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Abstract 

Spectroscopic data paired with chemometric modeling methods has become a 

powerful, cost effective, and rapid analytical tool over the last decade. However, large 

global spectral libraries spanning numerous sample matrix differences and instrument 

conditions are often nonlinear in relation to the measured chemical prediction property of 

interest. These differences result in lower model prediction accuracies. One solution to 

overcoming nonlinear relationships is to use local modeling techniques. In local 

modeling, a unique subset of calibration samples are selected from a global library for 

each specific target sample. Many local modeling algorithms rely on one or two spectral 

similarity measures for selecting calibration samples while overlooking similarities based 

on chemical properties. Current local modeling methods also require predetermined 

selections of specific variables including similarity merits, number of samples, and 

regression model tuning parameters. This work explores techniques for selecting local 

calibration samples that are both spectrally and chemically similar to the target sample 

while reducing the number of predetermined variables required. The process of local 

adaptive fusion regression (LAFR) employs many unique aspects, including data fusion 

and cross modeling, to select matrix matched calibration samples. Aspects of the local 

adaptive fusion regression process are first used to demonstrate why data fusion and cross 

modeling techniques are successful for identifying matrix matched calibration sets. The 

automated LAFR process, using these same techniques, then demonstrates how matrix 

matched local calibration sets are consistently formed and selected.  
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Chapter 1: Introduction to Local Modeling 

1. Multivariate Calibration Models 

Multivariate calibration models using a number of spectral measurement 

techniques, such as infrared (IR)1-4, near-infrared (NIR)5-7, and ultraviolet-visible (UV-

Vis)8-10 spectroscopy, have been developed by many industries and institutions. These 

techniques are commonly used as rapid screening tools for analysis of specific chemical 

properties because they are typically rapid, non-destructive, and cost effective. 

Multivariate modeling techniques are often required to relate spectral regions to a 

chemical analyte based on a linear relationship (Eq. 1.1). 

 𝒚 = 𝑿𝒃 + 𝒆 (1.1) 

The analyte measurement for 𝑚 samples is represented as 𝒚(𝑚 x 1), 𝑿(𝑚 x 𝑛) is the spectral 

data over 𝑛 variables, 𝒃(𝑛 x 1) is the regression vector relating the spectra to the analyte, 

and 𝒆(𝑚 x 1) is the normally distributed error. To use a multivariate inverse linear 

regression for predicting the modeled analyte for new samples, 𝒃 is estimated as 

 𝒃̂ = (𝑿𝑇𝑿)−1𝑿𝑇𝒚 (1.2) 

However, for equation 1.2 to be true (𝑿𝑇𝑿)−1 must exist. For many multivariate models 

where the number of variables (𝑛) is greater than the number of samples (𝑚) a biased 

estimate regression vector, 𝒃̂(𝑛 x 1), is necessary (Eq. 1.3).  

 𝒃̂ = 𝑿+𝒚 (1.3) 

In biased multivariate regression methods, 𝑿(𝑚 x 𝑛)
+  is referred to as a pseudoinverse as 

(𝑿𝑇𝑿)−1 does not mathematically exist. Common biased regression methods used to 

estimate 𝒃̂ include principal component regression (PCR), partial least squares (PLS), 

and ridge regression (RR)11-12. For these biased regression methods a number of possible 
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estimated regression vectors are formed depending on the basis vectors calculated 

through each regression algorithm. The selection of a number of basis vectors that have a 

good bias/variance trade-off is a challenge in biased regression methods12.  

The main disadvantage to using these multivariate analysis techniques is 

developing the initial calibration model to predict the specific chemical reference values. 

In order to build accurate calibration models, the reference values must be determined by 

an accurate primary method and the calibration set must contain a large amount of 

spectral variability over a large chemical range13. The use of large spectral libraries with 

previously measured reference values can be one solution to limit the number of primary 

analyses required for initial model development. Disadvantages to using large spectral 

libraries are potentially non-linear relationships, increases in prediction errors, and 

sample inhomogeneity14. 

2.  Local Modeling 

To use large libraries of spectra effectively for developing accurate predicting 

calibration models, local calibration methods can be applied to select calibration samples 

that have similar spectral and chemical properties for a specific target sample15. In local 

modeling approaches, a unique model is developed for each target sample based on 

various measures of similarity. A few of the well known methods of local modeling 

include comparison analysis using restructured near-infrared and constituent data 

(CARNAC)16-17, a local algorithm known as LOCAL15, 18, and locally weighted 

regression (LWR)19-22. Locally weighted regression (LWR) or modifications of LWR, 

often referred to as just in time (JIT) modeling, are used in recent local modeling 

literature23-26.  
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The general steps involved in LWR processes include: (1) selection of relevant 

samples from the library based on a similarity criteria with the target sample; (2) building 

a local model using these relevant library samples; (3) and predicting the target sample 

with the local model. Many of the similarity criteria reported are based on spectral 

similarity measures such as distance measurements27-30, angle comparisons, or a 

combination of both distance and angle31. When combining two measures of similarity 

for a similarity criteria, a trade-off parameter is used (Eq. 1.4)31.  

 𝑠𝑖 = 𝛾𝑒−𝑑𝑖 + (1 − 𝛾) cos 𝜃𝑖 (1.4) 

The overall similarity criteria (𝑠𝑖) is calculated by combining the distance (𝑑𝑖) and the 

cosine of the angle (cos 𝜃𝑖) between the target spectrum and library spectrum (𝑖) with a 

trade-off parameter (𝛾). The trade-off parameter is set between 0 and 1. In this equation, 

the closer 𝑠𝑖 is to 1 the more similar the library spectrum is to the target spectrum. The 

Euclidean distance measurement (𝑑𝑖) can be calculated as 

 𝑑𝑖 = √(𝒙𝑡 − 𝒙𝑖)𝑇(𝒙𝑡 − 𝒙𝑖) (1.5) 

and the cosine of the angle (cos 𝜃𝑖) calculated as 

 cos 𝜃𝑖 =
|𝒙𝑡

𝑇𝒙𝑖|

‖𝒙𝑡‖2‖𝒙𝑖‖2
 (1.6) 

In equations 1.5 and 1.6, 𝒙𝑡(𝑛 x 1) is the target spectrum and 𝒙𝑖(𝑛 x 1) is one spectrum from 

the library. These methods using a distance, angle, or a combination of both to determine 

spectrally similar samples have two disadvantages. The first disadvantage is the selection 

of the trade-off parameter variable. The second disadvantage is the limitations of using 

only spectral matching information.  

The trade-off parameter can greatly influence the samples selected for the local 

model; discussed in further detail in Chapter 3. Figure 1.1 illustrates a hypothetical 
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situation of distance and angle comparisons between two vectors. For this illustration if 

the similarity measurement in equation 1.4 had trade-off parameter of 𝛾 = 1, the vectors 

a  and b would have equal similarity indices compared to the target vector, t. However, if 

the trade-off parameter was set to 0 vector b would be considered more similar to the 

target sample. 

 

 

Figure 1.1. Illustration of angle, θi, and distance measurements, di, between the target 

vector (t) and vectors a and b. 

 

One option to avoid selecting a trade-off parameter or selecting a single similarity 

measure is to use a wide variety of spectral similarity measures simultaneously. Equation 

1.4 is one proposed method for the fusion of two similarity measures for the calculation 

of a single similarity index. However, there are other methods available for data fusion 

that are not limited by the number of measures included and do not require a trade-off 

parameter selection.  

3. Data Fusion 

Data fusion is a common technique of combining multiple data inputs, such as 

distance or angle measurements between two spectra, into a single output that can be 
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more informative than the individual sources32. Data fusion has been used to combine 

different types of sensor data since the 1980s33 and, more recently, has been shown as a 

method for combining similarity measures for identifying matching molecular structures 

from a database34-35. The benefit of data fusion is an increased level of confidence in 

selection, in this case, of a similar local calibration sample. If most of the similarity 

merits agree on the selection of one sample then the decision of selection becomes easier 

with the consensus of the merits. The use of data fusion methods also allows for a 

systematic ranking to determine the degree of similarity or dissimilarity across the 

samples being compared. Two methods for data fusion are discussed below. 

 Fusion Rules 

Willet reviewed a number of different arithmetic based fusion methods36. For 

these fusion rules the different similarity merits for each sample being compared to a 

specific target sample are fused with an arithmetic function (e.g. maximum, minimum, or 

sum) resulting in a single value representing the overall similarity of the sample. These 

values are then used to rank the samples from most similar to least similar to a specified 

target sample. The comparison merit inputs used for the calculation of these functions can 

either be the raw comparison merit values or the rank comparison merit values. For the 

input of rank values, each individual similarity merit would be ranked from 1 to 𝑚 for 

each of the 𝑚 samples being compared. The fusion rules would then be applied to rank 

values of the all the similarity merits for a sample. Figure 1.2 shows how the sum fusion 

rule, which is the calculated sum of all the merits for each sample, is used for both the 

raw value input of similarity merits and the rank value inputs of the same similarity 

merits. For this example, the similarity merits with the highest values indicate similarity; 
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therefore, the highest ranks would also indicate the greatest similarity. If the raw 

similarity merits are used to calculate the ranks then Sample 3 is least similar to the 

target, and Sample 1 is most similar to the target. If the rank values of the similarity 

merits are used as inputs then Sample 3 is again least similar to the target sample and 

Sample 2 is most similar to the target sample.  

 

 

Figure 1.2. Illustration of sum fusion rule for raw and rank inputs comparing three 

samples using four similarity merits.  

 

 Sum of Ranking Differences 

Sum of ranking differences (SRD) is another data fusion method 37-38. Sum of 

ranking differences has been shown in multiple analytical applications37-40. The SRD 

process uses a general algorithmic method for comparison and can be applied to many 

applications. The input data for SRD is a matrix with columns of variables for 

comparison and rows of objects used for the comparison. The SRD procedure involves 

ranking the input variables (columns) across the objects (rows) relative to a ‘target’ 

vector. The ‘target’ vector can be assigned as the minimum, maximum, mean, or median 
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for each corresponding row of objects. A hypothetical illustration is shown in Figure 1.3 

for calculating SRD ranks. The first step shows the SRD input matrix of three samples 

compared using four similarity merits. The ‘target’ vector is the maximum value for each 

of the merits (highlighted in bold). In the case of these similarity measures the highest 

values would indicate similarity. The second step is to reorder the merits based on the 

target vector from minimum to maximum. The third step is to calculate the ranks from 

minimum to maximum for each of the variables and subtract the variable ranks from the 

target rank. The sum of these differences gives the sum of ranking differences. Sample 3 

is the most similar to the target spectrum with a sum of ranking differences rank of 0.  
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Figure 1.3. Illustration for calculating sum of ranking differences (SRD) ranks for three 

sample using four similarity merits. 

 

 The use of data fusion methods, such as fusion rules and sum of ranking 

differences, allows for a combination of spectral similarity merits, including distance and 

angle comparisons, to be used simultaneously without the need to select a trade-off 

parameter. However, selecting samples based on only spectral similarity is not ideal for 

local modeling.  

4.  Matrix Matching 

Even with the advantages of data fusion to combine multiple types of spectral 

similarity merits, the information for the chemical data is still not taken into account. In 
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localization there can be situations where the range in the selected spectral matching 

samples is small but the range in the chemical information is large resulting in a poor 

local model (Fig. 1.4).  

 

 

Figure 1.4. Illustration of localization around target sample (◊) based on spectral data (x) 

alone without considering changes in the chemical (y) ranges.  

 

 This chemical information includes the analyte component of interest along with 

all of the other species within the target and library samples. The total chemical profile of 

each sample represents the matrix of the samples. Both the spectral information and the 

different chemical profiles in a calibration sample and the target sample need to be 

considered for matrix matching of local calibration sets. The focus of this research is to 

show how matrix matched local calibration samples can be selected from global libraries 

of samples.  

 This work will demonstrate through the fusion of multiple similarity measures, 

including measures that assess chemical matching, a set of samples can be selected that 



10 

 

are not only spectrally matched but are chemically matched. Chapter 2 will focus on the 

definition and evaluation of matrix matching. This chapter will demonstrate how the 

fusion of proposed matrix matching similarity measures can identify known matrix 

matched calibration sets. Chapter 3 will focus on the incorporation of the matrix 

matching data fusion methods from Chapter 2 into the local adaptive fusion regression 

(LAFR) process. This chapter will demonstrate how the automated LAFR process 

mitigates and/or solves multiple identified challenges associated with current local 

modeling methods. The purpose of this chapter is to show methods for consistently 

forming and selecting local calibration sets with matrix matched samples for each of the 

target samples assessed.  
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Chapter 2: Matrix Matching 

1. Theory of Matrix Matching 

  The primary goal of local modeling is to select calibration samples that are both 

spectrally and chemically matched to the target sample1. An analyte spectrum, 𝒙(𝑛 x 1), 

measured over multiple wavelengths (𝑛) can be written according to the Beer-Lambert 

Law (Eq. 2.1).  

 𝒙𝑇 = 𝑦𝜺𝑇𝑷 + 𝒆𝑇 = 𝑦𝒔̃𝑇+eT (2.1) 

The concentration of the analyte is represented as 𝑦, 𝜺(𝑛 x 1) are the molar absorptivities 

of the analyte over each wavelength, 𝑷(𝑛 x 𝑛) is a diagonal matrix of wavelength 

dependent pathlengths, and 𝒆(𝑛 x 1) accounts for random noise. The molar absorptivities 

and wavelength dependent pathlengths can be combined to form the pathlength corrected 

isolated pure component spectrum 𝒔̃(𝑛 x 1). When more than one molecular species is 

present in a sample, equation 2.1 becomes more complex. The matrix effects that each 

species, both analyte and interferent species, have on the spectrum (𝒙) at each wavelength 

must be taken into account (Eq. 2.2). 

𝒙𝑇 = 𝑦𝑎𝜺𝑇𝑷𝑴𝑎 + 𝑦𝑖1
𝜺𝑇𝑷𝑴𝑖1

+ ⋯ + 𝑦𝑖1
𝜺𝑇𝑷𝑴𝑖𝑝

+ 𝒆𝑇 

= 𝑦𝑎𝒔𝑎
𝑇 + 𝑦𝑖1

𝒔𝑖1

𝑇 + ⋯ + 𝑦𝑖𝑝
𝒔𝑖𝑝

𝑇 + 𝒆𝑇 

= 𝒚𝑇𝑺 + 𝒆𝑇    (2.2) 

The diagonal matrices of wavelength dependent matrix effect perturbations for the 

analyte and each interferent species are represented as 𝑴𝑎(𝑛 x 𝑛) and 𝑴𝑖𝑝(𝑛 x 𝑛)
, where 𝑝 

is the number of interferent species. These matrices are dependent on the analyte (𝑦𝑎) and 

interferent (𝑦𝑖𝑝
) concentrations due to the effects of intermolecular forces2-5. For this 
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multi-species sample, 𝒔𝑎(𝑛 x 1) represents the matrix effected pure component analyte 

spectrum with pathlength correction, and 𝒔𝑖𝑝 (𝑛 x 1)
 represents a matrix effected pure 

component interferent spectrum with pathlength correction. The resulting matrix, 

𝑺((𝑝+1) x 𝑛), is a combination of the matrix effected pure component spectra for all species 

present. The concentrations of all the species in the sample, 𝒚((𝑝+1)x 1), contain the 

analyte and interferent concentrations.  

Each sample within a library of spectra can have unique physical and chemical 

matrix effects (𝑺). Equation 2.3 shows the resulting unique physical and chemical matrix 

equations for a library of spectra, 𝑿(𝑚 x 𝑛), of 𝑚 samples.  

 𝑿 = (
𝒚1

𝑇 ⋯ 0𝑇

⋮ ⋱ ⋮
0𝑇 ⋯ 𝒚𝑚

𝑇
) (

𝑺1

⋮
𝑺𝑚

) + 𝑬 (2.3) 

In this representation of library samples, 𝒚𝑚 represents the concentrations of all the 

chemical species in each library sample, 𝑺𝑚 represents the unique matrix effects for each 

sample in the library, and 𝑬(𝑚 x 𝑛) is the random noise. A new sample outside of the 

library of spectra, a target sample, is represented by equation 2.4.  

 𝒙𝑡
𝑇 = 𝒚𝑡

𝑇𝑺𝑡 + 𝒆𝑡
𝑇 (2.4) 

In this equation, 𝒙𝑡(𝑛 x 1)
 is a target spectrum, 𝑺𝑡((𝑏+1)x 𝑛)

 is a matrix of matrix effected pure 

component spectra for all species present, where 𝑏 represents the number of interferent 

species in the target sample, 𝒚𝑡((𝑏+1) x 1)
 are the concentrations for all species in the target 

sample, and 𝒆𝑡(𝑛 x 1) is random noise. When 𝑺𝑡 ≈ 𝑺(1:𝑚) and 𝒚𝑡 ≈ 𝒚(1:𝑚) then the target 

sample is considered matrix matched to the library samples.  
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The samples in a library set, as represented in equation 2.3, can be used as 

calibration samples to form a linear regression function for relating the library spectra to 

a single analyte species (Eq. 2.5),  

 𝒚𝑎 = 𝑿𝒃 + 𝒆 (2.5) 

where 𝒚𝑎(𝑚 x 1) are the analyte concentrations for an 𝑚 number of calibration samples 

and 𝒃(𝑛 x 1) is the regression vector. An estimated regression vector, 𝒃̂(𝑛 x 1), calculated 

from this linear regression function, can be used to predict the analyte concentrations of 

the target sample (Eq. 2.6).  

 𝑦̂𝑎,𝑡 = 𝒙𝑡
𝑇𝒃̂ (2.6) 

In this equation, 𝑦̂𝑎,𝑡 is the predicted analyte concentration of the target sample. The 

estimated regression vector can also predict the calibration samples used to form the 

regression model (Eq. 2.7). 

 𝑦̂𝑎,𝑚 = 𝒙𝑚
𝑇 𝒃̂ (2.7) 

The spectrum of one of the samples used to form the model (Eq. 2.5) is represented as 𝒙𝑚 

and 𝑦̂𝑎,𝑚 is the predicted analyte concentration of the calibration sample. For determining 

if the target sample is matrix matched to the calibration samples, 𝑦̂𝑎,𝑡 can be compared to 

𝑦̂𝑎,𝑚. When 𝑦̂𝑎,𝑡 = 𝑦̂𝑎,𝑚 then 𝒙𝑡 should be matrix matched to 𝒙𝑚. Unfortunately, 𝑦̂𝑡 can 

be equivalent to 𝑦̂𝑚 by chance without the samples being matrix matched. Equation 2.8 

represents a situation where 𝒙𝑡 = 𝒙𝑚 in the form of the linear regression relationships for 

predicting 𝑦̂𝑎,𝑡 and 𝑦̂𝑎,𝑚,  

 𝑦𝑎𝒔𝑎,𝑡
𝑇 𝒃̂ + 𝑦𝑖𝒔𝑖,𝑡

𝑇 𝒃̂ + ⋯ + 𝒆𝑇𝒃̂ = 𝑦𝑎𝒔𝑎,𝑚
𝑇 𝒃̂ + 𝑦𝑖𝒔𝑖,𝑚

𝑇 𝒃̂ + ⋯ + 𝒆𝑇𝒃̂ (2.8) 

The species concentrations (𝑦𝑎 and 𝑦𝑖) and the matrix and pathlength corrected pure 

component spectrum (𝒔𝑎 and 𝒔𝑖) interact with the regression vector (𝒃̂) to result in 
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possible chance equivalency of 𝑦̂𝑎,𝑡 and 𝑦̂𝑎,𝑚. As sample matrices can be complicated and 

the individual species are often unknown, it is hard to determine how likely this chance 

equivalency is to occur for comparing two specific samples.  

2. Matrix Matching Assessment 

The exact sample matrix, with all species identified and quantified along with the 

interactions between these species, is rarely known. However, there are proxy methods 

that can help identify and visualize matrix matching (Eq. 2.9).  

  𝑦̂𝑗 = 𝒙𝑇𝒃̂𝛼𝑗 = 𝑦̂𝛼𝑗 (2.9) 

The interaction between 𝒃̂(𝑛 x 1), an estimated regression vector, scaled by 𝛼𝑗 in equation 

2.9 can help determine the degree of matrix matching between samples. In this equation, 

𝒙(𝑛 x 1) is a sample spectrum, 𝑦̂ is the prediction of the analyte, and 𝑦̂𝑗 is the prediction of 

the analyte scaled by 𝛼𝑗. Samples that are matrix matched should be influenced similarly 

by 𝛼𝑗. 

Two measurements based on equation 2.9 can be used to visualize the degree of 

matrix matching between multiple samples. The first measurement (merit) is the 

prediction error (Eq. 2.10).  

 |𝑦̂𝑗 − 𝑦|  (2.10) 

The differences between the predicted reference value (𝑦̂𝑗), with the influence of 𝛼𝑗, and 

a measured reference value (𝑦) can be plotted against their respective 𝛼𝑗’s. Calibration 

samples and a target sample can be compared using the prediction error merit. Each 

sample in the calibration set is removed one at a time and predicted by a linear regression 

model formed by the remaining samples from the calibration set. The target sample is 

also predicted by this model. This process of removing one calibration sample and 
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forming a model is repeated for each calibration sample in the set resulting in multiple 

predictions for the target sample. Figure 2.1 A shows an illustration of three situations of 

sample prediction errors for calibration samples and a target sample plotted with respect 

to their respective 𝛼𝑗’s. A set of calibration sample scaled prediction errors are shown in 

blue for each plot and the target sample scaled prediction errors are shown in red. The 

𝛼𝑗’s represented in the plot for each individual sample correspond with |𝑦̂𝑗 − 𝑦| = 0 and 

|𝑦̂𝑗 − 𝑦| = 1 for each prediction error resulting in a “V” as there are two 𝛼𝑗 solutions for 

|𝑦̂𝑗 − 𝑦| = 1. When samples are matrix matched, all of the 𝛼𝑗 values are similar when 

|𝑦̂𝑗 − 𝑦| = 0 and |𝑦̂𝑗 − 𝑦| = 1. The left most example in Figure 2.1 A shows samples 

with similar 𝛼𝑗’s at |𝑦̂𝑗 − 𝑦| = 0 and |𝑦̂𝑗 − 𝑦| = 1 for both the calibration samples’ 

prediction errors and the target sample prediction errors. The other two prediction error 

plots show situations where the target sample is not matrix matched to the calibration 

samples by either 𝛼𝑗 at |𝑦̂𝑗 − 𝑦| = 0 or |𝑦̂𝑗 − 𝑦| = 1 discrepancies.  

For these prediction errors plots, |𝑦̂𝑗 − 𝑦| can be represented in a couple of 

different scenarios to identify matrix matching. In the first scenario, explained by the 

description above, 𝑦̂𝑗 are the scaled prediction error values for the calibration samples 

and the target sample for each leave-one-out model formed, and 𝑦 are the corresponding 

reference values for each of the calibration samples and target sample. In this scenario, 

the target sample reference value must be known to identify matrix matching between 

target and calibration. In the second scenario, 𝑦̂𝑗 are again the scaled prediction error 

values for the calibration samples and the target sample; however, the 𝑦 values all 

correspond to each of the individual calibration samples’ reference values for both the 
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target and calibration scaled prediction error calculations. In this scenario, if 𝛼𝑗 ≈ 1 at 

|𝑦̂𝑗 − 𝑦| = 0 when 𝑦̂𝑗 are the scaled target predictions and 𝑦 are the calibration samples, 

indicates matrix matching. This specific matrix matching indicator is also shown in the 

left most plot of Figure 2.1 A. For both scenarios, when 𝛼𝑗 ≈ 1 for |𝑦̂𝑗 − 𝑦| = 0 then  

𝑦 ≈ 𝑦̂ based on equations 2.9 and 2.10. In the second scenario, 𝑦 ≈ 𝑦̂ demonstrates that 

there are calibration samples the have the same true reference value as the predicted 

target sample value.   

 

 

Figure 2.1. Illustration of (A) prediction error matching and (B) prediction slope 

matching. Calibration samples’ scaled prediction errors are shown in blue and the target 

sample scaled prediction errors are shown red.  

 

The second merit for matrix matching visualization is a prediction match or slope 

match. When respective 𝑦̂𝑗 for the calibration samples’ scaled predictions and target 

sample scaled predictions are plotted against their respective 𝛼𝑗’s, the slopes of these 
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vectors can help indicate the degree in which samples are matrix matched. Figure 2.1 B 

shows an example, on the left, of the target sample (red) prediction slopes with respect to 

𝛼𝑗 similar to the calibration sample prediction slopes (blue). The figure on the right (Fig. 

2.1 B) shows prediction slopes between the calibration samples and target sample 

predictions that do not have similar slopes and are therefore not matrix matched.   

The scaled prediction errors and scaled prediction slopes are methods for 

visualization of matrix matching between samples; however, methods for automatically 

selecting matrix matched samples while avoiding prediction equivalencies are also 

necessary. Three techniques proposed, in this work, can help determine matrix matched 

calibration sets for a target sample based on the individual samples within each 

calibration set. The first technique is data fusion, as described in Chapter 1. The use of 

data fusion allows for multiple comparison merits, including prediction error based 

merits, to be used simultaneously. The second technique, made possible by data fusion, is 

the use of multiple models for prediction error merits. The matrix matching assessment 

plots (Fig. 2.1) above represent the scaled predictions from one model tuning parameter. 

Assuming the estimated regression model vector (𝒃̂) is calculated using biased regression 

techniques, multiple models are formed and the prediction errors from each model can be 

represented. The third technique is referred to as cross modeling, which is also made 

possible through data fusion. The prediction errors, selection of multiple models, and 

cross modeling process are described below. 

 Regression Model Prediction Error Merits 

The merits discussed are based on predictions of calibration samples and target 

samples from a leave-one-out method for each of the calibration samples in a calibration 



21 

 

set (as described above). Regression model prediction errors are the absolute difference 

between the true value and the predicted value (Eq. 2.11).  

 𝑒22 = |𝑦̂2 − 𝑦2| (2.11) 

where 𝑦2 is the true reference value and 𝑦̂2 is the predicted reference value for a 

calibration sample predicted by a specific model. This merit is based solely on calibration 

samples and is used to ensure that the calibration set predicts each sample within the set 

accurately. A similar measurement to 𝑒22 is the absolute difference in predictions for the 

calibration sample (𝑦̂2) and the target sample (𝑦̂1), shown in equation 2.12.  

 𝑒12 = |𝑦̂1 − 𝑦̂2| (2.12) 

This merit is used to assess how closely two samples are predicted by the same model. 

These two prediction merits, referred to as Y merits, are listed in Table 2.1 with an 

assigned Merit ID for reference for discussion in section 6.2. 

 

Table 2.1. Prediction merits (Y) for calibration set comparisons. (Notations indicated in 

footnotes. 

 Category Merit Input Assignments Equation Merit ID 

Y 𝑒22 𝑦2 = 𝑦𝑜 ; 𝑦̂2 = 𝑦̂𝑜 2.11 H1 

Y 𝑒12 𝑦̂1 = 𝑦̂𝑡 ; 𝑦̂2 = 𝑦̂𝑜 2.12 H2 

𝑦𝑜 : calibration sample reference value removed from calibration set 

𝑦̂𝑜 : predicted calibration sample reference value removed from calibration set 

𝑦̂𝑡 : predicted target (target) sample reference value 
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 Multiple Model Tuning Parameters 

Prediction error merits, 𝑒22 (Eq. 2.11) and 𝑒12 (Eq. 2.12), require a selection of a 

tuning parameter. The selection process described here is based on PLS models with 

latent variables (LV’s) as tuning parameters. The number of LV’s possible is dependent 

on the rank of the system. As it is not reasonable or meaningful to use all possible LV’s, a 

method for specifying a select number of LV’s is necessary. One option for selecting a 

number of meaningful LV’s is based on equation 2.136.  

 𝑈𝑀𝑘 = (
‖𝒃̂𝑘‖̅̅ ̅̅ ̅̅ ̅−‖𝒃̂‖̅̅ ̅̅ ̅

𝑚𝑖𝑛

‖𝒃̂‖̅̅ ̅̅ ̅
𝑚𝑎𝑥

−‖𝒃̂‖̅̅ ̅̅ ̅
𝑚𝑖𝑛

) + (
𝑅𝑀𝑆𝐸𝐶𝑉𝑘−𝑅𝑀𝑆𝐸𝐶𝑉𝑚𝑖𝑛

𝑅𝑀𝑆𝐸𝐶𝑉𝑚𝑎𝑥−𝑅𝑀𝑆𝐸𝐶𝑉𝑚𝑖𝑛
) (2.13) 

The variable 𝑈𝑀𝑘 represents a method for combining a measure of model prediction 

variance, the Euclidean norm of the regression vector (‖𝒃̂‖), and a measure of the model 

prediction bias, 𝑅𝑀𝑆𝐸𝐶𝑉. The average ‖𝒃̂𝑘‖ and 𝑅𝑀𝑆𝐸𝐶𝑉𝑘 are calculated from the 

prediction models formed by each calibration sample removed across all possible LV’s 

(𝑘). In equation 2.13 𝑅𝑀𝑆𝐸𝐶𝑉𝑘 is calculated as 

 𝑅𝑀𝑆𝐸𝐶𝑉𝑘 = √
∑ (𝑦̂𝑖−𝑦𝑖)2𝑚

𝑖=1

𝑚
 (2.14) 

The 𝑅𝑀𝑆𝐸𝐶𝑉𝑘 is the root-mean square error of cross validation and represents the 

prediction error for each calibration sample removed for 𝑚 calibration samples. In 

equation 2.13, the 𝑅𝑀𝑆𝐸𝐶𝑉𝑘 is range scaled using the minimum prediction error 

(𝑅𝑀𝑆𝐸𝐶𝑉𝑚𝑖𝑛) and maximum prediction error (𝑅𝑀𝑆𝐸𝐶𝑉𝑚𝑎𝑥) across all the LV’s. In 

equation 2.13, ‖𝒃̂𝑘‖̅̅ ̅̅ ̅̅ ̅ represents the average Euclidean norm of each of the estimated 

regression vectors by the leave-one-out models formed for each LV. The ‖𝒃̂𝑘‖̅̅ ̅̅ ̅̅ ̅ is range 

scaled by the minimum Euclidean norm estimated regression vector (‖𝒃̂‖̅̅ ̅̅ ̅
𝑚𝑖𝑛

) and the 
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maximum Euclidean norm estimated regression vector (‖𝒃̂‖̅̅ ̅̅ ̅
𝑚𝑎𝑥

) across all the LV’s. For 

equation 2.13, 𝑅𝑀𝑆𝐸𝐶𝑉𝑘 can also be represented by the root-mean-square error of 

calibration (𝑅𝑀𝑆𝐸𝐶𝑘). However 𝑅𝑀𝑆𝐸𝐶𝑉𝑘 is used to avoid model selections that are 

over fitted to the calibration samples. 

When 𝑈𝑀𝑘 is plotted against the LV index, a “U-curve” is formed. The minimum 

point in the “U-curve” can be used to automatically select an optimal tuning parameter 

for a balanced bias/variance tradeoff 6-8. The identified tuning parameter at the minimum 

point in the “U-curve” is referred to as 𝐿𝑉′. A set number of surrounding tuning 

parameters on each side of 𝐿𝑉′ can be used for representing multiple models for the 

prediction error merits and for other merits discussed that are based on PLS algorithms.   

 Cross Modeling 

The prediction error merit, 𝑒12, assesses how well a single target sample is 

predicted compared to the prediction of one calibration sample removed from a 

calibration set. In this work, prediction error merits are also used to assess how the target 

sample and a calibration sample removed from a calibration set are predicted by, what is 

referred to in this work as, an evaluating calibration set. This technique is referred to as 

cross modeling. Figure 2.2 shows an example of this cross modeling technique. The 

evaluating calibration sets used are the same sets as the calibration sets being compared 

to one another but can be any set of samples used to form a calibration model. The 

columns from this figure represent the calibration sets that are being compared and the 

rows represent the evaluating sets used to build the models, five models are represented 

for each evaluating set, for predicting the calibration samples from each calibration set 

and the target sample. For example, box 1 represents the mean prediction differences 
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between each sample in calibration set 1 and the target sample predicted by the remaining 

samples in calibration set 1 over five LV’s. In box 1, the evaluating calibration set is 

represented by the remaining samples in calibration set 1. Box 2 shows the mean 

prediction differences between each calibration sample in calibration set 5 and the target 

sample predicted by calibration set 2, the evaluating set, over five LV’s. This figure 

clearly shows that the mean prediction differences for the target sample and the samples 

in calibration set 5 are similar regardless of the evaluating set used to build a model. This 

indicates that the samples in calibration set 5 are most likely matrix matched to the target 

sample. The method of cross modeling can help further reduce the possibility of a chance 

matrix match between two spectra as many different models are used to assess the target 

sample and calibration samples. 

 

 

Figure 2.2. Example of cross modeling for prediction difference merit (e12) for six 

calibration sets.  
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3. Calibration Set Spectral Comparison Methods 

Prediction merits are important for determining matrix matching; however, with 

the use of the data fusion techniques, there is an opportunity to use spectral matching 

merits simultaneously with the prediction based merits to assist in the identification of 

matrix matched calibration sets. As previously discussed, the cosine of the angle between 

vectors (𝑐𝑜𝑠 𝜃) and the distance between vectors (Euclidean distance) are a couple 

common examples of spectral comparisons. Transformation merits, such as Procrustes 

analysis (PA)9 and extended inverted scatter correction (EISC)10, that determine the 

magnitude of the transformation required to make one spectrum resemble another 

spectrum, can also be measures of similarity. There are many other mathematical 

measurements for similarity assessment. Each of these merits can bring out unique 

aspects of spectral similarity. 

All of the merits presented in this section are represented in a generalized format 

of 𝒙1(𝑛 x 1) and 𝒙2(𝑛 x 1). This generalization is necessary as these same merits are 

represented in multiple formats for Chapter 2 and Chapter 3. Detailed descriptions of the 

use of each merit are given within Chapters 2 and 3 for specific merit sections. In this 

chapter the objective of these merits is to compare calibration samples from specified 

calibration sets based on their matrix matching potential to a target sample. The merits 

are used for two different spectral conditions: raw spectra and as vectors from orthogonal 

projections to an estimated regression vector (𝒃̂). The definitions for 𝒙1 and 𝒙2 for each 

of these conditions is explained below. 

For calibration set comparisons using raw spectral data, 𝒙1 is always equal to the 

spectrum of the calibration sample removed from a calibration set or the target sample 
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spectrum, and 𝒙2 is always equal to the mean of the calibration spectra in an evaluating 

calibration set. As discussed for cross modeling, the evaluating set mean can either be the 

calibration samples remaining from a set after one sample is removed or it can be another 

calibration set unrelated to the calibration sample being assessed. These merits, based on 

raw spectral data, are referred to as Spectral merits throughout the work. The objective of 

the Spectral merits is to measure the differences between the calibration spectrum 

removed from a calibration set and the target sample each compared to the evaluating set. 

Each merit is calculated for the sample removed from the calibration set (𝑀𝑜) and 

calculated again for the target sample (𝑀𝑡). The actual measurements used for assessing 

matrix matching potentials of calibration sets are the absolute differences between 𝑀𝑜 

and 𝑀𝑡 (Eq. 2.15).   

 𝑀 = |𝑀𝑜 − 𝑀𝑡| (2.15) 

For example, for the Euclidean distance comparison merit, the Euclidean distance is 

calculated between the calibration sample spectrum removed from the calibration set and 

the mean of the evaluating set spectra (𝑀𝑜) and calculated between the target sample 

spectrum the mean of the evaluating set spectra (𝑀𝑡). The Euclidean distance merit used 

for calibration set comparisons would be the absolute difference between these two 

Euclidean distance measurements. The final Euclidean distance measurements are 

averaged across each calibration sample in a set as shown in Figure 2.2 and explained in 

the cross modeling procedure. The purpose of these merit calculations is to show that if 

the target sample and calibration samples in a calibration set are truly matrix matched 

then their spectral comparison differences will be similar for each evaluating calibration 

space.  
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For merits based on orthogonal projections to an estimated regression vector, 

referred to as OP merits, the orthogonal projections are calculated by equation 2.16.  

 𝒙⊥ = (𝐈 − 𝐛̂𝑟𝐛̂𝑟
𝑇)𝒙1 (2.16)  

where 𝐛̂𝑟 = 𝑿𝑟
+𝒚𝑟 is calculated from a PLS regression and 𝐈 is an identity matrix. The 

PLS regression is formed by the samples in an evaluation set (𝑿𝑟 and corresponding 

reference values, 𝒚𝑟). Again, the evaluation set is represented as the samples remaining 

after one sample is removed or as another calibration set. The orthogonal projections for 

the target spectrum (𝒙𝑡
⊥) and the individual calibration spectrum from each proposed 

calibration set (𝒙𝑜
⊥) are calculated for each model formed by the evaluation set following 

the cross modeling procedure. For these OP merits, 𝒙1 can be represented by either 𝒙𝑡
⊥ or 

𝒙𝑜
⊥ and 𝒙2 can also be represented by either 𝒙𝑡

⊥ or 𝒙𝑜
⊥. The representations of 𝒙1 and 𝒙2 

for each of the individual OP merits is described in the merit summary sections (3.5.9 and 

3.6.4).  

The orthogonally projected spectrum represent the variability not accounted for 

by the regression model as the regression model only accounts for the variability related 

to the analyte species. This orthogonal variability can contain information related to 

interferent species. For samples that are matrix matched, the orthogonal projections from 

the regression model should be similar. Like the prediction based merits previously 

described, the orthogonal projection merits can be calculated for multiple estimated 

regression vectors. The tuning parameter selection methods described in section 2.2 are 

used to determine the estimated regression vectors used.    
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 Spectral Based Matrix Matching Merits 

The spectral based merits (both Spectral and OP) can be broken into three main 

categories; sample vector to calibration vector, sample domain to calibration domain and 

sample vector to calibration domain. Each of these categories is explained in detail 

below. For sample vector to calibration vector comparisons, 𝒙1 and 𝒙2 spectra are treated 

as vectors. For sample domain to calibration domain comparisons, outer products are 

calculated for 𝒙1 and 𝒙2. For example, 𝒙1𝒙1
𝑇 = 𝑿1(𝑛 x 𝑛)

, where 𝑿1 is the outer product 

calculated for 𝒙1. These outer products result in a pseudo spectral domain. The benefits 

of using outer products are explained in section 3.6. For the sample vector to calibration 

domain merits, 𝒙1 is a vector of either the target sample spectrum or the calibration 

sample spectrum removed from a calibration set and the calibration domain represents the 

evaluating set, the remaining samples in the calibration set or another calibration set. The 

calibration domain is always referred to as 𝑿𝑟 for the sample vector to calibration domain 

merits.  

The solutions for some of the merits presented require the calculation of singular 

value compositions (SVD) (Eq. 2.17).  

 𝑨 = 𝑼𝜮𝑽𝑇 (2.17) 

where 𝑨(𝑚 x 𝑛) is a generic matrix of 𝑚 rows and 𝑛 columns. The eigenvector matrices 

are represented by 𝑼(𝑚 x m) and 𝑽(𝑛 x 𝑛), and 𝜮(𝑚 x 𝑛) is a matrix of zeros except for the 

singular values. This decomposition is typically truncated to 𝑼(𝑚 x 𝑙), 𝑽(𝑛 x 𝑙), and 𝜮(𝑙 x 𝑙) 

where 𝑙 represents the mathematical rank. For the sample vector to calibration vector and 

sample domain to calibration domain merits the SVD will have a rank of one (𝑙 = 1) 

where only the first eigenvectors and singular value are used. Each of these rank one 
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SVD calculations can be calculated in more computationally simplistic ways than solving 

for the SVD. In the following equations the SVD solutions along with simplifications are 

shown. For some merits SVD’s are calculated for rank one matrices and in other merits 

SVD’s are calculated for rank one vectors. As mentioned for the sample domain to 

calibration domain merits, the sample domains can be calculated by the outer product of 

two vectors resulting a rank one matrix. Rank one SVD of matrices are represented by 

equation 2.18.   

 𝑨 = 𝒖𝜎𝒗𝑇 =
𝒂

‖𝒂‖
× ‖𝒂‖2 ×

𝒂𝑇

‖𝒂‖
  (2.18) 

Where 𝒖 and 𝒗 are 𝑛 x 1 eigenvectors and 𝜎 is the first singular value. The mathematical 

equivalents to these eigenvectors and singular value are shown using the vector used to 

create the matrix (𝒂) and Euclidean norm of the vector (‖𝒂‖). Rank one SVD’s of vectors 

are represented by equations 2.19 and 2.20 for both column and row vector 

representations. 

 𝒂 = 𝒖𝜎𝑣𝑇 =
𝒂

‖𝒂‖
× ‖𝒂‖ × 1 (2.19) 

In equation 2.19, 𝒂 is a column vector of 𝑛 x 1, 𝒖 is an eigenvector of 𝑛 x 1, 𝜎 is the 

singular value and 𝑣 is equivalent to 1.  

 𝒂𝑇 = 𝑢𝜎𝒗𝑇 = 1 × ‖𝒂‖ ×
𝒂

‖𝒂‖
 (2.20) 

In equation 2.20, 𝒂𝑇 is a row vector of 1 x 𝑛, 𝑢 is equivalent to 1, 𝜎 is the singular value 

and 𝒗 is an eigenvector of 𝑛 x 1. The sample vector to calibration vector and sample 

domain to calibration domain merits described below show both solutions based on SVD 

and the simplified calculations.  

The sample vector to calibration domain merits will have matrices with ranks 

greater than one. Multiple eigenvectors and singular values can be used for the SVD 
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calculations of these merits. The specified number of eigenvectors and singular values are 

referred to as principal components (PC’s). The number of PC’s selected vary for the 

sample vector to calibration domain merits depending on how these merits are used. The 

specific number of PC’s used in this chapter is described in section 3.7. 

 Sample Vector to Calibration Vector Comparison Merits 

The following merits are comparison measurements of two vectors. Some of the 

merits presented can be calculated with column vectors 𝒙(𝑛 x 1) or row vectors 𝒙(1 x 𝑛)
𝑇  of 𝑛 

variables. The merits where the outcome is dependent on column vector or row vector 

input are noted in the discussion of the specific merit. Different combinations of row and 

column vectors for each merit were assessed; however, these results are not reported 

here. Only the row and column vector combinations that resulted in unique solutions are 

displayed in this section.  

3.5.1 Cos θ 

The measurement of cos θ is the cosine of the angle between two vectors (Eq. 

2.21).    

 1 − cos θ = 1 −
|𝒙1

𝑇𝒙2|

‖𝒙1‖‖𝒙2‖
 (2.21) 

This merit determines if two vectors (𝒙1 and 𝒙2) have similar shapes. In this work, cos θ 

is subtracted from 1 so that a minimum values represent higher degrees of similarity for 

all merits.  

The outer products of vectors 𝒙1 and 𝒙2 can be compared based on the second 

order limited method for cos θ 11-12. However, as previously mentioned, the rank for these 

outer products is one. The simplification of calculating cos θ for two outer product arrays 

can be simplified to the cosine of the angle between the two original vectors squared. Due 
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to this simplification, the merit 1 − 𝑐𝑜𝑠2 𝜃 is expressed in the sample vector to 

calibration vector comparison merits section as opposed to the samples domain to 

calibration domain section (3.6) whose merits are based on outer product arrays (Eq. 

2.22).  

 1 − 𝑐𝑜𝑠 𝜃𝑆𝑂𝐿 = 1 − 𝑀1𝑀2 = 1 − 𝑐𝑜𝑠2 𝜃  (2.22) 

In this method, the SVD for each of the outer products 𝒙1𝒙1
𝑇 and 𝒙2𝒙2

𝑇 can be used to 

calculate 𝑀1 and 𝑀2 using only the first eigenvectors (𝒖1, 𝒖2, 𝒗1, and 𝒗2). The 

expressions for 𝑀1 and 𝑀2 are represented as 

 𝑀1 = |𝒖1
𝑇𝒖2| =

𝒙1
𝑇

‖𝒙𝟏‖

𝒙2

‖𝒙2‖
= 𝑐𝑜𝑠 𝜃 

 𝑀2 = |𝒗1
𝑇𝒗2| = 

𝒙1
𝑇

‖𝒙𝟏‖

𝒙2

‖𝒙2‖
= 𝑐𝑜𝑠 𝜃 

These equations show that 𝑀1 and 𝑀2 are in fact equal to cos θ between 𝒙1 and 𝒙2. Like 

cos θ, the final merit (𝑐𝑜𝑠2 𝜃) is subtracted from one.  

3.5.2 Euclidean Distance 

The Euclidean distance is the measure of distance, a measure of magnitude, 

between two vectors, 𝒙1 and 𝒙2 (Eq. 2.23).   

 Euc = √(𝐱1 − 𝐱2)T(𝐱1 − 𝐱2) (2.23) 

3.5.3 Determinant 

 The determinant is a measurement of the space formed between two vectors (Eq. 

2.24).  

 𝐷𝑒𝑡 = |(
𝒙1

𝑇

𝒙2
𝑇) (𝒙1 𝒙2)| = (‖𝒙1‖‖𝒙2‖𝑠𝑖𝑛 𝜃1)2 (2.24) 

The two vectors are concatenated together to form rectangular matrices of 2 x 𝑛 and 

𝑛 x 2. In this form the determinant can also be calculated by taking the square of the 
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product of the Euclidean normalizations (‖∙‖) of each 𝒙1 and 𝒙2 and the 𝑠𝑖𝑛 𝜃 between 

the two vectors. 

3.5.4 Procrustes Analysis 

Procrustes analysis (PA) merits are used in this work to provide a measurement of 

similarity between two vectors by assessing mathematical transformations required to 

make one vector resemble a second vector through the degree of translation, dilation, and 

rotation9. The first merit, considered the unconstrained PA transformation merit, 

measures the degree of rotation and stretching. Row vectors (𝒙(1 x 𝑛)
𝑇 ) are used to 

calculate 𝐹21 (Eq. 2.25).  

 𝒙1
𝑇 = 𝒙2

𝑇 𝑭21 (2.25) 

To solve for 𝑭21(𝑛 x 𝑛), the pseudoinverse of 𝒙2
𝑇 is required. An SVD can be used to 

calculate the pseudoinverse of 𝒙2
𝑇. The equations are shown using SVD, but also as 

simplified equivalent representations based on equation 2.20.  

 𝑭21 = (𝒙2
𝑇)+𝒙1

𝑇 (2.26) 

In equation 2.26 

 (𝒙2
𝑇)+ = 𝑢𝜎−1𝒗𝑇 =

𝒙2

‖𝒙2‖2 

The final merit (𝐹) is the Frobenius norm of the difference between 𝑭21 and 𝑭22 (Eq. 

2.27).  

 𝐹 = ‖𝑭21 − 𝑭22‖𝐹 (2.27) 

The Forbenius normalization method is used in order to represent the 

transformation as a scalar value (Eq. 2.28)13. 

 ‖∙‖𝐹 = √∑ ∑ 𝑎𝑖𝑗
2𝑛

𝑗=1
𝑚
𝑖=1  (2.28) 
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For the Frobenius norm, 𝑚 is the number of row elements, 𝑛 is the number column 

elements, and 𝑎𝑖𝑗 is each individual element in the matrix. Other normalization 

techniques can be used in place of the Frobenius norm.  

For the final merit in equation 2.27, 𝑭22 is calculated the same as 𝑭21 except that 

𝒙1
𝑇 is replaced with 𝒙2

𝑇 in equation 2.25 to measure the unconstrained degree of 

transformation between 𝒙2
𝑇 and 𝒙2

𝑇. The difference between 𝑭21 and 𝑭22 in equation 2.27 

determines the degree of transformation required between vector 𝒙1
𝑇 and vector 𝒙2

𝑇 in 

comparison to the degree of transformation required between vector 𝒙2
𝑇 and vector 𝒙2

𝑇. 

This comparison helps to account for the full degree of difference between the two 

vectors. 

The constrained PA merits, 𝜌21 and 𝐻21, measure the degree of dilation and 

rotation respectively between two vectors. For the sample vector to calibration vector 

comparisons, 𝐻21 is not used as the solution is always one. The dilation merit, 𝜌21, is 

calculated using equation 2.29. 

 𝒙1 = 𝜌21𝒙2𝐻21 (2.29) 

Solving for 𝜌21 is represented by equation 2.30.  

 𝜌21 =
𝒙2

𝑇𝒙1

𝑡𝑟(𝒙2𝒙2
𝑇)

 (2.30) 

where the dilation transformation, 𝜌21, is calculated by the inner product of  𝒙2
𝑇𝒙1 

divided by the trace, or sum of diagonal elements, of the outer product of 𝒙2𝒙2
𝑇. The 

final merit, 𝜌, is calculated as 

 𝜌 = |𝜌21 − 𝜌22| (2.31) 

In this equation, 𝜌 is the absolute difference between the degree of transformation 

between 𝒙2 and 𝒙1 for 𝜌21 and the degree of transformation between 𝒙2  and 𝒙2 for 𝜌22. 
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In this final merit calculation, 𝜌22 is calculated the same as 𝜌21 except that 𝒙1 is replaced 

with 𝒙2 in equation 2.29. However, in the rank one system 𝜌22 is always equivalent to 1. 

Like the unconstrained Procrustes analysis merit, a Frobenius norm could be used, but is 

not necessary as both 𝜌21 and 𝜌22 are scalar values.  

3.5.5 Extended Inverted Scatter Correction 

Extended inverted scatter correction (EISC) has been used in applications for 

analytical chemistry as a signal correction method14 and calibration model transfer10. In 

this work EISC is used to measure spectral similarity. The EISC correction function, or 

transformation, is expressed in equation 2.32.  

 𝒙1 = 𝑏0𝟏 + 𝑏1𝒙2 + 𝑏2𝒙2
2 + 𝑏3𝒙𝟐

3 + 𝑏4
𝑑𝒙𝟐

𝑑𝜆
+ 𝑏5

𝑑2𝒙𝟐

𝑑𝜆2 + 𝑏6𝜆 + 𝑏7𝜆2 + b8ln 𝜆     (2.32)  

The correction terms include sources of spectral differences such as, wavelength scale 

shifts and bandwidth differences. This function is not limited to the correction terms 

listed above, but were terms selected for this work. The correction terms can be 

represented in matrix notation as 𝑿𝑐(𝑛 x 𝑓), where 𝑓 is the number of correction terms (1, 

𝒙2, 𝒙2
2, …), and the correction coefficients can be represented as 𝒃21(𝑓 x 1). The 

transformation function is then rewritten as 

  𝒙1 = 𝑿𝑐𝒃21 

Solving for 𝒃̂21(𝑓 x 1) gives 

 𝒃̂21 = (𝑿𝑐
𝑇𝑿𝑐)−𝟏𝑿𝑐

𝑇𝒙1  

The Euclidean normalization of 𝒃̂21 (‖∙‖) can be used as a measure of similarity 

represented by 𝐸𝐼𝑆𝐶 𝑏 (Eq. 2.33). 

 𝐸𝐼𝑆𝐶 𝑏 = ‖𝒃̂21‖ (2.33) 
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In extended scatter correction by difference, an alternative calculation for EISC10, 𝒙2 is 

added as a variable into the transformation function (Eq. 2.34).  

 𝒙1 = 𝒙2 + 𝑏0𝟏 + 𝑏1𝒙2 + 𝑏2𝒙2
2 + 𝑏3𝒙𝟐

3 + 𝑏4
𝑑𝒙𝟐

𝑑𝜆
+ 𝑏5

𝑑2𝒙𝟐

𝑑𝜆2 + 𝑏6𝜆 + 𝑏7𝜆2 + b8ln 𝜆   (2.34) 

The difference between 𝒙1 and 𝒙2 is then represented as 𝒅 (Eq. 2.35).  

 𝒙1 − 𝒙2 = 𝒅 = 𝑿𝑐𝒃𝑑 (2.35) 

The correction terms and correction coefficients are again represented in matrix notation 

as 𝑿𝑐 and 𝒃𝑑. Similarly to merit 𝐸𝐼𝑆𝐶 𝑏 (Eq. 2.33), 𝒃𝑑 is solved for as 

 𝒃̂𝑑 = (𝑿𝑐
𝑇𝑿𝑐)−𝟏𝑿𝑐

𝑇𝒅 

and the Euclidean normalization of this measure is another similarity measure, 𝐸𝐼𝑆𝐶 𝑏𝑑 

(Eq. 2.36).  

 𝐸𝐼𝑆𝐶 𝑏𝑑 = ‖𝒃̂𝑑‖ (2.36) 

When this transformation is calculated with the difference between 𝒙1 and 𝒙2, the 

product of the correction terms (𝑿𝑐) and coefficients (𝒃̂𝑑) themselves can represent a 

measure of similarity between 𝒙1 and 𝒙2 (Eq. 2.37).  .  

  𝐸𝐼𝑆𝐶 𝑋𝑏𝑑 = ‖𝑿𝑐𝒃̂𝒅‖ (2.37) 

The Euclidean normalization of 𝑿𝑐𝒃𝑑 represents the merit 𝐸𝐼𝑆𝐶 𝑋𝑏𝑑. 

3.5.6 Mahalanobis Distance 

The following two merits, Mahalanobis distance and pooled Mahalanobis 

distance, are special cases of sample vector to calibration vector comparison merits. 

These merits use the outer product arrays of the individual vectors as a part of the 

calculation along with the vectors themselves. Merits that only use the outer product 

arrays for vectors comparisons are discussed in the section 3.6. 
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The Mahalanobis distance is used to determine the distance of one sample to the 

space of a group of samples15. This measure is commonly used for outlier determinations 

for linear regression models, but can also represent a measure of similarity. The original 

Mahalanobis distance calculation is manipulated for the calculation between two vectors 

(Eq. 2.38).  

 𝑀𝐷𝑉 = √(𝒙2 − 𝒙1)𝑇𝑿1
+(𝒙2 − 𝒙1) (2.38) 

The typical covariance matrix used in the standard calculation of Mahalanobis distance is 

represented as an outer product array of 𝒙1(𝑛 x 1) (Eq. 2.39).   

 𝑿1 = 𝒙1𝒙1
𝑇 (2.39) 

The pseudoinverse of 𝑿1(𝑛 𝑥 𝑛) is calculated through SVD  

 𝑿1
+ = 𝒗1𝜎1

−1𝒖1
𝑇 =

𝒙1

‖𝒙1‖

1

‖𝒙1‖2

𝒙1
𝑇

‖𝒙1‖
   

where only the first basis vector is used. The simplified calculation is also shown.   

3.5.7 Pooled Mahalanobis Distance 

The pooled Mahalanobis distance is a manipulation of the standard Mahalanobis 

distance used to compare the structural similarities between two multidimensional 

datasets16. In this work the pooled Mahalanobis distance is further manipulated to 

compare two vectors (Eq. 2.40).  

 𝑀𝐷𝑝
𝑉 = √(𝒙1 − 𝒙2)𝑇𝑺+(𝒙1 − 𝒙2) (2.40) 

In this merit, 𝑺+ is the pseudoinverse  

 𝑺+ = 𝒗𝜎−1𝒖𝑇 

of 𝑺 (Eq. 2.41) calculated for one basis vector.  

 𝑺 =
𝑿1+𝑿2

2
 (2.41) 
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In equation 2.41, 𝑿1 and 𝑿2 are the outer product arrays of both 𝒙1(𝑛 x 1) (Eq. 2.39) and 

𝒙2(𝑛 x 1) defined as 

  𝑿2 = 𝒙2𝒙2
𝑇 (2.42) 

3.5.8 Merit Summary 

Table 2.2 has a complete list of the sample vector to calibration vector merits used 

for comparing calibration sets. Both orthogonal projections to an estimated regression 

model vector (OP) and spectral methods (Spectral) are used to calculate these merits. All 

of the merits listed are used with the cross modeling techniques. 
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Table 2.2. Sample vector to calibration vector merits for calibration set comparisons for 

both Spectral and OP merits. (Notations indicated in footnotes). 

 Category Merit Input Assignments Equation Merit ID 

Spectral 1 − 𝑐𝑜𝑠2 𝜃 𝒙1 = 𝒙𝑜/𝑡 ; 𝒙2 = 𝒙̅𝑟 2.22 H3 

OP Euc  𝒙1 = 𝒙𝑜
⊥ ; 𝒙2 = 𝒙𝑡

⊥ 2.23 H4 

Spectral Euc 𝒙1 = 𝒙𝑜/𝑡 ; 𝒙2 = 𝒙̅𝑟 2.23 H5 

OP 𝐷𝑒𝑡  𝒙1 = 𝒙𝒐
⊥ ; 𝒙2 = 𝒙𝑡

⊥ 2.24 H6 

Spectral 𝐷𝑒𝑡 𝒙1 = 𝒙𝑜/𝑡 ; 𝒙2 = 𝒙̅𝑟 2.24 H7 

OP 𝐹  𝒙1
𝑇 = 𝒙𝑡

⊥𝑇
 ; 𝒙2

𝑇 = 𝒙𝑜
⊥𝑇

 2.27 H8 

OP 𝜌  𝒙1 = 𝒙𝑜
⊥ ; 𝒙2 = 𝒙𝑡

⊥ 2.31 H9 

OP 𝜌  𝒙1 = 𝒙𝑡
⊥ ; 𝒙2 = 𝒙𝑜

⊥ 2.31 H10 

OP 𝐸𝐼𝑆𝐶 𝑏  𝒙1 = 𝒙𝑜
⊥ ; 𝒙2 = 𝒙𝑡

⊥ 2.33 H11 

OP 𝐸𝐼𝑆𝐶 𝑏  𝒙1 = 𝒙𝑡
⊥ ; 𝒙2 = 𝒙𝑜

⊥ 2.33 H12 

OP 𝐸𝐼𝑆𝐶 𝑋𝑏𝑑  𝒙1 = 𝒙𝑜
⊥ ; 𝒙2 = 𝒙𝑡

⊥ 2.37 H13 

OP 𝐸𝐼𝑆𝐶 𝑋𝑏𝑑  𝒙1 = 𝒙𝑡
⊥ ; 𝒙2 = 𝒙𝑜

⊥ 2.37 H14 

Spectral 𝐸𝐼𝑆𝐶 𝑋𝑏𝑑  𝒙1 = 𝒙𝑜/𝑡 ; 𝒙2 = 𝒙̅𝑟 2.37 H15 

Spectral 𝐸𝐼𝑆𝐶 𝑋𝑏𝑑  𝒙1 = 𝒙̅𝑟; 𝒙2 = 𝒙𝑜/𝑡  2.37 H16 

OP 𝐸𝐼𝑆𝐶 𝑏𝑑  𝒙1 = 𝒙𝑜
⊥ ; 𝒙2 = 𝒙𝑡

⊥ 2.36 H17 

OP 𝐸𝐼𝑆𝐶 𝑏𝑑  𝒙1 = 𝒙𝑡
⊥ ; 𝒙2 = 𝒙𝑜

⊥ 2.36 H18 

Spectral 𝐸𝐼𝑆𝐶 𝑏𝑑  𝒙1 = 𝒙𝑜/𝑡 ; 𝒙2 = 𝒙̅𝑟 2.36 H19 

Spectral 𝐸𝐼𝑆𝐶 𝑏𝑑  𝒙1 = 𝒙̅𝑟; 𝒙2 = 𝒙𝑜/𝑡  2.36 H20 

OP 𝑀𝐷𝑣  𝒙1 = 𝒙𝑜
⊥ ; 𝒙2 = 𝒙𝑡

⊥ 2.38 H21 

OP 𝑀𝐷𝑣  𝒙1 = 𝒙𝑡
⊥ ; 𝒙2 = 𝒙𝑜

⊥ 2.38 H22 

OP 𝑀𝐷𝑝
𝑣 𝒙1 = 𝒙𝑜

⊥ ; 𝒙2 = 𝒙𝑡
⊥ 2.40 H23 

𝒙̅𝑟: mean spectrum for the evaluating calibration set spectra 

𝒙𝑜/𝑡 : sample removed from calibration set (𝒙𝑜) or target sample (𝒙𝑡) 

𝒙𝑜
⊥: orthogonal projection to an estimated regression vector of removed calibration 

sample 

𝒙𝑡
⊥: orthogonal projection to an estimated regression vector of target sample 
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 Sample Domain to Calibration Domain Comparison Merits 

The calculations for all of the merits described below are for single vectors that 

are represented as outer products. Vectors can form arrays by either calculating an outer 

product of two of the same vector (Eqs. 2.43 and 2.44) or two different vectors (Eqs. 2.45 

and 2.46). 

 𝒙1(𝑛 x 1)
𝒙1

𝑇
(1 x 𝑛)

= 𝑿1(𝑛 x 𝑛)
 (2.43) 

 𝒙𝟐(𝑛 x 1)
𝒙𝟐

𝑇
(1 x 𝑛)

= 𝑿2(𝑛 x 𝑛)
 (2.44) 

 𝒙1(𝑛 x 1)
𝒙2

𝑇
(1 x 𝑛)

= 𝑿12(𝑛 x 𝑛)
 (2.45) 

 𝒙2(𝑛 x 1)
𝒙1

𝑇
(1 x 𝑛)

= 𝑿21(𝑛 x 𝑛)
 (2.46) 

In outer product analysis, introduced by Barros et al.17, the outer products are first 

calculated for a pair of vectors. The resulting array is then unfolded by concatenating 

each row of the array to form one long vector (Fig. 2.3).  

 

Figure 2.3. Schematic for outer product analysis. 

 

This resulting unfolded vector (1 x (𝑛2 ∗ 𝑛1)) contains all possible product combinations 

between the two individual vectors. This technique has been used in literature as a data 

fusion method where two signals can be combined together to demonstrate, not only the 

individual signal outputs, but the product combinations of the two signals resulting in 

more robust multivariate models18. For this work, the use of outer product analysis can be 

used to represent vector data as sample domains. Outer products allows for vector data to 
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be viewed differently using the same types of comparison merits. For the following 

merits, the determinant calculation is the only merit where the outer products are 

unfolded as described in the Figure 2.3 schematic. All of the other merits described in 

this section retain the outer products for the calculations without unfolding. Like the 

sample vector to calibration vector comparison merits, when calculating SVD’s for these 

outer product arrays only the first eigenvectors and eigenvalue are used as the rank is 

typically one. 

3.6.1 Determinant 

The determinant between two outer product arrays for this work uses the 

determinant calculation in equation 2.24. The outer products for 𝑿1(𝑛 x 𝑛)
 (Eq. 2.43) and 

𝑿21(𝑛 x 𝑛) (Eq. 2.46) are unfolded to represent vectors 𝒙1(𝑛∗𝑛 𝑥 1)
 and 𝒙2(𝑛∗𝑛  x 1)

 

respectively in calculating the determinant. 

3.6.2 Euclidean Distance 

To calculate the Euclidean distance between two outer product arrays each array 

can be unfolded for the typical Euclidean distance calculation (Eq. 2.23) or the Frobenius 

norm of the difference between 𝑿1 and 𝑿2 can be calculated for the same results (Eq. 

2.47). 

 ‖𝑿1 − 𝑿2‖𝐹 (2.47) 

3.6.3 Procrustes Analysis 

The outer products, 𝑿1 (Eq. 2.43) and 𝑿𝟐 (Eq. 2.44), are used for calculation of 

the unconstrained PA transformation merit (𝑭21). 

 𝑿1 = 𝑿2 𝑭21 (2.48) 

Solving for 𝑭21 is as follows 
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 𝑭21 = 𝑿2
+(𝑿1) 

The pseudoinverse 𝑿2
+ and 𝑿1 can be calculated and represented using SVD, but are also 

shown in simplified formats in equations 2.49 and 2.50 respectively.  

 𝑿2
+ = 𝒗𝜎−1𝒖𝑇 =

𝒙2

‖𝒙2‖

1

‖𝒙2‖2

𝒙2
𝑇

‖𝒙2‖
=

𝒙2𝒙2
𝑇

‖𝒙2‖4 (2.49) 

 𝑿1 = 𝒖𝜎𝒗𝑇 =
𝒙1

‖𝒙1‖
‖𝒙1‖2 𝒙1

𝑇

‖𝒙1‖
 (2.50) 

The final merit is calculated with the Frobenius norm (2.28) of the difference between 

𝑭21 and 𝑭22 (Eq. 2.51).  

 𝐹 = ‖𝑭21 − 𝑭22‖𝐹 (2.51) 

where 𝑭22 is calculated the same as 𝑭21 except that 𝑿1 is replaced with 𝑿2 in equation 

2.48. 

The constrained PA merits 𝜌21 and 𝐻21 are calculated as 

 𝑿1 = 𝜌21𝑿2𝑯21 (2.52) 

The solutions for 𝜌21 and  𝐻21 are shown in equations 2.53 and 2.54 respectively.  

 𝜌21 =
𝑡𝑟(𝜎21)

𝑡𝑟(𝑿2𝑿2
𝑇)

 (2.53) 

 𝑯21 = 𝒖21𝒗21
𝑇  (2.54) 

An SVD is used for the product of the two outer product arrays, 𝑿2 and 𝑿1 to calculate 

𝜎21, 𝒖21, and 𝒗21
𝑇  using the first eigenvectors an eigenvalue (Eq. 2.55).  

 𝑿2
𝑇𝑿1 = 𝒖21𝜎21𝒗21

𝑇 (2.55) 

The final merit calculations for 𝜌 (Eq. 2.56) and 𝐻 (Eq. 2.57) are calculated with the 

Frobenius norm.  

 𝜌 = ‖𝜌21 − 𝜌22‖𝐹 (2.56) 

 𝐻 = ‖𝑯21 − 𝑯22‖𝐹 (2.57) 
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For the calculations of 𝜌22 and 𝑯22 in the final equations, 𝑿1 is replaced with 𝑿2 in 

equation 2.52. 

3.6.4 Merit Summary 

Table 2.3 has a complete list of the sample domain to calibration domain merits 

used to select the matrix matched calibration sets. Both orthogonal projections to an 

estimated regression model vector (OP) and spectral methods (Spectral) are represented. 

All of the merits listed are used in the cross modeling process. 

 

Table 2.3. Sample domain to calibration domain merits for calibration set comparisons 

for both Spectral and OP merits. (Notations indicated in footnotes). 

 Category Merit Input Assignments Equations Merit ID 

OP 𝐷𝑒𝑡  𝑿1 = 𝒙𝑜
⊥𝒙⊥

𝑜
𝑇
 ; 𝑿2 = 𝒙𝑡

⊥𝒙⊥
𝑡
𝑇
 2.24 H24 

OP 𝐷𝑒𝑡  𝑿1 = 𝒙𝑡
⊥𝒙⊥

𝑜
𝑇
 ; 𝑿2 = 𝒙𝑡

⊥𝒙⊥
𝑡
𝑇
 2.24 H25 

OP Euc  𝑿1 = 𝒙𝑜
⊥𝒙⊥

𝑜
𝑇
 ; 𝑿2 = 𝒙𝑡

⊥𝒙⊥
𝑡
𝑇
 2.47 H26 

OP Euc  𝑿1 = 𝒙𝑡
⊥𝒙⊥

𝑜
𝑇
 ; 𝑿2 = 𝒙𝑡

⊥𝒙⊥
𝑡
𝑇
 2.47 H27 

OP 𝐹  𝑿1 = 𝒙𝑜
⊥𝒙⊥

𝑜
𝑇
 ; 𝑿2 = 𝒙𝑡

⊥𝒙⊥
𝑡
𝑇
 2.51 H28 

OP 𝐹  𝑿1 = 𝒙𝑡
⊥𝒙⊥

𝑡
𝑇
 ; 𝑿2 = 𝒙𝑜

⊥𝒙⊥
𝑜
𝑇
 2.51 H29 

Spectral 𝐹 𝑿1 = 𝒙𝑜/𝑡 𝒙𝑜/𝑡 
𝑇

 ; 𝑿2 = 𝒙̅𝑟𝒙̅𝑟
𝑇 2.51 H30 

OP 𝜌  𝑿1 = 𝒙𝑡
⊥𝒙⊥

𝑡
𝑇
 ; 𝑿2 = 𝒙𝑜

⊥𝒙⊥
𝑜
𝑇
 2.56 H31 

OP 𝜌  𝑿1 = 𝒙𝑜
⊥𝒙⊥

𝑜
𝑇
 ; 𝑿2 = 𝒙𝑡

⊥𝒙⊥
𝑡
𝑇
 2.56 H32 

Spectral 𝜌 𝑿1 = 𝒙𝑜/𝑡 𝒙𝑜/𝑡 
𝑇

 ; 𝑿2 = 𝒙̅𝑟𝒙̅𝑟
𝑇 2.56 H33 

Spectral 𝐻 𝑿1 = 𝒙𝑜/𝑡 𝒙𝑜/𝑡 
𝑇

 ; 𝑿2 = 𝒙̅𝑟𝒙̅𝑟
𝑇 2.57 H34 

𝒙̅𝑟: mean spectrum for the evaluating calibration set spectra 

𝒙𝑜/𝑡 : sample removed from calibration set (𝒙𝑜) or target sample (𝒙𝑡) 

𝒙𝑜
⊥: orthogonal projection to a regression vector of sample removed from calibration set 

𝒙𝑡
⊥: orthogonal projection to a regression vector of target sample 
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 Sample Vector to Calibration Domain Comparison Merits 

The following merits are used to compare one sample spectrum (𝒙1), either a 

target sample or calibration sample removed from a calibration set, to an evaluation set 

(𝑿𝑟). Unlike the sample vector to calibration vector and sample domain to calibration 

domain comparison merits, the SVD calculations will include multiple basis vectors.  

3.7.1 Mahalanobis Distance 

Mahalanobis distance is calculated as follows  

 𝑀𝐷 = √(𝒙1 − 𝒙̅𝑟)𝑇𝑪̃𝑟
+(𝒙1 − 𝒙̅𝑟) (2.58) 

where 𝑪̃𝑟
+

(𝑛 x 𝑛) is the pseudoinverse of the covariance matrix 𝑪̃𝑟, 𝒙̅𝑟(𝑛 x 1) is the average 

of the spectra from the evaluation set (𝑿𝑟(𝑚 x 𝑛)
), and 𝒙1(𝑛 x 1) is the sample spectrum 

being compared to the evaluation set. The covariance matrix, 𝑪̃𝑟 is calculated in equation 

2.59 and 𝑪̃𝑟
+ in equation 2.60. 

 𝑪̃𝑟 =
𝑿̃𝑟

𝑇
𝑿̃𝑟

𝑛−1
 (2.59) 

  𝑪̃𝑟
+ = 𝑽𝜮−1𝑼𝑇 (2.60) 

where 𝑿̃𝑟 are the mean-centered spectra of the evaluation set. Mean centering implies 

that the column wise averages for each variable 𝑛 are subtracted from each individual 

spectrum’s corresponding 𝑛 variables in the in the evaluation set. 

3.7.2 Inner Product Correlation 

The inner product correlation is a technique for explaining the correlation 

between two matrices based on their inner products with the purposes of matrix 

transformation19. This inner product correlation equation is manipulated to compare a 

vector (𝒙1) to an evaluation set (𝑿𝑟) (2.61). 
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 1 − 𝑟1 = 1 −
𝑡𝑟(𝑿1

+𝑼𝐶𝜮𝐶𝑽𝐶
𝑇)

√(𝜎−1)2 𝑡𝑟[(𝜮𝐶
−1)

2
]

 (2.61) 

For variables 𝑼𝐶, 𝜮𝐶, and 𝑽𝐶, an SVD of the altered covariance matrix (𝑪2), where 𝑿𝑟 

are not mean-center, is calculated as 

 𝑪𝑟 =
𝑿𝑟

𝑇𝑿𝑟

𝑚−1
= 𝑼𝐶𝜮𝐶𝑽𝐶

𝑇 

The pseudoinverse, 𝑪𝑟
+, is calculated with SVD as follows 

  𝑪𝑟
+ = 𝑽𝑪𝜮𝐶

−1𝑼𝐶
𝑇 

The trace of the singular value diagonal matrix, 𝜮𝐶
−1, is used in equation 2.61. The vector 

(𝒙1) is represented as an outer product array 𝑿1 (Eq. 2.43). The variable 𝜎 is calculated 

by the pseudoinverse of the outer product of 𝒙1. Unlike the covariance array of the 

evaluation set, 𝒙1 is only rank one and is shown in a more simplistic form. 

 𝑿1
+ = 𝒗𝜎−1𝒖𝑇 =

𝒙1𝒙1
𝑇

‖𝒙1‖2 

The final merit (Eq. 2.61) is subtracted from one so the lower values can represent a 

higher degree of similarity.  

3.7.3 Divergence Criteria 

The divergence criteria was originally introduced to measure the difference 

between two probability distributions20 but, in this case, can be used to compare the 

differences between two calibration spaces. This equation, like the inner product 

correlation, can be manipulated to compare a vector (𝒙1) and an evaluation set (𝑿𝑟) (Eq. 

2.62).  

 𝐷𝑖𝑣 = |

𝟏

𝟐
𝑡𝑟((𝑿1 − 𝑪𝑟)(𝑿1

+ − 𝑪𝑟
+))

+
𝟏

𝟐
𝑡𝑟((𝑿1

+ + 𝑪𝒓
+)(𝒙1 − 𝒙̅𝑟)(𝒙1 − 𝒙̅𝑟)𝑇)

| (2.62) 
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The divergence criteria uses the non-mean centered covariance array (𝑪𝑟), the 

pseudoinverse of the covariance array (𝑪2
+), the outer product array of the spectrum 𝒙1 

(𝑿1), the pseudoinverse of 𝑿1 (𝑿1
+), and the mean of the evaluation set 𝒙̅𝑟 spectra all 

previously defined.  

3.7.1 Q Residual and Projection Angle 

The 𝑄 residual measurement is a common outlier determination merit. In this 

work, the magnitude of the 𝑄 residual between a sample and an evaluation set domain 

can be used to determine similarity (Eq. 2.63). 

 𝑄 = ‖𝒙1
𝑞‖

2
 (2.63) 

For the calculation of 𝒙1
𝑞
 (Eq. 2.64), an SVD is calculated for the evaluation set (𝑿𝑟) (Eq. 

2.65).  

 𝒙1
𝑞 = (𝑰 − 𝑽𝑟𝑽𝑟

𝑇)𝒙1 (2.64) 

 𝑿𝑟 = 𝑼𝑟𝜮𝑟𝑽𝑟
𝑇 (2.65) 

The outer product of the eigenvectors (𝑽𝑟) along with an identity matrix (𝑰) are used to 

orthogonally project 𝒙1 into the evaluation set spectral space. The sine of the angle 

between the orthogonally projected spectrum, 𝒙1
𝑞
,  and the original spectrum, 𝒙1, are then 

used as an additional measure of similarity (Eq. 2.66).  

 𝑠𝑖𝑛 𝜃 =
‖𝒙1

𝒒
‖

‖𝒙1‖
 (2.66) 

3.7.2 Merit Summary 

Table 2.4 has a complete list of the sample vector to calibration domain merits 

used to select the matrix matched calibration sets. Only the raw spectral methods 

(Spectral) are used to calculate these merits. All of the merits listed are represented in the 
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calibration set methods by the cross modeling techniques. For the merits requiring SVD 

calculations, the number of PC’s required to represent up to 99% of the cumulative 

variation for each calibration set was initially calculated. The average number of required 

PC’s across all of the calibration sets being compared was the number of PC’s used for 

the merits requiring SVD calculations.  

 

Table 2.4. Sample vector to calibration domain merits for calibration set comparisons for 

Spectral merits. (Notations indicated in footnotes). 

Category Merit Input Assignments Equation Merit ID 

Spectral 𝑀𝐷 𝒙1 = 𝒙𝑜/𝑡  2.58 H35 

Spectral 1 − 𝑟1 𝒙1 = 𝒙𝑜/𝑡  2.61 H36 

Spectral 𝐷𝑖𝑣 𝒙1 = 𝒙𝑜/𝑡  2.62 H37 

Spectral 𝑄 𝒙1 = 𝒙𝑜/𝑡  2.63 H38 

Spectral 𝑠𝑖𝑛 𝜃 𝒙1 = 𝒙𝑜/𝑡  2.66 H39 

𝒙𝑜/𝑡 : sample removed from calibration set (𝒙𝑜) or target sample (𝒙𝑡) 

 

4. Methods for Selecting Matrix Matched Calibration Sets  

 General Process Description for Calibration Set Comparison 

Figure 2.4 shows the process used to identify the appropriate matrix matched 

calibration set for a target sample. This schematic identifies specifically where and how 

the cross modeling, calibration set comparison merits, and data fusion are brought 

together.  
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Figure 2.4. Schematic for calibration set selection process 

 

For this work, each of the local calibration sets is manually formed based on the 

known sample matrix information. After determining the local calibration sets, one 

sample is removed from the first calibration set. This calibration sample, the target 

sample, and evaluation sets are used to calculate the matrix matching merits described 

above along with the cross modeling procedure. This process repeats until all of the 
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calibration samples for the first calibration set are processed. A data matrix is formed 

with rows of calibration set comparison merits, including the cross modeling generated 

merits, and columns of the merits calculated for each of the calibration samples removed 

from the calibration set. The individual rows of calibration set comparison merits for all 

of the calibration samples in the calibration set are averaged together into one column 

vector of comparison merits representing the overall degree of matrix matching for the 

first calibration set. This process repeats for each calibration set until there is one column 

of comparison merit data for each calibration set. Figure 2.2 shows this concept for a 

single comparison merit, 𝑒21. Data fusion methods are then used to select which of the 

calibration sets has the highest degree of matrix matching for the target sample.  

 Fusion Rules 

Multiple fusion methods are used in this work, specifically SUM (Eq. 2.67), 

which calculates the sum of the similarity measures for each column, MED (Eq. 2.68), 

which calculates the median across all similarity measures, and L2 (Eq. 2.69), which is 

the Euclidean norm of the vector of similarity measures21.  

 𝑆𝑈𝑀𝑔 = ∑ 𝑆𝑖
𝑓
𝑖=1   (2.67) 

 𝑀𝐸𝐷𝑔 = med{𝑆1, … 𝑆𝑓} (2.68) 

 𝐿2𝑔 = √∑ (𝑆𝑖)2𝑓
𝑖=1  (2.69) 

In these equations, 𝑆𝑖 denotes each similarity measurement, where 𝑓 is the 

number of similarity measures and 𝑔 is the calibration set number. The raw comparison 

values (raw) after unit length normalization and the rank values (rank) for each 

comparison measure across calibration sets are used with each of the fusion methods, 

resulting in six final rankings. The raw and rank inputs are described in detail in the 
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Chapter 1 section 3. The rankings from each of these six methods are used in determining 

the final calibration set. The calibration set that is most consistently (four of the six rules) 

ranked lowest across the fusion rules is selected. All figures for the fusion ranking 

methods are shown in the order of 𝑆𝑈𝑀𝑔 (raw), 𝑆𝑈𝑀𝑔 (rank), 𝑀𝐸𝐷𝑔 (raw), 𝑀𝐸𝐷𝑔 

(rank), 𝐿2𝑔 (raw), and 𝐿2𝑔 (rank). As each of the six rules can rank the calibration sets 

slightly differently, the consensus across all six allows for a confident decision about the 

matrix matching potential of the calibration set selected.  

Each row of merits in the comparison merit matrix is normalized to unit length 

prior to analysis with the fusion rules. As all of the comparison merits presented have the 

potential to be different levels of magnitude, normalization is used to weight all of the 

comparison merits evenly so that one merit does not have more influence than another.  

 Cross Modeling 

The cross modeling method is used for 38 of the 39 merits described above in 

Tables 2.1-2.4. The merit 𝑒22 is excluded from the cross modeling process as the purpose 

of this merit is to assess how well each calibration set predicts its own samples. There is 

no benefit to using evaluation sets to predict calibration samples without the target 

sample being included.  

 Latent Variables Selection 

The prediction based merits and orthogonal projection to an estimated regression 

vector (OP) merits all require tuning parameter selection as these are based on PLS 

algorithms. Five LV’s are used for each calibration set based on equation 2.13. It was 

determined through preliminary local models that five LV’s covered a meaningful 

amount of information for these datasets. The identified tuning parameter (𝐿𝑉′) at the 
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bottom of the “U-curve” along with four surrounding tuning parameters (two on each 

side of 𝐿𝑉′) are how the LV’s are selected for all merits requiring LV selection. In 

situations where the minimum LV (𝐿𝑉′) is less than 3, LV’s are added on the right for a 

total of five LV’s. For example, if 𝐿𝑉′ = 2 then LV’s 1-5 would be used. Using this 

method of LV model selection, the same five LV’s are not required for each of the 

calibration and evaluation sets.  

 Spectral Preprocessing 

In every instance in this work where a PLS algorithm is used the spectra and the 

reference value data are mean-centered based on the mean of the calibration spectra and 

calibration reference values. 

 Matrix Matching Assessment 

For prediction error matching (Eq. 2.10), 𝛼𝑗 was calculated for 𝑦̂𝑗 − 𝑦 equivalent 

to -1, 0 and 1. For the slope matching plots 𝛼𝑗 was set to 0, 1, and 2 for predictions of 

both the individual leave-one-out calibration samples and target sample. 

5. Datasets 

 NMR 

  1H-NMR spectra ranging from 0.6425-3.8403 ppm were collected for 231 

mixtures of three alcohols (propanol, butanol, and pentanol). Each alcohol component 

had a concentration of 50 mM and was represented at 21 concentration levels from 0-

100% in 5% increments22. For this work, only the mixtures containing at least 5% of each 

alcohol component are used (171 samples). Six calibration sets were formed keeping 

propanol and butanol components within 25% ranges as interferent species using 

pentanol as the analyte (Table 2.5). One sample from each calibration set was selected at 
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random as a target sample. The concentrations of the target samples for each species is 

noted in parenthesis in Table 2.5. The spectral range used was 1.45-1.65 ppm as the peak 

shifts in this range had the most visible variability. The spectra over this range of peak 

shifts for the six calibration sets and average spectrum for each calibration set are shown 

in Figure 2.5.  

 

Table 2.5. NMR spectra alcohol concentrations ranging from 5-90% for each of the three 

alcohols (pentanol, propanol, and butanol) for six calibration sets.The target sample 

alcohol concentrations from each set are noted in parentheses. 

Cal Set %Pentanol* %Propanol %Butanol # Samples 

1 5-30 (5) 5-30 (15)  65-90 (80) 20  

2 5-30 (10) 35-60 (55) 35-60 (35) 20 

3 5-30 (30) 65-90 (65) 5-30 (5) 20 

4 10-60 (30) 5-30 (25) 35-60 (45) 35 

5 40-90 (70) 5-30 (10) 5-30 (20) 35 

6 10-60 (25) 35-60 (55) 5-30 (20) 35 

*Pentanol is the analyte for this work. 
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Figure 2.5. NMR calibration spectra for six calibration sets. Individual spectra for each 

calibration set from 1.45-1.65 ppm 875 chemical shift measurements (A); average 

calibration for each calibration set from 1.45-1.65 ppm 875 chemical shift measurements 

(B).  

 

 Corn 

Near infrared spectra (NIR) for corn ranged from 1100 to 2498 nm at 2 nm 

intervals for 80 corn samples using three spectrometers (M5, Mp5, and Mp6)23 (Fig. 2.6). 

To decrease computation time, 4 nm intervals for the spectra are used in this work, 

resulting in 350 variables. Reference values were provided for moisture, oil, protein, and 

starch compositions. Only the moisture and oil values are used. The same 10 samples 

selected at random from each instrument (30 samples total) are used as target samples. 

Distributions for the two reference values of the 70 calibration samples and 10 target 

samples are shown in Figure 2.7. The remaining 210 spectra from all three instruments 

are used as three spectral calibration spaces to demonstrate matrix matching.  
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Figure 2.6. Corn instruments M5, Mp5, and Mp6 calibration spectra. Ranging from 1100-

2400 nm wavelengths over 350 variables. 

 

 

Figure 2.7. Corn reference value calibration and target distributions. Moisture (%) (A), 

oil (%) (B), distributions for 70 calibration samples (blue) and 10 target samples (red). 
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6. Results for Selecting Matrix Matched Calibration Sets 

 Matrix Matching 

As mentioned, the nuclear magnetic resonance (NMR) calibration sets were 

formed by limiting the concentrations of the interferent components (propanol and 

butanol) to a 25% range. This design is specifically used to demonstrate that, not only 

does the analyte concentration in the calibration set need to be similar to the target 

sample, but the interferent concentrations need to be similar for a sample to be truly 

matrix matched. The NMR spectra of each of the calibration sets in Figure 2.5 show this 

trend. This is especially true in calibration sets 1-3 where the analyte concentrations are 

identical while the interferent concentrations vary widely. Each of the chemical shift 

peaks, because of the nature of the molecular species and NMR itself, is affected by the 

concentrations of the other alcohol species in the solution.  

The target sample from set 5 is used to show matrix matching effects as the 

analyte value is unique to the set 5 analyte distribution (Table 2.5). The set dependency 

of target sample 5 makes the matrix matching differences more distinct for the purposes 

of this work. Figure 2.8 shows both the prediction error and the prediction (slope) plots 

for target sample 5 predicted by each of the other calibration sets for a single latent 

variable (LV). For these matrix matching assessment plots, calibration sets 1, 2, 3, and 5 

use LV 3, calibration set 4 uses LV 5, and calibration set 6 uses LV 4. These LV’s 

correspond to the 𝐿𝑉′ discussion in the LV selection methods (section 2.2). 

As discussed, the prediction error plots identify matrix matched samples through 

convergence of 𝛼𝑗 around 1 when |𝑦̂ − 𝑦| is equivalent to 0. The spread between 𝛼𝑗 at 

|𝑦̂ − 𝑦| = 1, giving the shape of the “V”, are also important for identifying matrix 



55 

 

matched samples. In Figure 2.8 A5, representing calibration set 5, is the only prediction 

error plot that meets both of these criteria. All of the target prediction errors, shown in 

red, have similar 𝛼𝑗’s at |𝑦̂𝑗,𝑡 − 𝑦𝑡| = 0 compared to the calibration prediction error 𝛼𝑗’s 

at |𝑦̂𝑗,𝑜 − 𝑦𝑜| = 0 that are close to 𝛼𝑗 = 1. The 𝑎𝑗’s for |𝑦̂𝑗,𝑡 − 𝑦𝑡|=1 in A5 are only 

similar to the 𝛼𝑗’s for |𝑦̂𝑗,𝑜 − 𝑦𝑜| = 1 for this one plot. There are a few samples within 

calibration set 5 that do not follow these matrix matching trends, but the majority of the 

calibration samples’ scaled prediction errors are similar to the target samples prediction 

errors. These divergent samples would possibly be identified as outliers. No efforts were 

made for this dataset to remove outliers beforehand, as the purpose was to show general 

consensus of matrix matching between calibration sets. For calibration set 4, Figure 2.8 

A4, there was a general convergence of 𝛼𝑗′𝑠 around 1 for both |𝑦̂𝑗,𝑜 − 𝑦𝑜| = 0 and |𝑦̂𝑗,𝑡 −

𝑦𝑡| = 0. However, the general shape of the “V” (𝛼𝑗 at |𝑦̂𝑗 − 𝑦| = 1) does not match 

between the calibration samples and target sample prediction errors. 
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Figure 2.8. NMR prediction error matches for |𝑦̂𝑗,𝑜 − 𝑦𝑜| (blue) and |𝑦̂𝑗,𝑡 − 𝑦𝑡| (red) (A1-

6) and prediction error matches for |𝑦̂𝑗,𝑜 − 𝑦𝑜| (blue) and |𝑦̂𝑗,𝑡 − 𝑦𝑜| (red) (B1-6) for 

target (𝑡) sample 5 for the six calibration sets.  

 

Also shown in Figure 2.8 B1-6 are the prediction errors for |𝑦̂𝑗,𝑜 − 𝑦𝑜| (blue) and 

|𝑦̂𝑗,𝑡 − 𝑦𝑜| (red). For this set of plots, the true value of each individual calibration sample 

in the set (𝑦𝑜) is represented as a proxy for the true value of the target sample in the 
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|𝑦̂𝑗,𝑡 − 𝑦𝑜| scaled prediction errors. Again for these plots, consistent 𝛼𝑗′𝑠 at |𝑦̂ − 𝑦| = 1 

help identify matrix matching. The other indicating factor for matrix matching here is if 

the 𝛼𝑗′𝑠 at |𝑦̂𝑗,𝑡 − 𝑦𝑜| = 0 surround 𝛼𝑗 = 1 or are near 𝛼𝑗 = 1. This situation indicates 

that 𝑦̂𝑗,𝑡 ≈ 𝑦𝑜. In these plots, the only case where 𝛼𝑗′𝑠 at |𝑦̂𝑗,𝑡 − 𝑦𝑜| = 0 surround 𝛼𝑗 = 1 

is for plot B5, corresponding to calibration set 5.  

The prediction slope plots, Figure 2.9, distinctly show that calibration set 5 (A5) 

is the best set for target sample 5 as all the sample predictions for calibration and target 

have the same slopes. 

 

 

Figure 2.9. NMR prediction slopes for 𝑦̂𝑗,𝑜 (blue) and 𝑦̂𝑗,𝑡 (red) (A1-6) target (𝑡) sample 5 

for the six calibration sets.  

 

The corn calibration sets are formed based on different instruments. Unlike the 

NMR, the matrix matching plots for the corn have the same chemical compositions. 
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However, the instrumental difference, such as wavelength dependent pathlength shifts 

can cause physical matrix perturbations (𝑃) represented in equation 2.2. Figure 2.10 are 

the prediction error matrix matching plots for matching the scaled predictions of target 

sample 1 (measured on instrument M5) to the calibration sets formed by each instrument, 

M5, Mp5, and Mp6. The LV’s represented for these plots are LV 7, 10, and 11 for 

instruments M5, Mp5, and Mp6 respectively.  

The same types of matrix matching trends as the NMR results are seen with the 

corn dataset prediction errors (Fig. 2.10) and slope plots (Fig. 2.11). The matrix matched 

calibration set, M5 (Fig. 2.10 A1), has a similar convergence for all 𝛼𝑗’s when |𝑦̂𝑗 − 𝑦| =

0 that are around an 𝛼𝑗 = 1. Also, this plot shows similar “V” shapes as many of 𝛼𝑗’s 

when |𝑦̂ − 𝑦| = 1 follow the same trends for both |𝑦̂𝑗,𝑜 − 𝑦𝑜| (blue) and |𝑦̂𝑗,𝑡 − 𝑦𝑡| (red).  

In the other two plots (A2 and A3) |𝑦̂𝑗,𝑡 − 𝑦𝑡| does not resemble the calibration prediction 

errors, (|𝑦̂𝑗,𝑜 − 𝑦𝑜|).   

In plots B1-3 the prediction differences between the predicted target sample and 

the individual calibration samples’ true values are shown. The M5 calibration set (B1) is 

the only plot where the 𝛼𝑗’s at |𝑦̂𝑗,𝑡 − 𝑦𝑜| = 0 are around 𝛼𝑗 = 1.  
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Figure 2.10. Corn prediction error matches |𝑦̂𝑗,𝑜 − 𝑦𝑜| (blue) and |𝑦̂𝑗,𝑡 − 𝑦𝑡 | (red) (A1-3) 

and prediction error matches for |𝑦̂𝑗,𝑜 − 𝑦𝑜| (blue) and |𝑦̂𝑗,𝑡 − 𝑦𝑜| (red) (B1-3) for target 

(𝑡) sample 1 for the instrumental calibration sets (M5 (1), Mp5 (2), and Mp6 (3)). 

 

Instrument M5 is also identified as the best matrix matched calibration set by the 

slopes of the predictions between the calibration samples and target sample (Figure 2.11 

A1).  

 

 

Figure 2.11. Corn prediction slopes for 𝑦̂𝑗,𝑜 (blue) and 𝑦̂𝑗,𝑡 (red) (A1-3) target (𝑡) sample 

1 for the instrumental calibration sets (M5 (1), Mp5 (2), and Mp6 (3)). 
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The prediction errors with scalar influence for both the prediction errors and slope 

matrix matching plots very clearly show which calibration set is matrix matched for both 

the NMR dataset and the corn dataset selected target samples. The combination of the 

other merits proposed in this work should be able to similarly identify the same 

calibration sets.  

 Calibration Set Comparison Merits Calibration Set Selection 

The calibration set comparison merits calculated for NMR target sample 5 and 

each calibration sample from each calibration set with the cross modeling method are 

included in Table 2.1-2.4. The calibration set comparison merits are normalized to unit 

length across the rows for each of the six calibration sets are shown in Figure 2.12. 

Corresponding rows identifying the individual merits for this figure are listed in Table 

2.6. The Y merits span from rows 1-35, OP merits from 36-695, and Spectral merits from 

696-1295. The 5 LV’s shown for the Y and OP merits ranged from 1-5 for calibration 

sets 1, 2, 3, and 5, 3-7 for calibration set 4, and 2-6 for calibration set 6. Principal 

components 1 through 18 are used in order to represent on average up to 99% of the 

cumulative spectral variability for the five sample vector to calibration domain Spectral 

merits requiring principal component selection.  

For Figure 2.12, the minimum values for each merit represents a higher degree of 

matrix matching. In general, most of the merits agree that calibration set 5 is the best 

matrix matched calibration set for target sample 5. The fusion ranking methods (Fig. 2.13 

A) for these similarity merits agree with this visual interpretation that calibration set 5 is 

the lowest rank calibration set for each of the six data fusion ranking methods. There are 

instances throughout the merits where specific LV’s, PC’s, or merit representations do 
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not identify calibration set 5 as the best calibration set. For example from rows 366-425, 

calibration set 2 appears to have the lowest merit values. These rows correspond to the 

Procrustes analysis dilation merits, 𝜌, calculated for the sample domain to calibration 

domain comparison for the OP merits (Table 2.6). These merits show that the dilation 

required on average for the orthogonal projections to the corresponding model regression 

vector of each calibration sample in calibration set 2 and calibration set 5 resemble 

dilation measurements for the orthogonal projections of target sample 5 into each of these 

calibration spaces respectively. This merit is an example of why only using one similarity 

merit gives a limited perspective for determining similar calibration sets/samples for 

matrix matching purposes. Using all 39 merits with cross modeling (for 38 of the 39 

merits) over multiple tuning parameters helps to provide a full picture of how target 

sample 5 is matrix matched to each calibration set.  

These merits can also show which calibration sets are similar to one another. 

Calibration sets 2 and 6 appear to have similar merit trends. Looking at both the spectra 

(Fig. 2.5) and the chemical profiles (Table 2.5), sets 2 and 6 have overlapping peak shifts 

and the pentanol (analyte) and propanol concentration ranges overlap.  

Figure 2.13 B and C show the prediction errors of the target sample 5 for each 

calibration set across the 5 selected LV’s. Figure 2.13 B1 are the prediction errors shown 

on a logarithmic scale to help with visual interpretation. Calibration set 4 shows that 

specific models for the LV’s represented predict the target sample slightly better in 

comparison to the predictions errors for the 5 LV’s represented by the calibration set 5 

models. These models from calibration set 4 might represent chance predictions. In (Fig. 

2.8 A4) the predictions error for the target samples calibration set 4 were similar to the 
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calibration samples at |𝑦𝑗̂ − 𝑦| = 0; however, the prediction errors between the target and 

the calibration samples did not scale the same with different 𝛼𝑗’s. The prediction errors 

for calibration set 5 are still relatively low in comparison to the other four calibration sets.  

 

 

Figure 2.12. NMR Y, OP, and Spectral comparison merits of target sample 5 for each 

calibration set. 
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Table 2.6. Calibration set comparison merits and corresponding rows for all corn and 

NMR merit target samples. 

Merit Category Merit Merit IDa Rows (NMR) Rows (Corn) 

Y 𝑒22 H1 1-5 1-5 

 𝑒12 H2 6-35 6-20 

OP Euc  H4 36-65 21-35 

 Euc  H26 66-95 36-50 

 Euc  H27 96-125 51-65 

 𝐷𝑒𝑡  H6 126-155 66-80 

 𝐷𝑒𝑡  H24 156-185 81-95 

 𝐷𝑒𝑡  H25 186-215 96-110 

 𝐹  H8 216-245 111-125 

 𝐹  H28 246-275 122-140 

 𝐹  H29 276-305 141-155 

 𝜌  H9 306-335 156-170 

 𝜌  H10 336-365 171-185 

 𝜌  H31 366-395 186-200 

 𝜌  H32 396-425 201-215 

 𝐸𝐼𝑆𝐶 𝑋𝑏𝑑 H13 426-455 216-230 

 𝐸𝐼𝑆𝐶 𝑋𝑏𝑑 H14 456-485 231-245 

 𝐸𝐼𝑆𝐶 𝑏𝑑 H17 486-515 246-260 

 𝐸𝐼𝑆𝐶 𝑏𝑑 H18 516-545 261-275 

 𝐸𝐼𝑆𝐶 𝑏  H11 546-575 276-290 

 𝐸𝐼𝑆𝐶 𝑏  H12 576-605 291-305 

 𝑀𝐷𝑝
𝑣 H23 606-635 306-320 

 𝑀𝐷𝑣  H21 636-665 321-335 

 𝑀𝐷𝑣  H22 666-695 336-350 

Spectral 1 − 𝑐𝑜𝑠2 𝜃 H3 696-701 351-353 

 Euc H5 702-707 354-356 

 𝐷𝑒𝑡 H7 708-713 357-359 

 𝐹 H30 714-719 360-362 

 𝜌 H33 720-725 363-365 

 𝐻 H34 726-731 366-368 

 𝐸𝐼𝑆𝐶 𝑋𝑏𝑑 H15 732-737 369-371 

 𝐸𝐼𝑆𝐶 𝑋𝑏𝑑 H16 738-743 372-374 

 𝐸𝐼𝑆𝐶 𝑏𝑑 H19 744-749 375-377 

 𝐸𝐼𝑆𝐶 𝑏𝑑 H20 750-755 378-380 

 𝑀𝐷 H35 756-863 381-422 

 𝑄 H38 864-971 423-464 

 𝑠𝑖𝑛 𝜃 H39 972-1079 465-506 

 1 − 𝑟1 H36 1080-1187 507-548 

 𝐷𝑖𝑣 H37 1188-1295 249-590 
aRefer to Tables 2.1, 2.2, 2.3, and 2.4 for equations relative to each Merit ID 
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Figure 2.13. NMR fusion rankings and model target prediction errors for target 5. Six 

fusion ranking method ranks for each of the six calibration sets for target sample 5 (A); 

RMSEV’s for target sample 5 across 5 selected LV’s for PLS models formed by each of 

the 6 calibration sets (B); plot B shown on a logarithmic scale (B1).  

 

 The calibration set comparison merits, fusion ranks, and model prediction errors 

for the six target samples from the NMR dataset are shown in Figure 2.14. Target 

samples 1, 2, 3, 5, and 6 all consistently had a majority of the comparison merits agree on 

the correct respective calibration set as being the best matrix matched set. From the 

RMSEV’s (Fig. 2.14 C and C1) many of the calibration sets result in similar predictions 
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of the target samples regardless of a matrix matched calibration set, except for target 

sample 5, where sets 4-6 had noticeably lower prediction errors.  

 

 

Figure 2.14. NMR calibration set comparison merits (A), fusion rankings (B), RMSEV’s 

(C) for all 6 target samples for each calibration set, and plot C on a logarithmic scale 

(C1). 
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Target sample 4 similarity merits did not identify calibration set 4 as the correct 

set (it was ranked 2nd). Looking at the matrix alcohol concentrations between sets 2 and 4 

(Table 2.5), both the analyte (pentanol) and butanol concentration ranges overlap. The 

propanol concentrations do not overlap, but target sample 4 is on the threshold between 

the concentration levels of propanol for these two sets at 25%, which is between 5-30% 

in set 4 and close to 35-60% in set 2. The analyte range was also wider for calibration set 

4 than for set 2. As mentioned in Chapter 1, a pair of matrix matched samples should 

have both spectral and chemical similarities for true matching24. The definition of 

chemical similarity consists of having limited chemical ranges for all species in the 

matrix. As calibration set 2 has a smaller chemical range, it is more matrix matched at 

some degree to target sample 4 than the larger analyte range in calibration set 4.  

For the corn dataset, the 39 comparison merits are calculated for the three 

instrument calibration sets for target sample 1 measured on the M5 instrument. The 2 Y 

merits (rows 1-20), 22 OP merits (rows 21-350), and 15 X merits (rows 351-590) from 

Table 2.6 are represented in Figure 2.15. 

The LV’s for the Y and OP merits range from 5-9 for M5, 8-12 for Mp5 and 9-13 

for Mp6. Principal components represented are 1 to 14 for the five Spectral merits 

requiring PC selection. For target sample 1 the merits appear to consistently identify 

calibration set M5 as the best matrix matched set. This visual identification is supported 

by the consistency across the six fusion rankings and justified by the target prediction 

errors in (Fig. 2.16 A and B). 
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Figure 2.15. Y, OP, and Spectral merits of target sample 1 for each calibration set M5, 

Mp5, and Mp6. 

 

 

Figure 2.16. Corn fusion rankings and model prediction errors for target sample 1. Six 

fusion ranking method ranks for each of the six calibration sets for target sample 1 (A); 

RMSEV for target sample 1 across 5 selected LV’s for PLS models formed by each of 

the three instrumental calibration sets (B). 
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There are a few merits (or specific tuning parameters calculated for a single merit) 

where Mp5 or Mp6 has lower values than M5. However these rows do not correspond to 

the Procrustes analysis dilation merit, 𝜌, for the OP merits as for the NMR dataset. This 

indicates that this merit is still valid for assessing calibration set matrix matching 

potential.   

Figures 2.17 and 2.18 show the calibration set comparison merits for all 30 target 

samples from each of the three instruments (10 of the same samples removed from each 

instrument dataset) for the corn dataset moisture (%) reference values. Table 2.7 shows 

the resulting fusion rank calibration set selections based on consistently minimum 

rankings for the six fusion rules. The target samples from Mp5 and Mp6 instruments 

show that this same dilation merit, 𝜌, has lower values for the Mp5 and Mp6 instrument 

calibration samples as would be expected.  
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Figure 2.17. Corn calibration set comparison merits for target samples 1-5 from each 

instrument for moisture (%) reference value.  
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Figure 2.18. Corn calibration set comparison merits for target samples 6-10 from each 

instrument for moisture (%) reference value. 

 

The target samples from M5 and Mp5 are all consistently identified to matrix 

match their correct corresponding instrument based on Table 2.7. The target samples 

from Mp6, using the calibration set comparison and fusion ranking rules, have calibration 

set Mp5 selected as the better matrix matched calibration set. Because of the nature of the 
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ranking process, when two calibration sets have the same or very similar the calibration 

set comparison merit input values they can mathematically be assigned the same rank; 

however, the first calibration set numerically is assigned the lower rank value as there can 

only be one calibration set this assigned a rank of 1. As the Mp5 and Mp6 instruments are 

very closely related, seen spectrally in Figure 2.6, the regression prediction based merits 

(Y merits and the OP merits) were often very similar to one another for the two 

instruments. This trend is seen in the Mp5 and Mp6 target sample merit inputs for many 

of the target samples (Fig. 2.17 and 2.18). The Spectral merits in the case of Mp5 and 

Mp6 samples were much more efficient at identifying the unique differences between the 

Mp5 and Mp6 calibration samples in comparison to the corresponding target samples. 

This indicates that the prediction models between Mp5 and Mp6 calibration sets are very 

similar even with the slight spectral discrepancies. 

The combination of spectral and prediction based merits need to be used together 

to assess the best matrix matched calibration set to represent both spectral and chemical 

similarities. As the correct calibration set is not selected for Mp6 this could indicate that 

there is more weight representing the Y and OP merits due to the number of merits. For 

this dataset around 60% of the merits are based on the predictive regression models and 

40% are spectrally based. As the number of spectral merits fluctuates with the number of 

PC’s required to account for up to 99% of the cumulative variation, it can be difficult to 

maintain an even balance of merit types for each dataset. Methods for balancing these 

merits is not investigated in this work but should be a considered in future work.  
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Table 2.7. Fusion rank calibration set selection for each of the 10 target samples from 

each instrument for moisture (%) reference value. 

Sample M5 Mp5 Mp6 

1 M5 Mp5 Mp5 

2 M5 Mp5 Mp5 

3 M5 Mp5 Mp5 

4 M5 Mp5 Mp5 

5 M5 Mp5 Mp5 

6 M5 Mp5 Mp5 

7 M5 Mp5 Mp5 

8 M5 Mp5 Mp5 

9 M5 Mp5 Mp5 

10 M5 Mp5 Mp6 

Correct/total 10/10 10/10 1/10 

 

 

Figures 2.19 and 2.20 and Table 2.8 contain the calibration set comparison merits 

and calibration set selection results for all ten target samples measured on the three 

instruments for the reference property oil (%) for the corn dataset. As already discussed, 

the merits that most clearly identify the correct calibration set were the Spectral merits 

(rows 351-590). These merits remain constant for all reference values and therefore show 

the same trends as Figures 2.17 and 2.18. Even though M5 instrument target samples all 

have the correct calibration set selected, there seemed to be more overlap between the Y 

merits and orthogonal project merits for calibration sets M5 and Mp5 than seen with the 

moisture (%) reference values. This could indicate that the spectral regions that are most 

influential to predicting oil (%) do not vary as greatly between these two instruments. 

The correct calibration sets are ultimately identified and selected for all M5 and Mp5 

target samples. The ability of this process to select matrix matched calibration sets across 
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multiple reference values indicates the adaptable nature of the algorithm. Though this 

particular dataset could be correctly identified with the Spectral merits alone, this will not 

be the case for every dataset.  

 

 

Figure 2.19. Corn calibration set comparison merits for all samples 1-5 from each 

instrument for oil (%) reference value. 
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Figure 2.20. Corn calibration set comparison merits for all samples 6-10 from each 

instrument for oil (%) reference value. 
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Table 2.8. Fusion rank calibration set selection for each of the 10 target samples from 

each instrument for oil (%) reference value. 

Sample M5 Mp5 Mp6 

1 M5 Mp5 Mp5 

2 M5 Mp5 Mp5 

3 M5 Mp5 Mp5 

4 M5 Mp5 Mp5 

5 M5 Mp5 Mp5 

6 M5 Mp5 Mp5 

7 M5 Mp5 Mp5 

8 M5 Mp5 Mp5 

9 M5 Mp5 Mp5 

10 M5 Mp5 Mp5 

Correct/total 10/10 10/10 0/10 

 

Tables 2.7 and 2.8 indicate that calibration set Mp5 is a better matrix match to the 

Mp6 target samples than the Mp6 calibration set. If both the Mp5 and Mp6 instruments 

predict the target samples from Mp6 similarly based on similar linear regressions than it 

does not matter if the Mp5 instrument is the selected matrix match calibration set. Figure 

2.21 shows the predictions versus the true values for the Mp6 target samples for each of 

the three instruments for moisture and oil prediction properties. Table 2.9 has the 

regression merits for these predictions. The LV’s represented for each of the models are 

based on equation 2.13 for LV selection of 𝐿𝑉′. For the moisture property the prediction 

error is much greater for the Mp5 predictions than the Mp6 predictions (0.65 vs. 0.16); 

however, the R2 values, slope and intercept between linear regressions formed by these 

two sets is similar. For the property oil, all three regressions from Figure 2.21 and Table 

2.9 are similar to one another for all three regression models. The current prediction 

based merits for calibration set comparison were not able to differentiate these true 
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prediction differences between the Mp5 and Mp6 calibration regressions for the 10 target 

samples for either prediction property.    

 

 

Figure 2.21. Predicted moisture (%) values and oil (%) values for Mp6 target samples 

versus true measured moisture (%) (A) and oil (%) (B) values using regression model 

built with each of the three instrument calibration sets.  

 

Table 2.9. Regression statistics for Mp6 target sample moisture (%) and oil (%) 

predictions versus the true measured moisture (%) and oil (%) values for each of the three 

instrument calibration sets.  

Property Model LV RMSEV R2  Intercept Slope 

Moisture M5 7 1.44 0.70 -3.13 1.17 

 Mp5 10 0.65 0.91 -4.25 1.35 

 Mp6 11 0.16 0.95 -4.51 1.44 

Oil M5 10 0.10 0.77 0.68 0.81 

 Mp5 10 0.25 0.77 1.17 0.73 

 Mp6 12 0.08 0.86 0.97 0.71 
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7. Conclusion 

The 39 merits, made up of regression model prediction based merits, orthogonal 

projections to estimate regression vectors, and raw spectral comparisons, in combination 

with cross modeling and multiple tuning parameters, are sufficient in identifying matrix 

matched calibration sets for fixed calibration sets with known chemical and physical 

matrices, such as the NMR and corn data sets. The matrix matched calibration set is 

correctly identified for many of the target samples presented in this study. Data fusion 

methods are used to automatically identify matrix matched calibration sets for the target 

spectrum for matrix difference due to both analyte and interferent compositions and 

instrumental differences. The corn data set demonstrates that the balance between 

prediction based (Y and OP) and raw spectral (Spectral) merits is important depending on 

the matrix differences between the different calibration sets. The type of matrix effects 

(instrumental versus chemical) plays a role in determining which calibration set 

comparison merits should be used in this process. If the differences in matrix effects are 

known to only be based on instrumental differences and not chemical, then spectral 

comparison merits would be able to identify the matrix matched calibration set, at least 

based on the corn dataset results. 

As a result of the data fusion methods used, this process is not limited by how 

many rows of comparison data can be used, the comparison techniques and merits 

represented for these two data sets can be further expanded or limited as needed. The 

main limitation is computational time. The increase in array sizes and numbers of 

comparison merits does increase the time to calculate all of the cross modeling steps and 

fusion method calculations.  
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Another set of comparison merits, not currently included in the process, would be 

to apply variable (e.g. wavelength) selection techniques. Each merit would be calculated 

for each of the wavelength ranges selected. In the data shown in this work, the full 

wavelengths and chemical shift ranges are used. Additional rows for each merit would 

result from using multiple varying sizes of variable windows for subsets of the calibration 

set. Multiple sets of random variables (wavelengths) would also be an option. Another 

method of expanding or changing the ratios of the different merit types, would be to use 

another type of regression model vector (𝒃̂) algorithm. The examples above were based 

on 𝒃̂ calculated from a PLS regression models. Principal component regression, 

Tikhonov regularization25, or ridge regression26 could also be used instead of or in 

addition to PLS.  

Overall, this work demonstrates the utility of data fusion with various types of 

comparison merits for automatically identifying matrix matched calibration sets without 

the use of reference values for target samples. The next step would be to use these same 

comparison merits to evaluate calibration sets where the matrix differences are unknown.   
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Chapter 3: Local Adaptive Fusion Regression (LAFR) Process 

1. Introduction 

Local modeling methods have been widely proposed and used for many different 

applications in industrial processes1-9. A few of these applications include the 

pharmaceutical industry for active ingredient estimation9, the petrochemical industry as a 

real time quality control monitoring system1, and the agricultural industry for assessing 

corn grain hardness2. The benefit that local modeling techniques provide is the ability to 

assess important process properties in real-time without requiring offline methodology to 

measure these same properties. The main objective for these local modeling processes is 

to select a number of samples from a global sample set that are similar to a target sample 

in order to build a predictive model for the target sample. Local modeling approaches 

described for each of these applications recommend multiple types of local modeling 

parameters necessary for selecting local calibration samples. Local modeling parameters 

that can vary greatly between applications include similarity merits used to select samples 

from the global sample set that are similar to the target sample and methods for selecting 

the number of global samples to include in the local calibration sets. The differences in 

the local modeling parameters proposed are typically process and dataset dependent 

making it difficult to apply the same parameters across different types of applications. 

 Similarity Measures 

There are many combinations of similarity measures proposed for various local 

modeling methods. Reported spectral similarity measures include Euclidean distance7, 10-

11, Mahalanobis distance12-13, combinations of distance and angle measurements14, and 

merits such 𝑄 residuals and Hotelling’s T2 statistic5. There are also studies that propose a 
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variety of similarity measures based on reference value data, primarily prediction results6, 

13, 15-19. These types of similarity merits require a preliminary prediction model to be 

formed, either by the global dataset or a subset of the global samples. For any biased 

multivariate regression prediction models used in these methods, a tuning parameter must 

also be selected.  

Variations in the similarity measure(s) can affect which samples are selected for 

the local model and ultimately the performance of the model. In one study, Mahalanobis 

distances were compared to Euclidean distances as similarity measurements20. Of the four 

datasets that were assessed, the difference in the prediction error results from PLS 

models, between the local samples selected by Mahalanobis distance and Euclidean 

distance, changed depending on the dataset and the number of LV’s selected. Another 

study, using a multi-layer approach to local modeling, assessed nine different similarity 

measures including Euclidean distances of the predictions of local calibration models 

formed from each previous layer (a subset of the global samples) and the Euclidean 

distances of the scores of layer of samples calculated from PLS17. This study concluded 

that the best similarity measures for sample selection were dependent on the type of 

spectral pre-treatments used and the dataset itself. In another study, Mahalanobis 

distances calculated in three different ways were compared as similarity measures13. The 

Mahalanobis distances calculations included a typical spectral based distance, a modified 

Mahalanobis distance of principal component analysis (PCA) scores that were weighted 

for each principal component (PC) depending on the global sample predictions at that PC, 

and a modified Mahalanobis distance combining the spectral distance comparisons with 

distances of the global and target predictions based on a global calibration model. For 
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these three similarity measurement scenarios, the third method typically selected local 

calibration samples resulting in the lowest prediction errors for the target samples. 

However, using this method there is still a reliance on the selection of principal 

components for each Mahalanobis distance measurement and the predictive ability of the 

global calibration model for predicting the target samples initially. Another complicating 

factor for the third Mahalanobis distance merit described is the selection of a method for 

combining the spectral Mahalanobis distances with the prediction based Mahalanobis 

distances.  

Multiple local modeling methods propose combinations of two similarity 

measures5, 7, 13-14, 18. When more than one similarity measure is used, a method for 

combining these measures into a single similarity measure or similarity index is 

necessary. Equation 3.1 shows a generic form for calculating a similarity index (𝑆𝐼𝑖) by 

combining two similarity merits together (𝑆𝐼1 and 𝑆𝐼2) . 

 𝑆𝐼𝑖 = 𝛾𝑆𝐼1 + (1 − 𝛾)𝑆𝐼2 (3.1) 

In this equation, 𝛾 is referred to as a trade-off parameter and is set between 0 and 1 in 

order to give equal or varying weights to each of the individual similarity measures. This 

trade-off parameter has been shown to impact the prediction ability of the final local 

model. In a process using local modeling to track catalyst deactivation and recovery, two 

similarity merits, Hotelling’s T2 and 𝑄 statistic, are represented as 𝑆𝐼1 and 𝑆𝐼2 

respectively in equation 3.15. It was determined that for the process conditions of the 

catalyst system if 𝛾 = 0.01, as opposed to 𝛾 = 0, the correlation coefficients between 

measured and estimated results increased 15%, and the model target sample prediction 

errors decreased 10%. However, for these same experimental conditions if 𝛾 > 0.01 the 
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model performance tended to decrease. This indicates that the combination of both 

measurements helped the local model but only if the weight of the Hotelling T2 merit was 

much smaller than the 𝑄 residual merit.  

In another study, where a spectral similarity merit, Euclidean distance, was 

combined with chemical similarity information, based on a proposed adaptive algorithm 

for obtaining target prediction values, multiple trade-off parameters were assessed 

ranging from 0 to 1 in 0.1 increments21. It was determined that a trade-off of 0 or 1 

resulted in the highest prediction errors while trade-offs ranging between 0.1 and 0.9 

resulted in lower prediction errors.  

These two studies indicate local model improvement with the incorporation of 

more than one similarity merit; however, the selection of a trade-off parameter is an 

important factor in optimizing the final local model when only two similarity measures 

are represented. Overall, in terms of similarity merits, there is no consensus of which 

similarity measures are superior to others for local modeling as many different similarity 

merits and combinations of similarity merits are proposed in the literature discussed. One 

important conclusion from the various similarity measures proposed is that the 

incorporation of chemical information generally resulted in improvements in local model 

performance. This conclusion supports that fact that localization should be carried out 

with respect to both spectral matching and chemical matching22. However, tuning 

parameter selection is often necessary for incorporation of prediction based chemical 

information.  
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 Selection of Number of Samples 

Along with selecting similarity measures for local calibration models, the number 

of samples must also be selected. There are multiple proposed methods for this selection 

process; however, the selection methods are mainly determined by trial and error and are 

dependent on the local modeling results for the specific process or dataset used in the 

study5-7, 14, 23. This trial and error method is not ideal as it requires development time and 

is not adaptable to new process conditions requiring similar local modeling methods.  

The simplest method for selecting the number of samples is to set an integer based 

on known information about the dataset. In one study, where the objective was to monitor 

a catalytic process over time, the number of local calibration samples was set to window 

sizes of 10 and 20 days with a change of one day for each local calibration set5. A local 

calibration set was selected based on similarity of a target sample to the data in one of the 

local sets of 10 or 20 day data ranges. The problem with this type of method for setting 

the number local calibration samples is that, depending on day to day changes observed 

in the measurements, 10 or 20 days might capture too much or too little variability for 

accurately predicting a new sample. 

The number of samples selected can also be based on thresholds of the similarity 

measures. In a study focused on developing an adaptive local modeling algorithm for 

near infrared (NIR) data, many different local modeling parameters were proposed, 

including one to assist in selecting the number of local calibration samples7. The sample 

selection similarity merit used was spectral Euclidean distances. Local samples were 

selected if the Euclidean distance between the target and the global sample measured was 

less than 0.9. This 0.9 threshold was set based on trial and error methodology in order to 
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achieve a minimum of 50 samples in each local calibration set. Again, this method was 

reliant on the global dataset properties and based on one minimum sample number 

requirement.  

There are recent studies that have proposed adaptive local modeling techniques 

for updating the number of samples selected for each local model built6, 14, 23. For these 

adaptive techniques the global samples are still ranked based on a specific similarity 

measurement, and the number of samples included in the local model is based on 

building multiple local calibration models. In two of these studies, the optimal number of 

samples was selected by minimizing the prediction errors for the local calibration 

samples through cross-validation techniques14, 22. One drawback to this method is that 

low prediction errors for the calibration samples does not guarantee a low prediction error 

for the target sample. Another drawback is that tuning parameters still need to be selected 

for each model formed in order to compare the calibration prediction errors.  

The identified challenges in the local modeling processes discussed above are that 

there is no consensus on which similarity measures should be used, for similarity 

measures based on predictions, a tuning parameter must be selected, and methods for 

selecting the appropriate number of samples for the local calibration set are dataset 

dependent or dependent on calibration sample prediction errors. The algorithm proposed 

in this work, termed local adaptive fusion regression (LAFR), provides methodologies to 

alleviate some of these challenges. Chapter 2 described one step of the LAFR process for 

selecting a matrix matched local calibration set from manually generated calibration sets. 

In this process multiple similarity comparison merits, including both spectral and 

prediction based, multiple tuning parameters, a new technique proposed called cross 
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modeling, and data fusion methods are used. This step in the LAFR algorithm for 

comparing multiple local calibration sets allows for a wide variety of calibration sets with 

different sample sizes and reference value ranges to be formed and compared in order to 

address the challenges in the local modeling methods listed above.  

2. LAFR Algorithm 

The overall objective of the LAFR algorithm is to select a local calibration set of 

samples that have a reduced analyte chemical range and are matrix matched to the 

individual target samples. The key steps to achieving this goal include the formation of 

many local calibration sets with limited chemical ranges using an iterative multi-

parameter process. These local calibration sets are then compared to each other using a 

number of matrix matching assessment merits (described in Chapter 2). Figure 3.1 

contains the algorithm process in its most general format. Specific steps from the 

algorithm are described in detail in the following sections but are briefly described here. 

In step 1, the global samples are sorted based on the reference values of interest. 

Step 2 calculates the spectral similarity between the target spectrum and each global 

spectrum. In this process 26 similarity merits are used. These merits and the process of 

sample selection are described in section 2.1. A set of calibration parameters are then 

selected in step 3. There are nine calibration parameters that are considered and are 

further described in section 2.2. In step 4, the library size is determined by the parameters 

set in step 3. If the library size is set to “Global” then the process goes directly to step 6. 

If the library size is not set to “Global” then the 26 spectral similarity merits are used to 

determine which global spectra are most similar to the target spectrum (step 5) described 

in section 2.1. In step 6, outliers are iteratively removed from the library space and the 
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target sample is tested as an outlier to the outlier free library space. This outlier check 

process is further discussed in section 2.3. If the target sample is deemed an outlier to the 

library space (step 7) this calibration parameter option is discarded, and the process 

moves on to the next calibration parameter option back to step 3. If the target sample is 

not an outlier to the library space then it is used to form “y-windows” of local calibration 

sets based on the calibration parameter options for determining “y-window” ranges (step 

8). This process is further described in section 2.4. The outlier check process is also 

performed on each of the local calibration sets formed in step 9. Step 10 calculates the 

calibration set comparison merits, described in Chapter 2, for each of the local calibration 

sets. Using fusion rules, a single local calibration set is selected and stored (step 11). If 

there are more calibration set parameter options then the process repeats from step 3. 

After all of the calibration parameter set options have been assessed, the local calibration 

sets selected for each parameter option are compared to one another using the same 

calibration set comparison merits from Chapter 2 (step 14). Note that the global 

calibration set is added in as one of the final calibration sets to be compared. The fusion 

rules, again, are used to select a final calibration set (step 15) and a prediction model is 

formed to predict the target sample.  
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Figure 3.1. Flowchart for local adaptive fusion regression algorithm. 
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 Determining Spectrally Similar Library Spaces 

This process corresponds to steps 2-5 in the LAFR algorithm (Fig. 3.1). Many of 

the local modeling processes describe how one or two spectral similarity merits are used 

to select the samples for a local model. In LAFR, 26 spectral similarity merits are used to 

select spectrally similar samples that will then be separated into a collection of local 

calibrations sets for further evaluation. The spectral similarity merits are listed in Tables 

3.1 and 3.2. The calculations for most of these merits are described in detail in Chapter 2. 

For these merits, the sample vector to calibration vector and sample domain to calibration 

domain merit calculation methods are used. For the sample vector to calibration vector 

merits, 𝒙1can either be equal to the target spectrum (𝒙𝑡) or the global spectrum (𝒙𝑙) and 

the same is true for 𝒙2. For the sample domain to calibration domain comparison merits, 

as described in Chapter 2, outer products are calculated for 𝒙l and 𝒙𝑡 vectors. The 

specific outer products are listed in Table 3.2.  

One additional merit, Bartlett’s statistic, is not used in the calibration set 

comparison methods and is presented in this section. Bartlett’s statistic is calculated as a 

sample domain to calibration domain merit. Bartlett’s statistic is a method to compare the 

variance-covariance matrices of two datasets to determine similarities in both magnitude 

and direction24-25. This merit ranges from 0 to 1, where 1 is the most similar and 0 is the 

least similar. For this work, Bartlett’s statistic merit is manipulated to assess similarity 

between two vectors (Eq. 3.2).  

 1 − 𝐶𝑏𝑎𝑟𝑡 = 1 − exp (
−𝑐1

𝑚1+𝑚2
) (3.2) 

For this calculation, 𝑚1 and 𝑚2 are the number of samples for each samples sets being 

compared, in this case both  𝑚1 and 𝑚2 are equal to one. The variable 𝑐1 is calculated as 
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 𝑐1 = 𝑐2[(𝑚1) ln(|𝜎1
−1𝜎𝑠|) + (𝑚2) ln(|𝜎2

−1𝜎𝑠|)] (3.3) 

Where 𝜎1
−1 is the inverse of the first PC eigenvalue from the pseudoinverse 𝑿1

+, and 𝜎2
−1 

is the inverse of the first PC eigenvalue from the pseudoinverse 𝑿2
+. For this equation, 𝑿1 

and 𝑿2 are the outer products of 𝒙1 (Eq. 2.43) and 𝒙2 (Eq. 2.44). In this equation, 

|𝜎1
−1𝜎𝑠|and |𝜎2

−1𝜎𝑠| represent the determinants of the products. Here, 𝜎𝑠 is the first 

eigenvalue calculated from the SVD of equation 2.41 calculating 𝑺. 

𝑺 =
𝑿1𝑿2

2
 

Also in equation 3.3, 𝑐2 is calculated as 

𝑐2 = (
2𝑛2 + 3𝑛 − 1

6(𝑛 + 1)
[

−1

𝑚1 + 𝑚2
]) 

Similarly to cos 𝜃, the final merit (2.43) is subtracted from one so that lower values could 

be associated with higher degrees of similarity. 

These 26 merits are used to calculate spectral similarity rankings of the global 

samples using the fusion rule sum of ranking differences (SRD)26-29. The SRD process is 

described in Chapter 1 (Fig. 1.3). For the selection of similar spectra for this work, the 

SRD ‘target’ vector is set to maximum. This indicates that samples with lower ranks are 

more dissimilar to the target sample.  
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Table 3.1. Sample vector to calibration vector merits for selection of spectrally similar 

library samples. (Notations indicated in footnotes).

 Category Merit Input Assignments Equation 

Spectral 1 − cos θ 𝒙1 = 𝒙𝑙 ; 𝒙2 = 𝒙𝑡 2.21 

Spectral 1 − 𝑐𝑜𝑠2 𝜃 𝒙1 = 𝒙𝑙 ; 𝒙2 = 𝒙𝑡 2.22 

Spectral Euc  𝒙1 = 𝒙𝑙 ; 𝐱2 = 𝒙𝑡 2.23 

Spectral 𝐷𝑒𝑡  𝒙1 = 𝒙𝑙 ; 𝒙2 = 𝒙𝑡 2.24 

Spectral 𝐹  𝒙1
𝑇 = 𝒙𝑡

𝑇 ; 𝒙2
𝑇 = 𝒙𝑙

𝑇 2.27 

Spectral 𝜌  𝒙1 = 𝒙𝑙 ; 𝒙2 = 𝒙𝑡 2.31 

Spectral 𝜌  𝒙1 = 𝒙𝑡 ; 𝒙2 = 𝒙𝑙 2.31 

Spectral 𝐸𝐼𝑆𝐶 𝑋𝑏𝑑  𝒙1 = 𝒙𝑙 ; 𝒙2 = 𝒙𝑡 2.37 

Spectral 𝐸𝐼𝑆𝐶 𝑋𝑏𝑑  𝒙1 = 𝒙𝑡 ; 𝒙2 = 𝒙𝑙 2.37 

Spectral 𝐸𝐼𝑆𝐶 𝑏𝑑  𝒙1 = 𝒙𝑙 ; 𝒙2 = 𝒙𝑡 2.36 

Spectral 𝐸𝐼𝑆𝐶 𝑏𝑑  𝒙1 = 𝒙𝑡 ; 𝒙2 = 𝒙𝑙 2.36 

Spectral 𝐸𝐼𝑆𝐶 𝑏  𝒙1 = 𝒙𝑙 ; 𝒙2 = 𝒙𝑡 2.33 

Spectral 𝐸𝐼𝑆𝐶 𝑏  𝒙1 = 𝒙𝑡 ; 𝒙2 = 𝒙𝑙 2.33 

Spectral 𝑀𝐷𝑝
𝑣 𝒙1 = 𝒙𝑙 ; 𝒙2 = 𝒙𝑡 2.40 

Spectral 𝑀𝐷𝑣  𝒙1 = 𝒙𝑙 ; 𝒙2 = 𝒙𝑡 2.38 

Spectral 𝑀𝐷𝑣  𝒙1 = 𝒙𝑡 ; 𝒙2 = 𝒙𝑙 2.38 

𝒙𝑙 : global sample 

𝒙𝑡 : target sample 
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Table 3.2. Sample domain to calibration domain merits for selection of spectrally similar 

library samples. (Notations indicated in footnotes). 

Category Merit Input Assignments Equation 

Spectral Euc  𝑿1 = 𝒙𝑙𝒙𝑙
𝑇 ; 𝑿2 = 𝒙𝑡𝒙𝑡

𝑇 2.47 

Spectral Euc  𝑿1 = 𝒙𝑡𝒙𝑙
𝑇 ; 𝑿2 = 𝒙𝑡𝒙𝑡

𝑇 2.47 

Spectral 𝐷𝑒𝑡  𝑿1 = 𝒙𝑙𝒙𝑙
𝑇 ; 𝑿2 = 𝒙𝑡𝒙𝑡

𝑇 2.24 

Spectral 𝐷𝑒𝑡  𝑿1 = 𝒙𝑡𝒙𝑙
𝑇 ; 𝑿2 = 𝒙𝑡𝒙𝑡

𝑇 2.24 

Spectral 𝐹  𝑿1 = 𝒙𝑙𝒙𝑙
𝑇 ; 𝑿2 = 𝒙𝑡𝒙𝑡

𝑇 2.51 

Spectral 𝐹  𝑿1 = 𝒙𝑡𝒙𝑡
𝑇 ; 𝑿2 = 𝒙𝑙𝒙𝑙

𝑇 2.51 

Spectral 𝜌  𝑿1 = 𝒙𝑡𝒙𝑡
𝑇 ; 𝑿2 = 𝒙𝑙𝒙𝑙

𝑇 2.56 

Spectral 𝜌  𝑿1 = 𝒙𝑙𝒙𝑙
𝑇 ; 𝑿2 = 𝒙𝑡𝒙𝑡

𝑇 2.56 

Spectral 𝐻  𝑿1 = 𝒙𝑡𝒙𝑡
𝑇 ; 𝑿2 = 𝒙𝑙𝒙𝑙

𝑇 2.57 

Spectral 1 − 𝐶𝑏𝑎𝑟𝑡 𝑿1 = 𝒙𝑙𝒙𝑙
𝑇 ; 𝑿2 = 𝒙𝑡𝒙𝑡

𝑇 3.2 

𝒙𝑙 : global sample 

𝒙𝑡 : target sample 

 

One useful feature of SRD is a ranking validation method used to assess the 

probability that the calculated SRD ranks are statistically different from randomly 

assigned rankings27. This process is referred to as comparison of ranks by random 

number (CRRN). In CRRN a normalized probability distribution is generated from 

100,000 iterations of SRD ranks calculated from randomly generated numbers. Using this 

normalized random rank distribution feature, a threshold can be set to exclude samples 

that have rankings one, two, or n standard deviations to the left of the mean of the 

random rank distribution (Fig. 3.2). These rankings would indicate that these samples are 

more dissimilar to the target sample for some level of certainty. 
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Figure 3.2. Sum of ranking differences probability density function values for 

comparison of ranks by random numbers (CRRN) process versus normalized SRD 

rankings. Standard deviations (SD) 1-3 are listed. The normalized ranks for a set of 

samples are plotted (solid black lines). The CRRN probability distribution is shown in 

light blue.  

 

After a number of samples have been excluded from the library space initially 

based on n standard deviations from the CRRN distribution, the remaining samples, 

referred to as ‘1st SRD’, can be ranked again through the SRD process using the same 26 

spectral similarity measurements. The sample rankings will change as the number of 

samples and relationships are altered. Again, the samples that are to the left of the 

specified n standard deviations from the mean of the CRRN distribution are excluded to 
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form a second library space, referred to as ‘2nd SRD’. This library space selection process 

repeats until no samples are to the left of the specified n standard deviations. All of the 

library spaces formed, including the global space prior to SRD selection, are used in the 

LAFR process. In this work a standard deviation of 3 is used; however, setting this 

standard deviation is considered one of the adjustable parameter options discussed in the 

following section.  

 Local Calibration Set Formation Parameters 

The local calibration set parameters correspond to step 3 in the LAFR algorithm. 

All of the parameters considered in this process are listed in Table 3.3 along with a short 

description and examples. Some of the examples listed for each parameter are not used 

for the dataset presented in this work. These examples are shown to indicate the 

flexibility and possibilities for this process. For example, in parameter 4 for setting the 

range of the reference value data for each local calibration set, one of the examples listed 

is based on using the known analytical error of the primary analysis method as a 

guideline to setting how large or small the reference value ranges should be. As the 

analytical error is not known for the datasets used in this work this method is not 

employed. The ability to vary these parameter options is a key factor in differentiating 

LAFR from other local modeling methods.  
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 Table 3.3. Nine adjustable parameters used for LAFR process. 

Parameter ID Parameter  Description Examples 

1 Spectral 

similarity 

merits 

Combination of vector shape 

and magnitude comparisons 

-angle between vectors 

-Euclidean distance 

2 Library size Number of samples in the 

library space for forming 

local cal. sets 

- global  

- sample selected by 

SRD iterations (n* SD) 

3 Local cal. set 

min size 

Minimum number of 

samples needed for each 

local cal. set formed 

- no size requirement 

-integers 

-percentage of samples 

in library 

 

4 Local cal. set y 

range max 

Largest acceptable range for 

y data in each local cal. set 

formed 

- no range requirement 

- percentage of y 

library range  

-based on error of 

primary analytical 

method 

5 Local cal. set y 

window 

overlap 

Amount of overlap between 

y data for each local cal. set 

window 

-percentage of previous 

calibration set 

-number of samples 

6 Outlier merits Outlier determination merits 

used for library space and 

the local cal. sets 

-Studentized residuals 

-Mahalanobis distance 

7 Local cal. set 

comparison 

merits 

Merits used to compare local 

cal. sets  

-spectral 

-prediction 

-orthogonal projections 

to regression vector 

8 Tuning 

parameter 

selection 

Process for selecting tuning 

parameters for PLS or SVD 

based merits and setting 

number of tuning 

paramameters 

-specified number of 

LV 

-PC’s accounting for 

percentage of 

variability 

9 Fusion rules Fusion rules used for data 

fusion based selections 

-SRD 

-SUM rule 

-combination of fusion 

rules 
*n is the specified standard deviation left of the SRD random ranking probability 

distribution used to determine which samples should be included or excluded 

 



97 

 

Adjusting each of the nine LAFR process parameter options can result in an 

extremely large number of parameter set combinations. For instance, if each of the nine 

parameter options had three levels, such as 10, 15, and 20 samples for parameter 3, then 

there would be approximately 20,000 unique parameter option set combinations created 

increasing the computational time. For this work the parameters that are adjusted were 

limited to parameters 3 and 4, the local calibration set minimum size and the local 

calibration set y range. The specific parameter used for the dataset presented are 

described in section 3. 

 Outlier Determination 

The outlier check process is a two-part process. The first part of the outlier check 

process is to remove all samples from the library spaces or local calibration set, both are 

referred to in this section as the calibration space, that are identified as outliers. Like 

many of the steps for this algorithm, the outlier check process employs the use of 

multiple merits and data fusion methods to avoid selecting a single outlier determination 

merit. 

For removing outliers from the calibration space, each sample in the calibration 

set is removed one at a time and the merits in Tables 3.4-3.7 are calculated. For the 

prediction merits (Table 3.4) a PLS algorithm is used to form a model to calculate the 

predictions for each calibration sample (𝑦̂𝑜) across a specified number of tuning 

parameters (LV’s). The number of LV’s used is set to five (LAFR parameter 8) and the 

process for determining which five LV’s to use is described in Chapter 2 section 2.2. All 

of the calculations for these merits are described in Chapter 2 sections 2 and 3. All three 

categories of spectral merits calculations are represented in the outlier determination 
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merits: sample vector to calibration vector, sample domain to calibration domain, and 

sample vector to calibration domain. Only the Spectral based approach is used for these 

merits (described in Chapter 2). For the sample vector to calibration vector merits (Table 

3.5), 𝒙1 and 𝒙2 can both represent either the sample removed from the calibration space 

(𝒙𝑜) or the average spectrum of the calibration space with the sample removed (𝒙̅𝑟). For 

the sample domain to calibration domain merits (Table 3.6), 𝑿1 is always equal to the 

outer product of the sample removed 𝒙𝑜 (or the target sample (𝒙𝑡) for the 2nd part of the 

outlier process), and 𝑿2 is the outer product of the averaged spectra of the remaining 

calibration space (𝒙𝑟). In the sample vector to calibration domain merits (Table 3.7), 𝑿𝑟 

are the samples remaining in the calibration set. These sample vector to calibration 

domain merits use a set of principal components (PC’s). The PC’s used are determined 

by the number necessary to account for up to 99% of the cumulative variability for each 

individual calibration space 

There are two additional prediction merits (Y) used for the outlier check process 

not described in Chapter 2; the Studentized residual and the matrix match ratio merit. 

These two merits are described below.  

2.3.1 Studentized Residual 

 A Studentized residual (Eq. 3.4) is the residual measurement of a prediction 

normalized by its estimated standard deviation and is often used for outlier detection in 

linear regression30.  

 𝑡2 = |
𝑦2−𝑦̂2

𝜎√1−ℎ
| (3.4) 

As explained for outlier detection, each sample in a library space or local calibration set 

is removed one at a time for outlier determination. In this equation, 𝑦2 is the reference 
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value of the sample removed, 𝑦̂2 is the predicted reference value using a model formed 

by the remaining samples, and 𝜎 (Eq. 3.5) and ℎ (Eq. 3.6) are calculated below. 

 𝜎 = √
∑ (𝑦𝑠−𝑦̂𝑠)2𝑚−1

𝑠=1

𝑚−2
 (3.5) 

 ℎ =
1

𝑚
+ 𝒙2

𝑇(𝑿𝑟
𝑇𝑿𝑟)+𝒙2 (3.6) 

In equation 3.5, 𝜎 represents the standardized error of the samples used to build the 

model, where 𝑚 is the total number of samples prior to removing one sample, and 𝑦𝑠 and 

𝑦̂𝑠 represent the individual reference values and predicted reference values for each of the 

samples remaining in the library space of calibration set. In equation 3.6, the 

pseudoinverse of 𝑿𝑟
𝑇𝑿𝑟 (𝑿𝑟

𝑇𝑿𝑟
+) for the calculation of ℎ, often referred to as leverage, is 

calculated from a PLS algorithm, where 𝑿𝑟((𝑚−1) x 𝑛)
 are the spectra of the samples 

remaining in the calibration space, and 𝒙2(𝑛 x 1)
 is the spectrum of the sample removed.  

2.3.2 Matrix Match Ratio 

 The matrix match ratio (MMR) is based on equations 2.9 and 2.10 for the matrix 

matching assessment measurement when |𝑦̂𝑗 − 𝑦| = 0 (Eq. 3.7).  

 𝑀𝑀𝑅 = |
𝑦2

𝑦̂2
− 𝑅̅| (3.7) 

The calculation for 
𝑦2

𝑦̂2
 is based on equation 2.9. When |𝑦̂𝑗,2 − 𝑦2| = 0 then 𝛼𝑗 can be 

calculated by  
𝑦2

𝑦̂2
. Here, 𝑦̂𝑗,2 represents the scaled predication error of the sample removed 

from the calibration space. In this equation, 𝑅̅ is calculated as 

 𝑅̅ =
∑ (

𝑦𝑖
𝑦̂𝑖

)𝑚
𝑖=1

𝑚
 

The variable 𝑅̅ is the mean value of all 𝛼𝑗’s for each sample in the calibration space when 

|𝑦̂𝑗,𝑖 − 𝑦𝑖| = 0. In this calculation, 𝑦𝑖 are the true reference value for 𝑚 samples in the 
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calibration space, 𝑦̂𝑖 are the predicted reference values, and 𝑦̂𝑗,𝑖 are the scaled predicted 

reference values. Both the Studentized residuals and matrix match ratio were added to 

Table 3.4 along with the prediction error (𝑒22) described in Chapter 2.  

 

Table 3.4. Prediction merits for outlier determination. (Notations indicated in footnotes)  

Category Merit Input Assignments Equation 

Y 𝑒22  𝑦2 = 𝑦𝑜; 𝑦̂2 = 𝑦̂𝑜 2.11 

Y t2  𝑦2 = 𝑦𝑜; 𝑦̂2 = 𝑦̂𝑜; 

𝒙2 = 𝒙𝑜  

3.4 

Y 𝑀𝑀𝑅  𝑦2 = 𝑦𝑜; 𝑦̂2 = 𝑦̂𝑜 3.7 

𝑦𝑜 : calibration sample reference value removed from calibration space 

𝑦̂𝑜 : predicted calibration sample reference value removed from calibration space 

𝒙𝑜 : sample removed from calibration space 

 

Table 3.5. Sample vector to calibration vector merits for outlier determination. (Notations 

indicated in footnotes) 

Category Merit Input Assignments Equation 

Spectral 1 − 𝑐𝑜𝑠2 𝜃 𝒙1 = 𝒙𝑜/𝑡 ; 𝒙2 = 𝒙̅𝑟 2.22 

Spectral Euc 𝒙1 = 𝒙𝑜/𝑡 ; 𝒙2 = 𝒙̅𝑟 2.23 

Spectral 𝐷𝑒𝑡 𝒙1 = 𝒙𝑜/𝑡 ; 𝒙2 = 𝒙̅𝑟 2.24 

Spectral 𝐸𝐼𝑆𝐶 𝑋𝑏𝑑    𝒙1 = 𝒙̅𝑟 ; 𝒙2 = 𝒙𝑜/𝑡  2.37 

Spectral 𝐸𝐼𝑆𝐶 𝑋𝑏𝑑  𝒙𝟏 = 𝒙𝑜/𝑡 ; 𝒙2 = 𝒙̅𝑟 2.37 

Spectral 𝐸𝐼𝑆𝐶 𝑏𝑑  𝒙1 = 𝒙̅𝑟 ; 𝒙2 = 𝒙𝑜/𝑡  2.36 

Spectral 𝐸𝐼𝑆𝐶 𝑏𝑑  𝒙1 = 𝒙𝑜/𝑡 ; 𝒙2 = 𝒙̅𝑟 2.36 

𝒙̅𝑟: mean spectrum for the remaining calibration space spectra 

𝒙𝑜/𝑡 : sample removed from calibration space (𝒙𝑜) or target sample (𝒙𝑡)  
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Table 3.6. Sample domain to calibration domain merits for outlier determination. 

(Notations indicated in footnotes) 

Category Merit Input Assignments Equation 

Spectral 𝐹 𝑿1 = 𝒙𝑜/𝑡 𝒙𝑜/𝑡 
𝑇

; 𝑿2 = 𝒙̅𝑟𝒙̅𝑟
𝑇 2.51 

Spectral 𝜌 𝑿1 = 𝒙𝑜/𝑡 𝒙𝑜/𝑡 
𝑇

; 𝑿2 = 𝒙̅𝑟𝒙̅𝑟
𝑇 2.56 

Spectral 𝐻 𝑿1 = 𝒙𝑜/𝑡 𝒙𝑜/𝑡 
𝑇

; 𝑿2 = 𝒙̅𝑟𝒙̅𝑟
𝑇 2.57 

𝒙̅𝑟: mean spectrum for the remaining calibration space spectra 

𝒙𝑜/𝑡 : sample removed from calibration space (𝒙𝑜) or target sample (𝒙𝑡) 

 

Table 3.7. Sample vector to calibration domain merits for outlier determination. 

(Notations indicated in footnotes) 

Category Merit Input Assignments Equation 

Spectral 𝑀𝐷 𝒙1 = 𝒙𝑜/𝑡  2.58 

Spectral 𝑄 𝒙1 = 𝒙𝑜/𝑡  2.63 

Spectral 𝑠𝑖𝑛 𝜃 𝒙1 = 𝒙𝑜/𝑡  2.66 

Spectral 1 − 𝑟1 𝒙1 = 𝒙𝑜/𝑡  2.61 

Spectral 𝐷𝑖𝑣 𝒙1 = 𝒙𝑜/𝑡  2.62 

𝒙𝑜/𝑡 : sample removed from calibration space (𝒙𝑜) or target sample (𝒙𝑡) 

 

The merits assessing each sample within the library space or local calibration set 

are then used with the SRD data fusion method and a target set to “maximum”. From the 

SRD CRRN distribution, it can be determined that all samples left of the random ranking 

probability distribution at a specified standard deviation (SD) are dissimilar to the rest of 

the samples in the library space or local calibration set (Fig. 3.2). For this work, all 

samples left of 3 standard deviations are outliers and are removed. This outlier check 
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process is repeated until no samples have SRD normalized ranks left of 3 standard 

deviations from the mean of the CRRN distribution.  

The second part of the outlier check process is to determine if the target sample is 

an outlier to the calibration space (the outlier-free library space or outlier-free local 

calibration set). The merits from Tables 3.5 to 3.7 are calculated for the target sample 

(𝒙𝑡) and the calibration space (𝑿𝑟). The prediction merits in Table 3.4 are not used for 

this part of the outlier check process as a reference value for the target sample would be 

required. The merits calculated from the target sample and the calibration space along 

with the merits calculated for each calibration sample using the leave-one-out 

methodology, previous described in the first part of the outlier check process, are 

combined together. The SRD fusion data method using 3 SD for CRRN distribution is 

used to determine if the target sample is an outlier to the calibration space. If the target 

sample is left of 3 SD from the mean of the CRRN distribution then it is considered an 

outlier.  

 Formation of Local Calibration Sets 

Forming local calibration sets is step 8 in the LAFR algorithm. For the automated 

process of forming calibration sets the parameter set options, specifically parameters 3 

and 4, must be simultaneously met. Currently, the following steps for formation of the 

local calibration sets are based on the assumption of a single Gaussian type distribution, 

with or without skewed sides, for the reference value data of each of the library spaces. If 

the global calibration set reference values, observed prior to the LAFR process, result in a 

combination of multi-peaked Gaussian distributions, then these distributions can be run 

as separate library spaces through the process for forming local calibration sets. This 
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multi-peak trend was not observed for any of the reference values in the dataset assessed 

in this work.  

The formation of the local calibration sets for a specified library space is based on 

local calibration set parameters 3-5; local calibration set min size, local calibration set y 

range max, and local calibration set y window overlap. Figure 3.3 shows a flowchart of 

the automated process for forming multiple local calibration sets that meet the criteria 

established by the parameter options.  

An initial reference value range is established using the Freedman-Diaconis (FD) 

rule (Eq. 3.8) for selecting range size for the library space reference value data.  

 𝑦𝑟𝑎𝑛𝑔𝑒 = 2  (
𝐼𝑄𝑅

𝑚
1
3

)  (3.8) 

In this equation, 𝐼𝑄𝑅 is the interquartile range of the data, and 𝑚 is the number of 

samples in the library space. The FD rule is typically less sensitive to data with outliers or 

“heavy” tails31. As the distributions are not individually viewed during this algorithm, the 

objective was to establish an initial range size that was not too broad as to encompass the 

possible outliers. The outliers are removed after the formation of local calibration sets.  

If parameter 4 (local calibration set y range max) is greater than the FD 

determined range, then a set of local calibration sets are formed using the FD range and 

the specified “y-window” overlap (parameter 5). If parameter 4 is less than the FD range, 

then the local y range is set equal to parameter 4 and the local calibration sets are formed 

using parameter 5. The next step determines if any of the local calibration sets formed 

have less than the minimum required number of samples (parameter 3). If any of the local 

sets have less than the required number of samples, and the local y range is less than the 

local calibration set y range max (parameter 4), then the local y range is increased by 
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1.0% and the local sets are reformed. Otherwise, if any of the local sets have less than the 

required number of samples, and the local y range is greater than or equal to parameter 4, 

then samples are removed from the distribution.  

For the removal of samples, the local sets are split into two halves. For example, 

if there were 30 sets formed then the first 15 would be the first half and 15 in the second 

half. If there is an uneven number of local sets then the first half has one more set than 

the second half. If there are local sets in the first half that have less than the required 

number of samples then the first sample in the library space is removed. If there are local 

calibration sets in the second half of sets that have less than the required number of 

samples then the last sample in the library space is removed. With this new library of 

samples formed, with either one or two less samples, a FD range is again calculated and 

the process starts over.  

This iterative process of checking for a range and local calibration set sample 

number meeting both parameters 3 and 4 is repeated until both conditions are met by 

every local calibration set formed. If these parameters cannot be met, then no local 

calibration sets formed are used in the remainder of the LAFR process for that parameter 

set combination.  
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Figure 3.3. Flowchart for the formation of local calibration sets based on specified 

parameters. *FD refers to the Freedman-Diaconis rule. 
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 Calibration Set Comparison Merits 

As discussed in Chapter 2, the local calibration set comparison merits are based 

on a combination of model prediction errors (Y), spectral matching (Spectral), and 

orthogonal projections to a regression vector (OP). The purpose of these merits, along 

with the cross modeling procedures described in Chapter 2, is to select a matrix matched 

calibration set. This step is important in the LAFR process as it allows for a standardized 

method for comparing calibration sets formed using multiple sets of parameter options 

(described in section 2.4). In the LAFR process a calibration set is selected from each of 

the parameter set combinations first rather than collecting all of the calibration sets from 

every parameter set combination and selecting a final calibration set. It was determined 

that this method was more successful at selecting a good local calibration model. 

Examples of this are shown in the results section (section 5). 

3. Methods for Local Adaptive Fusion Regression Setup 

 Global Calibration Models 

All target samples from each dataset are predicted by the global calibration set in 

order to compare the global prediction results to the local model prediction results formed 

through the LAFR process. All global models are built using a PLS algorithm. In order to 

select a tuning parameter, the global dataset is randomly split into 80% calibration 

samples and 20% validation samples over 20 iterations. To select a model with a good 

bias/variance tradeoff, the average root mean square of calibration (RMSEC) and root 

mean square of cross-validation (RMSECV) are plotted against the average of the 

Euclidean norm of the estimated regression vector (‖𝒃̂‖)32. This results in a curve shape 

resembling an “L”, at least for the RMSEC versus ‖𝒃̂‖ plots. The model in the corner 
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region of the “L-curve” for both the RMSEC and RMSECV is selected for each reference 

value prediction model. The R2 values, of the predicted versus the measured reference 

values, for calibration and cross-validation are also plotted against the ‖𝒃̂‖, creating an 

inverted “L-curve” shape, to help inform model selection. The global model for each of 

the prediction properties can also be selected using the LV selection procedures described 

in Chapter 2 section 2.2. However, the intention of this LV selection procedure is to 

automatically select models without manually making a selection. As the global models 

do not need an automatic selection processes the “L-curve” method described above is 

used as the RMSEC, RMSEV, and R2 values can all be used simultaneously for model 

selection.  

 Data Preprocessing and Software 

All spectra and reference values for each regression model formed are mean 

centered. For the mean centering process the column mean of the calibration spectra (𝒙𝑛) 

for each variable 𝑛 is subtracted from each of the respective variables in each of the 

individual calibration spectra and the spectra of any samples to be predicted by the 

calibration samples used to form the regression models. The mean reference values for 

the calibration samples are also subtracted from each calibration sample and reference 

values for validation samples not included in the calibration space.  

The LAFR algorithm and all regression models formed use code generated in 

MATLAB R2014b (The MathWorks AB, Kista, Sweden).   

 Selected Local Calibration Set Parameters 

Table 3.8 shows the local calibration parameters for the meat dataset (described in 

section 4). The parameters option are the same for all three of the reference values used 
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for the meat dataset. As stated in section 2.2, many of these parameters are held constant 

for this study. Only parameters 3, with four inputs, and 4, with three inputs, have multiple 

inputs listed in Table 3.8.  

 

Table 3.8. Local calibration set parameters specified for meat dataset. 

Parameter ID Parameter  Meat 

1 Spectral similarity merits 26 spectral 

2 Library sizea Global, SRD iterations (3SD) 

3 Local calibration set min size 1) 10  

2) 15  

3) 20  

4) 30 

4 Local calibration set y range max 1) None  

2) 1/5 global range  

3) 1/10 global range 

5 Local calibration set y window overlap 33% of previous window 

sample number 

6 Outlier merits 1st Part: 15 spectral and 3 Y 

2nd Part: 15 spectral 

7 Local calibration set comparison merits 2 Y, 15 Spectral, and 22 OP 

8 Tuning parameters selection Regression merits: 5 LV 

SVD merits: 99% cumulative 

variation 

9 Fusion Rules Library size and outlier 

detection: SRD 

Calibration set selection: 6 

fusion rules 
a For the library size based on an SRD iterative selection, the standard deviation(s) (SD) 

are specified. 

 

4. Dataset 

 Near infrared spectra from 850-1050 nm over 100 channels (2 nm intervals) for 

240 samples of meat were collected by Tecator on a Tecator Infratec Food and Feed 

Analyzer (FOSS, Tecator AB, Höganäs, Sweden)33-34. Absorbance measurements are 
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reported in 1/log10 transmittance units. Reference values were provided for moisture, 

protein, and fat. All three reference values are used through the LAFR calibration set 

selection process. The distributions of these reference values is shown in Figure 3.4 (B-

D). The established splits for this data set are; training 129, monitoring 43, testing 43. For 

this work the training set and monitoring set are combined for the global spectra (172 

spectra) and the testing spectra were using as the target samples (43 spectra) (Fig. 3.4 A).  

 

 

Figure 3.4. Global and target spectra (A) and distributions for moisture (%) (B), fat (%) 

(C), and protein (%) (D) for meat dataset. 
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5. Results 

 Global Models  

For the global calibration models, the average prediction errors (RMSEC/CV), 

prediction versus measured R2 values and Euclidean norm regression vectors (‖𝒃̂‖) are 

used to select a single model (LV) for each of the three reference properties (Fig. 3.5). 

This figure also shows the prediction errors (RMSEV) and R2 values for the target 

samples. The model prediction information from the target samples is not used to select 

the LV only to show how the target samples compare to the calibration samples. Though 

this dataset is typically considered non-linear, the global models selected all had 

relatively high R2 values, >0.95, between the predictions and measured values for both 

calibration and cross-validation for the selected models (Table 3.9). The 43 target 

samples, on average, are predicted well by the selected models for each of the reference 

properties, resulting in similar prediction errors and prediction versus measured R2 values 

to the calibration.  
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Figure 3.5. RMSE (C/CV/V) and R2 (cal/cv/val) versus Euclidean norm of the regression 

vector (‖𝒃̂‖) of PLS prediction models for moisture (A), protein (B), and fat (C). 
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Table 3.9. Global model merits RMSE (C/CV/V) and R2 (cal/cv/val) for each moisture, 

protein and fat PLS models. 

Model LV RMSEC RMSECV RMSEV R2 cal R2 cv R2 val 

Moisture 13 1.80 2.56 2.04 0.97 0.94 0.96 

Protein 14 0.56 0.68 0.61 0.97 0.95 0.96 

Fat 11 2.36 2.98 2.53 0.97 0.95 0.96 

 

 

 LAFR Results-Moisture (%) 

For the reference value moisture, the LAFR local calibration models perform 

better than the global model. The final LAFR local model regression results for 

predictions of all 43 target samples are shown in Figure 3.6 and Table 3.10. For the 

LAFR local modeling process, a unique local calibration set is selected for each of the 43 

samples displayed in this figure. For the local calibration sets selected, five models are 

built using the five selected LV’s for each of the local calibration sets. The Local (max) 

and Local (min) for the target samples are the maximum and minimum prediction errors 

these five models formed. This figure shows the predicted target values from the global 

model, each local model with the highest prediction error, represented as Local (max), 

and each local model with the lowest prediction error, represented as Local (min), versus 

the true moisture values. Table 3.10 are the corresponding linear regression statistics for 

these three regressions including the regression formed by the averaging the predictions 

of the five LV’s for each local calibration set, represented as Local (avg). For all of the 

proposed local models, the R2 values between predicted and true values are higher than 

the global model, ranging from 0.98-1.00 compared to 0.96, and the prediction errors are 

lower for the local models compared to the global model, 0.44-1.09 versus 2.04. The 
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linear regression for each of these local models is also closer to the line of equality with 

slopes near 1 and intercepts close to 0.  

 

Figure 3.6. Regression of prediction versus measured moisture (%) for global (Global) 

and local model predictions with highest error (Local (max)) and lowest error (Local 

(min)).  

 

Table 3.10. Regression statistics of predicted versus measured moisture (%) for global 

and local predictions for 𝑚 target samples. 

Model LV R2 Slope Intercept ∑(|𝑦̂ − 𝑦|)

𝑚
 

Global 13 0.96 0.96 2.36 2.04 

Local (max) 2-15 0.98 1.01 -0.42 1.09 

Local (min) 1-15 1.00 1.00 -0.09 0.44 

Local (avg) 1-15 0.99 1.01 -0.38 0.72 
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Figure 3.7 shows some of the results from each of the local calibration sets 

selected. Plots A, A1 and B show the regression error trends for each of the 43 target 

samples (sorted based on the reference values) compared to the global regression errors. 

Plot A1 is plot A in a logarithmic scale. Logarithmic plots are used for other figures 

throughout the discussion to provide better visual comparisons. In plot A (and A1), the 

local prediction errors, across the five selected LV’s, along with the prediction errors for 

the global calibration model at LV 13 are shown. From this plot it appears that the global 

model predicts the samples in the middle of the reference value range (samples 20-35; 

corresponding to concentrations around 67-72%) better than the samples with lower 

moisture concentrations. This is probably due to the distribution in moisture 

concentrations for the global dataset (Fig. 3.4 B). This distribution shows that there are 

more samples with higher moisture concentrations. The LAFR selected models do not 

have this same trend of dependency on the distribution of the concentrations. There are 

target samples represented over the entire moisture range with low prediction errors.  

For the LAFR process, there is currently not a method for selecting the final 

prediction model; hence, why there are five models represented for each local calibration 

set. However, if the five LV’s for the selected models have consistent prediction results, 

it might indicate that a single model selection method is not required. In this case the 

average predictions across the five models would be sufficient for the final predictions of 

the target sample. The five LV’s for each local model range from 1-15, as indicated in 

Table 3.10. This means that some of the local models are represented by LV’s 1-5, some 

are represented by LV’s 10-15, and any range of 5 LV’s between 1 and 15. Many of the 

local models’ prediction errors are relatively consistent across the five LV’s. There are, 
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however, some LV’s that are noticeably different. For example, the prediction error for 

target sample 16 for the 5th LV shown is not consistent and has the highest prediction 

error of all of the local models represented in this plot. This LV inconsistency does help 

to justify the need for more than one LV represented for these local models throughout 

the LAFR process. Selecting LV’s based on the calibration samples with cross-validation 

methods will not always result in a good prediction model for a target sample. A range of 

LV does, however, allow for a greater probability of having at least one model that does 

predict the target sample sufficiently.  

In plot B, the global target sample regression errors are subtracted from the local 

models with the highest target prediction errors (max) and lowest target prediction errors 

(min). Difference values below zero indicate an improvement in local model prediction 

error compared to the global model. Target samples 2, 3, 10 and 19 all show great model 

improvement for both the minimum and maximum target sample prediction errors 

compared to the global model. There are some instances where the highest error local 

model predicts worse than the global model while the lowest error local model predicts 

better than the global; as in target samples 9 and 14. Again, supporting the importance of 

having a range of LV’s. Between samples 20-35, as mentioned, the global model predicts 

relatively well making it difficult for any local models to outperform the global model 

prediction.  

Plot C shows the final number of calibration samples included in each of the 

selected local calibration sets. The global calibration model included 172 samples. The 

maximum number of calibration samples selected to build a local model is 73 (~42% of 

global). The average number of calibration samples for all of these local models is around 
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25 (~15% of global). Very few samples from the global dataset are required for building 

accurate prediction models for this reference property. This plot also shows that the 

number of samples required for each target sample does vary (10-73). A fixed calibration 

size, proposed by some of the local model methods described above, would not meet the 

needs for a local model for each of the target samples represented here. It was important, 

for this dataset, to allow for multiple minimum calibration sample threshold requirements 

so that the optimal number of samples was available and could be selected by the 

calibration set comparison merits. 

Along with the local predictions errors and number of samples included in each of 

the local calibrations, it is important to understand the chemical ranges for these local 

calibrations sets. As one of the primary goals of the LAFR process is to form and select 

calibration sets that have matrix matching potential, the reference property range is an 

important factor. Plot D, for this figure, displays the moisture distributions for each local 

calibration set with the true reference values of the target samples superimposed. This 

plot demonstrates that the LAFR process does select an analyte matched local calibration 

set for each individual target sample using the LAFR process. Chemical matching of the 

analyte is one important indicator of matrix matching.  
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Figure 3.7. LAFR calibration set selection results for the moisture (%) reference value of 

meat. RMSEV over 5 LV’s for LAFR model selections and global RMSEV for LV 13 

(A); plot A on a logarithmic scale (A1); difference between RMSEV for LAFR (min and 

max) and global RMSEV (B); number of samples included in each LAFR selection (C); 

moisture distribution for each LAFR selection with the corresponding target reference 

values (D).  
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 LAFR Results-Protein (%) 

Figure 3.8 and Table 3.11 show the final local model results for each of the 43 

target samples for the reference property protein. The local models for the protein 

reference values do not perform as well as the local models formed for the moisture 

reference values. The difficulty with the protein values for this dataset is the chemical 

range is relatively small in comparison to the other reference values. Also, the prediction 

errors for the global model are very small in comparison to the other reference values. 

These errors might be closer to the primary analytical method uncertainty for the global 

models; however, this unknown for the dataset. These factors seem to have a negative 

effect on the LAFR process results. The predictions for target samples with reference 

values between 12-16% protein tended to be predicted poorly by the local models. In 

general, the average prediction errors for all of the local models were higher than the 

global model prediction error (Table 3.11). The linear regression for the global model 

target predictions is also closer to the line of equality than any of the local models.  
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Figure 3.8. Regression of prediction versus measured protein (%) for global (Global) and 

local model predictions with highest error (Local (max)) and lowest error (Local (min)).  

 

Table 3.11. Regression statistics of predicted versus measured protein (%) for global and 

local predictions for 𝑚 target samples. 

Model LV R2 Slope Intercept ∑(|𝑦̂ − 𝑦|)

𝑚
 

Global 14 0.97 0.95 1.09 0.48 

Local (max) 1-14 0.84 0.82 3.63 0.96 

Local (min) 1-15 0.93 0.90 2.08 0.58 

Local (avg) 1-15 0.89 0.85 2.98 0.66 

 

 

Figure 3.9 shows the trends of each of the local models selected for the 43 target 

samples sorted based on the true protein concentrations. As seen with the regression plot 

in Figure 3.8, the target samples with the lower concentrations have higher prediction 
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errors (plots A, A1 and B). The regression error trends show that a few of the target 

samples have lower prediction errors compared the global (11, 12, 41, and 42). These 

same samples also have good matches for the protein ranges for the local calibration sets 

in plot D. The target samples that have the highest prediction errors tend to have local 

calibration set protein ranges that are not consistent with the target reference values; 

samples 5 and 43 for example. This demonstrates how important chemical ranges are for 

local modeling with the purpose of matrix matching.  

Though the protein data do not result in better prediction models for the target 

samples, there is still evidence of the positive aspects of the LAFR process in general. 

The protein ranges for the selected local calibration sets do not match the target reference 

values as closely as the moisture local calibration sets did; however, many of the local 

calibration sets’ protein ranges are still in general very similar to the target samples 

protein values. This shows the power of this algorithm in selecting chemically matched 

calibration sets. One possible explanation for the poor prediction errors is that only a few 

parameter set option combinations are assessed for this dataset. These parameter set 

options might not be ideal for forming the best predicting matrix matched local 

calibration sets for the protein reference values. Another possibility is that the entire 

wavelength range was used for this process. Additional wavelength selection methods 

might be beneficial in improving the prediction abilities of the local models formed for 

the protein reference value. 
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Figure 3.9. LAFR calibration set selection results for protein reference value of meat. 

RMSEV over 5 LV’s for LAFR model selections and global RMSEV for LV 14 (A); plot 

A on a logarithm scale (A1); difference between RMSEV for LAFR (min and max) and 

global RMSEV (B); number of samples included in each LAFR selection (C); protein 

distribution for each LAFR selection with the corresponding target reference values (D).  
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 LAFR Results-Fat (%) 

The final LAFR results for the reference property of fat are similar to the moisture 

property local calibration results. Figure 3.10 and Table 3.12 show the regressions for the 

fat local models and the global model for each of the 43 target samples. The local models 

with the highest error (Local (max)) performed slightly worse than the global model. The 

prediction errors were higher (2.43 compared to 2.07). The local models with the lowest 

prediction errors (Local (min)), however, performed better than the global model with 

prediction errors around 0.70. This inconsistency with the local models formed for each 

target sample promote the need for a final LV selection process. For these target samples, 

the prediction errors from the models averaged across the five LV’s are still lower than 

the global model prediction errors.  

Unlike the moisture and protein reference values for the meat dataset, fat has 

multiple literature examples for calibration model forming processes, other than local 

modeling, used to form prediction models for the same 43 target samples35-38. Comparing 

these results to the LAFR results indicate how well the LAFR process works. In terms of 

prediction error, the LAFR process performed better than two of the studies. One study 

explored a modified penalized signal regression technique with a prediction error of 

1.7335. A second study, using a stacked regression technique for the predictions from 

multiple spectral preprocessing models, reported a prediction error of 1.8236. There were 

also two studies found that did slightly better than the LAFR process if the minimum 

local regression error models were the final models selected. In one study, focused on 

variable selection applications, the reported error was 0.6637, and in the second study, 

regarding an alternative support vector regression algorithm, reported an error of  0.4838. 
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The LAFR process is comparable to the prediction errors reported for these methods with 

some identified room for prediction error improvement. However, it is important to look 

at the other properties of regression models, including correlation measurements for the 

predictions versus the measured values. The LAFR process for the fat property results in 

high R2 values (0.95-0.99) for the predicted values versus the measured values. As R2 

values were not reported in these other studies, they cannot be compared to the LAFR 

results. 

 

 

Figure 3.10. Regression of prediction versus measured fat (%) for global (Global) and 

local predictions with the highest error (Local (max)) and lowest error (Local (min)). 
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Table 3.12. Regression statistics of predicted versus measured fat (%) for global and local 

predictions for 𝑚 target samples. 

Model LV R2 Slope Intercept ∑(|𝑦̂ − 𝑦|)

𝑚
 

Global 11 0.96 0.95 0.64 2.07 

Local (max) 1-10 0.95 0.89 2.01 2.43 

Local (min) 1-11 0.99 0.99 0.29 0.70 

Local (avg) 1-11 0.97 0.96 1.56 1.52 

 

 

Figure 3.11 reflects trends of inconsistency across the LV’s for each local model 

seen in the Local (min) and Local (max) regression statistics (Table 3.12). In plot A, the 

ranges of prediction errors is very large for some of the target samples. For example, 

target sample 9 ranges 0.05 to 5.8. Plot B shows that the local models with the highest 

errors are worse than the global model for more than half of the target samples, while a 

majority of the local models with the lowest predictions errors perform better than the 

global model. One reason for the wide spread in LV’s could be due to the number of 

selected samples for each of the local models (plot C). The average number of samples is 

around 12 (~7% of global). A few of the models formed have only 6-7 samples. Note that 

even though the minimum sample number is set to 10 as one of the parameter options, 

after the outlier check process, the number of samples left in each local model can be less 

than this minimum set value. For this reference value property, as most of the local 

models had very few samples included, five LV’s might be too high. The range 

represented by the LV’s for each model and comparison merits dependent on PLS 

algorithms needs to be meaningful. Further investigation is required for optimizing the 

LV selection process and number of LV’s to include. For these results the average 
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predictions across the five LV’s is not ideal for final predictions for each of the 43 target 

samples. 

 

 

Figure 3.11. LAFR calibration set selection results for fat reference value of meat.  

RMSEV over 5 LV’s for LAFR model selections and global RMSEV for LV 11 (A); 

difference between RMSEV for LAFR (min and max) and global RMSEV (B); number 

of samples included in each LAFR selection (C); fat distribution for each LAFR selection 

with the corresponding target reference values (D). 

 

Though the LV’s for the local models and calibration comparison merits might 

not have been ideal for the local models formed based on fat, the chemical matching 

ranges in plot D show the same positive trends as the moisture and protein selected local 



126 

 

models. A majority of the local calibration sets selected for the fat target reference values 

have good agreement in the fat ranges of the selected local calibration sets. Only three 

target sets, 9, 35, and 16, have ranges that do not encompass the target reference values 

based on the entire range represented by the boxplot (including outliers) but are still 

relatively close.  

 Selection Calibration Sets for Moisture (%) 

For the meat spectra, the parameter option combinations, introduced in Table 3.8, 

result in anywhere between 12-108 unique combinations depending the on the number of 

SRD iterations that occur when forming the local library spaces; the same library spaces 

are formed regardless of the reference property (explained in section 2.1). The number of 

SRD iterations span from none to nine for this dataset. Each of these parameters options 

form multiple local calibration sets that are dependent on the reference values, as 

explained in section 2.4. The number of individual calibration sets formed and analyzed 

after the outlier check process for each of the 43 target samples range from 13 to 405. 

Meaning that 405 individual local calibration sets are assessed for at least one of the 43 

target samples.  

For the LAFR process, there are two calibration set selection steps (Fig. 3.1 step 

11 and 15); the selection of a calibration set formed from each local calibration parameter 

set option combinations and the selection of the final calibration set from the parameter 

based calibration set selections. The resulting selections for each step are investigated for 

two of the target samples from the moisture property local model results; target sample 

26, which has the highest average prediction error, and target sample 2, which has the 

lowest average prediction error (Figure 3.7 plots A and B). The parameter set 
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combinations shown for each target sample in the following section are the same local 

calibration sets represented by the final LAFR results in Figure 3.7. These results are 

used to demonstrate how the final local calibration set is selected using comparison 

merits and fusion rules in each of the calibration set selection steps. 

5.5.1 Parameter Option Calibration Set Selection 

The parameter option calibration set selection (Step 11 in Fig. 3.1) acts as a 

“rough” selection process selecting the best matrix matched local calibration set from a 

specific parameter option combination. Figure 3.12 shows data for the local calibration 

sets formed from the set parameters for target sample 26 (the target sample with the 

highest average prediction errors). The parameter set combination shown here is as 

follows; parameter 2: ‘Global’ library size; parameter 3: minimum of 15 samples; and 

parameter 4: 1/10 of the total global moisture range as the maximum y range threshold. 

Only parameters 2-4 are noted as the other parameters stay constant for the calibration set 

formation process. Parameters 3 and 4 are manually adjusted, and parameter 2 iteratively 

adjusts. 

This parameter option combination forms 13 local calibration sets. Plot A are the 

normalized calibration comparison merits for each of the 13 calibration sets. Unlike the 

NMR and corn data comparison merit plots (Fig. 2.12 and 2.15) described in Chapter 2, 

there is not a single visually discernable matrix matched calibration set. Plot C shows the 

rankings for the six fusion methods for these 13 local calibration sets. Local calibration 

set 6 ranks lowest for 5 of the 6 fusion methods, calibration set 7 ranks the second lowest, 

and calibration set 8 ranks third lowest. These rankings match the local calibration set 
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ranges shown in Plot D as calibration sets 6-8 encompass the target sample reference 

value superimposed on this on plot.  

The prediction errors for these calibration sets (plot B), do not necessarily reflect 

the same trends as plots C and D, where calibration sets 6 appears to be matrix matched. 

The LV’s represented by calibration set 6 are 9-13, selected based on the methods 

described in Chapter 2 section 2.2. The RMSEV’s for target sample 26 over LV range is 

1.7-2.5. Looking at all of the LV’s possible for calibration set 6 reveals that, LV’s 5-7 

have RMSEV values ranging from 0.2-0.8, outperforming the global model. This 

indicates that five LV’s might be too limited in certain cases for selecting an accurate 

prediction model for a target sample or that the current method for selecting the five LV’s 

does not select the best 5 LV’s. One of the challenges identified through the adaptive 

local modeling literature presented6, 13, 15-19 is the requirement to select a single LV within 

the local modeling algorithm in order to incorporate chemical information based on 

predictions. This example shows that LV selection based partially on the cross-validation 

prediction errors of the calibration set does not always identify models that can predict a 

potentially matrix matched target sample, even when a range of five LV’s is used. The 

RMSECV in equation 2.13 for LV selection is currently based on a leave-one-out cross 

validation method, which can sometimes lead to overfitting to the calibration samples for 

prediction models39. For this sample, it appears that the algorithm did select a potentially 

matrix matched calibration set; however, the models selected were not sufficient for 

predicting the target sample. 

The results for the parameter option set combination for target sample 2 are 

shown in Figure 3.13. The parameter options shown here include; parameter 2: ‘Global’ 
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library size; parameter 3: minimum of 10 samples; and parameter 4: no set range as the 

local calibration set y range max. This target sample parameter option combination only 

has 3 local calibration sets formed that were processed through the LAFR algorithm. Any 

calibration sets where the target sample is an outlier are not processed through the 

calibration set comparison methods in the LAFR process. As parameter 4 does not denote 

a maximum y range, the moisture ranges for these local sets tended to be larger than the 

local calibration sets formed for target sample 26 (plot D). For this target sample, the 

comparison merits (plot A) do visually identify calibration set 1 as the best matrix 

matched. This identification is supported by the fusion method rankings in plot C. The 

target sample prediction errors (plot B) and analyte range for calibration set 1 (plot D), 

also indicate that this set is the best matrix matched calibration set of the three. The LV 

range for local calibration set 1 is 3-7. This range also corresponds with the minimum 

RMSEV value possible for target sample 2. This calibration set only contains 12 samples 

suggesting that five LV’s, in this particular case, are probably sufficient for covering a 

range of models where a good prediction model for both the calibration samples and the 

target sample is possible. 
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Figure 3.12. Parameter set combination ‘Global; 15min; 1/10 y range’ local calibration 

sets for target sample 26 for moisture (%) property.  Comparison merits (A); RMSEV 

over 5 selected LV’s (B); fusion ranking methods (C); local calibration set moisture 

distributions and target sample 26 reference value (--) (D).  
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Figure 3.13. Parameter set combination ‘Global; 10min; no y range’ local calibration sets 

for target sample 2 for moisture (%) property. Comparison merits (A); RMSEV over 5 

selected LV’s (B); fusion ranking methods (C); local calibration set moisture 

distributions and target sample 2 reference value (--) (D).  

 

 

5.5.2 Final Calibration Set Selection 

The final calibration set selection (Step 15 in Fig. 3.1) acts as a “fine” selection 

method to select the best matrix matched local calibration set from all of the sets selected 

based on each unique parameter option combination. Most of the calibration sets selected 

from the parameter option combinations have analyte ranges that are relatively similar to 
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the target sample reference value; however, this is only the case if a local calibration set 

was formed that had an appropriate analyte range. In some cases, the global model, after 

an outlier removal process, can be the best matrix matched calibration set. To account for 

this, the outlier-cleaned global calibration set is included as a possible calibration set for 

the final selection process. The final calibration sets selected are shown for both target 

samples 26 and 2 in Figures 3.14 and 3.15 respectively.  

The comparison merits (plot A), regression target sample prediction errors (plot 

B), fusion ranking results (plot C), and the ranges for the moisture data (plot D) for all of 

the parameter selected calibration sets for target sample 26 are shown in Figure 3.14. The 

first set for all four plots is the outlier-cleaned global calibration set. The comparison 

merits clearly show that the global calibration set is not the best matrix matched. Based 

on plot B, however, the global calibration set does have the lowest prediction errors. In 

plot D, almost all of the moisture ranges for the parameter based calibration sets are 

chemically matched to the target reference value; however, the prediction errors vary 

widely for each of these sets. The fusion ranking methods identify calibration set 3 (this 

is the same local calibration set as set 6 from Figure 3.12) as most closely matched to the 

target sample but the overall ranking orders for the remaining calibration sets are not 

consistent for the fusion methods. 

Figure 3.15 are the plots for the final calibration set selection for target sample 2. 

There is a large difference between the calibration selection results for target samples 2 

and 26. In target sample 2, the calibration set comparison merits (plot A), visually 

distinguish calibration set 1 as the best matrix matched with consensus from the fusion 

rankings in plot C. The global calibration set for these plots is set 10. The moisture range 
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for calibration set 1 is also the closest matched to the target sample. Unlike the final 

calibration sets for target sample 26, there is a wide range of the moisture local 

calibration ranges shown in plot D, most of which, do not correspond well to the target 

sample moisture value. This is most likely due to the sparse number of global samples 

available in the analyte range of target sample 2. The target reference value is around 

41% moisture. From Figure 3.4 it appears that there are only 15 samples ranging from 

39-46% moisture available in the global dataset. 

There are multiple explanations for the result differences between target samples 

2 and 26. All of the final local models selected from the parameter set combinations for 

target sample 26 had higher LV ranges (8-16) than target sample 2 with LV ranges of 2-

11. As discussed with the parameter option calibration set selection for target sample 26, 

the higher LV’s could indicate that the local calibration sets formed tend to be more fitted 

to the calibration samples. The inconsistencies in the fusion rankings for target 26 (Fig. 

3.14 C) could also indicate that the comparison merits used are not as efficient for 

distinguishing between the calibration sets formed for this sample. Typically, when the 

fusion rankings show inconsistencies the comparison merits have inconsistent trends 

across the different merits for each calibration set being compared. 

Another aspect of the local modeling effort is the selection of spectrally matched 

calibration sets. Figure 3.16 shows the spectra for the final local calibration sets selected 

for both target samples compared to the global spectra. For the final calibration sets 

selected for both target samples 2 and 26 in the library space used to form “y-window” 

calibration sets are based on the “Global” library space (parameter 2). It would be 

expected that a small analyte range would result in a small spectral range. This 



134 

 

expectation is seen for the final calibration selection spectra for target sample 2 (Fig. 3.16 

B). However, in some cases, as for target sample 26, the small analyte range of the final 

selected calibration set did not result in a small spectral range. This spread in the spectral 

range could help explain the inconsistent comparison merit and data fusion results seen 

for this target sample.  

 

 

Figure 3.14. Final calibration set selection for target sample 26 and global calibration set 

as set 1 for moisture (%) property. Comparison merits (A); RMSEV over 5 selected LV’s 

(B); fusion ranking methods (C); local calibration set moisture distributions and target 

sample 26 reference value (--) (D).  
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Figure 3.15. Final calibration set selection for target sample 2 and global calibration set 

as set 10 for moisture (%) property. Comparison merits (A); RMSEV over 5 selected 

LV’s (B); plot B shown a logarithmic scale (B1); fusion ranking methods (C); local 

calibration set moisture distributions and target sample 2 reference value (--) (D).  
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Figure 3.16. Final calibration set spectra comparison for target sample 26 (A) and target 

sample 2 (B) for moisture (%) property. 

 

6. Conclusion 

One of the main challenges identified through the discussion of the final local 

model results for each of the reference values and the calibration set selection process for 

two target samples from the moisture dataset is the importance of tuning parameter 

selection. In local modeling the reference values are unknown for the target samples; 

however, it is important to include the chemical information, as noted in many local 

modeling techniques 6-7, 14, 21, 23. The methods discussed to include the chemical 

variability and information in these local modeling techniques were based on predictions 

of target samples compared to the predictions of true values of the calibration samples 

through iterative local modeling procedures or global models. All of these methods 

require tuning parameter selection. The LAFR process addressed the need for tuning 

parameter selection in order to incorporate chemical information into the local sample 

selection by providing means for the incorporation of multiple tuning parameters. This 
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multiple tuning parameter selection method was necessary, but still requires more effort 

for selecting the best tuning parameters available. 

For the final local model selected for fat, the limited number of local calibration 

samples in the final calibration sets did not require the full five LV’s used for the LAFR 

process. The LV number is an adaptable parameter (parameter 8; Table 3.8), but is kept 

constant for all the reference properties for this dataset. Looking at the algorithm process 

for calibration set selection, it was noted that target sample 26 for moisture had the 

potential for a lower prediction error if the range of LV had been expanded or if a 

different LV selection methods had been applied. As the LAFR process shows that, even 

with five tuning parameters, the ideal model for each target sample is not always 

identified. The inclusion of multiple tuning parameters is still likely more beneficial than 

considering one tuning parameter for each model formed throughout the algorithm. 

The LAFR algorithm shows potential as an effective adaptable local modeling 

technique. Many unique aspects of the LAFR process are beneficial for local modeling. 

The data fusion approaches throughout the different steps in the LAFR algorithm provide 

the ability to use multiple merits simultaneously without having to select one or two, as is 

the case with many local modeling methods. Data fusion is used for the selection of 

unique spectrally similar spaces for each target sample using 26 spectral similarity merits. 

Data fusion also allows for comparison of the local analyte range limited calibration sets 

using both prediction data and spectral data across multiple tuning parameters for all 

merits in order to select the best matrix matched calibration sets. Additionally, data 

fusion is applied to the outlier check processes throughout the algorithm.  
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The other unique aspect of this algorithm is the concept of the flexible parameter 

options. Many of the local modeling methods proposed require the single selection of a 

set number of calibration samples, analyte range, or a set threshold for establishing each 

local calibration set. In the LAFR process, as there is a means for comparing local 

calibration sets to one another, many different parameter combinations are possible 

including the number of calibration samples and chemical range combinations included 

in this study. Because of this flexible parameter input aspect, the LAFR process can be 

applied to different types of datasets and applications. This study only shows the results 

for three reference values for a single dataset. The adjustable parameters were limited to 

the number of calibration samples and analyte range thresholds (e.g. four minimum 

calibration set sizes and three max chemical range thresholds). The only limiting factor 

for assessing more combinations of these parameter set options is computational time. As 

the purpose for many industrial local modeling efforts is to have real-time output 

information, the LAFR algorithm, in its current form, would not be able to provide these 

in process local model results if a large number parameter option combinations were 

required. However, the concepts and process provided by this algorithm do have the 

potential to be a powerful adaptable local modeling tool.  
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