Photocopy and Use Authorization

In presenting this thesis in partial fulfillment of the requirements for an advanced de-
gree at Idaho State University, I agree that the Library shall make it freely available for
inspection. I further state that permission for extensive copying of my thesis for schol-
arly purposes may be granted by the Dean of the Graduate School, Dean of my academic
division, or by the University Librarian. It is understood that any copying or publication
of this thesis for financial gain shall not be allowed without my written permission.

Signature

Date

Auto Machine Learning Applications for Nuclear Reactors: Transient Identification,
Model Redundancy and Security
by
Pedro Mena
pepomena@isu.edu
Department of Computer Science
Idaho State University
Spring 2022

A dissertation submitted to partially fulfill the requirements for the degree of Doctor of

Philosophy in Applied Science and Engineering at Idaho State University.

Committee Approval

To the Graduate Faculty:

The members of the committee appointed to examine the dissertation of Pedro Mena
find it satisfactory and recommend that it be accepted.

Dr. Leslie Kerby
Committee Chair

Dr. R.A Borrelli
Committee Member

Dr. Paul Bodily
Committee Member

Dr. Xiaoxia Xie
Committee Member

Dr. Donna Delparte
Graduate Faculty Representative

ii

Dedication
I would like to dedicate this dissertation to my family: my mother Rita, my father Arturo

and my siblings Arturo and Selenia. This work would not have been possible without
their constant support and encouragement.

iii

Acknowledgement

This research made use of Idaho National Laboratory computing resources, which are
supported by the Office of Nuclear Energy of the U.S. Department of Energy and the Nu-
clear Science User Facilities under Contract No. DE-AC07-05ID14517.

Special thanks to John Petersen for support with the GPWR simulator, Stephanie]J.

Parker for support with INLHPC, David Rodgers for support with funding and John A.
Koudelka for support with the CAES Audio Visual Lab.

iv

Table of Contents

Listof Figures e ix
Listof Tables xii
Listof Abbreviations xiv
Abstract xvii
1 Introduction 1
1.1 Background 1
1.1.1 MachinelLearning 1

1.1.2 Motivation for Machine Learning Adaptation 3

1.1.3 Applications of Machine LearningToday 5

1.1.4 NuclearSafety. 8

1.1.5 Proposed Machine Learning Applications in Nuclear Safety 12

1.1.6 Transient Identification Case Studies 15

1.2 Project OVerview i i e e e e e e 17
1.2.1 ProjectGoals 17

1.2.2 ODbJectives o o i e 19

1.2.3 Noveltyo 19

1.2.4 SummaryofNovelty 21

2 ToolsandMethods 22
2.1 PythonPackages e 22
2.1.1 NumPy . .. e 22

2.1.2 Pandas e 23

2.1.3 Scikit-learn 25

2.2 AutoML e 26
2.2.1 TPOT . . o 27

2.3 DataPreprocessingMethodsUsed 31
2.3.1 Binarization 32

2.3.2 StandardScaling 33

2.3.3 RobustScaling 35

2.3.4 Maximum Absolute Value Scaling 37

2.3.5 Minimum Maximum S Scaler 38

2.3.6 Normalization 40

2.3.7 Radial Basis FunctionSampling 42

2.3.8 Feature Agglomeration 43

2.3.9 Principal ComponentAnalysis 44

2.3.10 Family Wise Error Feature Rate Selection 45
2.3.11S8electPercentile 46

2.3.12 Variance Threshold Selection 47

2.4 Machine LearningModels 48
2.4.1 Naive Bayes Classification 48

2.4.2 K-NearestNeighbors 53

2.4.3 LogisticRegression 54
2.4.4 Decision Tree Classification 55
2.5 Model Validation 58
2.5.1 ACCUIACY o i e e e 58
2.5.2 Precision e e e e e e e 59
253 Recall 59
2.5.4 F1lScore 59
2.5.,5 ConfusionMatrix. L e 60
2.6 Generic Pressurized Water Reactor Simulator 61
2.6.1 Simulator Capabilities. 61
2.6.2 Verification & Validation 66
Developing Initial Machine Learning Models UsingTPOT 68
3.1 Methodology e 68
3.1.1 DataCollection 68
3.1.2 TransientEvents 69
3.1.3 DatasetPreperation 71
3.14 DataCompiling 74
3.1.5 Data Exploration and Modification Using Python 74
3.1.6 DataSplitting e 77
3.2 Results 78
3.2.1 K-NearestNeighbors 79
3.2.2 Bernoulli Naive BayesResults 81
3.2.3 Gaussian NaiveBayesResults 83
3.2.4 Multinomial Naive BayesResults 84
3.2.5 LogisticRegression. 86
3.2.6 DecisionTree e 88
3.3 DisCcusSion e e e e e e e 88
3.3.1 Overall Model Performance 88
3.3.2 BestPerformingModels 90
3.3.3 Modelswith Potential Issues 91
3.34 FinalThoughts 92
Expanded Dataset & Optimal Model Analysis 93
4.1 EnsembleLearning 94
4.1.1 RandomVForest 95
4.2 Methodology e 95
4.2.1 ExpandingTheDataset, 95
4.2.2 NewTransientEvents 97
4.2.3 DataExploration 98
4.2.4 Training New Models Using TPOT 101
4.2.5 Validation of Trained Models 102
4.2.6 MisclassificationAnalysis 102
4.2.7 ImpactofLosingFeatures 103

4.2.8 Variation in Results from Changes in Random State 104

4.3 Expanded DatasetModelResults 105
4.3.1 Bernoulli Naive BayesModels 105
4.3.2 Multinominal Naive BayesModel 108
4.3.3 GaussianNaiveBayes L ... 111
4.3.4 LogisticRegressionModel 114
4.3.5 K-Nearest NeighborsModel 116
4.3.6 DecisionTreeModel 119
4.3.7 RandomForestModel 122

4.4 Random State Variation Analysis 126

4.5 ImprovingtheModel 128

4.6 Identifying Reasons Behind Misclassifications. 133

4.7 DecisionTree Analysis i 135

4.8 DISCUSSION o vttt e e e e e e 142

5 AnomalyDetection 145

5.1 Background 145
5.1.1 DataSecurity 145
5.1.2 Autoencoders. e 146
5.1.3 TensorFlow 147
5.1.4 Keras e 148

5.2 Literature Review. e 148

53 Methods e 150
5.3.1 Data Exploration and Preprocessing 150
5.3.2 Building the Autoencoder 151
5.3.3 Trainingthe Autoencoder 153
5.3.4 Validatingthe Autoencoder 154

54 Results e 154

5.5 DISCUSSION o o i e e e e 159

6 AutoMLComparison e 162

6.1 Background 163
6.1.1 H20AutoML 163
6.1.2 GoogleCloudAutoML. 164

6.2 Literature Review e 166
6.2.1 TPOT e e 166
6.2.2 H20 167
6.2.3 GoogleCloudAutoML., 168

6.3 Methodology e 168

6.4 Results e 171

6.5 DISCUSSION o e e e e e e 174
6.5.1 Performance 174
6.5.2 Functionality 174
6.5.3 EaseofUse. e 176

6.6 SummaryRemarks. 179

vii

7 Conclusions e 181

7.1 FutureResearch 181
7.1.1 Development of a A.l. Standard for Nuclear 181

7.1.2 Human Factors When Interacting WithA.L. 182

7.1.3 Future Machine Learning Studies in Nuclear Science 183

7.1.4 Other Approaches for Anomaly Detection 184

7.1.5 AutoMachineLearning 185

7.2 FinalSummary e 186
References 191
Appendix A Publications fromResearch 201
Appendix B Python PackagesUsed 202
Appendix C Optimal TreeQutput 203
Appendix D Process Visualization 211
Appendix E TPOT Model Convergences 215
Appendix F Misclassification Subset Descriptive Statistics 216

Appendix G Plots from Autoencoder 225

List of Figures

O NO s W~

Analysis of the Affect of A.I on Profit Margins by Industry[3] 4
SONGS Reactor Simulator[18] 12
Sample Crack Photograph use in model testing[21] 13
Sample DataFrame from Project 24
Typical TPOT Pipeline[50] 29
Sample TPOT Classifier i 30
Training Processusing TPOT [49] o .. 31
Data Transformation Using Scikit-Learn’s Binarization Function 33
Comparison of Standard Scaled Data and UnscaledData 34
Numerical ExampleofScaledData 34
Numerical Example of RobustScaledData 35
Comparison of Robust Scaled Data and Unscaled Data 36
Comparison of Maximum Absolute Value Scaled Data & Unscaled Data . . . 37
Numerical Example of Scaled Data Using Max Absolute Scaling 38
Comparison of Unscaled Data and Min Max Scaled Data 39
Example of Min MaxScaledData 40
Comparison of Unscaled Data and Normalized Data. 41
Example Normalized PreprocessedData 42
Example Code of Family Wise Error Rate Feature Selection 46
Sample Output of Family Wise Error Rate Feature Selection 46
Example of Variance Threshold Feature Selection 47
GPRW Reactor Simulatorat CAES 62
GPRWinterface 64
GPWR SimulatorSetup e 64
GPWR Simulator OverviewPanel 65
Screenshot of Dataset Collected from GPWR 73
Sample Descriptive Statistics from Initial Dataset 75
Test Train Split Code for Initial Dataset 78
Sample from X Train Dataset 78
Confusion Matrix for Initial K-Nearest Neighbors Model 81
Confusion Matrix for Initial Bernoulli Naive Model 82
Confusion Matrix for Initial Gaussian Naive Model 84
Confusion Matrix for Initial Multinominal Naive Bayes Model 85
Confusion Matrix for Initial Logistic RegressionModel 87
Confusion Matrix for Initial Decision Tree Model 89
Confusion Matrix for Expanded Bernoulli Naive Bayes Model 107
Misclassifications for Expanded Bernoulli Naive Bayes Model 108
Confusion Matrix for Expanded Multinominal Naive Bayes Model 109
Misclassifications for Multinominal Naive BayesModel 110
Confusion Matrix for Expanded Gaussian Naive Bayes Model 112
Misclassifications for Gaussian Naive BayesModel 113
Confusion Matrix for Expanded Logistic Regression Model 115
Misclassifications for Logistic Regression Model 116

ix

44
45
46
47
48
49
50
51
52
53
54
95
56
Y
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87

Confusion Matrix for Expanded kNN Model 118
Misclassification Behavior for kNN Model 119
Confusion Matrix for Expanded Decision Tree Model 120
Misclassifications for Decision TreeModel 122
Confusion Matrix for Expanded Random Forest Model 123
Misclassifications for Random ForestModel 126
Top 5 Levels of Optimal DecisionTree 137
Top 5 Features by Gini Importance 139
Keras Summary of Autoencoder. 152
Training Vs. Validation Loss of Autoencoder 153
Confusion Matrix For AutoencoderResults 155
Reconstruction Error for Clean DataPoints 156
Reconstruction Error for Altered Data Points 157
Reconstruction Error for All Data Points 158
Timing Guidelines for Google’s AutoML Tables Model[93] 165
H20 AutoML Configuration 170
H20 AutoML ConfusionMatrix 172
H20 AutoML Leaderboard 173
Google AutoML TablesOutput, 173
Exported H20 Feature ImportanceTable 176
Comparison of Different Scoring Thresholds from AutoML Tables 177
Feature Importance from AutoMLTables 177
Optimal DT Section1 e 203
Optimal DT Section2 et 204
Optimal DT Section3 it 204
Optimal DT Section4 e e e 205
Optimal DT Section5 e 205
Optimal DT Section 6ttt e e 206
Optimal DT Section7 e e 206
Optimal DT Section8 e 206
Optimal DT Section9 i e e e 207
Optimal DT Section 10 e 207
Optimal DT Section 11 e e e e e 208
Optimal DT Section 12 et 208
Optimal DT Section 13 et 209
Optimal DT Section 14 e e e e 209
FullOptimal DT e e e e e e 210
Re-create Optimal Tree From TPOT 211
RawDatatoTest e 212
Transformed Data Using Pipeline 213
Decision Tree RulesPart1 213
Decision Tree RulesPart2, 214
Expanded Model Training Convergence 215
Descriptive Statistics For Correct Turbine Trip W/O SCRAM Classification

Lof 2 216

88 Descriptive Statistics For Correct Turbine Trip W/O SCRAM Classification

2002 e 216
89 Descriptive Statistics For Correct Turbine Trip W/O SCRAM Misclassified
as Feedwater Pump Trips1of2 217
90 Descriptive Statistics For Correct Turbine Trip W/O SCRAM Misclassified
as Feedwater Pump Trips2of2 217
91 Descriptive Statistics Turbine Trip W/O SCRAM Misclassified as Electrical
LoadRejection1of2. 218
92 Descriptive Statistics Turbine Trip W/O SCRAM Misclassified as Electrical
Load Rejection2o0f2. 218
93 Descriptive Statistics for Correct Electrical Load Rejection1o0f2 219
94 Descriptive Statistics for Correct Electrical Load Rejection2o0f2 219
95 Descriptive Statistics for Electrical Load Rejection Misclassified as Feedwa-
terPumpTriplof2 220
96 Descriptive Statistics for Electrical Load Rejection Misclassified as Feedwa-
terPump Trip2of2 220
97 Descriptive Statistics for Electrical Load Rejection Misclassified as Turbine
TripW/OSCRAM 1 0f2 e 221
98 Descriptive Statistics for Electrical Load Rejection Misclassified as Turbine
TripW/OSCRAM2o0f2 e e e e 221
99 Descriptive Statistics for Correct Feedwater Pump Trip1of2. 222
100 Descriptive Statistics for Correct Feedwater Pump Trip2of2. 222
101 Descriptive Statistics for Feedwater Pump Trip Misclassified as Load Rejec-
tionlof2 223
102 Descriptive Statistics for Feedwater Pump Trip Misclassified as Load Rejec-
tion2o0f2 223
103 Descriptive Statistics for Feedwater Pump Trip Misclassified as Turbine Trips
W/OSCRAM 10f2 224
104 Descriptive Statistics for Feedwater Pump Trip Misclassified as Turbine Trips
W/OSCRAM20f2 224
105 Reconstruction Plot for Autoencoderat1.5SD Noise 225
106 Reconstruction Plot for Autoencoderat 1.0SD Noise 226
107 Reconstruction Plot for Autoencoder at0.5SD Noise. 226

List of Tables

O NO s W~

15

16
17
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34

35
36

37
38

Data Prepossessing Techniques used in TPOT Pipeline Creation 32
Machine Learning Models Trained Using TPOT for Initial Experiment 48
Nuclear Software Codesusingin GPWR 67
Features Collected from GPWR Simulator 69
Initial Conditions used for Simulations 70
Simulations Run for Initial Dataset 72
Final Features used in Initial Dataset. 76
K-Nearest Neighbors Initial Model Individual Accurcies 79
Bernoulli Naive Bayes Initial Model Individual Accurcies 82
Gaussian Naive Bayes Initial Model Individual Accurcies 83
Multinominal Naive Bayes Initial Model Individual Accurcies 85
Logistic Regression Initial Model Individual Accurcies 86
Initial Decision Tree Model Individual Accurcies 88
Summary of Machine Learning Model Results: Overall Validation Measure-

MENTS o e e e e e 90
Summary of Machine Learning Model Results: Individual Transient Accu-

TACIES .« o . v o e et e e e e e e e e e e e e 91
Transient Events Simulated from GPWR 96
Initial Conditions Used for GPWR Simulation 96
Initial Conditions Used for GPWR Simulation 97
Features used in in Expanded Model Training 100

Machine Learning Techniques Used to Train Models With Expanded Dataset102
Bernoulli Naive Bayes Model Individual Accurcies For Expanded Dataset . . 106
Multinominal Naive Bayes Individual Accurcies For Expanded Dataset . . . 110
Individual Accurcies For Gaussian Naive Bayes Mode (Expanded Dataset) . 113
Individual Accuracies For Logistic Regression Model (IExpanded Dataset) . 114

Individual Accuracies For kNN Model (Expanded Dataset) 117
Individual Accuracies For Decision Tree Model (Expanded Dataset) 121
Individual Accuracies For Random Forest Model (Expanded Dataset) 124
Accuracies of Decision Tree Model During The First 30 Seconds 125
Statistics for Decision Tree Variation Analysis 126
Statistics for Random Forest Variation Analysis 127
Statistics for K-Nearest Neighbors Variation Analysis 128

Validation Results for Decision Tree Models Trained with Different Splits . . 130
Validation Results for Random Forest Models Trained with Different Splits . 130

Validation Results for kNN Models Trained with Different Splits 131
Validation Results for Decision Tree Models Trained with Different TPOT

Parameters. e e e e e e e 133
Validation Results for Random Forest Models Trained with Different TPOT

Parameters. e 133
Validation Results for kNN Models Trained with Different TPOT Parameters 133
Steam Generator Level Averages for Correctly Classified Data 135
Steam Generator Level Averages for incorrectly Classified Data 136

xii

39
40
41
42
43
44
45
46

Features Removed from Optimal Decision Tree (Gini Impurity) 136
Features Removed from Optimal Decision Tree (Gini Importance) 138
Validation Results from Feature Removal Analysis) 141
Differences In Validation Results from Feature Removal Analysis) 142
Results From Autoencoder Test 159
Model Training Expanded Dataset 202
AutoEncoderStudy 202
AutoMLStudy e 202

Xiii

List of Abbreviations
ANN Artificial Neural Network. 6, 146, 147

BOL Beginning of Life. 68, 70-72, 75, 96, 97
BPN Back Propagation Network. 16
BWR Boiling Water Reactor. 10

CAES Center for Advance Energy Studies. 61

CBM Condition Based Maintenance. 7

CFR Code of Federal Regulations. 10, 11

CNN Convolutional Neural Network. 13, 16, 147, 148, 168
CPU Central Processing Unit. 2, 148

CSV Comma Separated Values. 71, 74

DOE Department of Energy. 15, 145, 161, 183

EBR-2 Experimental Breeder Reactor 2. 15
ECCS Emergency Core Cooling System. 9
EOL End of Life. 68-72, 75, 96, 97

FWER Family Wise Error Feature Rate Selection. 45-47

G.E General Electric. 10, 14

GAN Generative Adversarial Network. 184, 185
GAO Government Accountability Office. 145

GPU Graphical Processing Unit. 2, 28, 148, 164, 190

GPWR Generic Pressurized Water Reactor. iv, xii, 61, 66-68, 95-97, 143, 150, 159, 169,
178, 179, 185-189

GUI Graphical User Interface. 163, 165, 169, 170, 175, 176, 180, 190

HPC High Performance Computing. 101, 129, 131, 150, 164, 169, 174, 185

HRA Human Reliability Assessment. 183
IAEA International Atomic Energy Agency. 10, 11, 61

Xiv

INL Idaho National Lab. 11, 15, 20, 61, 66, 101, 169, 183
kNN k-nearest neighbors. x, xii, 6, 116-119, 121, 124, 128, 130, 132, 167, 186, 187

LOCA Loss of Coolant Accident. 9
LOFA Loss of Flow Accident. 15, 17, 18

LOOP Lose of Off-Site Power. 71

MARS Multi-dimensional Analysis of Reactor Safety. 17
MOL Middle of Life. 68, 70-72, 75, 96, 97

MSIV Main Steam Isolation Valves. 70, 72

NAMS Nearly Autonomous Management System. 15, 16
NCSU North Carolina State University. 15, 16, 18, 66

NRC Nuclear Regulatory Commission. 10, 11, 17, 18, 66, 69, 77, 93, 145, 161, 181-183
ORNL Oak Ridge National Lab. 13, 14

PCA Principal Component Analysis. 44, 56, 147
PdM Predictive Maintenance. 7

PORV Pilot Operating Relief Valve. 8,9, 136, 161
PRA Probabilistic Risk Assessment. 181, 183
PvM Preventive Maintenance. 7

PWR Pressurized Water Reactor. 14, 16

R2F Run to Failure. 7
RBF Radial Basis Function. 42
RCS Reactor Coolant System. 75, 137, 139

RNN Recurrent Neural Network. 16, 148

SMR Small Modular Reactor. 183
SVM Support Vector Machines. 6, 17, 167, 184, 185

SVR Support Vector Regression. 14

TMI Three Mile Island. 8-10, 15, 66, 103, 161

TPOT Tree-based Pipeline Optimization Tool. xii, 27-30, 32, 35, 45, 48, 68, 78, 91, 101,
103-105, 119, 122, 128-133, 136, 138, 143, 144, 163-167,169-171,173-175, 178, 179,
186-190

V&V Verify & Validate. 11, 66

WSC Western Services Cooperation. 61

Auto Machine Learning Applications for Nuclear Reactors: Transient Identification,
Model Redundancy and Security

Dissertation Abstract — Idaho State University (2022)

Machinelearning and Al are concepts that have had alarge impact in daily life since 2000.
It is unlikely that most people at this point in time do not have some sort of interaction
with an Al system on a daily basis. This research effort looked to contribute to the field of
nuclear safety and explore ways to expand the use of machine learning through the ap-
plication of AutoML. This project consisted of four major phases. In the first phase, data
was collected from a GPWR simulator for five different reactor events, creating a dataset
with over 30,000 points. Six different machine learning models were trained using the
AutoML package TPOT. The results from this test were positive with all models produc-
ing accuracies in the high 90% range. The models were also able to perfectly distinguish
a reactor operating normally from one experiencing a transient. In the next phase, the
dataset was expanded using the GPWR, the number of classes was increased to 12 and
the new dataset consisted of over 110,000 points. Models were retrained and while many
of models suffered in validation, three of the models were still able to score results in the
low 90% range. The models were then examined looking at model redundancy by drop-
ping key features, examine variation due to changes in random state, exploring ways to
improve the model and identify the reasons behind misclassifications. The third phase
of the project explored the use of autoencoders to identify GPWR data that had been al-
tered. The model was able to identify all points at high levels of noise, but performance
dropped off as the noise was decreased. Still, the technique has validity to help with se-
curity concerns and identify sensor malfunctions. The final phase of the project was to
explore different AutoML approaches and compare and contrast their performance, ease
of use and functionality. These were TPOT, H20 and Google Cloud AutoML. Each of these
approaches were found to have different advantages and issues, but all performed with

models produced using GPWR data, with results in the mid to high 90% range.

xvii

Keywords: Machine Learning, Nuclear Safety, AutoML, Anomaly Detection, Nuclear

Simulation, Data Science

xviii

1 Introduction

The rapid development of computer technology and the widespread use of the internet
has led to exponential growth in the area of data science and artificial intelligence. The
ability to collect, store and process large amounts of data more easily has led to a mass
adaptation of data science in several industries. Today, researchers and businesses are
exploring new applications for this technology in order to improve efficiencies and add
value to operations. The purpose of this dissertation is to explore the use of Auto Machine
Learning or AutoML in the area of reactor transient diagnosis, as well as to contribute to

the effort to implement machine learning to the field of reactor safety.

1.1 Background

This section will provide an overview of the concept of machine learning as well as the
motivations and benefits of adapting artificial intelligence in today’s environment. This
will include a review of the well known applications of machine learning and data sci-
ence across all industries including safety, business, operations, etc. This section will
also include an overview of the history of nuclear safety and the events that shape how
the field has grown and developed to its current state. A comprehensive review of the
proposed uses of machine learning in several areas within the nuclear safety field will be
performed. Finally, proposed approaches for identifying reactor transients will be exam-

ined.

1.1.1 Machine Learning

Machine learning is an area in computer science used to make predictions. The inter-
est in the concept of machine learning has grown exponentially in recent times. Once
considered too computationally expensive, machine learning has become a part of most

people’s lives, without most people realizing it. This is in part due to advancements in

computational capabilities in the areas of multi-core Central Processing Unit (CPU)s and
Graphical Processing Unit (GPU)s. This has allowed data scientist to develop complex
models to make predictions based on provided data. The advantage that machine learn-
ing based models have over traditional programming is that these models have the capa-
bility to learn over time. Static programs while having the ability to respond to an input,
can only respond based on what has been programmed. Machine learning models how-
ever can identify trends in the data over time and make decisions based on these trends
without having to be reprogrammed.

Machine learning models have the ability to perform one of two different functions.
The first of these is the ability to predict a numeric value using a regression model based
on the features of the data that has been provided. Examples of this would be the price of
a home, the number of units sold, etc. The second type of prediction a machine learning
model can make is referred to as classification. These models use the data provided to
determine what category or class a sample belongs to. Classification examples include
predicting the specific type of flower from physical characteristics of a sample and de-
termining the category of risk of a proposed loan. This project will focus around classifi-
cation models.

There are several different types of machine learning models. The two most com-
mon types of models are supervised learning and unsupervised learning models. Super-
vised learning models use data that has an outcome already associated with it. These
outcomes can be binary, on/off, exist/doesn’t exist ,etc. or multi-class, such as excellent,
good, average and poor. In classification models, these outcomes serve as the categories
that will be predicted by the model. The advantage of supervised models is that the user
can specify the number of categories to be used in the model. It should be noted that
supervised models have an increased probability of becoming overfit and the models
typically are more expensive computationally. Examples of supervised learning models

include decision trees and logistic regression.

Unsupervised models use data that has no known outcome associated with it. In-
stead, the model attempts to define groups based on the data provided. These tech-
niques are particularly useful when the data has no set groups. This is especially useful
in the area of anomaly detection[1]. Examples of this type of model include clustering
techniques, like k-means. It should be noted there are other types of models, such as
semi-supervised learning and reinforcement learning, but this project will focus exclu-

sively on supervised and unsupervised methods.

1.1.2 Motivation for Machine Learning Adaptation

Perhaps the largest motivation for the expansion in data science over the last twenty
years, is the economic benefit projected by implementing data based approaches. One
study from the U.K based company PWC found that the gross domestic product of the
United Kingdom could increase by over 10% through the adaptation of artificial intelli-
gence[2]. It should be noted, this study claims most of that projected growth, 8.4%, will
be from new ventures that result from the adaptation, while the remaining growth will
be a result of productivity improvements.

The magnitude of the economic benefits from the adaptation of artificial intelligence
is dependent on a number of factors, including the industry and the approach of adap-
tation. A study performed by the McKinley Global Institute found that several industries
could see improvements with a full adaptation, however in some cases, only a partial
adaptation could negatively impact margins[3]. According to this study, industries such
as utilities, that historically have low or negative profit margins, due to the regulatory
nature of these areas, could see positive margins even with only a partial adaptation of
artificial intelligence. This is especially encouraging as one issue surrounding nuclear
power has been costs. Other industries identified by this study that could see improved
profit margins that relate to the nuclear field are construction, logistics and healthcare.

Figure 1 shows a summary graph from this study.

Figure 1: Analysis of the Affect of A.I on Profit Margins by Industry|3]

Al adopters with a proactive strategy have significantly higher profit margins
® Al adopters with proaclive sirategy’ @ Partial Al adopters or experimenters B Non-adopiers

Self-reported current profit margin?
Difference from indusiry average (unweighted) (percenlage poinis)

-10 -5 0 5 10 15 20

High tech and
telecommunications

Automotive and assembly
Financial services

Utilities and resources
Transportation and logislics
Consumer packaged goods
Retail

Education

Health care

Building materials and
consfruction

Professional services

Travel and tourism

-

Firms that are big data and cloud services users and report their strategic posture toward Al to be: “Disrupting our industry using Al technology is at the core
of our strategy,” “We have changed our langer-term corparate strateqy to address the Al threat or oppartunity disruption,” or “We have developed a
coordinated plan to respond to the Al threat or oppartunity but have not changed our longer-term corporate strategy.”

2 Qperating profit margin for selected sectors as a share of turnover, for continuing operations and before exceptional items,

SOURCE: McKinsey Global Institute Al adoption and use survey, McKinsey Global Institute analysis

1.1.3 Applications of Machine Learning Today

Machine learning plays a part in most people’s daily lives. One of the most common ap-
plication of machine learning models is the development of junk email detection. Gen-
erally, these models are trained to detect words or phrases that are associated with junk
emails. For example, a model could learn that emails with the phrase "you have won"
are usually considered junk and will filter these out from the main inbox. The model can
continue to develop by learning what emails are considered junk when the user desig-
nates an email as such. Another application of machine learning that people use on a
daily basis includes personal assistants, such as Apple’s Siri and Amazon’s Alexa. These
tools can learn trends of the user, based on the data that is provided, such as scheduling,

and preferences [4].

1.1.3.1 Applications in Business Business and marketing are areas that have been
able to take advantage of machine learning and artificial intelligence to improve their
operations. Coca-Cola makes use of these techniques to gather data on what drink com-
binations may interest customers. The company uses soda machines that allow for users
to customize their soft drinks to gather data on what customers like. The model is then
able to use this data to learn what drink combinations are popular and use that infor-
mation to help decide what new products to offer at retail [5]. Other uses of machine
learning in marketing include the use of recommendations to offer suggestions to cus-
tomers. In these cases, the suggestions are generated based on the data collected from
the users. For example, Amazon’s recommendation algorithm examines the items pur-
chased, rather than the users themselves. This allows for a less data intensive algorithm
that has been considered far more effective [6]. Many companies use similar machine
learning algorithms to make recommendations to customers, including Netflix, Hulu,
Booking.com and Spotify.

Studies have found that machine learning is an effective approach to detecting credit

card and financial fraud. One study used data from over 250,000 European credit card
transactions. Three models were created using different machine learning models and
two of these models were able to identify fraudulent transactions over 97% of the time[7].
Financial institutions have embraced the use of machine learning models to improve
their business. For example,JP Morgan uses a variety of classification techniques to eval-

uate different areas of the banks operations [8].

1.1.3.2 Applicationsin Healthcare Due to the high potential forimproved profit mar-
gins and the ever changing landscape of the industry, healthcare has been quick to adapt
machine learning and data science. Providers are looking at ways machine learning can
improve the process of storing and sharing patient data between facilities. Image recog-
nition algorithms are being used to help identify areas of interest with screening images.
One example of the impact of machine learning in healthcare is at Regional Cancer Care
Associates in New Jersey. Due to the COVID-19 pandemic, the facility had experienced
issues with staffing and identifying patients who are at high risk for the virus. Machine
learning models were used to attempt to classify patients based on the degree of risk [9].
Early results have been positive with the facility reporting improvement in both, identi-

fying high risk individuals and managing the facility.

1.1.3.3 Applicationsin Diagnostics & Maintenance Anapplicationthathasbeen gain-
ing increased use and interest is the use of machine learning models to diagnose main-
tenance issues with equipment. Since 2000, many organizations and governments have
begun developing and implementing standards for maintenance using computer based
models, such as artificial intelligence. These includes IEEE, ISO, IEC, as well as the gov-
ernments of Germany and China[7]. Common techniques used for diagnostics include
decision tress, Artificial Neural Network (ANN), k-nearest neighbors (kNN),Support Vec-
tor Machines (SVM),etc.

Studies in predictive maintenance using machine learning have been done in man-

6

ufacturing and other sectors. The implementation of big data, machine learning, etc.
in the manufacturing industry has been referred to as Industry 4.0. There are currently
four categories for the use of Al in maintenance: Run to Failure (R2F), Preventive Mainte-
nance (PvM), Condition Based Maintenance (CBM) and Predictive Maintenance (PdM)[10].

Each of these different categories has different uses and applications.

1.1.3.4 Applicationsin QualityAssurance One ofthe common usesofmachinelearn-
ing in manufacturing is the use of models to help with quality assurance. In a demon-
stration performed by IBM, Watson, IBM’s artificial intelligence system, analyzed several
different parts to look for defects. For example, Watson was able to detect a bent connec-
tor pin in a component. IBM has stated that they believe that Watson is able to continu-
ously meet a 92% accuracy, comparable to that of a human inspector. Other applications
for this use of Watson is for the inspection of part installation and inspection [11].

A study performed by IBM’s T.]. Watson Research Center attempted to use machine
learning models to improve the reliability of rail lines[12]. The goal of this study was to
reduce the probability of a service disruption by identifying components that require re-
pairs prior to a failure occurring. The hope is that rail companies can find savings in
reduced delays occurring to unavailable trains, derailments, etc. Several different ap-
proaches have been tried and research continues to develop better models using IBM
Watson.

In a study from Zhejiang Sci-Tech University in China, machine learning models were
used in an attempt to identify failures in air conditioning and refrigeration equipment.
According to the study, oneissue in trying to develop a model for this type of equipment is
alack of large quantities of data[13]. In order to address this issue, a Sparse autoencoder,
neural network based model was used. Models were trained with a different number
of layers to see the impact on validation. Data based on 8 different conditions for the

equipment was used to train the model. The accuracy of these models was found to be

high with results in the high 90% range. Other validation measurements, such as preci-
sion and recall, were found to be in the mid 80% range for diagnosing a normal operating

system and increased for identifying specific failures.

1.1.4 Nuclear Safety

In the nuclear industry, no other area takes a higher priority than the field of safety. The
most pressing reason for this is the potential for long lasting consequences in the event
of a catastrophic failure. Studies have taken place to improve almost every aspect of a
nuclear power plant. These include, accident prevention, quality assurance of compo-
nents, human factors, plant responses, security, mitigation, etc. This has led to a strict
regulation system that has earned the industry a reputation as one of the safest in the
world.

Despite this reputation and the high redundancy of nuclear power plant safety sys-
tem, itisimportant that the industry embraces the concept of continuous improvement.
The industry must always seek to improve safety when possible and most importantly,
must never fall in to a sense that nuclear facilities are safe enough. This false sense of se-
curity was a contributing factor in the three worst accidents in nuclear history, Fukushima-

Daiich in 2011, Chernobyl in 1986 and Three Mile Island (TMI) in 1979.

1.1.4.1 Three Mile Island Accident In the United States, no nuclear related accident
has impacted the industry to the extent that the accident with TMI Nuclear Station in
Middleton, Pennsylvania has had.This accident occur on the morning of March 28th,
1979 when TMI unit-2 experienced a loss of flow transient event [14]. This resulted in
the unit-2 tripping, the insertion of control rods to stop the reactor, as designed. In re-
sponse to this event, the Pilot Operating Relief Valve (PORV) opened to release pressure
from the reactor. Once the pressure reached 15.21 MPa the PORV was supposed to shut

automatically, however, a malfunction caused the valve to remain open. This allowed

coolant to flow out of the reactor resulting in a small Loss of Coolant Accident (LOCA)
event. To compound this problem, the instruments indicated to the operators that the
PORV was closed and other instruments that could have alerted operators to the prob-
lem were not easily visible. At this point, coolant was still flowing into the reactor via the
Emergency Core Cooling System (ECCS) and reactor coolant pumps.

The continual flow of coolant to the reactor allowed the core to remain covered while
residual heat was removed, a process that can take days to safely complete. However, a
little more than an hour after the accident began, the coolant pumps started to vibrate
continuously. Unaware that coolant was leaking out of the core, operators shutdown the
coolant pumps in an effort to preserve the equipment. This resulted in the core becom-
ing uncovered and zirconium fuel began to oxidize, producing hydrogen. The reactor
core would melt and a small hydrogen detonation would occur. Eventually the coolant
pumps were restarted and the core was able to cool. A small controlled release of ra-

dioactive gas was done in order to prevent further hydrogen reactions.

1.1.4.2 Responseto ThreeMilelIsland Thelength ofthe accidentwasrelatively short.
By the evening of March 28th, the coolant pumps had been restarted and the core was
cooling properly. The small controlled release of radioactive gas mitigated the possibil-
ity of a hydrogen explosion threatening the integrity of the containment. However, the
inability of the utility running the plant, as well as the local and federal government to
properly and promptly explain the situation to the general public, led to severe actions.
Media coverage of the accident was large and in some cases, there was a belief that a
hydrogen explosion could pose a severe risk to the public, mostly due to the incorrect
association with a hydrogen bomb. It is estimated that over 144,00 people were told to
evacuate and surrounding schools were closed, days after coolant had been restored to
the core.No injuries were attributed to the accident.

There has been a large debate on the root causes of the TMI accident. Early on, it was

argued that this event was a "Normal Accident" that was unpreventable due to the com-
plexities of a nuclear power plant and the limitations of the technology. This argument
has been challenged several times. One such study, published in the Journal of Contin-
gencies and Crisis Management, found that management was a major contributor to this
accident. This included poor communication of previous events, lack of training for the
operators, etc [15]. This is beneficial for the nuclear industry, if the issues at TMI were
unavoidable, it would be impossible for the public to have confidence in nuclear power.
Since many of the issues were preventable, the industry has had the opportunity to im-
prove. To its credit, the nuclear industry in the United States has accepted this account-
ability. Several reforms have been implemented by the utilities and the Nuclear Regula-
tory Commission (NRC), including expanding the use of human factors and simulations
to improve training, better communication between plants to share lessons learned, ap-
proaching nuclear safety from a probabilistic approach and embracing the concept of

continuous improvement when it comes to safety.

1.1.4.3 Use of Simulation in the Nuclear Industry One of the biggest changes in the
nuclear industry after the TMI accident was the expanded use of simulators for nuclear
power plants. The International Atomic Energy Agency (IAEA) has performed a number
of studies on the use of simulation for different applications in the nuclear field. These
areas include: fuels, accident planning, reactor behavior for new designs and training.
The history of power plant simulation goes back to the to late 1950’s, when simulators
where used for steam systems to help with operator training. In 1968, General Electric
(G.E) developed a complete power plant simulator for its Boiling Water Reactor (BWR)
design[16]. In response to the TMI incident and the rapid growth in the use of computer
technology, simulator use became widespread in the 1980’s. In 1987, the NRC issued a re-
quirement, 10 Code of Federal Regulations (CFR) Part 55.4, that all nuclear power plants

operating in the United States must make use of a simulation facility onsite by May of

10

1991, for training purposes[17].

The IAEA has defined four different types of simulators for nuclear power plants: ba-
sic principle, full scope, other than full scope control room and part task[18]. Full scope
simulators are designed to represent a specific reactor at a plant, including the human
interface. These are usually used in simulation facilities at plants. Basic principle simu-
lators are similar, but do not represent a specific reactor and do not necessarily use the
same interface. Other than full scope simulators represent a specific reactor accurately,
butuse a different human interface than the actual reactor. For example, the SONGS sim-
ulator used at INL uses a touch screen interface, rather than the traditional controls of a
reactor. Figure 2 shows the human interface from the SONGS reactor simulator at INL.
Finally, a part task simulator only represents a specific component of a reactor, such as a
piece of equipment.

Reactor simulators make use of several different computer software codes to accu-
rately mimic actual reactor behavior. In an example given by INL, a simulator uses the
RELAP code to model hydraulic behavior, a simulator platform working along with a
plant specific model. This software is then integrated into the human interface. It should
be noted that all code used to model a reactor’s behavior must meet the requirements of
the NRC if it is to be used in a nuclear application. This requirement falls under 10 CFR
Part 50.55a, which outlines the Verify & Validate (V&V) process required for a code to be
used in a simulation[19].

Today, simulators are fairly common tools used in the nuclear industry. INL used the
SONGS simulator to help a facility better plan the layout for the plant’s control room.
INL’s Human Factors Lab also makes use of simulators to study the operator behavior
to improve training. This includes monitoring human performance, interaction with
equipment and error recognition. Other countries which make significant use of nu-
clear power, also rely simulation. The Russian Federation has used Part Task simulators

to study turbine behavior under different conditions[20]. France has made extensive use

11

Figure 2: SONGS Reactor Simulator([18]

of full scope in operator training and the evaluation of new training techniques and in
the United Kingdom, simulators have been used to evaluate the management of control
rooms.

1.1.5 Proposed Machine Learning Applications in Nuclear Safety

Asisthe casein many other fields, researchers have been exploring different applications

for machine learning in nuclear safety. Due to the high number of regulations the major-

12

ity of these proposals are in beginning stages of development and have not been applied
with operating reactors. This sections will look at many of the different case studies that

have been done using machine learning in the area of nuclear safety.

1.1.5.1 Photo Recognition Over the lastdecade, there have been numerous efforts to
use machine learning to help with preventative maintenance. One promising study took
place at Purdue. This study proposed using photos of structural cracks to train a model,
so it could identify cracks within a reactor. Machine learning models have history of be-
ing used for photo recognition applications. Using a model allows for more in-depth
analysis that can catch things human eyes cannot[21]. Also, the use of photos allows for
structural analysis to take place in areas that are difficult for humans to reach and ana-
lyze.This study used a Naive Bayes Convolutional Neural Network (CNN) based model
and initial results have been positive. Initial accuracy in the classification was over 98%
higher than that typically expected of humans. Figure 3 shows a sample of the photo

used in the testing of the model for this study. Another study that has made use of the

0 10 5 10mm

20mm

Blue-dashed: ground truth boxes Red: detected boxes : enlarged views

Figure 3: Sample Crack Photograph use in model testing[21]

photo recognition abilities of machine learning models for nuclear safety came from a
collaboration between Oak Ridge National Lab (ORNL) and the University of Wisconsin-
Madison. In this study, a neural network based model was trained using 270 electron
microscopy images. From these images, the model was able to correctly identify im-

ages with material that had suffered damage from radiation exposure with an accuracy

13

of 86%. This was higher than the 80% expected accuracy from humans|[22].

1.1.5.2 Fuels Machine learning has also been used in the area of fuel behavior. In
a collaboration between ORNL and University of Illinois at Urbana-Champaign, a ma-
chine learning model was trained to determine the composition of fuel from a Pressur-
ized Water Reactor (PWR)[23]. The data used to train this model was obtained through
the use of areactor simulator. The model trained was neural network based and reported
a95% accuracy. Fuel safety application of machine learning models have been proposed
for a number of years. In 2003, a study done in Turkey at the Cekmece Nuclear Research
and Training Center, proposed using a neural network to determine the optimal loading
pattern for a PWR[24]. A better configuration of the loading pattern for a reactor can im-
prove fuel efficiency and lead to savings in cost. In addition, the fuel assembly would be

more reliable improving safety.

1.1.5.3 Human Factors & Decision Making Machine learning has had a large num-
ber of business related applications throughout the years. G.E, one of the world’s leaders
in reactor development, has been looking at different ways to apply this concepts to im-
prove facility management and decision making[25]. The hope is that investment in this,
will lead to safer and better run plants, which will result in improved cost efficiency. G.E
is exploring the use of cognitive computing to give managers access to more useful in-
formation for decision making, which in turn, should improve plant efficiency. G.E is
also looking at ways to improve data collection by using digital twins, which would not
only speed up collection efforts, but allow for quicker diagnostics in plant equipment
and better planning for maintenance. Other areas G.E is planning to implement ma-
chine learning include energy transmission and energy storage.

An effort between Massachusetts Institute of Technology and Tsinghua University
looked at the use of regression models to aid in decision making. An Support Vector

Regression (SVR) model was used for the project. The effort attempted to determine a

14

value to measure the performance of an advance reactor. This value would serve as an
indicator to operators and managers. It is hoped this would aid decision makers in im-

plementing adjustments to improve performance and efficiencies[26].

1.1.6 Transient Identification Case Studies

One of the most promising areas of research in the nuclear industry involving machine
learning is the identification of transients events occurring with a reactor. As seen with
TMI, the consequences of failing to properly diagnose a transient can be felt for years
to come. There have been a number of studies in this area using a variety of different

approaches.

1.1.6.1 Neural Network Based Projects Inrecent times, neural network models have
become the most common type of model trained for diagnosing reactor transients. Some
efforts have been looking at ways to use these neural network based models to develop
automated responses to transient events. In a collaboration between Northeastern Uni-
versity and Nuclear Power Institute of China, an unsupervised learning model was devel-
oped to automatically using neural networks and pattern recognition[27]. Another sim-
ilar project occurred at North West University in South Africa. Here, researchers worked
toward using simulator data as reference when developing their model[28].

The United States Department of Energy (DOE) has shown great interest in develop-
ing more autonomous systems. In 2018, DOE awarded North Carolina State University
(NCSU) a 3.5 million dollar grant to develop A.IL. based systems for nuclear reactors[29].
One project to be funded by this grant involves identifying a Loss of Flow Accident (LOFA)
transient, due to a failure of a sodium pump occurring with a sodium cooled fast re-
actor[30]. Data was collected using a simulator of the Experimental Breeder Reactor 2
(EBR-2) from INL. The system being designed will be able to take corrective action once

it has detected that a LOFA has occurred. This is part of a Nearly Autonomous Manage-

15

ment System (NAMS) system. This project makes use of both, digital twins and neural
networks, to train the model. Initial results have been positive and NCSU has begun de-
veloping self-learning algorithms to add to the NAMS.

Other efforts have made use of different types of neural networks to train a model.
One of these took place at the University of Wisconsin-Madison. In this study, researchers
trained a Recurrent Neural Network (RNN) model in an effort to try and address issues
with uncertainties in the data, as well as time series issues with the sensors[31]. The
hope was that by using RNN, the model could better deal with an unbalanced dataset.
The unbalanced dataset was due to the lack of transient data and concerns over existing
data. Results showed that the RNN model trained was better able to detect issues, even
with an unbalanced dataset. paragraph CNN'’s have also been proposed as a neural net-
work technique for diagnosing reactor transients. A study from the Chinese Academy
of Sciences used a combination of a CNN and small batch processing to make the di-
agnosis[32]. The accuracy of the trained model was encouraging with an average result
around 90%. Another type of neural network that has been looked at is a Back Propa-
gation Network (BPN). One of the first studies involving BPNs goes back to 1995. Re-
searchers at Japan’s Hokkaido University, proposed using BPN to diagnose two transients
within the Joyo experimental reactor[33]. A more recent study of the use of a BPN oc-
curred at Korea Institute of Science and Technology. This study found that a BPN could
diagnose a single transient with few issues[34].

The concept of deep learning models has also gain alot of interest in reactor transient
diagnostics. At Federal University of Rio de Janeiro in Brazil, researchers collected data
from a PWR simulator to train the deep learning model. The model was also given the
option of "don’t know" in making a classification. Results were positive with validation
measurements near 95%|[35].Another study that made use of a deep learning model for
reactor safety occurred at the Korea Atomic Energy Research Institute. The goal of this

study was to develop a model that could detect the transient in the early stages, before

16

an alarm signal is triggered[36].

1.1.6.2 Support Vector Machine Models Although the majority of research in tran-
sient diagnostics with machinelearning has focused around neural networks, some stud-
ies have looked at the potential of using SVM models to identify a transient. The Univer-
sity of New Mexico, Tong University and Seoul National University develop a SVM model
to diagnose a LOFA transient. Data was collected by running several different LOFA sim-
ulations using the Multi-dimensional Analysis of Reactor Safety (MARS) code. Results
were positive with the model able to determine if a LOFA is occurring, assuming enough
training data is provided[37].Another study that made use of SVM came from the Royal
Institute of Technology in Sweden. In this project, researchers created four separate SVM
models for four different transients. The results were positive, as each of the four models

could predict the transient nearly perfectly[38].

1.2 Project Overview
1.2.1 Project Goals

The primary goal of this part of the project is to develop amachine model that can predict
transients occurring within a nuclear reactor. The development of such amodel can con-
tribute to the development of data driven safety systems for nuclear reactors. Data driven
systems should lead to quicker, more effective responses to transient events, which will
reduce downtime for nuclear reactors. This in turn, would create the potential for great
economic benefits. Consider a 5000 megawatt thermal/ 1100 megawatt electric nuclear
reactor. This size of plant can produce over 26,000 megawatt hours a day, if the plant is
run at max capacity. In May of 2019, the average cost of electricity in the United States
was 10.42 cents per kilowatt hour or 104.20 dollars per megawatt hour[39]. If a reactor
was to experience a transient event and be shutdown by the NRC, the plant would be

losing over 2.5 million dollars per day in revenue. An unplanned shutdown could result

17

in months of shutdown and millions in lost revenue. Quicker response to the transient,
or prevention, could help get the plant back into operation faster through quicker repair
times and responses to regulator inquires.

Many machine learning studies in the area of reactor transient diagnostics envision
the models trained to be part of an automated system that will control responses to events
within the system. For example, the project at NCSU is centered around autonomous
responses to a LOFA event. Although there are many benefits to automation, there are
many issues surrounding what degree of control an automated system should have ver-
sus the people managing the system. This has been an ongoing issue in the many indus-
tries such as aerospace where issues in automation and lack of training and understand-
ing of the automation by those operating the system has led to accidents. It is important
to note that this is not the goal of this study.

The focus of this study is aiding in the development of a system that can assist reac-
tor operators in performing their duties rather than altering the role of the operator. It is
hoped that this study can contribute to the development of a data based system that can
provide operators with a quick and accurate diagnosis on possible transient events oc-
curring within a reactor system. The operators could then make use of this information
to more quickly verify the initial diagnosis and take corrective action. This could also
allow for stakeholders, including the general public, in the facility to be more quickly in-
formed of issues at the plant. If the flow of information from the plant improves flow, it
is possible there will be an increase in public confidence in nuclear generated electricity.

The development of a system to aid reactor operators would still have to be approved
by regulatory agencies, such as the NRC. Still, as the system will have no direct control of
any nuclear related systems, the approval and evaluation process would likely take sig-
nificantly less time than a system that has some degree of control on the system. Lessons
learned through this development process may also aid in the development of more ad-

vance automotive systems not only in the nuclear industry, but in other areas where au-

18

tomation is a topic of interest.

1.2.2 Objectives

The following list summarizes the major objectives of the work performed in this exper-
iment.
List of Project Objectives
1. Trainanumber of machine learning models to correctly classify five different events
within a reactor system.
2. Expand theinitial dataset and re-train models to correctly classify 12 different events.
3. Perform analysis on whether the optimal machine learning models can lose signif-
icant features and still make a correct classification.
4. Study the impact changes in the random state used to train the optimal machine
learning models has a significant impact on model performance.
5. Explore the use ofanomaly detection techniques to see ifa machine learning model
can identify significant anomalies within a dataset.
6. Explore the performance of different AutoML Packages including model perfor-

mance, ease of use, etc.

1.2.3 Novelty

Over the last decade, several studies have been done on the use of machine learning
models to diagnose a transient event occurring with a nuclear reactor. The vast major-
ity of these studies have used some form of neural network based model. There is merit
to this, as neural networks are generally highly accurate. Also, neural networks have the
ability to handle large datasets, especially those with a high number of features. A num-
ber of the studies reviewed for this project used over one hundred features in the mod-
els trained. There are some drawbacks however to neural networks. First, neural net-

works can become complex quickly, as the number of layers and neurons is increased.

19

This complexity makes neural network models difficult to visualize or explain mathe-
matically. This has led to a perception that neural networks act as a "black box". Due to
this, it is likely that any neural network based safety system will have to undergo a long
regulatory review before it can be used in an actual reactor. One of the key differences
in this project and the studies reviewed is the use of traditional machine learning mod-
els, such as decision trees and logistic regression. Until the first phase of this project, no
study had been done using these types of models for transient diagnosis. Models like
decision trees, can be more easily visualized, which would help in a regulatory review.
Other models, such as logistic regression or naive Bayes, are probabilistic in nature and
can be easier to explain mathematically.

The next key novelty for this project is the use of AutoML tools to train the model.
AutoML is a relatively new approach. Most common AutoML packages used today were
developed in the last decade. As a result, no studies in the nuclear field have made use of
an AutoML package, such as TPOT. The use of AutoML not only can simplify the process,
but allow a more comprehensive search for the optimal classification model. Combin-
ing a tool like TPOT with the HPC capabilities at INL can create a fast, effective and less
complex model for diagnosing transient events. It should also be noted, that few studies
have been done comparing the effectiveness of different AutoML packages. This may be
an ideal opportunity to do such a study.

An area that also has not received much attention in studies that attempt to create
amodel to diagnose transient events is model redundancy. This could be a vital part of
any type of machine learning based safety system. Machine leaning models rely on data
for both, training and testing. Without data, the model will not be effective. Transient
behavior can be simulated, however, the impact on equipment such as sensor is more
unpredictable. It is possible that one or more sensors are damaged during a transient.
This would make models that rely on the data provided by the sensor ineffective. Another

possibility is that an outside attack could alter data from the sensors. This could also

20

result in the models becoming ineffective. For this reason, it is essential that data be
scanned for anomalies prior to use it with a machine learning model in practice. Also, to
deal with the potential of some data being unavailable or unreliable, it is essential that
additional models which rely on fewer features be trained along side the optimal model.

The proposed decision tree analysis will help meet these goals.

1.2.4 Summary of Novelty

Points of Novelty for Proposed Study -

1. Use of traditional machine learning models to identify transients.
2. Use of AutoML package TPOT to identify an optimal model.

3. Analysis of the decision tree and random forest models from TPOT to perform a

study on model redundancy.

4. If possible, perform a study comparing different AutoML packages.

21

2 Tools and Methods

Due to the scope of this project, a number of different tools will have to be used for both
data collection and for training the machine learning models. In addition, this project
makes use of several different approaches to train models and process data. This section
will go over the tools used to collect data, the software used to perform the project and

the techniques utilized to train the models.

2.1 Python Packages

Today there are a number of different programming languages that have machine learn-
ing packages. This includes Shark in C++, DL4]J in Java and DataExplorer in R. Perhaps,
the most widely used language for machine learning is Python. This project will make
extensive use of several different Python packages. In this section an overview of the his-

tory and capabilities of the packages used for this part of the project will be given.

2.1.1 NumPy

NumPy is a Python library that has been designed with several different applications.
These include: the ability to integrate C/C++ and FORTRAN code into Python, preform
linear algebra functions and easy integration with datasets. NumPy was developed by Dr.
Travis Oliphant in 2005, as a successor to Numeric and Numarray. NumPy development
is done through the NumFocus Foundation, a nonprofit organization. Today, NumPy
is used by many companies and organizations, such as Netflix and NASA [40]. NumPy
was designed with scientific computing in mind, but the package also has the ability to
help with database construction and manipulation. NumPy is a free open-source pack-
age and is included standard in many Python distributions, such as Cygwin and Ana-
conda. It is also standard on most IDE libraries such as PyCharm. The library can be

downloaded using Pip. Many of the packages used in this project, such as TPOT and

22

Pandas, use NumPy arrays to perform numerical operations. At the time of this part of
the project, the most current version of NumPy was version 1.17.0, which was released in
May 0f 2019. NumPy is able to operate in a Windows, Linux or Mac OS environments[41].

One of the mostimportant features in the NumPy library is the ability to create NumPy
arrays, also referred to as ndarrays. A NumPy array is a container that allows for the stor-
age of several different elements. NumPy arrays, while similar to a Python list, have a few
key differences. The first is the ability to operate quicker and take up less memory than a
Python list. This is due to better integration with C/C++, which helps mitigate the loss of
efficiency that higher-level and easier-to-use languages typically have. Also, NumPy has
been optimized for linear algebra operations. NumPy arrays are considered homoge-
nous, meaning that all data is the same size and is processed the same way, regardless of
any differences between elements. These elements are described by a dtype object that
can be built using different data types. Every NumPy array has a dtype object associated
with it. This can tell the user the descriptive information about the NumPy array, such as
type, memory usage, etc. Elements used in code are taken from the array using indexing.

The index represents an object scaler which was part of the NumPy development.

2.1.2 Pandas

Pandas is a free, open-source Python package, which aims to help users with data ma-
nipulation, modification and analysis. The package can be downloaded on most Python
distributions, such as Anaconda or via Pip. It can also be added via most Python IDEs.
The package was initially developed by Wes McKinney in 2008 in response to a need for
better data tools. Development is ongoing as of 2021. The project receives funding and
support from the University of Paris Saclay Center for Data Science, as well as from Two
Sigma. Pandas required Python version 2.7 or greater but support for all Python 2 ver-
sions was dropped on January 1st of 2020, as such Python 3 or higher is required to use

Pandas. The most current version at the time of this phase of the project was version

23

0.24.1, released in February of 2019. This was the version used in this part of the project.
Pandas only requires the NumPy package to operate properly. Pandas is designed to work
with Windows, Mac OS and Linux environments[42].

The goal of the Pandas project is to provide data tools to users in Python. In the
past, the adaptation of Python in data science and statistics had been slow as users had
preferred to use tools such as MATLAB and R. Pandas has the ability to read and con-
vert datasets, typically in a CSV format, into a structured dataset known as a Pandas
DataFrame. A Pandas DataFrame is a 2-dimensional Python list that allows users to store
values in a tabular form. An example of a DataFrame is shown in Figure 4. Like most
Python packages, Pandas is considered high-level and there are tradeoffs in efficiency
for ease-of-use. Cython was used to mitigate this issue. Pandas has the ability to help
the user identify and manage missing values, a common issue in data science. The pack-
age also has the ability to group or sort data by specified user input, such as individual
values within the dataset or data types like floats or strings. Other useful Pandas func-
tions include the ability to change large groups of data, perform statistical analysis such
as mean, median and standard deviations over the dataset, as well as add, remove and
combine parts of different datasets [43]. Figure 4 shows a part of the DataFrame used in

this project.

Figure 4: Sample DataFrame from Project

24

2.1.3 Scikit-learn

This project makes great use of the scikit-learn Python package. The package is a free,
open-source package that can be downloaded through Pip or a Python distribution, such
as Anaconda. Scikit-learn was developed by Dr. David Cournapeau in 2007, as a summer
project for a Google Summer of Code Project. The purpose behind the project was to
design a system that could run complicated machine learning algorithms using Python
and maintain a user-friendly intuitive interface. The first public release of scikit-learn
was released on February 1st, 2010 and the French Institute for Research in Computer
Science and Automation (INRIA) began heading the project. Today, scikit-learn devel-
opment and research is funded by universities, such as the New York University, Uni-
versity of Sydney, and Columbia University, among others [44]. Many companies use
scikit-learn as part of their information system operations, including: JP Morgan, Spo-
tify, Booking.com and Change.org. Some of these applications include predicting user’s
preference in music, credit and market trend analysis, as well as targeting users with
more customized add-ons and specials [45]. Similar to many other Python packages,
scikit-learn makes use of many modern C++ libraries using Cython, a programming lan-
guage designed to help bridge C and Python code. Scikit-learn has been designed to be
compatible in both, a Windows or Linux environment. The latest version of scikit-learn
0.21, the version used at the time of this part of the project, requires Python version 3.5
or higher. Scikit-learn relies on three Python packages to run, NumPy, SciPy and Joblib,
which allows the package to be easily distributed and used. While not required, Pandas
is needed in order to take full advantage of the abilities of the scikit-learn package. In the
past, the package has focused on remaining easy to use and efficient, rather than adding
new features. Though recently, scikit-learn has been updated with new features that as-
sist in data exploration using Pandas. This includes better ways of dealing with missing
values with the Simplelmputer function. Since Python is a high-level programming lan-

guage, there are tradeoffs in code efficiency for ease of use. Steps have been taken in

25

order to manage and mitigate most of these issues: the specification of objects through
interface rather than inheritance, the use of Cython to increase the efficiency of using
C++ libraries within Python, and others [46].

Scikit-learn has the ability to perform several different types of machine learning al-
gorithms: supervised learning methods, such as classification and regression, as well as
unsupervised methods, like k-means clustering. Currently, scikit-learn has functions to
perform more than 17 different types of supervised machine learning methods, as well
as 9 different unsupervised methods. The package has been designed with functions
that help with data preparation, such as splitting datasets for validation purposes. Scikit-
learn also has several functions for data preprocessing, such as the standard scaler func-
tion and model validation and scoring through measurements, such as accuracy, preci-
sion, and goodness of fit. Finally, scikit-learn can make use of Python’s Matplotlib pack-
age in order to help users visualize the results of the models generated. This includes

clustering graphs, confusion matrices, etc[47].

2.2 AutoML

The process of training machine learning models can be complex. Even with the large
number of tools available, such as scikit-learn, training models can be a time consum-
ing process. This is because even for training a single type of model there are a number of
pre-processing techniques, feature selectors, etc. that can be applied to try and improve
the model. The only way to find the optimal model is to train multiple models using
the different combinations of pre-processing techniques. Keeping track of all these re-
sults, in addition to the different combinations, can add a significant amount of time to
any project. However, recently a new approach for machine learning known as Auto ma-
chine learning or AutoML has looked to address this issue. While this simplifies the pro-
cess, it can be computationally expensive. Python packages that are currently available

include: Auto-WEKA/auto-sklearn, H20 and TPOT. Google has also developed its own

26

cloud-based AutoML software, called Cloud AutoML, to try and open machine learning
to non-data-scientists. Services available include photo and video analysis/modeling,

language translation and data analysis [48].

2.2.1 TPOT

The supervised learning models for this project were created using the Tree-based Pipeline
Optimization Tool (TPOT) package in Python. TPOT was chosen for this project because
it is one of the more mature AutoML Python packages available. Also, it is simple to use
and can evaluate a number of different machine learning models. TPOT was developed
by the Computational Genetics Lab at the University of Pennsylvania with support from
the National Institute of Health. Development began in 2011 and the package continues
to be developed by Epistasis Lab at the University of Pennsylvania. TPOT is open-source
and is available for download from the lab’s GitHub repository for free. TPOT was devel-
oped in response to the growing demand and interest in machine learning applications.
The process of creating a machine learning model can be complex and time consum-
ing, even if just limited to supervised learning. There are multiple models that can be
created, as well as many different methods of data preprocessing. It can be difficult for
even an experienced data scientist to develop the best possible model. The purpose of
the TPOT package is to simplify and automate parts of the machine learning process,
while providing better results due to improved data preprocessing and the use of mul-
tiple different supervised learning methods[49]. TPOT is designed to make use of the
scikit-learn Python package for both, data preprocessing and model construction. As
such, the user is required to have the scikit-learn package installed and imported into
the program. TPOT also makes use of NumPy arrays and Pandas DataFrames and these
packages are required as well. The DEABP, SciPy, tqdm, stopit, and update_checker pack-
ages are also needed. These packages are all available for free via download and can be

configured with the Anaconda Python distribution using Pip. Other Python distributions

27

can be used if the pywin32 module is used. It should be noted that Epistasis Lab strongly
recommends that Python 3 be used rather than Python 2. TPOT is designed to aid the
user in data preparation for supervised learning. This includes automating feature pre-
processing, selection and construction. Doing so can dramatically simplify the process
of preparing data for use in machine learning algorithms and these steps can be situa-
tional, complex and time consuming. It is important to note that the TPOT package re-
quires the user to do data examination on the data to be used in the supervised learning
process. The package cannot account for missing values, qualitative data and incorrectly
formatted datasets.

Intially, TPOT only had functionality with machine learning models and techniques
from the scikit-learn library. However, in recent years support has been added for a num-
ber of other libraries. These have been added to allow TPOT the ability to train models
using neural networks. To do this, TPOT has an optional dictionary, TPOT NN, that can
be enabled that makes use of a number of Facebook’s PyTorch neural network models.
TPOT has also added functionality to better make use of GPUs. In 2020, a new dictionary,
TPOT cuML, was added that allowed for TPOT to make use of some of Nvidia 's CUDA
techniques. It should be noted, that at this time the package is very new and only has
functionality with certain Nvidia hardware and only can make use of a limited number
of machine learning models. Future updates are planned. This study will only make use
of the scikit-learn library.

One of the advantages of TPOT is that the user can define a dictionary to specify which
types of models will be training, as well as which data pre-processing techniques will be
used in the training. Currently, this is only supported for models and functions from the
scikit-learn library. Once the pre-processing has been completed, TPOT can train and
test several different models using the reprocessed data. The process of training a model
with the defined data pre-processing techniques is refereed to as a pipeline[50]. Figure 5

shows a visualization of the pipeline creation process. TPOT has the ability to train both,

28

regression and classification models.

nbNewBrun,

Polynomial
Features

Entire Data Set

Random
Forest
Classifier

Recursive
Feature
Elimination

Combine
Features

Entire Data Set

Figure 5: Typical TPOT Pipeline[50]

TPOT allows the user to define a number of parameters for model training. The first
of these is the number of generations that will be used in the model creation. This is the
number of iterations that will be used in the optimization process. The more generations
run, the better the model results will likely be. However, this will also increase compu-
tation time. The next parameter that can be defined is the population size used. This
is the number of individual pipelines retained in each generation. As was the case with
the number of generations, the more pipelines retained will produce better results, but
computation time will also increase. Users can also specify the random number seed and
the verbosity used in training the model. TPOT also supports cross validation to help ad-
dress the randomness of split data. Unless otherwise stated, it should be assumed that
all models trained using TPOT for this project used 100 generations with a population
size of 100. The cross validation will be set to 10 and the random state will be set to 0. A
sample TPOT configuration is shown in Figure 6.

Once the TPOT classifier has been configured, the program will begin testing the dif-

ferent model combinations. This process can be very slow, especially if the dataset is

29

Figure 6: Sample TPOT Classifier

large and/or a large number of parameters has been specified. TPOT will by default pro-
vide the accuracy of the optimal model, but scikit-learn methods can be used to produce
the other validation measurements, if needed. The user can save the optimal pipeline for
future use once the training has been completed. The optimal results can be stored for
further use in the program and optimal pipeline can be exported for use at a later time.
It should be noted that the user will need to ensure that the correct file name is used to
import the data in the exported pipeline, as the exported file will only use a placeholder
for this. Also, depending on data configuration, some slight modifications to the optimal
model code may be needed to ensure that the data is properly read by the exported file.
It should be noted that while TPOT can simplify the data pre-processsing, training and
hyper parameter tuning of machine learning models, the user is still responsible for the
data exploration and wrangling of the dataset. For example, the user must still identify
any outliers or missing values in the set and address those prior to using TPOT. Figure
7 from the TPOT documentation shows the function of TPOT in the model training pro-

Cess.

30

Automated by TPOT

Feature
Selection

Raw Data

Feature
Preprocessing

Model
Selection

Model
Validation

Parameter
Optimization

Data Cleaning

Feature
Construction

Figure 7: Training Process using TPOT [49]

2.3 Data Preprocessing Methods Used

In machine learning data preprocessing is an essential step in training models. Data
scaling, feature selection and feature reduction are all important considerations when
preparing a dataset for training. If data is not properly handled before beginning train-
ing, it is likely that the quality of the model will suffer. For example, in the dataset col-
lected for this project there are various features including different temperatures, pres-
sures, etc. These can be orders of magnitude different and using features that are not
scaled may result in biased models. Proper data preprocessing can help manage this is-
sue, however, there are many different techniques that can be employed. Also, there are
no set rules on which techniques work better than others. This is completely dependent
on the dataset. The only way to know which methods work best is to test and compare

all of the different combinations. To better manage this, six different data scalers, three

31

feature selectors and three feature reduction techniques were defined in a custom TPOT
dictionary. These were: Binarization, Feature Agglomeration, Maximal Absolute Scal-
ing, Minimum-Maximum Scaling, Normalization, Principal Component Analysis, Ro-
bust Scaling, Standard Scaling and RBF kernel sampling. These are summarized in Table
1. This chapter will go into detail on the different data preproecessing techniques that

were used in this project.

Table 1: Data Prepossessing Techniques used in TPOT Pipeline Creation

Binarization Maximum Absolute Scaling Robust Scaling
Standard Scaling Minimum Maximum Scaling Normalization
Principal Component Analysis Feature Agglomeration RBF Kernel Sampling
Variance Threshold Selection Select Family Wise Error Select Percentile

2.3.1 Binarization

Binarization is the process of takingnumerical data and convertingitinto binary/boolean
form. In machine learning, this method is most commonly used in preparing data for use
with the Bernoulli naive Bayes method, as this method requires data to be distributed in
a binary form. There are other cases where this method could be applied. Binarization
of data is particularly important in training image analyzers, where pixels are assigned a
true or false value, based on the characteristics of the pixel[51].

Binarization relies on determining a threshold for the data that is to be converted.
This threshold is the standard that determines if the data being converted is classified
as a 1, representing a true value, or a 0, representing false value. The threshold value is
dependent on the data and context of the analysis being performed. The scikit-learn has
a preprocessing method .Binarizer(). This method will convert the user-specified data
into binary form. By default, the threshold value is set to 0. As such, a negative or 0 value
will be assigned a 0 and a positive value will be assigned a 1. The user is able to change this

threshold so that the method better fits the analysis. Figure 8, shows a simple example

32

of the binarization method from the scikit-learn documentation[52].

Original Data

(-1, -2, -3, -4, -
Transformed Data
[[e @ @ @ @]

[0 00 11]
[11111]]

(base) c:\ML\Figures>

Figure 8: Data Transformation Using Scikit-Learn’s Binarization Function

2.3.2 Standard Scaling

One of the most common data scaling techniques used in preparing data for machine
learning training is Standard Scaling.Standard Scaling removes the mean and then scales
the dataset to its unit variance. The scaling of the individual data points, z, is given by the

following equation:
o (X-90
S

Where: 11is the average of the dataset and S is the standard deviation of the dataset. Stan-
dard Scaling is necessary for many machine learning algorithms that require centered
data. Also, this prevents bias from features that are of different type. The scikit-learn
Standard Scaling function .StandardScaler(). Figure 9 and 10 show a comparison of un-

scaled and standard scaled data.

33

Unscaled Data

2.0 1

1.5 1

1.0

0.5 1

Scaled Data

0.0 -

=0.5 4

_1.{} -

T T _15 =T T T
0 3 10 0 3 10
Data Point Number Data Point Number

Figure 9: Comparison of Standard Scaled Data and Unscaled Data

Unscaled Data

[[-1]

]
w M

]
(-9
N bl o o b et e e e e et e)

]
N

(av]

oA NEBN

[
[
[
[
[
[
[
[
[
[
[
[
[
[

=
(av]

e

Figure 10: Numerical Example of Scaled Data

34

2.3.3 Robust Scaling

Another data scaling method used in the TPOT dictionary was the Robust Scaler. The
Robust Scaler method scales features using statistical methods. These methods are the
unit variance or the standard deviation of the feature being scaled. These methods are
intended to help deal with outlying data points to prevent machine learning models from
becoming skewed. This is done by removing and storing the median of the feature, and
then the scaling range is calculated using 1st and 3rd quartile ranges as bounds by de-
fault. The user is able to adjust these ranges to better meet the needs of the dataset. The
final value of the scaled data point is calculated using the same equation as the Mini-
mum Maximum Scaler, just with the chosen statistic, rather than the actual value. Fig-
ure 11 shows the output of the scaling code. Figure 12, shows a comparison of data that

is scaled using the Robust Scaling method and data that is unscaled.

Unscaled Data Scaled Data
[[-1] [-©.15384615]
- -0.30769231]
.46153846
9.6153 u402
9.76923077

61538462
30769231

.61538462
.30769231
.61538462
.92307692
.23076923
.53846154

|

|

[-]
[-]
[-]
[-]
[-]
|]
[©.30769231]
|]
|]
|]
|]
[]

e
e
o
e
o
o
0.
o
e
e
e
%
1
1

Figure 11: Numerical Example of Robust Scaled Data

35

10 - 1.5 -
8 -
1.0 1
6 -
o § 0.5 -
o
Q -
w21 Q
(W] m
w (=]
= (V)]
>
0 - 0.0 1
_2 -
_0.5 -
_4 -
0 5 10 0 5 10
Data Point Number Data Point Number

Figure 12: Comparison of Robust Scaled Data and Unscaled Data

The scikit-learn function for robust scaling is .RobustScaler(). The user can adjust the
quartile range for the scaler and control if the data is centered prior to scaling. By default
and for this project, the .RobustScaler() method will use the unit variance. The following

equation is used for the .RobustScaler() method:

(x; —1stquatrtilerange(x))
(Brdquartilerange(x) —1stquartilerange(x)

Scaledx; =

36

2.3.4 Maximum Absolute Value Scaling

The Maximum Absolute Value Scaler method will scale and translate the values in a dataset
so the max value in that set is 1. Scaling in this way helps manage bias that results if the
features are of different measurements, such as temperature and pressure. One issue
that needs to be considered is that this scaling method is sensitive to outliers and failure
to properly deal with this may result in skewed machine learning models. The scikit-
learn method, .MaxAbsScaler() will ignore missing values and they are not changed dur-
ing this process[53]. Figure 13 and 14 show a comparison of data that has not been scaled

and data that has been scaled using the Maximum Absolute Value Scaler method.

10 - 1.0 -
8 - 0.8 1
6 0.6 -
8
& 4 - k& 0.4 -
-)
K] o
© 2 QL 0.2 A
o 10}
v (W)
c n
=)
0 A 0.0 A
=2 4 —-0.2 -
—4 —-0.4 -
0 5 10 0 5 10
Data Point Number Data Point Number

Figure 13: Comparison of Maximum Absolute Value Scaled Data & Unscaled Data

37

Unscaled Data

[[-1]

]
o0

P OO0 ®
N &

oObhNBAN

[
[
[
[
[
[
[_
[
[
[
[
[
[
[

co

L L L L O O e

[-2]
[-3]
[-4]
[-5]
[-4]
[-2]
[@]
[2]
[4]
[2]
[4]
[6]
[8]

| I D D D R |
AN ANONBUONEWN

o]

Figure 14: Numerical Example of Scaled Data Using Max Absolute Scaling

2.3.5 Minimum Maximum Scaler

The Minimum Maximum Scaling method allows the user to scale the data to a particu-
lar range. This range can be specified by the user to better fit the needs of the analysis.
This project used the default range of 0 to 1. Each feature is scaled individually using the

following equations:

X(Scaled) = X(Standard) * MaximumBound — MinimumBound) + MinimumBound

Where:

(X—-XMinimum))
(X(Maximum)— X(Minimum)

X(Standard) =

This method, like Maximum Absolute Scaler method, is useful to scale features that
are of different measurements to reduce feature bias in the model. This method is also
sensitive to the presence of outliers which could lead to skewed machine learning mod-
els if not dealt with properly. Also, this method is useful for the multinomial naive Bayes

algorithm, as it scales negative values to values between 0 and 1, which are compatible

38

with the algorithm. The scikit-learn method for the Minimum Maximum Scaler is .Min-
MaxScaler(). This method will ignore and leave untreated missing values from a dataset.
Figure 15 shows a comparison of data that has been scaled using the .MinMaxScaler()

method and unscaled data. Figure 16 shows the code output using the .MinMaxScaler()

method.
10 - 1.0 4
8 -
0.8 -
6 -
S 4] © 0.6 -
a -2
= o
Q]
w21 Q2
2 S
c n 0.4
>
O -
-2 0.2 1
_4 -
0.0 -
0 5 10 0 5 10
Data Point Number Data Point Number

Figure 15: Comparison of Unscaled Data and Min Max Scaled Data

39

Unscaled Data S

(NN
d b

v B ow

]
]
]
4]
2]
e]
2]
4]
2]
4]
5]

Figure 16: Example of Min Max Scaled Data

2.3.6 Normalization

The normalization method samples each feature independently to the unit norm. The
scikit-learn method for normalization is .Normalizer(). The user is able to specify what
type of regularization is used for the normalization, either L1 or L2. L1 is the sum of the
regularization weights and L2 is the sum of the squares of the regularization weights.
L1 typically is more robust and less efficient. L2 while less robust, will always be more
efficient than L1. L1 and L2 are often referred to as least absolute deviations and least
squares error, respectively. The default setting for this method is L2. Normalization is

done using the following equation:

X
2
REERS

Normalizing data can help make the dataset less sensitive to the magnitude of the fea-

L2NormalizedValueofX =

tures and prevent bias. Also, data normalization is needed if a method such as Gaussian
naive Bayes is used, as these methods depend on data that is distributed normally. Fi-

nally, normalization can help with the convergence of the machine learning algorithm.

40

Figure 17 shows a comparison of normalized data and unscaled data. Figure 18 shows

the output of the normalization method.

0.6 -
10 ~
8 -
0.4 -
6 =
© 3
a—t 4 _ 18]
8 0 p2-
— ks
@ 2 N
] 7 ©
(¥
01 < 00
_2 .
-0.2 1
—4 A
0 5 10 0 5 10
Data Point Number Data Point Number

Figure 17: Comparison of Unscaled Data and Normalized Data

41

(I
=
(1 1]
e
o
[+ 1]
r
1]

PuUl b wN =M

I I I I I
—

[[[[[[[
(o]

DN

T S S]
Rt e R e o o e B b b bl) e e s

o

or
[
[
[
[
[
[
[_
[
[
[
[
[
[
[

(v

[E e W W s W o W W W s W W W W s W W |

®

Figure 18: Example Normalized Preprocessed Data

2.3.7 Radial Basis Function Sampling

This project also make use of feature reduction techniques, to try and only use the com-
ponents of each feature that are actually helpful for model training. One of these tech-
niques is Radial Basis Function (RBF) sampling. RBF sampling is a form of Random
Fourier Features, more commonly referred to as Random Kitchen Sinks. This technique
is intended to replace weight minimization with randomization in order to improve the
classification. The RBF sampler maps a kernel using a Monte Carlo approximation. This
is used in kernel-based machine learning algorithms, such as k-nearest neighbors and
k-means, but is more widely used in neural networks and support vector learning ap-
plications. RBF sampling is computationally less expensive than other kernel mapping
techniques, such as the Nystroem Method, but can be less accurate. Due to this, RBF
Sampling is better used in cases where there are clearer differences between classes[54].

In scikit-learn, the RBF Sampling function is .RBFSampler(). The user can specify the
parameters of the kernel, gamma, as well as the dimensionality of the components. As
with other Monte Carlo approximations, the more components used the better the accu-

racy, but more computation time is needed. A random number seed may be specified in

42

order to replicate the results. Once the RBFSampler parameters are set, the data must be

fit to perform the Monte Carlo analysis and then transformed to model the kernel map.

2.3.8 Feature Agglomeration

Feature Agglomeration is a form a Hierarchical clustering, sometimes referred to as ag-
glomerative clustering. This process takes in the data and groups similar data into a pre-
defined number of groups or clusters. This technique is used as the basis for some un-
supervised learning algorithms, but it has applications in supervised methods as well.
In supervised learning this method can be used to aid in feature reduction for complex
datasets to help deal with models that are overfit [55].

The scikit-learn method for Feature Agglomeration, .FeatureAllgomeration(), merges
features togetherin order to reduce the number features used in amachine learning algo-
rithm. The user has the ability to enter several parameters to better tune the reductions
to the needs of the analysis. The first of these is the number of clusters that the meth-
ods will create. The default for this method is 2, as this is typically used to determine if
it is appropriate to merge 2 features together to reduce overfit. Another key parameter
for this method is the ability to change the linkage criteria of the method. This is called
affinity. The linkage criteria available are: ward, single, complete and average. The ward
criterion looks to minimize the variance between the features being merged. The average
criterion uses the average distance of the features for linkage. The single and complete
criteria uses the minimum and maximum distances respectively between the features for
linkage. By default and for this project, the ward criterion was used. Finally, the user can
define the affinity, the type of distance, applied to the criterion of the method. This is the
metric that is used for linkage calculations. The options for affinity include: euclidean,
11,12, manhattan, cosine or precomputed. Since this project uses the ward criteria, the

euclidean metric must be used [56].

43

2.3.9 Principal Component Analysis

Principal Component Analysis (PCA) is a statistics-based technique that is designed to
reduce the number of dimensions a dataset contains. PCA utilizes orthogonal transfor-
mations to combine correlated variables, using basic statistics and linear algebra tech-
niques to identify patterns within data rather than using visualization. Once patterns
are found within a dataset, it is then possible to reduce the number of features in that
dataset based on the PCA results. This helps reduce model overfit and produces better
machine learning models. PCA is also used in data compression applications as the orig-
inal data can be recovered later if needed. PCA works by first removing the mean of each
of the datasets features by subtracting the mean value of each feature by the individual
points that correspond to that feature. A covariance matrix is then created; the size of
this square matrix is equal to the number of features present in the dataset. The eigen-
vectors and eigenvalues of the covariance matrix are then calculated, the length of this
eigenvectors is equal to 1. The eigenvalues are then sorted from highest to lowest, which
shows the significance of each component. Eigenvalues with small significance can be
removed and while some information is lost, that information is small and has less im-
pact on the model while reducing model over fit. Using the eigenvalues that were kept,
a new feature matrix is created. This matrix is then transposed and multiplied by the
transpose of the mean adjusted data. This will give the new dataset with only the higher
significant features left[57]. The user typically specifies the amount of variance that is
acceptable to lose in the reduction. This technique is also useful for reducing statistical
noise.

The scikit-learn function for PCA is .PCA(). The user is able to specify the amount of
explained variance acceptable to lose for the creation of the covariance matrix, as well
as specify an empirical mean, if needed. The function will detect the number of features
in the dataset. It should be noted that PCA requires enough memory to fit all of the data

present in the dataset. This can be a problem for very large datasets. In these cases PCA

44

can be performed in increments using the IncrementalPCA function[58].

2.3.10 Family Wise Error Feature Rate Selection

Model overfit due to an abundance of features is a major consideration when creating a
machine learning model. To help manage this, the TPOT dictionary also included three
feature reduction preprocessing techniques. These attempt to remove features that are
non-informative from the model. The first of of these is Family Wise Error Feature Rate
Selection (FWER).

The FWER method is an univariate statistical approach used in hypothesis testing.
FWER is the probability of at least one false positive, Type 1 error, in a group of hypothesis
test. Itis calculated by taking the probability value (p-value) for a set of tests and rejecting
hypothesis that fail a specified test. A common test for this rejection is the Bonferroni

test[59]. This test rejects p-values based on the following expression:

Rejectifp; = %

Where: alpha is the specified criteria for the hypothesis test and h is the number of
hypothesis tested.

The scikit-learn method for FWER is .SelectFwe. This method uses a statistical ap-
proach in order to calculate the p-value, such as Chi-Square or F-value. The F-value is
used by default. Also, an alpha may be specified by the use. The default alpha is 0.05.

Figure 19 and 20 show an FWER example from the scikit-learn documentation [32].
This example loads the wine data from the scikit-learn repository. This set has 178 sam-
ples and 13 features. The FWER method used Chi-Square to find p-values and a 0.01
alpha was selected for the evaluation criteria. Five features from the dataset failed the

FWER test and were removed from the dataset.

45

<learn.datasets import _wine

from sklearn.feature_selection import SelectFwe
from sklearn.feature_selection import chi2
wine load wine()

= wine.data, wine.
print('The Wine Dataset original size is:')
print(X.)
X new = SelectFwe(chi2, alpha D f.fii transform(X, y)

print('After applying the FWE method the wine dataset is now size:')

yrint (X_new.

LR T i -— —
Wlne datas

Figure 20: Sample Output of Family Wise Error Rate Feature Selection

2.3.11 Select Percentile

The select percentile method, similar to FWER, is another univariate selection method
thatuses a statistical test to determine which features should be removed from the dataset.
The key difference between the select percentile method and FWER is that instead of
specifying an alpha for the p-value rejection criteria, the user inputs a percentile value.
P-values are either rejected or accepted, based on the scores when compared to that per-
centile. The scikit-learn function for the select percentile technique is .SelectPercentile().
Similar to the FWER function, the user selects the method for determining the p-values
of the desired feature and the percentile for the p-value evaluation. This project uses the
default F-value method for determining the p-values and a 10 percentile for the evalua-

tion criteria.

46

2.3.12 Variance Threshold Selection

The variance threshold technique examines the features and does not factor the model
outcomes, unlike univariate methods such as FWER. As such, variance threshold is an
ideal feature selection method for unsupervised learning. Variance threshold selection
calculates the variance of the individual features and removes those that do not meet the
user specified requirements. The scikit-learn function for variance threshold is .Vari-
anceThreshold(). This function requires the user inputs a variance for the evaluation
criteria. The default value of this is 0, which removes features that have the same value
in all samples. This was the method used for this project. Figure 21 from the scikit-learn
documentation shows a code example of the technique being applied. This example cre-

[[1, 3, 9, 5, 11, 20], [1, 2, 9, 4, 12, 20], [1, 6, 9, @, 13, 20]]
Data after Variance Threshold Applied

[[3 5 11]
[2 4 12]
[6 © 13]]

Figure 21: Example of Variance Threshold Feature Selection

ates a Python list with the 1st and 4th feature, 0 and 3, repeated in each row. The default
variance of 0 is used for the feature selection. Once the method is applied, the repeated
features have been removed from the dataset, leaving only the non-zero variance data in

the set.

47

2.4 Machine Learning Models

When dealing with machine learning there is no rule of thumb to determine if one type
of model will preform better than another model. This can only be determined by train-
ing and testing different models. TPOT can train and test several models and determine
which produces the optimal model. However, it is useful to see how other models per-
form and compare to the optimal model. To do this, a custom TPOT dictionary can be
used to limit the types of models trained in the process. In this phase of the project,
six different models were trained using different machine learning techniques. These
are: Naive Bayes with a Bernoulli, Gaussian and multinominal distributions, logistic re-
gression, decision tree classification and k-nearest neighbors. Table 2 summarizes these
techniques. This chapter will go over each of these type of models and explain the ad-

vantages and disadvantages of each.

Table 2: Machine Learning Models Trained Using TPOT for Initial Experiment

Gaussian Naive Bayes Bernoulli Naive Bayes Multinomial Naive Bayes
K-nearest Neighbors | Decision Tree Classification Logistic Regression

2.4.1 Naive Bayes Classification

Naive Bayes classification is a supervised machine learning algorithm thatrelies on prob-
abilities. This method is based on Bayes’ theorem and assumes statistical independence
between two data points. Naive Bayes classification is used in a variety of industries, i.e.
the medical industry and spam email detection. Due to the probabilistic nature of naive
Bayes classification, there are several different models that can be created based on dis-
tributions. This project uses three different naive Bayes models: Gaussian, Bernoulli and

multinomial. Detailed explanations on each will be given below[60].

48

2.4.1.1 Bayes Theorm Bayes’ theorem when applied for naive Bayes classification is

given by the following equation:

(P(Y) * P(Xy,..., X»|Y))
P(X1,.... Xpn)

P(lel)) Xl’l) =

Where:

P(Y) represents the probability of event Y occurring

P(Xj,.....Xn) represents the probability of the X events occurring

P(Xj,....Xn | Y) represents the probability of the X events occurring given

P(Y|Xj,...,.Xn) represents the probability of event Y occurring given the X events It is im-
portant to note that naive Bayes always assumes statistical independence, as such the re-
lationship between the event Y and the X events can be simplified to the following equa-

tion:

(PON I, P(X;1Y)
P(XI) ey any)

P(Y|X1)---)Xl’l) =

Under these assumptions, the Maximum A Posteriori (MAP) technique can be used
to determine P(Y) and P(X;Y). In this case, the MAP technique estimates P(Y) based on
the mode of P(Xj|Y). The key difference between the several naive Bayes techniques is

how P(Xj| Y) is calculated.

2.4.1.2 Naive Bayes Advantages & Disadvantages Naive Bayes classification mod-
els have several advantages over other supervised classification techniques. The first
of these is that the time required to calculate the model is less than that of other tech-
niques, such as k-nearest neighbors. Also, naive Bayes techniques can be performed us-
ing less test data than other techniques, due to the conditional independence assump-
tion of the technique. Finally, again due to the conditional independence assumption,

the technique is less likely to suffer from overfitting due to a high number of features in

49

the dataset. This is because feature distributions are decoupled, allowing each feature
distribution to be estimated as a single distribution. There are drawbacks to this tech-
nique though. Statistical independence is not common in the real world. As such, this
technique is poor at creating estimates and is not a useful tool in regression analysis.
Still, real-world applications have proven it to be an effective classification tool, as the

dependencies between features tend to cancel out in the classification process[61].

2.4.1.3 Gaussian Naive Bayes The first naive Bayes method used for this project was
the Gaussian classification technique. As the name suggests, this method assumes that
the probabilities of features are Gaussian, or a standard normal distribution. Gaussian
distributions are symmetrical and only have a single peak. The Gaussian naive Bayes
technique uses the following equation to calculate the probability of the set events Xi
given event Y:

“Xi-py

1
P(X;|Y) = e %

/o, 2
Zay

Where:
1y is the mean of event Y

oy is the standard deviation of event Y.

2.4.1.4 Bernoulli Naive Bayes The Bernoulli naive Bayes method assumes the data
follows a multivariate Bernoulli distribution. A Bernoulli distribution assumes that the
values are Boolean, either 0 or 1. Due to this, the values entered into the model must be
converted into this format. The probability of the set of events X; given event Y, is found

using the following equation:

P(X;|Y)=P(ily)x;+ (1 - P(ily)(1 - x;)

50

It should be noted that this method penalizes the score of the model if the feature i

does not occur for a given Y.

2.4.1.5 Multinomial Naive Bayes The final naive Bayes method used for this project is
the multinomial classification technique. Multinomial distribution is a generalized form
of the binomial distribution. Unlike a binomial distribution, a multinomial distribution
can have values other than 0 or 1. This is typically used to determine the probability
of a series of mutually exclusive events occurring at a given time. A key difference be-
tween the multinomial and Bernoulli methods is that the multinomial technique does
not penalize the score of the model if a feature does not occur within a given data point.

Probability of a set of events X given event Y is calculated using the following equation:

PXilY)=0yi=———
Ny+an
Where:
Ny; is the number of times a features appears in the training set
Ny is the number of times a features occurs in both the testing and training sets

o: is a smoothing factor to prevent the non-occurrence of a feature from penalizing the

model

2.4.1.6 Naive Bayes Classification Example Unlike the k-nearest neighbor, naive Bayes
classification is difficult to visualize as it makes use of probabilities, rather than distance.
As such, this example is provided in order to demonstrate how a naive Bayes classifica-
tion works in real-world applications. Perhaps, the most common application of naive
Bayes classification is for spam/junk email detection. In this type of classification there
are only two possible outcomes: the email is either spam or it not spam. As naive Bayes
is a supervised method, the first step is to have a training set of email data that is already

classified as either spam or not-spam.

51

The key with naive Bayes classification is that the outcome probabilities must be cal-
culated using the dataset features. The features of this type of dataset would be the words
inside the email. Using the training set data, the probability that if an email contains a
certain word that the email is spam is calculated. Since there are only two outcomes, the
probability that given a certain word that the email is not spam is simply 1 minus the
probability that given the word an email is spam. Typically, common words such as ‘it’
will be assigned neutral probabilities, while other keywords are assigned higher prob-
abilities. Next, the probability of a general email being spam or not being spam is de-
termined. This can be done using either the training dataset, to better tailor the model
to a specific email account, or the probability can be assigned using outside data and
assumptions [62].

Once all of the probabilities have been determined, the probabilities of an email be-
ing spam given a certain word, can be calculated using Bayes’ theorem. This process is
repeated for every word in the email. Once probabilities have been done for every word
in the email, the probabilities are then combined, so the probability of the email being
spam given the set of words can be determined. This is done using the following equa-

tion:

Pl *Pg *...PN
Py«Pyx...Pn+(1—Py)(1—Py)...(1 - Ppn)

P(SIW) =

Where:
P(S| W) is the probability of the email being spam given the set or words

Py are the probabilities of the email being spam given an individual word

Using this total probability, the system determines whether to classify the email as

spam or not-spam, based on user preferences.

52

2.4.2 K-Nearest Neighbors

K-nearest neighbors is a supervised machine learning algorithm used in both, classifica-
tion and regression models. This method is non-parametric, meaning that the algorithm
does not rely on a set number of parameters and can be flexible depending on the situ-
ation. K-nearest neighbors works by using a user-defined constant integer known as k.
K is the number of nearest neighbors that the algorithm looks for in the classification.
A majority vote of the nearest neighbors is used to determine which class a data point
belongs to. This means that the testing data point will be classified according to which
training data it is closest to, in the feature space. The size of k must be balanced when us-
ing this method. Ifkis too small, the model may be overfit. Ifkis too large, the possibility
of an under-fit model that leaves out important details increases[63].

The k-nearest neighbors algorithm also requires a distance function in order to calcu-
late the distance between a given testing data point and the different training data points.
This algorithm typically uses Euclidean distance, also known as the straight line distance
between two points in Euclidean space. This is very similar to the distance formula used
in basic algebra and geometry. It should be noted, that other distance metrics such as the
Manhattan Distance, can be used instead. This project makes use of Euclidean distance.

The Euclidean distance is found using the following equation:

D
_ _ T
D(x;, xj) = J Y Xim—Xjm)? = \/Ixil2 +1xj12—2x] x;
m=1

Where:

D(x;, X) is the distance between the 2 points

|xi|* and |x;|* are norm of the respective points

2XiTXj is the dot project between the two points

The k-nearest neighbors algorithm works best when the data points are scaled to bal-

53

ance the magnitude of different features and are normalized. K-nearest neighborsis sim-
ple in nature and easy to visualize, especially in datasets with fewer features. Also, with
more data and a large k, the algorithm can produce very accurate results. Unfortunately,
there are disadvantages associated with using k-nearest neighbors. The first is that it can
be computationally expensive, especially with larger datasets. Also, it can be sensitive
to statistical noise from features. Finally, the model can suffer if too many features are

used[64].

2.4.3 Logistic Regression

Logistic regression is a supervised machine learning algorithm designed to deal with
complex scenarios. While its name suggests this method is a regression method, it is ac-
tually a classification method. Similar to the naive Bayes method, logistic regression uses
probabilities to predict to what class a set of features belongs to, i.e. the probability of Y
given X, or a set Xi. Outputs can be Boolean, multinomial or for cases where more than
one class exists, One vs. Rest. An important difference between the two methods is that
naive Bayes assumes the features are statistically independent, while logistic regression
does not. This results in the naive Bayes model having more bias but less variance when
compared to a logistic regression model. The decision of which model is best depends
on the data used in creating the two models. Typically, logistic regression is preferred
when the data has a large number of features, while naive Bayes works better with less
complex data. Logistic regression takes the different outcome probabilities of a given
data point and models them using a logistic function[65]. This project makes use of sev-
eral different categories for classification. The One vs. Rest method of logistic regression
will be used to create the classification model. One vs. Rest logistic regression uses the

following equation:

1
+ Zf;l eWiot i wjiXi

P(Yi|X) =

54

Where:
P(Yyx) is the probability of Y belonging to class k given X
wj, and wj; are the weights associated with class j Scikit-learn has the ability to optimize
this equation by modifying the weights with user specified input[66]. This can be done
using three methods: L1, L2 or Elastic Net regularization. L1 solves issues with weight

optimization given by the following equation:

n
L1=mingc|lw/+C) log(e_y"(XiT”’“)) +1
i=1

L2 minimizes the cost function of the weights using the following equation:

1 n _
L2 = minWCE wlw+ CZ log(e—yl(Xl.Tww)) +1
i=1

and Elastic Net regularization is used when there are issues with both, cost and optimiza-
tion using the following equation:

1- L .
mianp wlw+ plw|+ CZ log(e'yl(XiTw”)) +1

i=1
2.4.4 Decision Tree Classification

Decision tree analysis is a non-parametric, supervised learning method that can be used
inboth classification and predictive regression. Decision tree analysis, unlike other meth-
ods, such as k-nearest neighbors and naive Bayes, is designed to deal with statistical
noise that can deter a model’s performance. Common applications for decision tree
analysis include: creditand loan assessment, medical diagnostics and performance eval-
uation/prediction.

The top of a decision tree is the outcome of the analysis. Decision tree analysis be-
gins by taking instances from the data provided. These are typically the different classes

of the data provided to the model. Next, a data point is tested, typically using a true or

55

false evaluation, though it is possible to use non-boolean responses for testing, if appro-
priate. Depending on the outcome, further testing may occur or the model may have
enough information to make a determination and classify a data point. If more testing
is needed, the model will continue to evaluate the data point provided until a determi-
nation can be made or there are no more evaluation metrics to test. A good analogy for
a decision tree classification would be a personality test, such as the Myers-Briggs Type
Indicator. In this survey, the respondent is asked several questions and at the end of the
test, the user is put in a class based on the responses to the questions. In a decision tree
classification, the features provided in a data point are the responses to the questions
at each root of the tree[67]. Decision trees have several advantages over other machine
learning methods. Unlike logistic regression or naive Bayes methods, decision trees are
easy to visualize and conceptually simple. Decision trees can work with both, qualita-
tive and quantitative data, and data does not need to be of the same type. Also, decision
trees are better able to deal with missing values and a classification can still be done if
some features are missing. This reduces the amount of data preparation that needs to be
done in order to perform the analysis. Finally, decision trees are able to handle multiple
output models, which allow the method to apply more complex problems. Still, there
are some disadvantages associated with decision trees. The order of the evaluations in
the tree is extremely important. Some orders may filter out critical data and lead to inac-
curate results and misclassifications. This can be managed by creating several different
trees to determine which order best fits the model. This can be computationally expen-
sive and time consuming. A better method of dealing with this would be to calculate an
evaluation’s entropy or Gini Impurity. This will be explained below. Another issue with
decision trees is that models can become overly complex and are more prone to overfit, if
too many features are present. Data preprocessing and selection methods, such as PCA,

as well as tree pruning can be used to help manage this issue.

56

2.4.4.1 Entropy In order for decision trees to be most effective, the manner in which
the tree is built is critical. Ideally, the most valuable features would be near the top of
the tree allowing for quicker determinations. One approach is the use of entropy. In this
context, entropy is a measure of the purity/impurity of the data samples and can be used
to calculate the information gain from each features used in the tree’s construction. This

can be calculated using the following equation:

S=) plog:p

Where:

S is the Entropy of the collection of data

P is the mass probability function of the evaluation If the responses to the evaluation are
Boolean, the equation can be expressed as the combination of the negative responses

and the positive responses with the following equation:

S=-plogp—plogp

Evaluations with higher entropy are considered more insightful and are prioritized
earlier in the tree, while those with lower entropy values are placed lower in the tree.
This allows the model to determine the sequence that yields the most gain[68]. This ap-
proach is known as a ‘greedy’ algorithm, where the algorithm searches for the optimal
result rather than the best. Decision Trees trained using entropy with sklearn are based

on the Iterative Dichotomiser 3 (ID3) algorithm.

2.4.4.2 GiniImpurity Anotherapproach to building a decision tree is to use Gini Im-
purity. Gini Impurity uses the features provided to calculate the probability of a misclas-

sification. The probability is calculated using the following equation:

57

G=) pl-p

Where:

G is the probability of a misclassification
p is the probability of selecting a given data point within a dataset

Once the probabilities for each feature have been calculated, the features with the
lowest Gini Impurity should be placed at the top of the tree. This is the approach that
will be used for all decision tree models trained in this project. Sklearn’s Gini Impurity
decision tree algorithms are based off of the Classification and Regression Tree (CART)

algorithm.

2.5 Model Validation

Once a machine learning model has been trained and tested, it is necessary to validate
the model to determine how well the model performed. Regression models use metrics
like Mean Absolute Error and Relative Square Error to evaluate the model’s performance.
Classification models such as those trained during this project can make use of a variety
of metrics for performance, such as accuracy and recall. This section will go over the

different evaluation metrics used on this project.

2.5.1 Accuracy

Accuracy is the most common validation measurement used to assess a model’s perfor-
mance. The accuracy of the model is simply the number of correct classifications divided
by the total number of test classifications performed[69]. Scikit-learn uses the .accu-

racy_score() method to measure a model’s accuracy using the following expression:

58

Nsamples—1

Z (Ybar = y1))

accuracy(y, Ypar) = W i=1

2.5.2 Precision

In addition to accuracy, other validation measurements are needed when evaluating a
classification model. Relying only on accuracy measurements would only tell the user
that a misclassification had occurred. Using other validation measurements allows for
further exploration of a model’s mistake and the ability to identify potential issues with a
model. Measuring a model’s precision allows the user to see the ratio of true positives to
predicted positives. This shows how many false positives, or Type I errors, occurred in the
model’s testing. Scikit-learn uses the .precision_score() method to calculate a model’s

precision using the following equation:

NumberofTruePositives

Precison = ” oy
NumberofFalsePositive+ NumberofTruePositives

2.5.3 Recall

The next validation measurement performed for this project is recall. Recall is a mea-
surement of a model’s ability to classify positive samples. This is referred to as sensi-
tivity. Recall allows the user to evaluate a model’s false negative error, or Type II error.
Scikit-learn uses the .recall_score method to calculate a model’s recall using the follow-
ing equation:

NumberofTruePositives
Recall =

NumberofFalseNegatives+ NumberofTruePositives

2.5.4 F1 Score

In classifying reactor transients, false positive errors potentially result in action that is

costly and time consuming. False negatives can result in potential reactor damage and

59

events hazardous to the public. Both of these must be considered when evaluating mod-
els. As such, it is necessary to have a validation measurement that balances Type 1 and
Type II error. This measurement is known as the F1 score. The F1 score measures a
weighted average between precision and recall. Scikit-learn uses the .f1_score() function

to calculate a model’s F1 score using the following equation:

Precision * Recall o
F1=2x ; Precision+ Recall

It should be noted the the F1 score can take different forms if it is determined that the
model evaluation should put a higher emphasis on either recall or precision. This project

will use the balanced form of the F1 score.

2.5.5 Confusion Matrix

In dealing with percentagesitis important to consider the context of the situation. In this
phase of the project, over 15,000 samples are being tested by the model. In these cases a
1% change in accuracy or precision would affect 150 samples. As such, it is necessary to
use a method that tells the exact number of Type 1 and Type II errors that occurred and
between which transients these occurred. To do this a confusion matrix can be created.
A confusion matrix shows the true positives for each classification down the diagonal of
the matrix. The false positives are shown in the columns and the false negatives are in
the rows. This allows not only for the exact number and type of errors to be shown, but
also where they occurred. This can provide insight into where and why a classification
model is having issues. These results can also be used to determine the model’s ability
to classify specific classes within the dataset. Confusion matrices will be generated for

models trained in this project to diagnose reactor transients.

60

2.6 Generic Pressurized Water Reactor Simulator

Due to the high cost of nuclear reactors and the risk associated with a reactor accident,
itis unfeasible to collect data for model training using actual reactor transients. Instead,
this project relies on synthetic data from a reactor simulator. Data used for this experi-
ment was collected using the Generic Pressurized Water Reactor (GPWR) simulator lo-
cated in the Audio Visual Laboratory at theCenter for Advance Energy Studies (CAES) in
Idaho Falls, Idaho. The GPWR simulator was purchased by the University of Idaho, Idaho
State University and INL from the Western Services Cooperation (WSC). This section will
provide an overview on the GPWR simulator and it’s capabilities.

GPWR emulates the behavior of a ‘generic’ pressurized water reactor (PWR). The ther-
mal output is rated at 4000 MWth/1400 MWe. Although the simulator does not directly
incorporate the design of any specific PWR, it is based off a KEPCO APR1400, a South Ko-
rean design[70]. The reactor systems include a single high-pressure turbine, three low-
pressure turbines, and a configuration that includes two loops, four coolant pumps and
two steam generators. It also provides simulation of a switch yard, transmission lines,
and two loads; representative of cities. This simulator fits best under IAEA’s basic prin-
ciple simulator category, as it does not mimic a specific reactor. Typical use of WCS sim-
ulators includes reactor operator training at several nuclear sites around the world and
research that involves analyzing reactor behavior. Figure 22 shows the simulator setup

at the CAES Audio Visual Laboratory.

2.6.1 Simulator Capabilities

The GPWR has a number of different pre-programmed operating conditions. The simu-
lated conditions include reactor core life, power level, and operational state. The user is
able to switch between several different control panels to control a variety of the plants
components, such as pumps and breakers. This allows the user to be able to control func-

tions, such as coolant flow to the reactor, power produced, etc. It should be noted that

61

Figure 22: GPRW Reactor Simulator at CAES

the simulator is able to replicate the behavior of all safety systems in the reactor includ-
ing the containment under different accident events, as well as operating normally. For
example, under certain conditions, the simulator will scram the reactor. The user may
also select the individual components and designate them as malfunctioned. Possible
malfunctions include: heat exchanger degradation, motor shearing/seizures, valve fail-

ure to open/close, etc. These events can be triggered by the user or programmed as part

62

of an accident scenario. Figure 23 shows an overview display that is used to navigate and
control the different functions.

The GPWR displays critical parameters to the user. Many of these are those that an
operator would see while running an actual reactor. There are 18 different parameters
that are always displayed to the user. Figure 24 shows how this output is displayed to
the user. The user is also able to see how long the simulator has been running, as well
as pause and restart simulations. The simulation can be run in real-time, slowed down
to 0.1 times normal speed or speed up to 10 times normal speed. This can be changed
at any time during the simulation. In addition, the user has the ability to backtrack to a
previous time in the simulation. The software will automatically save conditions every
few minutes in order for the user to easily return to a previous state. These save states
are usually over 100 MB in size. The simulator also allows for the user to switch between
different interfaces in order to observe, manipulate and record the behavior of compo-
nents that are not shown on the reactor interface page. This is done using a navigation
panel which allows the user to select a more detailed interface of a specific component.

This is shown in Figure 22.

63

PLANT OVERVIEW

ELPwrEEEEE %

Ref. T TR

°F [BoronEEEE PPM

S§G-1 Total flow IEEFE KLBH NOT TRIPPED

$G-2 Total flow HEEEN KLBH NOT TRIPPED

Figure 24: GPWR Simulator Setup

64

Reactor Coolant System (RCS1)
RCS - Pressurizer and PRT(RCS 2}
RCS . Reactor Coolant Pumps {RCS3)

Reactor Coolant System - PZR Cortrol {RCS4)

OVERVIEW PAGE

Crilical Safety Function {CSF1)
ESF Actuation Reset (ESF1)

Reactor Protection Systam (RPS 1)

Condensate [CONT)

Steam Generator Feadwater IMPA1)

Tuibine Protection System (TCS2)

RCS - Exil T amed RVLIS {RCSE)

Reactor Rod Cortrel (RRCA)

Main Feedwatel - SGFP-A (MANZ)

Main Turhine T}

RCS - Flue Distribution (RCSE)

Reactor Rod Cormrel (RRC2)

Main Feedwater - SGFP-B (MPAZ)

Wain Turbine Generaton (MTUZ)

CWCS - Letdown Seal Infection {CVC 1)

Axial Powers Offset Trend (RRC 3

S Fead Pump Turbine dVIFW-H

Main Turbine - SA1{MTUT)

CWES - Letdown and Demineralizer (CWC32)

Turbing Corrol Systam (TCS14

Main and Reheat Steam (MRS 1)

Wain Turbing - S/ Drains (MTU4)

CWECS - Chargmg Pumps and VCT (CVCS)

Turbine Bypass Vabke Condrol (MRS2)

PW Heater Extraction, Drains, and Vents (FWH1)

MSR Steain Blanketing (MTUS)

CUCS . Eoron Ther el Regemenation (CUT 1)

Radiation Menitor Swstem (RNS1)

P Heater Exmraction, Draing, and Vents (FIWHZ)

Steam Seal System (S551)

CVLS - Borie Akl [(CVEE)

Awciliony Boiler Steam (BBS1)

Main Turbinee Lubve Ol (WITL1}

Reactor Maks_Up Waker {RIW1)

Spent Fuel Peol Cooling (FPC1R

Auxdliary Feadwater (AFWTH
ARP Turhine Control (ARP1)

Reshdual Heat Removal (RHRT)

Main Gener ator Proteciion (MGP 1)

Staam Generator Blowdown System (BDS1]

Main Turbine Control O MTC 1)

Main Generation And Exciter Control {(MGP2)

Mam Generater Trips (MGIF3)

High Voltage 13.8 K\ {SPD1)

Circulating Water system [CWST)

Condenser AIr Bemoval (MCR 1}

Main Generator Seal Oil (MGS 1)

High-Fressure Coolant Injection (HPC 1)

1E Mo Voltage 4.16 HW (NEX 1}

Sendce Water System (SWS1)

Containment Spray System (C551)

Accmmulator Safety Injection (AS11)

1E Med Woltage 4.16 KW (NEX2)

Diesel Generators Conirol (NBX3)

Essantial Service Water - Pumps (ESW1}

Essential Service Water (ESUWZ)

Stator Cooling System (SCS1)

Fuel Building HVAC (HVF1h

Borated Refueling Water Storage (BRW1)

Medium Voltage 1.16 KV [EDS1)

Component Cooling Water - PFumps (COW1)

Correl Bulliing HVAL {HVC 1}

Low Voltage Non-Class 1E 4800 {LUN1)

Component Cooling Water - Consummers {CCNZ)

Containment Cooling System (CTM1)

Closed Cooling Water System (CCS1)

Contamment Hydrogen Control System (CHS1)

Figure 25: GPWR Simulator Overview Panel

Containment Purge HUAC System (CPS 1)

2.6.2 \Verification & Validation

One of the changes that came out of the TMI accident was the expanded use of simu-
lation in the nuclear industry. In order for a simulator to be effective, it must be able to
represent the systems being simulated accurately to what would occur in the real world.
In the United States, the NRC plays a large role in this. The NRC has developed a Verify &
Validate (V&V) standard for approving software that will be used in nuclear simulations.
This is covered under NRC Regulatory Guide 1.168.

Regulatory Guide 1.168 covers the basic outline for gaining approval for nuclear re-
lated software related to safety systems. This includes how such codes are updated and
audited while they are in use. These guidelines are an adaptation IEEE Std 1012-1998,
Standard for Software Verification and Validation. Some of the steps in the V&V process
include independent quality assurance audits, security assessment, as well as provid-
ing guidelines for software validation. Well known software that has gone through this
process includes: INL’s Sapphire for systems analysis and SPAR models for reactor over-
sight[71].

In order to ensure that simulations performed by the GPWR are representative of
real reactor behavior, the GPWR makes use of several validated reactor codes. Some
examples include RELAP5 and MARS, developed by INL and the Korea Atomic Energy
Research Institute respectively, for thermal hydraulics. The NESTLE code, developed
by NCSU, for neutronics and the MELCOR code from Sandia National Lab for accident
modeling were also used. This type of simulator is similar to those used by INL’s Human

Systems Simulation Lab. Table 3 summarizes many of the codes used in the GPWR

66

Table 3: Nuclear Software Codes using in GPWR

Software Code Primary Developer Regulator | Purpose in GPWR
RELAP5 North Carolina State University NRC Thermal-hydraulics
Nestle Idaho National Lab NRC Neurotics
MARS Korea Atomic Energy NRC Thermal-hydraulics
Research Institute
MELCOR Sandia National Lab NRC Accident Modeling

67

3 DevelopingInitial Machine Learning Models Using TPOT

The first goal of this project was to determine if TPOT could train models that could cor-
rectly identify a small number of transients in a reactor system. This chapter will go over
the methodology used to perform this experiments, such as data collection and model

training. Finally, this chapter will go over the results of the first phase of this study.

3.1 Methodology
3.1.1 Data Collection

The most critical step, as is the case with most data science projects, is to collect data.
As mentioned, this project relies on synthetic data collected from the GPWR simulator.
It was decided that for this project, the data gathered would consist of features that a
reactor operator would likely have access to and be readily available. Thirty three fea-
tures were chosen and programmed into the simulator data collector, including: reactor
power output, steam generator temperature, flow and pressure, as well as reactor tem-
perature. Table 4 summarizes the features that were collected for thee initial dataset. All
of the features collected from the reactor simulator were quantitative. In order to see how
the model would be impacted by changes in the reactor system over time, it was decided
that several simulations would be conducted changing the initial conditions of the sim-
ulated system for each run. The first change to the system was the power output of the
reactor. Three different conditions were used: full power, where the reactor is operating
as to generate electricity; half power, where the reactor is being shut down and output
is at approximately 50%; and low power where the reactor is critical and being prepared
for startup, but power generation is between 0 and 1% capacity. The second initial con-
dition changed for the reactor system involves the stage of the reactor’s lifetime. Three
different conditions were available for use: Beginning of Life (BOL), where the reactor is

brand new; Middle of Life (MOL), where the reactor is close to 30 years old; and End of

68

Table 4: Features Collected from GPWR Simulator

Normalized Flux RCS LVL Loop 1 WR
RCS LVL Loop 1 NR Hot Leg 1 Temperature
Hot Leg 2 Temperature Cold Leg 1B Temperature
Cold Leg 2B Temperature Cold Leg 1A Temperature
Cold Leg 2A Temperature RC Loop 1A Norm Flow
RC Loop- 2A Norm Flow RC Loop 1B Norm Flow
RC Loop 2B Norm Flow Containment Temperature
Pressurizer Surge Line Temperature | PORV Discharge Pressurizer Temperature
Containment Pressure SG-1 NR Level
SG-2 NR Level FW Flow to SG-1
FW Flow to SG-2 Pressurizer Pressure
MS Flow from SG-1 Line-1B MS Flow from SG-1 Line-2B
SG-1 Pressure SG-2 Pressure
Pressurizer Steam Temperature Norm Pressurizer Level
Pressurizer Water Temperature Generator Power
Average Temperature MS Flow from SG-1 Line-1A
MS Flow from SG-1 Line-2A

Life (EOL), where the reactor is close to decommission, approximately 60 years into its
operating life. Using these two features, it was possible to collect data on nine different
initial condition combinations while the reactor is functioning as intended. Each run
was conducted for 1200 seconds and data was collected for each of the 33 measurable
features every second during the run. Seconds are the smallest increment of time that
can be used for data collection on the GPWR. Table 5 list the initial conditions used in

this part of the study.

3.1.2 Transient Events

In addition to collecting data when the reactor is under normal operating conditions,
it was also necessary to collect data with the system experiencing transient events. The
NRC defines a transient event "A change in the reactor coolant system temperature, pres-
sure, or both, attributed to a change in the reactor’s power output."[72]. This includes ac-

cident conditions. For the purposes of this study, it should be assumed that all transient

69

Table 5: Initial Conditions used for Simulations

Core Life | 1 Power Level

Initial Condition 1 BOL 100%
Initial Condition 2 MOL 100%
Initial Condition 3 EOL 100%
Initial Condition 4 BOL 50%
Initial Condition 5 MOL 50%
Initial Condition 6 EOL 50%

Initial Condition 7 BOL 1% (Critical)
Initial Condition 8 MOL 1% (Critical)
Initial Condition 9 EOL 1% (Critical)

events are either anticipated operational occurrences or postulated accident events, as
defined in 10 CFR Part 50. Four transient events were chosen for this part of the study.
Simulations were ran using as many of the nine initial conditions as applicable for the
each transient. This section will go into detail on the transient events simulated. The first
transient event selected was a simultaneous trip of all feed water pumps. In this tran-
sient, the primary and auxiliary feed water pumps malfunction and cease operations.
The breakers connected to these two pumps also trip. The transient was programmed
to occur 20 seconds after the simulation began. A simulation under each of the nine
different initial condition configurations was performed and data was collected for 600
seconds after the transient occurred. Under this transient, the runs that were performed
at full power and half power scrammed the second the transient occurred. During the
run that occurred at low power, no scram occurred during the simulation[73].

The next transient event that was used to collect data was a simultaneous closure of
Main Steam Isolation Valves (MSIV). In this transient, a command signal is sent to all
MSIVs after 20 seconds, switching the valves from the open position to the closed po-
sition. Data was collected for 600 seconds after the command signal was sent. Each of
the nine different initial condition configurations was used to collect data on this tran-

sient. In this event, runs performed under full and half power experienced a scram 40

70

second after the simulation began, 20 seconds after the command signal was sent. Runs
performed at low power did not scram during the simulation.

The third transient event used in this experiment was a maximum reactor coolant
rupture combined with a complete LOOP. During this transient, a double ended guil-
lotine break occurs within line 1A of the reactor coolant system. This is combined with
a complete loss of electrical power to the plant. The transient occurred 20 seconds af-
ter the simulation began and data was collected for 600 seconds after the transient oc-
curred. Nine separate runs were performed using the initial condition configurations.
During this simulation, the reactor experienced a scram at all power levels used. The fi-
nal transient event used to collect data was a rapid power change. In this transient, the
reactor begins 1400 MWe full power and drops to 1050 MWe, approximately 75% of the
plant’s maximum power, before returning to 1400 MWe. Data was collected until the re-
actorreached full power, approximately 1000 seconds. Due to the nature of this transient,

only the reactor core life initial conditions were changed and three runs were performed.

3.1.3 Dataset Preperation

After the completion of a run, the data was saved from the reactor simulator to a Comma
Separated Values (CSV) file. In total, 39 different CSV files were generated and saved.
Table 6 list the simulations that were performed for each. Again, all data gathered directly
from the simulator was quantitative. After each run, the reactor core lifetime feature was
added to each instant from the dataset from the run using either BOL, MOL or EOL. Also,
the transient that occurred was added to each instant in the dataset. It should be noted,
that the instances up to the 20 second mark were labeled as normal operations, as the
transient had not yet occurred. These additions were done using Microsoft Excel. The
datasets remained in a CSV format. Figure 26 shows a screenshot of one of the CSV files

collected from the simulator.

71

Table 6: Simulations Run for Initial Dataset

Simulation1 | BOL 100% Normal Operations
Simulation 2 | MOL 100% Normal Operations
Simulation3 | EOL 100% Normal Operations
Simulation4 | BOL 50% Normal Operations
Simulation5 | MOL 50% Normal Operations
Simulation 6 | EOL 50% Normal Operations
Simulation 7 | BOL | 1%(Critical) | Normal Operations
Simulation 8 | MOL | 1%(Critical) | Normal Operations
Simulation9 | EOL | 1%(Critical) | Normal Operations
Simulation 10 | BOL 100% Feedwater Pump Trip
Simulation 11 | MOL 100% Feedwater Pump Trip
Simulation 12 | EOL 100% Feedwater Pump Trip
Simulation 13 | BOL 50% Feedwater Pump Trip
Simulation 14 | MOL 50% Feedwater Pump Trip
Simulation 15 | EOL 50% Feedwater Pump Trip
Simulation 16 | BOL | 1%(Critical) | Feedwater Pump Trip
Simulation 17 | MOL | 1%(Critical) | Feedwater Pump Trip
Simulation 18 | EOL | 1%(Critical) | Feedwater Pump Trip
Simulation 19 | BOL 100% MSIV Closure
Simulation 20 | MOL 100% MSIV Closures
Simulation 21 | EOL 100% MSIV Closure
Simulation 22 | BOL 50% MSIV Closure
Simulation 23 | MOL 50% MSIV Closure
Simulation 24 | EOL 50% MSIV Closure
Simulation 25 | BOL | 1%(Ciritical) MSIV Closures
Simulation 26 | MOL | 1%(Critical) MSIV Closure
Simulation 27 | EOL | 1%(Critical) MSIV Closure
Simulation 28 | BOL 100% LOCA-LOOP
Simulation 29 | MOL 100% LOCA-LOOP
Simulation 30 | EOL 100% LOCA-LOOP
Simulation 31 | BOL 50% LOCA-LOOP
Simulation 32 | MOL 50% LOCA-LOOP
Simulation 33 | EOL 50% LOCA-LOOP
Simulation 34 | BOL | 1%(Critical) LOCA-LOOP
Simulation 35 | MOL | 1%(Critical) LOCA-LOOP
Simulation 36 | EOL | 1%(Critical) LOCA-LOOP
Simulation 37 | BOL 100% Rapid Power Change
Simulation 38 | MOL 100% Rapid Power Change
Simulation 39 | EOL 100% Rapid Power Change

72

7 FulPewnt il Ferd NatePumpTog - Hotepad - o X
Ede [dit Fgemat Yeew Help

Jiusber of Varlables, Tise,Date, Trasition Name,Comsents,, . urarirsmsarsssnranirinsas G
33,12:45:52 PH,2/28/ 2019, Feed Water Pump Trip,"Feed Water Pusp Trip Mol Core Full Power, Scram 8T 20 SEConds ™, o uuissssssssisssbbbisbbssbss
Warlable,ratpw,bbl@a53a,bbl®853b ,hot_leg 1 temperature,cold_leg 1A temperature,celd_leg 1B temperature,hot_leg 2 tesperature,cold leg 24 temperature,cold leg 2B tempera
Description MORMALTZED MEUTRON FLLDGRCS LVL LODP 1 WR,RCS LWL LOOP 1 NE,HOT LEG 1 TEMPERATURE,COLD LEG 1A TEMPERATURE,COLD LEG 18 TEMPERATURE,HOT LEG @ TEMPERATURE,COLD
Units,PCT, , DEGF ,DEGF , DEGF , DEGF , DEGF ,DEGF ,PCT,PCT, PCT, PCT DEGF , DEGF , PSTG, DEGF , PCT, PCT, LB/S, LBSS, LBSS LBYS, LB/S, LB/S, PSTG, PSTG, DEGF ,PSIG, PCT ,DEGF ,DEGF , MW, REACTOR LIFE
Min,®@,,,8,2,8,@,2,8,8,8,0,08,2,8,8,8,0,0,08,8,0,0,8,0,0,8,8,0,0,2,0,0,

Max, 128, , 500, 800, 800, 500,500, B0, 120,120,120, 120, B0, 500, 70, 400,100, 100, 4000, 4000 , 4000 , 2000, 4000 , 4000, 1584 , 1500, 500 , 3000, 100 800, Ba, 1508,

FE R IR EEE IR IEIEER I EAENRENEIEAR NS

®,99.8116,2.4,4.5,617.419,559. 277,559, 277 617612, 555, 304,553, 304,99, 9384, 99, 9555, 99, 9391, 99, 5902, 647, 659, 107 . 73,8, 199, 988,54, 1426, 50,1345 ,2583,42,2511.27 1240, 25, 124E
1,99.8113,2.4,4.5,617.419,559. 278, 559. 278,617 . 612, 559. 305, 559. 385, 99.9384,99 .. 9554 %9, 939,99, . 8912, 64? 66,187,732 ,0,109. 998,54, 1425, 5-! 1345,2583.42, 2511 27,1248.23,1248.3

rax

2.99.8111.2.4.4.5.617. 419,559, 278, 559. 278 617613, 559, 305, 559, 305,09, 9384, 99, 9554, 99, 920, 09, 8312, 647, 65, 107, 7328, 109, 908, 54. 1425, 54. 1345, 2503, 42, 2511.27,1240.23, 1248, 7
3,599,8189,2.4,4.5,617,419,559, 379, 5559, 379,617,613, 559, 306,559, 306,99, 9303,99, 9553, 99, 939,99, 8911 647, '561 a7, 'J'!! 5,135 Sa8,54. 1!2‘ 54, nu 15083, 4! 2511, 2? 1248, H 1148,
4,99 .8108,2.4,4.5,617. 42,559, 279,559, 279,617, 613,559, 306, 559, 306, 99,9383, 99,9553, 99,939, 99, 6911, 647. 662, 167, 732 0, 109, 908, 54. 1424, 54,1344, 2583, 44, 3511 28,1240, 23, 12483
5,99.8187,2.4,4.5,617.42,559. 279,559, 279, 617. 613, 559, 306, 559, 306, 99,9383, 99.9553,99. 9389, 99, 8911, 647. 662, 187. 732, , 189,998, 54 1423, 54, 1343, 250344, 2511.29, 1240. 23,1248,
6,99.8107,2 .4,4.5,617. 42,550, 28,550, 38,617 613,559 307, 550_ 307, 909081, 99 9551,90_ 0389, 09 801,647 661,107 732, 0,169 908,54 1422, 541342, 2507 44,3511 20,1248, 23,1248 21
7,99,8106,2,4,4.5,617,42,559, 28,559, 18,617, 613,559, 307, 559, 307,99, 9383 ,99, 9553, 99,9389 ,99, 8911, 647, 664,107, 732,0, 189,988, 54, 1421, 54, 1341, 2503 ,.44 3511, 39,1240, 33,1248, 33
8,99,8105,2.4,4.5,617, 42,559, 28,559, 28,617, 613,559, 307, 559, 397, 99,9383, 99,9552, 59, 9359,99, 891 647664, 187, 732,0,109, 908, 54,142, 54,134, 2503 .43, 2511, 28, 1240, 23,1249, 23,13
9.99.8104,2.4,4.5,617. 42,559, 281,559, 281, 617. 614, 559. 388, 559, 308, 99,9382, 99. 9552, 99 . 0389, 09, 891, 647. 665, 107, 732.8, 109. 908, 54. 1419, 54. 1339, 2503. 42, 2511. 27, 1248. 23, 1248.. 3
10,99.8102,2.4,4.5,617.42,559. 281,559, 281,617,614, 559, 108,559 308,99, '9'3‘-&2 a9, ‘?5’.‘:? ¥, '9'353 a9, 39!,64? '555 a7, 732 B 189 999,54 .14 13 54, 13!3 503, 42 2511, !5 1248, 1‘2 1248,
11,99.8101,2.4,4,5,607,42,559,. 281,559, 281 ,617. 614, 559, 308, 559, 308,99, 9362, 99, 9552, 99, 9368, 99, 891,647, 666,107, 732,0,169. 989, 54, 1417, 54, 1337, 256341, 2511, 25,1248, 23,1240,
12,99.80899,2.4,4.5,617.421, 559, 282,559, 282, 617, 614,559, 399,559, 309,99, 9381, 99, 9551, 99, 9388, 99, 8989, 647 . 667,187, 732,0, 109,909, 54.. 1415 , 54,1335, 2503.4, 2511. 25,1240, 22, 1248
13,99.8098,2.4,4.5,617.421, 559, 282, 559, 282, 617,614,559, 380, 550, 309, 99 381,09, 0551, 99, 0386, 09 8909, 647 667, 187,732, 8,109,000, 54. 1413, 54, 1333, 2583. 4, 2511. 25,1248 22, 124€
14,99, 8097,2.4,4.5,617.421, 555, 282,559, 282,617 . 614,559, 3@, 559, 5a9, 99 9381, 999551 ,99, 9087, 59 85909, 647 668,107,732 ,0, 109909, 54 1409, 54, 1328, 503,41, 2511, 25,1348, 2, 1348
1'5,":‘9.mS.z.i,‘.ﬁ,ﬁl?.ﬂ].559.23!,$5‘?.2$3.51?.&]‘&5‘?.31 559, 31,599,938, 99,9551 ,99, 9387, 99, G900 , 647, 669, 187, 732 0, 109, 909, 54, 1408, 54,1327, 2503, 41,2511, 26,1248, 22, 1240, 3
16,99, 8894,2.4,4.5, 617,421,559, 283,550, 283, 617. 614,550 31,559, 31,99, 938,99, 955, 999387, 99, 8098, 647, 669, 187. 732, 0, 189,909, 54, 1488, 54. 1327, 2503 .42, 2511. 27,1240 22,1240, 22
17,99.8092.2.4.4.5, 617,421,550, 283, 559. 283, 617, 614,559, 31,559, 31,99 038, 99_ 055, 99_ 0386, 09 8098, 647 67, 107. 732, 0, 189 909, 53. 1407, 54. 1328, 250343, 2511. 28, 1240. 22, 1240..22,
18,99.809,2.4,4.5,617. 421,559, 284, 559, 284, 617,615, 559, 311,559, 311,99, 938,99, 955,99, 9386, 99, 6987, 647. 67, 107. 732, 8,109,909, 54. 1407, 54, 1327, 2503 .34, 2511, 19, 1240, 22,1248, 23
19,99, 5089, 2.4,4,5,617.421, 559, 284, 559. 284,617, 615,559, 311,559, 311,99, 9379, 99, 9549 ,99, 9386, 99 . 8907, 647. 671, 107, 732,10, 189. 999, 54. 1407 . 54, 1327, 25!3 49,2511, 34,1240, 22,124
20,99.815,2.4,4.5,617. 421,559, 286, 559, 286, 617. 615, 559, 313, 559, 313, 09,9379, 99,9549, 99,9386, 99, 5997 , 647,672, 187. 732, 8, 109,969, 54, 1292, 54. 1207, 1368 58, 2375.91,1239..9, 1239,
21,99.9119,2.4,4.5,617.437, 559, 441, 559. 441, 617. 623, 559,47, 559. 47, 99 9389, 39,9634, 59,5314, 99, 8385, 647. 626, 167. 732, 8, 189999, 539679, 53, 5983, 19993, 2004 .9, 123958, 1230, 5
213,99, 8883,3,4,4, 5,617,439, 555, 786,559, ?3-5 617,639,559, &‘.I.I 555, 3.‘:'-" 99, EH} 9, 8916,99, BI56, %9 8261, 647, 475.]?’ 73-2 0, 180, Ga5, 53,3451, 53, 1348, 1765, 79,1704 ,61, 1239, 32,122
23,99.2579,2.4,4.5,607.474, 560, 136, 560. 136, 617,676, 560,171,560, 171,99, 6782, 99, 7676, 95, 6682, 99, 7015, 647, 266, 187, 732,0, 109,909, 524309, 52, 4202, 1511.46, 1514, 86, 123669, 123
34,98.1321,2.4,4.5,617.550, 560, 495, 560.495, 617. 761, 560.534, 560, 534,99, 5417, 99, 6524, 99, 5437, 04 5857, 646991, 197. 732,08, 189,91, 51, 1998, 51 . 1784, 1259, 32, 1254 56,1238 .89, 123F
25.97.0197.2.4.4.5, 617,69, 560, 847, 560,547, 617,891, 560. 895, 569, 835,99, 4032, 99, 5318, 59, 4053, 99 4649, 646. 654, 107. 732, 8, 109, 91,49, 7159, 49. 6991, 576, 667,971 777, 1238.84, 1236.
16,96,08738,2,4,4,5,617.831, 561, 214,561,014, 618,03, 561, 17,561, 17,99, 2843 99,4238, 99, 2863, 99, 3571 646, 275, 10'1' 13 0.]99 91, 4!' 9333, l? a1, Eﬂ 544, ﬁS-I Tia, 12}6 B3, IHE 9,
27,95.3078,2.4,4.5,607.971, 561, 706, 561. 706, 618. 168, 561. 77, 561, 77,99, 1497, 99, 3005,99, 1518, 99, 2335, 645,87, 187, 732,0,109. 91,45, 7232, 45. 6752, 264, 881, 254, 555,1234.1,1234.12,
25,94.4749.2.4,4.5,618.11,562. 291, 562. 291, 618. 305, 562. 358, 562. 357, 08. 9107, 99,9682, 08. 9135, 99 0088, 645. 442, 187, 733,8, 109. 91, 43. 2521, 43. 185, 8,8, 122961, 1229.63,1232.73,17 «
£ 4 »

Figure 26: Screenshot of Dataset Collected from GPWR

73

3.1.4 Data Compiling

In order for the data collected from the reactor simulator to be used to create a machine
learning model, some data modifications needed to be performed. First, the data was in
39 separate datasets, to avoid issues with the constant moving, modifying, loading etc.
of the data, these sets were combined into one complete dataset. This set consisted of
30,710 data points, each consisting of the 33 measured features and the features added
for reactor core life and transient event. Also, to minimize confusion and ensure only
the data was imported into the machine learning model, the feature labels and heading
information was not included in the final dataset. These preparations were done using
Microsoft Excel and the final dataset was saved as a CSV file. The 39 individual datasets

will be maintained in the event any unexpected issues occur with the complete dataset.

3.1.5 Data Exploration and Modification Using Python

Once the data was compiled into a single dataset, Python was used to modify and explore
the data. All code written for this part of the project was done using Python version 3.7.2,
the most up-to-date version available at the time of performing the study. The scripts
were written using Atom text editor and all code compiling was done using the Anaconda
Python distribution. The complete CSV file was imported using Pandas. This converted
the data from a CSVfile into a Pandas DataFrame. No header was used in the importing of
the data. The contents of the DataFrame was then verified using the .head(), .shape() and
.describe() commands. The .head() command allows the user to view the contents of the
first 5 rows of a dataset. This was done to ensure that all the features appear correctly in
the DataFrame. The .describe() command provides the descriptive statistics of the data
stored in the DataFrame. This includes the mean, standard deviation, data point count,
as well as the minimum and maximum values of each feature. The summary statistics
for the first and last 3 columns of the dataset are shown in Figure 27. This also allowed

for verification that all the data points had imported into the DataFrame.

74

Figure 27: Sample Descriptive Statistics from Initial Dataset

Analysis of the dataset’s descriptive statistics showed that a number of the features
collected were just percentages of actual values. For example, normalized neutron flux
is simply a percentage of power generated. These features were deemed redundant for
model training and dropped. Also, a couple of features were consistent throughout the
dataset, such as thelevel of the narrow range of the RCS. These features were also dropped
from the dataset. In total, 22 features were used in training these models. The final list of
features used in training, as well as the maximum and minimum values for each feature
are given in Table 7. The addition of the reactor core life introduced a qualitative feature
into the dataset. Machine learning algorithms are only able to use quantitative data to
produce a model. In order to properly account for the reactor lifetime, it was necessary
to convert the qualitative data into quantitative data; this was done using dummy vari-
ables. Dummy variables are typically used to represent qualitative datain a 0, 1 scale. In
this case, since there are three different types of qualitative data (BOL, MOL and EOL),
three dummy variables and two extra factors were needed. It was possible to convert
this data using the Pandas function .get_dummies. This function was used to create
a dummy variable DataFrame using the reactor core life column of the dataset. The
dummy variable DataFrame consists of 2 columns. BOL data points were converted to
0,0, EOL data points were converted to 1,0 and MOL were converted to 0,1. The dummy
variable DataFrame was then added to the end of the dataset using Pandas’ .concat func-
tion, which is used to merge two or more DataFrames. Finally, the original reactor core
lifetime column was dropped from the DataFrame. To ensure that the process had been

done correctly, the new DataFrame was explored once again. The next step in preparing

75

Table 7: Final Features used in Initial Dataset

Feature Minimum Value Max Value
Hot Leg 1 Temperature (F) 183.631 622.519
Hot Leg 2 Temperature (F) 201.266 577.808
Cold Leg 1A Temperature (F) 98.079 577.808
Cold Leg 1B Temperature (F) 220.353 622.652
Cold Leg 2A Temperature (F) 122.800 577.435
Cold Leg 2B Temperature (F) 101.278 577.435
Pressurizer Surge Line Temperature (F) 181.631 651.354
PORV Discharge Pressurizer Temperature (F) 107.736 117.229
Containment Pressure (PSI) 0.0 108.244
Containment Temperature (F) 89.4057 246.052
FW Flow to SG-1 (LB/S) 0.0 2508.38
FW Flow to SG-2 (LB/S) 0.0 2582.82
MS Flow from SG-1 Line-1A (LB/S) 0.0 1244.16
MS Flow from SG-1 Line-1B (LB/S) 0.0 1244.21
MS Flow from SG-1 Line-2A (LB/S) 0.0 1293.26
MS Flow from SG-1 Line-2B (LB/S) 0.0 1295.33
SG-1 Pressure (PSI) 117.753 1265.71
SG-2 Pressure (PSI) 183.387 1268.57
Average Temperature (F) 179.241 598.453
Pressurizer Pressure (PSI) 1700 2314.58
Pressurizer Steam Temperature (F) 213.138 657.763
Generator Power (MW) -19.3393 1549.11
(Consuming Power)
Reactor Core Life N/A N/A

76

the data was to prepare the target data of the dataset. As mentioned earlier, each data
point was given a label of the transient event that occurred when the data was collected.
This column was also a qualitative feature. Unlike the reactor core lifetime, there was no
need to use dummy variables when modifying this dataset. Instead, each transient was
designated a number: the feed water pump trip was assigned 1, the LOCA-LOOP 2, the
steam generator valve closure was assigned 3 and the rapid power change was assigned
a 4. Normal operations were assigned 0. Using Pandas’ .map function it was possible to
change all the qualitative data to the assigned numerical value. The dataset was once

again explored to ensure that the process had been implemented correctly.

3.1.6 Data Splitting

The final step in preparing the reactor simulator dataset was to split the dataset into a
training set and a testing set. In supervised machine learning, data should be split in
order to validate the results. Validation allows for a measurement on the quality of the
model’s results. In the case of this project, validation is critical. As mentioned, regulatory
agencies, such as the NRC, have strict requirements in proving that any system or com-
ponent within a reactor will behave as it is intended, especially if it will be relied upon
in abnormal events. An important aspect of validation is that the data used in the test-
ing must be completely independent of the data used in creating the model. Failure to
ensure this could result in biased models that do not learn the actual case of the testing
data.

It is important to balance how much of the data is split between the two sets. If too
little data is put into the training dataset, the algorithm will not be able to learn the dif-
ferences between the data points. This will result in less accurate models, which will be
less effective in performing the task intended for the model. It is also necessary to have
enough testing data. If the algorithm lacks sufficient testing data it will be difficult to ver-
ify that the model created by the supervised learning algorithm is reliable. Finally, as is
the case in most statistical procedures, it is important that the data splitting be random
to avoid any biases and to provide a good sample for both, the testing and training sets.

The data splitting for this project was done using scikit-learn’s tools. This is done us-
ing the test_train_split function. This function uses Bernoulli sampling in order to cre-
ate testing and training sets that are pseudo-random. The pseudo-random nature of the
splitting allows for the process to be repeated over and over again with no changes to
the outcome while maintaining the randomness of the selection. The function requires
that features and target data be provided as well, as the desired split between testing and
training data. Also, the user may specify the seed of the random number generator, if

desired. The output will be four different NumPy arrays, two arrays for the feature and

77

X_train, X test, Y train, Y _test = train_test split(X, Y, train_size=0.5, test size=0.5)

Figure 28: Test Train Split Code for Initial Dataset

B Anaconda Prompt - m] X

e
1
1

DD e

Figure 29: Sample from X Train Dataset

target training data and two arrays will be for the feature and target testing data. These
were labeled as X_test and X_train for the feature data and Y_test and Y_train for the tar-
get data. For this model, the target data will be the numerically-labeled transient types
and the feature data will be the 22 features collected from the reactor simulator. Half of
the data collected will be used for training and the other half will be used for testing. The
default random number seed for this function will be used for all data splitting on this
phase of the project. The Python code used is shown in Figure 28. Figure 29 shows the

portion for the X_train array.

3.2 Results

The TPOT Classifier specified in the previous chapter was then used to train the six ma-

chine learning models. Each model was scored with using the four validation measure-

78

ments: accuracy, precision, recall and F1 score. The results from each of these models

will be presented in this section.

3.2.1 K-Nearest Neighbors

The entire process of building and evaluating the k-nearest neighbors model in TPOT
took approximately 1 hour and 30 minutes. The accuracy of this model was 98.35%, the
precision was 98.02%, recall was calculated to be 98.01%, and the F1 score was also cal-
culated to be 98.01%. Table 8 shows the individual accuracies for each transient from this
model.

Table 8: K-Nearest Neighbors Initial Model Individual Accurcies

Transient Event Model Accuracy
Normal Operations 100%
Feedwater Pump Trip 96.6%
LOCA + LOOP 97.57%
Valve Closure 98.01%
Rapid Power Change 97.86%

The k-nearest neighbors method was able to correctly identify 15,103 instances of the
15,355 samples tested during the validation process. Of the 252 misclassified instances,
the largest amounts of misclassifications were from the feed water pump trip transient.
172 of the 252 misclassifications, 60% of total errors, were from this transient. Of those
172 errors, 95 were false positives and 77 were false negatives. The model’s biggest is-
sue was distinguishing the feed water pump trip transient from the valve closure tran-
sient: a total of 76 instances, 30% of the total misclassifications were between these two
transients. The k-nearest neighbors model was able to perfectly distinguish normal op-
eration instances from transient instances, as there were no type I or type II errors for
the normal operation transient. Figure 30 shows the confusion matrix for the k-nearest
neighbor model. The code was designed to export the instances where misclassifications

occurred. Initial analysis of these instances showed no true pattern or bias of when in the

79

transient the misclassifications occurred.

80

True label

Confusion Matrix K Nearest Neighbors

Transient-Normal-Operation 0 0 0 0
Transient-Feedwater-Pump-Trip{ 0 34 31 12
Transient-LOCA-LOOP{ © 29

Transient-Valve-Closure { 0 45

5000

4000

3000

- 2000

= 1000

Transient-Rapid-Power-Change { 0 21 4 5 1510
. 2 2
{g}u Qi{ﬂ "EF ‘;gp ‘Bqﬁ
- 1"'\!:
& & & £ &
o o o A
& & & &
3 & & &
o & =
&K A5 o 2
& & PR
457 (59 d
@ &

Predicted label

Figure 30: Confusion Matrix for Initial K-Nearest Neighbors Model

3.2.2 Bernoulli Naive Bayes Results

curacies of the individual transients from this model.

81

-0

Using TPOT, the Bernoulli naive Bayes model took approximately 1 hour to build and val-
idate. The accuracy of this model was 97.45%, the precision was calculated to be 97.18%,

the recall of the model was 96.73 %, and the F1 score was 96.87%. Table 9 shows the ac-

The Bernoulli naive Bayes model correctly identified 14,964 instances of the 15,355
tested. Of the 391 incorrect classifications, 258 of them or 66% of total misclassifica-
tions, were from the feed water pump trip transient. Of these, 191 were false positives
for the valve closure transient. The model also scored 33 false positive classifications for

the rapid power change transient. Under this configuration, the model was able to cor-

Confusion Matrix Bernoulli Naive Bayes

Transient-Normal-Operation JSsElE 0 0 0 0 5000
Transient-Feedwater-Pump-Trip{ 0 2719 0 20 45 4000
I . _
) 3000
f Transient-LOCA-LOOP4{ 0 67 [2685 O 27
=
= 2000
Transient-Valve-Closure 4 0 191 0 2546 41
- 1000
Transient-Rapid-Power-Change { 0 0 0 0 1524
T T T T L] — 0
N 2
© & P S
& & 2 R
Qe' & ks (&, j@
S & F ¢ ¢
¢ @ &:\, 4,‘.} &

M N
& K& &
& & &S
,b".‘ A &
«ﬁ@ ‘K{b

Predicted label

Figure 31: Confusion Matrix for Initial Bernoulli Naive Model

rectly distinguish between a transient and non-transient event with no Type I or Type II
errors for the normal operations event. The Bernoulli naive Bayes model had no Type |
errors for the LOCA-LOOQOP transient, nor were there any Type Il errors for the rapid power
change transient. The confusion matrix for the Bernoulli naive Bayes model is shown in

Figure 31.

Table 9: Bernoulli Naive Bayes Initial Model Individual Accurcies

Transient Event Model Accuracy
Normal Operations 100%
Feedwater Pump Trip 90.05%
LOCA + LOOP 100%
Valve Closure 96.1%
Rapid Power Change 93.72%

82

3.2.3 Gaussian Naive Bayes Results

Similar to the Bernoulli naive Bayes model, the Gaussian naive Bayes model took approx-
imately 1 hour to build and test. The accuracy of this model was found to be 97.45%. The
precision was scored at 97.2%, the recall was calculated at 96.83%, and the F1 score was
96.96%. Table 10 shows the model’s accuracy for the individual transients. This model
was able to correctly identify 14,833 of the 15,355 samples tested. The Gaussian naive
Bayes model performed perfectly in identifying the non-transients and transients, as
there were no false positives or negatives for the normal operation event. There were also
no false positives for the LOCA LOOP transient and no false negative for the rapid power
change transient. The model struggled the most with correctly classifying the feed water
pump trip transient. Of the 522 misclassified transients, 337 of them or nearly 65% of all
the model’s total errors were from this transient. Of those, 302 were misclassifications
between the feed water pump transient and the valve closure transient. The confusion

matrix for the Gaussian naive Bayes model is shown in Figure 32.

Table 10: Gaussian Naive Bayes Initial Model Individual Accurcies

Transient Event Model Accuracy
Normal Operations 100%
Feedwater Pump Trip 88.77%
LOCA + LOOP 100%
Valve Closure 96.59%
Rapid Power Change 94.0%

83

True label

this model.

Confusion Matrix Gaussian Naive Bayes

Transient-Normal-Operation -Jssp&l 0 0 0 0

Transient-Feedwater-Pump-Trip
Transient-LOCA-LOOP -

Transient-Valve-Closure -

0 2654 O 61 45
0 35 12668 26 21

2461 32

5000

4000

3000

-2000

- 1000

Transient-Rapid-Power-Change { 0 0 0 0 1535
,;.\""Q & & ¢ &
< Q N L
& & ¥ C <
[P N A
& & & Ol
& & & N8
& & L F L
x\‘s@ ‘Q“‘b

Predicted label

Figure 32: Confusion Matrix for Initial Gaussian Naive Model

3.2.4 Multinomial Naive Bayes Results

84

-0

The multinomial naive Bayes model took approximately 1 hour to be built and tested us-
ing TPOT. The accuracy of the multinomial naive Bayes model was 96.71%. The precision
of this model was calculated to be 96.38%, the recall was 95.41%, and the F1 score was

calculated to be 96.10%. Table 11 shows the accuracies of the individual transients from

The multinomial naive Bayes model was able to correctly classify 14,833 of the reac-
tor transient instances tested. Similar to the other naive Bayes models, the multinomial
method was able to perfectly distinguish between transient events and non-transient

events, as there were no Type I or Type II errors for normal operations. The rapid power

Table 11: Multinominal Naive Bayes Initial Model Individual Accurcies

Transient Event Model Accuracy
Normal Operations 100%
Feedwater Pump Trip 90.05%
LOCA + LOOP 100%
Valve Closure 96.1%
Rapid Power Change 93.72%

transient also had no false negative results and the LOCA LOOP transient had no false
positives. Also, the model struggled most with the feed water pump trip transient with

296 misclassifications occurring with this transient. The confusion matrix for this model

is shown in Figure 33.

Confusion Matrix Multinomial Naive Bayes

Transient-Normal-Operation JEEEEN O 0 0 0 5000
. : 4000
Transient-Feedwater-Pump-Trip{ 0 [2660% O 99 45
2
3000
< Transient-LOCA-LOOP{ O 80 2693 3 25
=)
= - 2000
Transient-Valve-Closure 4 0 214 0 [2513 38
- 1000
Transient-Rapid-Power-Change { © 0 0 0 1569
T T T T T — O
& & & ¢ &
L R s & L
N %) &7
G & '&. > 9)
& N S Q
& W@ ¢ WY
® S Q‘b\ & &
& &L g P
& ¥ & &
O . Q}\ A &
«ﬂfb Q"’\ 0‘9
«® N

Predicted label

Figure 33: Confusion Matrix for Initial Multinominal Naive Bayes Model

85

3.2.5 Logistic Regression

The logistic regression model took approximately 48 hours to run. This was the most
computationally expensive of all the models evaluated. The accuracy of the logistic re-
gression model was found to be 98.55%. The precision was calculated to be 98.41%, recall
was 98.04% and the F1 score was found to be 98.21%. Table 12 shows the individual accu-
racies for the reactor transients for this. This model correctly identified 15,133 transient
instances of the 15,355 samples tested. The logistic regression model perfectly classified
transient and non-transient events; there were no false positives or negatives from the
normal operation event. The model also had no false positives for the LOCA LOOP and
there were no false negatives for the rapid power change. The model scored well on all
the transients with accuracies above 95% across all 5 events. The model had the highest
number of misclassifications with the feed water pump, though the rapid power change
had a lower accuracy. The largest number of errors, 52, came from false positives of the
feed water pump transient from the valve closure transient. Figure 38 shows the confu-
sion matrix for this model. No easily identified groups were found when looking at the
misclassified instances, similar to some of the other models the misclassifications ap-

pear spread out. Figure 34 shows a graph of the misclassifications.

Table 12: Logistic Regression Initial Model Individual Accurcies

Transient Event Model Accuracy
Normal Operations 100%
Feedwater Pump Trip 96.87%
LOCA + LOOP 100%
Valve Closure 97.62%
Rapid Power Change 95.71%

86

True label

Confusion Matrix Logistic Regression

Transient-Normal-Operation 0 0 0 0

Transient-Feedwater-Pump-Trip4{ 0 ~aaes 0 36 27
Transient-LOCA-LOOP A

Transient-Valve-Closure -

Transient-Rapid-Power-Change -

Predicted label

Figure 34: Confusion Matrix for Initial Logistic Regression Model

87

5000

4000

3000

- 2000

- 1000

3.2.6 Decision Tree

The decision tree model took approximately 3 hours to build and validate. The accuracy
of this model was 98.6%, precision was calculated at 98.46%, recall was found to be 98.1%
and the F1 score was 98.27%. Table 13 shows the individual accuracies of the transient
events for the decision tree model. The decision tree model was able to classify correctly
15,140 of the 15,355 transient instances tested. The model was able to perfectly classify
all of the normal operation instances and there were no false positive or false negative
errors from that event. The model was able to classify the LOCA LOOP transient with no
false positives and the rapid power change transient had no false negatives. As with the
other models, the decision tree model’s biggest issues were from the feed water pump
transient: 35% of the errors and 76 instances were from this transient. 41 of those were
false positives with the valve closure transient. The confusion matrix for this model is
shown in Figure 35 . Looking at misclassified instances, no obvious grouping appeared.
With the exception of the Bernoulli naive Bayes model, it appears that the misclassifica-

tions experienced were typically spread out rather than grouped together.

Table 13: Initial Decision Tree Model Individual Accurcies

Transient Event Model Accuracy
Normal Operations 100%
Feedwater Pump Trip 97.33%
LOCA + LOOP 100%
Valve Closure 97.57%
Rapid Power Change 95.62%

3.3 Discussion
3.3.1 Overall Model Performance

The results from the machine learning models show very positive results. All of the mod-

els had validation scores in the mid-90’s. Under the configurations selected for the TPOT

88

True label

Confusion Matrix Decision Tree

Transient-Normal-Operation 0 0 0 0

Transient-Feedwater-Pump-Trip4{ 0 Fages 0 35 33

Transient-LOCA-LOOP -

Transient-Valve-Closure -

Transient-Rapid-Power-Change -

Predicted label

Figure 35: Confusion Matrix for Initial Decision Tree Model

89

5000

4000

3000

- 2000

- 1000

dictionary, all of the models were able to perfectly tell the difference between normal op-
erations and transient events. It should be noted that the dataset did contain more of this
type of data, but this should not be an issue, as with real nuclear reactors the amount of
data, as well as the quality, will almost certainly be higher for a real reactor under normal
operations. With the exception of the k-nearest neighbors model, the models were able
to correctly classify the LOCA LOOP transient with perfect accuracy, though there were
false negative classifications across all these models in the study. All of the models had
the most difficulty distinguishing between the feed water pump trip and the valve closure
transients, as this transient had the lowest individual accuracy of the five events across all
the models. Also, alarge percentage of the total errors from these models came from false
positives between these two transients. The models appear to have a tendency towards
having more Type Il error over Type 1, as the precision of all the models is higher than the
recall. Since Type Il error can result in a more dangerous scenario with a nuclear reactor,
it is important that the recall always be considered when making determinations. Table
14 and Table 15 summarize all the validation results from this part of the project.

Table 14: Summary of Machine Learning Model Results: Overall Validation Measure-
ments

Accuracy | Precision | Recall | F1 Score | Time
K-Nearest Neighbors 98.35% 98.02% | 98.01% | 98.01% | 1.5hrs
Bernoulli naive Bayes 97.45% 97.18% | 96.73% | 96.87% 1 hr
Gaussian naive Bayes 97.45% 97.2% | 96.83% | 96.96% 1 hr
Multinomial naive Bayes | 96.71% 96.38% | 95.41% | 96.10% 1
Logistic Regression 98.55% 98.41% | 98.04% | 98.21% | 48 hrs
Decision Trees 98.6% 98.46% | 98.1% | 98.27% | 3hrs

3.3.2 Best Performing Models

In terms of performance, the decision tree, k-nearest neighbors and logistic regression
models were better than the naive Bayes models, having validation measurements all

above 98%. The decision tree model performed the best. Interestingly, the decision tree

90

Table 15: Summary of Machine Learning Model Results: Individual Transient Accuracies

Normal | Feedwater | LOCA+ | Valve | Rapid Power

Operation | Pump Trip | LOOP | Closure Change
K-Nearest Neighbors 100% 96.6% 97.57% | 98.01% 97.86%
Bernoulli naive Bayes 100% 90.05% 100% 96.1% 93.72%
Gaussian naive Bayes 100% 88.77% 100% | 96.59% 94.0%
Multinomial naive Bayes 100% 90.05% 100% 96.1% 93.72%
Logistic Regression 100% 96.87% 100% | 97.62% 95.71%
Decision Trees 100% 97.33% 100% | 97.57% 95.62%

model slightly outperformed the logistic regression model. This is important as the logis-
tic regression model is more computationally expensive, requiring 48 hours to compute
on its initial run, while the decision tree model only took 3 hours. In this case, it is likely
the data was not overly complex, so the decision tree model was able to better fit the
data without needing to perform the large amount of feature analysis required with the
logistic regression model. This is encouraging, as time is a major consideration when
selecting a model that will be used in real-time. Using more sophisticated equipment,
it is possible that a decision tree or k-nearest neighbors model could provide valuable
information to reactor operators in a matter of minutes, if a model needs to be trained
quickly. A TPOT model was constructed early on in the experiment without defining a
specific machine learning model to be built. The optimal model from this run was a de-
cision tree, with an accuracy of 98.57%. This verifies the results from the individual tests,

where the decision tree was the most accurate model.

3.3.3 Models with Potential Issues

The naive Bayes models, while having high validation measurements, did not perform
as well as the other three models. The multinomial model had the lowest accuracy of
the six models. A likely cause of this is that the data better fit the Gaussian and Bernoulli
distributions than the multinomial. The accuracies with the feed water pump transient

were the lowest with the Gaussian model, only scoring 88% accuracy for that transient.

91

The most likely cause of this is that the probabilities calculated by the naive Bayes mod-
els favored the feed water transient over the valve closure, resulting in the false positive
classifications. The overall accuracies of the Gaussian and Bernoulli models were iden-
tical. This is likely coincidental, as both models have different accuracies for three of the

individual transients.

3.3.4 Final Thoughts

Due to the high validation measurements, it does appear from this analysis that there
is promise in the area of applying machine learning to reactor safety. Applying trained
machine learning models to reactor safety could lead to faster transient diagnoses, acci-
dent mitigation, and help keep the general public better informed of issues at a nuclear
power plant. Areas that will be further explored include introducing more transients to
see how the models perform and which models perform better with the more complex
data. Also, further exploration into the errors within these models to look for more pat-
terns and factors behind the existing errors, will be done. Finally, other machine learning
models, such as those using ensemble methods will be trained to see if they can perform

better.

92

4 Expanded Dataset & Optimal Model Analysis

The first phase of this project was presented at the American Nuclear Society’s Annual
Conference in the Fall of 2019. The final results were also published in the journal Nu-
clear Technology in the Spring of 2021. This was done in order to gather feedback on
possible improvements that could be explored for the next phase of the project. One of
the comments on the initial phase of this research effort was the limited number of tran-
sient events the models were trained on. The primary goal of this phase of the project
is to test the ability of TPOT to train models with a larger number of transient events. In
addition to the original six methods used in the previous phase of the project, this study
will look to train a model using Random Forest Classification.

Another area of interest for this phase of the project is to address some of the pos-
sible concerns that the implementation of a machine learning based diagnostic system
may encounter. As mentioned earlier, systems used in the area of nuclear safety must
undergo a great deal of scrutiny by regulatory authorities such as the NRC. This phase of
the project will take a more in depth look at where misclassifications occurred with the
models. Another area of concern with a safety related system is what to do in the event
certain data is unavailable when a transient occurs. Finally, as many machine learning
models make use of random numbers in some form, the variation of models will be ex-
amined. The goals of this phase of the project are summarized below.

Goals of Second Phase of the Effort
1. Use of an expanded dataset to determine if models can be relied upon with a great
number of transient events.
2. Train a model using Random Forest Classification.
3. Examine where in the simulations, classifications occurred to determine if major

patterns or concerns exist.

4. Train models with key features missing to determine if models can be trained and

93

relied on if features are missing during a transient.

5. Examine the effect changes in random states have on the validation results of high

performing models.

4.1 Ensemble Learning

In the area of machine learning, Ensemble Learning has quickly become on of the most
powerful techniques in producing high scoring models. The idea of Ensemble Learn-
ingis to collect results from several different models and aggregate the collective results.
This has the ability to take models that perform relatively poorly and create a better per-
forming model. Ensemble approaches have become popular in recent times due to this
capability.

One example of a well known Ensemble learning model was the winning submission
in a competition held by Netflix in the late 2000s. Netflix in an effort to improve its movie
recommender algorithm, held a three year competition to see what improvements could
be made. The winning model is known as BellKor solution, named after its creators[74].
This model was an Ensemble method blending several types of regression models, most
prominently k-nearest neighbors. The results produced a RMSE of 0.8712, a near 10%
improvement from Netflix’s algorithm.

There are a number of Ensemble Learning techniques available in scikit-learn. A
commonly used one is the Voting Classifier, which selects the result that receives the
majority of votes from the different models. Another approach is called Bagging, which
makes use of the same classifier, but uses different subsets of the training data, similar to
cross validation. Another ensemble method that can be used to improve models is gradi-
ent boosting. Typically used in regression, gradient boosting uses weak learners and the
errors from those learners to compute a residual. The model is then trained on the resid-
ual and the model then tries to predict those residuals. It should be noted that boosting

is a greedy algorithm and can produce overfit. models[75].

94

4.1.1 Random Forest

This project will make use of the Random Forest technique. Random Forest is an averag-
ing Ensemble method that can be used in either regression or classification. This method
constructs several different decision trees rather than just a single tree. The results from
each of the different trees are averaged and a final result is determined. In classification,
the resultis determined by which result received the most votes from the individual tress
in the forest. Regression uses the average of output to determine the final result. The use
ofrandom forest can reduce overfitting and improve accuracy. Random Forest makes use
of many of the same hyperparameters that a single decision tree uses[76]. This includes
max depth, criterion and max features. As was the case in the previous study, Gini Impu-
rity will be used. TPOT has full compatibility with scikit-learn’s Random Forest Classifier

and Random Forest Regressor.

4.2 Methodology
4.2.1 Expanding The Dataset

In the original study, data was collected on a reactor operating normally and experienc-
ing four individual transient events. These transients were: a simultaneous trip of all
reactor feed water pumps, simultaneous closure of reactor steam isolation values, large
break LOCA coupled with a loss of offsite power, rapid power change from 100% to 75%
and back to 100%. Data was recollected for these transients using the GPWR simulator.
In addition, data was collected on seven additional transients. These were: trip of single
reactor coolant pump, simultaneous trip of all reactor coolant pumps, a rapid depressur-
ization, amax steam line rupture, a turbine trip without a SCRAM, arejection of electrical
load and an accidental manual reactor trip. Table 16 lists all the transient events simu-
lated for this study. A brief description of each of the new transient events is given in the

next subsection.

95

Table 16: Transient Events Simulated from GPWR

Normal Operations

Simultaneous trip of all reactor feed
water pumps

Large Break LOCA coupled with aloss | Simultaneous closure of reactor steam
of offsite power

isolation values

Rapid Power change from 100% to 75% | Trip of Single reactor coolant pump
and back to 100%

pumps

Simultaneous trip of all reactor coolant | Rapid Depressurization

Max Steam Line Rupture

Turbine trip without a SCRAM

Rejection of electrical load

Accidental manual reactor trip

In order for the dataset to have a more complete picture of reactor behavior, it was
also necessary to collect data using different initial conditions. In the original study, nine
initial conditions were used. These consisted of different combinations of reactor power
level and reactor core life. In this study, six additional initial conditions were simulated.
ABOL core at 25% power at xenon equilibrium, a MOL core at 5% power in a startup con-
figuration, a MOL core at 15% power in a startup configuration, as well as a sub-critical
core at 1% with all three reactor core lives. Table 17 lists the 15 initial conditions used
in the data collection. Most simulations with the GPWR ran for 600 seconds. The rapid
power change transient however, required more than 1000 seconds to complete the sim-
ulation and due to the nature of the transient, only three simulations were performed.
Since it is likely that any actual implementation would have access to more data on nor-

mally operating reactors, the normal operations simulation was run for 1,200 seconds.

This does create an unbalanced dataset, but is realistic for this type of application.

Table 17: Initial Conditions Used for GPWR Simulation

Simulation # | Core Life Power Level
1 BOL 100% Power
2 MOL 100% Power
3 EOL 100% Power
4 BOL 50% Power
5 MOL 50% Power
6 EOL 50% Power
7 BOL 1% Power, (Critical, Startup Configuration)

96

Table 17: Initial Conditions Used for GPWR Simulation

Simulation # | Core Life Power Level
8 MOL 1% Power, (Critical, Startup Configuration)
9 EOL 1% Power, (Critical, Startup Configuration)
10 BOL 1% Power, (Sub-critical, Shutdown Configuration)
11 MOL 1% Power, (Sub-critical, Shutdown Configuration)
12 EOL 1% Power, (Sub-critical, Shutdown Configuration)
13 BOL 25% Power, (Critical at Xe Equilibrium)
14 MOL 5% Power, (Critical at Startup Configuration)
15 MOL 15% Power, (Critical at Startup Configuration)

4.2.2 New Transient Events

As mentioned, this phase of the project made use of seven new simulated transient events.
This section will briefly describe each of these new events. The first of these is a manual
reactor trip. In this simulation, once the trip is initiated the neutron flux is expected to
drop from whichever level it was at to a delayed neutron state for a sub-critical system.
Parameters of interest include the pressurizer level and power, as well as average temper-
ature, reactor power and hot leg temperature from any loop. The next added transient
for this experiment was the the trip of a single reactor coolant pump. In this transient,
it is expected that the temperature of the moderator and coolant, water in both cases,
will begin to increase, to provide a negative net reactivity. The flux of the reactor should
decrease to a sub-critical state if the system is not already in this state. In addition, sim-
ulations were run where all reactor coolant pumps trip. As was the case with a single
trip, moderator temperature is expected to increase and the reactor should SCRAM to
reach a sub-critical state. Parameters of interest for these transients include steam and
feedwater flow, cold/hot leg temperature and neutron flux. The fourth new reactor tran-
sient simulated for this experiment was the tripping of the main turbine without a re-
actor SCRAM. In this transient, reactor power will still decrease due to the steam dump

and the automated rod controller. Power is expected to drop to 30% if the system is not

97

already at or below this level. Parameters of major interest include neutron flux, average
temperature and the steam generator pressure and level.

The next new transient used for this experiment was a maximum steam line rupture.
In this transient, neutron fluxis expected to decrease to sub-critical levels if not already in
this state. Containment temperature will increase rapidly at first, but should decrease as
the simulation continues. Pressure within the system should rapidly decrease to that of
the containment. Other parameters of interest include the pressure of the narrow range
pressurizer and level of the pressurizer.

The sixth new transient event introduced in this study is a slow depressurization of
the reactor’s primary system. During this transient neutron flux will decrease slowly for
a short time until the reactor SCRAMS. Pressurizer pressure should decrease to the sat-
uration level. The level of the pressurizer is expected to reach a solid state within five
minutes of the simulation. Other areas of interest include the loop levels, the surge line
temperature and temperature of the hot legs. The final new transient simulated for this
effort was a maximum design load reject. At the start of this simulation both main break-
ers of the reactor are opened. The reactor is expected to SCRAM ifitis notin a sub-critical
state. The average temperature of the system will increase at first, but decrease rapidly
due to steam dumping. Pressure in the system will increase, but the increase should be
limited to heat removal activities. Areas of interest include the neutron flux, pressurizer

level, temperature and pressure, as well as steam flow.

4.2.3 Data Exploration

In the previous study data on 33 reactor features was collected during each second of the
simulation. These features were chosen because they are features that a reactor operator
would generally have quick and easy access to. Since the models trained in that study
were able to produce reliable measurements, the same features were collected during

the new simulations. Table 4 lists all of the features that were collected for this part of the

98

study. The data collection resulted in 168 individual datasets, 15 for each event, except
the rapid power change. These were combined into a single dataset to make exploration
and model training simpler. This set consisted of more than 110,000 data points. This is
more than triple than the 30,000 used in the previous study.

As is the case with most machine learning projects, the first step to to analyze the
dataset prior to performing any model training. This was done using basic Pandas func-
tions. This analysis ensured that there were no missing values for any of the features in
the dataset and allowed for the examination of the dataset’s descriptive statistics. The
analysis also ensured that all the features were in the correct data type and helped in de-
termining if any major outliers were present in the set.Once this analysis was completed,
the next step was to determine which feature the model would be trained on. As was the
case with the initial dataset, the normalized values, such as power and pressure, were
dropped from the dataset as they are redundant for model training.

The next step in the data exploration was to determine if any of the features in the
dataset were consistent, where the feature value is unchanged through the dataset. In
the previous study, two features were found to be consistent, however, this was not the
case with the expanded dataset. As such, these features remained in the set for training.
The complete list of 25 features used in model training is listed in Table 18. Also included

in this table are the ranges for all the features collected.

99

Table 18: Features used in in Expanded Model Training

Feature Minimum Value Max Value
RCS LVL LOOP 1 WR 0 2.4
RCSLVLLOOP 1 NR 2.4 4.5
Hot Leg 1 Temperature (F) 4.5 623.947
Hot Leg 2 Temperature (F) 199.179 624.07
Cold Leg 1A Temperature (F) 140.984 617.622
Cold Leg 1B Temperature (F) 109.407 577.809
Cold Leg 2A Temperature (F) 111.09 617.659
Cold Leg 2B Temperature (F) 99.2419 577.4340
Pressurizer Surge Line Temperature (F) 99.4619 651.343
PORV Discharge Pressurizer Temperature (F) 107.732 648.149
Containment Pressure (PSI) 0 108.297
Containment Temperature (F) 86.2528 246.051
FW Flow to SG-1 (LB/S) 0 2623.08
FW Flow to SG-2 (LB/S) 0 2583.99
MS Flow from SG-1 Line-1A (LB/S) 0 2000
MS Flow from SG-1 Line-1B (LB/S) 0 1244.73
MS Flow from SG-1 Line-2A (LB/S) 0 1645.35
MS Flow from SG-1 Line-2B (LB/S) 0 1645.78
SG-1 Pressure (PSI) 26.9171 1273.78
SG-2 Pressure (PSI) 40.8375 1275.66
Average Temperature (F) 175.722 598.453
Pressurizer Pressure (PSI) 1700 2318.73
Pressurizer Steam Temperature (F) 153.072 658.021
Generator Power (MW) -19.3392 1549.1
(Consuming Power)
Reactor Core Life N/A N/A

As was the case in the previous chapter, it was necessary to convert the reactor core

100

life feature to anumerical dummy variable, using scikit-learn’s dummy variable function.
Next, the transient data needed to be labeled numerically. Each transient was given a
number between 1 and 11. Normal operating data points were assigned the label 0. Once
these changes were made, the dataset was examined again to ensure the changes were
implemented properly. The final step prior to model training was to split the data into
testing and training sets. This was done once again using scikit-learn’s test_train_split

function. In machine learning, there is no standard on how much data to set aside for

testing and how much to use for data. To ensure the model will be changed adequately
and help address possible overfit issues, the data was again randomly divided in two. At
this point, the time stamp feature was dropped from both, the training and testing, as
the data is irrelevant for the model training. It should be noted that this information is
necessary to determine where in the simulation misclassifications occurred. As such,
this feature was set aside to be used after training. The training and testing dataset sizes

were checked to ensure the splitting was done properly.

4.2.4 Training New Models Using TPOT

The approach for training the machine learning models on the expanded dataset was
similar to that used in the previous study. For this study, the same feature selection and
data reprocessing techniques used in the previous study were used again. The complete
list of feature prepossessing techniques used in the TPOT dictionary is given in Table
2. These functions are commonly used in machine learning efforts and provided high
results in the previous study. In the previous study, six different types of models were
trained. These were: decision tree classification, k-nearest neighbors, logistic regression
and naive Bayes classification, using three different distributions: Gaussian, Bernoulli
and multi-nominal. Since all six of these models originally produced validation results
in the 90’s, they were trained again with the expanded dataset. In addition, a model was
trained using the random forest classifier for a total of seven different models. Since this
dataset is multi-class, a support vector machine model could not be trained using TPOT
at this time. Table 19 lists the machine learning models trained in this study. As was done
in the last study, each model will be trained for 100 generations with a population size of
100 to ensure that alarge number of pipelines are tested. The random state for these base
models was set at 0. In order to train the models in a timely manner, High Performance
Computing (HPC) resources from the INL were used. This will allow up to 48 CPUs to

be utilized during model training, which should greatly improve the computation time

101

needed to train the models.

Table 19: Machine Learning Techniques Used to Train Models With Expanded Dataset

Gaussian Naive Bayes Bernoulli Naive Bayes
Multinomial Naive Bayes Logistic Regression
K-nearest Neighbors Decision Tree Classification
Random Forest Classification

4.2.5 Validation of Trained Models

In the previous study, models were scored on four validation results based on the num-
ber of true positives, false positives and false negatives. These were: accuracy, precision,
recall and f1 Score. These measurements were again used for scoring all seven models
trained on the expanded dataset. This also allowed for confusion matrices to be created
for each model. This will allow for individual accuracies to be measured for each tran-

sient to help address concerns with the unbalanced dataset.

4.2.6 Misclassification Analysis

Many studies in machine learning put a strong emphasis on validation results, such as
accuracy and precision. These results however, should only be the start of examining
a model’s potential to be applied in practice, especially in a multi-class classification
model. In this study, the misclassified points of the model trained were examined to
determine where in the simulation the misclassifications occurred and see if there were
any significant patterns. This was done by using the simulation time stamp for each data
point used in the model validation. The time column removed during the model training
was re-added to the data set and each point was checked to see if it was correctly iden-
tified or not. The number of misclassifications that occurred at each time during the
simulation will be tracked. Using this information, it can be determined at which points

during a transient event the model will be most reliable.

102

4.2.7 Impact of Losing Features

Due to high safety expectations by regulatory agencies and the general public, nuclear
power systems require a great deal of redundancy to help mitigate possible accidents.
The TMI accident showed that missing critical information and having sensor malfunc-
tions canlead to serious errors and damaging consequences. Today, operators are trained
to account for these possibilities and high quality assurance programs have been en-
acted. This has greatly reduced the probability of a misdiagnosis due to a sensor failure.
However, if machine learning is to be implemented as a diagnostic tool, especially in an
automated fashion, studies will need to be conducted on how models will be affected
when features are lost. This is especially concerning if model relies on tens or hundreds
of features, as many neural network models used in other applications do. One approach
to address this concern is to remove features from a proposed model and train new mod-
els with fewer features. If the model can still produce reliable results with fewer features,
then a system designed to help diagnose issues with the reactor, can simply switch to a
new model if a feature becomes unavailable or unreliable. To contribute to this effort,
this study took the models with the highest validation results and removed a number of
key features to see if TPOT can train a reliable model with the feature missing.

In machinelearning, it is likely some features will have more importance to the model
than others. In the previous study, the decision tree model using Gini Impurity was one
of the most reliable models produced. Assuming that this holds true for the expanded
study, the optimal decision tree diagram will be extracted from the TPOT pipeline and
the feature with the lowest impurity, i.e. the feature at the top of the tree, will be removed
from the set and the model retrained. If TPOT is able to produce a reliable model, this
process will be repeated for the five features with the lowest Gini Impurity in the optimal
model. Another approach is to use scikit-learn to help identify possible key features.

Scikit-learn has developed a number of functions that can be used to determine fea-

ture importance for a number of different models, including tree based models, such as

103

decision trees and random forests. This process uses Gini Importance to assign a score to
each feature used in the model training. According the documentation for scikit-learn’s
Decision Tree Classifier, Gini Importance is the total reduction of the criterion brought
by that feature or simply the mean decrease impurity. Thisis calculated by summing over
the number of splits in each branch of the tree[77]. This could be applied to all tree based
models. As with the Gini Impurity, the feature with the highest importance score will be
removed from the dataset and the model retrained. The process will be repeated for the

top five individual features that have the highest importance.

4.2.8 Variation in Results from Changes in Random State

In order for effective machine learning models to be trained, there usually is a reliance
on random numbers. Data sets should be split between testing and training randomly
to ensure as little bias in the model as possible. This does leave open the possibility that
the results from the training are a result of a favorable split. To address this concern,
cross validation was used in the model training. The cross validation function within
both scikit-learn and TPOT, creates different divisions of the training dataset, known as
k-folds or simply folds. One fold is set aside for validation purposes and the other folds
are used in the model training. The number of folds used is determined by the user. Once
completed, this process is repeated again using a different fold, until all the folds have
been used in validation. An average of all the results is then taken and used as the training
model[78]. This technique not only address the concerns with randomly split data, but
also helps address the possibility of the model being overfit.

Data splitting is not the only area that makes use of random states. Many machine
learning models make use of random numbers. This includes the process used by the
TPOT classifier to create pipelines. Both scikit-learn and TPOT make use of random
number generators or random states in model training. In order to view the effect changes

in the random state have on the trained TPOT models for this study, it was necessary to

104

train the models using different random states. To ensure the impact is determined, this
was done with twenty different random states for all models that achieve high validation
scores in the initial model training. Once completed, the variation in the results were an-
alyzed using descriptive statistics. This will provide an idea on how each different model
type is impacted by the change in random state. If the variation is small, then the model

can be considered reliable in terms of random state.

4.3 Expanded Dataset Model Results

In this part of the project seven models were trained on the expanded dataset using TPOT.
This section will go over the results from these models and compare them to the results
from the previous section. Also, the results on the misclassification analysis will be given

in this section.

4.3.1 Bernoulli Naive Bayes Models

The three naive Bayes models trained on the expanded dataset experienced significant
differences from the models trained in the first part of this project. Of the three naive
Bayes models trained using the expanded dataset, the Bernulli naive Bayes models scored
the highest in validation results. Accuracy was scored at 81.01%, precision at 80.64%, re-
call at 83.24% and F1 score at 80.19%. This is much lower than the 96% 97% scores that
were obtained from the original dataset. The biggest contributors to this decrease were
two transients: the feedwater pump transient and the turbine trip without scram. This
model only score an individual accuracy of 58.66% with the feedwater pump transient
with an individual accuracy of only 58.77%. The model performed even more poorly
with the individual accuracy of only 11..31%.It should be noted that this model was still
able to perfectly distinguish a normally operating reactor from one experiencing a tran-
sient. Also, the model scored well with the load rejection transient when compared to the

other models with an accuracy at 71.23%. Table 20 summarize the individual accuracies

105

for this models. Figure 36 shows the confusion matrix for this model.

Table 20: Bernoulli Naive Bayes Model Individual Accurcies For Expanded Dataset

Transient Event Model Accuracy
Normal Operations 100%
Feedwater Pump Trip 58.77%
LOCA + LOOP 98.37%
Valve Closure 87.99%
Rapid Power Change 100%
Depressurization 95.00%
Max Steam Line Rupture 99.89%
Manual Trip 83.81%
Load Rejection 71.23%
Single Coolant Pump Trip 78.78%
Total Coolant Pump Trip 82.54%
Turbine Trip without SCRAM 11.31%

106

True label

Transient Normal Operations

Transient Feedwater Pump Trip

Transient LOCA LOOP

Transient Valve Closure

Transient Rapid Power Change

Transient Depressurization

Transient- Max Steam Line Rupture

Transient-Manual Trip

Transient Load Rejection

Transient Single Coolant Pump Trip

Transient Total Coolant Pump Trip

Transient Turbine Trip No SCRAM

Figure 36: Confusion Matrix for Expanded Bernoulli Naive Bayes Model

9050

Confusion Matrix Bernulli Naive Bayes Base Model, Random State = 0 Cv=10

2659

174

79

0 0
o] 20
8
o] 3808
0 0
0 1
0 0
0 132
0 99
0 87
o] 29
0 88

10

1504

23

0 0
) o]
3 67
o o]
0 0
9
0
0 0
0 0
0 0
o o]
0 0

19

145

769

911

1770

175

70

3198

164

43

31

76

13

62

25

7

274

64

60

Predicted label

107

8000

6000

r 4000

r 2000

In terms of where misclassifications occur, the largest number of misclassifications
occurred near the start of the transient event, with more than 60 misclassfications occur-
ring at each of the first few seconds of the simulations. This number decreases to around
20 after the first half of the simulation. Figure 37 shows at what point in the simulations

misclassfications occurred.

o
60 - ®
50)
e
'
40 1 I

30

of Misclassifications

20 A

10 4

..‘M...og
«®

°

St as)

T T T
250 300 350 400

Simulation Time (Seconds)

T T T T
50 100 150 200

Figure 37: Misclassifications for Expanded Bernoulli Naive Bayes Model

4.3.2 Multinominal Naive Bayes Model

The multinominal naive Bayes model performed similarly to the Bernulli model. This
model scored an overall accuracy of 79.60%, a precision of 79.19%, recall of 81.83% and
F1- score of 79.19%. The higher recall implies that this models leans more toward false
positives classifications rather than false negatives. The multinominal models struggles
in the same areas as the Bernoulli model in both, the feedwater pump and turbine trip
without SCRAM transients. However, this model did perform better in turbine trip with-
out SCRAM transient with an accuracy of 19.56%. This models however, struggled much
more with the single turbine trip transient than all other models trained with this dataset
with an accuracy of only 67.18%. Figure 38 shows the confusion matrix for this models

and Table 21 summarizes the individual validation results.

108

True label

Transient Normal Operations

Transient Feedwater Pump Trip

Transient LOCA LOOP -

Transient Valve Closure -

Transient Rapid Power Change -

Transient Depressurization -

Transient- Max Steam Line Rupture -

Transient-Manual Trip -

Transient Load Rejection -

Transient Single Coolant Pump Trip -

Transient Total Coolant Pump Trip -

Transient Turbine Trip No SCRAM +

9050

Confusion Matrix Multinominal Naive Bayes, Random State = 0 CV=10

2602

218

72

43

29

38

16

1504

26

0 0
) o]
10 78
o 3
0 0
1,
0
0 3
0 0
0 1,
o o]
0 0

69

66

579

1306

1493

2973

229

133

2910

39

104

87

74

105

562

46

136

Figure 38: Confusion Matrix for Expanded Multinominal Naive Bayes Model

Predicted label

109

8000

6000

r 4000

r 2000

Table 21: Multinominal Naive Bayes Individual Accurcies For Expanded Dataset

Transient Event Model Accuracy
Normal Operations 100%
Feedwater Pump Trip 57.86%
LOCA + LOOP 98.00%
Valve Closure 81.75%
Rapid Power Change 100%
Depressurization 97.97%
Max Steam Line Rupture 99.88%
Manual Trip 77.78%
Load Rejection 67.18%
Single Coolant Pump Trip 64.30%
Total Coolant Pump Trip 85.70%
Turbine Trip without SCRAM 19.56%

The behavior for the misclassifications for this model were similar to those with the
Bernoulli models. The number of misclassfications occurring at a single point again
starts above 60 during the beginning of the simulations and within a 3 minutes of the
simulations, decreases down to around 20. Figure 39 shows the misclassfication behav-

ior for the multinominal model.

°
60 - *
oo
o
. 50 ..‘
% * o ™
RS X
@ # a
% 30 A oo‘o"'o".o ®
= .o . :.lo o
° ’w °
$* o L] .." Y w % ... o ® ® .’
% I P Yy } .'.... o
°
P T SREAN A A
: e Y * ° o
° o
50 100 150 200 250 300 350 400 450 500 550 600

Simulation Time (Seconds)

Figure 39: Misclassifications for Multinominal Naive Bayes Model

110

4.3.3 Gaussian Naive Bayes

The Gaussian naive Bayes model was not only the worst performing model of the three
naive Bayes models, but also the worst performing model trained for this part of the
project. The models scored an overall accuracy of 77.92%, a precision of 77.44%, a recall
0f 80.65% and a F1-score of 76.98%. As was the case with the other naive Bayes models,
this model tends to experience more false positive misclassifications than false nega-
tives. The Gaussian model was the only model trained in this experiment that was un-
able to perfectly distinguish the normally operating reactor from the transient events.
Though it should be noted only 22 points of nearly 10,000 points tested were misclas-
sified for this. The model struggles with the same two transients that the other naive
Bayes models struggled with, but it is also hurt by issues diagnosing the load rejection,
51.97% and the total coolant pump trip, 64.30%. Both of these results are lows for this ex-
periment. The model does have the best performance with the max steam line rupture
performance, 100%, and the single coolant pump trip, 82.92%. Table 22 shows the indi-
vidual accuracies for this model. Figure 40 shows the confusion matrix for this model.
In terms of misclassfication behavior, the Gaussian model behaves very similarly to the
other two naive Bayes models, with high numbers of misclassifications at the beginning
of the simulations which decrease and level off to about 20 within a couple of minutes.
It should be noted, that with this model, the first two three seconds have a low number
of misclassifications compared to the rest. The reason behind this is likely a result of the
model using more points for early in the simulations, as the model resumes the same
behavior as the rest of the models afterwards. There is a good chance these may also
be some of the normal operating points that were misclassified by the model. Figure 41

shows the misclassification behavior for the Gaussian model.

111

True label

Transient Normal Operations

Transient Feedwater Pump Trip

Transient LOCA LOOP -

Transient Valve Closure -

Transient Rapid Power Change -

Transient Depressurization -

Transient- Max Steam Line Rupture -

Transient-Manual Trip -

Transient Load Rejection -

Transient Single Coolant Pump Trip -

Transient Total Coolant Pump Trip -

Transient Turbine Trip No SCRAM +

9034

22

Confusion Matrix Base Gaussian NB Model, Random State = 0 CV=10

2330

20

Z5)

60

0 0
o] 40
2
1 3733
0 0
0 35
0 0
0 0
0 16
2 3
o] 1
0 21

0 5 11
1) 184
0 0 24
5 o 184
1504 0 0

2] 58
0 0

0 0 105
0 0 149
2 0 146
5 o 175
0 0 195

311

961

537

1163

1811

175

2300

61

85

124

15

233

262

31

32

2984

674

38

Figure 40: Confusion Matrix for Expanded Gaussian Naive Bayes Model

Predicted label

112

8000

6000

r 4000

- 2000

of Misclassifications

Table 22: Individual Accurcies For Gaussian Naive Bayes Mode (Expanded Dataset)

60

50 A

40

30 A

20+

10 ~

Transient Event Model Accuracy
Normal Operations 99.82%
Feedwater Pump Trip 51.81%
LOCA + LOOP 99.41%
Valve Closure 83.17%
Rapid Power Change 100%
Depressurization 97.62%
Max Steam Line Rupture 100%
Manual Trip 80.29%
Load Rejection 51.97%
Single Coolant Pump Trip 82.92%
Total Coolant Pump Trip 66.25%
Turbine Trip without SCRAM 15.93%

i

T
50

T T T T T
100 150 200 250 300

T T T
350 400 450

Simulation Time (Seconds)

T
500

T
550

Figure 41: Misclassifications for Gaussian Naive Bayes Model

113

T
600

4.3.4 Logistic Regression Model

In the previous part of this project, the logistic regression model was among the high-
est performing models trained with overall validation results, all above 98% and indi-
vidual accuracies also all above 98%. However, with the expanded dataset the logistic
regression model failed to perform as strongly. In overall validation results, this model
scored only 86.83% in accuracy, 86.27% in precision, 85.99% in recall and 85.85% for {1
score. This was unexpected as the model had performed strongly with the initial dataset.
The main issue for this model, as is the case with the other models, is the Turbine Trip
without SCRAM transient. The logistic regression model only scored individual accu-
racy of 29.11%. While this is better than the three naive Bayes models, it is still quite
low. The model also struggles with the load rejection transient, with an accuracy of only
50.64%. The remaining transients scored well, all above 80%. The logistic regression per-
formed better than all other models with the feedwater pump transient, with an accuracy
0f80.25% and was able to perfectly diagnosis the max steam line rupture transient. Table
23 summarizes the individual transient accuracies for the logistic regression model and

Figure 42 shows the confusion matrix for this model.

Table 23: Individual Accuracies For Logistic Regression Model (IExpanded Dataset)

Transient Event Model Accuracy
Normal Operations 100%
Feedwater Pump Trip 80.25%
LOCA + LOOP 99.97%
Valve Closure 97.86%
Rapid Power Change 98.60%
Depressurization 97.84%
Max Steam Line Rupture 100%
Manual Trip 85.58%
Load Rejection 50.64%
Single Coolant Pump Trip 97.34%
Total Coolant Pump Trip 96.20%
Turbine Trip without SCRAM 29.11%

114

True label

Transient Normal Operations

Transient Feedwater Pump Trip

Transient LOCA LOOP -

Transient Valve Closure -

Transient Rapid Power Change -

Transient Depressurization -

Transient- Max Steam Line Rupture -

Transient-Manual Trip -

Transient Load Rejection -

Transient Single Coolant Pump Trip -

Transient Total Coolant Pump Trip -

Transient Turbine Trip No SCRAM +

9050

Confusion Matrix Logistic Regression Base Model, Random State = 0 CV=10

932

1020

0 0
0 7
0
0
0 5
0 6
0 0
0 1
0 3
0 21
0 8
0 4

1483

0 0
) o]
0 0
o o]
14 0

0
0

1 0
0 0
0 0
o o]
0 0

328

42

82

790

19

2241

21

43

19

50

36

20

13

78

919

21

24

1348

N
2
&
>

g

o
& .
<& &

£

Figure 42: Confusion Matrix for Expanded Logistic Regression Model

Predicted label

115

8000

6000

4000

r 2000

The misclassication for the logistic regression model behave similarly to those for the
other models. However, unlike the naive Bayes models, the misclassifications reduced
much more quickly. In the case of this model, the number of misclassifications decreased
consistently below 20 after approximately 100 seconds. It should be noted that the points
at the end of the graph are a result of misclassifications occurring later within the rapid

power transient. This graph is shown in Figure 43

50
]

40
30 |

20

of Misclassifications

10 1

T T T T T T T T T T T T
50 100 150 200 250 300 350 400 450 500 550 600
Simulation Time (Seconds)

Figure 43: Misclassifications for Logistic Regression Model

4.3.5 K-Nearest Neighbors Model

During the initial phase of this project, the k-nearest neighbors models had produced
some of the strongest results with the original dataset. The technique was able to once
again produce strong results when used with the expanded datasets. This approach pro-
duced the best model from a non-tree based machine learning model for this experi-
ment. In terms of overall validation results, the kKNN model scored an accuracy 0f91.15%,
a precision 0f 90.93%, recall of 90.97% and f1 score 0f 90.91%. While this was a decrease
from the initial dataset, the results are still strong. The kNN model struggled most with
the load rejection models, only scoring an accuracy of 59.73%, one of the weakest scores

with this transient. The model also struggled with the Turbine Trip without Scram with

116

an accuracy of 65.29%, but this was much higher than the four probability based models.
With the exception of these two transients and the feedwater pump transient, the mod-
els was almost able to perfectly predict the remaining eight transients, with accuracies
between 98% and 100%. Table 24 summarizes the individual accuracies for this model
and Figure 44 shows the confusion matrix.

The kNN model produced one of the strongest results for this phase of the project
and as such, it was used extensively in the other parts of this phase. Due to this, it was
important to understand to what extent the model was under/overfit. To determine this,
the model was tested using the training data. The accuracy of the model when tested on
the training data was 93.12%. Less than 2% higher than with the testing models, as such
there are few concerns with overfit. This was mostly due to issues with the feedwater
pump transient, individual training accuracy of 87.9%.

Table 24: Individual Accuracies For kNN Model (Expanded Dataset)

Transient Event Model Accuracy
Normal Operations 100%
Feedwater Pump Trip 73.98%
LOCA + LOOP 99.99%
Valve Closure 98.37%
Rapid Power Change 100%
Depressurization 99.66%
Max Steam Line Rupture 99.97%
Manual Trip 97.42%
Load Rejection 59.73%
Single Coolant Pump Trip 98.45%
Total Coolant Pump Trip 98.31%
Turbine Trip without SCRAM 65.29%

In the area of misclassification behavior, the kNN model behaved similarly to the four
probability based models, where there are a relatively large number of misclassifications
at the start of the simulations and the number decreases as the simulation continues.
In the case of the kNN model, the number of misclassifications drops to around 20 after

about 10 seconds. Figure 45 shows the misclassification behavior for this model.

117

True label

Transient Normal Operations

Transient Feedwater Pump Trip

Transient LOCA LOOP -

Transient Valve Closure -

Transient Rapid Power Change -

Transient Depressurization -

Transient- Max Steam Line Rupture -

Transient-Manual Trip -

Transient Load Rejection -

Transient Single Coolant Pump Trip -

Transient Total Coolant Pump Trip -

Transient Turbine Trip No SCRAM +

9050

Confusion Matrix KNN Base Model, Random State = 0 Cv=10

14

15

993

13

11

1504

0 0
1 o]
3 a,
8 o]
0 0

26

926

13

27

2643

13

17

760

Figure 44: Confusion Matrix for Expanded kNN Model

Predicted label

118

8000

6000

4000

r 2000

50

40 A

30

of Misclassifications
o ® 0 ®

o
20 1 °
10 A go

50

®
" o °
g o
L) o e o . 0
. Cod
) o [
o Sve %, ~ r) °
100 150 200 250 300 350 400 450 500 550 600
Simulation Time (Seconds)

Figure 45: Misclassification Behavior for KNN Model

4.3.6 Decision Tree Model

In the previous part of this project, the decision tree model trained using TPOT was the
best performing model of the six models trained. When the decision tree model was
trained using the expanded dataset, the model once again proved to be one of the best
performing. The overall accuracy of this model was 92.38%, with a precision and recall
0f92.15% and a f1 score 0£92.14%. In terms of individual accuracy, the model performed
strongly with all but three of the transients. The three lower performing transients were:
feedwater pump transient, accuracy of 72.98%, turbine trip without SCRAM, 74.71% and
theload rejection, 63.48%. While these were significantly lower than the other transients,
these were among some of the highest scores with these three transients. Figure 46 shows
the confusion matrix for this model and Table 25 summarizes this model’s individual ac-
curacies. Since this model was one the best performing models in both parts of the
project, it was necessary to evaluate how overfit the model is by comparing the training
and testing accuracies of the model. The training accuracy was found to be 99.68%, a lit-
tle more than six points higher testing accuracy. This is mostly a result of the three poorer

performing transients. This does indicate the model is notably overfit. It is important to

119

True label

Transient Normal Operations

Transient Feedwater Pump Trip

Transient LOCA LOOP -

Transient Valve Closure -

Transient Rapid Power Change -

Transient Depressurization -

Transient- Max Steam Line Rupture -

Transient-Manual Trip -

Transient Load Rejection -

Transient Single Coolant Pump Trip -

Transient Total Coolant Pump Trip -

Transient Turbine Trip No SCRAM +

9050

Confusion Matrix Decision Tree Base Model, Random State = 0 CV=10

17

882

0 0 0
[8 1
0 0
0 4
0 7 1497
0 2 1
2 0 2
0 0 0
0 6 0
0 7 1
0 4 3
0 4 0

0 0
1 o]
0 0
o 1
0 0

0 0
3 a,
2 o]
0 0

11

f15]

2809

15

25

306

717

N
2
&
>

g

o
& .
<& &

£

Figure 46: Confusion Matrix for Expanded Decision Tree Model

Predicted label

120

8000

6000

4000

r 2000

Table 25: Individual Accuracies For Decision Tree Model (Expanded Dataset)

Transient Event Model Accuracy
Normal Operations 100%
Feedwater Pump Trip 72.98%
LOCA + LOOP 100%
Valve Closure 99.44%
Rapid Power Change 99.53%
Depressurization 99.84%
Max Steam Line Rupture 97.84%
Manual Trip 97.84%
Load Rejection 63.48%
Single Coolant Pump Trip 99.92%
Total Coolant Pump Trip 99.05%
Turbine Trip without SCRAM 74.71%

note that most tree based models experience a degree of overfit, and this amount while
notable, does not disqualify the usefulness of the model. In the area of misclassification
behavior, the decision tree model behaved similar to the kNN model. The model experi-
ences around 50 misclassifications in the first second of the transient simulations. This
number decreases below 20 at around the seven second mark. The number stays around
10 for the majority of the time across all simulations. Figure 47 shows a graph of the mis-

classification behavior for this model.

121

501 o
40 -
30 1

¢

20 A

50 100 150 200 250 300 350 400 450 500 550 600
Simulation Time (Seconds)

of Misclassifications

Figure 47: Misclassifications for Decision Tree Model

4.3.7 Random Forest Model

At the time of the first phase of this project, TPOT had just begun to implement support
for scikit-learn’s packages on support vector machines and random forests. As such, it
was not possible to train a random forest model for the initial dataset. Using the ex-
panded dataset, a random forest model was trained with TPOT. This resulted in the best
performing model of the seven trained for this phase of the project. The model scored an
accuracy of 92.44%, recall of 92.23% and a precision and f1 score of 92.22%. All slightly
higher than the single decision tree model. Individual accuracies were also similar to that
of the decision tree model. The model scored high with the eight transient events that the
decision tree model scored high. The model also struggles most with the same three tran-
sients, with an individual accuracy of 75.5% for the turbine trip without SCRAM, slightly
higher than the decision model, 70.98% for the feedwater pump transient and 62.89% for
the load rejection transient, both slightly lower than the decision tree model. Figure 48
shows the confusion matrix for this model and Table 26 summaries the model’s individ-
ual accuracies. Table 27 shows the accuracies for the first 30 seconds of the simulation

for the decision tree model.

122

True label

Transient Normal Operations

Transient Feedwater Pump Trip

Transient LOCA LOOP -

Transient Valve Closure -

Transient Rapid Power Change -

Transient Depressurization -

Transient- Max Steam Line Rupture -

Transient-Manual Trip -

Transient Load Rejection -

Transient Single Coolant Pump Trip -

Transient Total Coolant Pump Trip -

Transient Turbine Trip No SCRAM +

9050

Confusion Matrix Decision Tree Base Model, Random State = 0 CV=10

3183

11

912

0 0
0 4
0
0
0 2
0 2
0 0
0 0
0 4
0 12
0 1
0 2

1502

0 0
) o]
0 0
o o]
0 0

0 0
0 0
o o]
0 0

2783

14

719

N
2
&
>

g

o
& .
<& &

£

Figure 48: Confusion Matrix for Expanded Random Forest Model

Predicted label

123

8000

6000

4000

r 2000

Table 26: Individual Accuracies For Random Forest Model (Expanded Dataset)

Transient Event Model Accuracy
Normal Operations 100%
Feedwater Pump Trip 70.78%
LOCA + LOOP 100%
Valve Closure 99.53%
Rapid Power Change 99.86%
Depressurization 99.84%
Max Steam Line Rupture 100%
Manual Trip 99.08%
Load Rejection 62.89%
Single Coolant Pump Trip 99.58%
Total Coolant Pump Trip 99.55%
Turbine Trip without SCRAM 75.50%

As was done with both, the single decision tree and the kNN model, it was neces-
sary to check this model for overfit, as it was one of the better performing models. The
random forest model’s training data scored a 99.68%. This is similar to the decision tree
indicating that this model does experience some overfit once again, in the area of the
three problematic transient events. It is important to note then, that while this model
does experience some notable overfit, this is expected due to the nature of tree based
models.

In terms of misclassifications, the random forest model experienced the same be-
havior of the single decision tree model. The model experienced around 45 misclassifi-
cations at the first second of the transient simulations and this number dropped quickly
below 20 within 5 seconds. Throughout most the remaining time of the simulations, the
model scored fewer than 10 misclassfications at each second. Figure 49 shows the be-

havior for the random forest model.

124

Table 27: Accuracies of Decision Tree Model During The First 30 Seconds

Time | Counts Tested | Counts Misclassified | Accuracy
0 76 47 38.16%
1 85 49 42.35%
2 88 33 62.5%
3 74 36 64.86%
4 78 23 70.51%
5 88 12 86.36%
6 85 22 74.11%
7 78 14 82.05%
8 82 15 81.70%
9 85 13 84.71%
10 79 13 82.28%
11 91 16 82.41%
12 88 20 77.27%
13 93 15 83.87%
14 89 13 85.39%
15 73 14 80.82%
16 69 5 92.75%
17 91 13 85.39%
18 94 11 88.29%
19 81 11 86.41%
20 79 12 84.81%
21 79 12 84.81%
22 88 7 92.05%
23 86 9 89.54%
24 85 10 88.23%
25 86 9 86.20%
26 85 10 89.41%
27 87 12 85.89%
28 85 12 89.41%
29 82 5 93.90%
30 87 9 89.65%

125

40

30 ~

201 o
o

of Misclassifications

10 ~

50 100 150 200 250 300 350 400 450 500 550 600
Simulation Time (Seconds)

Figure 49: Misclassifications for Random Forest Model

4.4 Random State Variation Analysis

The decision tree model has been one of the best performing models throughout both,
this study and the previous experiment. The model experienced minimal variation in
terms of overall validation results when the random state was changed. Of the twenty
models trained, the highest accuracy score was 93.09% and the lowest was 92.30%. The
median accuracy between the twenty decision tree models was 92.41%, close to the ac-
curacy reported for the base model. This trend is similar for the precision, recall and f1
scores, with median scores of 92.18% for precision and 92.17% for recall and f1 score.
This shows for the decision tree model, there is little variation between different random
states. Table 28 summarizes the statistics for the twenty decision tree models.

Table 28: Statistics for Decision Tree Variation Analysis

Model Accuracy | Precision | Recall | F1 Score
Mean 92.45% 92.22% | 92.23% | 92.22%
Median 92.41% 92.18% | 92.17% | 92.18%
Standard Deviation | 0.16% 0.17% 0.18% | 0.15%
Minimum 92.30% 92.06% | 92.07% | 92.07%
Maximum 93.09% 92.90% | 92.94% | 92.83%
Range 0.79% 0.84% 0.87% 0.76%

126

The random forest model has also produced high results in this experiment. Sim-
ilar to the decision tree, the random forest model also experienced minimal variation
between the twenty different models. The highest trained accuracy for the random for-
est models was 92.48% and the lowest was 92.34%. The median accuracy between these
models was 92.42%, again very close to the 92.41% scored for the base model. The me-
dian precision for these models was 92.20%, as was the median f1 score. The median
recall was 92.21%. The random forest models showed less variation than the decision
tree models, with a range of accuracy less than 0.14%. Table 29 shows the statistics for

the random forest models.

Table 29: Statistics for Random Forest Variation Analysis

Model Accuracy | Precision | Recall | F1 Score
Mean 92.42% 92.20% | 92.21% | 92.20%
Median 92.42% 92.21% | 92.22% | 92.21%
Standard Deviation | 0.03% 0.03% 0.03% | 0.03%
Minimum 92.34% 92.12% | 92.11% | 92.27%
Maximum 92.48% 92.26% | 92.28% | 92.27%
Range 0.14% 0.14% 0.16% 0.15%

Although the k-nearest neighbors models was not as accurate as the two tree based
models, the base model produced high results in the low 90’s. This model was also the
least overfit of the three best models trained in this phase of the project. The twenty
k-nearest neighbors experienced more variation than the tree based models. The me-
dian accuracy of 91.42% is slightly lower than the accuracy of the base model at 91.82%.
The other three validation measurements are similar with a median precision 0of91.20%,
recall of 91.08% and f1 score of 91.01%. The range of accuracies measured was 1.08%,
slightly larger than the range of the two tree based models.The statistics for the k-nearest

neighbors models are summarized in Table 30.

127

Table 30: Statistics for K-Nearest Neighbors Variation Analysis

Model Accuracy | Precision | Recall | F1 Score
Mean 91.27% 91.05% | 91.14% | 91.01%
Median 91.24% 91.01% | 91.05% | 91.98%
Standard Deviation | 0.69% 0.71% 0.74% 0.72%
Minimum 88.74% 88.48% | 88.53% | 88.33%
Maximum 92.06% 92.18% | 91.99% | 91.80%
Range 3.32% 3.34% 3.46% | 3.47%

4.5 Improving the Model

Once a machine learning model has been trained, it is common practice to look for ways
to improve the model. This is especially true if weaknesses within the model can be iden-
tified. In this case, the three best performing models all struggled with three of the 12
different transient events classified on. This section will explore different methods used
to improve these models. Two different approaches were used for this part of the exper-
iment. The first was changing the split between testing and training data to see if more
training data can improve model performance. The second approach is to increase the
number of generations and population size used with the TPOT Classifier. Itis important
to note that there are other approaches that could be used to improve a machine learn-
ing model’s performance.In many cases, the first strategy to improve a machine learning
model is to better tune hyperparameters by trying different combinations to see if a bet-
ter model can be produced. In machine learning hyperparameters are parameters that
cannot be changed in the training process. Some common examples of hyper param-
eters include, the number nearest neighbors in a kNN model, the max depth of a tree
based model, the number of neurons used in a layer in training a neural network and the
activation function used in training a neural network model. Tuning can be a complex
process and their are a number of different approaches that can be used such as Grid

Search, gradient boosting, etc. However, in the case of this project an AutoML package is

128

used to train the machine learning models. One of the benefits of AutoML packages like
TPOT is that the package will try several different hyperparameter combinations. While
this is a brute force approach and is time consuming, it is effective in producing better
performing models. The use of HPC makes the use of AutoML feasible in this case. Due to
this approach, there is no need for further hyperparameter tuning. Another common ap-
proach to try and improve a machine learning model’s performance is to add more data
to the dataset. This can be done in two different ways. The first is to collect more sam-
ples and increase the size of the dataset. Since the expanded dataset already consisted
of over 100,000 data points and already several initial conditions had been simulated,
it was decided that a better approach would be to change the split between testing and
training data. As has been mentioned, the dataset was split in two for the training of the
models. To see if additional data would improve the model, this split was changed from
50% testing and 50% training to 55% testing/45% training, 60% testing/40% training and
65% testing/35% training. The three optimal models were then re-trained and validated.
All three models were also re-trained using a 45% testing/65% testing to see the impact
that reducing the data would have on the optimal models.

The results from increasing the testing data were surprising. Instead of improving
the model’s accuracy and other validation measurements, the measurements actually
appear to have slightly decreased as the testing data split increased. It should be noted
that the drop is very small within the range of the variation shown in the previous section.
For example, the decision tree model’s original accuracy was 92.38%. This dropped very
slightly to 92.33% with the split changed to 55% training and 45% testing. The trend con-
tinued as the amount of testing data increased. When the model was training with a 60%
training split, the accuracy dropped down to 92.16%. The model’s accuracy remained
the same when the split was increased to 65%. The model improved very slightly to an
accuracy of 92.43% when the split was decreased to 45%. Table 31 shows the validation

results for all four different splits for the decision tree. The random forest model experi-

129

enced a similar trend with validation measurements decreasing as data was added and
increasing when training data was reduced. Table 32 summarizes the results for the ran-
dom forest model. It should also be noted that the gap in validation results stayed within
the same range as the original model with a 6 7% difference. The reason for the change in
validation results with these tree based models is most likely the model becoming more
overfit and more rigid to outlying data as more testing data is brought in. When this oc-
curs it can become more difficult for the model to classify correctly data that has some

outliers.

Table 31: Validation Results for Decision Tree Models Trained with Different Splits

Model Accuracy | Precision | Recall | F1 Score
55%-45% Split | 92.33% 92.10% | 92.11% | 92.10%
60%-40% Split | 92.16% 91.97% | 91.94% | 91.95%
65%-35% Split | 92.16% 91.96% | 91.94% | 91.95%
45%-55% Split | 92.43% 92.20% | 92.19% | 92.19%

Table 32: Validation Results for Random Forest Models Trained with Different Splits

Model Accuracy | Precision | Recall | F1 Score
55%-45% Split | 92.28% 92.05% | 92.07% | 92.05%
60%-40% Split | 92.28% 92.14% | 91.94% | 91.93%
65%-35% Split | 92.10% 91.89% | 91.88% | 91.88%
45%-55% Split | 92.60% 92.37% | 92.39% | 92.38%

The kNN model behaved differently than the two three based models. The original
kNN model scored an accuracy of 91.15%. When the split was changed to 55% training
data 45% testing, the accuracy of model decreased to 90.95% and then down to 90.85%
when the split was changed to 60%-40%. However, when the split was changed to 65%-
35% the model’s accuracy went up to 92.3%, a fairly significant increase. The model’s ac-
curacy also increased slightly, to 91.69% when the split was decreased to 45%-55%. This
suggests that the increase in validation results is more likely due to TPOT exploring differ-
ent pipelines rather than any significant gain from having additional data or the model
being overfit. It should be noted that the kNN model’s validation accuracy remained only

1 2% higher than the testing accuracy through this process. Table 33 summarizes this

130

model.

Table 33: Validation Results for kKNN Models Trained with Different Splits

Model Accuracy | Precision | Recall | F1 Score
55%-45% Split | 90.95% 90.70% | 90.84% | 90.70%
60%-40% Split | 90.85% 90.62% | 90.75% | 90.62%
65%-35% Split | 92.34% 92.13% | 91.20% | 91.14%
45%-55% Split | 91.69% 91.45% | 92.50% | 92.45%

Another possible approach to add data to the dataset is to look to collect more fea-
tures for the dataset. This is sometimes referred to as increasing the dimensionality of
the dataset. By adding more features it is possible the model could better identify their
target data in supervised classified learning or discover new trends in unsupervised clas-
sified learning. It should be noted there are a number of drawbacks associated with this
approach. For example, adding new features will add more complexity to the dataset
and likely increase the overfit of the models produced. This is known as the "Curse of
Dimensionality".

There are also a number of issues with increasing the dimensionality that are specific
to this experiment. The first is the time associated with collecting the data. The data col-
lected for the expanded dataset took a number of weeks to compile through simulation.
To add more features to this dataset it would likely take a number of months to identify
potential features, re-run the simulations, compile the dataset and retrain the models. A
more important consideration for collecting additional features is the potential to create
more dependency in the model. The second approach performed in order to improve
the performance of the models was increasing the number of generations and pipelines
used in the training. This approach is one of the advantages of TPOT, as it allows the
classifier more time to produce a better model. This primary issue is that training is al-
ready a time consuming process and increasing the population size and/or increasing
the number of generations run will significantly increase the time for the training pro-
cess. However, with the use of HPC it is possible to train these models in a reasonable

amount of time.

131

The first attempt to improve the model was done by increasing the population size,
number of pipelines retained in each generation from 100 to 150. This was run for 100
generations. In the next attempt, the population size was increased to 200 while running
for 100 generations. The final two attempts to improve the model increased the number
of generations run along with the number of pipelines. The number of generations was
firstincreased to 150 and then again to 200. The population size for these two runs stayed
at 200. This was performed for each of the three optimal models.

The initial increase in population size to 150 made little difference on all three mod-
els. The decision tree model scored an accuracy of 92.37%, about the same as the origi-
nal model 92.38%. The random forest model scored a 92.46% in accuracy, slightly higher
than the original model at 92.44%, but still within the range from the variation analy-
sis. The kNN model dropped slightly to 91.00% from the original 91.15%, still within
the range from the variation analysis. The results from increasing the population size
to 200 were similar. The decision tree model improved up to 92.40% and the random
forest model score remained at 92.46%. The kNN model experienced a more significant
increase to 91.62% higher than both of the other models trained using the technique,
however this value is still within the 3.32% range established in the previous section.

The attempt to improve the model by increasing the number of generations TPOT
ran, also had little impact on the three model’s overall performance. When the number
of generations was increased to 150 with the population size remaining at 200, the deci-
sion tree model score 92.42% in accuracy, the random forest model scored 92.44% and
the kNN model scored a 91.64%. All three of these results, while slightly higher than the
previous attempt, were still well within the range established in the random variance sec-
tion. This pattern continued when the number of generations was increased to 200. The
decision tree model and random forest models dropped slightly to 92.38% and 92.42%
and the kNN model increased to 91.72%. All of these values were well within the expected

range. Table 34, 35 and 36 summarize all the validation results for these attempts.

132

Table 34: Validation Results for Decision Tree Models Trained with Different TPOT Pa-

rameters
Model Accuracy | Precision | Recall | F1 Score
150 Population Size- 100 Generations | 92.37% 92.13% | 92.14% | 92.13%
200 Population Size- 100 Generations | 92.42% 92.17% | 92.17% | 92.17%
200 Population Size- 150 Generations | 92.42% 92.19% | 92.20% | 92.19%
200 Population Size- 200 Generations | 92.38% 92.15% | 92.17% | 92.15%

Table 35: Validation Results for Random Forest Models Trained with Different TPOT Pa-
rameters

Model Accuracy | Precision | Recall | F1 Score
150 Population Size- 100 Generations | 92.46% 92.24% | 92.25% | 92.24%
200 Population Size- 100 Generations | 92.46% 92.25% | 92.25% | 92.25%
200 Population Size- 150 Generations | 92.44% 92.22% | 92.22% | 92.22%
200 Population Size- 200 Generations | 92.44% 92.20% | 92.22% | 92.21%

Table 36: Validation Results for KNN Models Trained with Different TPOT Parameters

Model Accuracy | Precision | Recall | F1 Score
150 Population Size- 100 Generations | 91.00% 90.76% | 90.85% | 90.74%
200 Population Size- 100 Generations | 91.62% 91.39% | 91.42% | 91.37%
200 Population Size- 150 Generations | 91.64% 91.41% | 91.44% | 91.40%
200 Population Size- 200 Generations | 91.71% 91.49% | 91.53% | 91.47%

4.6 Identifying Reasons Behind Misclassifications

Since the efforts to improve the three optimal models didn’t resolve the issues with the
models, it was necessary to examine the models and try to determine what is causing the
misclassifications. Of the 12 events the models attempted to classify, ninodels scored
in the 70% range, while the load rejection transient scored in the 60% ragne. It should
be noted that the vast majority of misclassifications occurred between these three tran-
sients, i.e. load rejections were misclassified as feedwater pump trips or turbine trips,
etc. The models trained using TPOT make use of a variety of feature reduction and selec-

tion techniques. As such, it can be difficult to identify a single root cause for a transient.

133

To better examine the reason behind the larger number of misclassifications with these
three transients, it was necessary to further examine the data used in testing the mod-
els. In order to do this, an optimal pipeline from the the variation analysis was re-trained
and tested. Using Pandas, it was possible to create dataframes consisting of the data that
was correctly classified for each of the three transients. These dataframes consisted of
2797 points for the load rejection transient, 3290 for the feedwater pump transient and
3463 points for the turbine trip without SCRAM. Six separate dataframes were created
containing the misclassfied data for each of the transients. The descriptive statistics for
each set of data were calculated and then compared to look for similarities and differ-
ences that could have resulted in misclassifications.

In examining the possible reasons behind the misclassifications, the load rejection
transient’s descriptive statistics show a number of significant differences between the
correctly identified load rejection points and the 899 load rejection points incorrectly
identified as feedwater pump trips. The most significant of these was the level of the nar-
row range of SG-2. In the correctly identified load rejections points, the level was found
to be 63% above capacity, level 163%, while in the incorrect points, the level was found
to be on average 25%. This value is much closer to the correct feedwater pump trip’s av-
erage of 10%. The model also incorrectly identified 714 points load rejection as turbine
trips without SCRAM. Once again, the most significant area of difference was the SG-2
NR LEVEL feature, where the incorrect load rejection points diagnosed as turbine trips
without SCRAM had an average level of 127% compared to the 163% of the correct points.
The correct turbine trip points had an average level of 136%. Other features with notable
differences for load rejection included MS FLOW FROM SG-1 LINE-1A, 1B, 2A & 2B, as
well as the FW FLOW TO SG-2.

Examining the feedwater pump transient data, there were 883 feedwater pump trip
points incorrectly identified as turbine trips without SCRAM. The most notable differ-

ence was with the narrow range level of SG-1. The correct feedwater pump points had

134

an average level of 12%, while the misclassified points had a much higher average at 54%.
The average for the correct turbine trip pumps was much closer to the incorrect points at
55%. The trend was similar for the 883 feedwater pump trip points that were incorrectly
classified asload rejection. The average value for the SG-1 NR LEVEL for these points was
54%, very close to the average for the correctload rejection points at 55%. The generated
power and pressure from SG-2 were also noticeably different between sets.

Finally, for the turbine trip without scram data, 331 points were misclassified as feed-
water pump trips. Similar to the load rejection data, the most notable feature was the
SG-2 NR LEVEL. The mean for this feature from the incorrect data was 25%, very close
to the value for the correct feedwater pump transient and significantly lower from the
136% average of the correct turbine trip without SCRAM data. In the case of the turbine
trip without SCRAM points that were incorrectly identified as load rejection, there ap-
pears to be no noticeable similarity between the narrow range levels of SG-1 and 2, as
both correct sets of data have noticeable differences from the incorrect set. It is likely
that this incorrectly classified data is the result of the data being extremely close to the
data of the other transient and not the result of a single feature. Table 37 and 38 show the
averages for both SG-1 and SG-2 Levels for all of the data subsets. The complete list of
descriptive statistics for the subsets can be seen in the Appendix section.

Table 37: Steam Generator Level Averages for Correctly Classified Data

Transient SG-1 LV (%) Average | SG-2 LV (%) Average
Electrical Load Rejection 53.779056 162.777024
Turbine Trip W/O SCRAM 55.364462 136.219546
Feedwater Pump Trip 12.910617 10.124434

4.7 Decision Tree Analysis

As was the case in the previous study, the decision tree model scored some of the high-
est results of the study. This allowed for a deeper analysis of the decision tree model and

its reliance on certain features. The first step to perform this analysis was to extract the

135

Table 38: Steam Generator Level Averages for incorrectly Classified Data

Transient SIEVL(?‘%? SLC;VZeII?‘\VZC)} Dif?e(i-elnce Di’r%i;aznce
Turbine Trip as Load Rejection 110.192612 | 54.220982 1.14348 | 110.418089
Turbine Trip as Feedwater Pump 54.361579 | 25.274029 | 1.002883 | 110.945517
Feedwater Pump as Load Rejection | 54.220982 | 25.801457 | 41.310365 | 15.677023
Feedwater Pump as Turbine Trip 54.220982 | 25.801457 | 41.310365 | 15.677023
Load Rejection as Turbine Trip 2.861543 | 127.372561 | 0.605488 | 63.379265
Load Rejection as Feedwater Pump | 54.384544 | 99.397759 | 0.408784 | 136.789748

decision tree from the optimal pipeline produced, using TPOT and graph the tree us-
ing scikit-learn. The tree produced from this model was quite large, due to the number
of classes and features used in training. The top five levels of the tree are shown in Fig-
ure 50. It can be seen that this optimal model is able to make some quick classifications
based on a single feature in the dataset. This leaves the following question: can a model
be trained, that lacks one or more of these key features and still make an accurate diag-
nosis? To determine this, the top five features of the tree were dropped one by one and
new models retrained using TPOT. Table 39 lists the features that were dropped from the

dataset. The first feature dropped was the Pilot Operating Relief Valve (PORV) discharge

Table 39: Features Removed from Optimal Decision Tree (Gini Impurity)

Feature Feature Number
PORV Discharge Temperature 15
RCS LVL Loop 1 NR 3
Cold Leg 2A Temperature 8
Hot Leg 2 Temperature 7
Hot Leg 1 Temperature 4

temperature. The model produced using the decision tree was much more complex, with
amuch larger tree produced. However, TPOT was still able to produce a high performing
model. The accuracy of this model was scored at 92.33%, a marginal difference from the

original decision tree model’s 92.38%. The other validation measurements scored simi-

136

gini = 0.907
samples = 55533
value = [B965, 4503, 4560, 4512, 1532, 4475, 4531, 4540, 4575
4474, 4496, 4370]

False
True
X3 == 05

gini = 0.905
samples = 46568
value = [0, 4503, 4560, 4512, 1532, 4475, 4531, 4540, 4575
4474, 4496, 4370]

/ \
X[B] <= 0.75

gini = 0.B96
samples = 42008

value = [0, 4503, 0, 4512, 1532, 4475, 4531, 4540, 4575, 4474

X[15] == -2.382 ‘

gini = 0.0
samples = 8965
value = [8965,0,0,0,0,0,0,0,0,0, 0, 0]

gini = 0.0
samples = 4560

value = [0, 0, 4560, 0, 0, 0, 0, 0, 0, 0, 0, 0]

4406, 4370]
X[7]==05 \
gini = 0.883 gini = 0.0
samples = 37469 samples = 4539
value = [0, 4503, 0, 4512, 1532, 4475, 4531, 1, 4575, 4474 | | value = [0, 0, 0, 0, 0, 0, 0, 4539, 0, 0, 0, 0]
4496, 4370)
X[l <= 025 \
gini = 0.B68 gini = 0.0
samples = 32938 samples = 4531
value = [0, 4503, 0, 1“111%['51?&2“9?1’—3 0,1, 4575, 4474 value = [0,0, 0,0, 0,0, 4531, 0,0, 0, 0, 0]
4496, 437

Figure 50: Top 5 Levels of Optimal Decision Tree

lar as well. The models trained using the random forest increased slightly with a score of
92.46%. The k-nearest neighbors model also increased up to 91.60% from 91.15%. This is
not entirely unusual as performance can degrade in this type of model with a high num-
ber of features and there is some expected variation due to the use of random numbers.

The second feature that was removed from the dataset was the water level narrow
range for RCS loop. This time, the decision tree’s accuracy increased slightly to 92.40%
The random forest model fell slightly to 92.39% and the k-nearest neighbors model once
again, improved up to 92.42%. This trend continued when the third feature, the 2A cold
leg temperature was removed, the decision tree once again improved up to 92.45% and
the random forest stayed consistent at 92.39%. The k-nearest neighbors model however,
fell down to 91.76%. The fourth feature dropped from the dataset was the temperature
for the second hot leg of the reactor system. The decision tree model began to fall slightly
when this feature was removed, scoring an accuracy 0f92.36%. The random forest model
slightly improved with the removal of this feature to 92.46%, while k-nearest neighbors
models also scored slightly lower at 91.07%. The final feature dropped for this part of

the study was the temperature for the first hot leg of the reactor system. Once again,

137

the decision tree rebounded to an accuracy score of 92.45%. The random forest model
and k-nearest neighbors model’s accuracy scored consistently the same, at 92.46% and
90.08%, respectively. This analysis shows that while these five features certainly assist in
training more efficient models, they are not critical to make an accurate diagnosis. Still,
the question remains: are there more important features that might affect performance
to a greater degree? Using scikit-learn’s feature importance function for decision trees,
it was possible to calculate the Gini Importance for each feature used in the model. Ta-
ble 40 shows the top five individual features by importance of the initial decision tree

model. Figure 51 shows the importance value for each of those features. The feature

Table 40: Features Removed from Optimal Decision Tree (Gini Importance)

Feature Feature Number
Containment Temperature 17
Hot Leg 2 Temperature 7
RCS LVL LOOP 1 WR 2
Hot Leg 1 Temperature 4
Cold Leg 2B Temperature 9

with the highest Gini importance in the initial decision tree model was the containment
temperature. When removed from the dataset and a new decision tree model trained,
the accuracy did decrease to 91.81% from the 92.33%. The random forest and k-nearest
neighbor models experienced larger drops from the initial accuracy. The random forest
model’s accuracy score decreased to 90.27% and the k-nearest neighbors model dropped
to 90.37%. Although the decrease was larger with the containment temperature, TPOT
was still able to produce an accurate model. The feature with the second highest im-
portance was the second hot leg temperature. The decision tree model trained without
the top two features scored an accuracy of 90.38%, only slightly lower than the previous
model. The random forest model stayed consistent with a score of 90.28%. This is very
similar to the last model trained. The k-nearest neighbor model’s accuracy dropped to

89.85%. The decision tree model’s accuracy remained consistent when the third feature,

138

Figure 51: Top 5 Features by Gini Importance

Top Indivdual Features by Importance

0.16 7

0.14 -

0.12 1

0.10 1

0.08 -

Gini Importance

0.06

0.04 1

0.02 1

0.00 -

17 7 2 4 9
Feature Number

the water level for the wide range of the RCS loop, was dropped, scoring a 90.38% in ac-
curacy. The random forest model remained consistent at 90.28%, while the k-nearest
neighbor model scored slightly lower at 89.48%. The fourth feature dropped was the first
hot leg temperature. Two of the models experienced improved scores when dropping
this feature. The decision tree model scored a 91.8% and the k-nearest neighbors mod-
els scored a 90.07% for accuracy. The random forest remained consistent at 90.26%. The
final feature dropped was the 2B cold leg temperature. The decision tree model only
scored slightly lower with an accuracy of 91.66%. The random forest model scored a

90.29%, a similar score to the others trained using this method. Finally, the k-nearest

139

neighbors dropped again down to 89.40%. Table 41 shows the validation results for all
the models trained for the decision tree analysis. Table 42 shows the difference in valida-

tion scores from the base model trained.

140

Table 41: Validation Results from Feature Removal Analysis)

Model Accuracy | Precision | Recall | F1 Score
DT W/O Top G. Impurity Feature 92.33 92.09 92.12 92.10
DT W/O Top 2 G. Impurity Features 92.4 92.16 92.19 92.10
DT W/O Top 3 G. Impurity Feature 92.42 92.18 92.19 92.19
DT W/O Top 4 G. Impurity Features 92.36 92.12 92.15 92.13
DT W/O Top 5 G. Impurity Features 92.45 92.22 92.24 92.23
kNN W/O Top G. Impurity Feature 91.6 91.37 91.41 91.36
kNW/O Top 2 G. Impurity Features 92.42 92.42 92.36 92.17
kNN W/O Top 3 G. Impurity Features 91.76 91.52 91.59 91.53
kNN W/O Top 4 G. Impurity Features 91.07 90.85 90.94 90.82
kNN W/O Top 5 G. Impurity Features 91.08 90.85 90.95 90.8
RF W/O Top G. Impurity Feature 92.46 92.24 92.25 92.25
RF W/O Top 2 G. Impurity Features 92.42 92.21 92.22 92.21
RF W/O Top 3 G. Impurity Features 92.30 92.17 92.19 92.18
RF W/O Top 4 G. Impurity Features 92.46 92.25 92.26 92.25
RF W/O Top 5 G. Impurity Features 92.45 92.24 92.24 92.24
DT W/O Top G. Importance Feature 91.81 91.63 91.68 91.58
DT W/0O Top 2 G. Importance Features 90.38 90.15 90.10 90.12
DT W/O Top 3 G. Importance Features 90.37 90.11 90.07 90.00
DT W/0O Top 4 G. Importance Features 91.82 91.63 91.72 91.72
DT W/0O Top 5 G. Importance Features 91.66 91.47 92.58 91.28
kNN W/O Top G. Importance Feature 90.37 90.17 90.23 90.00
kNN W/O Top 2 G.Importance Features 89.85 89.61 89.63 89.53
kNN W/O Top 3 G.Importance Features 8948 89.25 89.26 89.04
kNN w/o Top 4 G.Importance Features 90.07 89.86 89.85 89.71
kNN w/o Top 5 G.Importance Features 89.40 89.16 89.12 89.02
RF w/o Top G.Importance Feature 90.27 90.03 90.00 90.01
RF w/o Top 2 G.Importance Features 90.28 90.04 90.01 90.02
RF w/o Top 3 G.Importance Features 90.29 90.06 90.04 90.04
RF w/o Top 4 G.Importance Features 90.26 90.02 90.00 90.01
RF w/o Top 5 G.Importance Features 90.29 90.06 90.04 90.04

141

Table 42: Differences In Validation Results from Feature Removal Analysis)

Accurac Precision Recall F1 Score
Model Differenge Difference | Difference | Difference
DT W/O Top G. Impurity Feature -0.05 -0.06 -0.03 0.96
DT W/O Top 2 G. Impurity Features 0.02 0.01 0.04 1.03
DT W/0O Top 3 G. Impurity Features 0.04 0.03 0.04 1.05
DT W/0O Top 4 G. Impurity Features -0.0 -0.03 0.00 0.99
DT W/O Top 5 G. Impurity Features 0.0 0.07 0.09 1.32
kNN W/O Top G. Impurity Feature 0.45 0.45 0.44 0.22
kNN W/O Top 2 G. Impurity Feature 1.20 1.50 1.39 1.26
kNN W/O Top 3 G. Impurity Features 0.61 0.6 0.62 0.39
kNN W/O Top 4 G. Impurity Features -0.08 -0.07 -0.03 -0.09
kNN W/O Top 5 G. Impurity Features -1.35 -0.07 -1.32 -0.08
RF W/O Top G. Impurity Feature 0.03 0.02 -0.02 0.03
RF W/O Top 2 G. Impurity Features -0.01 -0.01 -0.05 -0.01
RF W/O Top 3 G. Impurity Features -0.04 -0.05 -0.08 -0.04
RF W/O Top 4 G. Impurity Features 0.03 0.03 -0.01 0.03
RF W/O Top 5 G. Impurity Features 0.02 0.02 -0.03 0.02
DT W/0O Top G. Importance Feature -0.50 -0.52 -0.47 0.44
DT W/O Top 2 G. Importance Features -2.00 -2.00 -2.03 -1.02
DT W/O Top 3 G. Importance Features -2.01 -2.04 -2.08 -1.06
DT W/O Top 4 G. Importance Features -0.56 -0.52 -0.4 0.58
DT W/0O Top 5 G. Importance Features -0.72 -0.68 0.43 0.14
kNN w/o Top G. Importance Feature -0.78 -0.75 -0.74 -0.91
kNN w/o Top 2 G.Importance Features -1.30 -1.31 -1.34 -1.38
kNN w/o Top 3 G.Importance Features -1.67 -1.67 -1.71 -1.87
kNN w/o Top 4 G.Importance Features | -1.073 -1.06 -1.12 -1.2
kNN w/o Top 5 G.Importance Features -1.75 -1.76 -1.85 -1.89
RF w/o Top G.Importance Feature -2.16 -2.19 -2.27 -2.21
RF w/o Top 2 G.Importance Features -2.15 -2.18 -2.26 -2.2
RF w/o Top 3 G.Importance Features -2.14 -2.16 -2.23 -2.18
RF w/o Top 4 G.Importance Features -2.17 -2.2 -2.27 -2.21
RF w/o Top 5 G.Importance Features -2.14 -2.16 -2.23 -2.18

4.8 Discussion

This phase of the experiment aimed to expand the scope of the previous effort by deter-

mining if the non-nerual network models could continue to provide accurate diagnosis

142

when considering a larger number of different reactor transient events. In this phase,
data was once again collected from the GPWR simulator to develop machine learning
models using TPOT. This resulted in a dataset consisting of over 110,000 points, with 12
different classes of data.

The validation results from the models trained in this study were mixed when com-
pared to the previous section. The three naive Bayes models and logistic regression mod-
els suffered significant drops in validation results. However, the decision tree and k-
nearest neighbors models, along with the new random forest model, maintained high
validation results, in the low 90’s. This demonstrates that these types of machine learn-
ing models can effectively distinguish between several different types of transient events.
Also, all but one of the seven models were able to perfectly identify a reactor operating
normally from one experiencing a transient.

To take the analysis of the models to a great level of detail, the time stamp data was
used to identify where in the simulation misclassifications occurred. This analysis showed
that for the three higher performing models, a higher number of misclassifications oc-
curred within the first five seconds of the transient simulation. After 30 seconds, the
model was better able to classify the transients. Past this point in the simulation, the
model only experienced an average of 10 misclassifications in each second of the sim-
ulation. This indicates that a highly accurate diagnosis could be provided to operators
within 30 seconds of the event occurring using these models.

The three best performing models had struggles correctly identifying the electrical
load rejection, feedwater pump trip and turbine trip without SCRAM transients, with ac-
curacies in between 60% and 70%. To improve the model different data splits were used
with testing and training the data, however this did not lead to a significant change in
validation results. Another attempt to improve the model involved allowing TPOT more
time to find an optimal model by increasing the number of pipelines retained in each

generation, as well as the number of generations the training was ran for. Unfortunately,

143

this also did not result in any significant change in performance. Since there were no
simple changes to apply to the model to fix the misclassification issues, it was important
to try and understand the cause of the issues. To do this, the incorrect testing data was
divided into subsets based on which transient the data was classified as. The descriptive
statistics were then calculated and examined for each of these six subsets. The values
were compared to the descriptive statistics for the data that was correctly classified. It
was found that the two steam generator levels had significant differences from the cor-
rectly classified data for five of the six subsets. This appears to be part of the reason the
data was incorrectly misclassified for these cases. In order to address the concern of key
data features missing when a diagnosis is needed, the three higher performing models
were trained with features removed. Five features were removed based on Gini Impurity
and Gini Importance from the optimal model. TPOT was able to train new models that
still had high validation results despite missing key features, based on both categories.
These results were also in the low 90’s. These kinds of models could be used as a contin-
gency in the event sensors are damage or have failed in the course of a transient event.
Finally, analysis was done to see how the three higher performing models are affected
by changes in the random state used in model training. These results showed that the
random state only had a minimal impact on the models, as each of the models only had
a variation around 1% across twenty different random states.

Major findings from this phase of the project were -

e Alarger number of transient events can be diagnosed accurately using non-neural

network models, such as decision trees and k-nearest neighbors.

* In the event key features are missing, TPOT trained models can still make highly

accurate diagnoses.

e Therandom state used to train the higher performing models has a minimal impact

on model validation results.

144

5 Anomaly Detection

The expanded use of data science, machine learning, etc. in the world today, will likely
have a large impact on every day life in the near future. As was mentioned earlier, many
people already interact with these systems, most without even realizing it. However,
there are a number of issues that will need to be addressed as the use of machine learn-
ing increases. One of these issues relates to the ability to determine if there is something
wrong with the data being used with a machine learning model. This can be the result
of equipment failure, such as a sensor malfunction, or even be part of a security breach,
such as a hacker altering the data. One approach to deal with this is the use of a ma-
chine learning model for the purpose of identifying anomalies in data. This section will
explore the use of machine learning anomaly detection with the data used in the reactor

transient identification phase of this project.

5.1 Background
5.1.1 Data Security

Inrecent times, the fear of cyber related attacks has increased. In March of 2021, the Gov-
ernment Accountability Office (GAO) issued a report that strongly recommended DOE
update its cybersecurity strategy to include the electrical grid and distribution[79]. The
NRC released requirements for nuclear facilities making use of digital assets in 10 CRF
73.54.[80]. The requirements include: the determination of whether the digital asset
could be the target of an attack, which mediums could be used to perform such an attack
and how an attack would be mitigated. The specifics are left to the individual licensees.
Due to this, any machine learning system used with a nuclear power plant will have to
have some sort of assessment performed. In machine learning, there are two possible
threats to the integrity of a model. The first occurs when the training data for a model

is altered. This results in faulty models that do not truly represent the actual data. This

145

is referred to as data poisoning. The second threat involves altering training data, so the
prediction provided by the model is not accurate.

In practice, the probability of data poisoning occurring is fairly low. Personnel that
would be involved in implementing a model at a nuclear plant will be highly vetted per
United States law. Also, security measures would be in place that would prevent any out-
side person from interfering in model training. A more likely scenario would be that the
outside attacker would look to interfere with the data from the reactor through the sen-
sors. This possible threat can be addressed by training a model to look for anomalies in
the testing data before itis actually tested. Once an anomaly is detected, the system could
simply switch to a model that doesn’t use the feature where the anomaly was detected.
If the anomaly is large enough, it could be used as part of a threat detection system. It
should be noted that this type of system shouldn’t be limited to looking for cyber threats.

An anomaly detector could be used as a way to identify sensors that have malfunctioned.

5.1.2 Auto encoders

Auto encoders are a machine learning approach that has in recent years found several
different applications. An auto encoder is a type of ANN that doesn't rely on target data
i.e. a unsupervised approach. In general, an auto encoder’s purpose it to take inputs
that may or may not contain statistical noise and reconstruct those inputs resulting in
outputs with little or no distortion[81]. The technique was first proposed in the 1980s,
but major interest in the approach didn’t occur until the renewed interest in ANNs in the
early 2010s.

An auto encoder consists of two major pieces. The firstis known as an encoder, which
coverts the inputs into a latent representation[1]. The decoder takes the representations
produced by the encoder and produces the outputs of the model, commonly refereed
to as reconstructions. The key with the auto encoder is that the number of neurons in

the output layer of this model cannot exceed the number of inputs,that is, the number

146

of features of the data. Both the encoder and decoder consist of a number of hidden
layers known as bottleneck layers. Bottleneck layers are used between the decoder and
encoder output layers to compress the data. In these layers the number of neurons de-
creases from layer to layer in the decoder and increases back up to the original in the
encoder. The idea behind this is that the network will be forced to learn the important
characteristics of the data. Auto encoders are otherwise implemented in the same man-
ner as other ANNs. For example, an auto encoder used for image modification will likely
take the form of a CNN, consisting of convolutional and pooling layers. Auto encoders
also make use of activation functions, loss functions, etc. In addition to anomaly detec-
tion, auto encoders can be used for feature reduction, in a similar manner as PCA, and

image modification.

5.1.3 TensorFlow

Since autoencoders are neural network type models, it will be necessary to use a python
neural network library to construct the model. Today there are a number of neural net-
work packages such as Meta/Facebook’s PyTorch and Nvidia’s CUDA. For this project the
Python package Keras will be used, as it is one of the most established neural network
tool kits available at this time. Keras is a built in package of the TensorFlow Library and
as such this project will rely on both, TernsorFlow and Keras.

TensorFlow s a free open source library focused around developing machine learning
algorithms. Originally developed by Alphabet’s Google[82], the package is well known
for its ability to support neural network models. Version 2.0 of TensorFlow was released
by Google in 2019 and was the first public release of TensorFlow[83], but older version
are still available and have support. One of the key advantages of TensorFlow is that the
package has support for a variety of programming languages including Python, Java and
C++.

TensorFlow has been designed to have the optimal ability to use and manipulate the

147

tensor data structure. A tensor is a type of data flow graph data structure that is used
in many linear algebra applications, a key in neural networks. TensorFlow has also been
developed to make use of multi-core CPUs, multi-thread GPUs and Google’s custom Ten-
sor Processing Unit. According to TensorFlow, a number of large companies other than
Google make use of TensorFlow, such as Coca-Cola, Intel, General Electric Health Care

and AirBNB[84].

5.1.4 Keras

Keras is a Python deep learning API designed to interface with TensorFlow. Keras is in-
cluded in the standard installation of TensorFlow. As 02022, the library supports Python
Versions 3.6-3.9 and can be used with Microsoft Windows, Mac OS and Ubuntu operat-
ing systems[85]. The library is promoted as an easy to use tool for the development of
neural network machine learning models. According to Keras, organizations including
NASA, YouTube and Waymo, make use of the library.

Keras has support for a number of different neural network applications. This in-
cludes the training of RNNs for things such as natural language processing and CNNs
for photo recognition and analysis. Models can be trained using the Sequential, Func-
tional or Subclass API to best suit the user’s needs and preferences. Keras has support
for a number of different hyperparameters such as batch size, optimization and activa-
tion functions. Keras also supports exporting applications to Java and other web-based

platforms, such as Java Script.

5.2 Literature Review

Auto encoders have been used in a number of recent studies in machine learning. As
mentioned, one proposed use for auto encoders is feature engineering. One study from
Peking University in China proposed using an auto encoder feature selector to better

identify features for use in machine learning models[86]. According to the paper, one

148

of the advantages of this type of feature selector method is the ability to consider both
linear and non-linear information when considering the importance of the feature. This
differs from more traditional approaches which can only consider linear information. In
this study, the authors used the auto encoder on a variety of different dataset including
the MNIST and Isolet datasets and compared the results to those using five other feature
selection techniques, such as Loplacian Score and Unsupervised Discriminative Feature
Selection. The results from this test were positive, as the auto encoder approach pro-
duced better results in all but one of the datasets. In the one set that it was not the best
approach, the auto encoder was a close second. The authors hope that this type of fea-
ture selection can help produce machine learning models faster, as data sets becomes
more and more complex.

In the area of anomaly detection, there has also been a number of studies done in
recent times. One study from the University of Pisa in Italy, explored the use of auto en-
coders to find defects during the manufacturing of goods. This study combined an auto
encoder with a deep neural network and a discriminator to attempt to identify defects in
the manufacturing process[87]. The initial results were positive when applied to other
case studies according to the authors. The hope is that this type of system can be utilized
by operators with little or no data science background.

A study done using auto encoders in the area of cyber security was performed at Yildiz
Technical University in Turkey. The authors proposed using auto encoder based models
to better detect network attacks on day zero of the attack. The authors note that in many
intrusion detection systems there is a high reliance on data from previous attacks. This
creates a potential hazard for newer networks, as the system may not have the necessary
data needed to detect the breach[88].

To this end more modern network breach detection systems have begun to explore
the use of machine learning based systems to detect issues earlier. In this study the au-

thor proposed designing a model that would detect anomalies to help indicate the start

149

of an attack. This approach requires either an unsupervised or semi supervised model,
which makes the auto encoder an appealing choice.

This study explored the use of two different types of auto encoders. The first is a tra-
ditional auto encoder similar to those described in previous sections and the other was
a de-nosing autoencoder, which can be used to explore statistical relationships between
data. One of the keys in this study was determining the threshold. This is the amount
of reconstruction error that would be lead to a point to be considered an anomaly. Most
autoencoders use a deterministic approach to calculate this point. This study used a
stochastic approach instead.

The autoencoder models were scored based on accuracy, precision, recall and f1-
score. All of these measurements came back positive with results between the upper
80%s and 90%s. These results compared very well with other similar efforts thathad been
preformed prior. The authors hope that the results from this study will allow for earlier

detection of network intrusions.

5.3 Methods
5.3.1 Data Exploration and Preprocessing

Due to better compatibility with TensorFlow and Keras, this portion of the experiment
was done using Google’s Colaboratory Notebook and cloud resources, rather than INL's
HPC. The first step in performing this study was to prepare the data collected from the
GPWR simulator to be trained. As was the case in the previous part of the project, a num-
ber of features needed to be dropped from the dataset, as they were simply percentages
of other features collected and are considered redundant. The same eight features that
were dropped in earlier phases of this project, were once again dropped. The descriptive
statistics and the shape of the new Pandas dataframe were verified to ensure the process

was done correctly. Dummy variables were once again added for reactor core life.

150

Autoencoders are a form of unsupervised machine learning, as such the target data
from the dataset was dropped.Since no AutoML packages were used in this part of the
experiment, it was necessary to pre-process the data manually. As mentioned earlier, one
of the common techniques for this is standard scaling which scales based on the variance
of the data. Due to these factors, it was decided to go with this technique. Normalization
would have been another choice for this. This was done using scikit-learn’s Standard
Scaler method. It should be noted that the features on time and reactor core life were
notscaled. This was done because simulation time will not be used in the model training
and reactor core life represents a categorical feature.

The next step in preparing the data was to split the data and set data aside for test-
ing and training purposes. As was done previously, this was done with scikit learn’s test
_train_split method, with half the data used for training and half for testing. In order
for the autoencoder’s ability to detect anomalies to be tested, it was necessary to alter
a portion of the data with random statistical noise. First, a quarter of the testing data,
approximately 13,884 points, were split off from the dataset. This data was modified by
adding random noise with an average of zero, to better represent the scaled data, and a
standard deviation of two. The noise was created using Numpy’s random function. The
size of the modified datafame was verified and the dummy variables added back to the
dataframe. A column was created to indicate both, the clean and noisy data, to indicate
if the data was unaltered or altered. Clean data was assigned a 1 and noisy data a 0. This
will be used in validation later on and dropped before testing. A dataframe was created
containing both, clean and noisy data. All data used in training will consist of the 27 fea-

tures used in both earlier studies.

5.3.2 Building the Autoencoder

The autoencdoer built for this experiment was trained using Keras. The architecture for

this model included an input layer, an encoder and a decoder. The input layer used a

151

defined shape of 27 for the features to be trained on. The encoder consisting of four hid-
den layers, three dense layers and a single dropout layer, with a dropout rate of 0.2. The
Relu activation function was used in all of these layers. The number of neurons used in
the dense layers halved with each layer, starting at 27 and ending at 7. The decoder also
consisted of four hidden layers. The dropout layer was the same as that in the encoder.
The first dense layer consisted of 14 neurons and the remaining two used 27. Again the
Relu activation function was used. The summary of the model was printed and can be

seen in Figure 52.

Figure 52: Keras Summary of Autoencoder

Layer [(type) Cutput Shape Param #
input 1 (InputLayer) [(Hone, 27)] a

denze (Den=e) (None, 27) T3k
dropout (Dropout) (Mone, 27) 0
dense_1 (Dense) (None, 14} 382
dense Z (Dense) (None, T) 105
dense_ 3 (Dense) (Mone, 14) 112
dropout 1 (Dropout) (Mone, 14) 0
dense 4 (Dense) (Mone, 27) 405
dense 3 (Dense) (Mone, 27) Too

Total params: 2,526
Trainable params: 2,326
Non-trainable params: 0

152

5.3.3 Training the Autoencoder

With the parameters of the autoencoder defined, it now was possible to compile and
train the model. The Adam optimizer was used for compiling the model and loss was
calculated using Mean Absolute Error. The model was then fit using only the data set
aside for training, approximately 55,000 data points. The batch size was set to 100. 100
epochs were ran for training. Validation was done using only the unaltered portion of
testing data. The training process took approximately 160 seconds. The training loss
and validation loss of each epoch was recorded and graphed for comparison. This can

be seen in Figure 53.

—— Training Loss
0.50 A Validation Loss
0.48 4
0.46
i
g
0.44 4

0.42 - \\
0.40 - L__

0 20 40 &0 80 100
Epoch

Figure 53: Training Vs. Validation Loss of Autoencoder

153

5.3.4 Validating the Autoencoder

The first step in determining how the Autoencoder performed is to determine the recon-
struction error from both, the clean and noisy data. To do this, it was necessary to use the
Autoencoder to predict both, the noisy and clean data. Once that was done, it was pos-
sible to begin calculating the reconstruction error using NumPy. In this case, the Mean
Squared Error was calculated for each point in both, the clean and noisy datasets. Once
this was determined, a threshold was identified to determine if a point is an anomaly or
not. There are a number of ways this can be done, for example, this can be done visu-
ally by graphing the reconstruction error of the points or can be done mathematically. In
this case, the threshold was set to average trainingloss of the model plus a single standard
deviation of the training loss, yielding a threshold reconstruction error of approximately
1.83.

Once the threshold is established, it is possible to determine how many points are
considered to be anomalies in the dataset. Any point that contained a reconstruction
error above 1.83 is consider an anomaly. From this the number of True positives, false
positives and false negatives can be determined. This data was used to calculate the ac-
curacy, precision, recall and f1-score for the model. This process was repeated for three
lower levels of noise to determine how the autoencoder performs when the altered data

is modified to a smaller degree.

5.4 Results

The results from the initial test of the autoencoder were positive. Of the over 55,000 sam-
ples tested with the autoencoder, the model scored an 91.05% in accuracy, or 55,561 of
the data points tested points correctly. At this threshold and level of noise, the model was
able to nearly perfectly distinguish the altered points correctly. The model only identi-

fied 13 of the over 13,000 altered data points as unaltered data for a recall 0f 99.90%. The

154

model did have some issues with a group of data from the set. This resulted in the model
identifying 4959 of the over 41,000 unaltered points as anomalies. This gives the model
a scored precision of only 73.66%. The resulting f1-score for this model was 84.80%. The

confusion matrix for this model can be seen in Figure 54.

Autoencoder Confusion Matrix for Alterdated Data mu=0, sigma=2

35000
30000
True Data 36690 4959

25000

- 20000

True label

- 15000

Altered Data - 13 13871 - 10000

- 5000

Predicted label

Figure 54: Confusion Matrix For Autoencoder Results

Through visual inspection, it can be seen that all of the 6379 false positive points had
a reconstruction error between 1.83 and 6.00. This is almost certain the result of por-
tions of the dataset being considerably different than others. This is not unexpected as
this dataset contains data on 12 different reactor events and it is expected that some of

this data will significantly vary from transient to transient, especially in different points

155

in time during the transient. A graph of the reconstruction error of the clean data points
can be seen in Figure 55.In terms of altered data points, the vast majority of altered data
points, over 11,000 points, had a reconstruction error between 1.83 and 6. The remain-
ing points, approximately modified 2000 points, had reconstruction error between 8 and
14 and were easily identified by the model. Figure 56 shows the plot of the altered data’s
reconstruction error. Figure 57 shows the plot of both, the altered and clean data’s recon-

struction error.

Reconstruction error for normal and altered data

& . # MNormal
— Threshaold
5_]
S
T
=
=)
o3 -
=
Ln
=
S 27
E —
1 4 [
s e -
TR R A
D .
1 1 1 1 1 1 1
o 20000 AO000 BO000 20000 100000 120000

Data point index

Figure 55: Reconstruction Error for Clean Data Points

156

Reconstruction error for normal and altered data

14 e 3 - + Altered Data
— Threshold

Reconstruction error

! ! ! ! ! !
0 20000 40000 0000 go000 100000 120000
Data point index

Figure 56: Reconstruction Error for Altered Data Points

Reducing the amount of noise used in altering the data had a adverse effect on the
model. As less noise was introduced into the data, the autoencoder had a more diffi-
cult time identifying the altered points,as expected. When the noise was reduced from
two standard deviations from the mean to just 1.5, the impact was fairly minimal. The
threshold was reduced slightly to 1.13. Despite the lower amount of noise and the re-
duced threshold, the autoencoder was still able to correctly identify the majority of the
points. Over 48,000 were correctly identified as anomalies or normal data with this level
of noise. The accuracy of this model was calculated to be 87.94%, a less than 4% differ-
ence when tested on noisier data.

The testing of this autoencoder on this data showed a continued trend with the model
in terms of precision and recall. Once again, the autoencoder did a good job in classifying
altered data correctly, with only 200 altered points being classified as normal. This gave

the model arecall 0f98.56%, very close to the recall when tested on the noisier data. Also,

157

Reconstruction error for normal and altered data

14 - o . « Normal
Altered Data
12 - A . % — Threshold

Reconstruction error

! ! ! ! ! !
0 20000 40000 e0000 BOOOOD 100000 120000
Data point index

Figure 57: Reconstruction Error for All Data Points

the model had close to the same difficulty correctly distinguishing normal data from al-
tered data, with 6496 normal points being incorrectly classified as altered. This yielded
a precision of 67.8%.The f1-score from this testing was 80.34%.

The pattern of decreasing performance as noise decreased continued as the noise
in the data was decreased to 1 standard deviation and again, to 0.5 standard deviation
from the mean. The accuracy when tested with the single standard deviation data, was
significantly lower, at only 77.8%. When lowered again to 0.5, the model accuracy was
once again significantly lower at only 66.7%. It was at a single standard deviation where
the recall of the model began to suffer. The model incorrectly identified noisy data as
normal, with over 3500 noisy points incorrectly identified, resulting in a recall of 74.38%.

When the model was tested at 0.5 standard deviation, the recall dropped down to 33.5%.

158

This result was not unexpected, as the reduced noise and threshold would result in much
lower reconstruction error.

In terms of precision, altering the threshold for the data points also caused the results
to decrease. At a single standard deviation, the precision dropped to 54.07% and down
to 33.57% at 0.5 standard deviation. Again, this was not unexpected, however it should
be noted had the threshold been left at the original 1.83, the score would have remained
the same as in the previous test. However, the recall would likely have also decreased.
The f1-score for the single and half standard deviation test were 66.62% and 33.57%, re-
spectively. Table 43 summarizes the results for all four tests done with the autoencoder.
The confusion matrices and reconstruction error plots for the 1.5,1 and 0.5 standard de-

viation test can be seen in the Appendix section.

Table 43: Results From Autoencoder Test

Level of Noise Accuracy | Precision | Recall | F1 Score
Mean=0, Standard Deviation=2 91.05% 73.66% | 99.90% | 84.80%
Mean=0, Standard Deviation=1.5 | 87.94% 67.8% 98.56% | 80.34%
Mean=0, Standard Deviation=1 77.80% 54.07% | 74.38% | 62.62%
Mean=0, Standard Deviation=0.5 | 66.72% 33.50% | 33.58% | 33.54%

5.5 Discussion

These results show that autoencoder based models do have the ability to detect data
points with high levels of noise within the dataset collected from the GPWR simulator.
The high validation marks with the data altered by two standard deviations from the
mean of the standard scaled data are encouraging. This autoencoder was able to pro-
duce results above 90% for this level of noise. Another encouraging result from this study
is that the autoencoder can easily distinguish the normal points from those with the
higher level of noise, with a recall in the high 90% range for both, high noise data points.

It should be noted that this model leans towards prioritizing the identification of false

159

negatives, rather than false positives. This is shown with the lower precision results of
the model when tested with the noisy data.

The lower precision of the autoencoder model at higher levels of noise does imply
policies will need to be implemented regarding when to take action and when investi-
gation is needed. In the case of the autoecnoder trained for this model, there were three
distinct regions of the error reconstruction plot. The first was between 0 and the thresh-
old. In the higher level noise test, the points in the region were nearly all normal points.
Points found to be in this region have a high confidence that they are safe for use. The
second region is the area from the threshold to about 6.0. Here, the majority of the points
are altered and the model classified them as such, however, there are a notable number
of normal data points in the region. It would be prudent to investigate and possibly take
preliminary action when points are in this region. Finally, the third region exists from 6.0
and higher. Points in this region, while fewer than those in the previous area, are exclu-
sively noisy points. These points should be disregarded right away and the cause of the
issue investigated.

The autoencoder did struggle as the noise level decreased in the altered data. At 0.5
standard deviations from mean the model was unable to effectively distinguish the noisy
points from the normal points. While this is a concern, it should be noted that the lower
noise in the dataset, the less likely the noise will adversely affect the classifying model.
When the optimal decision tree was tested with the a low level of noise, 0.1 standard de-
viation from the mean, the model still maintained its accuracy.

It should also be noted that autoencoders and other anomaly detector approaches
should only be a small piece of any cyber security system with a machine learning based
safety system. Ideally, systems will be in place to prevent any type of breach before the
autoencoder is needed. Prevention and proactive security is a more effective approach
than implementing reactive measures. Any facility looking to apply machine learning,

or any digital based system for reactor monitoring, needs to implement robust security

160

measures. This includes administration controls and policies that encourage best safety
practices, as well as physical/cyber systems designed to only allow authorized individ-
uals access to sensitive parts of a reactor system. The NRC and DOE have a history of
implementing and mandating high security measures at nuclear facilities. These orga-
nizations will need to continue to be proactive in their approach to security.

One final note, is that the use of autoencoders should not be limited to just security
applications. As the models are able to detect high levels of noise, autoencoders could
also be used in the area of detecting failures with equipment. Nuclear power plants rely
on a number of sensors and instruments to provide operators at the facility information
needed to properly run the facility. The use of an autoencoder to detect malfunctions
and failures with these type of sensors would be an approach worth exploring. For ex-
ample, if a sensor were to fail, the autoencoder should detect the noise from the data
being transmitted to the operator. This could potentially allows for quicker identifica-
tions of equipment failures, such as the PORV failure at TMI. This would add another

layer of protection to nuclear power and contribute to the safety efforts at power plants.

161

6 AutoML Comparison

The use of machine learning and artificial intelligence has grown significantly in research
and business as shown in the Background Chapter. Large companies such as Coca-Cola,
Spotify, Amazon and G.E. has invested large amount of resources into machine learning
programs. However, it should be noted that these companies have vast resources and can
have dedicated departments and teams to develop models for use. In order for machine
learning to become a standard in industry, it will be necessary for smaller and smaller
companies to adopt the technology. One study showed that in Germany about 25% of
companies make use of machine learning and artificial intelligence in operations[89].
The same study noted that only 10% of smaller and medium sized companies have im-
plemented machine learning. There are a number of potential reasons for this. Smaller
companies tend to have fewer staff involved in information science and that staff gen-
erally has minimal experience dealing with machine learning. Also, with more limited
resources, companies may be reluctant to invest a great deal of resources in an area the
majority have significant little understanding in.

To address this gap in the implementation of machine learning and predictive ana-
lytics there are a couple of solutions. The first is the development of dedicated firms who
can perform the work for the small businesses or companies. There is great potential in
this, as small firms maybe use to outsourcing similar work, such as accounting, market-
ing, etc. Companies such as Google already offer many of these services. This does have
the drawback that firms would have to share their information with outside groups and
there could be reluctance to do this. A company’s information can contain things like
trade secrets, client information, etc. This likely also pertains to a company’s competi-
tive advantage and is highly sensitive.

The second approach to deal with gap is to simplify the process of training machine
learning models. Simplifying the process could allow for fewer dedicated staff in per-

forming the analysis, reduce costs and reduce the level of expertise needed to perform

162

the work. All of these could lead to higher implementation by firms. As has been noted
in this study, AutoMLis one approach that can be used to simplify the process of training
machine learning models. This section of this effort seeks to examine and compare three
different AutoML packages. These are TPOT, H20 AutoML and Google’s Cloud AutoML
service. The factors that will be compared are performance, time, functionality and ease

of use.

6.1 Background

The use and history of TPOT was discussed in a previous section in this report. Due to

this, this section will focus on the H20 and Google’s Auto ML Service.

6.1.1 H20 AutoML

H20 AutoMLis a free open source software package thatbegan its developmentin 2012.The
software is under development by the independent company H20.ai. The founder and
original developer of the package was Sri Ambati, who continues to run the organization
as of 2022[90].

H20 was developed to simplify the machine learning process and allow users of all
levels of expertise the ability to train models. The organization claims that the software
can be used at the enterprise level. The software was developed in Java and has sev-
eral APIs that allow for use in several different languages, including R and Python and
a Graphical User Interface (GUI) called flow is in the early stages of deployment[91]. The
first official release of H20 occurred in 2017 though other versions were available as far
back as 2013.H20 supports the training of regression, binary and multi-class machine
learning models using tabular datasets. Similar to other AutoML packages, H20 begins
work in the preprocessing stage of model training. Data exploration and wrangling are
still left up to the user. Unlike TPOT however, H20 has included functionality for cate-

gorical data. H20.ai is also looking to develop better algorithm support for feature reduc-

163

tion and selection techniques. It should be noted that all functionality in H20 is based
on H20.ai’s own developed algorithms, not those implemented by another organization,
such as scikit-learn. Though there is support for use of basic scikit-learn functions, such
as .fit() and .predict(). In terms of models, H20 has a variety of different techniques de-
veloped for the AutoML package. This includes random forest classification and regres-
sion, support for XGBoost, as well as deep neural networks. The package does make use
of cross validation and has support for GPU accelerated training. One important factor
to make note of is hyperparameter tuning. H20 makes use of benchmark to determine
the ranges for tuning, rather than allowing the user to specify the range. The benchmarks
are continuously evaluated to ensure quality. Similar to TPOT, H20 will make use of en-
sembles to train better performing models.

One of the key highlights from H20’s documentation and published review is the idea
of reducing input parameters for the user. Typically, the user should only have to specify
the feature data, target data and any limits on the number of models to train and the time
allowed for training. Another key feature in H20 is the ability to store what is known as
an object called a leader board for the models trained, which allows the user to compare

the different models trained using the package.

6.1.2 Google Cloud AutoML

In the area of data analytics there are few companies that have the capabilities of Alpha-
bet’s Google. Known for its internet search engine, web marketing operations, as well as
role in developing TensorFlow, it is only natural that the company offer machine learning
as a service. To this end, Google has developed Google Cloud AutoML, a service designed
to offer users access to tools needed to create machine learning models with little experi-
ence. Google Cloud AutoML is a paid subscription based service offered by Google. The
service not only offers assistance training machine learning models, but also allows users

the ability to make use of Google’s HPC capabilities. The service provides functionality

164

for users to train models for a variety of specialized applications. This includes natural
language processing, text processing, language translations, video analysis, etc[92]. For
the purposes of this study, the AutoML Tables service will be utilized.

AutoML Tables allows the user to make use of a specialized GUI to prepare the dataset
for training. Data is uploaded to the Google system via the user’s cloud storage, com-
puter or repository. Data wrangling and exploration is highly encouraged by Google and
the service will provide information to assist the user in this process. For example, the
software will inform the user of the number of missing values and null-able data points.
Categorical features can be specified as well. From here, the data can be explored by the
user and changes can be made to the dataset. The user then specifies the target data and
training can begin[93]. AutoML Tables has a number of parameters that can be specified
by the user. The most important one is the number of hours training should be run, as
the service does charge by the hour for model training. It should be noted that the pro-
cess does include preprocessing and the user is not charged for those operations. Google
does provide guidelines for the amount of time necessary to effectively train models. This

is shown in a screenshot from the documentation in Figure 58.

Rows Suggested training time
Less than 100,000 1-3 hours

100,000 - 1,000,000 1-6 hours

1,000,000 -10,000,000 1-12 hours

More than 10,000,000 3-24 hours

Figure 58: Timing Guidelines for Google’s AutoML Tables Model[93]

Although AutoML Tables uses proprietary algorithms, Google does provide some in-
formation on the models being trained. Similar to TPOT and H20, AutoML Tables trains
models using ensemble methods, gradient boosting, decision trees, etc. The software

also makes use of neural networks, AdaNet and other machine learning techniques. Other

165

AutoML services, such as BigQuery ML, allow for more user customization. Once the
model has been trained, the software will provide testing results from the model using in-
dependent testing points. In the area of classification, the standard four measurements
of accuracy, precision, recall and f1 score are provided. The software will also automat-
ically create a confusion matrix based on the results. A feature importance chart is also
produced. Finally, the user also has the ability to export the final model that was pro-
duced by the software. Support is also provided if the user wishes to test new data using

the exported model with Google’s resources.

6.2 Literature Review

In addition to the two studies done as part of this project, AutoML packages have been
used in a number of other research projects. This section will explore some of the differ-
entresearch studies that have been done using TPOT and H20 AutoML packages, as well

as the Google AutoML service.

6.2.1 TPOT

One recent study that made great use of TPOT was a collaboration between the Univer-
sity of Pennsylvania and researchers in the United Kingdom, Finland and the Nether-
lands. In this study, the authors made use of TPOT to help generate models used to di-
agnose Connery Artery Disease[94]. Data for this study was obtained from the Angiog-
raphy and Genes Study database. The final dataset consisted of 73 metabolic features
and 27 demographic and clinical features. The study made use of the full TPOT classi-
fier with 14 feature selectors and 11 feature processors. The authors chose to evaluate
anumber of different models including random forest, logistic regression and Bernoulli
Naive Bayes. The optimal TPOT model for this study was a Bernoulli Naive Bates model,
which made use of 4 different preporcessing methods. This model achieved a balanced

accuracy of close to 78%. The authors hope to continue applying this methods to expand

166

computer aided diagnostics. Another study that made use of TPOT took place in the field
on neuroscience. Researchers in the United Kingdom used TPOT to create models that
predict the age of a subject’s brain[95]. This study made use of TPOT’s regression model
capabilities. In this study, the authors made use of over 10,000 MRI results for patients
between the ages of 18 and 89. The results were obtained from 13 different publicly avail-
able medical databases. Training was done for arelatively short time, only 10 generations
for about six hours. The authors made use of TPOT to find a model with the lowest mean
absolute error. A number of different models were produced using techniques such as
random forest regression, kNN regression, SVM regression, etc. Researchers found that
many of these models produced results that compared very well to other techniques that
had been tried in other works. The authors noted the positive results indicated that TPOT

trained models performed well in estimating a subject true brain age.

6.2.2 H20

H20 AutoML has also been the center of a number of research studies in recent years.
One such study, out of India, made use of the package to predict the patterns of infec-
tion from the COVID-19 virus[96]. This study made use of publicly available data from a
number of sources. This included the Kaggle and the World Health Organization. Over
150,000 data points were used in this study. These consisted of information such as age,
gender and clinical manifestation. Much of this data was either categorical or ordinal in
nature.

One of the goals from this study was to use this data to predict the recovery of a pa-
tient from COVID-19. The results from this experiment yielded four different machine
learning models. These were a kNN, decision tree, logistic regression and naive Bayes.
All of these models scored in the mid to high 90%s, with the logistic regression scoring
the highest in the areas of accuracy, specificity and sensitivity.

Researchers have used AutoML in the training of neural network based models as

167

well. One example of H20 being used in this area was a study from Portugal, which
looked to train a CNN to detect surface defects[97]. As is the case with most CNN models,
the authors used image data to train their model. The authors used several well known
architectures, including ResNet and DenseNet to create a "CNN Fusion" architecture
that combines the weights from each model. The data used in this experiment consisted
of over 1000 images, with only 10% containing defects. The results from this experiment

were very positive with many of the models scoring near perfect scores.

6.2.3 Google Cloud AutoML

Recently, researchers have begun to make use of the many tools offered by Google’s Cloud
AutoML service. One of these efforts has taken place in Malaysia, where researchers
looked to use these tools in the area of Biomechanics[98]. In this case, the study made
use of the AutoML Tables services offered by Google. In this study, data was collected
using mobile smartphone applications to capture data on the different motions being
performed by the user, such as kicking angle and flex input. 1000 samples were taken
with four features and one target.

The purpose of this study was to try and classify a person as either, an athlete or
an non-athlete, based on their movements. The models trained by AutoML Tables pro-
duced near perfect results and identified two features as key in the classification. The re-
searchers hope to expand the scope of this research and make continued use of Google’s

AutoML services.

6.3 Methodology

The purpose of this part of the project was to compare the three AutoML packages to
one another. This was to be done using only the default settings of each package with as
little customization as possible. This will allows for a better analysis of ease of use and

functionality.

168

In testing TPOT, no custom dictionary was used, instead the TPOTClassifier was con-
figured to run for 100 generations with a population size of 100, just as was done in pre-
vious parts of this project. As was the case in the earlier stages of the project, the data
needed to be explored and configured for training using Pandas. Target data had to be
assigned a numeric value and dummy variables had to be configured. Data had to be
split using scikit-learn. Once the ideal model was trained and scored, the optimal model
was exported and a confusion matrix created using scikit-learn.

H20 is a very different package from TPOT. Instead of relying on Pandas and scikit-
learn, H20 has been designed as an all in one tool. All functionality in H20 is only com-
patible with the H20 data structure, the H20 Dataframe. Although H20 has GUI sup-
port through Flow, it was decided to use the Python H20 package. For simplicity, the
GPWR was imported using Pandas, and the dataset reduced to the same 26 features as
the dataset used in the TPOT training. This could have been done with H20, if needed.
It is important to note, the data was not otherwise altered, no dummy variables were
configured and no changes to target data were done. The Pandas dataframe was then
converted to an H20 Dataframe.

Once the data was in the correct format, it was possible to begin using H20 tools to
explore the dataset. The H20 dataframe has similar tools to those found in Pandas and
the .describe() method was used to ensure data was ready for training. The data was split
in half using H2O'’s split_frame method. The H20 AutoML instance was configured with
a maximum number of models set at 20, max run time of 10,000 seconds and a scoring
metric of accuracy. This can be seen in Figure 59. Due to an issue with INL HPC not
having a Python kernel with H20 installed at the time, it was necessary to use Google’s
Colaboratory notebook and server to train the model. As there is a limit to the amount
of memory this system allows, the run time was only allowed for three hours.

Once the H20 model was configured, it was possible to begin training the model. H20

required the range of the feature data and the column with the target data be specified,

169

#H2o Parameters

from hZ2o.automl import H20RutoML

aml = H20RutoML (max models=20, max runtime zecs = 10000, seed=1, =sort metric = "accuracy")

Figure 59: H20 AutoML Configuration

along with the frame to be used. H20 ran for the allotted time and produced validation
results. Itis important to note that the H20 AutoML instance is used for both, regression
and classification models and the package makes the determination on which model
to use, based on the target data provided. In addition to producing the validation results
from the training, H20 also provided a table of listing the feature importance for the best
producing model. A H20 leader board was also produced showing the top models pro-
duced during the training. The model with the highest accuracy was saved and used to
produce a confusion matrix using H20'’s functionality.

Google’s AutoML Tables is also a very different approach than both, TPOT and H20
AutoML. Google’s AutoML Tables uses only a GUI, over a web browser, rather than cod-
ing, as it was in the previous two approaches. AutoML Tables functions similarly to a
Windows Installation Wizard, where the software will guide the user through the major
steps. The first of the these is importing the data. Data was uploaded to the AutoML
Tables Console directly from the computer. This must be in a .CSV format.

The next step in the AutoML Tables process was to explore the data and train the
model. The console does provide support with data exploration, providing a quick anal-
ysis of all fields in the imported dataset. Information provided included data type of
the field, number of missing values and distinct values. As was the case with the other
two tests, the dataset was reduced to 26 features. The default split of 80-20 was used, as
Google AutoML Tables requires that the user modifies the .CVS file to change the split.
The target field was specified and the AutoML program run for three hours, as directed
by Google’s guidelines.

Once the AutoML program finished running, the AutoML Tables console provided an

170

overview of validation results from the optimal model produced. This included area un-
der the curve for both, the precision-recall and receiver operating characteristic curves,
as well as precision, recall, f1 score and log-loss. Google AutoML also provided informa-
tion on feature importance, as well as the balance between the different classes used in
the training. Typically, the console will provide a confusion matrix, but since the number

of classes was higher than 10, it was unable to do this.

6.4 Results

Although the TPOT model ran for the full 100 generations, over 20 hours, it was possible
to track the model’s performance over time due to the enhanced verbosity that shows
the time of each generation’s completion. This is enabled when using TPOT’s default set-
tings. Since the other two approaches were only ran for three hours, the optimal model
produced at this time was examined, around 17 generations. This model was a XGBoost
model with an estimated validation accuracy of 93.32%. Further examination of this
model showed the model was able to better predict the turbine trip without SCRAM that
those trained in the previous part of the project, over 90%. However, the model had to
sacrifice accuracy with the electrical load rejection transient, scored below 60%, lower
than those from the optimal models in the previous section.

The H20 AutoML test was able to produce a number of highly accurate model within
the three hour time frame allotted. In total, ten models were trained during the run. The
leader board from this run can be seen in Figure 61. The model with the highest accu-
racy was a stacked ensemble method. This model scored a 93.77% accuracy. Other high
performing models made use of XGBoost, as did TPOT. Examination of the confusion
matrix produced from this optimal model shows that similarly as in the case with the
TPOT models, the H20 model struggled with the Feedwater Pump Trip, Electrical Load
Rejection and Turbine trip without SCRAM model. The confusion matrix for this model

is shown in Figure 60.

171

TARS[ENT-
ol (s

00

00
00
00

00

00
00
00

00

00
00

Transient Load Transient Rapid

Bejection Fower Change
00 00
B0 00
00 15250
10 00
50 10
ge10 00
130 20
00 0
00 00
510 00
00 00
fad 00
41340 15300

Toasient Sirgle
Coalant Pump Trip

00

00

00
4500
0

00

10
0
00

00
00

450

Toasient Total
Coclant Pump Teip

00

00

00
10

4

00

0
00
00

00

00
00

4150

Trarsient Tuthire Trarsient Vale

Teip o SCRM

00

10

00
10
80

Hid

80

00

140

00
20

4£310

(losura

00

00

10
i0
10

00

44180
20
00

20

00
00

4310

Transient- Transient- Hax Steam

Depressurisation

00

00

00
00
00

00

00
45610
00

00

00
00

4510

Lire Rupture

00

00

00
00
00

00

00
00
45530

00

00
00

45810

Figure 60: H20 AutoML Confusion Matrix

Toansient-
Teadmtar Pup

00
00

00
40
10

50

10

00
1m0

00
&0

45120

Trarsient-
LOCA LIOP

00

00

00
00
00

00

00
00
00

00

4390
00

4390

Toansient-
Marmal Trip

Rats

00 000000 0/8540

1882
448

0.0 0374380
0.0 0005 17150
40 00053 24/4.504
10 00074 17444

102

8.0 027546 0

0.0 0.008083 3B/44%4

0.0 0007 8/4589

0.0 000000 0/458
1208/

0.0 020952 e
00 0000000 0/45%9
4760 000954 4674521
4088/

450 00ml 5517

meodel_id accuracy mean_per_class error logloss rmse mse

Deeplearning_1_AutoML_2_20220213_10016 0.561234 0.450289 5.02348 0.653244 0426727
GLM_1_AuteML_2_20220213_10016 0.764856 0.241596 0.577845 0.464297 0.215572
StackedEnsemble_BestOfFamily_3_AutoML_2_20220213_10016 0.873193 0.130132 0.397183 0.364447 0.132821
GBM_5_AutoML_2_20220213_10016 0.897784 0.104943 0.495864 0.395582 0.156485
XGBoost_3 AutoML_2_20220213_10016 0.909287 0.0931476 0.249569 0.289767 0.0839651
KRT_1_AutoML_2_20220213_10016 0.934976 0.0665048 0.168675 0.228823 0.05236
GBM_2_AutoML_2_20220213_10016 0.935912 0.065564 0.138777 0.224878 0.0505701
KGBoost_2_AutoML_2_20220213_10016 0.937281 0.0644055 0.115058 0.202758 0.0411107
XGBoost_1_AutoML_2_20220213_10016 0.937479 0.0642049 0117816 0.204857 0.0419666

_AutoML_2_20220213_10016 0.937785 0.0639576 0.114576 0.203984 0.0416093

Figure 61: H20 AutoML Leaderboard

The validation results provided by Google’s AutoML Tables is unique in that no mea-
surement for accuracy was given. However, the precision result was very high at 97%,
higher than the results from the TPOT and H20 runs. That said, recall was in the same
range as the other models, at 91.5%. This resulted in a f1 score of 94.1%. As was men-
tioned earlier, no confusion matrix was provided due to the number of classes used in
training. This makes it difficult to provide an accuracy number. However, AutoML Tables
does provide a log-loss value, the cross entropy value between the predictions and ac-
tual values provided. According to Google, the closer the log-loss value is to 0, the higher
quality the model is. The log-loss for this model was 0.105. Figure 62 shows the results,
as provided by AutoML Tables. It should be noted, that AutoML Tables does not provide
the user with the type of model that was produced or any summary of what techniques

were used to produce the model.

Model Multi-class classification model
| gpwr_data_202202127120849 - | Feb 12, 2022, 12:08:59 AM
Training cost: 2.294 node hours
Feature Optimized
pt AUCPR @ AUCROC @ Precision @ Recall @ Logloss @
~olumns for
< included Log loss 0.991 0.999 97.0% 91.5% 0.105

11,308 test rows

Figure 62: Google AutoML Tables Output

173

6.5 Discussion
6.5.1 Performance

TPOT, H20 AutoML and AutoML Tables were able to produce high performance models
in a short time through the use of HPC. Both, TPOT and H20 AutoML, were able to pro-
duce models with accuracies over 93%, although both models struggled with the same
three transient events. Although there was no accuracy measure for the AutoML Tables
model, it can be inferred through the high precision and recall measurements that the
models scored very high, certainly higher than the other two tests. The precision recall
and f1 score from both, TPOT and H20 AutoML, indicates that both models balanced
out false negatives and positives relatively well, while Google AutoMLs results indicate
the model is more inclined to false negatives rather than false positives. In terms of over-

all performance, AutoML Tables produced the highest scoring models.

6.5.2 Functionality

Although Google AutoML Tables produced the best results with the data, functionality is
still an important aspect to evaluate, especially for research purposes. TPOT’s ability to
export the optimal pipeline is extremely useful in research to better examine the model.
The ability to easily convert TPOT pipelines to and from scikit-learn pipelines, allows
models trained using TPOT easy access to all of scikit-learn’s validation and evaluation
tools, such as confusion matrices, easy validation results, etc. The TPOT dictionary also
allows users better control over the approach TPOT takes in training the model, such as
model types, feature selection and preprocessing. Also, TPOT has access to a number of
open source models including most of the scikit-learn supervised learning algorithms,
PyTorch neural networks and NVIDIA's GPU CUDA. An issue with TPOT is the random
nature of model training making the reproduction of the optimal pipeline through TPOT

difficult.

174

Similar to TPOT, H20 can store the optimal model produced in training, however,
H20 can store several different models and the user can pick and choose which ones to
evaluate, rather than just the optimal choice. H20 also provides good exploration tools
within the package, unlike TPOT which relies on Pandas and scikit-learn to perform this.
H20 AutoML also only makes use of a small number of techniques compared to TPOT,
since all tools used are developed by the H20.ai, where TPOT makes use of already exist-
ing algorithms. H20 does have a number of validation tools that can be used, such as its
own confusion matrix algorithm. Unlike TPOT, H20 AutoML will provide the user with a
feature importance list automatically. Figure 63 shows the exported table for the trained
models. This provides a lot of value for the user when evaluating the produced model
and the dataset’s application.

AutoML Tables provides tools and functions to allow easy deployment of models, such
as automatic validation results and the ability to reference a scoring threshold, which al-
lows users to compare difference confidence levels. A comparison from this test is shown
in Figure 64. Although AutoML Tables does provide the user with a confusion matrix
under certain circumstances, the inability to produce one with more than 10 classes is
extremely limiting. Also, the inability to see the exact contents of the model within Au-
toML Tables is concerning. This black box environment make model evaluation difficult
and does suggest it would be difficult to make use of AutoML Tables for research. Also,
the inability to adjust the split of training and testing data within the GUI is disappoint-
ing. However, AutoML Tables does provide a number of excellent tools for exploring and
selecting data for training, such as the GUI based data tables. Finally, AutoML Tables

provides a feature importance table for the user after training. The is shown in Figure 65.

175

Variable Importances:

variable relative importance [scaled_importance |p£-|'n-|1tage
0|15 1.000000 1.000000 0.071874
1[26 0.807117 10.807117 0.058010
2 |22 0.804953 0.804953 0.057855
306 0.697091 0.697091 0.050102
414 0.681416 0.681416 10.048976
5 |23 0.670577 0.670577 0.048197
6|7 0.623159 0.623159 0.044789
717 0.608131 0.608131 0.043700
8 |10 0.604536 10.604536 0.043450
9 (27 0.585081 0.585081 0.042052
10|28 0.537057 0.537057 0.038600
11290 0.513568 0513568 0.036912
1233 0.502735 0502735 0.036133
139 0484983 0.484983 0.034858
1424 0446478 |0.446478 10032000
154 0430258 |0.430258 10.031571
1625 0401892 |0.401802 0.028885
17|32 0.308306 |0.398306 10.028628
188 0.392690 0392600 10.028224
103 0.300532 |0.390532 0028069

Figure 63: Exported H20 Feature Importance Table

6.5.3 Ease of Use

In order to evaluate ease of use, it is important to consider the end user of software. The

use of GUI in Google AutoML Tables makes it the go to for users who are unfamiliar with

176

All All

Score threshold ————— 0.50 Score threshold —————————— 0.95
F1 score @ 0.941 F1 score @ 0.925
Precision @ 97.0%(10343/10667) precision @ 100.0% (9,729/9,729)

True positive rate (Recall) @ 91.5%(10,343/11,308) True positive rate (Recall) @ 86.0% (9,729/11.308)
False positive rate @ 0003 (324/124388) Falge positive rate @ 0.000 (0/124,388)

The score threshold I:IE[H.I‘I‘II‘IE'S ["'E minimum level of CONMIENCE The score threshold determines the minimum level of confidence
neeﬂed.tc- make a prediction pasitive. Leam more about model needed to make a prediction positive. Learm more about model
evaluation evaluation

Figure 64: Comparison of Different Scoring Thresholds from AutoML Tables

4
15
22
19
14
16

G
253
17
21
26
23
33

we B SR

%% 20% 404 60% 80% 100%

Figure 65: Feature Importance from AutoML Tables

177

the Python, R or programming in general. That said, researchers and experienced data
scientist will have difficulty making use of the package effectively due to the black box en-
vironment, as they will be unable to examine the model at the level that will be required.
Otherwise, Google AutoML Tables is very simple to use. During this experiment, the area
with the most difficulty was importing the data. During the first attempt to import the
data to the software, an error came up saying the column names were invalid. A header
was added to the .csvfile using the feature names from the GPWR, but the error persisted.
In the end, it was necessary to replace the header with column numbers to get the data
imported properly. The error and documentation provided little help in addressing this
issue.

In terms of researcher use, both TPOT and H20 AutoML have different features that
can improve ease of use. For TPOT, the functionality with scikit-learn can make the us-
ing TPOT relatively simple, as scikit-learn is a commonly used package with a high level
of support in the field of data science. That said, documentation on the use of the TPOT
dictionary does increase the difficulty. Also, it can be difficult to extract necessary com-
ponents, such as a decision tree from pipelines if the user is unfamiliar with the concept.
Also, TPOT does not currently have support for categorical features and targets which
can add time to data preparation.

H20 has a number of strengths, including the ability to easily export several models
and support for categorical features which can speed up data preparation. One of the
biggest issues with H20 is that the AutoML instance automatically chooses if the model
is classification or regression and there is no way for the user to choose. This can cause
a number of issues, like ensuring the model is trained correctly. Also, H20 defaults to
regression evaluation regardless of which type of model is trained. This add extra effort
for evaluation and can cause confusion when the model is trained. Finally, H20’s use of

its own dataframe for operations can add some additional difficulty.

178

6.6 Summary Remarks

All three of the AutoML methods, TPOT, H20 AutoML and AutoML Tables tested in this
phase of the project, have the potential to increase the use of machine learning both, in
application and research. All three were able to take the GPWR data and produce models
with high validation remarks. Although there are issues with all three approaches, it is
likely that efforts will be made to continue to improve each in functionality, performance
and ease of use to meet the needs of user. The following lists summarize the pros and
cons of each AutoML approach.

TPOT Pros

1. Large number of models available across several other machine learning packages
2. Ease of transition from TPOT to scikit-learn functions

3. Ability to easily and transparently export optimal model

4. Ability to configure customized dictionary

5. Free open source Python package
TPOT Cons
1. No support for categorical features
2. Difficult to configure customization for models
3. Stochastic in nature, making model reproduction difficult
4. Only available in Python
H20 AutoML Pros

1. Support for categorical features

2. Ability to store and export multiple models

3. All functionality availability in a single package
4. Available for use in Python, R, etc.

5. Free open source package

179

H20 AutoML Cons

1. Little functionality with other packages
2. Combined regression and classification instance
3. Difficult to extract model components

4. Somewhat confusion documentation
Google AutoML Tables Pros

1. Support for categorical features

2. Easy to use GUI

3. Several easy to use tools for data exploration
4. Automated evaluation

5. Easy to deploy model
Google AutoML Tables Cons

1. Paid service
2. Inability to adjust split without modifying dataset
3. Limited ability to evaluate model

4. Inability to view specifics on trained model

180

7 Conclusions

7.1 Future Research
7.1.1 Development of a A.I. Standard for Nuclear

The work on this project as well as other efforts around the world show the promise of
data science and machine learning in the nuclear industry. However, there are a great
number of barriers and challenges that must be overcome until real world application
of these techniques can take place. The first major issue that needs to be addressed for
actual implementation is regulatory approval. As has been mentioned, the nuclear in-
dustry in the United States is under strict regulatory control from the NRC. Any efforts
to implement or rely on a machine learning based system, will have to be accepted by
this body. To made progress in this area the NRC should begin developing a standard
for the use of machine learning and data based systems in a nuclear reactor. This stan-
dard should establish validation benchmarks researchers can use when developing their
models, such as how accurate a model must be before it can be relied on. The stan-
dard should also address the types of models that can be used, as well as the extent a
model must be explained and/or visualized before it can be relied upon. Perhaps the
most critical question that needs to be addressed in such a standard is the types of tran-
sients a model must be able to identify. Nuclear reactors are complex machines and as
such, there are a number of things that can happen within the system. Many of these
are extremely unlikely to ever occur within a system. For example, the failure rate of re-
actor vessel at the Dominion Surry Power Station in Virginia is one failure for every 6.7
million years[99]. It does not make sense to spend time and resources on events like
these. Instead, it would be better to determine which events are most likely to happen
and develop models to identify those events. The NRC already requires that all licensed
commercial reactors have a detailed Probabilistic Risk Assessment (PRA) performed be-

fore a reactor can begin operations. The purpose is to identify the events at greatest risk

181

of occurrence. This allows for the plant to better respond in the event one of these is-
sues occurs. The NRC should develop a probability of occurrence threshold to guide re-
searchers. Then, researches can focus their efforts on developing models that identify
the events at greatest risk of occurrence. This in turn would allow for the training of the
most effective machine learning models. Selecting transient events based on a PRA of
the reactor system has additional benefits. One issue with any classification system for
a diagnosis is that the models can generally only classify based on known outcomes. As
noted, one study proposed training a model with "I don’t know option" to help inform
users when the system has encountered an unknown outcome. This option has merit,
but there are a number of issues that need to be considered. For example, when does the
model decide it can'’t classify a transient? Is that criteria acceptable, and how effective is
the model if it cannot diagnosis more likely transients? The use of a threshold to develop
guidelines while still leaving open the possibility of encountering an unknown transient,
could greatly reduce this probability. Also, it may ensure higher risk transients are more

likely to be identified.

7.1.2 Human Factors When Interacting With A.I.

Another area of potential research that must occur before implementation, is the eval-
uation of human behavior when interacting with machine learning based systems. Au-
tomation has reduced defects and improved safety in a number of industries, but there
is a tendency for users of such systems, to either become dependent on the system or
find themselves unable to override the automation when the system fails. One indus-
try that has seen this occur a number of times is the aviation industry. Due to the life or
death nature of these issues in aviation, much research has been done to try and help ad-
dress these human factors to automotive system interaction. A study in aviation posed a
number of questions to consider when designing these kind of systems. These include:

How information from the system is processed, what information is presented to the per-

182

son in control of the system and how decisions based on that information were imple-
mented[100]? This approach should be applied in the nuclear industry as well, regard-
less if the machine learning system is used as a guide to assist operators or if the system is
designed to make a preventive response. Studying how operators behave when working
and interacting with these types of systems, can identity potential pitfalls and allow for
better safety and accident response training. This will ensure operators are able to make
decisions independent of the system if necessary. Also, if the machine learning models is
going to be used as part of an autonomous system, it will ensure operators and staff have
the ability to override and stop the system should it become necessary. This type of ef-
fort would likely take the form of a Human Reliability Assessment (HRA) study. Currently,
there is not standard one-size fits all approach for HRA in the nuclear field, but the NRC
has performed numerous studies in this area and has developed a list of good practices
for this type of analysis[101]. If the implementation of a machine learning based system
requires major changes to instrumentation, research has been done to produce guide-

lines for providing operators the best possible layout for knowledge elicitation[102].

7.1.3 Future Machine Learning Studies in Nuclear Science

As interest continues to increase in implementing machine learning for transient detec-
tion, it will be important to begin training models on different more modern designs.
One of the newest designs to gain attention is the NuScale Small Modular Reactor (SMR).
The first of these reactors is expected to be built at the INL in the late 2020s and the SMR
concept has generated great interest. In 2021 University of Idaho, DOE and NuScale an-
nounced the opening of a new simulation lab for this new design, at the Center of Ad-
vance Energy Studies[103]. This could provide an excellent opportunity to collect data
for machine learning models. Since the PRA for the NuScale design will need to be com-
pleted before the reactor begins construction, it could provide a good start for potential

implementing a machine learning based diagnosis system with a modern reactor.

183

7.1.4 Other Approaches for Anomaly Detection

Anomaly detection will continue to be an area of high interest in the field of machine
learning. As security concerns grow and the need to assure the reliability of data in real
time becomes a greater concern, it is likely techniques like autoencoders will find greater
use. However, there are a number of new techniques that may be applied in the future.

Perhaps the most exciting of these is the concept of generative learning, where ma-
chine learning models generate their own noise and altered data, based on what the
model has learned from existing data. Training models in this manner usually takes
the form of a Generative Adversarial Network (GAN). This type of machine learning ap-
proach was first proposed in 2014 by Ilan Goodfellow and since, gained a lot of attention
with the continued rise of neural network based models[104]. A GAN is a neural network
approach where two separate neural networks are trained, similar to an autoencoder.
The first network s trained to generate noisy data points based on the data. This is known
as the generator. Then a separate network is trained to be able to tell the difference be-
tween the real and the noisy data. This is the discriminator network. The generator is
then retrained to try and fool the discriminator and process repeats itself. Many appli-
cations of this technique have been proposed, such as image and video generation.

Although this is an exciting prospect, there are still a number of issues that need to
be addressed with GANs. Geron notes that it is difficult if not impossible to determine
when the models reach an equilibrium. This can cause the models to begin forgetting
things they have learned and cause a sort of infinite loop. Also, validation is challenging
as there is no guidance on when to start and end the evaluation. A GAN was attempted
for this experiment, but evaluation of the two models could not be done at this time. A
number of studies have proposed using GANs as anomaly detectors and as the concept
begins to be refined and the issues addressed, it is likely the technique will show promise
in the area for the future.

In addition to neural network approaches, it may be worth taking a look at SVM to

184

examine the GPWR data for anomalies. SVM have produced highly accurate binary clas-
sification models in many studies, including the area of anomaly detection for a number
of years. One such study proposed using an unsupervised SVM model in order to better
address the evaluation of outlier data[105]. This was an issue that was encountered in
this study with the autoencoder approach. It may be worth comparing SVMs, autoecn-
oders and GANs, once the techniques have been better refined to see which techniques

can better classify clean and noisy data.

7.1.5 Auto Machine Learning

One of the themes focused in this project is the use of AutoML to better streamline the
machine learning training process. The expansion of neural networks and the ever in-
creasing number of hyperparameters will ensure interest in the concept of AutoML, es-
pecially in real world applications. In this study only three AutoML approaches were
evaluated. In the coming years however, it is likely others will mature and become more
viable, especially as machine learning as a service begins to see more widespread use. As
these approaches to AutoML release, it would be very useful to continue to evaluate the
different packages to see how they compare. For example, Amazon Web Services and
Meta, the parent company of Facebook, both have begun offering AutoML services to
customers. As companies begin to better compete with each other, it is likely new inno-
vations in the areas of data exploration, preparation, model training/evaluation and HPC
capabilities will occur. As this happens, it would be interesting to evaluate the groups of
users that may find better use of which techniques, as different users will have different
needs. This will allow users to make better choices when looking at using AutoML and

allow for improved efficiencies.

185

7.2 Final Summary

The four different experiments run for this effort help demonstrate the value that ma-
chine learning and artificial intelligence can add not only the to nuclear industry, but
potentially to other fields as well. In the first effort, data was collected from the GPWR
reactor simulator at CAES. This data consisted of over 30 different features from a nuclear
reactor during five different events. This allowed for the creation of a dataset with over
30,000 data points. This data was then explored using the Python package Pandas to pre-
pare the data for machine learning model training. Half of the data was used to create five
machine learning models using naive Bayes classification, logistic regression, kNN clas-
sification and decision tree classification using the AutoML package TPOT. These mod-
els were extremely successful in classifying the five initial events. All five of these models
scored overall validation in the high 90% range, all six models were able to perfectly dis-
tinguish normally operating reactors from those experiencing transient events, and in-
dividual transient accuracies were in the high 80 to high 90% range. In this phase of the
project, the logistic regression, kNN and decision tree models performed the best, with
accuracies of 98.35%, 98.55% and 98.60%. The precision, recall and f1 score also scored
very high. The results from the first experiment were encouraging, as non-neural net-
work models trained using AutoML produced high performing models. However, many
questions still remained. Most concerning is whether models could be trained to iden-
tify an even larger number of transient events. To determine this, the GPWR simulator
was used again to collect data on a number of simulations. This time over 168 simu-
lations were run using more initial conditions with 12 different events. This expanded
data included over 110,000 data points. Once the data was prepared using Pandas, new
models were trained using TPOT. In addition to using the six approaches from the first
study, it was now possible to train a model using random forest classification. The results
from this study were mixed with the three naive Bayes models and logistic regression

model dropping significantly in accuracy and other validation measurements. However,

186

the kNN and the two tree based models were able to maintain validation results in the low
90% range. That said, these three models did struggle with three transients. Those were
the feedwater pump trip, turbine trip without SCRAM and electrical load rejection. The
individual accuracies only reached between 60 and 70%, while the remaining 9 events
scored in the high 90% range. Despite this, the results from both studies showed that
non-neural network based models can produce highly accurate models in the area of re-
actor transients. Also, AutoML packages such as TPOT can be used to train these models.
Since the models trained from the expanded GPWR dataset scored high in validation,
it was possible to address a number of other concerns with the models and approach.
The first of these was how would the models perform if feature data was unavailable or
deemed unreliable for some reason, such as sensor failure or a security breach. To ex-
plore this impact, features were removed from the dataset based on two criteria. The
features with the lowest Gini Impurity and the the features with the highest rated im-
portance were removed. This was done for the top five features in both criteria. In total,
ten additional models were trained for each of the three approaches. The results from
this were positive, as TPOT was able to train models with only a small impact in vali-
dation results, around 2%. This shows that reliable models can be produced even with
important features missing, increasing the redundancy of any implemented system for
areactor. This would be a high point of emphasis for any regulatory body. Another issue
thatneeded to be addressed was the variance in the model due to changes in the random
states used. TPOT relies on a stochastic process and a different random states are used
in the process. To asses the impact of changing the random states on model training, the
three optimal models were trained using 20 different random states. The results from
this showed only a minimal impact for the three models, less than 1% change for the two
tree based models and 3.32% for the kNN model. This is very encouraging as regulatory
agencies would likely want to know the impact random state changes would have on re-

sults and a minimal impact suggest the results of the training and testing are relatively

187

stable despite the use of random numbers. Two final areas were addressed for the opti-
mal models from the expanded dataset. First, an effort was made to improve the models.
Five different data splits were used to see if more data would allow the models to better
learn some of the transients that the models were having issues with. The results from
this showed no major impact on validation results for the three models. The scores from
this were all within the range of the variation analysis. The next attempt to improve the
model was to allow TPOT more time to find a better model. To accomplish this, the pop-
ulation size and number of generations was increased in four different runs with the final
run incrementally increasing the generations and population size to 200. This also had
a minimum impact on model performance, as all results were still within the validation
range. Since there was no noticeable improvement in the models, it was necessary to try
and identify why the models struggled with the three transients. Back tracing along the
a given decision tree would not necessarily provide a great deal of insight into the issues.
This was due to the number of preprocessing steps a dataset undergoes before training.
Instead, a decision tree model was taken from the variation analysis and the data that
was misclassified was separated into six sets. The descriptive statistics were calculated
for each set and compared to the correct classifications for the three transients. Analysis
of the statistics showed a great deal of variation in both levels for steam generator. Many
of the misclassified points showed more similarity in this feature to the transient they
were incorrectly classified as. This provided strong evidence that this is the issue behind
misclassification.

The third phase of this project involved using machine learning to detect anomalies
within the data collected from the GPWR simulator. Having a machine learning model to
filter the data coming from the reactor and detect data that is significantly different from
what was expected can have a number of applications, especially in nuclear safety. In
some situations, it can be a final line of defense in a cyber attack, but it can also be used to

help operators identify sensors that are malfunctioning, allowing for quicker repairs and

188

morereliable instrumentation systems. In this experiment a portion of the data collected
from the expanded GPWR dataseet was split and randomly altered at different levels be-
tween 0.5 and 2 standard deviations from the mean. An autoencoder neural network was
built to try identify these altered points. Using a threshold calculated from the data, it was
found that the model could detect all altered points at the high levels of noise. The model
did have issues identifying about a quarter of the true data as an anomaly. Also, as the
noise level decreased, the model’s performance decreased. At the lowest level, the model
struggled distinguishing between altered and unaltered data, but this was expected. As
innovation in anomaly detection continues, the development and implementation of
these techniques for nuclear applications, such as reactor instrumentation monitoring,
could contribute greatly to system security and reliability. The final phase of this project
was to compare and contrast TPOT and two other AutoML approaches. H20 AutoML
and Google AutoML Tables. The GPWR data was used to train classification models us-
ing the most basic options for each approach. Each model was allowed to run for three
hours in a cloud computing environment. Once the model were trained, all three ap-
proaches were evaluated based on performance, functionality and ease of use. In terms
of performance, H20 and TPOT compared very well with each producing a model using
XGBoost with accuracy measurements around 93%. While AutoML Tables did not pro-
vide an accuracy measurement, the precision of 97% suggests a highly accurate model.
All three models scored within the range in recall.

In terms of functionality, all three packages had their strengths and weaknesses. Au-
toML Tables provides excellent exploration tools and evaluation visualizations, but due
to the black box environment, it is difficult to get specifics. TPOT has access to a large
number of models from different packages, but it does rely completely on other soft-
ware and can only export one model. Finally, H20 has a large number of data explo-
ration/evaluation tools and the leader board allows for users to examine a large number

of models, but the selection of models is much more limited than TPOT.

189

Finally, in terms of ease of use, AutoML Tables is by far the easiest to use due to its full
use of a GUI and export capabilities, which allows access to those with limited program-
ming experience. TPOT should be easy to use for anyone familiar with scikit-learn and
this makes it a good entry point for those with a Python background. That said, model
customization can be challenging due to lack of documentation and there are still chal-
lenges with the CUDA GPU and PyTorch extensions. H20 is similar to scikit-learn and
many functionalities that are easy to learn for those familiar with Python. That said, the
AutoML instances can be difficult to use since it chooses between regression and classi-
fication and the user has no control over the selection. This can result in very confusing
validation results, especially in the area of classification.

The results from this project have helped to demonstrate the potential of machine
learning and AutoML in the nuclear industry. Nuclear requires some of the mostrigorous
safety controls of any industry and the implementation machine learning could help in
the perception of the field. These concepts will continue to improve and develop in the
coming years and as a result and will be more widely used in daily life. It is hoped that

this research will help contribute to both, nuclear safety and data science.

190

References

(1]

(2]

(3]

(4]

(3]

6]

[7]

(8]

Aurelien Geron. Hands-On Machine Learning with Scikit-Learn, Keras & Tensor-

Flow 2nd Edition. O’Reilly. September 2019.
The economic impact of artificial intelligence on the UK economy. PWC. 2017.

Reactor analytics drives nuclear industry towards machine learning. Nuclear En-

ergy Insider. November 15th, 2017.

Kislay Keshari. Top 10 Applications of Machine Learning : Machine Learning Ap-
plicationsin Daily Life. Edureka, https://www.edureka.co/blog/machine-learning-

applications/. November 2020.

Bernard Marr. The Amazing Ways Coca Cola Uses Artificial Intelligence And Big
Data To Drive Success. Forbes, https://www.forbes.com/sites/bernardmarr/2017
/09/18/ the-amazing-ways-coca-cola -uses-artificial-intelligence-ai-and-big-data-

to-drive-success/. September 2017.

Michael Martinez. Amazon: Everything you wanted to know about its algorithm
and innovation. IEEE Computing Society, https://www.computer.org/ publica-
tions /tech-news/trends/amazon-all-the-research-you-need-about-its-algorithm-

and-innovation. 2017.

J. O. Awoyemi, A. O. Adetunmbi and S. A. Oluwadare. Credit card fraud detection
using machine learning techniques: A comparative analysis. International Confer-
ence on Computing Networking and Informatics (ICCNI), Lagos, Nigeria, 2017,
pp- 1-9, doi: 10.1109/ICCNI.2017.8123782. 2017.

Who is using scikit-learn? Scikit-learn developers, https://scikit-learn.org/stable

/testimonials/testimonials.html# who-is-using-scikit-learn.

191

[9]1 Bill Siwicki. Machine learning helps cancer center with targeted COVID-19 out-
reach. HealthcareITNews,https://www.healthcareitnews.com/news/machine-learning-

helps-cancer-center-targeted-covid-19-outreach. February 2021.

[10] Zeki Murat Cinar, Abubakar Abdussalam Nuhu, Qasim Zeeshan, Orhan Korhan,
Mohammed Asmael and Babak Safaei. Machine Learning in Predictive Mainte-
nance towards Sustainable Smart Manufacturing in Industry 4.0. Sustainability.

2020.

[11] UsingAl-Powered Visual Inspection to Spot Defects.” IBM MediaCenter. IBM,mediacenter
.ibm.com /media/ Using+Al-powered+visual+ inspection +to+spot+defects%20

/0_11oe6sng.

[12] HongfeiLi, Dhaivat Parikh, Qing He, Buyue Qian, Zhiguo Li, Dongping Fang, Arun
Hampapur. Improving rail network velocity: A machine learning approach to pre-
dictive maintenance. Transportation Research Part C: Emerging Technologies, Vol-

ume 45, Pg 17. 2014.
[13] Zhiyi Wang, Jiachen Zhong, Jingfan Li and Cui Xi. Fault diagnosis of air-conditioning
refrigeration system based on sparse autoencoder. International Journal of Low

Carbon Technologies, Vol. 14 Issue 4, p487. December, 2019.

[14] Knief Ronald. Nuclear Engineering: Theory and Technology of Commercial Nu-

clear Power 2nd Edition. American Nuclear Society. 2014.

[15] Hopkins Andres. Was Three Mile Island a "Normal Accident"? Journal of Contin-

gencies and Crisis Management, Vol. 9 Issue 2 Pg. 67. 2001.

[16] Chen WL. Simulation for training and decision-making in large-scale control sys-

tems: Part 6: Power plant simulators. SIMULATION., 1980;35(4):133-136. 1980.

[17] NUCLEARPOWERPLANTSIMULATION FACILITIES FOR USEIN OPERATOR TRAIN-
ING, LICENSE EXAMINATIONS, AND APPLICANT EXPERIENCE REQUIREMENTS.
U.S. NUCLEAR REGULATORY COMMISSION. April, 2011.

192

(18] Kenneth Thomas. Ronald BoringJulius Persensky. Deployment of a Full-Scope Com-
mercial Nuclear Power Plant Control Room Simulator at the Idaho National Lab-

oratory. Idaho National Laboratory. 2011.

[19] VERIFICATION, VALIDATION, REVIEWS, AND AUDITS FOR DIGITAL COMPUTER
SOFTWARE USED IN SAFETY SYSTEMS OF NUCLEAR POWER PLANTS. U.S. NU-
CLEAR REGULATORY COMMISSION. July 2013.

[20] Use of control room simulators for training of nuclear power plant personnel. In-

ternational Atomic Energy Agency. September 2003.

[21] E Chenand M. R.Jahanshahi. NB-CNN: Deep Learning-Based Crack Detection Us-
ing Convolutional Neural Network and Naive Bayes Data Fusion. IEEE Transac-

tions on Industrial Electronics, Vol. 65, Pg 4392. May 2018.

[22] S.Million-Weaver. Eagle-eyed machine learning algorithm outdoes human experts.

University of Wisconsin Madison. July, 2018.

[23]]. Bae, A. Rykhlevskii, G. Chee, K. Huff. Deep learning approach to nuclear fuel

transmutation in a fuel cycle simulator. Annals of Nuclear Energy, Vol. 139.

[24] A.Erdo gana, M. Geckinlib. A PWR reload optimisation code (XCore) using artifi-

cial neurall8networks and genetic algorithms. Annals of Nuclear Energy Vol. 39.

[25] H.Vella. What Will the Power Plant of the Future Look Like? General Electric. April,
2018.

[26] Y. Zeng,]. Liu, K. Sun, L. Hu. Machine learning based system performance predic-

tion model for reactor control. Annals of Nuclear Energy, Volume 113, Pg. 270.

[27] X. Liab, X. Fu, E Xiong, X.Bai. Deep learning-based unsupervised representation
clustering methodology for automatic nuclear reactor operating transient identi-

fication. Knowledge-Based Systems, Vol.204.

193

(30]

[33]

YO-IMORU, R. M.; CILLIERS, A. C. Continuous machine learning for abnormality
identification to aid condition-based maintenance in nuclear power plant. Annals

of Nuclear Energy, Vol. 118, Pg. 61.

R. Gronberg. Al could one day control nuclear reactors; NC State researchers could

malke it happen. News Observer. June 2018.

Lin L., Bao H., Dinh N. On the Formalization of Development and Assessment Pro-
cess for Digital Twins. Transactions of the American Nuclear Society Vol. 123, Pg

268. 2020.

M. Kim, etc. NN-Based online anomaly detection in nuclear reactors for highly im-

balanced datasets with uncertainty. Nuclear Engineering & Design. Vol. 364.

Y. Yuantao, etc. mall-batch-size convolutional neural network based fault diagno-
sis system for nuclear energy production safety with big-data environment. Inter-

national Journal of Energy Research, Vol. 44, 5841.

Y. Chen, M. Narita, T.Yamada. Nuclear reactor diagnostic system using genetic al-
gorithm (GA)-trained neural networks. Electrical Engineering in Japan, Vol 115,

88. 1995.

S Cheon, S. Chang. Application of Neural Networks to a Connectionist Expert Sys-
tem for Transient Identification in Nuclear Power Plants. Nuclear Technology, Vol

102, Pg. 177.

M. dos Santos, etc. Deep rectifier neural network applied to the accident identifi-
cation problem in a PWR nuclear power plant. Annals of Nuclear Energy, Volume

133, 400.

T. Kim, J.Park, B.Lee, S. Seong. Deep-learning-based alarm system for accident di-
agnosis and reactor state classification with probability value. Annals of Nuclear

Energy, Volume 133, Pg. 723.

194

[37] D.Chang, M. Liu, Y. Lee. Accident diagnosis of a PWR fuel pin during unprotected
loss of flow accident with support vector machine. Nuclear Engineering and De-

sign, Volume 352, 110184.

[38] C. Gottlieb, V. Arzhanov, W. Gudowski, N. Garis. FEASIBILITY STUDY ON TRAN-
SIENT IDENTIFICATION IN NUCLEAR POWER PLANTS USING SUPPORT VEC-
TOR MACHINES. Nuclear Technology, Volume 155, Pg. 67.

[39] Electric Power Monthly with Data for May 2020. Energy Information Administra-
tion. July 2020.

[40] Amjith Ramanujam, Ellen Livengood. Python at Netflix. https:/ /netflixtechblog.com/
python-at-netflix-bba45dae649e. April,2019.

[41] Thomas. Oliphant. Guide to NumPy. December 2006.

[42] McKinney Wes. “pandas: powerful Python data analysis toolkit Release 0.24.2.”.
March 13 2019.

[43] Mckinney Wes. “pandas: a Foundational Python Library for Data Analysis and

Statistics”. 2011.

[44] Scikit-learn Developers. "About Us”. Scikit-learn.org.https://scikit-learn.org/stable

/about.html#people.

[45] Scikit-learn Developers. “Whois using scikit-learn?”. Scikit-learn.org https:/ /scikit-

learn.org/stable/testimonials/testimonials.html.

[46] etc all Pedregosa. scikit-learn: Machine Learning in Python. JMLR 12, pp. 2825-
2830. 2011.

[47] “Scikit-Learn User Guide Release 0.21.2”. Scikit-learn.org. May 2019.
[48] Alphabet. “Cloud AutoML”. https://cloud.google.com/automl/docs/.

[49] Epistassislabs. “Home-TPOT”. https://epistasislab.github.io/tpot/.

195

[50] R.Olson, N. Bartley, R. Urbanowicz, & Moore. Evaluation of a Tree-based Pipeline
Optimization Tool for Automating Data Science. GECCO, pg 485. 2016.

[51] J.Darbon Smith L. Likforman-Sulem. Effect of Pre- Processing on Binarization. Boise

State University. January 1, 2010.

[52] Scikit-learn Developers. 5.3. Preprocessing data. https://scikit-learn.org/stable

/modules/preprocessing.html#.

[53] Scikit-learn Developers. Compare the effect of different scalers on data with out-
liers. https://scikit-learn.org/stable/auto_examples /preprocessing/ plot_all_scaling.html

#sphx-glr-auto-examples- preprocessing-plot-all-scaling-py.

[54] B. Recht A. Rahimi. Weighted Sums of Random Kitchen Sinks: Replacing mini-

mization with randomization in learning. UC Berkeley.

[55] Scikit-learn Developers. sklearn.cluster. FeatureAgglomeration. https://scikit-learn.org

/stable/modules/generated/sklearn.cluster.FeatureAgglomeration.html.

[56] Scikit-learn Developers. “2.3. Clustering”. https://scikit-learn.org/stable/modules

/clustering.html#hierarchical-clustering.

[57] L.Smith. A Tutorial on Principal Component Analysis. University of Montreal. Febru-
ary 26th 2002.

[58] Scikit-learn Developers. 2.5. Decomposing signals in components.
[59] P Breheny. Family Wise Error Rates. University of lowa. January 25th, 2016.

[60] Scikit-learn Developers. Naive Bayes. https://scikit-learn.org/stable/modules /naive

_bayes.html.
[61] H.Zhang. The Optimality of Naive Bayes. University of New Brunswick.
[62] J.Eberhardt. Bayesian Spam Detection. University of Minnesota Morris.

[63] P Rai. Supervised Learning: K-Nearest Neighbors and Decision Trees. University of

Utah. August 25, 2011.

196

[75]

[76]

Scikit-learn Developers. 1.6. Nearest Neighbors. https://scikitlearn.org/stable/ mod-

ules/neighbors.html#.

T. Mitchel. GENERATIVE AND DISCRIMINATIVE CLASSIFIERS: NAIVE BAYES AND
LOGISTIC REGRESSION. Carnegie Mellon/McGraw Hill. September 23 2017.

Scikit-learn Developers. 1.1. Generalized Linear Models. https:/ /scikit-learn.org/stable

/modules/ linear_model.html#logistic-regression.
R. Mitchel. Decision Tree Learning. Princeton University.

Scikit-learn Developers. 1.10. Decision Trees. https://scikit-learn.org/stable/ mod-

ules/tree.html.

Scikit-learn Developers. 3.3. Model evaluation: quantifying the quality of predic-

tions. https://scikit-learn.org/stable/modules/model_evaluation.html#.

GENERIC PWR SIMULATOR Training Guide. Western Service Cooperation. May
2017.

N. Siu. Software Verification and Validation: Examples from the Safety Arena. U.S.
Nuclear Regulatory Commission Office of Nuclear Regulatory Research. Septem-

ber 2015.

NRC. NUREG-0800, 15.0 INTRODUCTION - TRANSIENT AND ACCIDENT ANAL-
YSES. 2007.

WCS. GENERIC PWR SIMULATOR Major Transients Report. June 2014.

Robert M. Bell, Yehuda Koren and Chris Volinsky. The BellKor solution to the Net-
flix Prize. AT&T Labs — Research.

Scikit-learn Developers. 1.11. Ensemble methods. https://scikit-learn.org/stable/modules

/ensemble.html#forest.

Scikit-learn Developers. sklearn.ensemble. RandomForestClassifier. https:/ /scikit-

learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html.

197

[77]

Alexis Perrier. Feature Importance in Random Forests. https://alexisperrier.com/
datascience/2015/08/27/feature-importance-random-forests-gini-accuracy.html.

2015.

Scikit-learn. 3.1. Cross-validation: evaluating estimator performance. https:/ /scikit-

learn.org/stable/modules/cross_validation.html.

ELECTRICITY GRID CYBERSECURITY DOE Needs to Ensure Its Plans Fully Ad-
dress Risks to Distribution Systems. Government Accountability Office, GAO-21-
81. March 2021.

NRC. REGULATORY GUIDE 5.71 (New Regulatory Guide) CYBER SECURITY PRO-
GRAMS FOR NUCLEAR FACILITIES. 2010.

Pierre Baldi. Autoencoders, Unsupervised Learning, and Deep Architectures. Pro-
ceedings of ICML Workshop on Unsupervised and Transfer Learning, vol 27., Pg
37-40.2012.

all Martin Abadi etc. TensorFlow: A system for large-scale machine learning. 12th
USENIX symposium on operating systems design and implementation, pp. 265-

283.2016. 2016.

TensorFlow. TensorFlow 2.0 is now available! Medium.com, https://medium.com/

tensorflow/ tensorflow -2-0-is-now-available-57d706c2a9ab. 2019.
TensorFlow. Why TensorFlow? https://www.tensorflow.org/about.
Keras. About Keras. https://keras.io/about/.

K. Han, etc, all. AUTOENCODER INSPIRED UNSUPERVISED FEATURE SELEC-
TION. IEEE International Conference on Acoustics, Speech and Signal Processing

(ICASSP) pp. 2941-2945. 2018,

198

[96]

Antonio L. Alfeo, etc, all. Using an autoencoder in the design of an anomaly de-
tector for smart manufacturing. Pattern Recognition Letters, Volume 136, Pg 272-

278.2020.

A. Gokhan Yavuz R. Can Aygun. Network Anomaly Detection with Stochastically
Improved Autoencoder Based Models. 2017 IEEE 4th International Conference on

Cyber Security and Cloud Computing. 2017.

Thiée, L.-W. A systematic literature review of machine learning canvases. Gesellschaft

fiir Informatik, Bonn. (S. 1221-1235). DOI: 10.18420/informatik2021-101. 2021.
H20.ai. H20.ai Leadership. https:/ /www.h20.ai/company/team/leadership-team/.

LeDell E, Poirier S. H20 automl: Scalable automatic machine learning. In Proceed-

ings of the AutoML Workshop at ICML 2020. 2020.
Alphabet. AutoML Products. https://cloud.google.com/automl/docs.
Alphabet. AutoML Tables documentation. https:// cloud.google.com/automl-tables/docs.

Alena Orlenko et al. “Model selection for metabolomics: predicting diagnosis of
coronary artery disease using automated machine learning”. In: Bioinformatics
36.6 (Nov. 2019), pp. 1772-1778. 1sSN: 1367-4803. DOI: 10.1093/bioinformatics/

btz796. URL: https://doi.org/10.1093/bioinformatics/btz796.

Jessica Dafflon et al. “An automated machine learning approach to predict brain
age from cortical anatomical measures”. In: Human Brain Mapping 41.13 (2020),
pp- 3555-3566. DOI: https : //doi . org/10.1002/hbm . 25028. URL: https: //

onlinelibrary.wiley.com/doi/abs/10.1002/hbm.25028.

Gomathi S. et al. “Pattern Analysis: Predicting Covid-19 Pandemic in India Using
AutoML”. In: World Journal of Engineering ahead-of-print (Nov. 2020). por: 10.

1108/WJE-09-2020-0450.

199

[99]

[100]

[101]

[102]

[103]

[104]

[105]

Alexandre L.A Lopes V. “Auto-Classifier: A Robust Defect Detector Based on an
AutoML Head”. In: Lecture Notes in Computer Science (2020). DOI: https://doi.

org/10.1007/978-3-030-63830-6_1.

Nurul Afigah and Nur Anida Jumadi. “Leg Flexibility Classification Using AutoML

Tables”. In: 1 (Dec. 2020), pp. 270-279. pO1: 10.30880/eeee.2020.01.01.032.

S. Levine. RESEARCH INFORMATION LETTER - ID, PRESSURE VESSEL FAILURE
PROBABILITY PREDICTION. Office of Nuclear Regulatory Reserach. 1977.

Valerie Gawron. Automation in Aviation—Accident Analyses. Center for Advanced

Aviation System Development, MITRE. January 2019.

Sandia National Lab Nuclear Regulator Commission. Good Practices for Imple-

menting Human Reliability Analysis (HRA). NUREG-1792. 2005.

R. Boring, etc, all. “Guideline for Operational Nuclear Usability and Knowledge

Elicitation ”. In: (2015). Procedia Manufacturing, Volume 3.

Office of Nuclear Energy. NuScale SMR Simulation Lab Opens in Idaho. https:

/ lwww.energy.gov /ne/articles/ nuscale-smr-simulation-lab-opens-idaho. 2021.

Ian Goodfellow et al. “Generative Adversarial Nets”. In: Advances in Neural In-
formation Processing Systems. Ed. by Z. Ghahramani et al. Vol. 27. Curran Asso-
ciates, Inc., 2014. URL: https: //proceedings . neurips . cc/paper/2014/file/

5ca3e9b122£61£8£06494c97blafccf3-Paper. pdf.

Mennatallah Amer, Markus Goldstein, and Slim Abdennadher. “Enhancing one-
class support vector machines for unsupervised anomaly detection”. In: Proceed-
ings of the ACM SIGKDD workshop on outlier detection and description. 2013, pp. 8-
15.

200

Appendix A Publications from Research

1. Reactor Transient Classification Using Machine Learning, Transaction of the Amer-

ican Nuclear Society Vol. 121, Winter 2019.

2. Nuclear Reactor Transient Diagnostics using Classification and AutoML, Nuclear

Technology, Volume 208 Issue 2

3. Expanded Analysis of AutoML Models for Nuclear Transient Classification, Nuclear

Engineering and Design. (Paper accepted February, 2022, publication pending.)

201

Table 44: Model Training Expanded Dataset

Appendix B Python Packages Used

Python Package | Initial Version Used
Python 3.7.6
NumPy 1.18.1
Pandas 1.0.1
Scikit Learn 0.22.1
TPOT 0.9.5

Table 45: Auto Encoder Study

Python Package | Initial Version Used
Python 3.7.12
NumPy 1.19.5
Pandas 1.1.5

Scikit Learn 1.0.1
TensorFlow 2.7.0

Table 46: AutoML Study

Python Package | Initial Version Used
Python 3.7.6/3.7.12
NumPy 1.19.5
Pandas 1.1.3/1.1.5
Scikit Learn 1.0.2

TPOT 0.11.5

H20 3.36.0.2

202

Appendix C Optimal Tree Output

Falso

X(3] <= 05
gini = 0.905

samples = 46368

value = (0, 4503, 4560, 4512, 1532, 44

4474, 4406, 4370]

. 4531, 4540, 4575

gini - 0.0
samples
D)

XIB] <= 0.75
qini = 0.36
samples = 42008
valua = [0, 4503, 0, 4512, 1532, 4475, 4531, 4540, 4575, 4474
4496, 4370]

X7l <= 05

saihples = 37469 s
value = [0, 4503, 0, 4512, 1532, 4475, 4531, 1, 4575, 4474 | | value = [0, 0,0,
496, 4370)

ai
samplas = 4531
5,0, 1, 4375, 4474 | | value = [0,0,0,0,0, 0, 4331, 0,0, 0,0, 0]

X[11]<=05
ini = 0,838
samples = 28423
valuo = [0, 4502, 0, 0, 1531, 4475, 0, 1, 4575, 4474, 4496
4369)

X(A] <= 0.75
s = 0.001

aunples = 4518
0,19, 4512, 1,0,0,0,0,0,0, 1]

XI37) <= 0726003.0
0.667

T 0
samplos = 4508

5
qini = 0.82]

amplos = Z
value = [0, 0,0, 4508, 0, 0,0, 0, 0,0, 0,0]

1
- 3927 o

N , 2 " samples = &

wabus = 10, 4502, 0,0 1531 4475, 0. 1. 4575, 4474, 0 value = [0,1,0,3,1,0,0,0,0,0,0,

X[i01<- 05
ini = 0.

samples
value = [0, 4502, 0, 0, 1531,
43691

i = 0.
samples = 2
value = 0, 0,0, 1,0,0,0,0,0,0,0,1]

gin
samples = 2
value = [0,1,0, 1, 0,0, 0,0, 0,0,0,0

, 4375, 0, 0, 4369]

Figure 66: Optimal DT Section 1

203

: Oy
JE e L value = 10, 4333, .6, 0,0, 0,0,0,0,9, 01

¥12] <= 073
03

samples = 1335
walue = 0, 15, 0,0, 8, 0,0, 0, 53, 0, 0, 4369]

X3 <= 0.7
i - 0.015
aamples = 4628
value = [0, 104, 0, 0, 0, 0,0, 1, 4522, 0,0, 1]

gini = 0.0

gini F 00
valus = [0, 0,0, 0, 0,0, 0, 9, 8, 0, 0, 4300

aimples = 136
10, 150, , 8, 3,0, 6, 53, 0,0, 68)

X6 =
ini

i = 0.0 g
samples = 4419 sarmples = 30
value = 10, 15,0,0,0, 0,0, 0,0,0,0, 15)

[
05
value = 10, 0,0, 0, 0, 0. 0.0, 4419, 0.0, 0)

e
|‘J o.

o Ly
samples = 22
value = 0.11:8,6,0,0,6:0,0,0.0.111

2] <= D0
- 05

samples = 20

value = [0, 10,0, 0,0, 0,70, 0,0,0, 0, 101

X[26] <

W17 <= 0131

sampios = 1 mpies = 1
vaue = 10,270,1.6,0,0,0,0,0,0.21 0,270.8,0,0,0,0,0,0,0.2)

i =05
Lpie
valus = (0,1,%5,6,0,0,0,0,0,0,0,1)

g = 05,

RN
e = 0,178,6.8:0,0,0,0,0.0,11

o =05
Spias 2
5.8,0,0,0,0,0,0,0,1]

Tt 03
s
v Vo5 0600001

=03
pies =2
waluo = 10,10, 8.6,0,0,0,0,0.0.11] | valuo

X251 <= 0.001
5

0.
=12
0,6,0,0,0,0,61

o
valuo = 0,615, 5,0,

X[Z7] <= 00
qini - 0.5
]

.0.0,2,0,0,01

X[15] <= 0,001
i - 05

o2 = B
£0,0,0,0,0,0, 41
T

value = [0,

solen 186 [
value - [0, 83, 0,0, 0,0,9, 0, 93, 8,0, 0] valao = 10,258, 0,0,0.0,0.0,0,21
T T

Figure 67: Optimal DT Section 2

X[O] <= 075
ini = 0.045

samples = 4626
value = [0, 104,0,0,0,0,0, 1, 4522, 0,0, 1)

qini = 0.667
samples = 3
0,0,0,0,0,0,1,0,0,1)

gt = 0 gni =05 e o [
samples = 200 X
100,0,0, 0,0., 0, 100, 0,0, 01 0.1,0,0,0,0,0,0,0,0,0,1)

18
),0,0,0,0,0,0,0, 9]

o5
es = 2
0.0,0,0,1,0,0,0

0033
05

gi

i
sam

_ samplos = 198
value = [0, 1,0, walue = [0, 99,1, 0,0, 0,0, 0, 99,0, 0,0]

gi

i
samples = 190
walue = [0, 95,1, 0,0, 0,0, 0, 95,0, 0,01

X251=- 0016 X(151<- 0,001
gini = 0.5 gini = 05

l

samples = 4 samples = 166
value =[0,2,0,0,0,0,0,0,2,0,0,01| | value = {0, 93,0,'0, 0, 0,0, 0, 93, 0,0, 0]

G 7 o S0
samplos samples samples = 2 samples =2 samples © 181
valuo 10,1.0,0,0.00.01,0,00 | [value=10,1,0.0.0.00.0,1,0.0,0/| |vaue=10,1,0.0.0,0.0.0.1.0.0,01 | |value=10.1,0.0,0,0.0,0.1,0.0.9)| |, 1. - 10,9550, 5, 0, 0.0, 92, 0,0, 0]

Figure 68: Optimal DT Section 3

204

samples
value = [0,0,1, 0,

G - 05

0,0,0,1,0,0,11

gini
samples = 30
valas = [0, 0,0, 0, 0,0, 0,0, 15,

gint = 0.5
samples = 74
value = 10, 0,0,0,0,,0,0, 37,00, 371

i
vabue = 10,0, 5185 6,0.0.0,34,0,0,341

0,15

valus = (0,170, 8,0,0,0,0.0,0,0, 11

Gini = 05
o

w03
gt 2
vatoe = 10,00, 8.0.0,0,0,1,0,0.1]

i = 05,
samples = 2
valua = [0, 0,0,0,0,0, 0,0,

o 05
vabun = 10,0°0,0, 50,5,

Xiz9) <= 0011
it - 0.5

smples - 4
valua = 10,030, 5, 0.0.0.2,0,0.21

T ST
R o | o | |
10,0,5:6,5,0,6,0,14, 8,0, 14] 0,0,0,2,0,0,2) | (¥ =10.000.00001001

Xi25] <= 011
ni - 0.5

sainion = 10 satrples = 18
valle = [0, 06,'0,0,0,0,0,5,0,0,5) | | value = (0,0,0.6,0,0,0,0,5,0,0,91

X261 <= 0832
i = 05 D

w2
00885000100 1) [

sdmples - 2
= 0.07086.:0.6,01001)

X341 < 001
i - 05
samplos =

valus = (0,050, 0.0, 0.0.3.0.0.31

W24 <= 0323

X(30] <= 0.008
gini - 0.5 aini

Srpies - § s
calus = 0,088,570, 0.0.4.0.0. 01| | vatue = 10,08

i = 05,
samples = 2
vallue = (0,00, 1, 0,0, 0.0, 1,0,0, 11

value = [0, 0,

N(z6] <~ 0004
gind = 0.5

=05, ai
os =2 samples = 2
F6 0501001 value = (0,056, 0,0, 0.0,1,0,0.11

= 6
valuo = 0,0, 0.0.0.3.0.0.3)

) |

value = 10,030,0.0,0,0,1,0,0.11

[N
valae = [0,0,5, 3, 0,

- Xz <- o1
gl = 0.5 gini = 03

o5 (28] <~ 0,008
S ‘gini = 0.5
value = [0, 0,

simplos
valuo = [0,0,6,8,0, 0,0, ,1,0,0, 11 Ny

0088002002

samples
valis = (0,0, 0, 0,0,

05

gini
samples
value = 10, 1,0,0,0,0,,0,0,0,0,1)

Ni16] <- 002
i = 0.5

66
6,0,33,0,0, 33)

X221 <= 002
5

samples = 54
8,0,0.:,0,0,0,32,0,0, 32)

value = (0,0, 0, 0,9, 0,

valvo = [0, 0,0, 0.0.0,0,0.2,0,6,2)

gini = 05

gini = 0.5,
value = 10,0,0,0,0,0,0,

gini = 05
samplen = 2 samples.
value = [0,0,0,0,0,0,0,0,1,0,0, 11| | value = 0,0,0,0.0,0,0,0,1,0,0, 1]

I S =05

sampl
.1,0.0,11| [value = 10,0,0,0,0,0,0,0,1,0,0, 1

Figure 69: Optimal DT Section 4

W26
Gind

samples

93
05
62
0,31,0,0,31]

N[25] <= 00
gini = 0.5

samples = 60
10,0,0, 0,0, 0, 0, 0, 30, 0, 0,30]

(19 <~ 0.043
ini = 0.5

samples = 56
valua = [0, 0, 0,0, 0, 0, 0, 0, 28, 0,0, 28]

[26] <= 0.83
yini = 0.5
vatue = [0, 0,

unples = 4 samples = 52
).0,0,0,0,0,2,0,0,2]| | value = [0,0,0,0,0,0,0,0, 26, 0,0, 26]

x27)

s

samples 6 5

value = [0,0,,0,0, 0,0,0,3,0,0,3] | | valuo = 10, 0,0,

ini = 0

T a7 g
s °

gi
sumples = 2
vahue = [0, 0,10, 0,0,0, 8, 0

samples = 2
walue = [0, 0,0,0,0,0,0,0,1,0,0, 1]

, 0,9, 1)

=05 [
amplea 2 hnpies
valus = 10,0080, 0, 8,0,1.0,0,11 | | vabus = [0, 00,48, 0, 0.0, 1.0.0,

Figure 70: Optimal DT Section 5

205

F =05,

i
X< opor
Spkan =2 Spies 2 . 02
v = 101 8 00.00,0,0,11] [rate = 100050000000 [e - 10,2550 8 00,0021 |vaben =10,

e, RN
e« 101 8T 808,00 0.0 11| [vaten < 015 ESE 00,001 [saee

i i i
53 TR T o= 55
Spien = 2 rplea = 2 e =2 s = 2
08T w0 801000 |vae =@ TEG 00010001 [vowo - 01 T80 001000 |vaive =@ TG0 001,000

F=s ow
s 14
vahn = 0, 75,5,0, 0,00, 7,0.0,0)

o)
=2
watve = 10,158 6.9.0.0.1.0.0.01] [

o

=
5

i i

‘w.vw.:n,..,w..z..m(uthmona

TRCE
2 sdmpen - 2
vatue = 9,1°0,9.0.9,6,0.1,0,0,01] [vatuo - 10.1°885:0,8, 0,1, 0,001

TR
e = 2
vabus = 0,158 5,0,8,0.1,0,0,0)

e

=5
itz
v - 10,1 5L 00 8.0.1.0.0.0

ETHEE
dins = 05

watrlon 144
valoe = 0,72, 5,0,5,0,0,0, 72,9, 0,01

oo TGS,
vabis = 10,100 0.0,,0,1,0,0,01 | |vabes = 10,1580

TR
i1 s
veluo = 10,138,,0,0,0,1,0,0,0) vl = 19,5 9.0,9,0,0,0,8 .0, 01

saimplen = 32
vabr = [0 16,5, 0,0, .0, 18,0, 0,01

wini =85

g
samles -2 o
v = 018880801000

e 30
5/5,0.5.0.0.15,0.0.01

TR
implen - 7
votun = 1018 T0,8 0.1 0,000

vates = 10,1

X1 <= 6008 ol <- 005
oini = 05
shmpies =4 Siphis's 30
vabee = 10,2000, 0,,0,3,0,0,01| | vabue = 10, 15,505 0,0 8,1 13,0, 0,01

LI om 03] N JICHN s
et 01 TG 0 10.0.01] [g 0 BB B 00,0000 e = 0,1 T80 01,0001 | v = 00850 8,001000.01] | e g0, 8% B 4 0001 |vae = 0
T = T
e : e
i 0 RET G S 03000 26010001) | i - 08B R B0 5000 —
TET T T
- o =N R
S, P Sl KRN
wea =10 TG 8 0.3,0.0.00 0006000000 | viee 23T b0z 000 catn = .25 855.8,0,2.0.0,01| | v - 10
- e
e =, BEE T B 0 10 00| | w1 i b B T3801000| [ww-n —

Figure 71: Optimal DT Section 6

i
value = 10,550,

=112
0'.0.0.0,56.0.0, 01

o1

ey
oo = 10.25856.0,0. 20,001

001

i ‘ i = 0.5
samplos - 2 -
N amplas - B
valio = (0,158.0,0, 0,9, 1,0,0,01 J‘,_,_,[,,.”'"gju'“‘“‘n'”,

o
|

]

) w015 T d 01000

J
] g

-
sarmples = 26
alon = 10,1575,9,0.5,0, 13,0,0,01

o

i< 00
KRN Qi = 0.8
fue = 16,1,, 0,0, 9,0, 0, 1,10, 0,01

canpies 2 18
‘...w...wu.auiao,n,n,;u.u.nl

- R == 0061
i - 0

3
L
“0.20 850002000

301 <= 0001
i = 05
sampies

value = [0,2,1,0,0,0,0,0,2,0,0, 01

s
e = 10,108 5.0.6,0,1,0,0.00

= 7
ioa = 2 -
‘u.u.l.vv.u]‘ ‘ulw-lﬂ.l.

w3
2 LN
10,60, aw\‘ ‘-....-m ‘n."tu.unm‘u.u.ul| ‘-.\..-n foe. .a.l.u.n.ul‘ |-..».-m

=z sSopaa = 2 o
0,0,0,1,0,0,01] | valm = 10, 0.0,0,1.0,0,01] | vatow = 10.1.5550.8,0,1.0.0.01| | vatue = 10,150

sl

Figure 72: Optimal DT Section 7

X ST
N s,
uﬁ.ﬂﬂ'ﬁﬂ.ﬂ.ﬂ.ﬂ.l.ﬂ.ﬂ‘ﬂl mu--\n,s,n,ﬁq_u,n,gqqn]
R g =05, gini = 0 i
e 10,388 o Lot 00 80.0.0.1.0,0.01 | s = 100505705 010,001 [sotve = 10,0 9860.8.0,1.0.0.01] | sun - 0, BTG E 0 100000

EE]
)

a1 <= 00 EEEerT
gini =05

i - 0

sha =05
6001000 ‘-.\...-m_luc;n samplos = samples © 4

5 A 0. valus = (0, 2,0,9, 0:0,0,0,2,0,0,) | | valus = 10,2,0,0,0,9,0,0,2,0,0,0)

2y
1.0,0,1,8,9,0]

o
|v.m.- 05 60,0,01.000

N oo m o
value = 10,170,809, 8,0,1,0,0,01 | | value = [0, 10088 0,6,0,1,0,0,01| | satue = 0,1, 518 alue = 0,170

T KRS
valus = (0,15,8,,0,6,0.1.0,0,01 | |value = 10.1,8/86.0.8,0,1,0,0,01| [vatue - 10,15

Figure 73: Optimal DT Section 8

206

2] == 003
gini = 0.3

samples = 106

walue = [0, 53, 0,10, 9, 0,0,0, 53, 0, 0, 0]

X8 <~ 0007

jind = 0.5

safoples = 52
value = [0, 46,5, 0,0, 0,1,0,46,0,0, 01

X(25] <= 0.0
gini = 0.5

s sam) o
valua =10, 2,0, 2.0.0,00| |vatus = 10,5,0.5.0,0,0,0,5, 0,000

X(3) <= 0008
gini = 0.5

gini =05
samples = 2
valus = 19, 1,0, 0,0,8, 8,0, 1,0, 0,0}

aini = 05
samples =2
value = [0,1,0,0, 0,0, 0,0, 1, 0,0, 0]

3
samples = 2
walue = 10, 1,0,0,0,0, 0,0, 1,0,0.0) valus

(28] <= 0.0
qini =
samples = 4 samples = 4 samples = 48
valuo = 0, 2,0,0,0,0,0,0, 2, 0,0, 0} value = [0,2,0,0,0,0,0,0,2,0,0,0] | | valuo walue = [0, 24,0,0, 0,0,0,0,24,0,0,0] | | valuo.

i - 05
valoe = 10,15, 0, ¢

o5

N[0l <~ 0001
'y i
0.0,0,1,0,0,01

X231 = 00

i =05 g = 05
aples 2 samyee 2
value = [0, 1,0, 0,0,0,0,0,1,0,0,01 | | value = [0, 1,0, 0, 0,0,0,0,1,0,0,8] | | valuo

a
sample:
- samples = & amples = 42
‘"hﬂflﬂ-h“-‘{l vatun = (0,30, 0,0,0.0,3,0,0,01 | [value = 0.2175. 5. 0,0,0.0.21,0,0,01

Sini - 05
wdmples = 2
valuo = 10,15 6,0, 0, ,9,1,0,0,01

]

X291 <= 0003
05

|

E
Sptes =2
walan = 10,178 800, 6,0.1,0.0.01

0,0.1,0,0,00 val

Figure 74: Optimal DT Section 9

151 <= 0001
5

gini = 0.
saples =38
valuo = 8, 19, 0,9, 0, 0, 0,0, 18,9, 0, 0]

Gini = 05,
samplos = 2
valwe = [0,1,0,0,9, 0,0,0,1,0,0,01

samples = 48 samples = 4
value = [0, 24,0, 0,0, 0,0,0.24.0,0,01 | | value = [0, 2,0.0.0.0, 0, 0.2.0,0,0]

it = 05 sos?
6.0.5,0,1.0,0,01

=03
siies > 10
valuo = [0, 56,5, 5. 0. 0,0.5.0.0.0]

ot
o I e
value = [0,1,0,0,0,0,0,0,1,0,0,0]

T
©,8,0,1,0,0,0]

q-
sdmples - 8
valuo = 10, 4" 850, 6.0.4.0.0.01

o samples - 4
voluo = 0,1, valuo = [0, 20,4, 0.0, 0,0.2.0,0,01

211 <= 0061 5
jini = 0.5

o5, gl
samples
value = 10,1.0,0,0,0,0,0,1.9,0, 0]

. =2
0.0,0.1,0,0,00

g gin = 05,

samples
vatia = 10,18:0.6,0,0.0.1.0,0.01

dmplon — 8
value = (0,476, 6,0,0,0,0,4,0,0,0)

=55,
o= 2
0,0,0,0,1,0,0,0)

gini = 0.5
samples = 2 amples - 4
value =10, 1,0,0.0,0,0.0.1.0.0. 01 | vatue = 0,20, 0,9, 0,00, 2, 0,0, 01

gini
10,0,

gini = 0.5,
sampl samples = 2
value = 0,15, 0, 0,

EEEy
| ’“qm]\ 05

samples = 6 23
value = 10,3,0,0,6,9,0,0,3,9,0, 0] 0,0,0,15,0,0, 0}

<= 00 XEl <= 00
0t S =05 gini - 05,

gini - 05,
samples = 2
0.1."5/4, 5.0,0,0,1.0,0,01

samples = 2
10.1/86.0,0,0,1.0,0,01

s = 24 simples - G
'0.0,0,0,12,0,0,01 =10,370,0,,0,0,0.5,0,0.0)

N271 <= 0004

gini - 05, o

ini = 05
samples = 2
L 1.806,0.0,0.1.0,0.0)

gini - 05
samples =2
wvalue = [0,1,0,1, 0,0, 0,0,1,0,0, 0]

samplos = 2
3 0,0,0,0,1,0,0,01

e 05 o = 0
. i 32 S 4
11,0,0,0,0,0,0,11,0,0, 0] x.n.efn.n.n.o.z‘n.n.m

=05
atmples = 2
010,00] [vatve 10,108 00.8,0.1,0.0.0

Figure 75: Optimal DT Section 10

207

N - (bl
valow =10,0,0,0,0,0,8,0.1,0,0. 1] | utun = 10,088 8:0,6,0,2,0,0,21 $0.0,0,0,0,0.1,0.0.11] | vatue - 10,0,5/0/6,0,6, 0,17, 0.9, 171

IS <- B

o
vaton 10,0000

satupies
|nnun,Pnnunmnn.m

samples = 2
valuo = 10,0,0,,0,0,0,0,1,0,0,1]

X5 <= 00
ini = 0.5

amples - 30
alus = [0.0,0, 0. 0.0, 0, 0, 15, 0. 0. 15}

s

iy g
value = 10,00, i

s
9.0,0,0.3.0.0.10] | vaive = 0,0, 5060, 0., 14,0.0, 191

X4) <- 0034
ini =05
samples = 22
10,11,70,0,0,0,4, 0, 11,0,0,0)

gini = 0.5
samples = 10 samples = 12
value = [0, 5, 0,0,0,0,0,0,5,0,0,0] | | value = 0,6,0,0,0,0,0,0,6,0,0,0]

samples = 2
valuo = 10,10, 8,6,0,8,0,1,0,0,01

3
\.,.,m:m

value = [0, €

a 5
pias walue = 10,108 vale = 0, o 0100 n
valuw = fenb0s000 =10.1.0,070.0.0.0,1,0.0.00] | yue=0,3085,0,0.0,3,0,0,01 [vahe=10.1.00,000010000] | =0, 4700 0.00.0,4,0,00)] [vlw=1000000001.00

10,40,

0,1.6,0,1]

Lk

05
n =6
bo,0.0,0,3,0,0.00

10.3.0, valus = [0, 2, n.u’_"n.m 0.0,2,0,0,01
o8 K i = 05 i 5
S 05 mples 2 sampl plos = 2 e
0010001 | w0, 20 0000, 8,0,2,0,0,00 value = 10,1080, 5,0,1,0,0,01| | vaus = 0, 10,0.1,0,0.00| | value = 10.1.0,8,6:0,0.0,1.0,0,01| | value = 10.1.9:.6,0.0.0.1,0,0,01 | | value = 10,19 .00, 5.0,1,0,0, 01

e
8 50,6,0.1,0,0.01

ini w05
s - 2
value =10, 1,%,5,0,9,0,0,1,0,0,0)

Figure 76: Optimal DT Section 11

5

= X[27] <= -0.003
samplos = 2 gini = 0.3
=10,1,0,0,0,0,0,0,1,0,0,0]

samples = 20
value = [0, 10,0,0,0,0,0,0,10,0,0,0]

gini = 05
samples = 2
value = [0, 1,0,0,0,0,0,0,1,0,0, 0]

samples = 2
value = [0,1,0,0,0,0,0,0,1,0,0,0]

gini = 05
samples = 2
value = [0,1,0,0,0,0,0,0,1,0,0,0]

valuv“lODUOUODOQODO]

it = 0.5
samples = 2
value = [0, 1, 0,0,0,0,0,0,1,0,0,0]

X[21] <= 0.064
gini = 05

samples = 16
value = (0,8, 0, b, 0, 0, 0, 0,8, 0,0, 0]

W20 <= 0005 W] =00

value [030,{00003000] vnlue—[ﬁSDSDDOnSOOO]

/

P X[28] <= 0.0 P X271 == 0003
samples = 2 samples = 2 g e
value = [0,1,0,0,0,0,0,0,1,0,0,0] value = [0,1,0,0,0,0,0,0,1,0,0,01| | o~ 10 4700 Ssugo.aon]

X[25] <= ﬂ o
glm

ampl ﬁ
0, 3. 0, 0. 0, 0,0,0,3,0,00]

ot

gini = 0.5
samples = 2
value = [0,1,0,0,0,0,0,0,1,0,0,0]

gini = 0.5
samples = 2
wvalue = [0, 1,0,0,0,0,0,0,1,0,0,0]

gini = 0.5 gini = 0.5
samplos = 2 samples = 2
value = [0, 1, 0, &, 0,0,0,0,1,0,0,0] value = [0, 1, 0, {ﬁ. 0,0,0,1,0,00]

vilua—lOZOOODODZ,O.ILO]

.

gini = 05
samples =
value = [0, 1, 0, op 0,0,0,0,1,0,0,0]

gi 5
samples = 2
valuo = [0, 1,1, 6, 0, 0, B, 0, 1,0, 0, 0]

Figure 77: Optimal DT Section 12

208

)
e 2
v - 10,0 3E 08 01,0011

loa > 18
0.0,14.0,0, 141

2
vaben = 10,115, ., 0, 5,0,

05

X a0
wopion = 12
vabun = 10,605,8.0,8,0,8, 0,0, 0]

o s
w10, 88 0,000, 50,000 e 10,058 56,0,0.4.0,0,41

‘ -

o Sy
shoe = 10, 070,65 watoe = 10,0708 600,020,020

50200

Wz = A
i 05

won e 04 B0 0 40001

i =05

I
%
vates = 10,0.5,8,0,0, 0.0, 100,11

— —
O TN | - = T

T
e
vatus = 10,05, 5,0, 2.6.1,9,0. 11

T = a6
ol = 85

T D00
admpias = 4
vatun = 10,275, 8.5.0,8.0.2.0.0.01

T
=

i = 05 =05 i - 0 i - 63 s =05,
samples = implas = samplos = samplas - 7 simplas =1
vabon = 10,18 8,5.0.5.0.1,0.0,01| | vaue = 10,10, 6.0.0.0,1,0.0,01 | | vaten < 10 1.788,6:0.5.0.1.0.0.00] | vatow = 10,1.88.8.0.8.0.1.0.0.01| | vaten = 101585000, 1.0.0.00

o
BRI TR

Figure 78: Optimal DT Section 13

o3
0,9.9.1,0,0.1)

05
wabue = 10.0°8-48:0.5,0.1.0.0.11

X< 0
gl - 0.3

samples = B
10.070.0 0:0.0.0,3.0.0.4

<= 018 R3] <= 8037
i - 05 g

laa = 4 fl
ot = 8,0,0,05,5,0,0,2,0,0,2)| | vobuo =10,99,8.6,0,0.0,2,0,0.21

‘ S =

T o5
2 =N TN el b - 2
750,601,001 | vatuo = 10,070/9'6,0,0,0,1,0,0 11 | vatoo = 10,0586, 0,0,0,1,0,0, 1 [vatve = 10, 0/5H5:0,8,0,1.0,0, 11] | vataw = 10,068 5.5,5,0. 1.0,

<Empin
valus = 10,0.0/0.6.0,

ea = 2

=
simples - %
70,0.0.1.0,0,00 | [vatao = g0, 17006, 0,0, 1.0.0.01

s,
valun = 0,08.6,5:0,.0,1,,0.1)

vaie = 10,05,

Figure 79: Optimal DT Section 14

209

Figure 80: Full Optimal DT

210

Appendix D Process Visualization

Average CV score on the training set was: 8.9258355618185677
import numpy as np

import pandas as pd

from
from
from
from
from
from

sklearn.feature selection import SelectFwe
sklearn.model selection import train_test split
sklearn.pipeline import make pipeline
sklearn.preprocessing import RobustScaler
sklearn.tree import DecisionTreeClassifier
tpot.export utils import set param_recursive

exported pipeline = make pipeline(

SelectFwe(),
RobustScaler(),
DecisionTreeClassifier()

Figure 81: Re-create Optimal Tree From TPOT

211

RC5 LWL LOOP 1 WR RCS LWL L2OP 1 MR HOT LEG 1 TEMPERATURE
583 2.4 4.5 564.915

COLD LEG 14 “TEMPERATURE COLD LEG 1B TEMPERATURE HOT LEG 2 TEMPERATURE
583 564.197 564.187 564.914

COLD LEG 24 TEMPERATURE COLD LEG 2B TEMPERATURE FPZR SURGE LINE TEMP
583 564.197 564.197 B36.156

PORY DISCH PZR TEMPERATURE CONTAINMENWT PRESSURE
583 lag.aas3 a.8

CONTAIMMENT TEMPERATURE 5G-1 MR LEVEL 5G-2 NR LEVEL FW FLOW TO 5G-2 %
583 11&.166 54,8841 26.5699 11.739

M5 FLOW FROM 5G-1 LINE-1A M5 FLOW FROM 5G-1 LIME-1B &
583 11.739 11.72586

M5 FLOW FROM 5G-2 LINE-2A M5 FLOW FROM 5G-2 LINE-2B 5G-2 PRESSURE &
583 11.7256 1142.65 1142.65

CALCULATED AVERAGE TEMPERATURE PRESSURIZER PRESSURE 0
583 564,556 2236.64

PRESSURIZER WATER TEMPERATURE PRESSURIZER STEAM TEMPERATURE %
583 652,588 652,583

GENERATOR POWER EOL MOL
583 8.6 1 @
(1, 27)

Figure 82: Raw Data to Test

212

#Transform data using pipeline

X_transformed= exported pipeline[:-1].transform(X_single)
#print(X_transformed)
¥X_transformed=pd.DataFrame(X_transformed)
pd.set_option('display.max_columns', None)
print(X_transformed)

print(X_transformed.shape)

print(type(X_transformed))
¥_transformed=X_transformed.to_numpy()

print(type (X_transformed))

<] 1 2 3 4 5 6 7 Y
@ 8.8 @.888515 &.8e64838 8.15823 @.887124 8.865258 @.184452 8.863451

8 9 la 11 12 13 14 15
@ -@8.,815353 @.@ -8.849261 &.888lcl 1.888588 -8.88322 &.888221 -8.884747

16 17 18 19 28 21 22 23 0
@ -@.8ea3e83 @.130132 @.138899 &.8829%83 @.833837 ©.832388 9.832358 8.8

24 25
0 1.6 0.0
(1, 26)

Figure 83: Transformed Data Using Pipeline

decision node (¥_transformed[®, 2] = 8.8) <= 7.2080687158595393)

(X _transformed[@, 8] = -9.8153520835468084601) <= 1.157980333484541)
(X_transformed[@, 9] = @.8) <= @.000844346007274683416)

(¥_transformed[®, 17] = 8.13813235436189768) <= @,25584782705086067)
decision node : (X _transformed[@, 11] = @.88016187745227411888) > -2.2726237841796875)
decision node 18 @ (X_transformed[@, 12] = 1.8885851344616336) > @.3987369537353516)
decision node 242 @ (X_transformed[@, 14] @.88822135663762758887) <= 19.47999895916748)
decision node 243 : (X _transformed[@®, 12] = 1.8805881344616336) <= 1.8131675681885554)
¥_transformed[2, 18] -8.849261883743878296) <= B,3620680668318745)
¥_transformed[8, 8] = -8.815352983546884681) <= -8.888390893842141757985)
X_transformed[2, 18] -8.849261833743870296) <= 9.082463854144755006)
¥_transformed[2, 8] = -2.815352083546804681) <= -8.812545312289145569)
decision node 248 : (X_transformed[@, -8.849261833743870296) <= -8.846705382805185318)

!
i
i
(
i
!
decision node 249 @ (X_transformed[@, 7] = @.86343850665492289) <= @.86358485141711235)
i
!
i
i
(
i

decision node

decizion node
decision node

R A)

decision node 244
decision node 245 :

decizion node 246
decision node 247 :

=
]
n

decision node 258 @ (X_transformed[@, 18] = -8.8492618837438708296) > -8.866582463872533838)
¥X_transformed[@, 7] = 9.86345858668492289) > @.8533550370247364084)

= -B.B8368333521595828086) <= -B.883435852208813327)
@.88816187745227411838) > @.88815328338486142457)
-8.849261033743878296) > -B.86157635524868965)
-8.884746783358356161) » -B.814418579172343016)
-B.8836833382159582886) > -8.818481876321136951)
-8.88363333521595025086) > -0.018474001057446043)
1.8885881344616336) <= 1.8885816221237183)
1.88@5831344616336) > ©.9558551025600433)
1.2885881344616336) > B,9508879388782072)

decision node 738 :
decision node 782 @ (X_transformed[@, 16
¥_transformed[@, 11
X_transformed[@, 1@
decision node 887 @ (X_transformed[@, 15
decision neode 813 : (X _transformed[®, 18]
decision node 931 @ (X_transformed[@, 16
¥_transformed[8, 12
¥X_transformed[@, 12
¥_transformed[@, 12

decision node 783 :

decizion node 791

decision node 933 :

decision node 934

(
(
(
(

decision node 992

Figure 84: Decision Tree Rules Part 1

213

aecilsion
decizion
decizion
decizion
decizion
decizion
decizion
decizion
decision
decision
decision
decision
decision
decision
decision
decision
decision
decision
decision
decision
decision
decision
decizion
decizion
decizion
decizion
decizion
decizion
decizion
decizion

noae
node
node
node
node
node
node
node
node
node
node
node
node
node
node
node
node
node
node
node
node
node
node
node
node
node
node
node
node
node

1als
1872
1874
1876
1877
1893
1895
1185
1187
1121
1125
1127
1131
1133
1135
1137
1145
1175
1181
1182
1134
1186
1188
1194
1196
1284
1286
1288
1214
1215

LA_Transtormealy, L4
({¥_transformed[@, 14]
(¥X_transformed[@, 12]
(¥_transformed[@, 7]
(¥_transformed[@, 13]
(¥_transformed[@, 12]
(¥_transformed[@, 7]
(¥_transformed[@, 15]
(¥_transformed[@, 14]
(¥_transformed[@, 13]
(¥_transformed[@, 1&]
(¥_transformed[@, 15]
(¥_transformed[@, 14]
(¥_transformed[@, 7]
(¥_transtormed[@, 13]
(¥_transtormed[@, 13]
(¥_transtormed[@, 12]
(¥_transformed[@, 14]
(¥_transformed[8, 14]
(¥_transformed[@, 12]
(¥_transformed[8, 14]
(¥X_transformed[@, 13]
(¥X_transformed[@, 17]
(¥X_transformed[@, 14]
(¥X_transformed[@, 14]
(¥X_transformed[@, 1&]
(¥_transformed[@, 13]
(¥_transformed[@, 13]
({¥_transformed[@, 15]
(¥_transformed[@, 7]

L.@gdodolad44bliossh) > G.908bo 34 40038905)
8.988221356637627588587) > -8.886129580164629579)
1.9885881344616336) > 9.068730642888307)
= D.BR345059668402289) <= B.86340688572745184)
-8.9832204217126799385) > -0.8953414252195587288)
1.9885881344616336) > @.9612129338635871)
= 9.8R345059668492259) > 8.954826348516345824)
-8.984746783358386161) > -9.812428872281181812)
9.988221356637627588587) » -8.8A5832374328747392)
-9.8832204217126799385) > -8.888231189473854383)
-9.8836833382159582886) > -8.989482852183282375)
-9.884746783358386161) > -8.812135981488363743)
8.888221356637627588587) > -9.8857515428485287985)
= 9.863480850668492289) > 9.85418422757267952)
= -8.8832204217126799385) > -0.898143654993146324)
= -8.8832204217126799385) > -9.808124145632385145)
= 1.9885881344616336) > 8.9638359945830212)
= 8.80822135663762758887) > -8.885521488226889253)
= @.80822135663762750887) <= 0.B00825726618628567024)
= 1.9085881344616336) > @.9638936221599579)
= @.80822135663762758887) » -0.8054066887I1572859)
= -@.8832204217126799385) > -0,807044040770325724)
= 8.13813235436189768) > B8.12828017337799872)
= B9.88822135663762758887) > ©.88013883788858261436)
= B.888221356R3762758887) > B,.8801765878841979429)
= -@.8836B833382150582886) > -B,.8836957135889679193)
E
E

= -8.88322942171267993485) -8.8832296816352754583)

= -8.88322942171267993485) -8.8832235883635596444)

= -8.8847467B3358386161) <= -8.8847279920927655578)
= §.8R3450596684092259) <= B.06345412556459615)

Figure 85: Decision Tree Rules Part 2

214

Appendix E TPOT Model Convergences

Validation Accuracy (%)

020

085

0.80 A

0.75

070 A

0.65

0.&0

BMNE

Decision Trees

GNB

Logistic Regression
kMM

MMNB

Random Forest

o 20 40 B0
Generation Number

Figure 86: Expanded Model Training Convergence

215

8

o

100

Appendix F Misclassification Subset Descriptive Statistics

PZR
RCSLVL | RCS LVL PORV DISCH | CONTAIN
oor1 | Loor1 HOTLEG 1 COLD LEG 1A COLD LEG 1B HOT LEG 2 COLDLEG 2A | COLDLEG 2B | SURGE PZR MENT CONTAINMENT
TEMPERATURE | “TEMPERATURE |TEMPERATURE| TEMPERATURE |TEMPERATURE | TEMPERATURE| LINE TEMPERATURE
WR NR TEMPERATURE | PRESSURE
TEMP
count 3463 3463 3463 3463 3463 3463 3463 3463 3463 3463 3463 3463
mean 2.399884| 4.499567 568.829542 563.695339 563.695628 568.825435 563.693441 563.693746| 628.7755 107.908945 0.00462 110.085484
std 0.006797(0.02549 11.817699 9.606949 9.590152 11.772501 9.557015 9.54022| 12.95716 1.589987 0.27189 1.587145
min 2 3 4 5 :] 7 3 9 14 15] 17
25% 2.4 4.5 564.915 563.5385 563.5385 564.914 563.5395 563.5395| 621.8845 107.758 0 109.974
50% 2.4 4.5 566.606 564.044 564.044 566.576 564.044 564.044| 630.587 107.836] 110.155
5% 2.4 4.5 568.88 564.7745 564.7745 568.905 564.7695 564.7695| 636.214 108.059] 110.177
max 2.4 4.5 617.653 566.4 266.4 617.6596 566.394 566.394| 650.722 108.282 16 110.295
Figure 87: Descriptive Statistics For Correct Turbine Trip W/O SCRAM Classification 1 of 2
CALCULA

PRESSURIZ
MS FLOW MS FLOW MS FLOW TED PRESSURIZER |GENERAT

$G-1NR | SG-2NR | FW FLOW TO |MS FLOW FROM 5G-2 PRESSURIZER | ER WATER

FROM 5G-1 FROM 5G-2 FROM 5G-2 AVERAGE STEAM OR
LEVEL LEVEL 5G-2 S$G-1LINE-1A PRESSURE PRESSURE |TEMPERAT
LINE-1B LIME-2A LINE-2B TEMPERA URE TEMPERATURE | POWER
TURE

count 3463 3463 3463 3463 3463 3463 3463 3463 3463 3463 3463 3463 3463
mean 55.36446| 136.2195 60.050057 61.077888 61.364596 59.321158 1134.518354 1134.514978| 566.2673 2198.004482| 650.11566 650.115545| -0.40945
std 15.89007| 283.2588 108.43432 108.085059 107.708733 107.935823 23.764741 23.751778| 9.772563 72.274191| 11.312451 11.296684| 6.883711
min 11.1965 0 3.23929 3.23635 4.30793 2.56344 26 27 28 29 31 32| -19.2639
25% 53.6622| 0.001545 11.7241 11.7369 11.723 11.7135 1129 1128.995| 564.499 2187.09 645.585 649.585 0
50% 54.0097| 26.5167 22,9258 24,9839 25.6042 21.8508 1139.67 1139.67| 564.996 2230.45 652.409 652.409 0
75% 57.84245| 74.50675 38.84215 39.1878 40.85405 38.64025 1142.69 1142.69| 566.758 2236.69 652.811 652.811| 0.000003
max 93.9995| 2466.26 663.292 663.445 654.684 654.294 1165.18 1165.21| 588.547 2272.2 655.085 655.085| 248.789

Figure 88: Descriptive Statistics For Correct Turbine Trip W/O SCRAM Classification 2 of 2

216

PIR PORV
RCSLVL | RCSLVL DISCH | CONTAIN
HOTLEG 1 COLD LEG 1A COLD LEG 1B HOT LEG 2 COLD LEG 2A COLD LEG 2B SURGE CONTAINMENT
LooP1 | LOOP1 PZR MENT
TEMPERATURE | “TEMPERATURE | TEMPERATURE |TEMPERATURE|TEMPERATURE| TEMPERATURE LINE TEMPERATURE
WR MR TEMPERA| PRESSURE
TEMP
TURE
count | 3.31E+02 331 331 331 331 331 331 331 331 331 331 331
mean 2. 40E+00 4.5 564.631586 563.908625 563.908625 564.629526 563.907976 563.907991| 629.9666| 108.0346] 110.197583
std 4.45E-16 0 0.211468 0.214358 0.214358 0.211136 0.21417 0.214169(2.669005| 0.098041 0 0.03561
min 2.40E+00 4.5 564.36 563.632 563.632 564.358 563.631 563.631| 626.519| 107.913 0 110.159
25% 2.40E+00 4.5 564.362 563.635 563.635 564.361 563.635 563.635| 627.172| 107.972 0 110.175
50% 2.40E+00 4.5 564.736 564.015 564.015 564.734 564.014 564.014| 630.681| 107.983 0 110.175
75% 2.40E+00 4.5 564.745 564.024 564.024 564.7435 564.023 564.023| 631.002| 108.145 0 110.242
max 2. 40E+00 4.5 564.915 564.198 564.198 564.914 564.197 564.197| 636.164| 108.214 0 110.249

Figure 89: Descriptive Statistics For Correct Turbine Trip W/O SCRAM Misclassified as Feedwater Pump Trips 1 of 2

CALCULA

PRESSURI| PRESSURIZ
M5 FLOW MS FLOW TED PRESSURIZER |GEMERAT

5G-1NR | SG-2NR | FW FLOW TO (MS FLOW FROM [MS FLOW FROM ZER ER WATER

FROM 5G-2 FROM 5G-2 | 5G-2 PRESSURE |AVERAGE STEAM OR
LEVEL LEVEL 5G-2 5G-1 LINE-1A 5G-1 LINE-1B PRESSUR | TEMPERAT
LINE-2A LIME-2B TEMPERA E URE TEMPERATURE | POWER
TURE

count 331 331 331 331 331 331 331 331 331 331 331 331 331
mean | 54.36158| 25.27403 11.425719 11.425965 11.408767 11.408209 1139.948066 1139.947946| 564.2654| 2233.721| 652.619665 652.619665 0
std 0.261932| 0.618486 0.219735 0.219873 0.224273 0.224066 1.9936%6 1.99378| 0.212739| 2.37301| 0.152977 0.152977 0
min 34001 24.0727 11.0284 11.0288 10.9994 10.9993 1137.38 1137.38] 563.995| 2231.19 652.457 652.457 0
25% 54.1723| 24.83625 11.24105 11.2416 11.21575 11.2154 1137.41 1137.41| 563.998| 2231.32 652.465 652.465 0
50% 54.2924| 25.1988 11.428 11.428 11.4008 11.4001 1140.94 1140.94| 564.375| 2232.55 652.544 652.544 0
75% 54.53825| 25.44825 11.595 11.59515 11.57675 11.57645 1141.02 1141.02| 564.384| 2236.595 652.805 652.805 0
max 35.1014| 26.8595 11.8981 11.5982 11.8907 11.8889 1142.66 1142.66| 564.556| 2236.93 652.827 652.827 0

Figure 90: Descriptive Statistics For Correct Turbine Trip W/O SCRAM Misclassified as Feedwater Pump Trips 2 of 2

217

PZR
RCSLVL | RCSLVL PORV DISCH | CONTAIN
HOTLEG 1 COLD LEG 1A COLD LEG 1B HOTLEG 2 COLD LEG 2A COLD LEG 2B SURGE CONTAINMENT
LOOP1 | LOOP1 PZR MENT
TEMPERATURE | “TEMPERATURE | TEMPERATURE | TEMPERATURE | TEMPERATURE | TEMPERATURE LINE TEMPERATURE
WR NR TEMPERATURE | PRESSURE
TEMP
count 833 883 833 883 833 283 833 283 883 833 883 833
mean 24 4.5 564.684535 563.963523 363.963523 364.683199 563.963151 363.963176| 631.4075 108.044864 0 110.192612
std 1]] 0.21509 0.222348 0.222348 0.218972 0.222299 0.222301| 2.933058 0.101418] 0.035672
min 24 4.5 564.36 563.632 563.632 564.358 563.632 563.632| 626.524 107.913 0 110.158
25% 24 4.5 564.376 563.652 563.652 364.375 563.652 363.652| 629.865 107.975 0 110.166
50% 2.4 4.5 564.76 564.043 564.043 564.76 564.044 564.044| 630.692 108.013 0 110.175
75% 24 4.5 564.868 564.148 564.148 564.866 564.1475 564.1475| 633.3085 108.143] 110.241
max 24 4.5 564.918 564.202 564.202 564.918 564.202 564.202| 636.274 108.228 0 110.249
Figure 91: Descriptive Statistics Turbine Trip W/O SCRAM Misclassified as Electrical Load Rejection 1 of 2
CALCULA
PRESSURIZ
MS FLOW MS FLOW M5 FLOW TED PRESSURIZER |GEMERAT
SG-1NR | $SG-2NR | FW FLOW TO | MS FLOW FROM PRESSURIZER | ER WATER
FROM SG-1 FROM SG-2 FROM 5G-2 | 5G-2 PRESSURE |AVERAGE STEAM OR
LEVEL LEVEL SG-2 SG-1LINE-1A PRESSURE |TEMPERAT
LINE-1B LINE-2A LINE-2B TEMPERA URE TEMPERATURE | POWER
TURE
count 883 883 883 883 883 883 883 883 883 883 883 883 883
mean 54.22098| 25.80146 11.563684 11.564058 11.548913 11.548663 1140.467348 1140.467303| 564.3236 2234.749841| 652.68605 652.686051 0
std 0.266821| 0.827682 0.234786 0.234762 0.24233 0.242378 2.073212 2.073177| 0.220677 2.156003 0.13502 0.13902 0
min 53.9993| 23.8872 11.0239 11.0243 10.995 10.9945 1137.38 1137.38| 563.996 2231.19 652.457 652.457 0
25% 54.0035(25.10005 11,32905 11,32915 11.3059 11.30565 1137.56 1137.56| 564.014 2232.66 652,551 652.551 0
50% 54,1322 25.4787 11.6156 11.6158 11.5981 11.598 1141.23 1141.23| 564.402 2235.15 652.712 652.712 0
5% 54.3566(26.5421 11.72625 11.72675 11.71595 11.71565 1142.18 1142,18| 564.5075 2236.73 652.814 652.814 0
max 55.0713| 26.8916 11.901 11.5018 11.8958 11.8963 1142.7 1142.7 564.56 2236.94 652.827 652.827 0

Figure 92: Descriptive Statistics Turbine Trip W/O SCRAM Misclassified as Electrical Load Rejection 2 of 2

218

RCSLVL | RCSLVL PZR PORV DISCH | CONTAIN
HOTLEG 1 COLD LEG 1A COLD LEG 1B HOT LEG 2 COLD LEG 2A COLDLEG 2B | SURGE CONTAINMENT
LoOP1) LOOP1 TEMPERATURE| “TEMPERATURE | TEMPERATURE [TEMPERATURE| TEMPERATURE | TEMPERATURE| LINE PZR MENT TEMPERATURE
WR NR TEMPERATURE |PRESSURE
TEMP
count 2797 2737 2797 2797 2797 2797 2797 2737 2797 2797 2797 2797
mean 2.399857| 4.495464 569.545156 563.6348 563.635158 569.539337 563.632059 563.632432| 628.1932 107.873661 0.00572 110.061203
std 0.007563| 0.028363 12.793543 10.695557 10.676877 12.741256 10.6401 10.621425| 14.13069 1.766417) 0.302534 1.765043
min 2 3 4 3 6 7 8 9 14 15 0 17
25% 2.4 4.5 566.111 563.486 563.486 566.096 563.489 563.489| 620.177 107.751 0 109.953
50% 2.4 4.5 567.741 564.018 564.018 567.736 564.016 564.016| 6259.383 107.805 0 110.091
75% 2.4 4.5 568.984 565.259 565.259 569.008 565.255 565.255| 636.271 108.058 0 110.176
max 2.4 4.5 617.448 566.275 566.275 617.665 566.255 560.255| 650.379 108.282 16 110.295
Figure 93: Descriptive Statistics for Correct Electrical Load Rejection 1 of 2
CALCULA PRESSURI
5G-1NR | 5G-2NR | FW FLOW TO | M5 FLOW FROM (M5 FLOW FROM MS FLow Ms FLow TED PRESSURIZER ZER PRESSURIZER GENERATOR
LEVEL LEVEL 5G-2 5$G-1 LINE-1A 5G-1 LINE-1B FROM 5G-2 FROMSG-2 |SG-2 PRESSURE AVERAGE PRESSURE WATER STEAM POWER
LINE-2A LINE-2B TEMPERA TEMPERA | TEMPERATURE
TURE TURE
count 2797 2797 2797 2797 2797 2797 2797 2797 2797 2797 2797 2797 2797
mean 53.77906(162.777 66.297683 67.543239 67.865301 65.380211 1133.313672 1133.309271| 566.5957 2185.004448| 649.4863 649.486661 0.187756
std 15.7703| 298.9336 108.717415 108.220939 107.78376 108.241424 26.425862 26.415253| 10.76225 78.32602| 12.521814 12.50415 0.706326
min 11.1421 0 4.6608 4.666084 2.89355 1.1257 26 27 28 29 31 32 0
25% 50.4755] 0.000601 11.8991 14.2123 12.388 11.889 1128.42 1128.42] 564.669 2174.36| 648.748 648.748 0
50% 54.0393| 26.5343 26.3184 28.8807 29,3546 25,3229 1137.56 1137.56| 566.484 2220.45 651.762 651.762 0
75% 59.8175| 132.321 53.5267 53.5324 54.77381 52.96326 1143.41 1143.41| 567.133 2234.93 652.698 652.698 0.050259
max 93.7951| 2473.01 663.444 663.584 653.4 652.964 1162.1 1162.13| 588.428 2272.49 655.104 655.104 33

Figure 94: Descriptive Statistics for Correct Electrical Load Rejection 2 of 2

219

PZR
RCSLVL | RCS LVL PORV DISCH CONTAIN | CONTAINMEN
HOTLEG1 COLD LEG 1A COLD LEG 1B HOTLEG 2 COLD LEG 2A COLD LEG 2B SURGE
LOOP1 LOOP1 PZR MENT T
TEMPERATURE| “TEMPERATURE [TEMPERATURE | TEMPERATURE| TEMPERATURE | TEMPERATURE LINE
WR MR TEMP TEMPERATURE | PRESSURE [TEMPERATURE
count 8.99E+02 899 599 399 399 899 399 399 599 599 399 899
mean 2 A0E+HD0D 4.5 564.693268 563.965804 563.969804 564.692067 563.965487 563.969508| 631.7141 108.053892] 110.193303
std 4. 44E-16] 0.260791 0.232335 0.232335 0.260363 0.232227 0.232221| 3.093963 0.102015] 0.036154
min 2. 40E+00 4.5 564.36 563.632 563.632 564.358 563.631 563.631| 626.519 107.832] 110.15
25% 2 A0E+HD0D 4.5 564.376 563.652 563.652 564.375 563.652 563.652| 629.875 107.982] 110.166
50% 2. 40E+00 4.5 564.76 564.043 564.043 564.761 564.044 564.044| 630.675 108.014] 110.175
75% 2. 40E+00 4.5 564.877 564.156 564.156 564.8745 564.155 564.155| 633.5695 108.147] 110.243
max 2 A0E+HD0D 4.5 568.715 565.484 565.484 568.694 565.474 565.474| 636.275 108.228] 110.249
Figure 95: Descriptive Statistics for Electrical Load Rejection Misclassified as Feedwater Pump Trip 1 of 2
CALCULA PRESSURI
MS FLOW MS FLOW MS FLOW TED ZER PRESSURIZER
S5G-1NR | 5G-2 NR | FW FLOW TO | M5 FLOW FROM PRESSURIZER GENERATOR
FROM 5G-1 FROM 5G-2 FROM 5G-2 5G-2 PRESSURE |AVERAGE WATER STEAM
LEVEL LEVEL 5G-2 5G-1 LINE-1A PRESSURE POWER
LINE-1B LINE-2A LINE-2B TEMPERA TEMPERA (TEMPERATURE
TURE TURE
count 899 399 899 899 899 399 399 899 399 899 899 399 399
mean 54.18784| 25.98728 11.657567 11.657886 11.644958 11.642688 1140.523504 1140.523437| 564.3312 2234.954483| 652.69923 652.699231 0
std 0.653702(0.80678 1.529976 1.529825 1.555302 1.496634 2.141594 2.141624| 0.24326 2.129519| 0.137308 0.137308 0
min 54,0003 24.1304 11.0282 11.0282 10.999 10.999 1137.38 1137.38| 563.955 222243 651.89 651.89 0
25% 54,0034 25.1972 11.38765 11.38775 11.36085 11.36065 1137.56 1137.56| 564.014 2232.845| 652.5635 652.5635 0
50% 54.0088| 26.5168 11.7019 11.7024 11.7062 11.706 1141.23 1141.23| 564.402 2235.24 652.718 652.718 0
75% 54.29485| 26.5607 11.7343 11.7348 11.7223 11.72195 1142.25 1142.25| 564.516 2236.73 652.814 652.814 0
max 72.3785| 26.8956 56.9447 56.9401 57.6658 55.8854 1150.56 1150.56| 567.092 2236.93 652.827 0652.827 0

Figure 96: Descriptive Statistics for Electrical Load Rejection Misclassified as Feedwater Pump Trip 2 of 2

220

CONTAIN
RCS LVL PORV DISCH
RCS LVLLOOP 1 LOOP 1 HOTLEG 1 COLD LEG 1A COLD LEG 1B HOT LEG 2 COLD LEG 2A COLD LEG 2B PZR SURGE PZR MENT | CONTAINMENT
WR TEMPERATURE| “TEMPERATURE |TEMPERATURE | TEMPERATURE | TEMPERATURE | TEMPERATURE | LINETEMP PRESSUR | TEMPERATURE
NR TEMPERATURE E
count 7.14E+02 714 714 714 714 714 714 714 714 714 714 714
mean 2.40E+00 4.5 567.255714 564.653423 564.653422 567.268951 564.65636 564.656371| 626.120284 108.151157 0 110.22527
std 4.44E-16 0 3.226798 0.845704 0.845702 3.241345 0.851441 0.851438 5.058801 0.142956 0 0.04648
min 2.40E+00 4.5 564.36 562.098 562.098 564.358 562.099 562.099 613.964 107.737 0 109.915
25% 2.40E+00 4.5 564.736 564.012 564.012 564.73325 564.011 564.011 621.9575 107.98625 0 110.175
50% 2.40E+00 4.5 568.812 565.3665 565.3605 568.838 565.372 565.372 622.4545 108.153 0 110.249
75% 2.40E+00 4.5 568.89375 565.439 565.439 568.91975 565.444 565.444 630.778 108.274 0 110.25
max 2.40E+00 4.5 594.114 565.599 565.599 594.17 565.598 565.598 643.113 108.283 0 110.255
Figure 97: Descriptive Statistics for Electrical Load Rejection Misclassified as Turbine Trip W/O SCRAM 1 of 2
PRESSURI
CALCULATED
M5 FLOW M5 FLOW M5 FLOW ZER PRESSURIZER |GENERAT
5G-2 NR | FW FLOW TO |MS FLOW FROM 5G- AVERAGE PRESSURIZER
5G-1 NR LEVEL FROM 5G-1 FROM 5G-2 FROM 5G-2 5G-2 PRESSURE WATER STEAM OR
LEVEL 5G-2 1 LINE-1A TEMPERATUR PRESSURE
LINE-1B LINE-2A LINE-2B E TEMPERA | TEMPERATURE | POWER
TURE

count 714 714 714 714 714 714 714 714 714 714 714 714 714
mean 54.384544| 90,3978 38.031885 38.045198 38724268 37.736171 114128105 1141.279622| 565.958615 2231.585574| 652.481 652.480557| 0.01145
std 2.861543| 127.373 39.562648 39.556872 38995793 39.4953 3.720854 3.719822 1.8295 10.833877| 0.714581 0.714913| 0.10014
min 25.3207 0 11.03 11.03 11.001 11.0009 1113.47 1113.47 563.995 2064.99| 641.388 641.388 0
23% 54.0359| 251134 115425 1154265 11519325 1151815 1137.6925 1137.695 564,374 2230.65| 652.421 652.42125 0
20% 54.0443| 131.865 53.48245 53.4833 54,7289 52.92015 1142695 1142.695 567.0955 2232.345| B52.531 652,531 0
73% 54.491575| 132421 53.662075 53.66263 54908975 53.099225 11433175 114331 567.174 2234.8875| £652.685 552.69475 0
max 82.8546| 118098 457925 457903 458.667 457.545 1150.25 1150.25 578.718 224651 653.442 653.442 1.1977

Figure 98: Descriptive Statistics for Electrical Load Rejection Misclassified as Turbine Trip W/O SCRAM 2 of 2

221

PZR
RCSLVL | RCSLVL PORV DISCH | CONTAIN
HOTLEG1 COLD LEG 1A COLD LEG 1B HOT LEG 2 COLD LEG 2A | COLDLEG 2B SURGE CONTAINMENT
LOOP1 | LOOP1 PZR MENT
TEMPERATURE | “TEMPERATURE | TEMPERATURE | TEMPERATURE | TEMPERATURE| TEMPERATURE LINE TEMPERATURE
WR NR TEMPERATURE | PRESSURE
TEMP
count 3290 3290 3290 3290 3290 3290 3290 3290 3290 3290 3290 3290
mean 2.399878| 4.499544 568.410268 564.228057 564.22836 568.388957 564.211537 564.211858| 626.5618 107.920579| 0.004863 110.086346
std 0.006974| 0.026151 12.117809 9.833602 9.816312 12057294 9.780805 9.763516| 12.99108 1.633761| 0.278%947 1.628763
min 2 3 4 5 1] 7 g 9 14 15 0 17
25% 2.4 4.5 564.915 563.651 563.651 564.914 563.651 563.651| 619.6595 107.756 0 109.97
50% 2.4 4.5 567.481 564.58 564.58 567.466 564.5765 564.5765 627.33 107.829 1] 110.15
75% 2.4 4.5 568.40775 565.273 565.273 568.37075 565.2315 565.2315| 630.6745 108.121 0 110.25
max 2.4 4.5 619.802 569.18 569.18 619.975 569.141 569.141| 651.335 108.283 16 110.295
Figure 99: Descriptive Statistics for Correct Feedwater Pump Trip 1 of 2
CALCULA
PRESSURIZ
M5 FLOW MS FLOW MS FLOW TED PRESSURIZER
S5G-1NR | SG-2NR | FW FLOWTO |MS FLOW FROM PRESSURIZER | ER WATER GENERATOR
FROM 5G-1 FROM 5G-2 FROM 5G-2 |5G-2 PRESSURE |AVERAGE STEAM
LEVEL LEVEL 5G-2 5G-1 LINE-1A PRESSURE |TEMPERAT POWER
LINE-1B LINE-2A LINE-2B TEMPERA URE TEMPERATURE
TURE
count 3290 3250 3290 3290 32590 3290 3250 3290 3290 3290 3250 3290 32590
mean 12,91062| 10.12443 65.742552 69.65015 69.907142 64.942509 1125.357356 1125.35369| 566.3164 2191.073152| 649.65419 649.654455 17.590303
std 21.84783| 82.22403 127.125899 126.958452 125.887147 126.216334 29.254003 29.240108| 10.06189 73.166482| 11.568587 11.552329| 135.570604
min 0 0 11.1122 11.1123 11.087 11.0868 26 27 28 29 31 32 -19.3392
25% 0 0 12.81765 18.0638 18.909525 12,154825 1120.9775 1120.9775| 564.556 2162.99| 648.00075 648.00075 0
50% 0 0 49.343 54.55845 55.3619 A8.72735 1134.59 1134.585| 566.107 2215.455| 651.4375 651.4375 0
75% 23.7605| 0.107691 57.70165 62.7868 64.311 57.818575 1137.56 1137.56| 566.712 2236.295 652.7855 652.7855 0.000022
max 55.0851) 2011.51 1244.1 1244.14 1249.02 1248.92 1172.34 1172.32| 591.966 2279.6 £55.555 653.255 1549.1

Figure 100: Descriptive Statistics for Correct Feedwater Pump Trip 2 of 2

222

PORV DISCH

RCSLVL | RCSLVL CONTAIN
Loor1 | Loop1 HOTLEG1 COLD LEG 1A COLD LEG 1B HOT LEG 2 COLD LEG 2A COLD LEG 2B PZR SURGE PIR MENT CONTAINMENT
TEMPERATURE | “TEMPERATURE | TEMPERATURE | TEMPERATURE | TEMPERATURE | TEMPERATURE | LINETEMP |TEMPERATUR TEMPERATURE

WR NR E PRESSURE
count 8283 883 8283 8283 883 883 883 883 883 883 8283 883
mean 24 4.5 564.684535 563.963523 363.963523 564.683199 363.963151 363.963176 631.40745 108.044864 0 110.192612
std 0 0 0.21909 0.2223438 0.222348 0.218972 0.222299 0.222301 2.933058 0.101418 0 0.035672
min 2.4 4.5 364.36 363.632 363.632 564.358 363.632 363.632 626.224 107.913 0 110.158
25% 2.4 4.5 564.376 563.652 563.652 564.375 563.652 563.652 629.865 107.975 0 110.166
50% 2.4 4.5 564.76 564.043 564.043 564.76 564.044 564,044 630.692 108.012 0 110.175
75% 2.4 4.5 564.868 564.148 564.148 564.866 564.1475 564.1475 633.3085 108.143 0 110.241
max 24 4.5 564.918 564.202 564.202 564.918 564.202 564.202 636.274 108,228 0 110.249

Figure 101: Descriptive Statistics for Feedwater Pump Trip Misclassified as Load Rejection 1 of 2
PRESSURIZ
M5 FLOW M5 FLOW M5 FLOW CALCULATED PRESSURIZER

SG-1NR | 5G-2NR | FW FLOW TO | M5 FLOW FROM PRESSURIZER | ER WATER GENERATOR

FROM 5G-1 FROM $G-2 FROM 5G-2 |SG-2 PRESSURE| AVERAGE STEAM

LEVEL LEVEL 5G-2 5G-1 LINE-1A PRESSURE |TEMPERAT POWER
LINE-1B LINE-2A LINE-2B TEMPERATURE URE TEMPERATURE

count 883 883 883 883 883 883 883 883 883 883 883 883 883
mean 54.22098| 25.80146 11.563684 11.564058 11.548913 11.548663 1140.4672848 1140.467803 564.323596| 2234.749841| 652.68605 652.686051 0
std 0.266821| 0.827682 0.234786 0.234762 0.24233 0.242378 2.073212 2.073177 0.220677 2.156003 0.13902 0.13902 0
min 53.9999| 23.8872 11.0239 11.0243 10.995 10.9945 1137.38 1137.38 563.996 2231.19 652.457 652.457 0
25% 54.0035) 25.10005 11.32505 11.32915 11.3059 11.30565 1137.56 1137.56 564.014 2232.66 652.551 652.551 0
50% 24.1322| 254787 11.6156 11.6138 11.5981 11.598 1141.23 1141.23 564.402 2235.15 052.712 652.712 0
75% 54.3566| 26.5421 11.72625 11.72675 11.71595 11.71565 1142.18 1142.18 564.5075 2236.73 652.814 652.814 0
max 55.0719| 26.8916 11.801 11.9018 11.8958 11.8963 1142.7 1142.7 564.56 2236.94 652.827 652.827 0

Figure 102: Descriptive Statistics for Feedwater Pump Trip Misclassified as Load Rejection 2 of 2

223

PZR
RCS LVL | RCSLVL PORV DISCH | CONTAIN
HOTLEG 1 COLD LEG 1A COLD LEG 1B HOT LEG 2 COLD LEG 2A COLD LEG 2B SURGE CONTAINMENT
LOOP1 | LOOP1 PZR MENT
TEMPERATURE | “TEMPERATURE | TEMPERATURE | TEMPERATURE | TEMPERATURE | TEMPERATURE LINE TEMPERATURE
WR NR TEMPERATURE |PRESSURE
TEMP
count 883 833 883 883 883 883 883 883 883 883 833 883
mean 2.4 4.5 564.684535 563.963523 563.963523 564.683199 563.963151 563.963176| 631.4075 108.044864 o] 110.192612
std 0 0 0.21909 0.222348 0.222348 0.218972 0.222299 0.222301| 2.933058 0.101418 0 0.035672
min 24 4.5 564.36 563.632 563.632 564.358 563.632 563.632| 626.524 107.913] 110.158
25% 24 4.5 564.376 563.652 563.652 564.375 563.652 563.652| 629.865 107.975] 110.166
50% 2.4 4.5 364.76 364.043 364.043 364.76 364.044 364.044| 630.692 108.013] 110.175
75% 2.4 4.5 564.868 564.148 564.148 564.866 564.1475 564.1475| 633.3085 108.143 o] 110.241
max 2.4 4.5 564.918 564.202 564.202 564.918 564.202 564.202| 636.274 108.228 0 110.249
Figure 103: Descriptive Statistics for Feedwater Pump Trip Misclassified as Turbine Trips W/O SCRAM 1 of 2
CALCULA PRESSURI
M5 FLOW TED ZER PRESSURIZER
$G-1NR | 5G-2 NR |FW FLOW TO 5G4 M5 FLOW FROM |MS FLOW FROM M5 FLOW FROM PRESSURIZER GENERATOR
FROM 5G-2 $G-2 PRESSURE |AVERAGE WATER STEAM
LEVEL LEVEL 2 SG-1LINE-1A SG-1LINE-1B 5G-2 LINE-2B PRESSURE POWER
LINE-2A TEMPERA TEMPERA | TEMPERATURE
TURE TURE
count 883 883 883 883 883 883 883 383 883 383 883 283 883
mean 54.22098| 25.80146 11.563684 11.564058 11.548513 11.548663 1140.467348 1140.467803| 564.3236 2234749841 652.68605 652.686051 0
std 0.266821| 0.827682 0.234786 0.234762 0.24233 0.242378 2.073212 2.073177| 0.220677 2.156003 0.135902 0.13502 0
min 53.9999| 23.8872 11.0239 11.0243 10.995 10.59945 1137.38 1137.38| 563.996 2231.19 652.457 652.457 0
25% 54.0035| 25.10005 11.32905 11.32915 11.3058 11.30565 1137.56 1137.56| 564.014 2232.66| 652.551 652.551 0
50% 54.1322| 25.4787 11.6156 11.6158 11.5981 11.598 1141.23 1141.23| 564.402 2235.15 652.712 652.712 0
75% 54.3566| 26.5421 11.72625 11.72675 11.71595 11.71565 1142.18 1142.18| 564.5075 2236.73 652.814 652.814 0
max 55.0719| 26.8916 11.901 11.9018 11.8958 11.8963 1142.7 1142.7 564.56 2236.94| 652.827 652.827 0

Figure 104: Descriptive Statistics for Feedwater Pump Trip Misclassified as Turbine Trips W/O SCRAM 2 of 2

224

Appendix G Plots from Autoencoder

Reconstruction error for normal and altered data

17 A . . * Mormal
Hﬂr » Altered Data
—_— Th hold
10 - resho

Reconstruction error
&

! ! ! ! ! !
0 20000 40000 0000 BOOO0 100000 120000
Data point index

Figure 105: Reconstruction Plot for Autoencoder at 1.5 SD Noise

225

Reconstruction error

Reconstruction error

Reconstruction error for normal and altered data

- -

- -

— Threshold

Morral
Altered Data

Data point index

I I I I I I
0 20000 40000 BO000 80000 100000 120000

Figure 106: Reconstruction Plot for Autoencoder at 1.0 SD Noise

Reconstruction error for normal and altered data

L]
ad -
-

— Threshold

Mormal
Altered Data

Data point index

I I I I I I
0 20000 40000 BO000 80000 100000 120000

Figure 107: Reconstruction Plot for Autoencoder at 0.5 SD Noise

226

