to propagate, it increases in size and speed of rotation decreases. Figure 1.6 shows modal 

stall inception where one can see gentle undulation in the velocity traces before it develops in to 

fully developed rotating stall. 

 

 

Figure 1.5: An Example Showing Spike Stall Inception [30] 
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Figure 1.6: An Example Showing Modal Stall Inception [30] 

 

It was suggested by I.J. Day in 1993 that the possibility of either of the phenomena to occur in a 

compressor depends on the change in the tip clearance. The spike type stall inception is 

physically defined by a sudden and sharp spike in the velocity traces and the high speed at which 

it rotates. However, spike inception lasts only for about a couple of blade rotations before it 

develops in to stall. Thus, this type of stall inception is difficult to use for control purposes as it 

does not give enough time for the controller to act.  In contrast, modal oscillations appear for a 

lengthier time before it develops in to stall and intensifies as the flow rate reduces. As can be 

seen from Figure 1.7, for spike stall inception, stall tends to occur prior to the peak of the 

characteristic curve while for modal oscillations, it tends to occur near or at the peak on the 

characteristic curve. 
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Figure 1.7: Location of Spike and Modal-type Stall Inception on a Compressor 

Characteristic Curve [30] 

The experimental compressor at Chinese Academy of Sciences (CAS) used for model 

development for the research presented in this document—exhibits spike type stall inception. 

Thus, the research presented here is focusing on spike type stall inception.  

1.5: Flow Features Associated with Spike-type Stall Inception  

Camp et al. proved with their experimental results in [30] that the spike type stall 

inception occurs on a negatively sloped region of the compressor characteristic curve. Another 

feature associated with spike stall inception is the blade boundary layer near the blade tip. It was 

observed in [30]— that the spike stall inception typically occurred at a certain value of blade tip 

incidence. Spike stall inception exhibits localized flow separation on one particular blade row. If 

so, blade boundary layer separation can be related to spike stall inception [31]. The research by 

Vo [31] suggests that the flow within the blade passages can be characterized by the interface 
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line between the tip clearance flow and the main incoming flow. Figure 1.8 graphically 

represents how tip clearance flow interacts with the main incoming flow.  

 

Figure 1.8: Representation of Interaction Between the Tip Clearance Flow and the 

Incoming Flow [31] 

The interface line can be used to distinguish various flow conditions. The interface line begins 

from the low-pressure side of the first blade and extends near the leading edge. This creates a tip 

gap which allows the incoming flow to pass through the blade passage without any disturbance. 

This hypothesis has been adopted by a number of researchers to overcome stall and the same 

would be assumed to be true for the research presented in this document.  

 

  



14 
 

1.6: Research Objectives  

The objective of this thesis is to identify and to some extend control the flow dynamics within a 

single blade passage. The assumed flow structure is shown in Figure 1.8. The flow is described 

by using an interface line that indicates the meeting line between the incoming flow, the tip 

leakage flow, and a potential flow from the injectors used as a controller.  

 

Figure 1.9: Signature Frequency band for Ten Sensors [32] 

Injection has shown to be effective at an operating point close to stall in moving the stall margin 

further out [32]. Using a Power Spectral Density (PSD) analysis of the unsteady pressure 

measured in the casing above the blade passage, the signature frequency band can be determined. 

In Figure 1.9 [32], the PSD is plotted for ten sensors whose arrangement is given in Figure 1.10. 
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Figure 1.10: Sensor Location above Blade Passage [32]. 

From Figure 1.9, it seems that sensors 4 to 6 indicate the most sensitivity in terms of changes in 

PSD magnitude within the signature bandwidth. System identification for these sensors was used 

to extract the kind of dynamics occurring at this part of the blade passage for different flow 

coefficients. In particular, for the system identification, the input was selected to be a random 

injection at the leading edge of the compressor blades. The output was selected to be the 

correlation coefficient between the pressure data of a given sensor between one rotation of the 

rotor. As the sampling frequency of the injection (20,000 Hz to about 40 Hz), a spline curve 

approximation was used in order to resample the computed and estimated correlation data at 

20,000 Hz. Figure 1.11 shows the extracted root locus of the system model for sensor 6. As the 

compressor approaches stall limit, the pole location of the extracted dynamical model moves 

towards the unstable region (pole 2 of a conjugate complex pole pair). As the spline curve 

approximation results in a loss of identifiable frequencies (it acts like a smoothing filter), these 

results are indicative in nature. 
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Figure 1.11: Root Locus of Extracted System Model. The Root Locus is a Function of the 

Flow Coefficient. [2] 

Using the above given identification results, the plan is to design a controller based on injection 

to stabilize the controller just at or beyond instability. 
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Chapter 2: System Identification and Parametric Models 

 

System identification is defined as “approximate modeling of a system for a specific 

application on the basis of observed data and prior system knowledge”, [35]. In other words, 

system identification is a method of building models for dynamic systems using system’s 

measured input and output in time or frequency domain. The two major approaches for using 

system identification for model development are: 

1. Grey box approach: This approach is based on developing a model based on both 

insight of the system as well as the collected experimental data. Although all the 

parameters of the system are not known, a certain model is developed based on the 

preconceived knowledge of a system. System identification could be used to estimate the 

unknown parameters.   

2. Black box approach: This approach just relies on the experimental input-output data to 

develop a model. No prior knowledge of the system is available. Bunge [27], describes 

the black box as “The constitution and structure of the box are altogether irrelevant to the 

approach under construction, which is purely external or phenomenological. In other 

words, only the behavior of the system would be accounted for”. 

Figure 2.1: A Representation of the Black Box Approach [26] 
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 System identification involves applying a model to the test input-output data sets and identifying 

model parameters from it. The parameters that best relate to the input-output is used for model 

development.  

2.1: Mathematical Models 

Mathematical models can be of different forms, based on the system being studied. Generally, 

mathematical models are needed for the following purposes: [36] 

• Diagnosis- To obtain a larger insight in to a particular phenomenon occurring in the 

system 

• Control Design- For designing a control system that improves the performance of a 

dynamic system 

• Simulation- Analyzing system dynamics and behavior with the help of simulations 

• Estimation- Estimating state variables which are usually difficult to measure in real time 

• Prediction- Prediction of the behavioral pattern of particular variables  

 

Figure 2.2: A Basic Representation of a Mathematical Model [35] 
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A basic representation of a mathematical model is shown in Figure 2.2. Here w(.) and v(.) are 

additive white noises. These noises are added to account for the errors in the system caused by 

measurement and modeling errors.  

The input-output relationships for a single input and single output system can be represented by 

Equations 2.1 and 2.2 where, Equation 2.2 is the discrete version of Equation 2.1. [35] 

𝑦(𝑡) = ∫ 𝑔(𝑡 − 𝜏)𝑢(𝜏)𝑑𝜏
𝑡

−∞
                                               (2.1) 

𝑦(𝑡) = ∑ 𝑔(𝑡 − 𝑘)𝑢(𝑘)𝑡
𝑘=−∞                                               (2.2)    

Here, y(t) represents the output, 𝑔(𝑡 − 𝜏) is the impulse response of the system at time t, k is the 

time index, and 𝜏 is the variable for integration. These equations are also referred to as impulse 

response model representation. 

2.2: System Identification Procedure 

In practice, a perfect mathematical representation of a system is not possible because of the 

complexity of the system, the limited prior knowledge, and the errors associated with the 

observed data. Thus, system identification is considered as an appropriate modeling of the 

system on the basis of prior knowledge and available data. Figure 2.3 shows a block diagram of 

the basic identification process. The process of identification can be described by three main 

aspects: [36]  

• Data: Data can be collected based on prior knowledge or objectives or maybe in the 

form of observed data to cater specific needs. 
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Figure 2.3: Block Diagram Representation of the System Identification Process [36] 
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• Model set: Often regarded as the most difficult step in the identification process, 

model set is where one choses a set of models from which the most accurate model is 

selected for the process. Here, one also specifies the properties of model like 

discrete/continuous, linear/non-linear etc.- which is generally done based on the prior 

knowledge of the system. 

• Identification Criterion: In order to check the goodness of fit between the model 

parameters and the observed data, the identification criterion has to be specified. 

2.3: Fast Dynamics System Identification 

The MatlabTM system identification toolbox was used for the system identification analysis. The 

approach used by Dane et al. [2] for preparing fast dynamics data for system identification is 

shown in Figure 2.4 

 

 

 

 
Figure 2.4: Block Diagram Representation of the Preparation of Fast Dynamics Data for 

System Identification [2] 

 

 

Several models like the ARX, state space, and discrete and continuous time transfer function 

models were attempted. It was found that four poles and three zeroes transfer function model 

produced the best fit for the data [2]. A transfer function was developed at each of the nine 
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sensors. Equation 2.3 shows the form of the transfer function as a function of the complex 

frequency domain variable s. 𝑌𝑛 is designated as the output and U is the input.  

Yn(s)

U(s)
= Gn(s) 

 

(2.3) 

The transfer function can also be written as shown in Equation (2.4), where n is the sensor 

number. 

 

𝐺𝑛(𝑠) =
𝑏0𝑛𝑠

3 + 𝑏1𝑛𝑠
2 + 𝑏2𝑛𝑠 + 𝑏3𝑛

𝑠4 + 𝑎1𝑛𝑠3 + 𝑎2𝑛𝑠2 + 𝑎3𝑛𝑠 + 𝑎4𝑛
 

 

(2.4) 

 

Out of the nine sensor outputs, sensor number 4, 5, and 6 were used for system identification. It 

is believed that these three sensors were most suitable for capturing the system’s fast dynamics 

mainly because of its location between the leading edge of the rotor blade to approximately the 

mid-chord length.  For the system identification of fast dynamics— the input is the pressure 

sensor signal from the air injector actuator jet and the outputs are the resampled data sets from 

the spline curve fitted to the autocorrelation coefficient data points for the nine sensors used. 

 
 24 25 26 27 28 29 30 

Time [sec] 

Figure 2.5: Transfer Function Model Comparison for Sensor No.5 for ɸ=0.56 [2] 
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Figure 2.5 shows the comparison of spline interpolated autocorrelation coefficient data (Black) 

with the transfer function model data (Blue) for flow coefficient ɸ=0.56 for sensor no.5 [2]. It 

can be seen from the figure that the goodness of fit percentage is low (around 10%). It is 

believed that these transfer function models are best able to capture the system’s fast dynamics 

as they could capture the compressor natural frequency and also displayed certain pole trends as 

stall is approached.  Thus, sensor no. 5 was chosen for development of a model for control 

purposes. The fast dynamics transfer function model data for sensor no.5 is shown in Table 2.1.  

The initial approach was to get the polynomial equation of a smooth curve fitted to the combined 

pole and zero trends at different flow coefficients. However, a dynamic equation of a smooth 

curve fitting all the data points was not achievable. An attempt to add some data points on the 

path of the curve-to get the equation of the smooth curve was also made- but with undesirable 

results. Therefore, the second approach was to get the polynomial equations of how each 

pole/zero behaved at different flow coefficients and develop a model out of it from control 

purposes. Microsoft ExcelTM  “Trendline” function was used for getting the equation of the 

curves. The steps involved along with the screenshots are shown below: 

1.  Select the stored data and make a scatter plot. 

 

Figure 2.6: Insert Chart Window 
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2. Right click on the data on the scatter plot and select “add trendline” 

 

Figure 2.7: Adding Trendline Window 

3. Select “polynomial” and pick the order that best fits the data. The options “display 

equation on chart” and “Display R-squared value on chart” can be selected. 

 
 

Figure 2.8: Format Trendline Window 
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4. Click on the legend and select “format trend line”. Select the option “number” and 

change the decimal number required as per the requirement. 

 

Figure 2.9: Choosing Number in the Format Trendline Window 
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Table 2.1: Fast Dynamics Transfer Function Model Data for Sensor no. 4 [2] 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Flow 
Coefficient 

Poles Zeros Natural Frequency 
(Hz) 

0.58 -0.0000 +86.8311i -133.71 + 0.0000i 13.820 

 -0.0000 -86.8311i -1.80 + 55.55i 13.820 

 -7.8998 +20.4642i -1.80 - 55.55i 3.491 

 -7.8998 -20.4642i - 3.491 

0.56 -34.7345 +88.9319i 2.1037 +32.1154i 15.195 

 -34.7345 -88.9319i 2.1037 -32.1154i 15.195 

 -0.0000 +30.7684i 3.4567 + 0.0000i 4.897 

 -0.0000 -30.7684i - 4.897 

0.54  -0.3740 +86.5791i -5.1659+28.3489i 13.780 

 -0.3740 -86.5791i -5.1659-28.3489i 13.780 

 -0.0361 +21.9828i 13.1705 +0.0000i 3.499 

 -0.0361 -21.9828i - 3.499 

0.52 -76.0179+44.0606i -0.0315+23.5119i 13.984 

 -76.0179-44.0606i -0.0315-23.5119i 13.984 

 -0.0347 +23.5191i 6.0286 +0.0000i 3.743 

 -0.0347 -23.5191i - 3.743 

0.51 -79.9413 +30.8245i 1.6096+26.0384i 13.636 

 -79.9413 -30.8245i 1.6096-26.0384i 13.636 

 -0.4161 +25.3275i 1.1757 + 0.0000i 4.032 

 -0.4161 -25.3275i - 4.032 
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Table 2.2: Fast Dynamics Transfer Function Model Data for Sensor no. 5 [2] 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Flow Coefficient Poles Zeros Natural Frequency (Hz) 

0.58 -110.61+58.57i 19.8603+0.0000i 19.19 

 -110.61-58.57i -0.1802+7.5664i 19.19 

 -0.18+7.50i -0.1802-7.5664i 1.194 

 -0.18-7.50i - 1.194 

0.56 -16.70+113.78i 0.191+28.1214i 18.303 

 -16.70-113.78i 0.0191-28.1214i 18.303 

 -0.0000+26.95i 9.7887+0.0000i 4.289 

 -0.0000-26.95i - 4.289 

0.54  -0.3206+86.3066i 48.5023+0.0000i 13.736 

 -0.3206-86.3066i -0.8536+31.2561i 13.736 

 -0.0000+31.6615i -0.8536-31.2561i 5.039 

 -0.0000-31.6615i - 5.039 

0.52 -88.0397+32.0824i 46.9253+0.0000i 14.913 

 -88.0397-32.0824i 0.6126+22.8844i 14.913 

 -0.0226+23.4365i 0.6126-22.8844i 3.730 

 -0.0226-23.4365i - 3.730 

0.51 -70.2878+0.0000i 0.2443+25.9897i 11.187 

 -11.3883+0.0000i 0.2443-25.9897i 1.813 

 -0.1389+25.3343i 0.7730+0.0000i 4.032 

 -0.1389-25.3343i - 4.032 
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Table 2.3: Fast Dynamics Transfer Function Model Data for Sensor no. 6 [2] 

 

 

Flow 

Coefficient 

Poles Zeros Natural Frequency 

(Hz) 

0.58 -88.7959 +60.8620i -0.5506+18.1437i 17.133 

 -88.7959 -60.8620i -0.5506-18.1437i 17.133 

 -0.0006 +17.4192i 10.7467+0.0000i 2.772 

 -0.0006 -17.4192i - 2.772 

0.56 -92.4162 +60.8268i -0.0011+23.3122i 17.609 

 -92.4162 -60.8268i -0.0011-23.3122i 17.609 

 -0.0019 +23.3145i 10.7301+0.0000i 3.711 

 -0.0019 -23.3145i - 3.711 

0.54  -65.3445+52.5376i -0.2362+91.8688i 13.344 

 -65.3445-52.5376i -0.2362-91.8688i 13.344 

 -0.0921 +88.6676i 73.4270+0.0000i 14.112 

 -0.0921 -88.6676i - 14.112 

0.52 -12.9371+15.0633i -7.7264+95.9229i 3.160 

 -12.9371-15.0633i -7.7264-95.9229i 3.160 

 -0.0797+87.4101i -11.6611+0.0000i 13.912 

 -0.0797-87.4101i - 13.912 

0.51 -58.5959 +0.0000i 4.4825+76.3377i 9.326 

 -0.8703 + 0.0000i 4.4825-76.3377i 0.139 

 -0.3802 +81.7580i -0.0969+0.0000i 13.012 

 -0.3802 -81.7580i - 13.012 
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The plots along with their polynomial equation (displayed inside the plot) for all the poles and 

zeroes for sensor no. 5 (Table 2.2) are shown below: 
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Figure 2.10: Plot and Equation of Real part of Zero 1 at Different Flow Coefficients. 

 

X-axis Y-axis

0.58 7.5664

0.56 28.1214

0.54 31.2561

0.52 22.8844

0.51 25.9897 y = 9,293,291.666531x4 - 20,568,447.916370x3 + 17,043,242.208091x2 -
6,266,529.963246x + 862,724.296428

R² = 1.000000

0

5

10

15

20

25

30

35

0.5 0.51 0.52 0.53 0.54 0.55 0.56 0.57 0.58 0.59

Y
-a

x
is

(I
m

a
g

in
a

ry
 p

a
rt

 o
f 

ze
ro

 
1

)

X-axis (Flow coefficient)

Zero 1 Imaginary

 

Figure 2.11: Plot and Equation of Imaginary part of Zero 1 at Different Flow Coefficients. 
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Figure 2.12: Plot and Equation of Real part of Zero 2 at Different Flow Coefficients 
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Figure 2.13: Plot and Equation of Imaginary part of Zero 2 at Different Flow Coefficients 

 

 

 

 

 



31 
 

 

Figure 2.14: Plot and Equation of Real part of Pole 1 at Different Flow Coefficients 

 

 

Figure 2.15: Plot and Equation of Imaginary part of Pole 1 at Different Flow Coefficients 
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Figure 2.16: Plot and Equation of Real part of Pole 2 at Different Flow Coefficients 
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Figure 2.17: Plot and Equation of Imaginary part of Pole 2 at Different Flow Coefficients  
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Figure 2.18: Plot and Equation of Real part of Pole 3 at Different Flow Coefficients 
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Figure 2.19: Plot and Equation of Imaginary part of Pole 3 at Different Flow Coefficients 
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Figure 2.20: Plot and Equation of Real Part of Pole 4 at Different Flow Coefficients 
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Figure 2.21: Plot and Equation of Imaginary part of Pole 4 at Different Flow Coefficients 
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2.4: Model Development 

Transfer function and state space-models for different poles and zeroes combination were 

developed. The four models developed were: 

• Four poles and two zeroes transfer function model 

• Four poles and two zeroes state-space model 

• Two poles and two zeroes transfer function model 

• Two poles and two zeroes state-space model 

MatlabTM was used to develop these models, the algorithm for model development are attached 

in the Appendix section. The basic syntax used for developing these models are: 

sys=tf(num,den): The command creates a continuous time transfer function “sys” with 

numerator defined by “num” and denominator defined by “den”. The output sys is: 

• A transfer function model object, when the numerator and denominator are numeric 

arrays [33]. 

• A generalized state-space model when numerator or denominator are tunable 

parameters [33]. 

• An uncertain state space model when numerator and denominator are uncertain [33] 

sys=ss(A,B,C,D): The command creates a state-space model object representing the continuous-

time state-space model of the form: 

�̇� = 𝐴𝑥 + 𝐵𝑢                                                           (2.5) 

𝑦 = 𝐶𝑥 + 𝐷𝑢                                                           (2.6) 

For a model with Nx states, Ny outputs, and Nu inputs: 
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• A is a Nx-by-Nx real- or complex valued matrix [34]. 

• B is a Nx-by-Nu real- or complex valued matrix [34]. 

• C is a Ny-by-Nx real- or complex valued matrix [34]. 

• D is a Ny-by-Nu real- or complex valued matrix [34]. 

2.4.1: Controllable Canonical Form:  

For converting the transfer function model in to a state-space model, controllable canonical form 

is used. To see how this method works, consider a third order transfer function: 

𝐻(𝑠) =
𝑌(𝑠)

𝑈(𝑠)
=

𝑏0𝑠
2 + 𝑏1𝑠 + 𝑏2

𝑠3 + 𝑎1𝑠2 + 𝑎2𝑠 + 𝑎3
 

(2.7) 

Let us start by multiplying by Z(s)/Z(s) and then solving for U(s) and Y(s) in terms of Z(s): 

𝑌(𝑠) = (𝑏0𝑠
2 + 𝑏1𝑠 + 𝑏2)𝑍(𝑠) (2.8) 

𝑈(𝑠) = (𝑠3 + 𝑎1𝑠
2 + 𝑎2𝑠 + 𝑎3)𝑍(𝑠) (2.9) 

𝑦 = 𝑏0�̈� + 𝑏1�̇� + 𝑏2𝑧 (2.10) 

𝑢 = 𝑧 + 𝑎1�̈� + 𝑎2�̇� + 𝑎3𝑧 (2.11) 

The next step is to choose the state variables: 

𝑞1 = 𝑧 ; 𝑞2 = �̇� ;  𝑞3 = �̈� (2.12) 

𝑞1̇ = �̇� = 𝑞2 (2.13) 

𝑞2̇ = �̈� = 𝑞3 

 

(2.14) 
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𝑞2̇ = �̈� = 𝑞3 (2.15) 

𝑞3̇ = 𝑧 = 𝑢 − 𝑎1�̈� − 𝑎2�̇� − 𝑎3𝑧 

    = 𝑢 − 𝑎1𝑞3 − 𝑎2𝑞2 − 𝑎3𝑞1 

 

(2.16) 

𝑦 = 𝑏0�̈� + 𝑏1�̇� + 𝑏2𝑧 = 𝑏0𝑞3 + 𝑏1𝑞2 + 𝑏2𝑞1
 (2.17) 

From these Equations, the state-space model can be represented as: 

𝑦 = 𝐶𝑞 + 𝐷𝑢 = [𝑏2 𝑏1 𝑏0] 𝑞 + 0. 𝑢
                                             (2.19) 

The above example presented is the basis for the one where the order of the numerator of the 

transfer function is less than the order of the denominator. The method does not work the same 

way if the order of the numerator and denominator of the transfer function are the same. For a 

general nth order transfer function given by: 

𝐻(𝑠) =
𝑌(𝑠)

𝑈(𝑠)
=
𝑏0𝑠

𝑛 + 𝑏1𝑠
𝑛−1 +⋯+ 𝑏𝑛−1𝑠 + 𝑏𝑛

𝑠𝑛 + 𝑎1𝑠𝑛−1 +⋯+ 𝑎𝑛−1𝑠 + 𝑎𝑛
 

(2.20) 

The controllable canonical state-space model objects that works for all cases is given by: 

𝐴 =

[
 
 
 
 
0 1 0 … 0
0 0 1 … 0
⋮ ⋮ ⋮ ⋱ ⋮
0 0 0 … 1
−𝑎𝑛 −𝑎𝑛−1 −𝑎𝑛−2 … −𝑎1]

 
 
 
 

 

(2.21) 

�̇� = 𝐴𝑞 + 𝐵𝑢 = [
0 1 0
0 0 1
−𝑎3 −𝑎2 −𝑎1

] 𝑞 + [
0
0
1
] 𝑢 

(2.18) 
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𝐶 = [(𝑏𝑛 − 𝑎𝑛𝑏0) (𝑏𝑛−1 − 𝑎𝑛−1𝑏0) … (𝑏2 − 𝑎2𝑏0) (𝑏1 − 𝑎1𝑏0)] (2.23) 

𝐷 = 𝑏0                                                        (2.24) 

 

2.5: Chapter Summary 

➢ Discussion on the approach used for the system identification of fast dynamics 

➢ Fast dynamics transfer function model data for sensor no. 4,5, and 6 presented in Table 

2.1, 2.2 and 2.3 

➢ Steps involved in developing the polynomial equations of the behavioral curve of poles 

and zeroes at different flow coefficients of the transfer function model data presented in 

the form of screenshots 

➢ Plots and equations of real and imaginary part of poles and zeroes at different flow 

coefficients are presented in the form of figures 

 

 

 

 

 

𝐵 =

[
 
 
 
 
0
0
⋮
0
1]
 
 
 
 

 

(2.22) 
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Chapter 3: Controller 

 

3.1: Transformation Matrix 

For any dynamic systems, the realized state-space model is not unique. For comparison 

of any form between the analytical model and the realized state-space model, both the models 

have to be in the same coordinate frame. One such unique transformation matrix is derived in 

[37]. This unique transformation matrix can transform any realized state-space model to be in a 

from usually used for a structural dynamic system so that any identified system parameter can be 

compared with the corresponding analytical one [37]. This unique transformation matrix exists 

only when one half of the states can be measured directly. A general representation of a dynamic 

system is given by Equation 3.1, where 𝑝 is the displacement, 𝑢 is the control force, 𝐺 is the 

control influence matrix, and 𝑀, 𝐷, and 𝐾 are mass, damping, and stiffness matrices, 

respectively. After converting the realized discrete-time state-space system to continuous-time 

system, the parameters of which are (𝐴𝑐, 𝐵𝑐, 𝐶), a unique transformation matrix 𝑇 is given by 

Equation 3.2 

𝑀�̈� + 𝐷�̇� + 𝐾𝑝 = 𝐺𝑢 

𝑇𝑚 = [𝑡1 𝑡2] = [
𝐶
𝐶𝐴𝑐

]
−1

 

(3.1) 

(3.2) 

3.1.1: Derivation of the Transformation Matrix 

The state-space equation and output equation of a dynamic system is given by Equation 3.3 

�̇� = 𝐴𝑚𝑥 + 𝐵𝑚𝑢 𝑎𝑛𝑑 𝑦 = 𝐶𝑚𝑥 (3.3) 
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where, 𝑥 = {
𝑝
�̇�}, 𝐴𝑚 = [

0 𝐼
−𝑀−1𝐾 −𝑀−1𝐷

], 𝐵𝑚 = [
0

𝑀−1𝐺
] and 𝐶𝑚 is the output matrix. If the 

assumption is made that one-half states can be measured directly, one can have 𝐶𝑚 = [𝐼 0] 

After converting a realized discrete-time system [𝐴, 𝐵, 𝐶] to a continuous-time system [𝐴𝑐, 𝐵𝑐, 𝐶], 

If 𝐴 is diagonalized by matrix 𝑄, then 

𝑄−1𝐴𝑄 = 𝐴, 𝐴𝑐 = 𝑄
ln (𝐴)

𝑇
𝑄−1, 𝐵𝑐 = (𝐴 − 𝐼)

−1𝐴𝑐𝐵 
(3.4) 

where, 𝑇 is the sampling time. If the transformation matrix is given by Equation 3.2, then 

𝑇𝑚
−1𝑇𝑚 = [

𝐶
𝐶𝐴𝑐

] [𝑡1 𝑡2] = [
𝐶𝑡1 𝐶𝑡2
𝐶𝐴𝑐𝑡1 𝐶𝐴𝑐𝑡2

] = [
𝐼 0
0 𝐼

] 

𝑇𝑚
−1𝐴𝑐𝑇𝑚 = [

𝐶
𝐶𝐴𝑐

] 𝐴𝑐[𝑡1 𝑡2] = [
𝐶𝐴𝑐𝑡1 𝐶𝐴𝑐𝑡2
𝐶𝐴𝑐

2𝑡1 𝐶𝐴𝑐
2𝑡2
] = [

0 𝐼
𝑋 𝑋

] 

𝑇𝑚
−1𝐵𝑐 = [

𝐶𝐵𝑐
𝐶𝐴𝑐𝐵𝑐

] = [
𝐶𝑚𝐵𝑚
𝐶𝐴𝑐𝐵𝑐

] = [
0
𝑋
] 

𝐶𝑇𝑚 = [𝐶𝑡1 𝐶𝑡2] = [𝐼 0] 

(3.5) 

(3.6) 

 

(3.7) 

(3.8) 

We can see that 𝐶𝑇𝑚 = 𝐶𝑚. Thus, the transformation of a continuous time system [𝐴𝑐, 𝐵𝑐, 𝐶] to 

an analytical system is given by Equations 3.9, 3.10, and 3.11. After the transformation, both the 

identified model and the analytical model are in the same coordinate frame and can be compared.  

𝐴𝑐
𝑦𝑖𝑒𝑙𝑑𝑠
→    𝑇𝑚

−1𝐴𝑐𝑇𝑚 

𝐵𝑐
𝑦𝑖𝑒𝑙𝑑𝑠
→    𝑇𝑚

−1𝐵𝑐 

𝐶
𝑦𝑖𝑒𝑙𝑑𝑠
→    𝐶𝑇𝑚 

(3.9) 

(3.10) 

(3.11) 
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3.2: Linear-Quadratic Gaussian(LQG) Controller 

           In control theory, linear-quadratic gaussian control problem is one of the most 

fundamental optimal control problem. It has many applications in the modern world ranging 

from aircraft and missile navigation control systems, nuclear power plants as well as medical 

processes controllers [38]. Linear-quadratic gaussian controller as the name suggests, is a 

controller that reduces the quadratic cost function of a linear system with additive white gaussian 

noises. The LQG controller is simply a combination of both concepts of linear- quadratic 

regulator(LQR) and Kalman filter—which is the linear-quadratic estimator(LQE). 

3.2.1: Linear quadratic Regulator (LQR) 

Consider a linear system modeled by Equation 3.12, where, 𝑥(𝑘) ∈ 𝑅𝑛 and 𝑢(𝑘) ∈ 𝑅𝑚 

𝑥(𝑘 + 1) = 𝐴𝑥(𝑘) + 𝐵𝑢(𝑘), 𝑥(𝑘0) = 𝑥0 (3.12) 

The pair (𝐴, 𝐵) is controllable. The objective is to design a stabilizing linear state feedback 

controller 𝑢(𝑘) = −𝑘𝑥(𝑘) which will minimize the quadratic cost function given by Equation 

3.13, where 𝑄 and 𝑅 are noise covariances and the gain matrix 𝑘 is given by Equation 3.14. 𝑃 is 

obtained by solving the Algebraic Riccati Equation (ARE) given by Equation 3.15 

𝐽 = ∑(𝑥𝑇(𝑘)𝑄𝑥(𝑘) + 𝑢𝑇(𝑘)𝑅𝑢(𝑘))

∞

𝑘=0

 
(3.13) 

 

𝑘 = (𝐵𝑇𝑃𝐵 + 𝑅)−1𝐵𝑇𝑃𝐴 (3.14) 

 

𝑃 = 𝐴𝑇𝑃𝐴 − 𝑃 + 𝑄 − 𝐴𝑇𝑃𝐵𝑆−1𝐵𝑇𝑃𝐴 (3.15) 
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3.2.2: Kalman State Estimator 

Given the discrete plant: 

𝑥[𝑛 + 1] = 𝐴𝑥[𝑛] + 𝐵𝑢[𝑛] + 𝐺𝑤[𝑛] 

𝑦[𝑛] = 𝐶𝑥[𝑛] + 𝐷𝑢[𝑛] + 𝑣[𝑛] 

(3.16) 

(3.17) 

 And the noise covariance data given by Equation 3.18 

𝐸(𝑤[𝑛]𝑤[𝑛]𝑇) = 𝑄, 𝐸(𝑣[𝑛]𝑣[𝑛]𝑇) = 𝑅, 𝐸(𝑤[𝑛]𝑣[𝑛]𝑇) = 0 (3.18) 

The estimator has the following Equation: 

𝑥[𝑛|𝑛] = 𝑥[𝑛|𝑛 − 1] + 𝑀(𝑦[𝑛] − 𝐶𝑥[𝑛|𝑛 − 1] − 𝐷𝑢[𝑛]) (3.19) 

where, 𝑀 is the gain matrix. The Ricaati solution is given by Equation 3.20 and the error 

covariances are given by Equation 3.21. 

𝑃 = 𝐸{(𝑥[𝑛|𝑛 − 1] − 𝑥)(𝑥[𝑛|𝑛 − 1] − 𝑥)𝑇} (3.20) 

 

 

𝑍 = 𝐸{(𝑥[𝑛|𝑛] − 𝑥)(𝑥[𝑛|𝑛] − 𝑥)𝑇} 

 

(3.21) 
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3.3: MatlabTM codes used for development of the Controller 

 

1. dlqry 

The code designs a linear quadratic regulator with output weighting for discrete time systems. 

The syntax: 

[K,S,E]=dlqry(A,B,C,D,Q,R), calculates the optimal feedback gain matrix k such that the 

feedback law 𝑢[𝑛] = −𝐾𝑥[𝑛],  minimizes the cost function given by Equation 3.22, Which are 

subject to the constraint Equations 3.23 and 3.24 

𝐽 = 𝑆𝑢𝑚{𝑦′𝑄𝑦 + 𝑢′𝑅𝑢} 

𝑋[𝑛 + 1] = 𝐴𝑥[𝑛] + 𝐵𝑢[𝑛] 

𝑌[𝑛] = 𝐶𝑥[𝑛] + 𝐷𝑢[𝑛] 

(3.22) 

(3.23) 

(3.24) 

The syntax also returns S, the steady-state solution to the associated discrete matrix Riccati 

Equation and the closed loop eigenvalues given by Equation 3.25 

𝐸 = 𝐸𝐼𝐺(𝐴 − 𝐵 ∗ 𝐾) (3.25) 

2. dlqe 

This MatlabTM code designs the Kalman estimator for discrete time systems. The system state 

equation is given by Equation 3.26 and the measurements are given by Equation 3.27, Where, 

𝑤[𝑛] is the process noise and 𝑣[𝑛] is the measurement noise with covariances given in Equation 

3.28 
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𝑥[𝑛 + 1] = 𝐴𝑥[𝑛] + 𝐵𝑢[𝑛] + 𝐺𝑤[𝑛] 

𝑦[𝑛] = 𝐶𝑥[𝑛] + 𝐷𝑢[𝑛] + 𝑣[𝑛] 

(3.26) 

(3.27) 

𝐸{𝑤𝑤′} = 𝑄, 𝐸{𝑣𝑣′} = 𝑅, 𝐸{𝑤𝑣′} = 0 (3.28) 

The syntax: 

[M, P, Z, E] = dlqe(A,G,C,Q,R), returns the gain matrix 𝑀, such that the discrete, stationary 

Kalman filter with observation and time update equations shown in Equations 3.29 and 3.30 

produces an optimal state estimate 𝑥[𝑛|𝑛] of 𝑥[𝑛] given 𝑦[𝑛] and the past measurements. The 

syntax also returns the Riccati solution given by Equation 3.31, the error covariance given by 

Equation 3.32, and the estimator poles 𝐸 = 𝐸𝐼𝐺(𝐴 − 𝐴 ∗ 𝑀 ∗ 𝐶) 

𝑥[𝑛|𝑛] = 𝑥[𝑛|𝑛 − 1] + 𝑀(𝑦[𝑛] − 𝐶𝑥[𝑛|𝑛 − 1] − 𝐷𝑢[𝑛]) 

𝑥[𝑛 + 1|𝑛] = 𝐴𝑥[𝑛|𝑛] + 𝐵𝑢[𝑛] 

𝑃 = 𝐸{(𝑥[𝑛|𝑛 − 1] − 𝑥)(𝑥[𝑛|𝑛 − 1] − 𝑥)′} 

𝑍 = 𝐸{(𝑥[𝑛|𝑛] − 𝑥)(𝑥[𝑛|𝑛] − 𝑥)′} 

(3.29) 

(3.30) 

(3.31) 

(3.32) 

3. dreg 

The syntax is: 

[Ac,Bc,Cc,Dc] = dreg(A,B,C,D,K,L) 

It produces the LQG controller based on the discrete system (𝐴, 𝐵, 𝐶, 𝐷) with feedback gain 

matrix 𝐾, and Kalman gain matrix 𝐿, assuming all the inputs of the system are control inputs and 

all the outputs of the system are sensor outputs. The resulting state-space controller is given by 

Equations 3.33 and 3.34 where, 𝐸 = 𝑖𝑛𝑣(𝐼 + 𝐾𝐿𝐷) and has control feedback commands uHat as 
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outputs and sensors 𝑦 as inputs. The controller should be connected to the plant using negative 

feedback.  

 

𝑥𝐵𝑎𝑟[𝑛 + 1] = [𝐴 − 𝐴𝐿𝐶 − (𝐵 − 𝐴𝐿𝐷)𝐸(𝐾 − 𝐾𝐿𝐶)] 𝑥𝐵𝑎𝑟[𝑛]

+ [𝐴𝐿 − (𝐵 − 𝐴𝐿𝐷)𝐸𝐾𝐿] 𝑦[𝑛] 

𝑢𝐻𝑎𝑡[𝑛] = [𝐾 − 𝐾𝐿𝐶 + 𝐾𝐿𝐷𝐸(𝐾 − 𝐾𝐿𝐶)]𝑥𝐵𝑎𝑟[𝑛] + [𝐾𝐿 + 𝐾𝐿𝐷𝐸𝐾𝐿] 𝑦[𝑛] 

 

   (3.33) 

(3.34) 

The syntax: 

[Ac,Bc,Cc,Dc] = dreg(A,B,C,D,K,L,SENSORS,KNOWN,CONTROLS), forms the LQG 

controller using the sensors specified by “SENSORS”, the additional known inputs specified by 

“KNOWN”, and the control inputs specified by “CONTROLS”. The resulting system has control 

feedback commands as outputs and the known inputs and sensors as inputs. The “KNOWN” 

inputs are non-stochastic inputs of the plant and are usually additional control inputs or 

command inputs.  

3.4: Chapter Summary 

➢ A unique transformation matrix to compare both identified model and the analytical 

model is presented 

➢ A brief introduction on Linear Quadratic Gaussian controller 

➢ Derivation of Linear Quadratic Regulator and Kalman State Estimator presented in the 

form of equations 

➢ Description of the MatlabTM codes used for development of the controller 
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Chapter 4: Experimental Setup and Data Collection 

4.1: Experimental Setup 

The experimental compressor system that is used to obtain data for the analysis presented 

in this research is a one-stage axial compressor. The experimental compressor is set up at the 

Advanced Energy and Power Technology Laboratory at the Institute of Engineering 

Thermophysics (IET), Chinese Academy of Sciences, located in Beijing, China. The 

specifications of the experimental compressor are given in Table 4.1. 

Table 4.1: Parameters of the Experimental Axial Compressor 

Parameter Numerical Value Units 

Design Speed 2400 rpm 

Rotor Blade Number 58 - 

Outer Casing Diameter 500 mm 

Mass Flow Rate 2.9 Kg/s 

Rotor Tip Chord 36.3 mm 

Rotor Tip Stagger Angle 39.2 degree 

Hub-tip ratio 0.75 - 

 

The front and side view of the experimental compressor is shown in Figure 4.1 and 4.2. In Figure 

4.2, the inlet is on the left and the outlet is located to the right. The schematic diagram of a one 

stage axial compressor is shown in Figure 1.1 (Chapter 1). As discussed in Chapter 1, the 

occurrence of stall has been linked to several factors like the tip clearance, inlet velocity of the 

air flow, tip incidence of the blades, flow separation etc. The research compressor at IET exhibits 

spike type stall inception. The experimental compressor rotor has 58 blades. The side view of the 

compressor rotor blades is shown in Figure 4.3.  
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Figure 4.1: Front view of the Experimental Compressor [2] 

Figure 4.2: Side view of the Experimental Compressor [2] 

 

Figure 4.3 Side view of the Compressor Rotor Blades [2] 
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The outlet of the compressor consists of two parts. One is a stationary throttle cone and the other 

is a movable throttle outer cylinder. The outer cylinder passes through the wall and has a sliding 

mechanism for its back and forth movement. Figure 4.4 shows the outlet set-up of the 

experimental compressor.  

 

Figure 4.4: Outlet set-up of the Experimental Compressor at IET [2] 

 

The cylinder is used to regulate the flow rate of the compressor. The movable outer cylinder is 

10 mm thick and is made from aluminum. The outer diameter of the cylinder is 540 mm and is 

118 mm in width.  A stepper motor is used for the actuation of the outer cylinder. For the 

forward and the backward movement of the outer cylinder, a screw mechanism is used. The 

movable cylinder is bolted to a support structure that moves along the rail. The structure is 

connected to the stepper motor and the clockwise and anti-clockwise rotation of the stepper 

motor drives the structure connected to the outer cylinder in the forward and backward directions 

respectively. Figure 4.5 shows the mechanism of throttle actuation. The stepper motor used for 
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the actuation of the screw mechanism is mounted on the exterior of the compressor set up as 

shown in Figure 4.6. The stepper motor drives the outer cylinder at a constant speed of 2mm/sec 

[2]. 

 

Figure 4.5: Throttle Actuation Mechanism [2] 

 

 

Figure 4.6: Stepper Motor used for Throttle Actuation Mounted on the Compressor 

Exterior [2] 

 

 



50 
 

4.2: Data Collection 

To capture the fast dynamics of the experimental compressor, ten anemometer type 

pressure sensors are attached to the compressor casing. The sensors are positioned in a way that 

it spans the length of the rotor blade along the longitudinal axis of the compressor. The position 

of the sensors relative to the rotor blades is shown in Figure 4.7. 

 

Figure 4.7: Sensor Location Relative to the Rotor Blades 

 

 

Figure 4.8: Arrangement of the Dynamic Sensors on the Compressor Casing [2] 

The dynamic pressure sensor locations distances relative to the rotor blades are summarized in 

Table 4.2. The calibration factors between the sensor voltage signal and the pressure in pascals 
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are included in Table 4.3. Figure 4.8 shows the arrangement of the dynamic sensors on the 

casing of the experimental compressor.  

Table 4.2: Pressure Sensor Location Distances Relative to the Compressor Rotor Blades [2] 

Sensor Number Axial Distance from 

leading edge of Rotor blade 

Axial distance from leading edge of 

Rotor blade (% of Axial Rotor Length) 

Sensor 1 

(leading edge) 

-5.33 -23.71 

Sensor 2 -1.79 -7.96 

Sensor 3  1.14 5.07 

Sensor 4 4.295 19.10 

Sensor 5 7.08 31.49 

Sensor 6 10.99 48.89 

Sensor 7 13.705 60.96 

Sensor 8 17.09 76.02 

Sensor 9 

(Trailing) 

19.76 87.90 

 

Table 4.3 Dynamic Pressure Sensor Calibration Factors [2] 

Sensor Number Sensor Calibration Factor (Pa/V) 

Sensor 1 968.3 

Sensor 2 879.9 

Sensor 3 891.9 

Sensor 4 603.7 

Sensor 5 599.2 

Sensor 6 599.5 

Sensor 7 596.8 

Sensor 8 600.0 

Sensor 9 917.7 
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To alter the tip leakage flow near the compressor blades, eight air injection actuators are used. 

These air injectors, capable of both macro-injection and micro-injection, are equally spaced 

around the compressor casing. The arrangement of these air injection actuators is shown in 

Figure 4.9. As seen in the picture, a tube is used to carry pressurized air into the actuator from a 

nearby pressurized storage vessel. In order to alter the angle at which the air is injected into the 

tip gap, the angle of the jets can be adjusted to angles such as 15° and 45°. 

 

Figure 4.9: Arrangement of Air Injector Actuators [2] 
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CHAPTER 5: RESULTS AND DISCUSSION 

5.1: Results 

The developed model uses the air injection pressure signal as the input and the autocorrelation 

coefficient of the dynamic pressure data across the rotor blades as the output. The controller 

input is represented by Equation 5.1 where, 𝑥(𝑡 = 0) = [0; 0], 𝑘 is the feedback gain matrix and 

𝑘𝑟 is the feed-forward gain matrix, and 𝑢𝑐 is the command input. The complete MatlabTM code 

of the developed model along with the controller is attached in the Appendix section. 

𝑢(𝑖) = −𝑘𝑥 + 𝑘𝑟 ∗ 𝑢𝑐 (5.1) 

 

Simulations using actual data and generated data were performed to investigate the performance 

of the proposed controller. The different control inputs used to check the model output are shown 

in Equations 5.2-5.5. The collected pressure sensor data at different flow coefficients is 

designated as 𝑉𝑎𝑟𝑁𝑎𝑚𝑒10. 

 

𝑢1 = 𝑢(𝑖) = −𝑘𝑥 + 𝑘𝑟 ∗ 𝑉𝑎𝑟𝑁𝑎𝑚𝑒10 

𝑢2 = 𝑢(𝑖) = −𝑘𝑥 + 𝑘𝑟 ∗ −1 

𝑢3 = 𝑢(𝑖) = −𝑘𝑥 + 𝑘𝑟 ∗ 0 

𝑢4 = 𝑢(𝑖) = −𝑘𝑥 + 𝑘𝑟 ∗ 1 

(5.2) 

(5.3) 

(5.4) 

(5.5) 
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5.1.1: Simulation Results for Flow Coefficient 0.58 

The flow coefficient of 0.58 corresponds to a stable, far away from stall inception, operating 

point (refer Figure 1.11). Figure 5.1 shows the simulation results of the output of the developed 

model vs. the output of the model along with the controller – for a flow coefficient of 0.58. The 

input for the simulation given in Figure 5.1 a) is the collected pressure sensor data for the given 

flow coefficient. The input for the simulation results depicted in Figure 5.1 b) is 𝒖𝟏 (Equation 

5.2), which corresponds to the collected data (input) from the compressor and the proposed LQG 

controller. The output is the Autocorrelation coefficient designated as the y-axis. The x-axis is 

the time in seconds. 

 

 
Figure 5.1: Plot of Uncontrolled System Output (a) vs. Controlled System Output using 

𝒖𝟏(b) for Flow Coefficient 0.58 

 

 

 
 

(a) 

(b) 
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Figure 5.2 shows the simulation results of the output of the developed model vs. the output of the 

model along with the controller – for a flow coefficient of 0.58. The input for the simulation 

given in Figure 5.2 a) is the collected pressure sensor data for the given flow coefficient. The 

input for the simulation results depicted in Figure 5.2 b) is 𝒖𝟐 (Equation 5.3), which corresponds 

to a steady input and the proposed LQG controller. The output is the Autocorrelation coefficient 

designated as the y-axis. The x-axis is the time in seconds. 

 

 
Figure 5.2: Plot of Uncontrolled System Output(a) vs. Controlled System Output using 𝒖𝟐 

(b) for ɸ=0.58 

 

 

 

 

 

 

 

 

(a) 

(b) 
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Figure 5.3 shows the simulation results of the output of the developed model vs. the output of the 

model along with the controller – for a flow coefficient of 0.58. The input for the simulation 

given in Figure 5.3 a) is the collected pressure sensor data for the given flow coefficient. The 

input for the simulation results depicted in Figure 5.3 b) is 𝒖𝟑 (Equation 5.4), which corresponds 

to a steady input and the proposed LQG controller. The output is the Autocorrelation coefficient 

designated as the y-axis. The x-axis is the time in seconds. 

 

Figure 5.3: Plot of Uncontrolled System Output(a) vs. Controlled System Output using 

𝒖𝟑(b) for ɸ=0.58 

 
 

 

 

 

 

 

 

 

(a) 

(b) 
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Figure 5.4 shows the simulation results of the output of the developed model vs. the output of the 

model along with the controller – for a flow coefficient of 0.58. The input for the simulation 

given in Figure 5.4 a) is the collected pressure sensor data for the given flow coefficient. The 

input for the simulation results depicted in Figure 5.4 b) is 𝒖𝟒 (Equation 5.5), which corresponds 

to a steady input and the proposed LQG controller. The output is the Autocorrelation coefficient 

designated as the y-axis. The x-axis is the time in seconds. 

Figure 5.4: Plot of Uncontrolled System Output(a) vs. Controlled System Output using 

𝒖𝟒(b) for ɸ=0.58 

 

 

 

 

 

 

(a) 

(b) 
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Summary observation for flow coefficient 0.58  

➢ In Figure 5.1, the command input 𝑢𝑐 is given by measurement, which is a pulsing 

function as these pulses are used to excite the system for system identification. The 

response (as given as an autocorrelation) depicted in 5.1 b) matches the form of the input 

well. The magnitude is substantially smaller.  

➢ In Figure 5.2, the command input 𝑢𝑐 is a steady input of value -1. The response (as given 

as an autocorrelation) depicted in 5.2 b) stabilizes the compressor and matches the value 

of the command input. The magnitude is substantially smaller. 

➢ In Figure 5.3, the command input 𝑢𝑐 is a steady value of 0. The response (as given as an 

autocorrelation) depicted in 5.3 b) stabilizes the compressor at the given value of the 

command input.  

➢ In Figure 5.4, the command input 𝑢𝑐 is a steady value of 1. The response (as given as an 

autocorrelation) depicted in 5.4 b) stabilizes the compressor and matches the value of the 

command input.  
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5.1.2 Simulation Results for Flow Coefficient 0.56 

 The flow coefficient of 0.56 corresponds to a stable, away from stall inception, operating point 

(refer Figure 1.11). Figure 5.5 shows the simulation results of the output of the developed model 

vs. the output of the model along with the controller – for a flow coefficient of 0.56. The input 

for the simulation given in Figure 5.5 a) is the collected pressure sensor data for the given flow 

coefficient. The input for the simulation results depicted in Figure 5.5 b) is 𝒖𝟏 (Equation 5.2), 

which corresponds to the collected data (input) from the compressor and the proposed LQG 

controller. The output is the Autocorrelation coefficient designated as the y-axis. The x-axis is 

the time in seconds. 

Figure 5.5: Plot of Uncontrolled System Output(a) vs. Controlled System Output using 

𝒖𝟏(b) for ɸ=0.56 

 

 

(a) 

(b) 
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Figure 5.6 shows the simulation results of the output of the developed model vs. the output of the 

model along with the controller – for a flow coefficient of 0.56. The input for the simulation 

given in Figure 5.6 a) is the collected pressure sensor data for the given flow coefficient. The 

input for the simulation results depicted in Figure 5.6 b) is 𝒖𝟐 (Equation 5.3), which corresponds 

to a steady input and the proposed LQG controller. The output is the Autocorrelation coefficient 

designated as the y-axis. The x-axis is the time in seconds. 

 

 

Figure 5.6: Plot of Uncontrolled System Output(a) vs. Controlled System Output using 

𝒖𝟐(b) for ɸ=0.56 

 

 

 

 

 

(a) 

(b) 
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Figure 5.7 shows the simulation results of the output of the developed model vs. the output of the 

model along with the controller – for a flow coefficient of 0.56. The input for the simulation 

given in Figure 5.7 a) is the collected pressure sensor data for the given flow coefficient. The 

input for the simulation results depicted in Figure 5.7 b) is 𝒖𝟑 (Equation 5.4), which corresponds 

to a steady input and the proposed LQG controller. The output is the Autocorrelation coefficient 

designated as the y-axis. The x-axis is the time in seconds. 

Figure 5.7: Plot of Uncontrolled System Output(a) vs. Controlled System Output using 

𝒖𝟑(b) for ɸ=0.56 

 

 

 

 

 

(a) 

(b) 
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Figure 5.8 shows the simulation results of the output of the developed model vs. the output of the 

model along with the controller – for a flow coefficient of 0.56. The input for the simulation 

given in Figure 5.8 a) is the collected pressure sensor data for the given flow coefficient. The 

input for the simulation results depicted in Figure 5.8 b) is 𝒖𝟒 (Equation 5.5), which corresponds 

to a steady input and the proposed LQG controller. The output is the Autocorrelation coefficient 

designated as the y-axis. The x-axis is the time in seconds. 

 

Figure 5.8: Plot of Uncontrolled System Output(a) vs. Controlled System Output using 

𝒖𝟒(b) for ɸ=0.56 

 

 

 

  

(a) 

(b) 
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Summary observation for flow coefficient 0.56  

➢ In Figure 5.5, the command input 𝑢𝑐 is given by measurement, which is a pulsing 

function as these pulses are used to excite the system for system identification. The 

response (as given as an autocorrelation) depicted in 5.5 b) matches the form of the input 

but in an inverse pattern. The magnitude is substantially smaller.  

➢ In Figure 5.6, the command input 𝑢𝑐 is a steady input of value -1. The response (as given 

as an autocorrelation) depicted in 5.6 b) stabilizes the compressor but does not exactly 

match the value of the command input. The magnitude is substantially smaller. 

➢ In Figure 5.7, the command input 𝑢𝑐 is a steady value of 0. The response (as given as an 

autocorrelation) depicted in 5.7 b) stabilizes the compressor and matches the value of the 

command input.  

➢ In Figure 5.8, the command input 𝑢𝑐 is a steady value of 1. The response (as given as an 

autocorrelation) depicted in 5.8 b) stabilizes the compressor, but does not exactly match 

the value of the command input. The magnitude is substantially smaller. 
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5.1.3: Simulation Results for Flow Coefficient 0.54 
 

The flow coefficient of 0.54 corresponds to a region of instability where the experimental 

compressor exhibits a sudden spike in the compressor output (refer Figure 1.11).  Figure 5.9 

shows the simulation results of the output of the developed model vs. the output of the model 

along with the controller – for a flow coefficient of 0.54. The input for the simulation given in 

Figure 5.9 a) is the collected pressure sensor data for the given flow coefficient. The input for the 

simulation results depicted in Figure 5.9 b) is 𝒖𝟏 (Equation 5.2), which corresponds to the 

collected data (input) from the compressor and the proposed LQG controller. The output is the 

Autocorrelation coefficient designated as the y-axis. The x-axis is the time in seconds. 

Figure 5.9: Plot of Uncontrolled System Output(a) vs. Controlled System Output using 

𝒖𝟏(b) for ɸ=0.54 

 

 

 

 

(a) 

(b) 
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Figure 5.10 shows the simulation results of the output of the developed model vs. the output of 

the model along with the controller – for a flow coefficient of 0.54. The input for the simulation 

given in Figure 5.10 a) is the collected pressure sensor data for the given flow coefficient. The 

input for the simulation results depicted in Figure 5.10 b) is 𝒖𝟐 (Equation 5.3), which 

corresponds to a steady input and the proposed LQG controller. The output is the 

Autocorrelation coefficient designated as the y-axis. The x-axis is the time in seconds. 

 

Figure 5.10: Plot of Uncontrolled System Output(a) vs. Controlled System Output using 

𝒖𝟐(b) for ɸ=0.54 

 

 

 

 

 

 

(a) 

(b) 
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Figure 5.11 shows the simulation results of the output of the developed model vs. the output of 

the model along with the controller – for a flow coefficient of 0.54. The input for the simulation 

given in Figure 5.11 a) is the collected pressure sensor data for the given flow coefficient. The 

input for the simulation results depicted in Figure 5.11 b) is 𝒖𝟑 (Equation 5.4), which 

corresponds to a steady input and the proposed LQG controller. The output is the 

Autocorrelation coefficient designated as the y-axis. The x-axis is the time in seconds. 

 

Figure 5.11: Plot of Uncontrolled System Output(a) vs. Controlled System Output using 

𝒖𝟑(b) for ɸ=0.54 

 

 

 

 

 

 

 

 

(a) 

(b) 
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Figure 5.12 shows the simulation results of the output of the developed model vs. the output of 

the model along with the controller – for a flow coefficient of 0.54. The input for the simulation 

given in Figure 5.12 a) is the collected pressure sensor data for the given flow coefficient. The 

input for the simulation results depicted in Figure 5.12 b) is 𝒖𝟒 (Equation 5.5), which 

corresponds to a steady input and the proposed LQG controller. The output is the 

Autocorrelation coefficient designated as the y-axis. The x-axis is the time in seconds. 

 

Figure 5.12: Plot of Uncontrolled System Output(a) vs. Controlled System Output using 

𝒖𝟒(b) for ɸ=0.54 

 

 

 

 

(a) 

(b) 
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Summary observation for flow coefficient 0.54 

➢ In Figure 5.9, the command input 𝑢𝑐 is given by measurement, which is a pulsing 

function as these pulses are used to excite the system for system identification. The 

response of the system without the controller is unstable. The controller is able to 

stabilize the compressor response (as given as an autocorrelation) depicted in 5.9 b) and 

has a very large magnitude. The response does not match the value of the command 

input.  

➢ In Figure 5.10, the command input 𝑢𝑐 is a steady input of value -1. The response (as 

given as an autocorrelation) depicted in 5.10 b) stabilizes the compressor. The response 

matches the value of the command input, but has a very large magnitude.  

➢ In Figure 5.11, the command input 𝑢𝑐 is a steady value of 0. The response (as given as an 

autocorrelation) depicted in 5.11 b) stabilizes the compressor. The response does not 

match the value of the command input and has a very large magnitude. 

➢ In Figure 5.12, the command input 𝑢𝑐 is a steady value of 1. The response (as given as an 

autocorrelation) depicted in 5.12 b) stabilizes the compressor. It matches the value of the 

command input inversely with a very large magnitude.  
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5.1.4: Simulation Results for Flow Coefficient 0.52 

The flow coefficient of 0.52 corresponds to a stable, approaching stall inception, operating point 

(refer Figure 1.11). Figure 5.13 shows the simulation results of the output of the developed 

model vs. the output of the model along with the controller – for a flow coefficient of 0.52. The 

input for the simulation given in Figure 5.13 a) is the collected pressure sensor data for the given 

flow coefficient. The input for the simulation results depicted in Figure 5.13 b) is 𝒖𝟏 (Equation 

5.2), which corresponds to the collected data (input) from the compressor and the proposed LQG 

controller. The output is the Autocorrelation coefficient designated as the y-axis. The x-axis is 

the time in seconds. 

Figure 5.13: Plot of Uncontrolled System Output(a) vs. Controlled System Output using 

𝒖𝟏(b) for ɸ=0.52 

 

 

(a) 

(b) 



70 
 

Figure 5.14 shows the simulation results of the output of the developed model vs. the output of 

the model along with the controller – for a flow coefficient of 0.52. The input for the simulation 

given in Figure 5.14 a) is the collected pressure sensor data for the given flow coefficient. The 

input for the simulation results depicted in Figure 5.14 b) is 𝒖𝟐 (Equation 5.3), which 

corresponds to a steady input and the proposed LQG controller. The output is the 

Autocorrelation coefficient designated as the y-axis. The x-axis is the time in seconds. 

Figure 5.14: Plot of Uncontrolled System Output(a) vs. Controlled System Output using 

𝒖𝟐(b) for ɸ=0.52 

 

 

 

 

 

(a) 

(b) 
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Figure 5.15 shows the simulation results of the output of the developed model vs. the output of 

the model along with the controller – for a flow coefficient of 0.52. The input for the simulation 

given in Figure 5.15 a) is the collected pressure sensor data for the given flow coefficient. The 

input for the simulation results depicted in Figure 5.15 b) is 𝒖𝟑 (Equation 5.4), which 

corresponds to a steady input and the proposed LQG controller. The output is the 

Autocorrelation coefficient designated as the y-axis. The x-axis is the time in seconds. 

Figure 5.15: Plot of Uncontrolled System Output(a) vs. Controlled System Output using 

𝒖𝟑(b) for ɸ=0.52 

 

 

 

 

 

 

(a) 

(b) 
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Figure 5.16 shows the simulation results of the output of the developed model vs. the output of 

the model along with the controller – for a flow coefficient of 0.52. The input for the simulation 

given in Figure 5.16 a) is the collected pressure sensor data for the given flow coefficient. The 

input for the simulation results depicted in Figure 5.16 b) is 𝒖𝟒 (Equation 5.5), which 

corresponds to a steady input and the proposed LQG controller. The output is the 

Autocorrelation coefficient designated as the y-axis. The x-axis is the time in seconds. 

 

Figure 5.16: Plot of Uncontrolled System Output(a) vs. Controlled System Output using 

𝒖𝟒(b) for ɸ=0.52 

 

 

 

 

(a) 

(b) 
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Summary observation for flow coefficient 0.52 

➢ In Figure 5.13, the command input 𝑢𝑐 is given by measurement, which is a pulsing 

function as these pulses are used to excite the system for system identification. The 

response (as given as an autocorrelation) depicted in 5.13 b) matches the form of the 

input very well. The magnitude is substantially smaller.  

➢ In Figure 5.14, the command input 𝑢𝑐 is a steady input of value -1. The response (as 

given as an autocorrelation) depicted in 5.14 b) stabilizes the compressor and matches the 

value of the command input. The magnitude is substantially smaller. 

➢ In Figure 5.15, the command input 𝑢𝑐 is a steady value of 0. The response (as given as an 

autocorrelation) depicted in 5.15 b) stabilizes the compressor and matches the value of 

the command input. 

➢ In Figure 5.16, the command input 𝑢𝑐 is a steady value of 1. The response (as given as an 

autocorrelation) depicted in 5.16 b) stabilizes the compressor and matches the value of 

the command input. The magnitude is substantially smaller. 
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5.1.5 Simulation Results for Flow Coefficient 0.51 

The flow coefficient of 0.51 corresponds to a stable, point of stall inception, operating point 

(refer Figure 1.11). Figure 5.17 shows the simulation results of the output of the developed 

model vs. the output of the model along with the controller – for a flow coefficient of 0.51. The 

input for the simulation given in Figure 5.17 a) is the collected pressure sensor data for the given 

flow coefficient. The input for the simulation results depicted in Figure 5.17 b) is 𝒖𝟏 (Equation 

5.2), which corresponds to the collected data (input) from the compressor and the proposed LQG 

controller. The output is the Autocorrelation coefficient designated as the y-axis. The x-axis is 

the time in seconds. 

 

Figure 5.17: Plot of Uncontrolled System Output(a) vs. Controlled System Output using 

𝒖𝟏(b) for ɸ=0.51 

 

 

 

(a) 

(b) 
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Figure 5.18 shows the simulation results of the output of the developed model vs. the output of 

the model along with the controller – for a flow coefficient of 0.51. The input for the simulation 

given in Figure 5.18 a) is the collected pressure sensor data for the given flow coefficient. The 

input for the simulation results depicted in Figure 5.18 b) is 𝒖𝟐 (Equation 5.3), which 

corresponds to a steady input and the proposed LQG controller. The output is the 

Autocorrelation coefficient designated as the y-axis. The x-axis is the time in seconds. 

 

Figure 5.18: Plot of Uncontrolled System Output(a) vs. Controlled System Output using 

𝒖𝟐(b) for ɸ=0.51 

 

 

 

 

 

 

(a) 

(b) 
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Figure 5.19 shows the simulation results of the output of the developed model vs. the output of 

the model along with the controller – for a flow coefficient of 0.51. The input for the simulation 

given in Figure 5.19 a) is the collected pressure sensor data for the given flow coefficient. The 

input for the simulation results depicted in Figure 5.19 b) is 𝒖𝟑 (Equation 5.4), which 

corresponds to a steady input and the proposed LQG controller. The output is the 

Autocorrelation coefficient designated as the y-axis. The x-axis is the time in seconds. 

 

Figure 5.19: Plot of Uncontrolled System Output(a) vs. Controlled System Output using 

𝒖𝟑(b) for ɸ=0.51 

 

 

 

 

 

 

(a) 

(b) 
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Figure 5.20 shows the simulation results of the output of the developed model vs. the output of 

the model along with the controller – for a flow coefficient of 0.51. The input for the simulation 

given in Figure 5.20 a) is the collected pressure sensor data for the given flow coefficient. The 

input for the simulation results depicted in Figure 5.20 b) is 𝒖𝟒 (Equation 5.5), which 

corresponds to a steady input and the proposed LQG controller. The output is the 

Autocorrelation coefficient designated as the y-axis. The x-axis is the time in seconds. 

 

Figure 5.20: Plot of Uncontrolled System Output(a) vs. Controlled System Output using 

𝒖𝟒(b) for ɸ=0.51 

 

 

 

 

 

 

  

(a) 

(b) 
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Summary observation for flow coefficient 0.51 

➢ In Figure 5.17, the command input 𝑢𝑐 is given by measurement, which is a pulsing 

function as these pulses are used to excite the system for system identification. The 

response (as given as an autocorrelation) depicted in 5.17 b) matches the form of the 

input well. The magnitude is substantially smaller.  

➢ In Figure 5.18, the command input 𝑢𝑐 is a steady input of value -1. The response (as 

given as an autocorrelation) depicted in 5.18 b) stabilizes the compressor and roughly 

matches the value of the command input. The magnitude is substantially smaller. 

➢ In Figure 5.19, the command input 𝑢𝑐 is a steady value of 0. The response (as given as an 

autocorrelation) depicted in 5.19 b) stabilizes the compressor and matches value of the 

command input.  

➢ In Figure 5.20, the command input 𝑢𝑐 is a steady value of 1. The response (as given as an 

autocorrelation) depicted in 5.20 b) stabilizes the compressor and roughly matches the 

value of the command input. The magnitude is substantially smaller. 
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5.2: Discussion 
 

The system identification results of the fast dynamics showed an interesting aspect of the 

compressor behavior. The identified transfer function and state space models which is a 

combination of the developed models at each flow coefficient agreed with the observations made 

at the actual system. The primary objective of the proposed LQG controller is to stabilize the 

compressor just at/beyond instability. General observation from the simulation results presented 

in this chapter is that the controller matches the command input in form and sign, but lacks the 

accuracy in the gain value. The change in gain of the responses for different command inputs is 

summarized in the Table 5.1. 

Table 5.1 Gain Change of the Responses for Different Command Inputs 

Flow Coefficient Value of Gain 

Change with Input 𝑢1 

Value of Gain 

Change with Input 𝑢2 

Value of Gain 

Change with Input 𝑢3 

0.58 10−15 10−5 10−15 

0.56 10−14 10−5 10−14 

0.54 10179 10179 10179 

0.52 10−14 10−5 10−14 

0.51 10−10 10−10 10−10 

 

From Table 5.1, we can summarize that the proposed controller stabilizes the compressor, but 

lacks the accuracy in the gain value. To overcome this, a gain element can be added to the 

system to achieve the desired response. The gain element could also be computed by fitting a 

polynomial or spline curve through the data extracted and listed in Table 5.1.  
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CHAPTER 6: CONCLUSIONS AND FUTURE WORK 

6.1: Conclusion 

The fast dynamics analysis of the experimental one-stage axial compressor showed promising 

results. The system identification uses air injection pressure signal as the input and 

autocorrelation coefficient of the dynamic pressure data across the rotor blades as the output. 

This type of actuation has shown to be effective in extending the operating point far beyond the 

stall point. However, the energy consumed by such actuation is substantial and negates the 

efficiency improvement. This research resulted in a proposed LQG controller to address the 

control issues by providing a framework to design such controllers using air injection. The 

identified models for each flow coefficient are combined into an overall model—This model is a 

function of the flow coefficient. The pole behavior of the identified individual transfer function 

models as well as the state-space models appeared to have roughly capture the compressor 

natural frequency and exhibited observed behavior as the stall point is approached. For example, 

the sensor pressure at midspan of a blade passage at a flow coefficient of 0.54, indicates 

instability causing a spike in the compressor output. This observation is captured by the proposed 

overall model. In addition, the behavior far away and close to the stall point of the model agree 

with observations made at the actual system.  

A Linear quadratic Gaussian controller is proposed to be designed in order to control the 

instability and to drive the compressor at or just beyond instability. Simulation results show that 

the controller is able to stabilize the compressor at a flow coefficient of 0.54—the region of 

instability. Testing of the developed model and proposed control strategy includes simulations 

for steady input, pulsed input and investigation of accuracy on the output with regard to 
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command following and gain change. Simulations results presented in Chapter 5 showed that the 

proposed controller is able to stabilize the compressor but lacks the accuracy in the gain value. A 

gain element can be added to the proposed system to achieve the desired response.  
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6.2 Future Work 

Future work for this project may include driving the compressor at different flow coefficients 

and investigate the compressor behavior for stability utilizing the developed controller. 

Additionally, an implementation scheme to apply the controller to the real system may be 

developed. The new results of the compressor fast dynamics could be used for system 

identification to further validate and/or modify the model. In addition, using the proposed control 

scheme, the LQG controller can be used to minimize the energy loss due to control action, while 

allowing the system to operate beyond the stall point. 

An alternate method of designing a controller could also be developed to compare the results of 

this research. Models developed from an alternate system identification method may be 

developed to compare the system identification of this research. Overall, the modelling and 

control of the fast dynamics of an axial compressor is an emerging area of study with many new 

opportunities of dynamic model development and applying different control strategies.   
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Appendix 

 
1 Four Poles and Two Zeroes Transfer Function Model 
 
% zero1 (real) is denoted as zr1 

% zero1 (imaginary) is denoted as zimg1 

% zero2 (real) is denoted as zr2 

% zero2 (imaginary) is denoted as zimg2 

% pole1 (real) is denoted as pr1 

% pole1 (imaginary) is denoted as pimg1 

% pole2 (real) is denoted as pr2 

% pole2 (imaginary) is denoted as pimg2 

% pole3 (real) is denoted by pr3 

% pole3 (imaginary) is denoted by pimg3 

% pole4 (real) is denoted by pr4 

% pole4 (imaginary) is denoted by pimg4 

  

zr1 = (-2899422.619016*(x/100).^4+6307669.345169*(x/100).^3-

5141511.130896*(x/100).^2+1861068.807241*(x/100)-252404.680537); 

zimg1 = (9293291.666531*(x/100).^4-

20568447.916370*(x/100).^3+17043242.208091*(x/100).^2-

6266529.963246*(x/100)+862724.296428); 

 

zr2 = (-2899422.619016*(x/100).^4+6307669.345169*(x/100).^3-

5141511.130896*(x/100).^2+1861068.807241*(x/100)-252404.680537); 

zimg2 = (-9293291.666531*(x/100).^4+20568447.916370*(x/100).^3-

17043242.208091*(x/100).^2+6266529.963246*(x/100)-

862724.296428); 

 

pr1 = (103762720.236748*(x/100).^4-

227724486.604206*(x/100).^3+187198784.759506*(x/100).^2-

68313656.279487*(x/100)+9337614.784242); 

 

pimg1 = (-11826369.047535*(x/100).^4+24852749.404579*(x/100).^3-

19598746.702232*(x/100).^2+6876690.085184*(x/100)-

906142.350393); 

 

pr2 = (159857482.140667*(x/100).^4-

351132962.792845*(x/100).^3+288954682.853244*(x/100).^2-

105583016.088467*(x/100)+14453672.473768); 

 

pimg2 = (11826369.047535*(x/100).^4-

24852749.404579*(x/100).^3+19598746.702232*(x/100).^2-

6876690.085184*(x/100)+906142.350393); 
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pr3 = (-138773.809522*(x/100).^4+302023.214282*(x/100).^3+-

246451.690473*(x/100).^2+89365.090713*(x/100)-12149.604720); 

 

pr4 = (-138773.809522*(x/100).^4+302023.214282*(x/100).^3+-

246451.690473*(x/100).^2+89365.090713*(x/100)-12149.604720); 

pimg3 = (9807964.285584*(x/100).^4-

21615063.094954*(x/100).^3+17836294.089053*(x/100).^2-

6531685.792177*(x/100)+895696.232429); 

 

pimg4 = (-9807964.285584*(x/100).^4+21615063.094954*(x/100).^3-

17836294.089053*(x/100).^2+6531685.792177*(x/100)-

895696.232429); 

 

b0=1; 

 

b1=((-2*zr1)-1i*(zimg2+zimg1)); 

 

b2=((zr1.^2)-(zimg1*zimg2)+1i*zr1*(zimg1+zimg2)); 

 

a1=((-pr4-pr2-pr1)-1i*(pimg4+pimg3+pimg2+pimg1)); 

 

a2=((-pr3+(pr3*pr4)-(pimg3*pimg4)+(pr4*pr2)+(pr2*pr3)-

(pimg2*pimg4)-(pimg3*pimg2)+(pr1*pr4)+(pr1*pr3)+(pr1*pr2)-

(pimg1*pimg4)-(pimg1*pimg3)-

(pimg1*pimg2))+1i*((pr3*pimg4)+(pimg3*pr4)+(pr2*pimg4)+(pr2*pimg

3)+(pr4*pimg2)+(pr3*pimg2)+(pr1*pimg4)+(pr1*pimg3)+(pr1*pimg2)+(

pimg1*pr4)+(pr3*pimg1)+(pr2*pimg1))); 

 

a3=(((pimg3*pimg4*pr2)-

(pr2*pr3*pr4)+(pr3*pimg4*pimg2)+(pimg3*pimg2*pr4)-

(pr1*pr3*pr4)+(pr1*pimg3*pimg4)-(pr1*pr2*pr4)-

(pr3*pr1*pr2)+(pr1*pimg2*pimg4)+(pr1*pimg2*pimg3)+(pimg1*pr3*pim

g4)+(pimg3*pr4*pimg1)+(pr2*pimg1*pimg4)+(pr2*pimg1*pimg3)+(pimg1

*pimg2*pr4)+(pimg1*pimg2*pr3))+1i*((pimg3*pimg4*pimg2)-

(pr2*pr3*pimg4)-(pr2*pimg3*pr4)-(pr3*pimg2*pr4)-(pr1*pr3*pimg4)-

(pr1*pimg3*pr4)-(pr1*pr2*pimg4)-(pr1*pr2*pimg3)-(pr1*pimg2*pr4)-

(pr1*pimg2*pr3)-(pimg1*pr3*pr4)+(pimg3*pimg4*pimg1)-

(pr2*pimg1*pr4)-

(pr2*pimg1*pr3)+(pimg1*pimg2*pimg4)+(pimg1*pimg2*pimg3))); 

 

a4=(((pr3*pr4*pr1*pr2)-(pr1*pr2*pimg3*pimg4)-

(pr1*pr3*pimg2*pimg4)-(pr1*pimg2*pimg3*pr4)-

(pr2*pimg1*pr3*pimg4)-(pr2*pimg1*pimg3*pr4)-

(pimg1*pimg2*pr3*pr4)+(pimg1*pimg2*pimg3*pimg4))+1i*((pr1*pr2*pr

3*pimg4)+(pr1*pr2*pimg3*pr4)+(pr1*pimg2*pr3*pr4)-

(pimg3*pimg4*pr1*pimg2)+(pr2*pimg1*pr3*pr4)-
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(pimg3*pimg4*pr2*pimg1)-(pimg1*pimg2*pr3*pimg4)-

(pimg1*pimg2*pimg3*pr4))); 

 

num = [b0 b1 b2]; 

den = [1 a1 a2 a3 a4]; 

sys = tf(num,den) 
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2. Four Poles and two Zeroes State-Space Model  

% zero1 (real) is denoted as zr1 

% zero1 (imaginary) is denoted as zimg1 

% zero2 (real) is denoted as zr2 

% zero2 (imaginary) is denoted as zimg2 

% pole1 (real) is denoted as pr1 

% pole1 (imaginary) is denoted as pimg1 

% pole2 (real) is denoted as pr2 

% pole2 (imaginary) is denoted as pimg2 

zr1 = (-2899422.619016*(x/100).^4+6307669.345169*(x/100).^3-

5141511.130896*(x/100).^2+1861068.807241*(x/100)-252404.680537); 

 

zimg1 = (9293291.666531*(x/100).^4-

20568447.916370*(x/100).^3+17043242.208091*(x/100).^2-

6266529.963246*(x/100)+862724.296428); 

 

zr2 = (-2899422.619016*(x/100).^4+6307669.345169*(x/100).^3-

5141511.130896*(x/100).^2+1861068.807241*(x/100)-252404.680537); 

 

zimg2 = (-9293291.666531*(x/100).^4+20568447.916370*(x/100).^3-

17043242.208091*(x/100).^2+6266529.963246*(x/100)-

862724.296428); 

 

pr1 = (103762720.236748*(x/100).^4-

227724486.604206*(x/100).^3+187198784.759506*(x/100).^2-

68313656.279487*(x/100)+9337614.784242); 

 

pimg1 = (-11826369.047535*(x/100).^4+24852749.404579*(x/100).^3-

19598746.702232*(x/100).^2+6876690.085184*(x/100)-

906142.350393); 

 

pr2 = (159857482.140667*(x/100).^4-

351132962.792845*(x/100).^3+288954682.853244*(x/100).^2-

105583016.088467*(x/100)+14453672.473768); 

 

pimg2 = (11826369.047535*(x/100).^4-

24852749.404579*(x/100).^3+19598746.702232*(x/100).^2-

6876690.085184*(x/100)+906142.350393); 

 

pr3 = (-138773.809522*(x/100).^4+302023.214282*(x/100).^3+-

246451.690473*(x/100).^2+89365.090713*(x/100)-12149.604720); 

pr4 = (-138773.809522*(x/100).^4+302023.214282*(x/100).^3+-

246451.690473*(x/100).^2+89365.090713*(x/100)-12149.604720); 

 



92 
 

pimg3 = (9807964.285584*(x/100).^4-

21615063.094954*(x/100).^3+17836294.089053*(x/100).^2-

6531685.792177*(x/100)+895696.232429); 

 

pimg4 = (-9807964.285584*(x/100).^4+21615063.094954*(x/100).^3-

17836294.089053*(x/100).^2+6531685.792177*(x/100)-

895696.232429); 

 

b0=1; 

 

b1=((-2*zr1)-1i*(zimg2+zimg1)); 

 

b2=((zr1.^2)-(zimg1*zimg2)+1i*zr1*(zimg1+zimg2)); 

 

a1=((-pr2-pr1)-1i*(pimg1+pimg2)); 

 

a2=((pr1*pr2)-(pimg1*pimg2)+1i*((pr1*pimg2)+(pimg1*pr2))); 

 

a3=(((pimg3*pimg4*pr2)-

(pr2*pr3*pr4)+(pr3*pimg4*pimg2)+(pimg3*pimg2*pr4)-

(pr1*pr3*pr4)+(pr1*pimg3*pimg4)-(pr1*pr2*pr4)-

(pr3*pr1*pr2)+(pr1*pimg2*pimg4)+(pr1*pimg2*pimg3)+(pimg1*pr3*pim

g4)+(pimg3*pr4*pimg1)+(pr2*pimg1*pimg4)+(pr2*pimg1*pimg3)+(pimg1

*pimg2*pr4)+(pimg1*pimg2*pr3))+1i*((pimg3*pimg4*pimg2)-

(pr2*pr3*pimg4)-(pr2*pimg3*pr4)-(pr3*pimg2*pr4)-(pr1*pr3*pimg4)-

(pr1*pimg3*pr4)-(pr1*pr2*pimg4)-(pr1*pr2*pimg3)-(pr1*pimg2*pr4)-

(pr1*pimg2*pr3)-(pimg1*pr3*pr4)+(pimg3*pimg4*pimg1)-

(pr2*pimg1*pr4)-

(pr2*pimg1*pr3)+(pimg1*pimg2*pimg4)+(pimg1*pimg2*pimg3))); 

 

a4=(((pr3*pr4*pr1*pr2)-(pr1*pr2*pimg3*pimg4)-

(pr1*pr3*pimg2*pimg4)-(pr1*pimg2*pimg3*pr4)-

(pr2*pimg1*pr3*pimg4)-(pr2*pimg1*pimg3*pr4)-

(pimg1*pimg2*pr3*pr4)+(pimg1*pimg2*pimg3*pimg4))+1i*((pr1*pr2*pr

3*pimg4)+(pr1*pr2*pimg3*pr4)+(pr1*pimg2*pr3*pr4)-

(pimg3*pimg4*pr1*pimg2)+(pr2*pimg1*pr3*pr4)-

(pimg3*pimg4*pr2*pimg1)-(pimg1*pimg2*pr3*pimg4)-

(pimg1*pimg2*pimg3*pr4))); 

 

A=[0 1 0 0;0 0 1 0;0 0 0 1;-a4 -a3 -a2 -a1]; 

B=[0;0;0;1]; 

C=[b2 b1 1 0]; 

D=0; 

sys=ss(A,B,C,D) 
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3. Two Poles and Two Zeroes Transfer Function Model 

 

% zero1 (real) is denoted as zr1 

% zero1 (imaginary) is denoted as zimg1 

% zero2 (real) is denoted as zr2 

% zero2 (imaginary) is denoted as zimg2 

% pole1 (real) is denoted as pr1 

% pole1 (imaginary) is denoted as pimg1 

% pole2 (real) is denoted as pr2 

% pole2 (imaginary) is denoted as pimg2 

zr1 = (-2899422.619016*(x/100).^4+6307669.345169*(x/100).^3-

5141511.130896*(x/100).^2+1861068.807241*(x/100)-252404.680537); 

 

zimg1 = (9293291.666531*(x/100).^4-

20568447.916370*(x/100).^3+17043242.208091*(x/100).^2-

6266529.963246*(x/100)+862724.296428); 

 

zr2 = (-2899422.619016*(x/100).^4+6307669.345169*(x/100).^3-

5141511.130896*(x/100).^2+1861068.807241*(x/100)-252404.680537); 

 

zimg2 = (-9293291.666531*(x/100).^4+20568447.916370*(x/100).^3-

17043242.208091*(x/100).^2+6266529.963246*(x/100)-

862724.296428); 

 

pr1 = (103762720.236748*(x/100).^4-

227724486.604206*(x/100).^3+187198784.759506*(x/100).^2-

68313656.279487*(x/100)+9337614.784242); 

 

pimg1 = (-11826369.047535*(x/100).^4+24852749.404579*(x/100).^3-

19598746.702232*(x/100).^2+6876690.085184*(x/100)-

906142.350393); 

 

pr2 = (159857482.140667*(x/100).^4-

351132962.792845*(x/100).^3+288954682.853244*(x/100).^2-

105583016.088467*(x/100)+14453672.473768); 

 

pimg2 = (11826369.047535*(x/100).^4-

24852749.404579*(x/100).^3+19598746.702232*(x/100).^2-

6876690.085184*(x/100)+906142.350393); 

 

b0=1; 

b1=((-2*zr1)-1i*(zimg2+zimg1)); 

b2=((zr1.^2)-(zimg1*zimg2)+1i*zr1*(zimg1+zimg2)); 

a1=((-pr2-pr1)-1i*(pimg1+pimg2)); 

a2=((pr1*pr2)-(pimg1*pimg2)+1i*((pr1*pimg2)+(pimg1*pr2))); 

num = [b0 b1 b2]; 
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den = [1 a1 a2]; 

sys = tf(num,den) 
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4. Two Poles and Two Zeroes State Space Model 

% zero1 (real) is denoted as zr1 

% zero1 (imaginary) is denoted as zimg1 

% zero2 (real) is denoted as zr2 

% zero2 (imaginary) is denoted as zimg2 

% pole1 (real) is denoted as pr1 

% pole1 (imaginary) is denoted as pimg1 

% pole2 (real) is denoted as pr2 

% pole2 (imaginary) is denoted as pimg2 

 

zr1 = (-2899422.619016*(x/100).^4+6307669.345169*(x/100).^3-

5141511.130896*(x/100).^2+1861068.807241*(x/100)-252404.680537); 

 

zimg1 = (9293291.666531*(x/100).^4-

20568447.916370*(x/100).^3+17043242.208091*(x/100).^2-

6266529.963246*(x/100)+862724.296428); 

 

zr2 = (-2899422.619016*(x/100).^4+6307669.345169*(x/100).^3-

5141511.130896*(x/100).^2+1861068.807241*(x/100)-252404.680537); 

 

zimg2 = (-9293291.666531*(x/100).^4+20568447.916370*(x/100).^3-

17043242.208091*(x/100).^2+6266529.963246*(x/100)-

862724.296428); 

 

pr1 = (103762720.236748*(x/100).^4-

227724486.604206*(x/100).^3+187198784.759506*(x/100).^2-

68313656.279487*(x/100)+9337614.784242); 

 

pimg1 = (-11826369.047535*(x/100).^4+24852749.404579*(x/100).^3-

19598746.702232*(x/100).^2+6876690.085184*(x/100)-

906142.350393); 

 

pr2 = (159857482.140667*(x/100).^4-

351132962.792845*(x/100).^3+288954682.853244*(x/100).^2-

105583016.088467*(x/100)+14453672.473768); 

 

pimg2 = (11826369.047535*(x/100).^4-

24852749.404579*(x/100).^3+19598746.702232*(x/100).^2-

6876690.085184*(x/100)+906142.350393); 

 

b0=1; 

 

b1=((-2*zr1)-1i*(zimg2+zimg1)); 

b2=((zr1.^2)-(zimg1*zimg2)+1i*zr1*(zimg1+zimg2)); 

 

a1=((-pr2-pr1)-1i*(pimg1+pimg2)); 
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a2=((pr1*pr2)-(pimg1*pimg2)+1i*((pr1*pimg2)+(pimg1*pr2))); 

 

A=[0 1;;-a2 -a1]; 

 

B=[0;1]; 

 

C1=(b2-(a2*b0)); 

 

C2=(b1-(a1*b0)); 

 

C=[C1 C2]; 

 

D=1; 

 

sys=ss(A,B,C,D) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



97 
 

5. Final Matlab Code with the Controller 

 

% zero1 (real) is denoted as zr1 

% zero1 (imaginary) is denoted as zimg1 

% zero2 (real) is denoted as zr2 

% zero2 (imaginary) is denoted as zimg2 

% pole1 (real) is denoted as pr1 

% pole1 (imaginary) is denoted as pimg1 

% pole2 (real) is denoted as pr2 

% pole2 (imaginary) is denoted as pimg2 

% pole3 (real) is denoted as pr3 

% pole3 (imaginary) is denoted as pimg3 

% pole4 (real) is denoted as pr4 

% pole4 (imaginary) is denoted as pimg4 

% The equations are obtained from the “trendline function” in        

excel the plots and equation of which are explained in detail in 

Chapter 2 

% First step before running this code is to specify the flow 

coefficient*100 and name it “x” (example x=58,56,54,52,51) 

 

zr1 = (-2899422.619016*(x/100).^4+6307669.345169*(x/100).^3-

5141511.130896*(x/100).^2+1861068.807241*(x/100)-252404.680537); 

zimg1 = (9293291.666531*(x/100).^4-

20568447.916370*(x/100).^3+17043242.208091*(x/100).^2-

6266529.963246*(x/100)+862724.296428); 

 

zr2 = (-2899422.619016*(x/100).^4+6307669.345169*(x/100).^3-

5141511.130896*(x/100).^2+1861068.807241*(x/100)-252404.680537); 

zimg2 = (-9293291.666531*(x/100).^4+20568447.916370*(x/100).^3-

17043242.208091*(x/100).^2+6266529.963246*(x/100)-

862724.296428); 

 

pr1 = (103762720.236748*(x/100).^4-

227724486.604206*(x/100).^3+187198784.759506*(x/100).^2-

68313656.279487*(x/100)+9337614.784242); 

 

pimg1 = (-11826369.047535*(x/100).^4+24852749.404579*(x/100).^3-

19598746.702232*(x/100).^2+6876690.085184*(x/100)-

906142.350393); 

 

pr2 = (159857482.140667*(x/100).^4-

351132962.792845*(x/100).^3+288954682.853244*(x/100).^2-

105583016.088467*(x/100)+14453672.473768); 
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pimg2 = (11826369.047535*(x/100).^4-

24852749.404579*(x/100).^3+19598746.702232*(x/100).^2-

6876690.085184*(x/100)+906142.350393); 

 

pr3 = (-138773.809522*(x/100).^4+302023.214282*(x/100).^3+-

246451.690473*(x/100).^2+89365.090713*(x/100)-12149.604720); 

pr4 = (-138773.809522*(x/100).^4+302023.214282*(x/100).^3+-

246451.690473*(x/100).^2+89365.090713*(x/100)-12149.604720); 

 

pimg3 = (9807964.285584*(x/100).^4-

21615063.094954*(x/100).^3+17836294.089053*(x/100).^2-

6531685.792177*(x/100)+895696.232429); 

 

pimg4 = (-9807964.285584*(x/100).^4+21615063.094954*(x/100).^3-

17836294.089053*(x/100).^2+6531685.792177*(x/100)-

895696.232429); 

 

b0=1; 

 

b1=((-2*zr1)-1i*(zimg2+zimg1)); 

 

b2=((zr1.^2)-(zimg1*zimg2)+1i*zr1*(zimg1+zimg2)); 

 

a1=((-pr2-pr1)-1i*(pimg1+pimg2)); 

 

a2=((pr1*pr2)-(pimg1*pimg2)+1i*((pr1*pimg2)+(pimg1*pr2))); 

 

a3=(((pimg3*pimg4*pr2)-

(pr2*pr3*pr4)+(pr3*pimg4*pimg2)+(pimg3*pimg2*pr4)-

(pr1*pr3*pr4)+(pr1*pimg3*pimg4)-(pr1*pr2*pr4)-

(pr3*pr1*pr2)+(pr1*pimg2*pimg4)+(pr1*pimg2*pimg3)+(pimg1*pr3*pim

g4)+(pimg3*pr4*pimg1)+(pr2*pimg1*pimg4)+(pr2*pimg1*pimg3)+(pimg1

*pimg2*pr4)+(pimg1*pimg2*pr3))+1i*((pimg3*pimg4*pimg2)-

(pr2*pr3*pimg4)-(pr2*pimg3*pr4)-(pr3*pimg2*pr4)-(pr1*pr3*pimg4)-

(pr1*pimg3*pr4)-(pr1*pr2*pimg4)-(pr1*pr2*pimg3)-(pr1*pimg2*pr4)-

(pr1*pimg2*pr3)-(pimg1*pr3*pr4)+(pimg3*pimg4*pimg1)-

(pr2*pimg1*pr4)-

(pr2*pimg1*pr3)+(pimg1*pimg2*pimg4)+(pimg1*pimg2*pimg3))); 

 

a4=(((pr3*pr4*pr1*pr2)-(pr1*pr2*pimg3*pimg4)-

(pr1*pr3*pimg2*pimg4)-(pr1*pimg2*pimg3*pr4)-

(pr2*pimg1*pr3*pimg4)-(pr2*pimg1*pimg3*pr4)-

(pimg1*pimg2*pr3*pr4)+(pimg1*pimg2*pimg3*pimg4))+1i*((pr1*pr2*pr

3*pimg4)+(pr1*pr2*pimg3*pr4)+(pr1*pimg2*pr3*pr4)-

(pimg3*pimg4*pr1*pimg2)+(pr2*pimg1*pr3*pr4)-

(pimg3*pimg4*pr2*pimg1)-(pimg1*pimg2*pr3*pimg4)-

(pimg1*pimg2*pimg3*pr4))); 
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A=[0 1 0 0;0 0 1 0;0 0 0 1;-a4 -a3 -a2 -a1]; 

B=[0;0;0;1]; 

C=[b2 b1 1 0]; 

D=0; 

sys=ss(A,B,C,D); 

% p is the transformation matrix (explained in Chapter 3) 

% Ignore the complex part of “ad” and “Bd” and name them “Adn” 

and “Bdn” 

% “VarName10” is taken from data folder “20140708” for different 

flow coefficients 

 

p=pinv([C;C*A]); 

At=pinv(p)*A*p; 

Bt=pinv(p)*B; 

 Ct=C*p; 

 Ts=1/20000; 

 [Ad,Bd]=c2d(At,Bt,Ts); 

 Adn=real(Ad); 

 Bdn=real(Bd); 

   

 

%loop 

%VarName10 is the data set from folder “20140708” 

 x2=[0;0]; 

for i=1:1320000 

    x2=Adn*x2+Bdn*VarName10(i); 

    y2(i)=Ct*x2+D*VarName10(i); 

end 

 

%Controller 

% kr is the feed forward gain matrix 

% k is the feedback gain matrix 

Q=100; 

R=5; 

Qw=eye(1); 

Rv=eye(1); 

 

[k,s]=dlqry(Adn,Bdn,Ct,D,Q,R); 

 

l=dlqe(Adn,Bdn,Ct,Qw,Rv); 

 

kr=inv(transpose(Bdn)*s*Bdn+R)*transpose(Bdn)*inv(eye(2)-

(transpose(Adn-Bdn*k)))*transpose(Ct)*Q; 

 

[ac,bc,cc,dc]=dreg(Adn,Bdn,Ct,D,k,l); 

[as1,bs1,cs1,ds1]=feedback(Adn,Bdn,Ct,D,ac,bc,cc,dc); 
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% controller loop 

 

x3=[0;0]; 

for i=1:1320000 

    u(i)=-k*x3+kr*VarName10(i); 

    x3=ac*x3+bc*u(i); 

    y3(i)=cc*x3+dc*u(i); 

end 

subplot(2,1,1) 

plot(y2) 

xlabel('Time[sec]') 

ylabel('Autocorrelation Coefficient') 

subplot(2,1,2) 

plot(y3) 

xlabel('Time[sec]') 

ylabel('Autocorrelation Coefficient') 
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Experiment Description 
 

The equations for poles and zeroes used for the modelling and control purposes are obtained by 

using the “trendline” function of excel. The steps for the same are explained in Chapter 2 of this 

thesis. The excel plots along with the polynomial equations are also explained in Chapter 2. The 

poles and zeroes are used from the transfer function model data for sensor number 5 (from 

Dane’s thesis), the same are presented in Table 2.2.  

The data used for input (named as “VarName10” in the code) is taken from the data folder 

“20140708”. The explanation of the data is in the “Experiment Descriptions” section in the same 

folder.  

 

 

 

 


