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Thesis Abstract 

 
ANALYSIS OF NUCLEAR HYBRID ENERGY SYSTEMS WITH BATTERY STORAGE 

USING LEVELIZED COST OF ELECTRICITY 

Thesis Abstract – Idaho State University (2016) 

 
As popular demand and regulation enable the rapid expansion of variable 

renewable generation, the electrical grid is seeing new challenges in providing 

reliable, stable electricity to customers. In order to meet these challenges, additional 

flexibility will need to be introduced to the electrical grid. Nuclear Hybrid Energy 

Systems are predicted to offer significant flexibility by combining some or all of 

renewable, fossil, and nuclear generation with energy storage and a secondary 

product production capability. This study aims to demonstrate the value of battery 

electric storage to such a nuclear hybrid system, as well as to examine the 

effectiveness of Levelized Cost of Electricity (LCOE) as a figure of merit for such a 

hybrid system. In this study, battery storage provided notable improvements in the 

utilization of variable wind generation. LCOE was found ineffective at capturing the 

benefits of storage and a revenue stream.
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Introduction 

 Electricity is a requirement for modern living. Today’s energy supply 

chain is the culmination of over one hundred years of development, and is a 

complex system of generation, transmission, and distribution that is 

regulated by federal and state electricity market rules. Since the early days of 

electricity, it has been closely tied to environmental regulations. This is 

because the primary sources of energy generation – coal, oil, and natural gas 

– all have negative environmental and health effects when used without 

emissions and waste mitigation efforts. The side effects include respiratory 

distress, water contamination, acid rain, cancer, and climate change. As 

concern for negative environmental and health effects of energy generation 

increase, and the means to transition to a better system grows, people are 

looking to cleaner forms of energy generation to replace or improve existing 

technologies.  

 Clean energy sources include renewable sources, such as 

hydroelectric, solar, and wind, and nuclear energy. Greenhouse gas (GHG) 

emissions can also be reduced by utilizing non-carbon heat sources for 

refining, scrubbing pollutants from emissions, and implementing carbon 

capture and storage technologies. The most popular approach to a greener 

energy system is to replace all “dirty” generation with clean wind and solar. 

This option theoretically solves the problem of emissions, but would impose 

severe technical consequences due to the variable nature of renewable 
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energies (Denholm, O'Connel, et al. 2015), and can potentially increase 

emissions depending on the source of backup power for times of under 

generation from renewables. 

 Energy consumption habits are fairly predictable, and our entire 

electrical infrastructure was built to meet this demand pattern. Figure 1 

shows a representative 24hr period of energy consumption in Texas. The 24-

hour time period from January 1, 2016 shows energy consumption dipping at 

night when most people are resting, and peaking around 14:00 during peak 

daytime activity. The 1-year period shows minimal usage in this region 

during spring and winter, and peak use in the summer and fall. While these 

trends vary somewhat seasonally and annually, they are predictable within 

some margin of error. In contrast, the energy generated by variable sources 

such as wind and solar is highly stochastic. When these sources contribute a 

significant portion of the total generation, they cause disturbances in the net 

load curve as seen by traditional generators. The net load curve refers to the 

load after renewable resources are dispatched, and can be seen in Figure 3. 
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Figure 1: Demand data for the ERCOT grid for 24hrs (top), and 1 year (bottom) (Energy 

Reliability Council of Texas 2016) 

To understand net demand, it is important to first explore how the 

order of dispatch for various energy sources is determined. Independent 

system operators (ISO) decide which energy sources to dispatch to meet 

demand from hour to hour. This decision is based on which source will 
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provide the lowest cost electricity to the customer at that time. Figure 3 

shows a “dispatch curve” which displays the cost of production, the capacity 

of each source, and the intersection at which it becomes economical to 

dispatch different technologies to meet demand. As Figure 3 shows, 

renewables such as wind, solar, and hydro have very low marginal cost and 

are therefore usually dispatched first. This means that the demand curve 

seen by other traditional technologies such as nuclear, coal, and natural gas 

can be represented as net demand, given by Equation 1. 

Equation 1: Net Load 

𝑁𝑒𝑡 𝐿𝑜𝑎𝑑 = 𝑇𝑜𝑡𝑎𝑙 𝐿𝑜𝑎𝑑 − 𝑉𝑎𝑟𝑖𝑎𝑏𝑙𝑒 𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛 

 

 

Figure 2: Demand stack curve for Southeastern US (Energy Information Administration 2010) 

Figure 3 shows how net demand changes as variable renewable (VR) 

generation increases. Actual net demand curves for the years 2012 – 2013, 

and projected curves for 2014-2020 are shown with levels of VR generation 

projected to increase continually. Although the rate of increased VR 
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generation is not specified, the figure shows that increased VR generation 

causes the ramp rates (both up and down ramping) to dramatically increase. 

During peak and minimum VR generation, too much or too little electricity 

can be supplied to the grid. This has a few negative effects, including the risk 

of damaging or destroying electrical infrastructure and blackouts. More 

commonly, this leads to times of price surging and suppression, causing 

volatility in the electricity market. When too much electricity is supplied, 

prices can fall to very low or even negative prices, meaning that producers 

have to shut down the plant, curtail their generation, or pay for consumers to 

use electricity. This has an especially negative effect on nuclear power plants, 

as discussed below. 

 

Figure 3: California Independent System Operator (ISO) “duck curve” (Denholm, O'Connel, et al. 

2015) 

 First, nuclear power plants have physical and regulatory constraints 

on their flexibility. In times of rapid change, they often cannot adapt fast 
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enough, or provide deep enough curtailment, to follow demand curves. In 

times of price suppression or negative pricing this can mean paying 

consumers to use electricity, or paying other generators to not produce, 

making room for the nuclear-generated electricity on the grid. Second, 

whereas fuel prices are a large portion of production for fossil power plants, 

nuclear power plant production costs are largely in capital and operations. 

This means that when they are not selling electricity, their costs remain high 

and the economic impact is greater than for other baseload (e.g. fossil-fueled) 

power plants. 

These challenges mean that increased VR capacity on the grid 

requires increased flexibility from other grid entities. There are many 

approaches to increasing flexibility, including flexible generators, grid-scale 

energy storage, and demand-side management (Cochran, et al. 2014), (North 

American Electric Reliability Council 2010). Nuclear Hybrid Energy Systems 

(NHES) is a concept that addresses the challenges if increased variability in 

the grid while reducing GHG emissions, and maintaining viable economic 

performance. NHES consist of loosely or tightly coupled, co-controlled 

components that can include nuclear, renewable, and fossil generation 

sources, energy storage systems, and the production of electricity and a 

secondary commodity. Loosely and tightly coupled configurations refer to 

whether thermal energy (tightly coupled) or electrical energy (loosely 

coupled) is used in the production of a secondary product (Bragg-Sitton, 

Boardman, et al. 2016). 
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By co-controlling the traditional and variable generation systems, 

along with the inclusion of small-scale energy storage and flexible load 

(secondary product) components within the energy system, the system can 

provide multiple ancillary services such as load following, frequency and 

voltage regulation, and operating reserves. Another benefit is that the system 

essentially can act as its own ISO, dispatching its services and products to 

maximize revenue internally – at least within the constraints of its 

contractual obligations for grid services and production requirements. 

 Levelized cost of electricity (LCOE) is a common measure used to 

determine the lowest price of electricity at which a system can sell to break 

even. This is the figure of merit selected for the current study to evaluate 

NHES configurations for specific regional scenarios. LCOE takes into 

consideration capital, fuel, and operational costs, as well as capacity factor 

(CF), depreciation rates, and the lifetime of the equipment. However, LCOE 

has some limitations when it comes to considering variable generation. Due 

to fluctuations in market prices, systems with low CFs can accumulate large 

errors in LCOE if there is a mismatch between peak production and peak 

pricing (Joskow 2011). Generators with a high CF minimize this error due to 

an averaging effect. LCOE was chosen for this study because, by definition, 

minimizing LCOE maximizes the CF for a given NHES configuration. 

 The focus of this study was to develop a tool to model a nuclear hybrid 

energy system with four free parameters: renewable energy (RE) generation 

capacity, natural gas (NG) generation capacity, battery electric storage (BES) 
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capacity, and mean grid demand. Additional sensitivity variables include fuel 

prices, emissions limits, and secondary product pricing. The model 

infrastructure developed for this study allows for a grid-based parametric 

analysis of the optimization space, and a limit surface search for demand 

coverage reliability. This design enables the user to find the best 

configuration within a discrete search space. In order to find the optimal 

configuration, an optimization algorithm will need to be implemented in the 

modeling framework. The selected modeling tool is currently unable to 

accept synthetic time histories for variable generation and demand data, and 

relies instead on historical databases. This limits the probabilistic reliability 

analysis that can be performed. 

Background 

The future energy grid will likely need to accommodate large amounts 

of variable generation from nondispatchable renewable sources, such as 

wind and solar. Presently, solar and wind generation technologies are being 

deployed rapidly at a global level as a measure to combat climate change, and 

to decrease reliance on foreign energy resources such as oil and natural gas. 

In 2014, renewables accounted for nearly 60% of global net power capacity 

additions, and make up nearly 30% of global total installed capacity, with a 

third of that consisting of variable generating capacity (Sawin, Sverrisson and 

Rickerson 2015). Though it was a big year for renewable installations - 

adding around 92GW of installed capacity - Sawin estimates that VR 
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contributed only 4% of total global electricity production for 2014. VR 

generation shows tremendous promise for carbon emissions, but it is widely 

acknowledged that as more and more generation is added, the grid will face 

major technical challenges, and the marginal cost of adding renewables will 

rise. While the cost of VR generation itself is decreasing, the higher marginal 

cost can be attributed to the electricity supporting technologies that it will 

require such as energy storage, backup capacity (usually NG), and virtual 

inertia (voltage and frequency regulation) 

The obvious challenge associated with renewable energy is the 

variability. Wind and solar are not available continuously and their 

availability does not always coincide with demand. With high penetration of 

renewables, in order to make up the energy needed when variable resources 

are not available, dispatchable energy sources that can follow the net load 

must be available to avoid brownouts and blackouts. The addition of variable 

renewables also means that net load has steeper ramps, and deeper troughs. 

The dispatchable resources must therefore be able to react quickly, and 

curtail deeply. There are a few ways to mitigate this problem including over-

installation of renewables, increasing transmission capabilities 

(interconnections with neighboring balancing areas), and installation of grid-

scale energy storage to increase total system flexibility. Over-installation 

means that there will be more periods of over-generation, creating low 

capacity factors for generators, additional curtailment of renewables, and 

tremendous volatility in the electricity market prices (price surging and 
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suppression). Increased transmission capabilities mean that electricity can 

be “shipped” from where it is being produced to where it is needed, but the 

hardware is expensive, and sending electricity over long distances means 

increased line losses. Grid scale energy storage offers the capability of storing 

excess renewable energy during times of over generation, and producing 

electricity during times of under generation. 

Traditional steam turbine generators have built in voltage and 

frequency regulation characteristics due to the electromechanical coupling in 

the spinning machinery. Unless equipped with hardware and controls to 

provide this service, renewables do not offer the same grid stabilization 

services. Adding this hardware also increases the cost of renewable 

installations. 

NHES offer the opportunity to increase renewable generation while 

maintaining baseload generation, load following capabilities, and voltage and 

frequency regulation services. The NHES concept has been developed 

through the collaboration between several U.S. Department of Energy (DOE) 

national laboratories, including Idaho National Laboratory (INL), Oak Ridge 

National Laboratory (ORNL), Argonne National Lab (ANL), and the National 

Renewable Energy Laboratory (NREL). Although the proposed application 

for hybrid systems spans many regions and industries, the anticipated 

benefits are similar. Key benefits are expected to include (Bragg-Sitton, 

Boardman, et al. 2016): 
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 Provide dispatchable, flexible, and carbon-free electricity generation 

for the grid  

 Provide synchronous electromechanical inertia to the grid 

 Reduce the carbon footprint of the industrial sector 

 Levelize and reduce energy costs (i.e., support stabilization of energy 

costs). 

Hybrid grids have been analyzed in detail with consideration for 

multiple generation sources, energy storage devices, and traditional back-up 

generators. One such study considers an optimization of a hybrid system for 

rural use. This system provides a small amount of electricity (~13kW 

average) to a small transmission grid. It was allowed to include micro-

hydroelectric, wind, and solar photovoltaic (PV) generators, as well as 

battery electric storage (Ashok 2001). Ashok utilizes simplified models of 

each generator technology to identify viable configurations to cover a given 

demand profile. The assumed cost of each technology is used to identify the 

optimal configuration for a given case. Ashok demonstrates an effective 

method for optimization of such a system.  

The tool developed for the current study provides the additional 

capability of a nuclear-hybrid system that can generate electricity and/or a 

secondary product as required by electricity demand and grid reliability 

constraints. It also enables sensitivity analysis to varying renewable profiles 

based on historical wind and solar data, varying demand histories, potential 

carbon tax, fuel prices, and emissions limits. 



12 
 

INL and its partners in NHES research have conducted initial case 

studies for NHES configurations that could be sited in West Texas and 

Northeast Arizona. This study determined that, in both cases, NHES 

demonstrated favorable economic and technical performance, while 

providing reliable grid services and robust operations (Garcia, et al. 2015). 

While researchers continue to develop physical models of NHES components, 

it is valuable to analyze the behavior of NHES from a high level to determine 

fundamental behavioral characteristics. The analysis tool created for this 

study offers the ability to quickly identify regions within the configuration 

search space of NHES for various demands, markets, and products. 

A similar study was conducted previously by INL, and is documented 

in the NHES Modeling and Simulation Status Report (Bragg-Sitton, Rabiti, et 

al. 2015). The previous economic assessment tool was a simplified model of a 

NHES consisting of wind generation, a small modular reactor (SMR), a 

secondary commodity production system, a natural gas generator, and 

electricity production. Its free variables were wind capacity factor, fraction of 

total generation by clean resources (SMR plus renewables) and the ratio of 

renewable generation to SMR. The natural gas subsystem was sized to make 

up the remainder of the total generation such that the fraction of all three 

added to one.  

The previous study conducted by INL did not consider the revenue 

generated by the secondary production system in the calculation of LCOE. In 

order to account for this in the LCOE, the current study includes capital costs, 
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operational costs, and a revenue stream from the secondary commodity. 

Additionally, the current study builds on the previous work and includes 

battery electric storage capability within the NHES. 

Normalizing the system to fractional generations demonstrates the 

concept of a simplified cost analysis tool, and provides key information on 

how the relative sizes of different technologies affect performance and cost. 

The INL study showed that the LCOE was highly sensitive to the capacity 

factor estimation. This was also confirmed in a report from NREL that 

analyzed the LCOE sensitivity of wind projects under various financing 

strategies to changing cost variables. (Cory and Schwabe 2009). 

Methodology 

 This study consisted of three major components: the LCOE cost 

parameters, the external Python model, and the RAVEN wrapping 

architecture. These are discussed below in detail. 

Overview 

The tool developed for this project consists of a simplified cost model 

developed in Python (van Rossum and Drake 2016), which is perturbed by a 

search strategy implemented in RAVEN (Rabiti, et al. 2016)(Risk Analysis 

and Virtual control Environment). Python was chosen because of its 

extensive libraries that allow for simple mathematical implementations and 

data management. RAVEN is an INL developed tool designed for probability 



14 
 

risk assessment. It interacts easily with external codes, and has built in 

capabilities for limit surface search, probabilistic analysis, visualization, and 

reduced order model generation. It has the additional capabilities for 

optimization under development. Although the tool developed for this study 

can be used with these functions, this work only used the grid search and 

limit surface search capabilities to generate the model output data. 

As shown in Figure 4, RAVEN provides input parameters to the 

external Python code. The external model accepts four parameters at a time 

from RAVEN: RE generating capacity, NG generating capacity, BES capacity, 

and mean total demand. The three capacity parameters define the NHES 

configuration, and the mean demand parameter establishes the size of the 

grid in which the system participates. 

 

Figure 4: Top level diagram of model 

Wind and Demand Data 

 The Python model uses historical Electric Reliability Council of Texas 

(ERCOT) data (ERCOT 2016) for the demand time series. This consists of 
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hourly data points over the course of a year, or 8760 discrete points. The 

demand data is scaled by the ratio of the mean demand parameter provided 

by RAVEN to the original mean of the ERCOT as shown in Equation 2.  

Equation 2: Scaling the Demand 

𝐷𝑒𝑚𝑎𝑛𝑑 = 𝐷𝑒𝑚𝑎𝑛𝑑 ∗
𝑅𝐴𝑉𝐸𝑁 𝑀𝑒𝑎𝑛

𝐸𝑅𝐶𝑂𝑇 𝑀𝑒𝑎𝑛
 

 

The wind data history is generated by randomly sampling a beta 

probability distribution whose shape can be seen in Figure 5. This 

distribution was inherited from the prior study conducted by INL (Bragg-

Sitton, Rabiti, et al. 2015). It was used there due to the relevant shape of the 

distribution compared to actual wind data, and its associated capacity factor 

(expected value) of ~0.28. 

 

 

Figure 5: Beta Distribution Sampling and Histogram 
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 The wind data sampled from the beta distribution ranging from zero 

to one was multiplied by the installed capacity, resulting in a distribution 

range from 0 to the full installed capacity. This results in the maximum use of 

the wind installation. 

SMR and Commodity Hybrid 

 Small modular reactors are defined as having a capacity of less than 

three hundred megawatts of electric generation. For this study, the size of the 

SMR was chosen to be 300MW. 

 The commodity analyzed in this study was potable water, produced 

via brackish water reverse osmosis (RO) desalination. RO offers the 

advantage of requiring only electrical coupling in the hybrid system, 

eliminating the hurdles associated with co-location of a production facility 

with a nuclear generating station. Additionally, this system offers the benefit 

of stable electricity pricing, and the opportunity to reduce the water impacts 

of the SMR cooling loops. Data for the RO infrastructure is detailed below in 

Secondary Product Costs and Revenue. 

 

Detailed Model Description 

Model Flow 

 For each hour of the demand history, the configuration specified by 

the RAVEN input parameters is used to supply electricity. Each included 

generation technology is dispatched based on its marginal cost of generation 
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from least expensive to most expensive. The exception is the SMR, which 

produces secondary product rather than putting electricity on the grid unless 

the other energy sources fail to cover demand in a given hour.  As shown in 

Figure 6, renewable generation is dispatched first because of its assumed 

zero marginal cost of generation. If excess wind energy is available it is then 

used to charge the integrated battery. If the demand is not covered by wind, 

electricity stored in the battery is dispatched second, then electricity from 

natural gas and the SMR. This dispatch order was based on the assumption 

that energy from the SMR is more economically used to produce potable 

water than to produce electricity. The SMR energy used for electricity 

generation to meet grid demand, and the energy used for secondary 

commodity production are stored in separate variables. In this manner the 

revenue from the secondary product can be calculated later. Once the 

demand is covered or all resources have been dispatched, the utilization of 

each technology is calculated using Equation 3, and a flag variable is set to 

indicate whether the hour was successfully covered by the given 

configuration.  The utilization factor for each technology is then passed to the 

LCOE calculator, along with the specific cost variables shown in Appendix A.  

 

Equation 3: Energy Source Utilization 

𝑈𝑡𝑖𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛 = 𝐸𝑛𝑒𝑟𝑔𝑦 𝑈𝑠𝑒𝑑/(𝑇𝑜𝑡𝑎𝑙 𝑃𝑜𝑠𝑠𝑖𝑏𝑙𝑒 𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛) 
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Table 1 shows the system inputs and outputs with the variable names used 

within the Python code. Appendix B contains the Python cost model code.  

 

 

Figure 6: Flow Diagram of Python Cost Model 
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Table 1: Python Model Input and Output Variable Names 

Inputs: Description  

recapacity Installed capacity of renewable generation 

ngcapacity Installed capacity of NG generation 

bescapacity Installed battery electric storage capacity 

meandemand Scaling value for demand data 

Outputs:   

hourlost Failure flag for demand coverage (used in limit 

surface search) 

utilre Utilization factor for renewable generation 

utilng Utilization factor for NG generation 

utilbes Utilization factor for battery electric storage 

utilsmr Utilization factor for SMR 

lcoe_total Configuration total cost of electricity production 

co2_total Configuration total CO2 emissions 

product_revenue Revenue generated by selling secondary product 

lostdemand Failure flag for demand coverage (used in 

parameter grid search) 

emis_pass Failure flag for CO2 emissions limits 
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Levelized Cost Calculation 

Equation 4, from Open Energy Information (Open EI), shows how the 

LCOE is computed. The result is multiplied by 10 to convert from cents/kWh 

to $/MWh. Capital Costs and operation and maintenance (O&M) costs for the 

energy generation and storage technologies were taken from Open EI’s 

Transparent Cost Database (Open EI 2016). The capital recovery factor (CRF) 

and the tax rate (T) were computed using the discount rate (D) from Open 

EI’s Levelized Cost Calculation web page (OpenEI 2016), and Equation 6. The 

lifetime of the investment (N) was chosen to be thirty years, although this 

may vary between technologies. 

In order to normalize the LCOE for each source, the specific LCOE is 

multiplied by the total energy used for each source. The sum of all specific 

LCOEs is then divided by the sum of the demand data. This weights each 

source by its contribution to coverage. This calculation is shown in Equation 

5. 

Equation 4: Levelized Cost of Electricity 

𝐿𝐶𝑂𝐸 = (
𝐶𝑎𝑝𝑖𝑡𝑎𝑙 𝐶𝑜𝑠𝑡 ∗ 𝐶𝑅𝐹 ∗ (1 − 𝑇 ∗ 𝐷𝑝𝑣)

8760 ∗ 𝐶𝐹 ∗ (1 − 𝑇)
+

𝑓𝑖𝑥𝑒𝑑 𝑂&𝑀

8760 ∗ 𝐶𝐹

+
𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 𝑂&𝑀

1000 
𝑘𝑊ℎ
𝑀𝑊ℎ

+
𝐹𝑢𝑒𝑙 𝑃𝑟𝑖𝑐𝑒 ∗ 𝐻𝑒𝑎𝑡 𝑅𝑎𝑡𝑒

1,000,000
𝐵𝑇𝑈

𝑚𝑚𝐵𝑇𝑈

) ∗ 10 
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Equation 5: LCOE Weighting 

𝐿𝐶𝑂𝐸𝑇𝑜𝑡𝑎𝑙 =  

(
𝐿𝐶𝑂𝐸𝑅𝐸 ∗ 𝑠𝑢𝑚(𝑅𝐸𝑢𝑠𝑒𝑑) + 𝐿𝐶𝑂𝐸𝑁𝐺 ∗ 𝑠𝑢𝑚(𝑁𝐺𝑢𝑠𝑒𝑑) +

𝐿𝐶𝑂𝐸𝑆𝑀𝑅 ∗ 𝑠𝑢𝑚(𝑆𝑀𝑅𝑢𝑠𝑒𝑑) +  𝐿𝐶𝑂𝐸𝐵𝐸𝑆 ∗ 𝑠𝑢𝑚(𝐵𝐸𝑆𝑢𝑠𝑒𝑑)
)

𝑠𝑢𝑚(𝐷𝑒𝑚𝑎𝑛𝑑𝐷𝑎𝑡𝑎)
 

  

Equation 6: Capital Recovery Factor 

𝐶𝑅𝐹 =  
𝐷 ∗ (1 + 𝐷)𝑁

(1 + 𝐷)𝑁 − 1
  

Secondary Product Costs and Revenue 

 The revenue generated from selling the secondary product (e.g. 

potable water via RO purification of brackish water) was calculated using 

information from several sources. The capital cost of the plant was calculated 

using data from the Texas Water Development Board (TWDB). Their report 

(Arroyo and Shirazi 2012) provides cost values for several brackish water 

reverse osmosis plants. The values for this study are the averaged capital and 

O&M costs of six brackish groundwater plants in Texas. The efficiency of the 

plant was taken from a study conducted by TWDB on a flexible RO 

desalination system, including 3.8 kWh/kgal for RO and 6 kWh/kgal for 

filtration prior to desalination (Chapman and Leitz 2010). Equation 7, 9 and 

10 in Appendix A detail the calculation of sizing the RO plant, and the capital 

and O&M Costs for the desalination process. 

 In order to value the revenue generated by selling secondary product, 

the selling price for water in [$/kgal] was converted to [$/kWh]. This 
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conversion is shown in Equation 10 in Appendix A. The electricity from the 

SMR used for the secondary product is multiplied by this conversion factor to 

calculate the revenue from selling the water. The [$/MWh] revenue rate is 

subtracted from the total LCOE to show the net LCOE. The price of fresh 

water was calculated using values from Fisher (2006) by averaging the price 

of water for five Texas cities: Houston, San Antonio, El Paso, Dallas, and Fort 

Worth (Fisher, Whitehead and Melody 2006). 

RAVEN Grid and Limit Surface Search 

 RAVEN perturbs the model with various configuration parameters to 

produce data sets. This study used two different methods to generate data 

and perform analysis. The first is a simple grid search, in which RAVEN 

generates a four-dimensional search space with the range specified by the 

user. This produced a set of results including failure flags for meeting 

demand and producing emissions. These data sets are filtered by the user in 

Microsoft Excel and used by RAVEN to visualize the results. This method 

allows for quick visual interpretations of the data to identify trends within 

the input search space, and to verify expected performance. 

 The limit surface search method uses algorithms built into RAVEN. In 

this method, RAVEN uses results from the Python external model to train a 

reduced order model (ROM) to speed up calculations. RAVEN samples this 

ROM to find the surface dividing the search space by failure and success as 

determined by the user specified constraints. In this study, two constraints 

are used – reliability and emissions. The reliability ensures that the model 
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covers demand with less than 30 hours of uncovered demand over a full year. 

The emissions constraint ensures that the configuration reduces emissions 

by half compared to a business-as-usual case of purely natural gas 

generation. This method produces a dataset that closely follows the limit 

between “success” and “failure” according to the applied constraints. This 

study compares the limit surface with increasing NHES battery storage with 

and without emissions constraints. This study analyzes the effects of battery 

storage on the reliability limit surface, and examines the effectiveness of 

LCOE for NHES analysis. 

Input Search Space 

 The range of values for each input parameter was chosen to 

demonstrate the full spectrum of system performance from under-

generation to grid saturation. Parameter values were adjusted and limited in 

order to highlight key behaviors and to aid in visualizing the results. 

Results 

Limit Surface Search 

 In this data set the limit surface plots show the ngcapacity, recapacity, 

and meandemand variables along the x, y, and z dimensions. The white dots 

correspond to “successful” data points, and black dots denote “failure” points. 

In this set, only the failure criterion of meeting demand was considered. As 

shown in Figure 7, the limit surface shows a thickness caused by the hidden 
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dimension, bescapacity. However, it is easily seen that the demand met by a 

configuration has a 1:1 linear relationship to ngcapacity. This makes sense 

because with the assumed 100% capacity factor for NG production, 1 added 

MW of generation means 1MW of demand covered. 

 

Figure 7: Side view of limit surface 

 Figure 8 shows an alternate view of the limit surface, parallel to the 

surface and perpendicular to the recapacity axis. From this perspective, it is 

easy to see the correlation between mean demand and recapacity. While it 

shows a positive correlation, it demonstrates a slope of approximately 0.29, 

corresponding to the capacity factor for the synthetic wind data.  
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Figure 8: Alternate limit surface view 

Grid Search 

 Alternatively, the model was perturbed using a grid input space, and 

post-processed in Microsoft Excel to remove “failure points” according to the 

demand constraint. 

 In order to visualize the effects of BES, NG capacity was removed from 

the model. The only search parameters used were recapacity and 

meandemand. For each plot, a single value of bescapacity was used to see the 

effects of increasing storage capacity. Figure 9 shows the demand coverage 

with no battery storage capacity, Figure 10 shows it with 50MWh of installed 

storage capacity, and Figure 11 shows it with 100MW of installed storage 

capacity. These plots demonstrate that increasing the battery storage 

increases the demand coverage, as seen by the increased are of the coverage 

region in the plots. It is also possible to detect an increased correlation 
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between recapacity and meandemand. The first plot shows a slope of 

approximately 0.018, the second shows a slope of ~0.25, and the third a 

slope of ~0.035. This indicates that a higher level of battery storage increases 

the utilization of RE generation and results in a greater correlation to 

demand coverage. 

 It should be noted that while higher levels of installed battery storage 

capacity increase demand coverage, it does not necessarily correspond to 

greater certainty in reliability. In these plots, the successful region (implying 

reliable coverage) is populated by blue dots, and the failure region is 

represented by an absence of dots. The uncertainty in reliability was 

observed in the gaps between successful configurations along the limit 

surface between the success and failure regions. 
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Figure 9: Mean Demand and RE Capacity with 0MWh of battery electric storage installed 

 

Figure 10: Mean Demand and RE Capacity with 50MWh of battery electric storage installed 
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Figure 11: Mean Demand and RE Capacity with 100MWh of battery electric storage installed 

 As shown in Figure 12, the model reacts predictably in the face of 

increasing demand. It was observed that NG has a direct linear correlation to 

increased demand coverage, while RE is weakly correlated to increased 

demand coverage. LCOE increases with both RE and NG, but with a stronger 

correlation to RE. As mean demand increases, the utilization of natural gas 

increases and cost decreases. This also results in increased emissions as 

shown in Figure 14. Upper surface of this plot represents the reliability limit 

surface. The optimal configuration would lie somewhere along this limit 

surface, since this is the area with the least over-installed capacity. The 

points below the limit surface represent over-installed capacity, but 

increased certainty in reliability.  

 Figure 13 shows the LCOE with additional emissions constraint 

imposed. For demonstration purposed, the emissions limit was chosen to be 
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one one-hundredth of the emissions that would be generated if the entire 

demand was met with NG. It shows that the model eliminates configurations 

with high NG, and low RE generation. This limit removes configurations with 

the lowest LCOE. 

 

Figure 12: LCOE with reliability constraint imposed 
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Figure 13: LCOE with reliability and emissions constraint imposed 

 Figure 14 shows the CO2 emissions of each configuration. The model 

shows a strong correlation between NG and emissions, with the highest 

emissions corresponding to configurations with high NG and low RE. Figure 

15 shows the CO2 emissions with the additional emissions constraint of one 

one-hundredth of an NG only configuration imposed. It removes those 

options with high NG and low RE. It should be noted that it also removes 

some configurations with low NG and low RE, demonstrating the need for 

backup power for RE installations. 
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Figure 14:CO2 emissions with reliability constraint imposed 

 

Figure 15: CO2 emissions with reliability and emissions constraints imposed 
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Conclusions 

Findings 

 The LCOE model performs as expected, capturing the basic NHES 

behaviors. The additional emissions constraint further limits the 

configurations that meet both success criteria. The limit surface tied only to a 

reliability constraint is strongly correlated to the NG capacity, and weakly 

correlated to the renewable generation.  

 Battery storage capacity has notable impacts on system performance. 

Increased levels of storage disproportionately increase the level of demand 

that can be covered reliability, showing that it also improves the utilization of 

wind energy. This results in a stronger correlation between RE installed 

capacity and the mean demand that can be covered. 

Limitations 

 Conducting analysis using a simplified cost model is an effective way 

to see major performance trends in this system. It does, however, have limits, 

especially in regard to computing actual costs, revenues, and emissions. Each 

of these calculations is conducted under many simplifying assumptions, 

making them limited in effective scope. In cost calculations, it becomes very 

important to identify the ownership structure of the hybrid system. In order 

to properly value the electrical and secondary commodities, one must also 

consider the increased system flexibility, reduced emissions, and overall 

reliability. While LCOE provides a valuable figure of merit for comparing 
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various energy generation technologies, it can create errors for variable 

generation and battery storage. In this study, an LCOE analysis proved to be 

quite ineffective especially for the revenue stream of the secondary product. 

A more detailed economic model is required to effectively capture the cost 

implications of a hybrid model. 

 While this tool provides a quick look at basic behaviors, a more 

thorough technical analysis is needed to verify that system components 

provide the necessary performance characteristics such as ramp rates, 

lifetime, reliability, and controllability. Creating a flexible, dynamic, high-

resolution model of the systems and components will be required to identify 

viable configurations, controls strategies, and technologies. 

Future Work 

 Additional work is required to capture the economic performance of a 

hybrid electricity and secondary commodity production system. The 

simplified LCOE approach employed here works well for analysis of 

electricity generation, but does not allow for effective analysis of the hybrid 

system. 

 The benefits of battery electric storage were observed to be notable in 

the results of this work. This result could derive from the stochastic wind 

data. True wind data tends to exhibit some sort of pattern. In this case, it is 

much more likely that it will either coincide more directly with the demand 

curve, or have some offset that could be smoothed by energy storage devices. 

In the case of truly stochastic wind data, harmonic feedback is just as 
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probable as smoothing effects. In future work, it would be beneficial to utilize 

statistical methods to better represent the fundamental frequencies 

observed in true wind data, rather than using a purely stochastic signal. The 

same methods could be utilized to represent the stochasticity in demand 

histories. 

 It would be useful to explore other more sophisticated LCOE and LCOS 

(Levelized Cost of Storage) calculations for the analysis of hybrid systems, 

such as the approach used in Lazard’s Levelized Cost of Storage Analysis 

(Lazard 2015) and in the study conducted by Pawel (Pawel 2014). These 

approaches may more effectively capture the contributions of variable 

generation and storage technologies to the total system cost of generation.
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Appendix A: LCOE Variables and Assumptions 

 

Table 2: LCOE Cost Parameters 

Technology Specific Wind Natural Gas Battery Storage SMR 

Capital Cost [$/kW] 1922.99 947.5 1964 3317.8 

Fixed O&M [$/kW] 30.3 11.7 51000 90.2 

Variable O&M [$/MWh 0 2 0.49 5 

DPV 0.83155 0.54407 1 0.59406 

Fuel Price [US$/MMBtu] 0 4.67 0 0.5 

Heat Rate [US$/MMBtu] 0 6752 0 10434 

CO2 [Metric Tons/MWh] 0 0.4036 0 0 

Global Parameters     

Tax Rate 0.392    

Discount Rate 0.07    

Lifetime of Investment 30    

Capital Recovery Factor 0.08059    

 

     

 

Equation 7: Computation of RO Capacity Required for Full Utilization of SMR [Million Gallons  

       per Day] 

300𝑀𝑊𝑒𝑙𝑒𝑐𝑡𝑟𝑖𝑐 ∗  
1000𝑘𝑊

1𝑀𝑊
∗

24ℎ𝑟

1𝑑𝑎𝑦
∗

1𝑘𝑔𝑎𝑙

9.8𝑘𝑊ℎ
∗

1𝑀𝐺𝐷

1000𝑘𝐺𝐷
= 734.1𝑀𝐺𝐷 
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Equation 8: Computation of Capital Costs [$/kWh installed] 

1𝑘𝑔𝑎𝑙

9.8𝑘𝑊ℎ
∗

24ℎ𝑟

1𝑑𝑎𝑦
∗  

1000𝑔𝑎𝑙

1𝑘𝑔𝑎𝑙
=  

2449𝐺𝑃𝐷

𝑘𝑊 (𝑖𝑛𝑠𝑡𝑎𝑙𝑙𝑒𝑑
 

 

3.175 $

𝐺𝑃𝐷
∗ 

2449 𝐺𝑃𝐷

𝑘𝑊 𝑖𝑛𝑠𝑡𝑎𝑙𝑙𝑒𝑑
=  

7775.58$

𝑘𝑊 𝑖𝑛𝑠𝑡𝑎𝑙𝑙𝑒𝑑
 

 

Equation 9: Computation of O&M Costs [$/kWh] 

0.837$

𝑘𝑔𝑎𝑙
∗  

1 𝑘𝑔𝑎𝑙

9.8𝑘𝑊ℎ
∗

1000 𝑘𝑊ℎ

1 𝑀𝑊ℎ
=

85.4$

𝑘𝑊ℎ
 

 

Equation 10: Conversion of [$/kgal] to [$/kWh] for Desalinated Water 

2.86$

𝑘𝑔𝑎𝑙
∗  

1 𝑘𝑔𝑎𝑙

9.8𝑘𝑊ℎ
∗ 

1000𝑘𝑊ℎ

1 𝑀𝑊ℎ
= 291.84

$

𝑀𝑊ℎ
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Appendix B: External Python Model Code 

# -*- coding: utf-8 -*- 
""" 
created on Mon feb 29 08:23:59 2016 
 
@author: bakete - Ted Baker, ted.baker@inl.gov/tedb314@gmail.com 
""" 
 
# This file contains an external cost model of a nuclear-renewble hybrid 
energy system. 
 
import numpy as np 
 
 
def initialize(self, runInfoDict, inputFiles): 
 
    # load demand data from file 
    self.demanddata = np.genfromtxt('2014_ERcoT_Hourly_Load_data.csv', 
delimiter=',') 
 
 
def run(self, Inputs): 
     
    import costVariables 
 
    # ------------------------------------------------------------------------------ 
    # sample random re generation and scale it such that the max value is the 
installed capacity 
    winddata = np.ones(len(self.demanddata)) 
    for hour in xrange(len(self.demanddata)): 
        winddata[hour] = np.random.beta(2, 5) 
    self.ranwind = winddata 
    ranwind = self.ranwind * self.recapacity 
    demanddata = self.demanddata * (self.meandemand / 
np.mean(self.demanddata)) 
 
 
    # ------------------------------------------------------------------------------ 
    # initialize arrays to store the output variables. 
    usedre = np.zeros(len(demanddata))  # initialize array to store RE 
(renewable energy) electricity sold 
    usedng = np.zeros(len(demanddata))  # initialize array to store NG 
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(natural gas) electricity sold 
    usedbes = np.zeros(len(demanddata))  # initialize array to store BES 
(battery electric storage) electricity sold 
    usedsmrelec = np.zeros(len(demanddata))  # initialize array to store smr 
(small modular reactor) electricity sold 
    usedsmrtherm = np.zeros(len(demanddata))  # initialize array to store 
smr energy used to generate secondary product 
    besavail = np.zeros(len(demanddata)) 
    besavail[0] = self.bescapacity          # initialize first step with fully charged 
battery 
    self.smrcapacity = 300           # set smr capacity in MWth 
    self.hourlost = 0 
 
    # ------------------------------------------------------------------------------ 
    # for each hour in the demand profile, utilize generators for coverage 
 
    for hour in xrange(len(demanddata)): 
        remdemand = demanddata[hour] 
        # for all hours after the first, set the available battery charge 
        # to the level remaining from the previous hour 
        if hour > 0: 
            besavail[hour] = besavail[hour-1] 
 
        # begin generating to cover demand, starting with RE 
        remdemand -= ranwind[hour] 
        if remdemand <= 0:  # if RE exceeds demand, set used RE to demand, all 
SMR used for secondary product 
            usedre[hour] = demanddata[hour] 
            usedsmrtherm[hour] = self.smrcapacity 
            besavail[hour] += ranwind[hour] - usedre[hour]  # use remaining RE 
to charge battery 
            if besavail[hour] > self.bescapacity:   # set BES to max, if its level 
exceeds capacity 
                besavail[hour] = self.bescapacity 
            continue 
        else: 
            usedre[hour] = ranwind[hour]    # if demand not covered, used RE 
equals the total generated 
 
        # BES tries to cover remaining demand next 
        remdemand -= besavail[hour] 
        if remdemand < 0: 
            usedbes[hour] = besavail[hour] + remdemand 
            usedsmrtherm[hour] = self.smrcapacity 
            continue 
        else: 
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            usedbes[hour] = besavail[hour] 
 
        # ng generates next 
        remdemand -= self.ngcapacity 
        if remdemand < 0: 
            usedng[hour] = self.ngcapacity + remdemand 
            usedsmrtherm[hour] = self.smrcapacity 
            continue 
        else: 
            usedng[hour] = self.ngcapacity 
 
        # smr generates last 
        remdemand -= self.smrcapacity 
        if 0 > remdemand: 
            usedsmrelec[hour] = self.smrcapacity + remdemand 
            usedsmrtherm[hour] = self.smrcapacity - usedsmrelec[hour] 
            continue 
        else: 
            usedsmrelec[hour] = self.smrcapacity 
            self.hourlost += 1 
 
    # compute the utilization of each energy source 
    self.utilre = sum(usedre)/float(self.recapacity * len(usedre)) 
    self.utilng = sum(usedng)/float(self.ngcapacity * len(usedng)) 
    self.utilsmr = 
(sum(usedsmrelec)+sum(usedsmrtherm))/float(self.smrcapacity * 
len(usedsmrelec)) 
    self.utilbes = sum(usedbes)/float(self.bescapacity * len(usedbes)) 
 
    def lcoe(gen, spc, cf): 
        if cf == 0: 
            # prevent divide by zero, inconsequential for later use of lcoe 
            lcoe_val = 0 
        else: 
            # taken from [1], conversion factor added to convert to $/Mwh 
            lcoe_val = gen[2] * (spc[0] * gen[0] * (1 - gen[1] * spc[3]) / float(8760 
* cf * (1 - gen[1])) + 
                                 spc[1] / float(8760 * cf) + spc[2] / float(1000) + spc[4] * 
spc[5] / float(1E6)) 
        return lcoe_val 
 
    # find specific lcoe values using parameters and capacity factor 
    lcoe_re = lcoe(costVariables.gen_lcoe_params, 
costVariables.re_lcoe_params, self.utilre) 
    lcoe_ng = lcoe(costVariables.gen_lcoe_params, 
costVariables.ng_lcoe_params, self.utilng) 
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    lcoe_smr = lcoe(costVariables.gen_lcoe_params, 
costVariables.smr_lcoe_params, self.utilsmr) 
    lcoe_bes = lcoe(costVariables.gen_lcoe_params, 
costVariables.bes_lcoe_params, self.utilbes) 
 
    # sum up the used electricity, multiply by specific lcoe to find average 
$/Mwh 
    self.lcoe_total = (lcoe_re + lcoe_ng + 
                       lcoe_smr + lcoe_bes) 
    self.product_revenue = sum(usedsmrtherm) * 
costVariables.thermalconversion 
 
    # calculate co2 emitted 
    # sum up emissions, multiply by specific co2 emissions to find average 
co2/Mwh 
    self.co2_total = (costVariables.co2_re*sum(usedre) + 
costVariables.co2_ng*sum(usedng) + 
                      
costVariables.co2_smr*(sum(usedsmrelec)+sum(usedsmrtherm))) 
    if self.hourlost < 30: 
        self.lostdemand = 1 
    else: 
        self.lostdemand = -1 
 
    if self.co2_total < 5E5: 
        self.emis_pass = 1 
    else: 
        self.emis_pass = -1 
 


