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ASSESSING SPECTRAL SIGNATURES OF POTATO PLANTS INFECTED WITH 

POTATO VIRUS Y 

Thesis Abstract – Idaho State University (2016) 
 

In the potato industry, PVY has resulted in significant economic harm to farmers 

and has, at times, disrupted seed supplies to commercial growers, especially in varieties 

with good marketing attributes but high disease susceptibility such as Russet Norkotah. 

Commercial potato growers rely entirely on seed producers and certification systems to 

get disease-free seed as they have no recourse to mitigate seed-borne PVY after the seed 

is planted. However, seed growers and certification agencies are currently unable to 

control PVY infection in the industry’s seed pipeline and this has a significant impact on 

commercial markets and regional economies. In this study, it is shown that PVY-infected 

potato plants in an agricultural production field produce different spectral signatures than 

neighboring non-infected plants. Using machine learning or machine vision analysis such 

as support vector machine classifiers can differentiate spectral signature of PVY-infected 

and non-infected plants at an accuracy of 89.8 percent. This was achieved in a field 

showing significant crop canopy variability as identified by remote sensing and cluster 

analysis.  
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1 Introduction 
  

1.1  Agricultural Sustainability 
 

Modern agriculture worldwide is under increasing pressure to decrease inputs 

such as water, fertilizer, and pesticides, while balancing increased production demand as 

global population and urban centers grow. Agriculture will need to double yields by 2050 

to meet global food demand (Tilman et al. 2011). Crop inputs such as soil, water, seed, 

and fertilizer are finite or even scarce depending upon the region, and this yield increase 

will likely have to occur without a corresponding increase in inputs. To produce higher 

yields with the same or less inputs, site specific agricultural applications (precision 

agriculture) will need to be improved. In some instances in the United States, farmers are 

already varying application rates of fertilizer, seed, and irrigation water within fields that 

were historically treated in a homogenous way by applying site-specific management 

practices (Schmitt 2002). This is made possible with site-specific or targeted soil 

sampling and specialized application equipment that can alter applications on the fly 

using GIS and GPS technologies. Spatial data management, geostatistics, and remote 

sensing are also being utilized to analyze and manage regional disease pressures with the 

goal of improving Integrated Pest Management (IPM) strategies that result in a decreased 

dependency upon pesticides (Nelson et al. 1999).  
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Remote sensing technologies and analytics utilizing very high-spatial resolution 

sensors attached to unmanned aerial systems (UAS) are playing a major role in the 

continuing evolution of precision agriculture, where plant or even leaf scale analytics will 

provide an agronomic and economic benefit to growers. One example of this would be 

the detection and mapping of Potato Virus Y (PVY)-infected plants in seed producing 

fields using spectral signatures. Of the many diseases impacting the potato industry, PVY 

is among the most severe and can be responsible for yield losses of up to 80%  to 90% 

(Kerlan 2008; Nolte et al. 2004).   

Among the many crops produced in the world, potatoes (Solanum tuberosum) are 

among the most important economically, especially in Idaho. Potatoes are indigenous to 

the mountainous Andes region of South America and were originally domesticated and 

cultivated by the Incas and later distributed throughout the worlds by Spanish explorers 

becoming an important food staple for Europe by the 1700s (Alvarez et al. 2003). Today, 

potatoes are produced in about 150 countries and are the world’s fourth most important 

crop behind wheat, rice, and maize (Abdelhaq et al. 2006). In 2015, U.S. farmers planted 

over 1 million acres of potatoes valued at almost $4 billion dollars. In Idaho, farmers 

planted 325,000 acres generating almost $900 million in revenue (“National Agricultural 

Statistics Service” n.d.). One factor that makes potatoes different from many other crops 

is that the tuber (starch storage organ) is actually a modified underground stem with an 

outer skin, vascular tissue, storage tissue, and undeveloped leaf buds (eyes) on the 

surface. Potato tubers serve two primary purposes – they can either be consumed as a 
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food source by humans and some domesticated animals or used as seed to produce more 

potato plants (Alvarez et al. 2003).  

Seed potato inspection and certification in Idaho is managed by the Idaho Crop 

Improvement Association (ICIA) (Alvarez et al. 2003). The nonprofit grower association 

was designated to administer seed certification by the Regents of the University of Idaho 

as per Senate Bill No. 107, the “Seed and Plant Certification Act of 1959” which was 

enacted by the Idaho Legislature. Seed potato producers are required to meet certification 

standards regulating multiple disease thresholds in order to sell certified seed that is of 

high quality and free of disease. The association conducts multiple visual field 

inspections of every seed potato production lot during the growing season and laboratory 

tissue testing of samples collected during field inspections in an effort to quantify 

diseases including plant viruses. Growers are also required to submit tuber samples from 

each lot after harvest for the winter grow out test in Hawaii where the tubers are planted 

and subsequent plants are inspected and tested for multiple viral pathogens and other 

issues impacting seed quality. If seed potato lots exceed specific tolerances, marketing 

and plant-back restrictions are put in place that can severely limit that lot’s marketability 

triggering economic losses to producers and disrupting seed supplies for commercial 

producers. A significant challenge seed certification agencies face is a lack of a wide-

scale and accurate detection system to identify and quantify PVY-infected potato plants 

in seed production fields. Current programs rely on visual inspections during the growing 

season and post-harvest tuber samples that may not accurately represent actual seed lot 
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infection levels. These inconsistencies can often lead to certification errors that may show 

seed lots with artificially low or high infection levels.  

There are no known cures or methods to directly control PVY infection in potato 

plants and commercial potato growers must plant PVY-free seed to maximize yields and 

quality (Strand and Rude 2006). Seed potato growers typically rely heavily on insecticide 

applications to suppress insect vectors known to spread viruses like PVY from plant to 

plant during the growing season (Abdelhaq et al. 2006). However, pesticide chemistries 

are becoming more limited because of unintended negative environmental consequences 

and the harmful effects some insecticides can have on beneficial organisms such as bees 

or aphid predators. More modern formulations are selective in toxicity and target specific 

insects like aphids while not harming beneficial organisms. However, these chemistries 

often do not immediately kill aphid targets which provides a window for continued 

disease transmission since an aphid carrying PVY can inoculate a plant in less than one 

minute (Whitworth, Nolte, et al. 2010). Mineral oil applications to potato plant foliage 

have also been used with limited success by creating a physical barrier that reduces aphid 

stylet penetration but the efficacy of the application depends upon coverage and can also 

result in crop damage from the phytotoxic effects oils have on leaf cell structure (Dupuis 

et al. 2014).  

Seed growers also utilize cultural practices by mechanically removing infected 

plants with “rogueing crews” consisting of workers walking through fields visually 

inspecting plants for known virus symptoms and mechanically removing suspect plants. 
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The effectiveness of rogueing is highly variable as individual crew member training, 

experience, ambient light, crop and field conditions, and varieties can impact whether or 

not visual symptoms manifest in a way discernable to the human eye. For example, 

Russet Norkotah and Shepody varieties exhibit very mild or latent symptoms of PVY 

infection but will still suffer significant yield losses (Nolte et al. 2004; Whitworth, Nolte, 

et al. 2010). Some growers have also over-applied key crop nutrients such as nitrogen in 

the hopes that excessive vine growth would overcome PVY-induced yield losses. 

However, research has shown that adding extra fertility such as nitrogen does not 

mitigate yield drag caused by PVY (Whitworth et al. 2006). This has very detrimental 

effects on grower profit margins as well as contributing to groundwater contamination 

and other negative environmental impacts from the over-application of crop nutrients. 

Unfortunately, these regulatory-, pesticide-, and agronomy-based measures have not 

eradicated viruses such as PVY from potato seed producing operations. If anything, PVY 

is becoming more endemic and is now considered by many as one of the most significant 

threats to seed potato producers and their commercial customers on a global scale (Nolte 

et al. 2002). 

 

1.2 Broader Impacts 
 

In Idaho, PVY infection in potatoes plants has resulted in significant economic 

harm to farmers and has, at times, disrupted seed supplies to commercial growers, 



L. M. Griffel. 2016. M.S. Geographic Information Science Thesis 
Assessing Spectral Signatures Of Potato Plants Infected With Potato Virus Y 

 

6 
 

especially in varieties with good marketing attributes but high disease susceptibility such 

as Russet Norkotah (Whitworth, Nolte, et al. 2010). PVY also produces mild or latent 

symptoms in Russet Norkotah making it more difficult to visually detect (Whitworth, 

Hamm, et al. 2010). Commercial potato growers rely entirely on seed producers and 

certification systems to get disease free seed as they have no recourse to mitigate seed-

borne PVY after the seed is planted (Alvarez et al. 2003). However, seed growers and 

certification agencies currently struggle to control PVY infection in the industry’s seed 

pipeline and this has a significant impact on commercial markets. Some of the most 

recent economic data indicates PVY reduces total potato production in Idaho by about 2.3 

million hundred weight (cwt) annually resulting in an approximate loss of $14 million, 

depending upon current market pricing. The direct cost of PVY to the Idaho economy is 

about $19.5 million and economic modelling indicates the total impact exceeds $33 

million annually (McIntosh et al. 2015).  

A new way of detecting and quantifying PVY-infected plants that is more 

accurate than the current industry practices and standards could provide farmers and 

certification agencies a means to significantly reduce PVY levels within the industry’s 

seed pipeline and restore lost yields and profits to farmers and the economy as a whole. A 

technological approach that will give seed growers the ability to destroy infected plants 

thereby reducing PVY inoculum and provide better seed potato quality to commercial 

customers will contribute to increased profits and improved environmental sustainability. 

By lessening dependence upon pesticides and maximizing crop inputs such as fertility, 
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irrigation, and land resources,  this technology and analytics will help seed potato 

growers produce a healthier and more vigorous strains  of seed stock. In turn this will 

help commercial growers achieve higher yields and finished product for every unit of 

input applied to fields. 

 

1.3 Research Goals and Objectives 

 

Spectral data collected with UAS mounted sensors and a field spectrometer 

(Analytical Spectral Devices, a PANalytical Company) from infected and healthy plants 

in a potato production field in eastern Idaho during the 2015 growing season are analyzed 

in this study to determine the type and structure of spectral differences with the goal of 

developing a methodology to accurately identify and map individual plants with PVY 

using remote sensing methodologies. A field with a typical crop rotation for eastern Idaho 

and managed with typical production practices is also analyzed to determine its 

heterogeneous features. PVY-infected plants in the field during the 2015 growing season 

were visually identified and assessed for spectral reflectance properties and the data 

subjected to machine-learning algorithms to look for potential spectral signatures. The 

research goal in chapter 3 is to evaluate the heterogeneity of field characteristics that 

leads to crop variability. The hypothesis being tested is that a selected field in 

southeastern Idaho is heterogeneous relative crop growth. Chapter 4 will focus on the 

hypothesis that there is a significant difference in how electromagnetic energy from the 
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blue to NIR interacts and reflects from a PVY infected plant versus a non-infected plant. 

Both hypotheses are important research goals since crop heterogeneity may contribute to 

variations in spectral responses of PVY-infected and healthy plants that influence the 

accuracies of classification efforts. 

2 Literature Review 
 

2.1 Modern Potato Production  
 

From an agronomic perspective, potatoes are different from many other crops in 

that they are not commercially produced from seeds (Abdelhaq et al. 2006). Although 

potato plants can produce flowers during the growing season, they often drop before 

pollination meaning true potato seeds are very rare and also genetically unstable. Some 

varieties such as the Russet Burbank, one of the most common planted varieties, is male 

sterile as it does not produce viable pollen (Alvarez et al. 2003). Outside of breeding 

programs where true potato seeds are used to propagate new genetic hybrids, true potato 

seeds are not a viable seed source for most potato growing operations. Instead, potato 

tubers are typically used to promulgate the plants into the next year as a form of 

nonsexual vegetative propagation by producing new stems from the eyes when conditions 

are favorable for growth (Alvarez et al. 2003). During the growing season, potato plants 

progress through five growing stages: sprout development, vegetative growth, tuber 

initiation, tuber bulking, and maturation (Figure 1). 
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Figure 1. The five growth stages of a potato plant during the growing season are illustrated above. Potatoes are 
unique when compared to most other crops in that they are not produced from true seeds but are seeded with tubers 
produced from the previous season (adapted from Alvarez et al. 2003). 

 

The fact that potatoes are produced via vegetative propagation differentiates 

potato producers into two typical categories: seed or commercial operations. Seed potato 

growers produce potato crops with the primary purpose of marketing their crop to 

commercial growers as “mother” seed for the commercial crop. Commercial operations 

then produce a potato crop where the “daughter” tubers are harvested to be sold in table 

stock, dehydrated, and frozen markets.  

The advantages of vegetative propagation include improved crop management 

and agronomy since there is very little or no genetic diversity from plant to plant and 

plant growth is vigorous producing high yields of uniform produce(Abdelhaq et al. 2006). 

However, a major disadvantage of vegetative propagation is that potato seed tubers are 

vectors for many bacterial, fungal, and viral pathogens which can be carried into 
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subsequent generations via seed tuber tissue (Strand and Rude 2006). Therefore many 

countries and states have set up strict seed potato certification standards and programs 

with the goal of limiting diseases such as viruses that can be carried over from year to 

year in seed stocks (Abdelhaq et al. 2006). Seed potato production usually starts with 

disease free stock from plantlets derived from clean and thoroughly tested tissue culture 

stock and propagated for 3 to 5 years in isolated areas before being used to seed 

commercial production fields (Halterman et al. 2012). Typically, one pound of seed 

tubers will produce 10 to 15 pounds of daughter tubers each year. Some growing areas in 

Idaho as well as the entire state of Montana are restricted to only seed potato production 

and depend upon geographic segregation from commercial potato crops which typically 

carry more disease because of accumulated years of potential disease infection that could 

pass to nearby seed potato producing fields via insect vectors. However, since seed 

potatoes require multiple years of propagation within the seed pipeline, bacterial, fungal, 

and viral pathogens can infect and grow within the seed crop. Without intensive disease 

management programs, seed stocks can reach 100% disease infection levels within a few 

years (Halterman et al. 2012). It is not economically viable for commercial producers to 

use early generation seed stock as it is limited in quantity and much more expensive than 

later generation seed stock that has been propagated for 4 or 5 years. 
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2.2 PVY 

 
PVY is a virus and member of the potyvirus genus that is readily transmitted 

(non-persistently) by multiple species of aphids and consists of multiple strains including 

PVY
O
, PVY

N
, PVY

C
, and PVY

NTN
 (Abdelhaq et al. 2006). PVY is a single-strand RNA 

virus that infects a wide range of plant species causing wrinkles, chlorosis, and chlorotic 

or necrotic spots on leaves (Kogovšek et al. 2011). All PVY strains can cause internal 

and/or external tuber necrosis but the severity depends upon the potato variety and virus 

strain (Baarlen et al. 2005).  PVY is considered a high risk for worldwide potato 

production due to its genetic variability, ease of transmission, and effect on yield and 

quality (Kerlan 2008; Whitworth, Nolte, et al. 2010).  

Although countries and states have set up regulatory certification programs that 

include field inspections and extensive plant and tuber tissue testing, PVY levels continue 

to persist and in some cases increase depending upon disease pressure and the fact that 

many varieties, such as Russet Norkotah and Shepody mask PVY symptoms making it 

difficult to detect with current management strategies (Dupuis et al. 2014; Nolte et al. 

2004; Whitworth et al. 2006, 2010). Many sources have documented significant yield 

losses from PVY as well as direct economic harm to seed and commercial potato growers 

as well as in-direct economic harm to agricultural industry partners that depend upon 

potato production. For instance, in three common potato varieties, Russet Burbank, 

Russet Norkotah, and Shepody, PVY has been shown to reduce farmer gross revenue by 

about $17/ha for every one percent of infection (Nolte et al. 2004). Improved line 
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selections of the Russet Norkotah variety, such as RN3, that result in increased vine 

vigor, are more prone to PVY infection (Whitworth, Hamm, et al. 2010). Recent 

economic data indicates each percent of PVY-infected plants in a fresh market Russet 

Burbank crop can reduce grower returns by $5.13 to $18.06 per acre and by $4.26 to 

$14.08 in processing crops (McIntosh et al. 2015). 

 

2.3 Remote Sensing of Vegetation and PVY 

 

Plant leaf structure has significant influence on leaf-light interactions (Figure 22). 

Although not identical in all plants, leaves consist of multiple layers of differing cells 

structures starting with the upper epidermis and lower epidermis with the lower 

consisting of stomata to facilitate air movement into the interior of the leaf. Below the 

upper epidermis is the palisade tissue containing chloroplasts which house chlorophyll 

and other photosynthesis pigments. Below that, mesophyll cells facilitate oxygen and 

carbon dioxide exchange. Chlorophyll facilitates the absorption of red and blue light to 

power photosynthesis while reflecting green wavelengths. Infrared wavelengths, which 

pass through the cuticle and epidermis, are reflected by mesophyll cells (Campbell 2007).  
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Figure 2. The diagram above shows a typical leaf cell structure and how light interacts with various leaf structures. 
Various pigments absorb blue and red wavelengths to provide energy for photosynthesis while reflecting green 
wavelengths. Internal mesophyll cells either reflect or transmit infrared wavelengths, very little of which is absorbed 
by plant cells (adapted from A.-K. Mahlein 2016). 

 

 It has been documented that PVY virus particles and inclusion bodies, the 

cylindrical protein bodies produced via expression of the viral genome, have been found 

in epidermis and mesophyll cells and in vascular tissues of infected plants (Otulak and 

Garbaczewska 2012). Previous studies indicate the virus affects expression of multiple 

genes including those involved with photosynthesis as well as several stress-response 

genes that produce heat shock and wound inducing proteins (Pompe-Novak et al. 2006). 
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2.4 Precision Agriculture 
  

Agricultural production fields exhibit in-field heterogeneity that can cause 

significant yield and crop quality variation (Patzold et al. 2008). It is understood that soil 

heterogeneity in relation to parent material, climate, topography, and microbial and 

vegetative populations greatly influence fertility, crop water usage, and disease and pest 

pressure and the overall plant-by-plant response to biotic and abiotic stresses (Adamchuk 

et al. 2010). Although difficult to truly understand the origins of site-specific farming or 

precision agriculture, the modern nomenclature, farmers have been utilizing the concept 

for generations to manage crop inputs more accurately. For example, subsistence farming 

was carried out on very small areas of land that were naturally segregated for seeding, 

fertility, and sometimes irrigation by known or visual differences in plant growth. Today, 

large farming operations with fields covering large areas use grid or zone methodologies 

and modern equipment equipped with global positioning systems (GPS) to vary seed, 

fertility, and sometimes irrigation inputs to better match the varying needs within the 

field (Oliver 2010; Patzold et al. 2008; Schmitt 2002). The advent of remote sensing and 

geographic information systems (GIS) has added additional levels of data and analytics to 

make farming more efficient and sustainable. A key biophysical metric, leaf area index 

(LAI), that has been used model yield predictions, showed strong correlations to multiple 

vegetation indices (VIs) for corn and potato crops including the normalized difference 

vegetation index (NDVI), soil adjusted vegetation index (SAVI), transformed soil-
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adjusted vegetation index (TSAVI), modified soil adjusted vegetation index (MSAVI2), 

and perpendicular vegetation index (PVI) with the MSAVI2 having the strongest 

correlation and dynamic range (Wu et al. 2007). It has also been shown that VIs exhibited 

strong correlations to yield with MSAVI2 having the most consistent correlation values 

(Yang and Everitt 2012). Remote sensing analysis has also been used to accurately detect 

and map sugarbeet plants with symptoms of beet cyst nematode and Rhizoctonia crown 

and root rot (Hillnhütter et al. 2011).  

 

2.5 Advanced Precision Agriculture and Unmanned Aerial Systems  
  

With the recent advancements in Unmanned Aerial Systems (UAS) and robust 

compact sensors, farmers are starting to have access to more advanced data and analytics. 

UAS offers multiple advantages over aircraft- or satellite-borne sensors including flight 

schedule and sensor flexibility, cost, and spatial resolution (Zhang and Kovacs 2012). 

This provides a new platform for remote sensing and to evaluate and study  disease 

incidence in individual plants or even individual leaves (A. K. Mahlein et al. 2010). An 

example of this is found in research showing that changes in reflectance in certain regions 

of the electromagnetic spectrum  relative to leaf vascular tissue in potatoes infected with 

Potato Yellow Vein Virus (PVYY) provided early detection of infection before 

symptoms of chlorosis where apparent to the trained eye (P. Chávez et al. 2009). 

Research also showed very high accuracies when classifying various plant diseases using 
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Support Vector Machine (SVM) classifier including those induced by fungal, viral and 

bacterial pathogens (D.Pujari et al. 2016). Originally introduced as the Support-Vector 

Network, SVM is a machine-learning binary classifier where input vectors are non-

linearly mapped to a high dimension feature space where a linear decision surface is 

constructed (C.~Cortes et al. 1995).  

 

3 An Analysis of Field Heterogeneity 
 

3.1 Introduction 
  

Understanding, measuring, and mapping field heterogeneity continues to be a 

major challenge for farmers moving to precision agricultural practices. Implementing 

variable rate technologies (VRT) to improve efficiencies of fertilizer, seed, and/or 

irrigation water could have significant positive impacts on environmental sustainability, 

crop yields and quality, and farm profits by matching crop inputs to heterogeneous field 

variability but establishing the cause-and-effect relationships of the biotic and abiotic 

factors that cause field heterogeneity impacting crop growth continues to be a major 

challenge (Schmitt 2002).  

Although agricultural production fields are typically treated in a uniform manner 

when it comes to fertility, irrigation, and crop protection applications, it is known and 

accepted that soil physical attributes and chemistry can and often do vary within a single 
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field which impacts crop performance and yields, fertilizer, irrigation, and crop protection 

product performance (Patzold et al. 2008). Physical and chemical soil properties are the 

result of thousands of years of soil-forming features including parent material, 

topography, climate, soil and plant organisms, and time which result has resulted in soil 

variability at regional, field, and within field scales (Adamchuk et al. 2010).  

An important question when dealing with in-field heterogeneity is whether or not 

the spatial patterns of crop health and vigor are random in nature or are being influenced 

by other factors. Often, crop canopy data measured by remote sensing can be analyzed to 

determine the potential random or biased nature of crop canopies using advanced 

geostatistics (Peeters et al. 2015; Rey-Caramés et al. 2015). Remote sensing of 

agricultural crops has shown continued promise as an effective tool to measure crop 

performance and variability both spatially and temporally in ways that are more efficient 

and cost effective than on-the-ground field measurements. VIs derived from multi- or 

hyperspectral data have been shown to be very effective to show and measure within-

field variation (Hatfield and Prueger 2010). LAI is a dimensionless measurement used to 

quantify a plant’s green leaf area or canopy which correlates to its ability to capture solar 

radiation for photosynthesis and plant growth. Research shows that LAI in potatoes is 

very closely related to tuber yield where LAI and ground cover were highly correlated 

despite variances in management practices and LAI accounted for 74 to 79 percent of 

tuber yield (Boyd et al. 2002). Much research has been done on how to measure LAI via 

radiative transfer models or by using VIs. Radiative transfer models (RTMs) rely on 
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extensive input data that can be difficult to acquire on a broad field scale and are difficult 

to implement in production agricultural practices while VI-LAI relationships in potatoes 

have shown strong correlations, especially when using MSAVI2 (Wu et al. 2007). 

Research also shows that VIs derived from remote sensing data have a high correlation to 

field level potato yields (Bala and Islam 2009).The purpose of this study is to conduct an 

analysis of heterogeneity of a selected agricultural production field in southeastern Idaho 

to test the hypothesis that the field is heterogeneous relative to crop growth as measured 

by MSAVI2 processed from high spatial resolution satellite imagery data and that 

underlying spatial patterns are not random. Crop growth and yield variability will be 

extrapolated with remote sensing data from high spatial resolution multispectral satellite 

imagery. This study is important because the field is typical of many agricultural 

production fields in the Pacific Northwest and is also the site of an additional study 

focusing on developing spectral signature/s of potato plants infected with Potato Virus Y 

(PVY) and it is not known at this time as to whether or not crop heterogeneity could 

contribute to variations in plant spectral responses to the viral infection. This chapter 

answers the following research questions: 

 Is the crop variability completely random? 

 How do elevation and topographical features relate to crop 

variability? 

 How does soil variability measured by electrical conductivity 

relate to crop variability? 
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3.2 Materials and methods 
 

3.2.1 Field Site 

 

The field site encompasses 150 acres and is located in southeastern Idaho at an 

altitude of about 1,285 meters (Figure 3). The field was chosen because of its crop 

rotation, standard irrigation system, and typical agronomic practices. Coordinates are not 

being provided because the grower has requested the field location remain anonymous.  
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Figure 3. The red border bounds the farmed acres of a typical agricultural production field in southeastern Idaho as 
shown by 2015 NAIP (National Agriculture Imaging Program) imagery. Irrigation water is provided by a center pivot 
system to support a potato and cereal grain rotation. Coordinates are not being provided because the grower has 
requested the field location remain anonymous. 

 

Southeastern Idaho predominantly consists of a high desert sagebrush steppe 

environment. The Snake River cuts through Snake River Valley that is used 

predominantly for agricultural production of potatoes, cereal grains, alfalfa, and 

sugarbeets. The area experiences a semiarid climate with below freezing winter 

temperatures, measurable spring and winter precipitation, and warm and dry summers. 

According to the Soil Survey Geographic (SSURGO) database (United States 
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Department of Agriculture, Natural Resources Conservation Service), the field soil 

consists of Pancheri silt loam, part of the coarse-silty mixed, frigid Xeric Haplocalcids 

classification split into subcategories based on topographical features (Figure 4).  

 

Figure 4: The Map Unit Symbol (MUSYM) key in the Soil Survey Geographic (SSURGO) database delineates the 
topographic breaks of the parent soil type, Pancheri, within the field site. The field soil consists of Pancheri silt loam, 
part of the coarse-silty mixed, frigid Xeric Haplocalcids classification. 

 

 

Table 1 shows a breakdown of the field soil subcategories and associated acres. 

Table 2 shows a summary of the physical and chemical properties of the soil as provided 

by SSURGO. 
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Table 1. Soil subcategories for the field site derived from SSURGO. 

 

Table 2. Soil physical and chemical properties derived from SSURGO. 

 

 

The field site is managed with a typical potato and cereal grain rotation of one 

year planted to potatoes followed by two years planted to cereal crops and then back to 

potatoes the following year. It is irrigated with a center pivot system equipped with a 

corner extension arm with water supplied from an irrigation well supplied by the Eastern 

Snake River Plain Aquifer. For this study, the 2015 potato crop planted in the field site 

was analyzed to determine whether or not crop growth and canopy health are 

heterogeneous and not random spatially. Potato growth is classified into five growth 

stages: sprout development, vegetative growth, tuber initiation, tuber bulking, and 

maturation (Alvarez et al. 2003). The grower managed the field using a standard “flat-

Soil Name MUSYM Acres

Pancheri silt loam, 2 to 4 percent slopes 23 96.4

Pancheri silt loam, 4 to 8 percent slopes 24 43.0

Pancheri-Rock outcrop complex, 2 to 25 

percent slopes 26 11.9

Depth (in) Clay (%)

Available 

Water 

Capacity 

(in/in)

Organic 

Matter (%)

Cation 

Exchange 

Capacity 

(meq/100 g) pH

Calcium 

Carbonate 

(%)

Gypsum 

(%)

Salinity 

(mmhos/cm)

0-6 8-17 0.19-0.21 1.0-2.0 7.0-18 7.4 - 8.4 1-5 0 0.0-2.0

6-10 5-18 0.19-0.21 0.5-1.0 4.0-16 7.9 - 9.0 10-30 0 0.0-2.0

10-17 5-18 0.11-0.13 0.0-0.5 4.0-15 7.4 - 9.0 15-25 0-5 2.0-8.0

17-33 5-18 0.11-0.13 0.0-0.5 4.0-15 7.4 - 9.0 15-25 0-5 2.0-8.0

33-60 5-18 0.11-0.13 0.0-0.5 4.0-15 7.4 - 9.0 15-25 0-5 2.0-8.0
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rate” approach regarding fertility, planting, and irrigation and did not vary inputs to 

match in-field variability. This is still a common practice in production fields in Idaho. 

 

3.2.2 Planting  

 

The planting practices for the 2015 crop matched industry standards of other 

potato growers in the region. The field was seeded on April 29, 2015 and the variety 

planted was Russet Norkotah Line 278 with the premium quality tubers intended for the 

fresh table stock market and remaining off grade going to process channels. The seed 

consisted of generation 3 (G3) seed potatoes mechanically cut into pieces averaging 2.25 

ounces/seed piece. An 8-row planter (Spudnik Equipment Company LLC, Blackfoot, 

Idaho) was used to plant the seed into rows spaced at 36 inches from center to center at 

an approximate 12 inch seed spacing approximately 6 inches deep (Figure 5). The planter 

was pulled with a tractor equipped with global positioning system (GPS) guided steering 

to ensure that rows were straight and in optimum alignment. Liquid injection systems 

were also attached to the tractor/planter to inject liquid fertilizer and soil fungicide 

products into the seed furrow during planting. 
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Figure 5. Seed potatoes are loaded with a belted elevator piler into the hopper of the eight-row potato seed planter. 
The planter was pulled with a tractor equipped with a GPS auto-steering system and equipped with liquid injection 
systems for fertility and fungicide products. 

 

 

3.2.3 Agronomics 

 

The fertility program for the 2015 potato crop at the field site was similar to other 

potato fields in the region. It consisted of multiple applications starting in the fall of 2014 

after the grain crop was harvested. Approximately 50 pounds of nitrogen, 100 pounds of 

phosphate, 150 pounds of water soluble potash, 200 pounds of elemental sulfur, 5 pounds 

of zinc, and 10 pounds of magnesium were applied to every acre in the form of 

monoammonium phosphate (MAP) with an analysis of 11-52-00, K-Mag (The Mosaic 

Company) with an analysis of 00-00-22 11% Mg 22% sulfate, and Zinc Sulfate 35.5% 
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(Winfield Solutions LLC) with an analysis of 17.5% sulfur and 35.5% zinc. Additional 

liquid fertilizer was applied at planting through the liquid injection system on the planting 

equipment. The grower has requested specific product names be omitted to protect 

proprietary agronomic program information. This included 20 gallons/acre of ammonium 

phosphate with an analysis of 10-34-00, a 5 percent manganese solution at 0.6 gallons per 

acre, a 5 percent copper solution at 0.4 gallons per acre, 5 pounds of soluble boron per 

acre, and humic acid at 2 gallons per acre. An additional 75 pounds per acre of nitrogen 

in the form of UAN 32 with an analysis of 32-00-00 (45 percent ammonium nitrate, 35 

percent urea, and 20 percent water) was applied during the season through the fertigation 

system on the center pivot irrigation system on a weekly basis based on in-season tissue 

sampling results.  

Because of the intense fungal, insect, weed, and disease pressure for potatoes in 

southeastern Idaho, multiple crop protection applications occur starting with the seed 

cutting phase. The grower has requested rates not be published to protect proprietary 

agronomic program information. Right after seed pieces were cut, each was mechanically 

treated with a dry seed treat dust containing mancozeb (MZ) fungicide. As the seed 

pieces were planted, a liquid application system on the planter sprayed the soil 

surrounding the seed piece with Vertisan fungicide (DuPont) and Advise Four insecticide 

(Winfield Solutions LLC). Prior to plant emergence on June 3, 2015 during the sprout 

development stage, soil herbicides were applied to the exposed soil surface with a ground 

application unit and pushed into the soil profile approximately 1 to 2 inches deep with 
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irrigation water. The herbicide products included Sencor (Bayer Crop Science), Outlook 

(BASF), Prowl H2O (BASF), and Linex (NovaSource). Three in-season fungicide 

applications were applied during the month of July with an aerial applicator during the 

tuber bulking stage. Endura (BASF) was applied July 3, followed by a second application 

of Endura (BASF) and Roper (Loveland) on July 17. The last fungicide application took 

place on July 29 consisting of Tanos (DuPont). At the end of the growing season on 

August 28, 2015, a desiccant application consisting of Reglone (Syngenta) and Rely 

(Bayer Crop Science) was applied with a ground applicator to kill the above ground plant 

structure to force the tubers to mature and ripen for harvest and storage.  

Because of the warm and dry semiarid high-desert environment, the field site 

required a significant amount of additional irrigation water to maximize the crop output. 

The first irrigation took place June 4, 2015 with a 0.5 inch application to water in the 

herbicide application. On June 8, the more intensive irrigation program began with an 

application of 1.5 inches as the crop had emerged and entered the vegetative growth stage 

and the need for water increased because of increasing evapotranspiration rates. The crop 

continued to receive approximately 1.5 inches per week until early August when crop 

water consumption began to decrease as the crop entered into the maturation growth 

stage (Figure 6). Irrigation application decisions were made on a weekly basis based on 

field scouting and soil moisture patterns measured by the irrigation manager. After vine 

kill, irrigation to the field site was discontinued for approximately two weeks to facilitate 

above-ground plant desiccation. Additional irrigation water was applied prior to harvest, 
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which started on September 21, 2015, to facilitate optimum soil moisture for tuber 

digging conditions. Harvest operations were completed on September 24, 2015 for the 

field site.  

 

Figure 6. The field site on August 1, 2015. The plants are starting to transition from tuber bulking to the maturation 
stage which typically results in senescence of the crop canopy. 
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3.2.4 Remote Sensing 

 

Because of the large scale of the field site and the limited “on-the-ground” 

resources to map the field variability, high spatial resolution multispectral satellite 

imagery was used to measure the 2015 potato crop photosynthesis patterns both spatially 

and temporally. The remote sensing data was collected with the Pleiades 1A and 1B 

satellites (Airbus Defence and Space) providing blue, green, red and NIR bands at a 2.0 

meter native spatial resolution and provide by the J.R. Simplot Company (Boise, Idaho). 

The Pleiades satellite system was chosen because of its high temporal, spatial, and 

radiometric resolution. Pixel depth at acquisition is 12 bits increasing the likelihood that 

subtle differences in canopy difference will be detected. The data was delivered as a 

standard Ortho product including World Geodetic System (WGS84) georeferencing, 

orthorectification using the Reference3D dataset (Astrium’s Elevation30 Suite), and 

viewing angle correction. Although several image dates were collected, only three were 

appropriate for the field heterogeneity analysis as intermittent cloud cover and local 

weather patterns prohibited the use of the other imagery dates. The dates used for this 

study are June 08, 2015 (early vegetative growth), July 12, 2015 (tuber bulking), and 

August 25, 2015 (maturation) and the collection parameters are shown in table 3.    
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Table 3.  Satellite imagery specifications. 

 

Initial data preprocessing including image calibration, atmospheric correction, and 

registration were executed with ENVI 5.3 (Harris Corporation) software. The raw data 

was radiometrically corrected using the Radiometric Calibration tool to convert the raw 

pixel digital numbers (DNs) to radiance values (µW/(cm2 * sr * nm). The Fast Line-of-

sight Atmospheric Analysis of Hypercubes (FLAASH) module was used for atmospheric 

correction and to convert the radiance values to surface reflectance values to improve the 

accuracies of temporal and spatial analyses (Hadjimitsis et al. 2010). Because of the 

timing and location of the imagery acquisitions, the Mid-Latitude Summer atmospheric 

and Rural aerosol models where used. The dark pixel reflectance ratio method to retrieve 

the aerosol amount and estimate the scene average visibility (Aerosol Retrieval) was not 

applied where the Pleiades multispectral data did not include any data in the 2,100 nm 

range. Following atmospheric correction, the corrected imagery data was reprojected to 

the Universal Transverse Mercator North American Datum 1983 (UTM NAD83) zone 12 

north and registered to the 2015 National Agriculture Imaging Program county base map 

to ensure spatial alignment was as accurate as possible (Figure 7). 

 

Acquisition 

Date

Off-Nadir 

(degrees) Red (nm) Green (nm) Blue (nm) NIR (nm)

June 8, 2015 12.97 620-700 510-590 450-530 775-915

July 12, 2015 12.08 620-700 510-590 450-530 775-915

August 25, 2015 15.84 620-700 510-590 450-530 775-915
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Figure 7. The three preprocessed satellite image tiles show the field site in natural color on June 8, 2015 (A), July 12, 
2015 (B), and August 25, 2015 (C). The crop emergence pattern was captured on June 08, followed by the closed 
canopy on July 12, 2015 (middle), and August 25, 2015 (right). The crop emergence pattern was captured on June 08, 
followed by the closed canopy on July 12 and then crop maturation on August 25. 

 

Following preprocessing, the analysis phase was conducted using ArcGIS 10.4 for 

Desktop (Environmental Systems Research Institute). To minimize any error associated 

with non-cropped portions of the field (rocky outcroppings, non-cropped areas, and 

irrigation pivot corners), a more accurate field boundary was digitized over the satellite 

imagery that excluded all areas within the field site that were not planted to potatoes. 

Using the preprocessed multispectral data, a MSAVI2 (1) image was generated for the 

three image dates to characterize and quantify the spatial and temporal crop vegetative 

patterns. The MSAVI2 equation, which is based on the SAVI equation that incorporates a 

soil adjustment factor (L) into the denominator of the NDVI equation, replaces L with a 

dynamic function that increases the dynamic range of the vegetation signal while 

minimizing soil background influences and also incorporates the near infrared (NIR) and 

red (RED) bands resulting in overall improved vegetation sensitivity (Qi et al. 1994). 

A B C 
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𝑀𝑆𝐴𝑉𝐼2 =
(2 ∗ 𝑁𝐼𝑅 + 1 − √(2 ∗ 𝑁𝐼𝑅 + 1)2 − 8 ∗ (𝑁𝐼𝑅 − 𝑅𝐸𝐷)

2
                           (1) 

 

3.2.5 Testing for Complete Spatial Randomness 

 

Continuing in ArcGIS 10.4 for Desktop, the MSAVI2 raster data for the three 

dates was resampled to a five-meter spatial resolution using a bilinear technique. It was 

believed that further analysis would be computationally difficult with the native two-

meter resolution. The raster data was then converted to a point feature class in order to 

begin to test for complete spatial randomness (CSR). During this analysis, the various 

processes produced z-scores and p-values to indicate whether or not the null hypothesis 

that the data was completely spatially random could be accepted or rejected. P-values 

represent the probability that the observed spatial features or values associated with the 

features are random in nature while the z-scores are the standard deviation values 

associated with a normalized distribution (Figure 8). Very low or high z-scores are found 

in the tails of the normal distribution and indicate that is it unlikely that the observed 

pattern is random. For this study, rejection of the null hypothesis would indicate the 

MSAVI2 values and their individual locations, which represent the continuous vegetation 

patterns in the field site, were not random but influenced by other spatial processes or 

phenomena.   
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Figure 8. This graphical representation of the normal distribution pattern (ESRI) is used to assess whether or not 
features or values associated with features or random in nature. Significantly low p-values and significantly low or 
high z-scores indicate the null hypothesis that the data is random can be rejected. 

 

As a starting basis, the point feature class data generated from the resampled five-

meter spatial resolution MSAVI2 data was processed with the Average Nearest Neighbor 

tool in ArcGIS 10.4 for Desktop using Euclidian distance to measure the distance 

between each feature centroid and its nearest neighbor’s centroid location and determine 

whether or not the point data spatial pattern was randomly distributed. The analysis 

parameter was confined to 592,562.78 square meters, the area of the crop canopy. Next, 

the feature class point data was interrogated with multiple iterations of the Incremental 
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Spatial Autocorrelation tool using Euclidian distance to determine the spatial distances 

where the z-scores or standard deviation peaked indicating the distance where data 

clustering was most pronounced. This process was computationally intensive given the 

large number of points and potential neighbors based on iterations of the number of 

distance bands chosen and the distance increment at which z-scores were calculated. 

Using the distances found with the Incremental Spatial Autocorrelation tool for each 

image date, the Spatial Autocorrelation tool was implemented using the Global Moran’s I 

statistic to determine whether or not the MSAVI2 values and spatial patterns expressed 

clustering (Moran 2016). The inverse distance weighted (IDW) method was used to 

define the spatial relationship of the MSAVI2 point feature class given the continuous 

nature of the MSAVI2 values. Euclidian distance was used as the distance method and 

the distance where data clustering was most pronounced that was found during the 

Incremental Spatial Autocorrelation analysis was used as the distance band. The peak 

clustering determined from the June 8 and July 12 dates was used and compared across 

all image dates. If the results of the Global Moran’s I analysis indicated a non-random 

pattern within the MSAVI2 data, a Cluster and Outlier Analysis using the Anselin Local 

Moran’s I methodology to identify the significant high and low MSAVI2 values as well 

as any spatial outliers was performed (Anselin 1995). A Hot Spot Analysis using the 

Getis-Ord Gi* analysis was also conducted to identify statistically significant spatial 

clusters of high and low values (Getis and Ord 1992; Ord and Getis 2010). The inverse 

distance weighted (IDW) method was used to define the spatial relationship of the 
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MSAVI2 point feature class given the continuous nature of the MSAVI2 values. 

Euclidian distance was used as the distance method and the distance where data 

clustering was most pronounced for each date that was found during the Incremental 

Spatial Autocorrelation analysis was used as the distance band. 

 

3.2.6 Exploratory Regression – Elevation Data and Derivatives 

 

After testing the MSAVI2 point feature classes for the three growing season dates 

for CSR, an exploratory regression analysis was conducted to ascertain what 

topographical explanatory variables could explain the spatial variability of the crop 

canopy health measured by MSAVI2 for each image date. The analysis evaluated all 

possible combinations of explanatory variables using ordinary least squares (OLS) 

regression. It is believed topographical variations will likely result in differing soil types 

not measured or explained by the SSURGO data due to sampling limitations and vary the 

amount of incoming solar radiation the crop receives within the field which influences 

photosynthetic activity and plant biomass production. These topography based variations 

could result in in-field differences affecting crop canopy growth and health. The 

explanatory variables included elevation, aspect, slope, total incoming solar radiation 

(direct and diffuse), direct incoming solar radiation, diffuse incoming solar radiation, and 

the duration of direct incoming solar radiation for the growing season. The elevation data 
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and derivatives for the field site were derived from the United States Geological Survey 

(USGS) National Elevation Data 10 meter or better (NED10) provided by the USDA via 

the Geospatial Data Gateway (https://gdg.sc.egov.usda.gov/). The elevation data values 

were given in meters at a spatial resolution of approximately 8.9 meters.  

 Using ArcGIS 10.4 for Desktop to prepare the data for exploratory regression 

analysis, aspect and slope surface rasters were produced using the NED10 elevation data 

resulting in values for each pixel (Figure 9). Elevation was measured in meters, aspect in 

compass direction degrees, and slope in degrees.  

 

Figure 9. The tiles above display elevation (A), aspect (B), and slope (C) for the field site showing elevation in meters, 
aspect in compass direction degrees,  and slope in degrees. The data was derived from USGS NED 10 meter data. 

 

The incoming solar radiation surfaces were produced using the Area Solar 

Radiation tool with the time configuration specified for June 8, 2015 (crop emergence) 

through August 28, 2015 (crop canopy desiccation) (Figure 10). The solar radiation data 

is measured in watt hours per square meter, and the duration data is measured in hours.   

B A C 

https://gdg.sc.egov.usda.gov/
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Figure 10. The tiles above display total incoming solar radiation (A), direct solar radiation (B), diffuse solar radiation 
(C), and duration of direct solar radiation (D) for the crop growing season from June 8, 2015 to August 28, 2015. The 
elevation data is measured in meters, the solar radiation data is measured in watt hours per square meter, and the 
duration data is measured in hours. 

 

A B 

C D 
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To conduct the exploratory regression analysis, the dependent and explanatory 

variables had to be combined into a single feature class where the corresponding 

variables shared a common spatial location. After completing the topography derivatives, 

a grid polygon feature class was constructed that matched the cell size and alignment of 

the elevation and topography raster data. The cell values of each topography derivative 

were extracted to the corresponding cell of the grid feature class attribute table. Using the 

Zonal Statistics tool, the mean values of the native resolution MSAVI2 rasters derived 

from the atmospherically corrected multispectral data where calculated for each cell of 

the grid polygon feature class. The resultant attribute table of the grid polygon feature 

class contained the corresponding elevation, topography derivatives, and mean MSAVI2 

values for each cell at a spatial resolution of 8.9 meters (Figure 11).  
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Figure 11. The left tile shows the elevation grid raster derived from USGS NED10 and the right tile shows the 
overlaying grid feature class matching the spatial resolution and alignment of the raster data. The attribute table of 
the grid polygon feature class con contained the corresponding elevation, topography derivatives, and mean MSAVI2 
values for each cell at a spatial resolution of 8.9 meters. 

 

Using the Exploratory Regression tool in ArcGIS 10.4 for Desktop, the elevation 

and topography derivatives (elevation, slope, aspect, total incoming solar radiation, 

diffuse solar radiation, direct solar radiation, and the duration of direct solar radiation) 

were used as explanatory variables against each MSAVI2 date (June 8, 2015, July 12, 

2015, and August 25, 2015). The analysis looks for Ordinary Least Square models that 

best explain the dependent variable which, in this case, are the MSAVI2 variables. These 

explanatory variables where chosen because elevation data was readily available and the 

area is known for significant topographical changes within agricultural production fields. 

The analysis included modelling for single variables as well as all possible combinations 
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of the variables ranging from 2 possible combinations up to 7 possible combinations. For 

the purposes of this study, the following parameters are required to be considered a 

passing model: an adjusted R-squared value of 0.5, a maximum coefficient p value of 

0.05, a maximum variance inflation factor of 7.5, a minimum acceptable Jarque-Bera p-

value of 0.1, and a minimum acceptable spatial autocorrelation p value (based on the 

Global Moran’s I test) for model residuals of 0.1. 

 

3.2.7 Exploratory Regression – Soil Electrical Conductivity Data 

 

An exploratory regression analysis was also conducted to determine whether or 

not soil apparent electrical conductivity (EC) readings could explain the crop canopy 

variability measured by the MSAVI2 analysis for the three image dates previously 

analyzed for complete spatial randomness. The EC data was provided for the study by the 

J.R. Simplot Company (Boise, Idaho) and was collected during the fall of 2014 with an 

EM38-MK2 proximal sensor measuring apparent conductivity in millisiemens per meter 

(mS/m) at a depth of 0.5 meters and 1 meter (Geonics Limited, Mississauga, Ontario, 

Canada) after the 2014 cereal grain crop was harvested. EC data has been shown to be 

effective when mapping the spatial variability of soil texture as influenced by soil 

moisture content, salinity, and clay which can significantly influence plant growth 

characteristics (Gooley et al. 2014; Guo et al. 2016; Mertens et al. 2008).  
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The EC data was mapped in transects spaced at approximately 16 meters and 

recorded in 1-second intervals with a Trimble Yuma 2 field computer linked to the 

EM38-MK2 sensor linked to a global positioning system (GPS) at 10 cm accuracy 

(Figure 12).  

 

 

Figure 12. This map shows the 5,059 data points collected measuring apparent soil electrical conductivity readings 
(mS/m) in the field site. The data was provided by the J.R. Simplot Company and was collected during the fall of 2014. 
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The sensor was mounted in a proprietary sled designed to minimize temperature 

variations and dust exposure to the sensor and pulled with an all-terrain vehicle (ATV) 

with the operator using GPS-guided light-bar guidance for in-field navigation. A total of 

5,059 data points were collected within the 2015 crop canopy field boundary used to 

process the remote sensing data earlier in this chapter (Figure 13). Table 4 shows the 

statistics for the 0.5 meter and 1 meter readings.  
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Figure 13. The maps above show the apparent soil electrical conductivity values in millisiemens per meter (mS/m) for 
the 0.5 meter (A) and 1 meter (B) soil depths of the field site as measured during the fall of 2014. The higher values 
could indicate soil with higher moisture, clay, and salt content as compared to areas with lower EC values. 

Table 4. Soil electrical conductivity statistics at 0.5 and 1 meter depths. 

 

To prepare the EC data for exploratory regression, the Extract Multi Values to 

Points tool in ArcGIS 10.4 for Desktop was used to append the MSAVI2 values for the 

three image dates analyzed earlier for CSR at the exact location of every EC data point to 

the EC data point feature class. Using the Exploratory Regression tool, the EC data at 0.5 

meters and 1 meter were used as explanatory variables against each MSAVI2 date (June 

8, 2015, July 12, 2015, and August 25, 2015). For the purposes of this study, the 

following parameters are required to be considered a passing model: an adjusted R-

squared value of 0.5, a maximum coefficient p value of 0.05, a maximum variance 

inflation factor of 7.5, a minimum acceptable Jarque-Bera p-value of 0.1, and a minimum 

acceptable spatial autocorrelation p value (based on the Global Moran’s I test) for model 

residuals of 0.1. 

 

 

depth

mean 

(mS/m)

minimum 

(mS/m)

maximum 

(mS/m)

std. dev 

(mS/m)

0.5 meters 51.308 26.328 219.023 9.069

1 meter 43.551 18.242 267.266 10.842
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3.3 Results 

 

3.3.1 Remote sensing 

 

Spatial maps showing the crop canopy variation as measured by MSAVI2  

analysis were constructed for the June 8, 2015, July 12, 2015, and August 25, 2015 dates 

capturing early vegetative growth, tuber bulking, and crop maturation growth stages 

(Figure 14). The basic statistics for each image date are shown in Table 4.  

 

Figure 14. The MSAVI2 tiles for each date displayed as stretched rasters limited to 2.5 standard deviations on June 8, 
2015 (A), July 12, 2015 (B), and August 25, 2015 (C). The crop emergence pattern was captured on June 08, followed 
by the closed canopy on July 12 and then crop senescence on August 25. 

 

Table 5. MSAVI2 statistics for each image date. 

 

 

Image Date Mean Min. Max Std. Dev.

June 8, 2015 0.258325 0.128856 0.369699 0.031612

July 12, 2015 0.898117 0.188617 0.948939 0.063283

August 25, 2015 0.545860 0.234230 0.878886 0.096557

B C A 
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3.3.2 Complete spatial randomness (CSR) analysis 

 

The results of the average nearest neighbor spatial analysis for the MSAVI2 point 

feature classes derived from the five-meter resampled data for each date are shown in 

table 5. Based on the high z-score values and probabilities valued at zero, the null 

hypothesis that the spatial pattern of the MSAVI2 point feature classes for each date are 

random should be rejected.  

Table 6. Average nearest neighbor results. 

 

The multiple iterations of the Incremental Spatial Autocorrelation tool on 

MSAVI2 point feature classes derived from the five-meter resampled data resulted in 

peaked z-scores for each image date (Figure 15). The June 8, 2015 data peaked at 106 

meters based on 30 distance bands at five-meter increments with a beginning distance of 

six meters. The July 12, 2015 data peaked at 76 and 96 meters based on 30 distance 

bands at five-meter increments with a beginning distance of 6 meters. The August 25, 

2015 data peaked at 351 meters based on 30 distance bands at 15-meter increments 

starting at 6 meters.  

Image Date

Observed 

Mean 

Distance

Expected 

Mean 

Distance

Nearest 

Neighbor 

Index z-score p-value

June 8, 2015 5 2.5 2 294.65 0

July 12, 2015 5 2.5 2 294.65 0

August 25, 2015 5 2.5 2 294.01 0

A B C 
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Figure 15. The three tiles above show the z-score peak location for the MSAVI2 point feature classes for June 8, 2015 
(A), July 12, 2015 (B), and August 25, 2015(C). The results are based on multiple iterations of the number of increments 
and distance for each increment. 

 

Using the spatial distances of 76 and 106 meters where the peak z-scores occurred 

for the June 8 and July 12 image dates, the Global Moran’s I analysis was applied to each 

of the MSAVI2 point feature classes derived from the five-meter resampled data. The 

results are shown in table 6. Based on the high z-score values and probabilities valued at 

zero, the null hypothesis that the spatial distribution of the MSAVI2 values is randomly 

distributed should be rejected for each image date.  

Table 7. Global Moran’s I results. 

 

Where the Global Moran’s I statistics indicated a nonrandom spatial pattern for 

the MSAVI2 values for each image date, the Anselin Local Moran’s I analysis was 

Image Date

Moran's I 

Index

Expected 

Index Variance z-score p-value

6/8/2015-76 meters 0.577167 -0.000042 0 1243.058092 0

6/8/2015-106 meters 0.483322 -0.000042 0 1379.225864 0

7/12/2015-76 meters 0.322644 -0.000042 0 695.292114 0

7/12/2015-106 meters 0.258456 -0.000042 0 737.983829 0

8/25/2015-76 meters 0.507308 -0.000042 0 1091.091986 0

8/25/2015-106 meters 0.454405 -0.000042 0 1294.816095 0
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performed on each of the MSAVI2 point feature classes derived from the five-meter 

resampled data to identify spatial clusters of features with high or low values and spatial 

outliers at a 95 percent confidence interval (p-values less than 0.05). The output feature 

classes for each image date indicate the statistical standing of every feature and its 

corresponding MSAVI2 value showing whether each feature is part of a high or low 

cluster or a statistically high or low outlier compared to its neighbors (Figure 16).  

 

Figure 16. The tiles above show the resultant feature classes of the Anselin Local Moran’s I analysis for the June 8, 
2015 (A), July 12, 2015 (B), and August 25, 2015 (C) MSAVI2 image dates. Each image date had areas of both high and 
low clustering and outliers. 

 

Table 8 shows the quantity of the areas of clustering and outliers for each image 

date in meters squared and total percentage of the field.  

Table 8. Anselin Local Moran’s I analysis results. 

 

Image Date

Cluster: 

High (m
2
)

Cluster: 

High (% of 

field)

Cluster: 

Low (m
2
)

Cluster: 

Low (% of 

field)

High Outlier 

(m
2
)

High Outlier 

(% of field)

Low Outlier 

(m
2
)

Low Outlier 

(% of field)

June 8, 2015 195,550      33% 187,125      32% 11,350        2% 22,675        4%

July 12, 2015 218,700      37% 68,775        12% 15,425        3% 5,600          1%

August 25, 2015 173,275      29% 214,650      36% 50,700        9% 57,150        10%

A B C 
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A Hot Spot Analysis using the Getis-Ord Gi* analysis was also conducted to 

identify statistically significant spatial clusters of high and low values on each of the 

MSAVI2 point feature classes derived from the five-meter resampled data on the feature 

MSAVI2 values to identify the features that are spatially clustered by either high or low 

MSAVI2 values (Figure 17).  

  

 

Figure 17. The tiles above show the resultant feature classes of the Getis-Ord Gi* analysis for the June 8, 2015 (A), July 
12, 2015 (B), and August 25, 2015 (C) MSAVI2 image dates. Each image date had areas of both high and low clustering 
at 90, 95 and 99 percent confidence intervals. 

 

Table 9 shows the quantity of the areas of clustering for each image date in meters 

squared and total percentage of the field. 

A B C 
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Table 9. Getis-Ord Gi* analysis results. 

 

 

 

3.3.3 Exploratory regression – Elevation Data and Derivatives 

 

Table 10 shows the abbreviations for the applicable parameters to interpret all 

exploratory regression analysis using Ordinary Least Squares modelling. The results of 

the exploratory regression analysis are shown in tables 11 – 16 for the June 8, 2015 

MSAVI2 values against the elevation and topography derivative explanatory variables 

(elevation, slope, aspect, total incoming solar radiation, diffuse solar radiation, direct 

solar radiation, and the duration of direct solar radiation). Only the top 3 regression 

results (highest adjusted R-squared result) for each possible number of combinations are 

included. Results were severe data multicollinearity or data redundancy occurred were 

not included.   

Image Date

High: 99% CI 

(m
2
)

High: 99% CI 

(% of field)

High: 95% CI 

(m
2
)

High: 95% CI 

(% of field)

High: 90% of 

CI (m
2
)

High: 90% of 

CI (% of field)

June 8, 2015 260,825          44.0% 13,600            2.3% 6,475              1.1%

July 12, 2015 300,975          50.8% 31,650            5.3% 15,625            2.6%

August 25, 2015 247,125          41.8% 5,650              1.0% 2,900              0.5%

Image Date

Low: 99% CI 

(m
2
)

Low: 99% CI 

(% of field)

Low: 95% CI 

(m
2
)

Low: 95% CI 

(% of field)

Low: 90% of 

CI (m
2
)

Low: 90% of 

CI (% of field)

June 8, 2015 225,150          38.0% 12,275            2.1% 6,325              1.1%

July 12, 2015 104,925          17.7% 12,550            2.1% 7,900              1.3%

August 25, 2015 291,600          49.3% 4,875              0.8% 3,150              0.5%
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Table 10. Table abbreviations for the exploratory analysis results. 

 

Table 11. Highest adjusted R-squared results from the exploratory regression analysis of the elevation derivatives for 
the June 8, 2015 MSAVI2 values. 

 

Table 12. Percentage of search criteria passed from the exploratory regression analysis of the elevation derivatives for 
the June 8, 2015 MSAVI2 values. 

 

AdjR2 Adjusted R-Squared

AICc Akaike's Information Criterion

JB Jarque-Bera p-value

K(BP) Koenker (BP) Statistic p-value

VIF Max Variance Inflation Factor

SA Global Moran's I p-value

Model Variable sign (+/-)

Model Variable significance (* = 0.10, ** = 0.05, *** = 0.01)

AdjR2 AICc JB K(BP) VIF SA Model

0.05 -31265.29 0.05 0 1 0 -ELEVATION***

0.03 -31118.27 0 0 1 0 -DIFFUSERADIATION***

0.03 -31046.78 0.01 0.07 1 0 -DIRECTDURATION***

0.08 -31478.73 0 0 1.03 0 -ELEVATION***  -ASPECT***

0.06 -31348.28 0.1 0 1.07 0 -ELEVATION***  -DIRECTDURATION***

0.06 -31345.69 0 0 2.32 0 -DIFFUSERADIATION***  -SLOPE***

0.1 -31640.25 0 0 1.3 0 -ELEVATION***  -ASPECT***  -SOLARRADIATION***

0.1 -31633.21 0.01 0 1.23 0 -ASPECT***  -DIRECTDURATION***  -SOLARRADIATION***

0.1 -31628.15 0.01 0 1.26 0 -ASPECT***  -DIRECTRADIATION***  -DIRECTDURATION***

0.12 -31832.29 0 0 2.43 0 -ASPECT***  -DIRECTDURATION***  -SOLARRADIATION***  -SLOPE***

0.12 -31818.02 0 0 2.5 0 -ASPECT***  -DIRECTRADIATION***  -DIRECTDURATION***  -SLOPE***

0.12 -31792.73 0 0 1.47 0 -ELEVATION***  -ASPECT***  -DIRECTRADIATION***  -DIRECTDURATION***

0.13 -31900.48 0 0 3.12 0 -ELEVATION***  -ASPECT***  -DIRECTDURATION***  -SOLARRADIATION***  -SLOPE***

0.13 -31898.62 0 0 3.21 0 -ELEVATION***  -ASPECT***  -DIRECTRADIATION***  -DIRECTDURATION***  -SLOPE***

0.13 -31874.28 0 0 862.94 0 -ASPECT***  +DIRECTRADIATION***  -DIRECTDURATION***  -SOLARRADIATION***  -SLOPE***

0.13 -31900 0 0 10.59 0 -ELEVATION***  -ASPECT***  -DIRECTDURATION***  -DIFFUSERADIATION  -SOLARRADIATION***  -SLOPE***

0.13 -31900 0 0 10.37 0 -ELEVATION***  -ASPECT***  -DIRECTRADIATION***  -DIRECTDURATION***  -DIFFUSERADIATION**  -SLOPE***

Search Criterion Cutoff Trials # Passed % Passed

Min Adjusted R-Squared > 0.50 108 0 0

Max Coefficient p-value < 0.05 108 99 91.67

Max VIF Value < 7.50 108 89 82.41

Min Jarque-Bera p-value > 0.10 108 17 15.74

Min Spatial Autocorrelation p-value > 0.10 20 0 0
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Table 13. Summary of variable significance from the exploratory regression analysis of the elevation derivatives for the 
June 8, 2015 MSAVI2 values. 

 

Table 14. Summary of multicollinearity from the exploratory regression analysis of the elevation derivatives for the 
June 8, 2015 MSAVI2 values. 

 

Table 15. Summary of residual normality (JB) from the exploratory regression analysis of the elevation derivatives for 
the June 8, 2015 MSAVI2 values. 

 

Table 16. Summary of residual spatial autocorrelation (SA) from the exploratory regression analysis of the elevation 
derivatives for the June 8, 2015 MSAVI2 values. 

 

Variable % Significant % Negative % Positive

ELEVATION 100 100 0

ASPECT 100 100 0

DIRECTRADIATION 100 75.56 24.44

SOLARRADIATION 100 95.56 4.44

DIFFUSERADIATION 95.83 81.25 18.75

DIRECTDURATION 94.34 96.23 3.77

SLOPE 92.59 77.78 22.22

Variable VIF Violations Covariates

ELEVATION 2.78 0 --------

ASPECT 1.31 0 --------

DIRECTRADIATION 995.88 13 SOLARRADIATION (39.39)

DIRECTDURATION 5.81 0 --------

DIFFUSERADIATION 10.59 6 --------

SOLARRADIATION 978.24 13 DIRECTRADIATION (39.39)

SLOPE 3.89 0 --------

JB AdjR2 AICc K(BP) VIF SA Model

0.889862 0.014703 -30967.85502 0 1 0 -ASPECT***

0.676807 0.016711 -30982.05054 0 1.022442 0 -ASPECT***  +SLOPE***

0.331885 0.073205 -31421.68688 0 2.189112 0 -ELEVATION***  -DIRECTDURATION***  -SLOPE***

SA AdjR2 AICc JB K(BP) VIF Model

0 0.131212 -31900.0044 0 0 10.593599 -ELEVATION***  -ASPECT***  -DIRECTDURATION***  -DIFFUSERADIATION  -SOLARRADIATION***  -SLOPE***

0 0.131212 -31900.00427 0 0 10.373466 -ELEVATION***  -ASPECT***  -DIRECTRADIATION***  -DIRECTDURATION***  -DIFFUSERADIATION**  -SLOPE***

0 0.13115 -31900.47772 0 0 3.121726 -ELEVATION***  -ASPECT***  -DIRECTDURATION***  -SOLARRADIATION***  -SLOPE***
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The results of the exploratory regression analysis are shown in tables 17 – 22 for 

the July 12, 2015 MSAVI2 values against the elevation and topography derivative 

explanatory variables (elevation, slope, aspect, total incoming solar radiation, diffuse 

solar radiation, direct solar radiation, and the duration of direct solar radiation). Only the 

top 3 regression results (highest adjusted R-squared result) for each possible number of 

combinations are included. Results were severe data multicollinearity or data redundancy 

occurred were not included.   

Table 17. Highest adjusted R-squared results from the exploratory regression analysis of the elevation derivatives for 
the July 12, 2015 MSAVI2 values. 

 

Table 18. Percentage of search criteria passed from the exploratory regression analysis of the elevation derivatives for 
the July 12, 2015 MSAVI2 values. 

 

AdjR2 AICc JB K(BP) VIF SA Model

0.01 -20074.56 0 0 1 0 -DIFFUSERADIATION***

0.01 -20074.18 0 0 1 0 -DIRECTDURATION***

0.01 -20064.09 0 0.13 1 0 -ELEVATION***

0.02 -20134.77 0 0 1.09 0 -DIRECTRADIATION***  -DIRECTDURATION***

0.02 -20132.92 0 0 1.05 0 -DIRECTDURATION***  -SOLARRADIATION***

0.01 -20110.37 0 0 2.32 0 -DIFFUSERADIATION***  -SLOPE***

0.02 -20198.55 0 0 2.44 0 -DIRECTRADIATION***  -DIRECTDURATION***  -SLOPE***

0.02 -20198.25 0 0 2.37 0 -DIRECTDURATION***  -SOLARRADIATION***  -SLOPE***

0.02 -20165.04 0 0 1.26 0 -ASPECT***  -DIRECTRADIATION***  -DIRECTDURATION***

0.03 -20213.48 0 0 2.43 0 -ASPECT***  -DIRECTDURATION***  -SOLARRADIATION***  -SLOPE***

0.03 -20212.92 0 0 2.5 0 -ASPECT***  -DIRECTRADIATION***  -DIRECTDURATION***  -SLOPE***

0.02 -20196.65 0 0 3.09 0 +ELEVATION  -DIRECTRADIATION***  -DIRECTDURATION***  -SLOPE***

0.03 -20211.68 0 0 862.94 0 -ASPECT***  +DIRECTRADIATION  -DIRECTDURATION***  -SOLARRADIATION  -SLOPE***

0.03 -20211.68 0 0 5.62 0 -ASPECT***  -DIRECTDURATION***  -DIFFUSERADIATION  -SOLARRADIATION***  -SLOPE***

0.03 -20211.68 0 0 5.54 0 -ASPECT***  -DIRECTRADIATION***  -DIRECTDURATION***  -DIFFUSERADIATION  -SLOPE***

0.03 -20209.96 0 0 10.59 0 +ELEVATION  -ASPECT***  -DIRECTDURATION***  -DIFFUSERADIATION  -SOLARRADIATION***  -SLOPE***

0.03 -20209.96 0 0 10.37 0 +ELEVATION  -ASPECT***  -DIRECTRADIATION***  -DIRECTDURATION***  -DIFFUSERADIATION  -SLOPE***

Search Criterion Cutoff Trials # Passed % Passed

Min Adjusted R-Squared > 0.50 108 0 0

Max Coefficient p-value < 0.05 108 59 54.63

Max VIF Value < 7.50 108 89 82.41

Min Jarque-Bera p-value > 0.10 108 0 0

Min Spatial Autocorrelation p-value > 0.10 19 0 0
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Table 19. Summary of variable significance from the exploratory regression analysis of the elevation derivatives for the 
July 12, 2015 MSAVI2 values. 

 

Table 20. Summary of multicollinearity from the exploratory regression analysis of the elevation derivatives for the July 
12, 2015 MSAVI2 values. 

 

Table 21. Summary of residual normality (JB) from the exploratory regression analysis of the elevation derivatives for 
the July 12, 2015 MSAVI2 values. 

 

Table 22. Summary of residual spatial autocorrelation (SA) from the exploratory regression analysis of the elevation 
derivatives for the July 12, 2015 MSAVI2 values. 

 

Variable % Significant % Negative % Positive

ASPECT 98.15 100 0

DIRECTDURATION 96.23 100 0

DIRECTRADIATION 93.33 80 20

SOLARRADIATION 93.33 91.11 8.89

SLOPE 87.04 77.78 22.22

DIFFUSERADIATION 72.92 75 25

ELEVATION 47.17 71.7 28.3

Variable VIF Violations Covariates

ELEVATION 2.78 0 --------

ASPECT 1.31 0 --------

DIRECTRADIATION 995.88 13 SOLARRADIATION (39.39)

DIRECTDURATION 5.81 0 --------

DIFFUSERADIATION 10.59 6 --------

SOLARRADIATION 978.24 13 DIRECTRADIATION (39.39)

SLOPE 3.89 0 --------

JB AdjR2 AICc K(BP) VIF SA Model

0 0.003684 -20044.91173 0.167552 1 0 -DIRECTRADIATION***

0 0.001083 -20025.49882 0.521768 1 0 -ASPECT***

0 0.006247 -20064.09363 0.125851 1 0 -ELEVATION***

SA AdjR2 AICc JB K(BP) VIF Model

0 0.026376 -20213.48264 0 0 2.428162 -ASPECT***  -DIRECTDURATION***  -SOLARRADIATION***  -SLOPE***

0 0.026303 -20212.92438 0 0 2.49793 -ASPECT***  -DIRECTRADIATION***  -DIRECTDURATION***  -SLOPE***

0 0.026271 -20211.6767 0 0 862.93929 -ASPECT***  +DIRECTRADIATION  -DIRECTDURATION***  -SOLARRADIATION  -SLOPE***
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The results of the exploratory regression analysis are shown in tables 23 – 28 for 

the August 25, 2015 MSAVI2 values against the elevation and topography derivative 

explanatory variables (elevation, slope, aspect, total incoming solar radiation, diffuse 

solar radiation, direct solar radiation, and the duration of direct solar radiation). Only the 

top 3 regression results (highest adjusted R-squared result) for each possible number of 

combinations are included. Results were severe data multicollinearity or data redundancy 

occurred were not included. 

Table 23. Highest adjusted R-squared results from the exploratory regression analysis of the elevation derivatives for 
the August 25, 2015 MSAVI2 values. 

 

Table 24. Percentage of search criteria passed from the exploratory regression analysis of the elevation derivatives for 
the August 25, 2015 MSAVI2 values. 

 

AdjR2 AICc JB K(BP) VIF SA Model

0.07 -15538.29 0 0 1 0 -DIRECTDURATION***

0.07 -15520.8 0 0 1 0 -DIFFUSERADIATION***

0.03 -15178.75 0 0 1 0 +SLOPE***

0.1 -15790.13 0 0 1.49 0 +ELEVATION***  -DIFFUSERADIATION***

0.08 -15591.16 0 0 2.77 0 -DIRECTDURATION***  -DIFFUSERADIATION***

0.08 -15589.86 0 0 1.05 0 -DIRECTDURATION***  -SOLARRADIATION***

0.15 -16212.07 0 0 5.67 0 +ELEVATION***  -DIFFUSERADIATION***  -SLOPE***

0.1 -15792.04 0 0 235.59 0 +ELEVATION***  +DIRECTRADIATION***  -SOLARRADIATION***

0.1 -15792.04 0 0 1.63 0 +ELEVATION***  -DIFFUSERADIATION***  -SOLARRADIATION*

0.15 -16220.62 0 0 899.39 0 +ELEVATION***  +DIRECTRADIATION***  -SOLARRADIATION***  -SLOPE***

0.15 -16220.62 0 0 5.68 0 +ELEVATION***  -DIFFUSERADIATION***  -SOLARRADIATION***  -SLOPE***

0.15 -16220.62 0 0 5.71 0 +ELEVATION***  -DIRECTRADIATION***  -DIFFUSERADIATION***  -SLOPE***

0.16 -16249.77 0 0 10.06 0 +ELEVATION***  -DIRECTDURATION***  -DIFFUSERADIATION***  -SOLARRADIATION***  -SLOPE***

0.16 -16249.77 0 0 9.82 0 +ELEVATION***  -DIRECTRADIATION***  -DIRECTDURATION***  -DIFFUSERADIATION***  -SLOPE***

0.15 -16219 0 0 901.65 0 +ELEVATION***  -ASPECT  +DIRECTRADIATION***  -SOLARRADIATION***  -SLOPE***

0.16 -16248.9 0 0 10.59 0 +ELEVATION***  +ASPECT  -DIRECTDURATION***  -DIFFUSERADIATION***  -SOLARRADIATION***  -SLOPE***

0.16 -16248.9 0 0 10.37 0 +ELEVATION***  +ASPECT  -DIRECTRADIATION***  -DIRECTDURATION***  -DIFFUSERADIATION***  -SLOPE***

Search Criterion Cutoff Trials # Passed % Passed

Min Adjusted R-Squared > 0.50 108 0 0

Max Coefficient p-value < 0.05 108 60 55.56

Max VIF Value < 7.50 108 89 82.41

Min Jarque-Bera p-value > 0.10 108 0 0

Min Spatial Autocorrelation p-value > 0.10 20 0 0
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Table 25. Summary of variable significance from the exploratory regression analysis of the elevation derivatives for the 
August 25, 2015 MSAVI2 values. 

 

Table 26. Summary of multicollinearity from the exploratory regression analysis of the elevation derivatives for the 
August 25, 2015 MSAVI2 values. 

 

Table 27. Summary of residual normality (JB) from the exploratory regression analysis of the elevation derivatives for 
the August 25, 2015 MSAVI2 values. 

 

Table 28. Summary of residual spatial autocorrelation (SA) from the exploratory regression analysis of the elevation 
derivatives for the August 25, 2015 MSAVI2 values. 

 

 

Variable % Significant % Negative % Positive

DIFFUSERADIATION 100 100 0

SLOPE 100 77.78 22.22

DIRECTDURATION 96.23 100 0

DIRECTRADIATION 80 46.67 53.33

SOLARRADIATION 80 91.11 8.89

ELEVATION 77.36 3.77 96.23

ASPECT 44.44 31.48 68.52

Variable VIF Violations Covariates

ELEVATION 2.78 0 --------

ASPECT 1.31 0 --------

DIRECTRADIATION 995.88 13 SOLARRADIATION (39.39)

DIRECTDURATION 5.81 0 --------

DIFFUSERADIATION 10.59 6 --------

SOLARRADIATION 978.24 13 DIRECTRADIATION (39.39)

SLOPE 3.89 0 --------

JB AdjR2 AICc K(BP) VIF SA Model

0 -0.00013 -14984.03913 0 1 0 +DIRECTRADIATION

0 0.000971 -14992.2664 0 1 0 +ASPECT***

0 -0.00013 -14984.04816 0 1 0 -ELEVATION

SA AdjR2 AICc JB K(BP) VIF Model

0 0.156662 -16248.89767 0 0 10.593599 +ELEVATION***  +ASPECT  -DIRECTDURATION***  -DIFFUSERADIATION***  -SOLARRADIATION***  -SLOPE***

0 0.156662 -16248.89763 0 0 10.373466 +ELEVATION***  +ASPECT  -DIRECTRADIATION***  -DIRECTDURATION***  -DIFFUSERADIATION***  -SLOPE***

0 0.156648 -16249.77448 0 0 10.057151 +ELEVATION***  -DIRECTDURATION***  -DIFFUSERADIATION***  -SOLARRADIATION***  -SLOPE***
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3.3.4 Exploratory regression – Soil Electrical Conductivity Data 

 

The results of the exploratory regression analysis are shown in tables 29 – 34 for 

the June 8, 2015 MSAVI2 values against the soil EC explanatory variables (0.5 meter and 

1 meter depths). Only the top 3 regression results (highest adjusted R-squared result) for 

each possible number of combinations are included. Severe data multicollinearity or data 

redundancy did not occur in this analysis. 

Table 29. Highest adjusted R-squared results from the exploratory regression analysis of the soil EC data for the June 8, 
2015 MSAVI2 values. 

 

Table 30. Percentage of search criteria passed from the exploratory regression analysis of the soil EC data for the June 
8, 2015 MSAVI2 values. 

 

Table 31. Summary of variable significance from the exploratory regression analysis of the soil EC data for the June 8, 
2015 MSAVI2 values. 

 

AdjR2 AICc JB K(BP) VIF SA Model

0.02 -20742.52 0.06 0.67 1 0 -CONDUCT_1***

0.01 -20676.14 0.1 0.02 1 0 -CONDUCT_05***

0.03 -20769.31 0.05 0.27 4.27 0 +CONDUCT_05***  -CONDUCT_1***

Search Criterion Cutoff Trials # Passed % Passed

Min Adjusted R-Squared > 0.50 3 0 0

Max Coefficient p-value < 0.05 3 3 100

Max VIF Value < 7.50 3 3 100

Min Jarque-Bera p-value > 0.10 3 0 0

Min Spatial Autocorrelation p-value > 0.10 3 0 0

Variable % Significant % Negative % Positive

CONDUCT_05 100 50 50

CONDUCT_1 100 100 0
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Table 32. Summary of multicollinearity from the exploratory regression analysis of the soil EC data for the June 8, 2015 
MSAVI2 values. 

 

Table 33. Summary of residual normality (JB) from the exploratory regression analysis of the soil EC data for the June 
8, 2015 MSAVI2 values. 

 

Table 34. Summary of residual spatial autocorrelation (SA) from the exploratory regression analysis of the soil EC data 
for the June 8, 2015 MSAVI2 values. 

 

The results of the exploratory regression analysis are shown in tables 35 – 40 for 

the July 12, 2015 MSAVI2 values against the soil EC explanatory variables (0.5 meter 

and 1 meter depths). Only the top 3 regression results (highest adjusted R-squared result) 

for each possible number of combinations are included. Severe data multicollinearity or 

data redundancy did not occur in this analysis. 

Table 35. Highest adjusted R-squared results from the exploratory regression analysis of the soil EC data for the July 
12, 2015 MSAVI2 values. 

 

Variable VIF Violations Covariates

CONDUCT_05 4.27 0 --------

CONDUCT_1 4.27 0 --------

JB AdjR2 AICc K(BP) VIF SA Model

0.095782 0.008248 -20676.13964 0.022488 1 0 -CONDUCT_05***

0.063999 0.02118 -20742.51668 0.67436 1 0 -CONDUCT_1***

0.045333 0.026546 -20769.31248 0.273782 4.273193 0 +CONDUCT_05***  -CONDUCT_1***

SA AdjR2 AICc JB K(BP) VIF Model

0 0.02118 -20742.51668 0.063999 0.67436 1 -CONDUCT_1***

0 0.026546 -20769.31248 0.045333 0.273782 4.273193 +CONDUCT_05***  -CONDUCT_1***

0 0.008248 -20676.13964 0.095782 0.022488 1 -CONDUCT_05***

AdjR2 AICc JB K(BP) VIF SA Model

0.04 -14004.78 0 0 1 0 -CONDUCT_1***

0.03 -13956.39 0 0 1 0 -CONDUCT_05***

0.04 -14002.83 0 0 4.28 0 +CONDUCT_05  -CONDUCT_1***
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Table 36. Percentage of search criteria passed from the exploratory regression analysis of the soil EC data for the July 
12, 2015 MSAVI2 values. 

 

Table 37. Summary of variable significance from the exploratory regression analysis of the soil EC data for the July 12, 
2015 MSAVI2 values. 

 

Table 38. Summary of multicollinearity from the exploratory regression analysis of the soil EC data for the July 12, 
2015 MSAVI2 values. 

 

Table 39. Summary of residual normality (JB) from the exploratory regression analysis of the soil EC data for the July 
12, 2015 MSAVI2 values. 

 

Table 40. Summary of residual spatial autocorrelation (SA) from the exploratory regression analysis of the soil EC data 
for the July 12, 2015 MSAVI2 values. 

 

Search Criterion Cutoff Trials # Passed % Passed

Min Adjusted R-Squared > 0.50 3 0 0

Max Coefficient p-value < 0.05 3 2 66.67

Max VIF Value < 7.50 3 3 100

Min Jarque-Bera p-value > 0.10 3 0 0

Min Spatial Autocorrelation p-value > 0.10 3 0 0

Variable % Significant % Negative % Positive

CONDUCT_1 100 100 0

CONDUCT_05 50 50 50

Variable VIF Violations Covariates

CONDUCT_05 4.28 0 --------

CONDUCT_1 4.28 0 --------

JB AdjR2 AICc K(BP) VIF SA Model

0 0.037058 -14002.82773 0 4.277894 0 +CONDUCT_05  -CONDUCT_1***

0 0.037239 -14004.77989 0 1 0 -CONDUCT_1***

0 0.02798 -13956.38585 0 1 0 -CONDUCT_05***

SA AdjR2 AICc JB K(BP) VIF Model

0 0.037239 -14004.77989 0 0 1 -CONDUCT_1***

0 0.037058 -14002.82773 0 0 4.277894 +CONDUCT_05  -CONDUCT_1***

0 0.02798 -13956.38585 0 0 1 -CONDUCT_05***
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The results of the exploratory regression analysis are shown in tables 41 – 46 

below for the August 25, 2015 MSAVI2 values against the soil EC explanatory variables 

(0.5 meter and 1 meter depths). Only the top 3 regression results (highest adjusted R-

squared result) for each possible number of combinations are included. Severe data 

multicollinearity or data redundancy did not occur in this analysis. 

Table 41. Highest adjusted R-squared results from the exploratory regression analysis of the soil EC data for the 
August 25, 2015 MSAVI2 values. 

 

Table 42. Percentage of search criteria passed from the exploratory regression analysis of the soil EC data for the 
August 25, 2015 MSAVI2 values. 

 

Table 43. Summary of variable significance from the exploratory regression analysis of the soil EC data for the August 
25, 2015 MSAVI2 values. 

 

AdjR2 AICc JB K(BP) VIF SA Model

0.02 -9380.98 0 0 1 0 -CONDUCT_05***

0.01 -9339.62 0 0.1 1 0 -CONDUCT_1***

0.02 -9390.84 0 0 4.25 0 -CONDUCT_05***  +CONDUCT_1**

Search Criterion Cutoff Trials # Passed % Passed

Min Adjusted R-Squared > 0.50 3 0 0

Max Coefficient p-value < 0.05 3 3 100

Max VIF Value < 7.50 3 3 100

Min Jarque-Bera p-value > 0.10 3 0 0

Min Spatial Autocorrelation p-value > 0.10 3 0 0

Variable % Significant % Negative % Positive

CONDUCT_1 100 100 0

CONDUCT_05 100 50 50
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Table 44. Summary of multicollinearity from the exploratory regression analysis of the soil EC data for the August 25, 
2015 MSAVI2 values. 

 

Table 45. Summary of residual normality (JB) from the exploratory regression analysis of the soil EC data for the 
August 25, 2015 MSAVI2 values. 

 

Table 46. Summary of residual spatial autocorrelation (SA) from the exploratory regression analysis of the soil EC data 
for the August 25, 2015 MSAVI2 values. 

 

 

3.4 Discussion 
 

The results of this study outlined in this chapter indicate that the 2015 potato crop 

canopy health as measured by MSAVI2 analysis of high spatial resolution satellite 

imagery in season does vary within the field and temporally as the season progresses. The 

field mean MSAVI2 value started at 0.258325 on June 8, 2015 at the early vegetative 

stage and increased to 0.898117 by July 12, 2015 at the tuber bulking stage. The field 

mean MSAVI2 values drop to 0.545860 by the August 25, 2015 date during the last few 

days of maturation just prior to vine kill. The MSAVI2 field standard deviation values 

Variable VIF Violations Covariates

CONDUCT_05 4.25 0 --------

CONDUCT_1 4.25 0 --------

JB AdjR2 AICc K(BP) VIF SA Model

0 0.017209 -9390.842987 0.000001 4.247575 0 -CONDUCT_05***  +CONDUCT_1**

0 0.006992 -9339.618217 0.100234 1 0 -CONDUCT_1***

0 0.015092 -9380.980299 0 1 0 -CONDUCT_05***

SA AdjR2 AICc JB K(BP) VIF Model

0 0.006992 -9339.618217 0 0.100234 1 -CONDUCT_1***

0 0.017209 -9390.842987 0 0.000001 4.247575 -CONDUCT_05***  +CONDUCT_1**

0 0.015092 -9380.980299 0 0 1 -CONDUCT_05***
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shows variability consistently increasing during the season indicating increased variance 

in crop health as the season progressed.  

The results of the analysis of complete spatial randomness show that the spatial 

patterns of the MSAVI2 feature class points and corresponding MSAVI2 values are not 

random in nature. This is not surprising given that the agricultural field and agronomic 

steps practiced year over year on the field site, such as tillage, fertility, planting, crop 

protection, and irrigation continually lead to crop uniformity within the field. With that 

said, it is logical that spatial variability within the crop canopy could be the result of other 

factors that can more strongly influence plant health than the standard agronomic 

practices such as significant differences in soil texture, topography, combinations of both, 

or other factors and inherent combinations. Also, the agronomic practices are not varied 

across the field meaning applications and practice may not be sufficiently calibrated to 

meet the specific needs of every area within the field that has underlying variability 

significantly driving crop canopy health and biomass during the season.     

The exploratory regression analysis of the explanatory elevation derivatives and 

soil EC values and 0.5 and 1 meter depths shows that much work still needs to be done to 

understand what is driving the spatial crop canopy health patterns. The fact that these 

patterns are not random suggests some type of explanatory variable or combination of 

explanatory variables is driving the spatial canopy health patterns but soil EC, elevation, 

slope, aspect, and solar radiation derivatives do not sufficiently explain the crop canopy 
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patterns at this time. However, given that only three image dates were available for the 

growing season could indicate that better imagery frequency is needed to better ascertain 

the root causes causing crop heterogeneity. Also, other factors that are difficult or 

impossible to measure could also be at work including micro weather patterns within the 

field, pest and/or disease outbreaks, and man-made management decisions or equipment 

factors that lead to in-field variances that influence crop inputs such as fertilizer, seed, 

and irrigation water applications. 

 

3.5 Conclusion 
 

In conclusion, this research shows crop health variability measured by remote 

sensing methodologies does exist in the agricultural field study area. It also shows that 

the variability is not random but driven by other factor. However, typical differences in 

elevation, topographical features, incoming solar energy, and soil variability as measured 

by electrical conductivity mapping are not strongly related to the variability. It is likely 

other factors relating to inefficiencies in the irrigation system, fertility application 

program, and other management and cultural practices are strongly influencing spatial 

crop health patterns.  
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4 Spectral Data Collection and Analysis of PVY-Infected and Non-

Infected Potato Plants 
 

4.1 Introduction 
 

PVY is one of the most important disease impacting the global potato industry 

and can be responsible for yield losses of up to 80%  to 90% (Kerlan 2008; Nolte et al. 

2004). There is no known cure to eradicate PVY infection in potatoes and global potato 

production relies on PVY-free seed to maximize yield and quality (Strand and Rude 

2006). However, the lack of an accurate field-level, in-season detection system coupled 

with the advent of new potato varieties and viral strains making foliar symptoms less 

apparent to the human eye continues to aggravate disease mitigation practices (Nolte et 

al. 2004; Whitworth, Nolte, et al. 2010).  

Previous research has shown that remotely sensed data can be used to accurately 

identify plant foliar plant disease symptoms caused by fungal or viral pathogens. For 

example, VIs where shown to be effective in identifying sugarbeet plants infected with 

Rhizoctonia crown and root rot at the onset of initial foliar wilting symptoms (Reynolds 

et al. 2012). Potato Yellow Vein Virus has also been detected using remote sensing 

methodologies before symptoms of chlorosis were apparent to the trained eye (P. Chávez 

et al. 2009). 

PVY is a single-strand RNA potyvirus that consists of multiple strains including 

PVY
O
, PVY

N
, PVY

C
, and PVY

NTN
 (Abdelhaq et al. 2006). It infects multiple plant 
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species resulting in a varying degree of foliar symptoms including leaf wrinkling, 

chlorosis, and necrotic leaf spots (Kogovšek et al. 2011). All PVY strains can cause 

internal and/or external tuber necrosis but the severity depends upon the potato variety 

and virus strain (Baarlen et al. 2005). Research has shown that viral cytoplasmic 

inclusion bodies, the protein structures produced by the expression of the virus genome, 

from necrotic and ordinary PVY strains are present in epidermal, mesophyll and vascular 

tissues of infected potato plants which may aid in the movement of the virus from cell to 

cell which aids in the overall propagation of the virus (Otulak and Garbaczewska 2012). 

Studies have also shown that virus transmission occurs via physical penetration of the 

cell wall typically by insect vectors and virus particles accumulate in leaf and stem 

tissues of potato plants as well as in shoot tips, roots, and tubers with the highest amount 

of viral RNA and cytoplasmic inclusion bodies accumulating in epidermis and trichome 

cells (Kogovšek et al. 2011). Reactive oxygen molecules, including hydrogen peroxide, 

have been shown to be part of the potato plant immune response after infection by PVY 

with the most intensive accumulation in the bordering cell walls of necrotic mesophyll 

cells and adjacent non-necrotic mesophyll cells resulting in necrotic lesions (Otulak and 

Garbaczewska 2010). Upon the infection, PVY has been linked to multiple gene 

expression response modifications in as little as 14 days after initial infection including 

stress-related genes, heat shock protein expression, wound inducing genes, and those 

involved in photosynthesis pathways (Pompe-Novak et al. 2006). 
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The goal of this project is to assess the spectral reflectance patterns and produce 

spectral signature/s for the mapping and detection of PVY-infected plants in an 

agricultural production field in southeastern Idaho. It is expected that the analysis will 

show differences in how light reflects from PVY-infected and non-infect potato plants 

and that a diagnostic tool can be developed to better identify PVY infected plants in 

commercial seed grower fields to help eradicate the disease from the industry seed 

pipeline. 

Chapter 4 explores the following research questions: 

1. Based on spectral data collected with a field spectrometer, do spectral differences 

exist between PVY-infected plants and nearby virus-free plants? 

2. Can a spectral signature be developed to accurately differentiate PVY-infected 

plants within a production field? 

 

4.2 Materials and Methods 
 

The application of more advanced data and analytics including hyperspectral data 

and multifractal and spectral angle mapper analysis show much promise to identify 

disease incidence at the plant level (Perla Chávez et al. 2010; Yang and Everitt 2012). 

Support Vector Machine (SVM), a supervised classification that often shows good results 

in complex or noisy data will also be used. Recent research indicates very high accuracies 
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when classifying various plant diseases including those induced by fungal, viral and 

bacterial pathogens (D.Pujari et al. 2016). 

 

4.2.1 Field Site 

 

The field site encompasses 150 acres and is located in southeastern Idaho at an 

altitude of about 1,285 meters. The field was chosen because of its crop rotation, standard 

irrigation system, and typical agronomic practices. Coordinates are not being provided 

because the grower has requested the field location remain anonymous. The crop 

heterogeneity and field variability were analyzed in Chapter 3 and show that the potato 

crop was heterogeneous as measured by remotes sensing derived VIs and the patters were 

not completely spatially random. 

The field site is managed with a typical potato and cereal grain rotation of one 

year planted to potatoes followed by two years planted to cereal crops and then back to 

potatoes the following year. It is irrigated with a center pivot system equipped with a 

corner extension arm with water supplied from an irrigation well supplied by the Eastern 

Snake River Plain Aquifer. For this study, individual plants were identified in the 2015 

potato crop and tested to confirm the presence of the PVY virus and to ensure adjacent 

control plants did not have the virus. 
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4.2.2 Identifying PVY-Infected Plants.  

 

Several steps were taken in the field to find and monitor potato plants infected 

with PVY. After emergence when plants were approximately eight to ten inches tall, the 

southwest quadrant of the field was scouted multiple times to identify potential PVY-

infected plants based on visual symptoms. These symptoms included stunted plant 

growth, wrinkly or bubbly texture on leaves, vein burning, and a slightly different green 

hue of the overall plant color (Figure 18).   

 

Figure 18. The photos above show a plant infected with PVY in the field site – the left was captured earlier in the 
season prior to canopy row closure and the right was captured just prior to crop senescence. The early-season image 
shows the slightly stunted plant growth, bubbly leaf texture, and overall lighter green hue. The late-season plant 
shows severely stunted growth, vein burning, and necrotic lesions. 
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Because of the difficulty of visually identifying PVY-infected plants in the Russet 

Norkotah variety, it took several trips to identify enough infected plants for an 

appropriate study. Much of the field scouting had to be done in conditions where bright, 

direct sunlight was minimized, such as partly cloudy sky or late evening conditions where 

visual symptoms are more apparent versus under clear skies with ample direct sunlight. 

The plants showing visual symptoms of PVY infection were assigned a three-digit 

number, flagged, and two to three neighboring plants were removed in the same row 

(approximately 0.5 to 0.75 meters) from each side of the suspect plant to prevent healthy 

neighboring plants from overgrowing the weaker plant. A single petiole was pulled from 

each suspect plant and from a healthy control plant directly to the north approximately 3 

plants away and submitted to ICIA for enzyme-linked immunosorbent assay (ELIZA) 

testing to confirm the presence of the disease.   

In total, 31 plants were identified and confirmed to be infected with PVY in the 

study area within the field that spanned areas showing significant variability in crop 

canopy health as measured by remote sensing and studied in Chapter 3. An additional 

petiole from each plant that tested positive was submitted to North Dakota State 

University for virus strain identification using Immunocapture Multiplex Reverse 

Transcriptase Polymerase Chain Reaction (RT-PCR) that is more sensitive in detecting 

PVY in plant sap as well as differentiating strains (Mallik et al. 2012). Coordinates for 

each confirmed infected plant were collected with a Trimble GeoXH handheld receiver 
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and a silver tinfoil pie plate was placed on the north side of each infected plant (Figure 

19). 

 

 

Figure 19. The image on the left shows the locations of the 31 PVY-infected potato plants (yellow dots) in the study 
area. Nearby plants were removed and tin foil pie plates were used to mark the infected plants. 

 

4.2.3 Spectral data collection 

 

As the plants were identified, spectral data was collected from the infected and 

neighboring healthy control plants using a FieldSpec 4 Standard-Res Spectro radiometer 

(Analytical Spectral Devices, a PANalytical Company) with a spectral range of 350 – 

2,500 nm and a resolution of 3 nm in VNIR and 10 nm in SWIR wavelengths. Field 

spectroscopy is a very effective tool to measure and characterize light reflectance and can 

be used to support the future development of an airborne sensor (Milton et al. 2009). 

Spectral data was collected at a minimum of three times for later identified plants and 

five times for the plants identified earliest. Table 2 shows the field spectrometer 
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collection dates. The field spectrometer was optimized before each data collection and a 

white calibration was taken approximately every 20 minutes during the collection run to 

account for any changes in light conditions. All scans were taken of infected plants at 

distance of four to six inches from the sensor the infected leaf canopy to minimize any 

background soil reflectance effects. All efforts were made to collect data on mostly sunny 

days but quickly changing local weather patterns did occur interrupting some scans 

briefly. If partly cloudy conditions occurred during data collection, data collection was 

stopped until direct sunlight conditions resumed. Using the accompanying software, the 

spectrometer data was corrected to surface reflectance values for continued analysis. A 

total of 242 readings of PVY-infected plants and accompanying non-infected controls 

were collected for the growing season.  
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Table 47. Timeline of spectral data collection for each sample plant. 

 

 

 

 

4.2.4 Unmanned Aerial Systems Data and Analysis 

 

During the growing season, an unmanned aerial system (UAS) equipped with a 

multi-spectral camera collecting NIR, red, and green wavelengths was flown over the 

Sample ID 5-Jul-15 7-Jul-15 12-Jul-15 16-Jul-15 12-Aug-15

148 X X X X

154 X X X X

156 X X X X

158 X X X X

165 X X X X

166 X X X X X

167 X X X X

169 X X X X

172 X X X X

173 X X X X

174 X X X X X

175 X X X X X

176 X X X X

177 X X X X

181 X X X X

182 X X X X

185 X X X X X

202 X X X X

205 X X X X

206 X X X X

209 X X X X

210 X X X X

211 X X X X

212 X X X X

213 X X X

214 X X X

215 X X X

216 X X X

217 X X X

218 X X X

219 X X X
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field site on July 15, 2015 (Figure 20). The UAS utilized for the data collection was the 

Steadidrone Qu4D X (SteadiDrone, Industria, Knysna, Western Cape, South Africa). The 

unit carried a Tetracam ADC Snap (Tetracam Inc., Chatsworth, CA) multi-spectral sensor 

measuring green, red, and NIR wavelengths. PixelWrench2 software (Tetracam Inc., 

Chatsworth, CA) was used to process the data to produce the NIR, red, and green 3-band 

output. The tiles were stitched together using Pix4D software (Pix4D, Switzerland).  

 

Figure 20. The figure above shows the UAS data layer as a false color layer showing the NIR band as the red channel, 
red as the green channel, and the green band as the blue channel overlaid with the GPS points of the PVY-infected 
plants. The data was capture at an approximate spatial resolution of 3 cm and includes NIR, red, and green bands. 
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Using the remote sensing data, canopy areas of the PVY-infected plants and of 

their healthy controls were digitized in ArcGIS 10.4 for Desktop to be used to extract 

specific pixel values to assess if a standard UAS multispectral sensor capture broad 

swaths of green, red, and NIR wavelengths could be used to differentiate PVY-infected 

plants from their nearby non-infected controls. (Figure 21). However, one plant location 

was not used because of a stitching error resulting in obvious pixel distortion resulting in 

30 digitized canopies of PVY-infected plants and 30 digitized canopies of healthy 

controls. The UAS data was then processed to produce MSAVI2 values for each pixel 

based on the following equation (1).  

𝑀𝑆𝐴𝑉𝐼2 =
(2 ∗ 𝑁𝐼𝑅 + 1 − √(2 ∗ 𝑁𝐼𝑅 + 1)2 − 8 ∗ (𝑁𝐼𝑅 − 𝑅𝐸𝐷)

2
                           (2) 
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Figure 21. This image shows a section of the UAS data with two plant canopy boundaries digitized with the lower 
canopy being that of a PVY-infected plant and the upper one being a non-infected healthy plant. The canopy 
boundaries were used to extract pixel statistics for the MSAVI2 values produced from the UAS data. 

  

Using the Zonal Statistics as Table tool in ArcGIS 10.4 for Desktop, the pixel 

statistics within the 60 digitized individual plant canopy geometries were extracted for 

the purpose of making comparisons between the PVY-infected plants and their 

accompanying healthy controls. The extracted MSAVI2 mean values were evaluated 

using the Data Analysis tools in Excel 2010 (Microsoft, Redmond, WA) first to 
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determine whether or not the data was normally distributed. A Normal Probability Plot 

was generated to compare actual values against expected values in a matching normal 

distribution using the Cumulative Distribution Function for the PVY-infected plants, the 

healthy controls, and the PVY-infected and healthy control plants as a single population. 

Based on those results, an F-Test was used to determine whether or not the variance of 

the mean MSAVI2 values of the PVY-infected plants was statistically different from the 

non-infected plant sample population. A t-Test was conducted to determine if the mean 

MSAVI2 canopy values of PVY-infected plants was statistically different from those of 

the virus-free population.  

 

4.2.5 Machine learning and plant classification 

 

As highlighted in chapter 3, the field site crop canopy consisted of significant 

variability that was not completely spatially random. Also shown in chapter 3, 

exploratory regression analysis using Ordinary Least Squares modelling showed that the 

variability is not related to the more commonly available elevation data and topography 

derivatives or moderately available soil EC data indicating crop canopy heterogeneity is 

driven by unknown factors at this time. Because of this, it is believed the SVM classifier 

is most appropriate to analyze the field spectrometer data collected from within the field 

site. Originally introduced as a binary classifier, SVM is a supervised classification that 

uses training data to fit an optimal hyper plane to classify complex data and has been 
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shown to be superior when separating plant species (Pouteau et al. 2012). SVM has also 

been shown to outperform the artificial neural network (ANN) classifier when 

segregating plant disease images (D.Pujari et al. 2016).  

Using the Scikit-learn module in Python compiled into a script built by Dr. John 

Edwards, professor in the Department of Computer Science at Idaho State University, the 

SVM classifier was used to test whether or not the spectrometer data could be correctly 

differentiated into two classes: infected and non-infected. This module was selected 

because Python is considered to be one of the more popular programming languages for 

scientific computing and has an extensive amount of scientific libraries (Pedregosa et al. 

2012). Specifically, C-Support Vector Classification (SVC) was used incorporating a 

linear kernel with the degree of the polynomial kernel function set at 3 and a range of 

class weights affecting the non-infected plant spectral signature training samples. The 

class weights were used to increase the training sample weights of the PVY-infected 

plant readings to reduce the number of false negative results or the type 2 error in the 

classification because the industry would favor that error over type 1 error or the 

incorrect classification of healthy plants as infected. All of the spectral signature data 

files collected during the growing season (242 readings) were pooled and because of the 

relatively small sample size, approximately 80 percent (193) of the readings were 

randomly selected to be used as training data. This training data included 102 spectral 

signature files of non-infected plants and 91 spectral signature files of PVY-infected 

plants leaving 49 spectral readings comprised of 19 readings of non-infected plants and 
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30 readings of PVY-infected plants to classify. The field spectrometer data was also 

subset into different regions of the electromagnetic (EM) spectrum to evaluate if certain 

regions delivered higher classification accuracies based on the varying weights of the 

training data. It was determined to evaluate the visible EM wavelengths since that is the 

current industry standard as well as longer wavelengths in the NIR spectrum. Table 48 

shows the EM wavelengths and training data weights that were used for the classification 

analysis. 

 

Table 48. SVM classification parameters. 

 

 

 

4.3 Results 
 

4.3.1 PVY strain identification 

 

Table 49 shows the results for both ICIA and NDSU laboratory testing for each 

plant in the study. Of the 31 plants tested in the field site, 20 were identified as PVY
N:O

 

(NO), 10 as the PVY
NTN

 (EU-NTN), and 1 as PVY
O
 (O). PVY

O
 is a common strain that 

Wavelenth 

Start (nm)

Wavelength 

End (nm)

Non-Infected 

Sample Weights

380 720 1, 0.8, 0.6, 0.4, 0.2

500 900 1, 0.8, 0.6, 0.4, 0.2

720 900 1, 0.8, 0.6, 0.4, 0.2

720 1300 1, 0.8, 0.6, 0.4, 0.2

900 1300 1, 0.8, 0.6, 0.4, 0.2
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results in foliar symptoms ranging from mild mosaic to necrosis and was the predominant 

strain in North America before 1990 while tuber necrotic strains PVY
N:O

 and PVY
NTN

 

have become more common in recent years in North America and are more difficult to 

identify based on visual foliar symptoms (Halterman et al. 2012; Nolte et al. 2002). 

 

Table 49. ICIA and NDSU laboratory testing results for the presence of PVY and virus strain for each sample plant. 

 

 

Sample ID ICIA Confirmation NDSU Strain

148 yes EU-NTN

154 yes NO

156 yes NO

158 yes EU-NTN

165 yes EU-NTN

166 yes O

167 yes NO

169 yes NO

172 yes NO

173 yes NO

174 yes NO

175 yes NO

176 yes NO

177 yes EU-NTN

181 yes NO

182 yes NO

185 yes NO

202 yes EU-NTN

205 yes NO

206 yes NO

209 yes NO

210 yes NO

211 yes NO

212 yes EU-NTN

213 yes NO

214 yes NO

215 yes EU-NTN

216 yes EU-NTN

217 yes NO

218 yes EU-NTN

219 yes EU-NTN
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4.3.2 Unmanned Aerial Systems Data and Analysis Results 

 

The results of the mean MSAVI2 values derived from the UAS multi-spectral 

data captured July 15, 2015 and extracted from the digitized plant canopy polygons are 

shown in table 50. The mean MSAVI2 value for PVY-infected plant canopies is 0.7597 

and the mean MSAVI2 value for the non-infected plants is 0.763. The average difference 

between all infected and non-infected plants is 0.003 or a percent difference of 0.453 

percent. Also, 11 infected plants have a higher MSAVI2 value than the neighboring non-

infected control (Figure 22).  
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Table 50. Plant canopy MSAVI2 statistics from UAS derived multispectral data collected July 15, 2015. 

 

Sample 

ID

PVY MSAVI2 

mean values

Control MSAVI2 

mean values

PVY MSAVI2 

std. values

Control MSAVI2 

std. values

PVY MSAVI2 

var. values

Control MSAVI2 

var. values

148 0.745728172 0.742020091 0.033652073 0.024030108 0.001132462 0.000577446

154 0.771771267 0.770007293 0.02889973 0.023373778 0.000835194 0.000546334

156 0.766594751 0.767098079 0.031397013 0.027746175 0.000985772 0.00076985

158 0.792007655 0.780200622 0.044702704 0.041125348 0.001998332 0.001691294

165 0.74418363 0.760980692 0.030931685 0.023550182 0.000956769 0.000554611

166 0.774123633 0.775835488 0.035783921 0.029093886 0.001280489 0.000846454

167 0.799500084 0.796913014 0.051521567 0.021902402 0.002654472 0.000479715

169 0.776466458 0.770240871 0.042297422 0.027556508 0.001789072 0.000759361

172 0.769320282 0.7675479 0.035701037 0.021330331 0.001274564 0.000454983

173 0.751806684 0.774113436 0.036896048 0.023824716 0.001361318 0.000567617

174 0.782744916 0.760286164 0.038943901 0.023158384 0.001516627 0.000536311

175 0.751529659 0.7624641 0.027191575 0.02858325 0.000739382 0.000817002

176 0.755050642 0.77969146 0.039523051 0.026923948 0.001562072 0.000724899

177 0.733410577 0.752160307 0.026736482 0.023826713 0.000714839 0.000567712

181 0.720857095 0.746388022 0.039638418 0.014442591 0.001571204 0.000208588

182 0.74125977 0.744665102 0.024142319 0.021097469 0.000582852 0.000445103

185 0.787474637 0.788327601 0.029585669 0.02253591 0.000875312 0.000507867

205 0.710701441 0.713502003 0.050954012 0.028794781 0.002596311 0.000829139

206 0.768825546 0.749482609 0.031551828 0.032991679 0.000995518 0.001088451

209 0.765234098 0.77112358 0.031772567 0.027185017 0.001009496 0.000739025

210 0.758432928 0.763259278 0.029973442 0.023957932 0.000898407 0.000573982

211 0.752195033 0.77674762 0.042960871 0.026372391 0.001845636 0.000695503

212 0.767331968 0.760250214 0.031727688 0.035620824 0.001006646 0.001268843

213 0.76383807 0.768365394 0.015162181 0.015284986 0.000229892 0.000233631

214 0.757860431 0.763756933 0.030713696 0.023802048 0.000943331 0.000566537

215 0.774824182 0.776197007 0.035943627 0.029709846 0.001291944 0.000882675

216 0.762226842 0.759459147 0.044358023 0.028730585 0.001967634 0.000825446

217 0.754071554 0.75966059 0.026906216 0.024361811 0.000723944 0.000593498

218 0.754376627 0.74602407 0.028467454 0.02398827 0.000810396 0.000575437

219 0.737244161 0.743607019 0.031637898 0.018845158 0.001000957 0.00035514
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Figure 22. This graph shows the mean MSAVI2 values for each PVY-infected plant and its accompanying non-infected 
control neighbor. The data was derived from the July 15, 2015 multispectral data collected via UAS.  

 

Table 51. Descriptive Statistics for the PVY-Infected, Control, and Total mean MSAVI2 values of the plant canopy 
polygons extracted from the UAS data collected July 15, 2015. 

 

 

PVY-Infected Plants Control Plants PVY-Infected and Control Plants

Mean 0.75969976 Mean 0.763012524 Mean 0.761356142

Standard Error 0.003601203 Standard Error 0.002986885 Standard Error 0.002329438

Median 0.760329885 Median 0.763508105 Median 0.762861689

Standard Deviation 0.019724598 Standard Deviation 0.016359845 Standard Deviation 0.018043752

Sample Variance 0.00038906 Sample Variance 0.000267645 Sample Variance 0.000325577

Kurtosis 0.499748916 Kurtosis 1.803181365 Kurtosis 0.847387925

Skewness -0.357788544 Skewness -0.69742567 Skewness -0.520723803

Range 0.088798643 Range 0.083411011 Range 0.088798643

Minimum 0.710701441 Minimum 0.713502003 Minimum 0.710701441

Maximum 0.799500084 Maximum 0.796913014 Maximum 0.799500084

Sum 22.79099279 Sum 22.89037571 Sum 45.6813685

Count 30 Count 30 Count 60
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The Normal Probability Plots for the mean PVY-infected, non-infected control, 

and both PVY-infected and non-infected control canopy mean MSAVI2 values extracted 

from the UAS data captured July 15, 2015 are shown in Figure 23. They all show that the 

data is closely aligned with expected values within a normally distributed pattern when 

compared to the standard deviation as shown by the Z-values. This indicates the data is 

suitable for an F-test to determine whether or not sample variances of the PVY-infected 

sample population and the non-infected control sample population are statistically the 

same.  
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Figure 23. The Normal Probability Plots for the PVY-infected (A), non-infected (B), and total population (C) mean 
MSAVI2 values for the extracted plant canopies digitized over the UAS data collected July 15, 2015 are shown in the 
graphs. The actual and expected data values are very closely aligned and indicate all of the sample populations have a 
normalized distribution. 

 

The results of the F-test indicate that the null hypothesis that the mean plant 

canopy MSAVI2 values of the PVY-infected plants and the mean plant canopy MSAVI2 

values of the non-infected plants are statistically equal at a 95% confidence interval 

where the probability value equals 0.16. Also, the F value of 1.453 is less than the F 

Critical one-tail value of 1.86 indicating that the null hypothesis cannot be rejected.  

Table 52. F-test results. 

 

The results of the t-Test for the mean plant canopy MSAVI21 values of the PVY-

infected plants and the mean plant canopy MSAVI2 values of the non-infected plants 

indicate that the null hypothesis stating the populations are statistically equal cannot be 

rejected for both one- and two-tail tests.  

PVY MSAVI2 mean values Control MSAVI2 mean values

Mean 0.75969976 0.763012524

Variance 0.00038906 0.000267645

Observations 30 30

df 29 29

F 1.453643678

P(F<=f) one-tail 0.159694048

F Critical one-tail 1.860811435
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Table 53. T-Test results. 

 

 

4.3.3 SVM Results 

 

Table 54 shows the results of the SVM classification analysis including the 

classifier accuracies and the false negative (FN) rate which shows the percentage of 

PVY-infected plants misclassified as not-infected. The spectral readings for the various 

EM wavelength sections were also compiled graphically to visualize the spectral 

signatures (Figure 24).  

PVY MSAVI2 mean values Control MSAVI2 mean values

Mean 0.75969976 0.763012524

Variance 0.00038906 0.000267645

Observations 30 30

Pooled Variance 0.000328352

Hypothesized Mean Difference 0

df 58

t Stat -0.708053653

P(T<=t) one-tail 0.240873905

t Critical one-tail 1.671552762

P(T<=t) two-tail 0.481747811

t Critical two-tail 2.001717484
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Table 54. SVM classification results. 

 

 

# train # test startWave endWave weight accuracy FN rate

193 49 380 720 1 46.94 86.7

193 49 380 720 0.8 73.47 6.7

193 49 380 720 0.6 61.22 0.0

193 49 380 720 0.4 61.22 0.0

193 49 380 720 0.2 61.22 0.0

193 49 500 900 1 89.8 13.3

193 49 500 900 0.8 89.8 13.3

193 49 500 900 0.6 83.67 13.3

193 49 500 900 0.4 77.55 13.3

193 49 500 900 0.2 75.51 6.7

193 49 720 900 1 87.76 13.3

193 49 720 900 0.8 87.76 13.3

193 49 720 900 0.6 79.59 13.3

193 49 720 900 0.4 77.55 10.0

193 49 720 900 0.2 73.47 0.0

193 49 720 1300 1 89.8 13.3

193 49 720 1300 0.8 83.67 13.3

193 49 720 1300 0.6 81.63 13.3

193 49 720 1300 0.4 81.63 10.0

193 49 720 1300 0.2 77.55 3.3

193 49 900 1300 1 87.76 13.3

193 49 900 1300 0.8 85.71 13.3

193 49 900 1300 0.6 87.76 6.7

193 49 900 1300 0.4 79.59 6.7

193 49 900 1300 0.2 73.47 3.3
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Figure 24. The graphs above show the reflectance values by wavelength of the field spectrometer data collected 
during the growing season and subset to specific wavelength ranges for the SVM classification analysis including 380-
720 nm (A), 500-900 nm (B), 720-900 nm (C), 720-900 nm (D), and 900-1,300 nm (E). The green curves show the 
reflectance values for the non-infected plants and the red curves show the reflectance values for the PVY-infected 
plants. The prominent dark green curves show the overall average values for the healthy plants and the prominent 
dark red curves show the overall average reflectance values for the PVY-infected plants.   
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4.4 Discussion 
 

The results of the study conducted in this chapter show that PVY was successfully 

identified in the field using visual field inspections and laboratory testing. However, 

extensive field scouting and timing with beneficial lighting conditions were incorporated 

to improve the accuracies as is done in the industry. The fact that of the 31 plants, 20 

were identified as the PVY
N:O

 strain, 10 were identified as the PVY
NTN

, and only one 

identified as PVY
O
, corroborates other research findings regarding the fact that tuber 

necrotic strains PVY
N:O

 and PVY
NTN

 have become more common in recent years in 

North America and are more difficult to identify based on visual foliar symptoms versus 

the traditionally more common PVY
O
 strain.  

The analysis of the UAS data collected July 15, 2015 indicates that 3 or 4 band 

multispectral sensors used to derive robust VIs such as MSAVI2 are not adequate to 

differentiate PVY-infected plants from non-infected plants. This approach would like be 

compounded by other field or agronomic variables not easily measured or incorporated 

into an analysis that would still affect over all plant health which could add significant 

bias to VI values.  

The SVM classification analysis yielded very promising results, especially when 

incorporating NIR wavelengths not used in VIs such as NDVI or MSAVI2. The 500 nm 

to 900 nm range yielded the highest classification accuracy of 89.8 percent with no 

weight and with a weight of 0.8 applied to the non-infected plants. This was a significant 
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improvement over the 46.94 percent accuracy when using the 380 nm to 720 nm range 

with no training weight applied which is equivalent to the visual spectrum that is the 

current industry standard. However, applying a training weight coefficient of 0.8 to the 

visual wavelengths did improve the classification to 73.47 percent. The classification 

analysis using the 720 nm to 1,300 nm range also produced an accuracy of 89.8 percent 

matching that of the 500 nm to 900 nm range. The analysis of the 900 nm to 1,300 nm 

spectrum yielded an 87.76 percent accuracy. Overall, using the coefficients to weight the 

training data to favor the spectral signatures of PVY-infected plants did reduce the FN 

rate but also resulted in lower overall accuracies. The fact that the best accuracies of this 

study incorporated NIR wavelengths indicates that EM reflectance of infected leaves is 

revealing cellular impacts at deeper levels of the mesophyll cells within the leaf versus 

just the epidermal cells. This does coincide with various studies showing that the PVY 

virus does affect cellular structures within the mesophyll cells as well as the plant 

vascular system.  

 

4.5 Conclusion 
 

In conclusion, this research shows that PVY-infected potato plants do reflect 

electromagnetic energy differently when compared to non-infected plants. However, this 

study also shows that the current industry standard of using visual inspections is the least 
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accurate when compared to longer wavelengths beyond what the human eye can detect. 

It’s also apparent from this research that standard multispectral sensors capturing large 

swaths of the blue, green, red, and NIR ranges are not adequate to differentiate PVY-

infected plants from non-infected neighbors given the lack of statistical differences at the 

canopy level. It is likely a sensor or sensors capturing longer wavelengths indicative of 

mesophyll cell structure will produce more accurate results than current industry 

detection standards. 

 

5 Conclusion 
 

The research presented in this paper shows in-field variability does exist within 

this agricultural production field relative to the 2015 potato crop. It also shows that high 

resolution satellite imagery and likely other sources of multispectral remote sensing data 

of sufficient radiometric quality and adequate spatial, spectral, and temporal resolution 

can be used to quantify and measure the spatial patterns of canopy health. Knowing that 

the inherent spatial patterns of canopy healthy are not random but the result of underlying 

influences is a strong indication that precision agriculture practices could be successfully 

applied to improve overall crop production when those underlying influences can be 

recognized. It is also necessary to understand that the crop canopy is not homogeneous 

and that the variability is not completely spatially random when evaluating spectral 
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signatures of PVY-infected and non-infected plants located in the field to further assess 

how to improve classification efforts. Unfortunately, it is likely that much work and 

additional data is needed before the underlying influences can be quantified and mapped. 

The fact that it is difficult to accurately establish the factor/s causing field variability is an 

indication that machine learning or machine vision will be a necessity to apply this type 

of technology to industry, especially given the fact that factors driving field variability 

can be very different in various fields or regions. This research shows that PVY-infected 

potato plants do reflect electromagnetic energy differently when compared to non-

infected plants. However, this study also shows that the current industry standard of using 

visual inspections is the least accurate when compared to longer wavelengths beyond 

what the human eye can detect. 

This research also shows it is very difficult to differentiate PVY-infected plants 

from non-infected neighbors using traditional multispectral data processed to an MSAVI2 

derivative derived from UAS sensors. It is likely that standard multispectral sensors 

capturing large swaths of the blue, green, red, and NIR ranges are not adequate to 

differentiate PVY-infected plants from non-infected neighbors given the lack of statistical 

differences at the canopy level based on the statistical data outlined in this paper. This is 

especially apparent based on the MSAVI2 statistics collected from the individual plant 

canopies of PVY-infected plants and their neighboring controls. Statistically, there was 

only a 0.433% difference between the average MSAVI2 value for PVY-infected plants 

and the non-infected control and 11 PVY-infected plants had higher mean MSAVI2 
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values which indicates using type of methodology could lead to inaccurate results and 

excessive type 2 error or the misclassification of sick plants as healthy. It is likely a 

sensor or sensors capturing longer wavelengths indicative of mesophyll cell structure will 

produce more accurate results than current industry detection standards based on the 

success of the SVM classifier applied to the field spectrometer data.  

This research also shows that the industry standard of relying on human vision 

using only visible EM wavelengths is achieving less than 50-percent accuracy. However, 

it is expected that levels of training of given field inspectors could lead to significant 

variability in human-based classification depending upon experience, field agronomic 

conditions, lighting conditions, and overall plant and crop health. Although further study 

is needed, this research shows that PVY-infected plants could be accurately differentiated 

from neighboring “healthy” plants using optimal EM wavelengths and machine learning 

algorithms. 

Much research has been done to quantify the financial impacts of PVY on grower 

incomes and state and regional economies. Although yield and quality metrics will vary 

based on variety, agronomics, market conditions, and other factors, it has been shown 

that Idaho potato producers collectively lose 2.3 million hundred weight (cwt) valued at 

approximately $14 million. Despite industry efforts of managing certified seed programs 

and visual identification and removal of infected plants from seed production fields, PVY 

continues to be a major threat to global potato production. This research shows that a new 
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and more accurate way of detecting and mapping PVY-infected plants could be 

accomplished with current remote sensing, UAS, and sensor technologies at an accuracy 

far superior to current industry standards. It is likely that a wide scale adoption of a 

remote sensing technology solutions will give seed growers the ability to remove infected 

plants more efficiently thereby reducing PVY inoculum and provide better seed potato 

quality to commercial producers to help mitigate economic harm and improve 

environmental sustainability by reducing dependence on pesticides currently used to 

control insect vectors.  
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