
Photocopy and Use Authorization

In presenting this thesis in partial fulfillment of the requirements for an advanced de-
gree at Idaho State University, I agree that the Library shall make it freely available for
inspection. I further state that permission for extensive copying of my thesis for schol-
arly purposesmay be granted by theDean of theGraduate School, Dean ofmy academic
division, or by the University Librarian. It is understood that any copying or publication
of this thesis for financial gain shall not be allowed without my written permission.

Signature

Date

AutoMachine Learning Applications for Nuclear Reactors: Transient Identification,

Model Redundancy and Security

by

PedroMena

pepomena@isu.edu

Department of Computer Science

Idaho State University

Spring 2022

A dissertation submitted to partially fulfill the requirements for the degree of Doctor of

Philosophy in Applied Science and Engineering at Idaho State University.

Committee Approval
To the Graduate Faculty:

Themembers of the committee appointed to examine thedissertationof PedroMena
find it satisfactory and recommend that it be accepted.

Dr. Leslie Kerby
Committee Chair

Dr. R.A Borrelli
CommitteeMember

Dr. Paul Bodily
CommitteeMember

Dr. Xiaoxia Xie
CommitteeMember

Dr. Donna Delparte
Graduate Faculty Representative

ii

Dedication
I would like to dedicate this dissertation tomy family: mymother Rita, my father Arturo
and my siblings Arturo and Selenia. This work would not have been possible without
their constant support and encouragement.

iii

Acknowledgement
This research made use of Idaho National Laboratory computing resources, which are
supported by theOffice of Nuclear Energy of theU.S. Department of Energy and theNu-
clear Science User Facilities under Contract No. DE-AC07-05ID14517.

Special thanks to John Petersen for support with the GPWR simulator, Stephanie J.
Parker for support with INLHPC, David Rodgers for support with funding and John A.
Koudelka for support with the CAES Audio Visual Lab.

iv

Table of Contents
List of Figures . ix

List of Tables . xii

List of Abbreviations . xiv

Abstract . xvii

1 Introduction . 1
1.1 Background . 1

1.1.1 Machine Learning . 1
1.1.2 Motivation for Machine Learning Adaptation 3
1.1.3 Applications of Machine Learning Today 5
1.1.4 Nuclear Safety . 8
1.1.5 ProposedMachine Learning Applications in Nuclear Safety 12
1.1.6 Transient Identification Case Studies . 15

1.2 Project Overview . 17
1.2.1 Project Goals . 17
1.2.2 Objectives . 19
1.2.3 Novelty . 19
1.2.4 Summary of Novelty . 21

2 Tools andMethods . 22
2.1 Python Packages . 22

2.1.1 NumPy . 22
2.1.2 Pandas . 23
2.1.3 Scikit-learn . 25

2.2 AutoML . 26
2.2.1 TPOT . 27

2.3 Data PreprocessingMethods Used . 31
2.3.1 Binarization . 32
2.3.2 Standard Scaling . 33
2.3.3 Robust Scaling . 35
2.3.4 MaximumAbsolute Value Scaling . 37
2.3.5 MinimumMaximum Scaler . 38
2.3.6 Normalization . 40
2.3.7 Radial Basis Function Sampling . 42
2.3.8 Feature Agglomeration . 43
2.3.9 Principal Component Analysis . 44
2.3.10 Family Wise Error Feature Rate Selection 45
2.3.11 Select Percentile . 46
2.3.12Variance Threshold Selection . 47

2.4 Machine LearningModels . 48
2.4.1 Naïve Bayes Classification . 48

v

2.4.2 K-Nearest Neighbors . 53
2.4.3 Logistic Regression . 54
2.4.4 Decision Tree Classification . 55

2.5 Model Validation . 58
2.5.1 Accuracy . 58
2.5.2 Precision . 59
2.5.3 Recall . 59
2.5.4 F1 Score . 59
2.5.5 ConfusionMatrix . 60

2.6 Generic PressurizedWater Reactor Simulator 61
2.6.1 Simulator Capabilities . 61
2.6.2 Verification & Validation . 66

3 Developing Initial Machine LearningModels Using TPOT 68
3.1 Methodology . 68

3.1.1 Data Collection . 68
3.1.2 Transient Events . 69
3.1.3 Dataset Preperation . 71
3.1.4 Data Compiling . 74
3.1.5 Data Exploration andModification Using Python 74
3.1.6 Data Splitting . 77

3.2 Results . 78
3.2.1 K-Nearest Neighbors . 79
3.2.2 Bernoulli Naïve Bayes Results . 81
3.2.3 Gaussian Naïve Bayes Results . 83
3.2.4 Multinomial Naïve Bayes Results . 84
3.2.5 Logistic Regression . 86
3.2.6 Decision Tree . 88

3.3 Discussion . 88
3.3.1 Overall Model Performance . 88
3.3.2 Best PerformingModels . 90
3.3.3 Models with Potential Issues . 91
3.3.4 Final Thoughts . 92

4 Expanded Dataset & Optimal Model Analysis . 93
4.1 Ensemble Learning . 94

4.1.1 Random Forest . 95
4.2 Methodology . 95

4.2.1 Expanding The Dataset . 95
4.2.2 New Transient Events . 97
4.2.3 Data Exploration . 98
4.2.4 Training NewModels Using TPOT . 101
4.2.5 Validation of TrainedModels . 102
4.2.6 Misclassification Analysis . 102
4.2.7 Impact of Losing Features . 103

vi

4.2.8 Variation in Results from Changes in Random State 104
4.3 Expanded Dataset Model Results . 105

4.3.1 Bernoulli Naive BayesModels . 105
4.3.2 Multinominal Naive BayesModel . 108
4.3.3 Gaussian Naive Bayes . 111
4.3.4 Logistic RegressionModel . 114
4.3.5 K-Nearest Neighbors Model . 116
4.3.6 Decision TreeModel . 119
4.3.7 Random Forest Model . 122

4.4 Random State Variation Analysis . 126
4.5 Improving theModel . 128
4.6 Identifying Reasons BehindMisclassifications 133
4.7 Decision Tree Analysis . 135
4.8 Discussion . 142

5 Anomaly Detection . 145
5.1 Background . 145

5.1.1 Data Security . 145
5.1.2 Auto encoders . 146
5.1.3 TensorFlow . 147
5.1.4 Keras . 148

5.2 Literature Review . 148
5.3 Methods . 150

5.3.1 Data Exploration and Preprocessing . 150
5.3.2 Building the Autoencoder . 151
5.3.3 Training the Autoencoder . 153
5.3.4 Validating the Autoencoder . 154

5.4 Results . 154
5.5 Discussion . 159

6 AutoML Comparison . 162
6.1 Background . 163

6.1.1 H2O AutoML . 163
6.1.2 Google Cloud AutoML . 164

6.2 Literature Review . 166
6.2.1 TPOT . 166
6.2.2 H2O . 167
6.2.3 Google Cloud AutoML . 168

6.3 Methodology . 168
6.4 Results . 171
6.5 Discussion . 174

6.5.1 Performance . 174
6.5.2 Functionality . 174
6.5.3 Ease of Use . 176

6.6 Summary Remarks . 179

vii

7 Conclusions . 181
7.1 Future Research . 181

7.1.1 Development of a A.I. Standard for Nuclear 181
7.1.2 Human Factors When InteractingWith A.I. 182
7.1.3 FutureMachine Learning Studies in Nuclear Science 183
7.1.4 Other Approaches for Anomaly Detection 184
7.1.5 AutoMachine Learning . 185

7.2 Final Summary . 186

References . 191

Appendix A Publications fromResearch . 201

Appendix B Python Packages Used . 202

Appendix C Optimal Tree Output . 203

Appendix D Process Visualization . 211

Appendix E TPOTModel Convergences . 215

Appendix FMisclassification Subset Descriptive Statistics 216

Appendix G Plots from Autoencoder . 225

List of Figures
1 Analysis of the Affect of A.I on Profit Margins by Industry[3] 4
2 SONGS Reactor Simulator[18] . 12
3 Sample Crack Photograph use inmodel testing[21] 13
4 Sample DataFrame from Project . 24
5 Typical TPOT Pipeline[50] . 29
6 Sample TPOT Classifier . 30
7 Training Process using TPOT [49] . 31
8 Data Transformation Using Scikit-Learn’s Binarization Function 33
9 Comparison of Standard Scaled Data and Unscaled Data 34
10 Numerical Example of Scaled Data . 34
11 Numerical Example of Robust Scaled Data . 35
12 Comparison of Robust Scaled Data and Unscaled Data 36
13 Comparison of MaximumAbsolute Value Scaled Data & Unscaled Data . . . 37
14 Numerical Example of Scaled Data UsingMax Absolute Scaling 38
15 Comparison of Unscaled Data andMinMax Scaled Data 39
16 Example of MinMax Scaled Data . 40
17 Comparison of Unscaled Data and Normalized Data 41
18 Example Normalized Preprocessed Data . 42
19 Example Code of Family Wise Error Rate Feature Selection 46
20 Sample Output of Family Wise Error Rate Feature Selection 46
21 Example of Variance Threshold Feature Selection 47
22 GPRWReactor Simulator at CAES . 62
23 GPRW Interface . 64
24 GPWR Simulator Setup . 64
25 GPWR Simulator Overview Panel . 65
26 Screenshot of Dataset Collected fromGPWR . 73
27 Sample Descriptive Statistics from Initial Dataset 75
28 Test Train Split Code for Initial Dataset . 78
29 Sample from X Train Dataset . 78
30 ConfusionMatrix for Initial K-Nearest Neighbors Model 81
31 ConfusionMatrix for Initial Bernoulli NaïveModel 82
32 ConfusionMatrix for Initial Gaussian NaïveModel 84
33 ConfusionMatrix for Initial Multinominal Naïve BayesModel 85
34 ConfusionMatrix for Initial Logistic RegressionModel 87
35 ConfusionMatrix for Initial Decision TreeModel 89
36 ConfusionMatrix for Expanded Bernoulli Naive BayesModel 107
37 Misclassifications for Expanded Bernoulli Naive BayesModel 108
38 ConfusionMatrix for ExpandedMultinominal Naive BayesModel 109
39 Misclassifications for Multinominal Naive BayesModel 110
40 ConfusionMatrix for Expanded Gaussian Naive BayesModel 112
41 Misclassifications for Gaussian Naive BayesModel 113
42 ConfusionMatrix for Expanded Logistic RegressionModel 115
43 Misclassifications for Logistic RegressionModel 116

ix

44 ConfusionMatrix for Expanded kNNModel . 118
45 Misclassification Behavior for kNNModel . 119
46 ConfusionMatrix for Expanded Decision TreeModel 120
47 Misclassifications for Decision TreeModel . 122
48 ConfusionMatrix for Expanded Random Forest Model 123
49 Misclassifications for Random Forest Model . 126
50 Top 5 Levels of Optimal Decision Tree . 137
51 Top 5 Features by Gini Importance . 139
52 Keras Summary of Autoencoder . 152
53 Training Vs. Validation Loss of Autoencoder . 153
54 ConfusionMatrix For Autoencoder Results . 155
55 Reconstruction Error for Clean Data Points . 156
56 Reconstruction Error for Altered Data Points . 157
57 Reconstruction Error for All Data Points . 158
58 Timing Guidelines for Google’s AutoML Tables Model[93] 165
59 H2O AutoML Configuration . 170
60 H2O AutoML ConfusionMatrix . 172
61 H2O AutoML Leaderboard . 173
62 Google AutoML Tables Output . 173
63 Exported H2O Feature Importance Table . 176
64 Comparison of Different Scoring Thresholds from AutoML Tables 177
65 Feature Importance from AutoML Tables . 177
66 Optimal DT Section 1 . 203
67 Optimal DT Section 2 . 204
68 Optimal DT Section 3 . 204
69 Optimal DT Section 4 . 205
70 Optimal DT Section 5 . 205
71 Optimal DT Section 6 . 206
72 Optimal DT Section 7 . 206
73 Optimal DT Section 8 . 206
74 Optimal DT Section 9 . 207
75 Optimal DT Section 10 . 207
76 Optimal DT Section 11 . 208
77 Optimal DT Section 12 . 208
78 Optimal DT Section 13 . 209
79 Optimal DT Section 14 . 209
80 Full Optimal DT . 210
81 Re-create Optimal Tree From TPOT . 211
82 RawData to Test . 212
83 Transformed Data Using Pipeline . 213
84 Decision Tree Rules Part 1 . 213
85 Decision Tree Rules Part 2 . 214
86 ExpandedModel Training Convergence . 215
87 Descriptive Statistics For Correct Turbine Trip W/O SCRAM Classification

1 of 2 . 216

x

88 Descriptive Statistics For Correct Turbine Trip W/O SCRAM Classification
2 of 2 . 216

89 Descriptive Statistics For Correct Turbine Trip W/O SCRAM Misclassified
as Feedwater Pump Trips 1 of 2 . 217

90 Descriptive Statistics For Correct Turbine Trip W/O SCRAM Misclassified
as Feedwater Pump Trips 2 of 2 . 217

91 Descriptive Statistics Turbine Trip W/O SCRAMMisclassified as Electrical
Load Rejection 1 of 2 . 218

92 Descriptive Statistics Turbine Trip W/O SCRAMMisclassified as Electrical
Load Rejection 2 of 2 . 218

93 Descriptive Statistics for Correct Electrical Load Rejection 1 of 2 219
94 Descriptive Statistics for Correct Electrical Load Rejection 2 of 2 219
95 Descriptive Statistics for Electrical LoadRejectionMisclassified as Feedwa-

ter Pump Trip 1 of 2 . 220
96 Descriptive Statistics for Electrical LoadRejectionMisclassified as Feedwa-

ter Pump Trip 2 of 2 . 220
97 Descriptive Statistics for Electrical Load RejectionMisclassified as Turbine

TripW/O SCRAM 1 of 2 . 221
98 Descriptive Statistics for Electrical Load RejectionMisclassified as Turbine

TripW/O SCRAM 2 of 2 . 221
99 Descriptive Statistics for Correct Feedwater Pump Trip 1 of 2 222
100 Descriptive Statistics for Correct Feedwater Pump Trip 2 of 2 222
101 Descriptive Statistics for Feedwater PumpTripMisclassified as LoadRejec-

tion 1 of 2 . 223
102 Descriptive Statistics for Feedwater PumpTripMisclassified as LoadRejec-

tion 2 of 2 . 223
103 DescriptiveStatistics forFeedwaterPumpTripMisclassifiedasTurbineTrips

W/O SCRAM 1 of 2 . 224
104 DescriptiveStatistics forFeedwaterPumpTripMisclassifiedasTurbineTrips

W/O SCRAM 2 of 2 . 224
105 Reconstruction Plot for Autoencoder at 1.5 SDNoise 225
106 Reconstruction Plot for Autoencoder at 1.0 SDNoise 226
107 Reconstruction Plot for Autoencoder at 0.5 SDNoise 226

xi

List of Tables
1 Data Prepossessing Techniques used in TPOT Pipeline Creation 32
2 Machine LearningModels Trained Using TPOT for Initial Experiment 48
3 Nuclear Software Codes using in GPWR . 67
4 Features Collected fromGPWR Simulator . 69
5 Initial Conditions used for Simulations . 70
6 Simulations Run for Initial Dataset . 72
7 Final Features used in Initial Dataset . 76
8 K-Nearest Neighbors Initial Model Individual Accurcies 79
9 Bernoulli Naïve Bayes Initial Model Individual Accurcies 82
10 Gaussian Naïve Bayes Initial Model Individual Accurcies 83
11 Multinominal Naïve Bayes Initial Model Individual Accurcies 85
12 Logistic Regression Initial Model Individual Accurcies 86
13 Initial Decision TreeModel Individual Accurcies 88
14 Summary ofMachine LearningModel Results: Overall ValidationMeasure-

ments . 90
15 Summary of Machine Learning Model Results: Individual Transient Accu-

racies . 91
16 Transient Events Simulated fromGPWR . 96
17 Initial Conditions Used for GPWR Simulation 96
17 Initial Conditions Used for GPWR Simulation 97
18 Features used in in ExpandedModel Training 100
19 Machine Learning Techniques Used to TrainModels With Expanded Dataset102
20 Bernoulli Naïve BayesModel Individual Accurcies For Expanded Dataset . . 106
21 Multinominal Naïve Bayes Individual Accurcies For Expanded Dataset . . . 110
22 Individual Accurcies For Gaussian Naïve BayesMode (Expanded Dataset) . 113
23 Individual Accuracies For Logistic RegressionModel (lExpanded Dataset) . 114
24 Individual Accuracies For kNNModel (Expanded Dataset) 117
25 Individual Accuracies For Decision TreeModel (Expanded Dataset) 121
26 Individual Accuracies For Random Forest Model (Expanded Dataset) 124
27 Accuracies of Decision TreeModel During The First 30 Seconds 125
28 Statistics for Decision Tree Variation Analysis 126
29 Statistics for Random Forest Variation Analysis 127
30 Statistics for K-Nearest Neighbors Variation Analysis 128
31 Validation Results for Decision TreeModels Trained with Different Splits . . 130
32 Validation Results for Random Forest Models Trained with Different Splits . 130
33 Validation Results for kNNModels Trained with Different Splits 131
34 Validation Results for Decision Tree Models Trained with Different TPOT

Parameters . 133
35 Validation Results for Random Forest Models Trained with Different TPOT

Parameters . 133
36 Validation Results for kNNModels Trained with Different TPOT Parameters 133
37 SteamGenerator Level Averages for Correctly Classified Data 135
38 SteamGenerator Level Averages for incorrectly Classified Data 136

xii

39 Features Removed fromOptimal Decision Tree (Gini Impurity) 136
40 Features Removed fromOptimal Decision Tree (Gini Importance) 138
41 Validation Results from Feature Removal Analysis) 141
42 Differences In Validation Results from Feature Removal Analysis) 142
43 Results From Autoencoder Test . 159
44 Model Training Expanded Dataset . 202
45 Auto Encoder Study . 202
46 AutoML Study . 202

xiii

List of Abbreviations
ANN Artificial Neural Network. 6, 146, 147

BOL Beginning of Life. 68, 70–72, 75, 96, 97

BPN Back Propagation Network. 16

BWR BoilingWater Reactor. 10

CAES Center for Advance Energy Studies. 61

CBM Condition BasedMaintenance. 7

CFR Code of Federal Regulations. 10, 11

CNN Convolutional Neural Network. 13, 16, 147, 148, 168

CPU Central Processing Unit. 2, 148

CSV Comma Separated Values. 71, 74

DOE Department of Energy. 15, 145, 161, 183

EBR-2 Experimental Breeder Reactor 2. 15

ECCS Emergency Core Cooling System. 9

EOL End of Life. 68–72, 75, 96, 97

FWER Family Wise Error Feature Rate Selection. 45–47

G.E General Electric. 10, 14

GAN Generative Adversarial Network. 184, 185

GAO Government Accountability Office. 145

GPU Graphical Processing Unit. 2, 28, 148, 164, 190

GPWR Generic Pressurized Water Reactor. iv, xii, 61, 66–68, 95–97, 143, 150, 159, 169,
178, 179, 185–189

GUI Graphical User Interface. 163, 165, 169, 170, 175, 176, 180, 190

HPC High Performance Computing. 101, 129, 131, 150, 164, 169, 174, 185

HRA Human Reliability Assessment. 183

IAEA International Atomic Energy Agency. 10, 11, 61

xiv

INL Idaho National Lab. 11, 15, 20, 61, 66, 101, 169, 183

kNN k-nearest neighbors. x, xii, 6, 116–119, 121, 124, 128, 130, 132, 167, 186, 187

LOCA Loss of Coolant Accident. 9

LOFA Loss of Flow Accident. 15, 17, 18

LOOP Lose of Off-Site Power. 71

MARS Multi-dimensional Analysis of Reactor Safety. 17

MOL Middle of Life. 68, 70–72, 75, 96, 97

MSIV Main Steam Isolation Valves. 70, 72

NAMS Nearly AutonomousManagement System. 15, 16

NCSU North Carolina State University. 15, 16, 18, 66

NRC Nuclear Regulatory Commission. 10, 11, 17, 18, 66, 69, 77, 93, 145, 161, 181–183

ORNL Oak Ridge National Lab. 13, 14

PCA Principal Component Analysis. 44, 56, 147

PdM PredictiveMaintenance. 7

PORV Pilot Operating Relief Valve. 8, 9, 136, 161

PRA Probabilistic Risk Assessment. 181, 183

PvM PreventiveMaintenance. 7

PWR PressurizedWater Reactor. 14, 16

R2F Run to Failure. 7

RBF Radial Basis Function. 42

RCS Reactor Coolant System. 75, 137, 139

RNN Recurrent Neural Network. 16, 148

SMR Small Modular Reactor. 183

SVM Support Vector Machines. 6, 17, 167, 184, 185

SVR Support Vector Regression. 14

xv

TMI ThreeMile Island. 8–10, 15, 66, 103, 161

TPOT Tree-based Pipeline Optimization Tool. xii, 27–30, 32, 35, 45, 48, 68, 78, 91, 101,
103–105, 119, 122, 128–133, 136, 138, 143, 144, 163–167, 169–171, 173–175, 178, 179,
186–190

V&V Verify & Validate. 11, 66

WSC Western Services Cooperation. 61

xvi

AutoMachine Learning Applications for Nuclear Reactors: Transient Identification,

Model Redundancy and Security

Dissertation Abstract – Idaho State University (2022)

Machine learningandAIareconcepts thathavehada large impact indaily life since2000.

It is unlikely that most people at this point in time do not have some sort of interaction

with anAI systemon a daily basis. This research effort looked to contribute to the field of

nuclear safety and explore ways to expand the use of machine learning through the ap-

plication of AutoML. This project consisted of fourmajor phases. In the first phase, data

was collected from a GPWR simulator for five different reactor events, creating a dataset

with over 30,000 points. Six different machine learning models were trained using the

AutoML package TPOT. The results from this test were positive with all models produc-

ing accuracies in the high 90% range. Themodels were also able to perfectly distinguish

a reactor operating normally from one experiencing a transient. In the next phase, the

dataset was expanded using the GPWR, the number of classes was increased to 12 and

the newdataset consisted of over 110,000 points. Modelswere retrained andwhilemany

ofmodels suffered in validation, three of themodels were still able to score results in the

low 90% range. Themodels were then examined looking at model redundancy by drop-

ping key features, examine variation due to changes in random state, exploring ways to

improve the model and identify the reasons behind misclassifications. The third phase

of the project explored the use of autoencoders to identify GPWR data that had been al-

tered. The model was able to identify all points at high levels of noise, but performance

dropped off as the noise was decreased. Still, the technique has validity to help with se-

curity concerns and identify sensor malfunctions. The final phase of the project was to

exploredifferentAutoMLapproachesandcompareandcontrast their performance, ease

ofuseand functionality. ThesewereTPOT,H2OandGoogleCloudAutoML.Eachof these

approaches were found to have different advantages and issues, but all performed with

models produced using GPWR data, with results in themid to high 90% range.

xvii

Keywords: Machine Learning, Nuclear Safety, AutoML, Anomaly Detection, Nuclear

Simulation, Data Science

xviii

1 Introduction

The rapid development of computer technology and the widespread use of the internet

has led to exponential growth in the area of data science and artificial intelligence. The

ability to collect, store and process large amounts of data more easily has led to a mass

adaptation of data science in several industries. Today, researchers and businesses are

exploring new applications for this technology in order to improve efficiencies and add

value tooperations. Thepurposeof thisdissertation is toexplore theuseofAutoMachine

Learning or AutoML in the area of reactor transient diagnosis, as well as to contribute to

the effort to implement machine learning to the field of reactor safety.

1.1 Background

This section will provide an overview of the concept of machine learning as well as the

motivations and benefits of adapting artificial intelligence in today’s environment. This

will include a review of the well known applications of machine learning and data sci-

ence across all industries including safety, business, operations, etc. This section will

also include an overview of the history of nuclear safety and the events that shape how

the field has grown and developed to its current state. A comprehensive review of the

proposed uses ofmachine learning in several areas within the nuclear safety fieldwill be

performed. Finally, proposed approaches for identifying reactor transientswill be exam-

ined.

1.1.1 Machine Learning

Machine learning is an area in computer science used to make predictions. The inter-

est in the concept of machine learning has grown exponentially in recent times. Once

considered too computationally expensive,machine learning has become apart ofmost

people’s lives, without most people realizing it. This is in part due to advancements in

1

computational capabilities in theareasofmulti-coreCentral ProcessingUnit (CPU)s and

Graphical Processing Unit (GPU)s. This has allowed data scientist to develop complex

models tomake predictions based onprovided data. The advantage thatmachine learn-

ingbasedmodels have over traditional programming is that thesemodels have the capa-

bility to learn over time. Static programs while having the ability to respond to an input,

can only respond based onwhat has been programmed. Machine learningmodels how-

ever can identify trends in the data over time andmake decisions based on these trends

without having to be reprogrammed.

Machine learning models have the ability to perform one of two different functions.

The first of these is the ability to predict a numeric value using a regressionmodel based

on the features of the data that has beenprovided. Examples of thiswould be the price of

a home, the number of units sold, etc. The second type of prediction amachine learning

model can make is referred to as classification. These models use the data provided to

determine what category or class a sample belongs to. Classification examples include

predicting the specific type of flower from physical characteristics of a sample and de-

termining the category of risk of a proposed loan. This project will focus around classifi-

cationmodels.

There are several different types of machine learning models. The two most com-

mon types ofmodels are supervised learning and unsupervised learningmodels. Super-

vised learning models use data that has an outcome already associated with it. These

outcomes can be binary, on/off, exist/doesn’t exist ,etc. ormulti-class, such as excellent,

good, average and poor. In classificationmodels, these outcomes serve as the categories

that will be predicted by themodel. The advantage of supervisedmodels is that the user

can specify the number of categories to be used in the model. It should be noted that

supervised models have an increased probability of becoming overfit and the models

typically are more expensive computationally. Examples of supervised learning models

include decision trees and logistic regression.

2

Unsupervised models use data that has no known outcome associated with it. In-

stead, the model attempts to define groups based on the data provided. These tech-

niques are particularly useful when the data has no set groups. This is especially useful

in the area of anomaly detection[1]. Examples of this type of model include clustering

techniques, like k-means. It should be noted there are other types of models, such as

semi-supervised learning and reinforcement learning, but this project will focus exclu-

sively on supervised and unsupervisedmethods.

1.1.2 Motivation for Machine Learning Adaptation

Perhaps the largest motivation for the expansion in data science over the last twenty

years, is the economic benefit projected by implementing data based approaches. One

study from the U.K based company PWC found that the gross domestic product of the

United Kingdom could increase by over 10% through the adaptation of artificial intelli-

gence[2]. It should be noted, this study claims most of that projected growth, 8.4%, will

be from new ventures that result from the adaptation, while the remaining growth will

be a result of productivity improvements.

Themagnitude of the economic benefits from the adaptation of artificial intelligence

is dependent on a number of factors, including the industry and the approach of adap-

tation. A study performed by theMcKinley Global Institute found that several industries

could see improvements with a full adaptation, however in some cases, only a partial

adaptation could negatively impact margins[3]. According to this study, industries such

as utilities, that historically have low or negative profit margins, due to the regulatory

nature of these areas, could see positive margins even with only a partial adaptation of

artificial intelligence. This is especially encouraging as one issue surrounding nuclear

power has been costs. Other industries identified by this study that could see improved

profit margins that relate to the nuclear field are construction, logistics and healthcare.

Figure 1 shows a summary graph from this study.

3

Figure 1: Analysis of the Affect of A.I on Profit Margins by Industry[3]

4

1.1.3 Applications of Machine Learning Today

Machine learning plays a part inmost people’s daily lives. One of themost common ap-

plication of machine learning models is the development of junk email detection. Gen-

erally, these models are trained to detect words or phrases that are associated with junk

emails. For example, a model could learn that emails with the phrase "you have won"

are usually considered junk andwill filter these out from themain inbox. Themodel can

continue to develop by learning what emails are considered junk when the user desig-

nates an email as such. Another application of machine learning that people use on a

daily basis includes personal assistants, such as Apple’s Siri and Amazon’s Alexa. These

tools can learn trends of the user, based on the data that is provided, such as scheduling,

and preferences [4].

1.1.3.1 Applications in Business Business and marketing are areas that have been

able to take advantage of machine learning and artificial intelligence to improve their

operations. Coca-Colamakes use of these techniques to gather data onwhat drink com-

binationsmay interest customers. The companyuses sodamachines that allow for users

to customize their soft drinks to gather data on what customers like. The model is then

able to use this data to learn what drink combinations are popular and use that infor-

mation to help decide what new products to offer at retail [5]. Other uses of machine

learning in marketing include the use of recommendations to offer suggestions to cus-

tomers. In these cases, the suggestions are generated based on the data collected from

the users. For example, Amazon’s recommendation algorithm examines the items pur-

chased, rather than the users themselves. This allows for a less data intensive algorithm

that has been considered far more effective [6]. Many companies use similar machine

learning algorithms to make recommendations to customers, including Netflix, Hulu,

Booking.com and Spotify.

Studies have found thatmachine learning is an effective approach to detecting credit

5

card and financial fraud. One study used data from over 250,000 European credit card

transactions. Three models were created using different machine learning models and

twoof thesemodelswere able to identify fraudulent transactions over 97%of the time[7].

Financial institutions have embraced the use of machine learning models to improve

their business. For example,JPMorganuses a variety of classification techniques to eval-

uate different areas of the banks operations [8].

1.1.3.2 Applications inHealthcare Dueto thehighpotential for improvedprofitmar-

gins and the ever changing landscape of the industry, healthcare has beenquick to adapt

machine learning and data science. Providers are looking at waysmachine learning can

improve the process of storing and sharing patient data between facilities. Image recog-

nition algorithms are being used to help identify areas of interest with screening images.

One example of the impact ofmachine learning in healthcare is at Regional Cancer Care

Associates in New Jersey. Due to the COVID-19 pandemic, the facility had experienced

issues with staffing and identifying patients who are at high risk for the virus. Machine

learningmodels were used to attempt to classify patients based on the degree of risk [9].

Early results have been positive with the facility reporting improvement in both, identi-

fying high risk individuals andmanaging the facility.

1.1.3.3 Applications inDiagnostics&Maintenance Anapplication thathasbeengain-

ing increased use and interest is the use of machine learning models to diagnose main-

tenance issues with equipment. Since 2000, many organizations and governments have

begun developing and implementing standards formaintenance using computer based

models, such as artificial intelligence. These includes IEEE, ISO, IEC, as well as the gov-

ernments of Germany and China[7]. Common techniques used for diagnostics include

decision tress, Artificial NeuralNetwork (ANN), k-nearest neighbors (kNN),Support Vec-

tor Machines (SVM),etc.

Studies in predictive maintenance using machine learning have been done in man-

6

ufacturing and other sectors. The implementation of big data, machine learning, etc.

in the manufacturing industry has been referred to as Industry 4.0. There are currently

four categories for theuseof AI inmaintenance: Run toFailure (R2F), PreventiveMainte-

nance (PvM),ConditionBasedMaintenance (CBM)andPredictiveMaintenance (PdM)[10].

Each of these different categories has different uses and applications.

1.1.3.4 Applications inQualityAssurance Oneof thecommonusesofmachine learn-

ing in manufacturing is the use of models to help with quality assurance. In a demon-

strationperformedby IBM,Watson, IBM’s artificial intelligence system, analyzed several

different parts to look for defects. For example,Watsonwas able to detect a bent connec-

tor pin in a component. IBM has stated that they believe that Watson is able to continu-

ouslymeet a 92%accuracy, comparable to that of a human inspector. Other applications

for this use of Watson is for the inspection of part installation and inspection [11].

A study performed by IBM’s T.J. Watson Research Center attempted to use machine

learning models to improve the reliability of rail lines[12]. The goal of this study was to

reduce the probability of a service disruption by identifying components that require re-

pairs prior to a failure occurring. The hope is that rail companies can find savings in

reduced delays occurring to unavailable trains, derailments, etc. Several different ap-

proaches have been tried and research continues to develop better models using IBM

Watson.

In a study fromZhejiang Sci-TechUniversity inChina,machine learningmodelswere

used in an attempt to identify failures in air conditioning and refrigeration equipment.

According to thestudy, one issue in trying todevelopamodel for this typeofequipment is

a lack of large quantities of data[13]. In order to address this issue, a Sparse autoencoder,

neural network based model was used. Models were trained with a different number

of layers to see the impact on validation. Data based on 8 different conditions for the

equipment was used to train the model. The accuracy of these models was found to be

7

high with results in the high 90% range. Other validation measurements, such as preci-

sion and recall, were found to be in themid 80% range for diagnosing anormal operating

system and increased for identifying specific failures.

1.1.4 Nuclear Safety

In the nuclear industry, no other area takes a higher priority than the field of safety. The

most pressing reason for this is the potential for long lasting consequences in the event

of a catastrophic failure. Studies have taken place to improve almost every aspect of a

nuclear power plant. These include, accident prevention, quality assurance of compo-

nents, human factors, plant responses, security, mitigation, etc. This has led to a strict

regulation system that has earned the industry a reputation as one of the safest in the

world.

Despite this reputation and the high redundancy of nuclear power plant safety sys-

tem, it is important that the industry embraces the concept of continuous improvement.

The industry must always seek to improve safety when possible and most importantly,

must never fall in to a sense that nuclear facilities are safe enough. This false sense of se-

curitywasacontributing factor in the threeworst accidents innuclearhistory, Fukushima-

Daiich in 2011, Chernobyl in 1986 and ThreeMile Island (TMI) in 1979.

1.1.4.1 Three Mile Island Accident In the United States, no nuclear related accident

has impacted the industry to the extent that the accident with TMI Nuclear Station in

Middleton, Pennsylvania has had.This accident occur on the morning of March 28th,

1979 when TMI unit-2 experienced a loss of flow transient event [14]. This resulted in

the unit-2 tripping, the insertion of control rods to stop the reactor, as designed. In re-

sponse to this event, the Pilot Operating Relief Valve (PORV) opened to release pressure

from the reactor. Once the pressure reached 15.21 MPa the PORV was supposed to shut

automatically, however, a malfunction caused the valve to remain open. This allowed

8

coolant to flow out of the reactor resulting in a small Loss of Coolant Accident (LOCA)

event. To compound this problem, the instruments indicated to the operators that the

PORV was closed and other instruments that could have alerted operators to the prob-

lemwere not easily visible. At this point, coolant was still flowing into the reactor via the

Emergency Core Cooling System (ECCS) and reactor coolant pumps.

The continual flow of coolant to the reactor allowed the core to remain coveredwhile

residual heat was removed, a process that can take days to safely complete. However, a

little more than an hour after the accident began, the coolant pumps started to vibrate

continuously. Unaware that coolant was leaking out of the core, operators shutdown the

coolant pumps in an effort to preserve the equipment. This resulted in the core becom-

ing uncovered and zirconium fuel began to oxidize, producing hydrogen. The reactor

core would melt and a small hydrogen detonation would occur. Eventually the coolant

pumps were restarted and the core was able to cool. A small controlled release of ra-

dioactive gas was done in order to prevent further hydrogen reactions.

1.1.4.2 Response toThreeMile Island The lengthof theaccidentwas relatively short.

By the evening of March 28th, the coolant pumps had been restarted and the core was

cooling properly. The small controlled release of radioactive gas mitigated the possibil-

ity of a hydrogen explosion threatening the integrity of the containment. However, the

inability of the utility running the plant, as well as the local and federal government to

properly and promptly explain the situation to the general public, led to severe actions.

Media coverage of the accident was large and in some cases, there was a belief that a

hydrogen explosion could pose a severe risk to the public, mostly due to the incorrect

association with a hydrogen bomb. It is estimated that over 144,00 people were told to

evacuate and surrounding schools were closed, days after coolant had been restored to

the core.No injuries were attributed to the accident.

There has been a large debate on the root causes of the TMI accident. Early on, it was

9

argued that this event was a "Normal Accident" that was unpreventable due to the com-

plexities of a nuclear power plant and the limitations of the technology. This argument

has been challenged several times. One such study, published in the Journal of Contin-

gencies andCrisisManagement, found thatmanagementwasamajor contributor to this

accident. This included poor communication of previous events, lack of training for the

operators, etc [15]. This is beneficial for the nuclear industry, if the issues at TMI were

unavoidable, it would be impossible for the public to have confidence in nuclear power.

Since many of the issues were preventable, the industry has had the opportunity to im-

prove. To its credit, the nuclear industry in the United States has accepted this account-

ability. Several reforms have been implemented by the utilities and the Nuclear Regula-

tory Commission (NRC), including expanding the use of human factors and simulations

to improve training, better communication between plants to share lessons learned, ap-

proaching nuclear safety from a probabilistic approach and embracing the concept of

continuous improvement when it comes to safety.

1.1.4.3 Use of Simulation in the Nuclear Industry One of the biggest changes in the

nuclear industry after the TMI accident was the expanded use of simulators for nuclear

power plants. The International Atomic Energy Agency (IAEA) has performed a number

of studies on the use of simulation for different applications in the nuclear field. These

areas include: fuels, accident planning, reactor behavior for new designs and training.

The history of power plant simulation goes back to the to late 1950’s, when simulators

where used for steam systems to help with operator training. In 1968, General Electric

(G.E) developed a complete power plant simulator for its Boiling Water Reactor (BWR)

design[16]. In response to the TMI incident and the rapid growth in the use of computer

technology, simulator usebecamewidespread in the 1980’s. In 1987, theNRC issueda re-

quirement, 10 Code of Federal Regulations (CFR) Part 55.4, that all nuclear power plants

operating in the United States must make use of a simulation facility onsite by May of

10

1991, for training purposes[17].

The IAEA has defined four different types of simulators for nuclear power plants: ba-

sic principle, full scope, other than full scope control room and part task[18]. Full scope

simulators are designed to represent a specific reactor at a plant, including the human

interface. These are usually used in simulation facilities at plants. Basic principle simu-

lators are similar, but do not represent a specific reactor and do not necessarily use the

same interface. Other than full scope simulators represent a specific reactor accurately,

butuseadifferenthuman interface than theactual reactor. Forexample, theSONGSsim-

ulator used at INL uses a touch screen interface, rather than the traditional controls of a

reactor. Figure 2 shows the human interface from the SONGS reactor simulator at INL.

Finally, a part task simulator only represents a specific component of a reactor, such as a

piece of equipment.

Reactor simulators make use of several different computer software codes to accu-

rately mimic actual reactor behavior. In an example given by INL, a simulator uses the

RELAP code to model hydraulic behavior, a simulator platform working along with a

plant specificmodel. This software is then integrated into thehuman interface. It should

be noted that all code used tomodel a reactor’s behaviormustmeet the requirements of

the NRC if it is to be used in a nuclear application. This requirement falls under 10 CFR

Part 50.55a, which outlines the Verify & Validate (V&V) process required for a code to be

used in a simulation[19].

Today, simulators are fairly common tools used in the nuclear industry. INL used the

SONGS simulator to help a facility better plan the layout for the plant’s control room.

INL’s Human Factors Lab also makes use of simulators to study the operator behavior

to improve training. This includes monitoring human performance, interaction with

equipment and error recognition. Other countries which make significant use of nu-

clear power, also rely simulation. The Russian Federation has used Part Task simulators

to study turbine behavior under different conditions[20]. France hasmade extensive use

11

Figure 2: SONGS Reactor Simulator[18]

of full scope in operator training and the evaluation of new training techniques and in

the United Kingdom, simulators have been used to evaluate themanagement of control

rooms.

1.1.5 ProposedMachine Learning Applications in Nuclear Safety

As is the case inmanyotherfields, researchershavebeenexploringdifferent applications

formachine learning in nuclear safety. Due to the high number of regulations themajor-

12

ity of these proposals are in beginning stages of development and have not been applied

with operating reactors. This sections will look at many of the different case studies that

have been done usingmachine learning in the area of nuclear safety.

1.1.5.1 PhotoRecognition Over the last decade, there havebeennumerous efforts to

usemachine learning to helpwith preventativemaintenance. One promising study took

place at Purdue. This study proposed using photos of structural cracks to train amodel,

so it could identify cracks within a reactor. Machine learningmodels have history of be-

ing used for photo recognition applications. Using a model allows for more in-depth

analysis that can catch things human eyes cannot[21]. Also, the use of photos allows for

structural analysis to take place in areas that are difficult for humans to reach and ana-

lyze.This study used a Naive Bayes Convolutional Neural Network (CNN) based model

and initial results have been positive. Initial accuracy in the classification was over 98%

higher than that typically expected of humans. Figure 3 shows a sample of the photo

used in the testing of the model for this study. Another study that has made use of the

Figure 3: Sample Crack Photograph use inmodel testing[21]

photo recognition abilities of machine learning models for nuclear safety came from a

collaboration betweenOakRidgeNational Lab (ORNL) and theUniversity ofWisconsin-

Madison. In this study, a neural network based model was trained using 270 electron

microscopy images. From these images, the model was able to correctly identify im-

ages with material that had suffered damage from radiation exposure with an accuracy

13

of 86%. This was higher than the 80% expected accuracy from humans[22].

1.1.5.2 Fuels Machine learning has also been used in the area of fuel behavior. In

a collaboration between ORNL and University of Illinois at Urbana-Champaign, a ma-

chine learning model was trained to determine the composition of fuel from a Pressur-

ized Water Reactor (PWR)[23]. The data used to train this model was obtained through

theuseof a reactor simulator. Themodel trainedwasneural networkbasedand reported

a 95%accuracy. Fuel safety application ofmachine learningmodels have beenproposed

for a number of years. In 2003, a study done in Turkey at the Çekmece Nuclear Research

and Training Center, proposed using a neural network to determine the optimal loading

pattern for a PWR[24]. A better configuration of the loading pattern for a reactor can im-

prove fuel efficiency and lead to savings in cost. In addition, the fuel assembly would be

more reliable improving safety.

1.1.5.3 Human Factors & Decision Making Machine learning has had a large num-

ber of business related applications throughout the years. G.E, one of theworld’s leaders

in reactor development, has been looking at different ways to apply this concepts to im-

prove facilitymanagement anddecisionmaking[25]. Thehope is that investment in this,

will lead to safer and better run plants, which will result in improved cost efficiency. G.E

is exploring the use of cognitive computing to give managers access to more useful in-

formation for decision making, which in turn, should improve plant efficiency. G.E is

also looking at ways to improve data collection by using digital twins, which would not

only speed up collection efforts, but allow for quicker diagnostics in plant equipment

and better planning for maintenance. Other areas G.E is planning to implement ma-

chine learning include energy transmission and energy storage.

An effort between Massachusetts Institute of Technology and Tsinghua University

looked at the use of regression models to aid in decision making. An Support Vector

Regression (SVR) model was used for the project. The effort attempted to determine a

14

value to measure the performance of an advance reactor. This value would serve as an

indicator to operators and managers. It is hoped this would aid decision makers in im-

plementing adjustments to improve performance and efficiencies[26].

1.1.6 Transient Identification Case Studies

One of the most promising areas of research in the nuclear industry involving machine

learning is the identification of transients events occurring with a reactor. As seen with

TMI, the consequences of failing to properly diagnose a transient can be felt for years

to come. There have been a number of studies in this area using a variety of different

approaches.

1.1.6.1 Neural Network Based Projects In recent times, neural networkmodels have

become themost commontypeofmodel trained fordiagnosing reactor transients. Some

efforts have been looking at ways to use these neural network based models to develop

automated responses to transient events. In a collaboration betweenNortheastern Uni-

versity andNuclear Power Institute ofChina, anunsupervised learningmodelwasdevel-

oped to automatically using neural networks and pattern recognition[27]. Another sim-

ilar project occurred at NorthWest University in South Africa. Here, researchers worked

toward using simulator data as reference when developing their model[28].

The United States Department of Energy (DOE) has shown great interest in develop-

ing more autonomous systems. In 2018, DOE awarded North Carolina State University

(NCSU) a 3.5 million dollar grant to develop A.I. based systems for nuclear reactors[29].

Oneproject tobe fundedby this grant involves identifyingaLossofFlowAccident (LOFA)

transient, due to a failure of a sodium pump occurring with a sodium cooled fast re-

actor[30]. Data was collected using a simulator of the Experimental Breeder Reactor 2

(EBR-2) from INL. The system being designed will be able to take corrective action once

it has detected that a LOFA has occurred. This is part of a Nearly Autonomous Manage-

15

ment System (NAMS) system. This project makes use of both, digital twins and neural

networks, to train themodel. Initial results have been positive and NCSU has begun de-

veloping self-learning algorithms to add to the NAMS.

Other efforts have made use of different types of neural networks to train a model.

Oneof these tookplaceat theUniversityofWisconsin-Madison. In this study, researchers

trained a Recurrent Neural Network (RNN) model in an effort to try and address issues

with uncertainties in the data, as well as time series issues with the sensors[31]. The

hope was that by using RNN, the model could better deal with an unbalanced dataset.

The unbalanced dataset was due to the lack of transient data and concerns over existing

data. Results showed that the RNNmodel trained was better able to detect issues, even

with an unbalanced dataset. paragraph CNN’s have also been proposed as a neural net-

work technique for diagnosing reactor transients. A study from the Chinese Academy

of Sciences used a combination of a CNN and small batch processing to make the di-

agnosis[32]. The accuracy of the trained model was encouraging with an average result

around 90%. Another type of neural network that has been looked at is a Back Propa-

gation Network (BPN). One of the first studies involving BPNs goes back to 1995. Re-

searchers at Japan’sHokkaidoUniversity, proposedusingBPNtodiagnose two transients

within the Jōyō experimental reactor[33]. A more recent study of the use of a BPN oc-

curred at Korea Institute of Science and Technology. This study found that a BPN could

diagnose a single transient with few issues[34].

The concept of deep learningmodels has also gain a lot of interest in reactor transient

diagnostics. At Federal University of Rio de Janeiro in Brazil, researchers collected data

from a PWR simulator to train the deep learning model. The model was also given the

option of "don’t know" in making a classification. Results were positive with validation

measurements near 95%[35].Another study that made use of a deep learning model for

reactor safety occurred at the Korea Atomic Energy Research Institute. The goal of this

study was to develop a model that could detect the transient in the early stages, before

16

an alarm signal is triggered[36].

1.1.6.2 Support Vector Machine Models Although the majority of research in tran-

sientdiagnosticswithmachine learninghas focusedaroundneuralnetworks, somestud-

ies have looked at the potential of using SVMmodels to identify a transient. TheUniver-

sity of NewMexico, TongUniversity and SeoulNational University develop a SVMmodel

to diagnose a LOFA transient. Data was collected by running several different LOFA sim-

ulations using the Multi-dimensional Analysis of Reactor Safety (MARS) code. Results

were positive with themodel able to determine if a LOFA is occurring, assuming enough

training data is provided[37].Another study that made use of SVM came from the Royal

Institute of Technology in Sweden. In this project, researchers created four separate SVM

models for four different transients. The results were positive, as each of the fourmodels

could predict the transient nearly perfectly[38].

1.2 Project Overview

1.2.1 Project Goals

Theprimarygoal of thispart of theproject is todevelopamachinemodel that canpredict

transientsoccurringwithinanuclear reactor. Thedevelopmentof suchamodel cancon-

tribute to thedevelopmentofdatadrivensafety systems fornuclear reactors. Datadriven

systems should lead to quicker, more effective responses to transient events, which will

reduce downtime for nuclear reactors. This in turn, would create the potential for great

economic benefits. Consider a 5000megawatt thermal/ 1100megawatt electric nuclear

reactor. This size of plant can produce over 26,000 megawatt hours a day, if the plant is

run at max capacity. In May of 2019, the average cost of electricity in the United States

was 10.42 cents per kilowatt hour or 104.20 dollars per megawatt hour[39]. If a reactor

was to experience a transient event and be shutdown by the NRC, the plant would be

losing over 2.5 million dollars per day in revenue. An unplanned shutdown could result

17

in months of shutdown and millions in lost revenue. Quicker response to the transient,

or prevention, could help get the plant back into operation faster through quicker repair

times and responses to regulator inquires.

Many machine learning studies in the area of reactor transient diagnostics envision

themodels trained tobepartof anautomatedsystemthatwill control responses toevents

within the system. For example, the project at NCSU is centered around autonomous

responses to a LOFA event. Although there are many benefits to automation, there are

many issues surrounding what degree of control an automated system should have ver-

sus the peoplemanaging the system. This has been an ongoing issue in themany indus-

tries such as aerospacewhere issues in automation and lack of training and understand-

ing of the automation by those operating the system has led to accidents. It is important

to note that this is not the goal of this study.

The focus of this study is aiding in the development of a system that can assist reac-

tor operators in performing their duties rather than altering the role of the operator. It is

hoped that this study can contribute to the development of a data based system that can

provide operators with a quick and accurate diagnosis on possible transient events oc-

curring within a reactor system. The operators could thenmake use of this information

to more quickly verify the initial diagnosis and take corrective action. This could also

allow for stakeholders, including the general public, in the facility to bemore quickly in-

formed of issues at the plant. If the flow of information from the plant improves flow, it

is possible therewill be an increase in public confidence in nuclear generated electricity.

The development of a system to aid reactor operators would still have to be approved

by regulatory agencies, such as theNRC. Still, as the systemwill have no direct control of

any nuclear related systems, the approval and evaluation process would likely take sig-

nificantly less time than a system that has somedegree of control on the system. Lessons

learned through this development processmay also aid in the development ofmore ad-

vance automotive systems not only in the nuclear industry, but in other areas where au-

18

tomation is a topic of interest.

1.2.2 Objectives

The following list summarizes themajor objectives of the work performed in this exper-

iment.

List of Project Objectives

1. Trainanumberofmachine learningmodels tocorrectly classifyfivedifferentevents

within a reactor system.

2. Expand the initialdatasetandre-trainmodels tocorrectly classify12differentevents.

3. Perform analysis onwhether the optimalmachine learningmodels can lose signif-

icant features and still make a correct classification.

4. Study the impact changes in the random state used to train the optimal machine

learningmodels has a significant impact onmodel performance.

5. Explore theuseof anomalydetection techniques to see if amachine learningmodel

can identify significant anomalies within a dataset.

6. Explore the performance of different AutoML Packages including model perfor-

mance, ease of use, etc.

1.2.3 Novelty

Over the last decade, several studies have been done on the use of machine learning

models to diagnose a transient event occurring with a nuclear reactor. The vast major-

ity of these studies have used some form of neural network basedmodel. There is merit

to this, as neural networks are generally highly accurate. Also, neural networks have the

ability to handle large datasets, especially those with a high number of features. A num-

ber of the studies reviewed for this project used over one hundred features in the mod-

els trained. There are some drawbacks however to neural networks. First, neural net-

works can become complex quickly, as the number of layers and neurons is increased.

19

This complexity makes neural network models difficult to visualize or explain mathe-

matically. This has led to a perception that neural networks act as a "black box". Due to

this, it is likely that any neural network based safety system will have to undergo a long

regulatory review before it can be used in an actual reactor. One of the key differences

in this project and the studies reviewed is the use of traditional machine learning mod-

els, such as decision trees and logistic regression. Until the first phase of this project, no

study had been done using these types of models for transient diagnosis. Models like

decision trees, can be more easily visualized, which would help in a regulatory review.

Other models, such as logistic regression or naive Bayes, are probabilistic in nature and

can be easier to explainmathematically.

The next key novelty for this project is the use of AutoML tools to train the model.

AutoML is a relatively new approach. Most common AutoML packages used today were

developed in the last decade. As a result, no studies in the nuclear field havemade use of

an AutoMLpackage, such as TPOT. The use of AutoMLnot only can simplify the process,

but allow a more comprehensive search for the optimal classification model. Combin-

ing a tool like TPOT with the HPC capabilities at INL can create a fast, effective and less

complexmodel for diagnosing transient events. It should also be noted, that few studies

have been done comparing the effectiveness of different AutoML packages. Thismay be

an ideal opportunity to do such a study.

An area that also has not received much attention in studies that attempt to create

a model to diagnose transient events is model redundancy. This could be a vital part of

any type ofmachine learning based safety system. Machine leaningmodels rely on data

for both, training and testing. Without data, the model will not be effective. Transient

behavior can be simulated, however, the impact on equipment such as sensor is more

unpredictable. It is possible that one or more sensors are damaged during a transient.

Thiswouldmakemodels that relyon thedataprovidedby the sensor ineffective. Another

possibility is that an outside attack could alter data from the sensors. This could also

20

result in the models becoming ineffective. For this reason, it is essential that data be

scanned for anomalies prior to use it with amachine learningmodel in practice. Also, to

deal with the potential of some data being unavailable or unreliable, it is essential that

additionalmodels which rely on fewer features be trained along side the optimalmodel.

The proposed decision tree analysis will helpmeet these goals.

1.2.4 Summary of Novelty

Points of Novelty for Proposed Study -

1. Use of traditional machine learningmodels to identify transients.

2. Use of AutoML package TPOT to identify an optimal model.

3. Analysis of the decision tree and random forest models from TPOT to perform a

study onmodel redundancy.

4. If possible, perform a study comparing different AutoML packages.

21

2 Tools andMethods

Due to the scope of this project, a number of different tools will have to be used for both

data collection and for training the machine learning models. In addition, this project

makes use of several different approaches to trainmodels and process data. This section

will go over the tools used to collect data, the software used to perform the project and

the techniques utilized to train themodels.

2.1 Python Packages

Today there are a number of different programming languages that havemachine learn-

ing packages. This includes Shark in C++, DL4J in Java and DataExplorer in R. Perhaps,

the most widely used language for machine learning is Python. This project will make

extensive use of several different Python packages. In this section an overview of the his-

tory and capabilities of the packages used for this part of the project will be given.

2.1.1 NumPy

NumPy is a Python library that has been designed with several different applications.

These include: the ability to integrate C/C++ and FORTRAN code into Python, preform

linear algebra functions andeasy integrationwithdatasets. NumPywasdevelopedbyDr.

Travis Oliphant in 2005, as a successor to Numeric and Numarray. NumPy development

is done through the NumFocus Foundation, a nonprofit organization. Today, NumPy

is used by many companies and organizations, such as Netflix and NASA [40]. NumPy

was designed with scientific computing in mind, but the package also has the ability to

help with database construction andmanipulation. NumPy is a free open-source pack-

age and is included standard in many Python distributions, such as Cygwin and Ana-

conda. It is also standard on most IDE libraries such as PyCharm. The library can be

downloaded using Pip. Many of the packages used in this project, such as TPOT and

22

Pandas, use NumPy arrays to perform numerical operations. At the time of this part of

the project, themost current version ofNumPywas version 1.17.0, whichwas released in

Mayof 2019. NumPy is able to operate in aWindows, LinuxorMacOSenvironments[41].

Oneof themost important features in theNumPy library is theability tocreateNumPy

arrays, also referred to as ndarrays. A NumPy array is a container that allows for the stor-

age of several different elements. NumPy arrays, while similar to a Python list, have a few

key differences. The first is the ability to operate quicker and take up lessmemory than a

Python list. This is due to better integrationwith C/C++, which helpsmitigate the loss of

efficiency that higher-level and easier-to-use languages typically have. Also, NumPy has

been optimized for linear algebra operations. NumPy arrays are considered homoge-

nous, meaning that all data is the same size and is processed the sameway, regardless of

any differences between elements. These elements are described by a dtype object that

can be built using different data types. Every NumPy array has a dtype object associated

with it. This can tell the user the descriptive information about theNumPy array, such as

type,memory usage, etc. Elements used in code are taken from the array using indexing.

The index represents an object scaler which was part of the NumPy development.

2.1.2 Pandas

Pandas is a free, open-source Python package, which aims to help users with data ma-

nipulation,modification and analysis. The package can be downloaded onmost Python

distributions, such as Anaconda or via Pip. It can also be added via most Python IDEs.

The package was initially developed byWes McKinney in 2008 in response to a need for

better data tools. Development is ongoing as of 2021. The project receives funding and

support from the University of Paris Saclay Center for Data Science, as well as from Two

Sigma. Pandas required Python version 2.7 or greater but support for all Python 2 ver-

sions was dropped on January 1st of 2020, as such Python 3 or higher is required to use

Pandas. The most current version at the time of this phase of the project was version

23

0.24.1, released in February of 2019. This was the version used in this part of the project.

Pandasonly requires theNumPypackage tooperateproperly. Pandas isdesigned towork

withWindows, Mac OS and Linux environments[42].

The goal of the Pandas project is to provide data tools to users in Python. In the

past, the adaptation of Python in data science and statistics had been slow as users had

preferred to use tools such as MATLAB and R. Pandas has the ability to read and con-

vert datasets, typically in a CSV format, into a structured dataset known as a Pandas

DataFrame. APandasDataFrame is a 2-dimensional Python list that allowsusers to store

values in a tabular form. An example of a DataFrame is shown in Figure 4. Like most

Python packages, Pandas is considered high-level and there are tradeoffs in efficiency

for ease-of-use. Cython was used to mitigate this issue. Pandas has the ability to help

the user identify andmanagemissing values, a common issue in data science. The pack-

age also has the ability to group or sort data by specified user input, such as individual

values within the dataset or data types like floats or strings. Other useful Pandas func-

tions include the ability to change large groups of data, perform statistical analysis such

as mean, median and standard deviations over the dataset, as well as add, remove and

combine parts of different datasets [43]. Figure 4 shows a part of the DataFrame used in

this project.

Figure 4: Sample DataFrame from Project

24

2.1.3 Scikit-learn

This project makes great use of the scikit-learn Python package. The package is a free,

open-sourcepackage that canbedownloaded throughPipor aPythondistribution, such

as Anaconda. Scikit-learnwas developedbyDr. DavidCournapeau in 2007, as a summer

project for a Google Summer of Code Project. The purpose behind the project was to

design a system that could run complicated machine learning algorithms using Python

and maintain a user-friendly intuitive interface. The first public release of scikit-learn

was released on February 1st, 2010 and the French Institute for Research in Computer

Science and Automation (INRIA) began heading the project. Today, scikit-learn devel-

opment and research is funded by universities, such as the New York University, Uni-

versity of Sydney, and Columbia University, among others [44]. Many companies use

scikit-learn as part of their information system operations, including: JP Morgan, Spo-

tify, Booking.com and Change.org. Some of these applications include predicting user’s

preference in music, credit and market trend analysis, as well as targeting users with

more customized add-ons and specials [45]. Similar to many other Python packages,

scikit-learnmakes use ofmanymodern C++ libraries using Cython, a programming lan-

guage designed to help bridge C and Python code. Scikit-learn has been designed to be

compatible in both, a Windows or Linux environment. The latest version of scikit-learn

0.21, the version used at the time of this part of the project, requires Python version 3.5

or higher. Scikit-learn relies on three Python packages to run, NumPy, SciPy and Joblib,

which allows the package to be easily distributed and used. While not required, Pandas

is needed in order to take full advantage of the abilities of the scikit-learn package. In the

past, the package has focused on remaining easy to use and efficient, rather than adding

new features. Though recently, scikit-learn has been updated with new features that as-

sist in data exploration using Pandas. This includes better ways of dealing with missing

values with the SimpleImputer function. Since Python is a high-level programming lan-

guage, there are tradeoffs in code efficiency for ease of use. Steps have been taken in

25

order to manage and mitigate most of these issues: the specification of objects through

interface rather than inheritance, the use of Cython to increase the efficiency of using

C++ libraries within Python, and others [46].

Scikit-learn has the ability to perform several different types of machine learning al-

gorithms: supervised learning methods, such as classification and regression, as well as

unsupervised methods, like k-means clustering. Currently, scikit-learn has functions to

perform more than 17 different types of supervised machine learning methods, as well

as 9 different unsupervised methods. The package has been designed with functions

that helpwithdatapreparation, such as splittingdatasets for validationpurposes. Scikit-

learn also has several functions for data preprocessing, such as the standard scaler func-

tion andmodel validation and scoring throughmeasurements, such as accuracy, preci-

sion, and goodness of fit. Finally, scikit-learn canmake use of Python’s Matplotlib pack-

age in order to help users visualize the results of the models generated. This includes

clustering graphs, confusionmatrices, etc[47].

2.2 AutoML

The process of training machine learning models can be complex. Even with the large

number of tools available, such as scikit-learn, training models can be a time consum-

ingprocess. This is because even for training a single type ofmodel there are anumber of

pre-processing techniques, feature selectors, etc. that can be applied to try and improve

the model. The only way to find the optimal model is to train multiple models using

the different combinations of pre-processing techniques. Keeping track of all these re-

sults, in addition to the different combinations, can add a significant amount of time to

any project. However, recently a new approach formachine learning known as Automa-

chine learning or AutoML has looked to address this issue. While this simplifies the pro-

cess, it can be computationally expensive. Python packages that are currently available

include: Auto-WEKA/auto-sklearn, H2O and TPOT. Google has also developed its own

26

cloud-based AutoML software, called Cloud AutoML, to try and openmachine learning

to non-data-scientists. Services available include photo and video analysis/modeling,

language translation and data analysis [48].

2.2.1 TPOT

Thesupervised learningmodels for thisprojectwerecreatedusing theTree-basedPipeline

Optimization Tool (TPOT) package in Python. TPOTwas chosen for this project because

it is one of the more mature AutoML Python packages available. Also, it is simple to use

and can evaluate a number of different machine learning models. TPOT was developed

by the Computational Genetics Lab at the University of Pennsylvania with support from

theNational Institute of Health. Development began in 2011 and the package continues

to be developed by Epistasis Lab at theUniversity of Pennsylvania. TPOT is open-source

and is available for download from the lab’s GitHub repository for free. TPOTwas devel-

oped in response to the growing demand and interest inmachine learning applications.

The process of creating a machine learning model can be complex and time consum-

ing, even if just limited to supervised learning. There are multiple models that can be

created, as well as many different methods of data preprocessing. It can be difficult for

even an experienced data scientist to develop the best possible model. The purpose of

the TPOT package is to simplify and automate parts of the machine learning process,

while providing better results due to improved data preprocessing and the use of mul-

tiple different supervised learning methods[49]. TPOT is designed to make use of the

scikit-learn Python package for both, data preprocessing and model construction. As

such, the user is required to have the scikit-learn package installed and imported into

the program. TPOT also makes use of NumPy arrays and Pandas DataFrames and these

packages are required as well. The DEAP, SciPy, tqdm, stopit, and update_checker pack-

ages are also needed. These packages are all available for free via download and can be

configuredwith theAnacondaPythondistributionusingPip. OtherPythondistributions

27

can be used if the pywin32module is used. It should be noted that Epistasis Lab strongly

recommends that Python 3 be used rather than Python 2. TPOT is designed to aid the

user in data preparation for supervised learning. This includes automating feature pre-

processing, selection and construction. Doing so can dramatically simplify the process

of preparing data for use in machine learning algorithms and these steps can be situa-

tional, complex and time consuming. It is important to note that the TPOT package re-

quires the user to do data examination on the data to be used in the supervised learning

process. Thepackage cannot account formissing values, qualitativedata and incorrectly

formatted datasets.

Intially, TPOT only had functionality with machine learning models and techniques

from the scikit-learn library. However, in recent years support hasbeenadded for anum-

ber of other libraries. These have been added to allow TPOT the ability to train models

using neural networks. To do this, TPOT has an optional dictionary, TPOT NN, that can

be enabled that makes use of a number of Facebook’s PyTorch neural network models.

TPOThas also added functionality to bettermakeuse ofGPUs. In 2020, a newdictionary,

TPOT cuML, was added that allowed for TPOT to make use of some of Nvidia ’s CUDA

techniques. It should be noted, that at this time the package is very new and only has

functionality with certain Nvidia hardware and only can make use of a limited number

of machine learningmodels. Future updates are planned. This study will only make use

of the scikit-learn library.

Oneof theadvantagesofTPOT is that theuser candefineadictionary to specifywhich

types of models will be training, as well as which data pre-processing techniques will be

used in the training. Currently, this is only supported formodels and functions from the

scikit-learn library. Once the pre-processing has been completed, TPOT can train and

test several differentmodels using the reprocessed data. The process of training amodel

with the defined data pre-processing techniques is refereed to as a pipeline[50]. Figure 5

shows a visualization of the pipeline creation process. TPOThas the ability to train both,

28

regression and classificationmodels.

nbNewBrun,

Figure 5: Typical TPOT Pipeline[50]

TPOT allows the user to define a number of parameters for model training. The first

of these is the number of generations that will be used in themodel creation. This is the

number of iterations thatwill beused in theoptimizationprocess. Themore generations

run, the better the model results will likely be. However, this will also increase compu-

tation time. The next parameter that can be defined is the population size used. This

is the number of individual pipelines retained in each generation. As was the case with

the number of generations, the more pipelines retained will produce better results, but

computation timewill also increase. Users canalso specify the randomnumber seedand

the verbosity used in training themodel. TPOT also supports cross validation to help ad-

dress the randomness of split data. Unless otherwise stated, it should be assumed that

all models trained using TPOT for this project used 100 generations with a population

size of 100. The cross validation will be set to 10 and the random state will be set to 0. A

sample TPOT configuration is shown in Figure 6.

Once the TPOT classifier has been configured, the programwill begin testing the dif-

ferent model combinations. This process can be very slow, especially if the dataset is

29

Figure 6: Sample TPOT Classifier

large and/or a large number of parameters has been specified. TPOTwill by default pro-

vide the accuracy of the optimalmodel, but scikit-learnmethods canbeused to produce

theother validationmeasurements, if needed. Theuser can save theoptimal pipeline for

future use once the training has been completed. The optimal results can be stored for

further use in the program and optimal pipeline can be exported for use at a later time.

It should be noted that the user will need to ensure that the correct file name is used to

import the data in the exported pipeline, as the exported file will only use a placeholder

for this. Also, depending ondata configuration, some slightmodifications to the optimal

model code may be needed to ensure that the data is properly read by the exported file.

It should be noted that while TPOT can simplify the data pre-processsing, training and

hyper parameter tuning of machine learning models, the user is still responsible for the

data exploration and wrangling of the dataset. For example, the user must still identify

any outliers or missing values in the set and address those prior to using TPOT. Figure

7 from the TPOT documentation shows the function of TPOT in themodel training pro-

cess.

30

Figure 7: Training Process using TPOT [49]

2.3 Data PreprocessingMethods Used

In machine learning data preprocessing is an essential step in training models. Data

scaling, feature selection and feature reduction are all important considerations when

preparing a dataset for training. If data is not properly handled before beginning train-

ing, it is likely that the quality of the model will suffer. For example, in the dataset col-

lected for this project there are various features including different temperatures, pres-

sures, etc. These can be orders of magnitude different and using features that are not

scaledmay result in biasedmodels. Proper data preprocessing can help manage this is-

sue, however, there are many different techniques that can be employed. Also, there are

no set rules onwhich techniques work better than others. This is completely dependent

on the dataset. The only way to know which methods work best is to test and compare

all of the different combinations. To better manage this, six different data scalers, three

31

feature selectors and three feature reduction techniques were defined in a customTPOT

dictionary. These were: Binarization, Feature Agglomeration, Maximal Absolute Scal-

ing, Minimum-Maximum Scaling, Normalization, Principal Component Analysis, Ro-

bust Scaling, Standard Scaling andRBF kernel sampling. These are summarized in Table

1. This chapter will go into detail on the different data preproecessing techniques that

were used in this project.

Table 1: Data Prepossessing Techniques used in TPOT Pipeline Creation

Binarization MaximumAbsolute Scaling Robust Scaling
Standard Scaling MinimumMaximum Scaling Normalization

Principal Component Analysis Feature Agglomeration RBF Kernel Sampling
Variance Threshold Selection Select Family Wise Error Select Percentile

2.3.1 Binarization

Binarization is theprocessof takingnumericaldataandconverting it intobinary/boolean

form. Inmachine learning, thismethod ismost commonlyused inpreparingdata foruse

with the Bernoulli naïve Bayesmethod, as thismethod requires data to be distributed in

a binary form. There are other cases where this method could be applied. Binarization

of data is particularly important in training image analyzers, where pixels are assigned a

true or false value, based on the characteristics of the pixel[51].

Binarization relies on determining a threshold for the data that is to be converted.

This threshold is the standard that determines if the data being converted is classified

as a 1, representing a true value, or a 0, representing false value. The threshold value is

dependent on the data and context of the analysis being performed. The scikit-learn has

a preprocessing method .Binarizer(). This method will convert the user-specified data

into binary form. By default, the threshold value is set to 0. As such, a negative or 0 value

will beassigneda0andapositivevaluewill beassigneda1. Theuser is able tochange this

threshold so that the method better fits the analysis. Figure 8, shows a simple example

32

of the binarizationmethod from the scikit-learn documentation[52].

Figure 8: Data Transformation Using Scikit-Learn’s Binarization Function

2.3.2 Standard Scaling

One of the most common data scaling techniques used in preparing data for machine

learning training is StandardScaling.StandardScaling removes themeanand then scales

the dataset to its unit variance. The scaling of the individual data points, z, is given by the

following equation:

z = (X − ţ)

S

Where: µ is the average of the dataset and S is the standard deviation of the dataset. Stan-

dard Scaling is necessary for many machine learning algorithms that require centered

data. Also, this prevents bias from features that are of different type. The scikit-learn

Standard Scaling function .StandardScaler(). Figure 9 and 10 show a comparison of un-

scaled and standard scaled data.

33

Figure 9: Comparison of Standard Scaled Data and Unscaled Data

Figure 10: Numerical Example of Scaled Data

34

2.3.3 Robust Scaling

Another data scaling method used in the TPOT dictionary was the Robust Scaler. The

Robust Scaler method scales features using statistical methods. These methods are the

unit variance or the standard deviation of the feature being scaled. These methods are

intended tohelpdealwithoutlyingdatapoints topreventmachine learningmodels from

becoming skewed. This is done by removing and storing the median of the feature, and

then the scaling range is calculated using 1st and 3rd quartile ranges as bounds by de-

fault. The user is able to adjust these ranges to better meet the needs of the dataset. The

final value of the scaled data point is calculated using the same equation as the Mini-

mumMaximum Scaler, just with the chosen statistic, rather than the actual value. Fig-

ure 11 shows the output of the scaling code. Figure 12, shows a comparison of data that

is scaled using the Robust Scalingmethod and data that is unscaled.

Figure 11: Numerical Example of Robust Scaled Data

35

Figure 12: Comparison of Robust Scaled Data and Unscaled Data

The scikit-learn function for robust scaling is .RobustScaler(). The user can adjust the

quartile range for the scaler and control if the data is centered prior to scaling. By default

and for this project, the .RobustScaler()methodwill use the unit variance. The following

equation is used for the .RobustScaler() method:

Scal ed xi = (xi −1st quatr t i l er ang e(x))

(3r d quar ti ler ang e(x)−1st quar ti ler ang e(x)

36

2.3.4 MaximumAbsolute Value Scaling

TheMaximumAbsoluteValueScalermethodwill scaleand translate thevalues inadataset

so the max value in that set is 1. Scaling in this way helps manage bias that results if the

features are of different measurements, such as temperature and pressure. One issue

that needs to be considered is that this scalingmethod is sensitive to outliers and failure

to properly deal with this may result in skewed machine learning models. The scikit-

learnmethod, .MaxAbsScaler() will ignoremissing values and they are not changed dur-

ing this process[53]. Figure 13 and14 showacomparisonof data that hasnot been scaled

and data that has been scaled using theMaximumAbsolute Value Scaler method.

Figure 13: Comparison of MaximumAbsolute Value Scaled Data & Unscaled Data

37

Figure 14: Numerical Example of Scaled Data UsingMax Absolute Scaling

2.3.5 MinimumMaximum Scaler

The MinimumMaximum Scaling method allows the user to scale the data to a particu-

lar range. This range can be specified by the user to better fit the needs of the analysis.

This project used the default range of 0 to 1. Each feature is scaled individually using the

following equations:

X (Scal ed) = X (St and ar d)∗ (M axi mumBound −Mi ni mumBound)+Mi ni mumBound

Where:

X (St and ar d) = (X −X (Mi ni mum))

(X (M axi mum)−X (Mi ni mum)

This method, like Maximum Absolute Scaler method, is useful to scale features that

are of different measurements to reduce feature bias in the model. This method is also

sensitive to the presence of outliers which could lead to skewedmachine learningmod-

els if not dealt with properly. Also, this method is useful for themultinomial naïve Bayes

algorithm, as it scales negative values to values between 0 and 1, which are compatible

38

with the algorithm. The scikit-learnmethod for theMinimumMaximum Scaler is .Min-

MaxScaler(). Thismethodwill ignore and leave untreatedmissing values from a dataset.

Figure 15 shows a comparison of data that has been scaled using the .MinMaxScaler()

method and unscaled data. Figure 16 shows the code output using the .MinMaxScaler()

method.

Figure 15: Comparison of Unscaled Data andMinMax Scaled Data

39

Figure 16: Example of MinMax Scaled Data

2.3.6 Normalization

The normalization method samples each feature independently to the unit norm. The

scikit-learn method for normalization is .Normalizer(). The user is able to specify what

type of regularization is used for the normalization, either L1 or L2. L1 is the sum of the

regularization weights and L2 is the sum of the squares of the regularization weights.

L1 typically is more robust and less efficient. L2 while less robust, will always be more

efficient than L1. L1 and L2 are often referred to as least absolute deviations and least

squares error, respectively. The default setting for this method is L2. Normalization is

done using the following equation:

L2Nor mal i zedV alueo f X = X√∑n
i=1 X 2

i

Normalizingdata canhelpmake thedataset less sensitive to themagnitudeof the fea-

tures and prevent bias. Also, data normalization is needed if a method such as Gaussian

naïve Bayes is used, as these methods depend on data that is distributed normally. Fi-

nally, normalization can help with the convergence of the machine learning algorithm.

40

Figure 17 shows a comparison of normalized data and unscaled data. Figure 18 shows

the output of the normalizationmethod.

Figure 17: Comparison of Unscaled Data and Normalized Data

41

Figure 18: Example Normalized Preprocessed Data

2.3.7 Radial Basis Function Sampling

This project alsomake use of feature reduction techniques, to try and only use the com-

ponents of each feature that are actually helpful for model training. One of these tech-

niques is Radial Basis Function (RBF) sampling. RBF sampling is a form of Random

Fourier Features, more commonly referred to as Random Kitchen Sinks. This technique

is intended to replace weight minimization with randomization in order to improve the

classification. The RBF samplermaps a kernel using aMonte Carlo approximation. This

is used in kernel-based machine learning algorithms, such as k-nearest neighbors and

k-means, but is more widely used in neural networks and support vector learning ap-

plications. RBF sampling is computationally less expensive than other kernel mapping

techniques, such as the Nystroem Method, but can be less accurate. Due to this, RBF

Sampling is better used in cases where there are clearer differences between classes[54].

In scikit-learn, the RBF Sampling function is .RBFSampler(). The user can specify the

parameters of the kernel, gamma, as well as the dimensionality of the components. As

with otherMonteCarlo approximations, themore components used thebetter the accu-

racy, butmore computation time is needed. A randomnumber seedmay be specified in

42

order to replicate the results. Once the RBFSampler parameters are set, the datamust be

fit to perform theMonte Carlo analysis and then transformed tomodel the kernel map.

2.3.8 Feature Agglomeration

Feature Agglomeration is a form a Hierarchical clustering, sometimes referred to as ag-

glomerative clustering. This process takes in the data and groups similar data into a pre-

defined number of groups or clusters. This technique is used as the basis for some un-

supervised learning algorithms, but it has applications in supervised methods as well.

In supervised learning this method can be used to aid in feature reduction for complex

datasets to help deal withmodels that are overfit [55].

The scikit-learnmethod for Feature Agglomeration, .FeatureAllgomeration(),merges

features together inorder to reduce thenumber featuresused inamachine learningalgo-

rithm. The user has the ability to enter several parameters to better tune the reductions

to the needs of the analysis. The first of these is the number of clusters that the meth-

ods will create. The default for this method is 2, as this is typically used to determine if

it is appropriate to merge 2 features together to reduce overfit. Another key parameter

for this method is the ability to change the linkage criteria of the method. This is called

affinity. The linkage criteria available are: ward, single, complete and average. The ward

criterion looks tominimize thevariancebetween the featuresbeingmerged. Theaverage

criterion uses the average distance of the features for linkage. The single and complete

criteriauses theminimumandmaximumdistances respectivelybetween the features for

linkage. By default and for this project, the ward criterion was used. Finally, the user can

define the affinity, the type of distance, applied to the criterion of themethod. This is the

metric that is used for linkage calculations. The options for affinity include: euclidean,

l1,l2, manhattan, cosine or precomputed. Since this project uses the ward criteria, the

euclideanmetric must be used [56].

43

2.3.9 Principal Component Analysis

Principal Component Analysis (PCA) is a statistics-based technique that is designed to

reduce the number of dimensions a dataset contains. PCA utilizes orthogonal transfor-

mations to combine correlated variables, using basic statistics and linear algebra tech-

niques to identify patterns within data rather than using visualization. Once patterns

are found within a dataset, it is then possible to reduce the number of features in that

dataset based on the PCA results. This helps reduce model overfit and produces better

machine learningmodels. PCA is also used in data compression applications as the orig-

inal data can be recovered later if needed. PCAworks by first removing themean of each

of the datasets features by subtracting the mean value of each feature by the individual

points that correspond to that feature. A covariance matrix is then created; the size of

this square matrix is equal to the number of features present in the dataset. The eigen-

vectors and eigenvalues of the covariance matrix are then calculated, the length of this

eigenvectors is equal to 1. The eigenvalues are then sorted fromhighest to lowest, which

shows the significance of each component. Eigenvalues with small significance can be

removed and while some information is lost, that information is small and has less im-

pact on the model while reducing model over fit. Using the eigenvalues that were kept,

a new feature matrix is created. This matrix is then transposed and multiplied by the

transpose of themean adjusted data. This will give the new dataset with only the higher

significant features left[57]. The user typically specifies the amount of variance that is

acceptable to lose in the reduction. This technique is also useful for reducing statistical

noise.

The scikit-learn function for PCA is .PCA(). The user is able to specify the amount of

explained variance acceptable to lose for the creation of the covariance matrix, as well

as specify an empirical mean, if needed. The functionwill detect the number of features

in the dataset. It should be noted that PCA requires enoughmemory to fit all of the data

present in the dataset. This can be a problem for very large datasets. In these cases PCA

44

can be performed in increments using the IncrementalPCA function[58].

2.3.10 Family Wise Error Feature Rate Selection

Model overfit due to an abundance of features is a major consideration when creating a

machine learning model. To help manage this, the TPOT dictionary also included three

feature reduction preprocessing techniques. These attempt to remove features that are

non-informative from the model. The first of of these is Family Wise Error Feature Rate

Selection (FWER).

The FWER method is an univariate statistical approach used in hypothesis testing.

FWER is theprobability of at least one falsepositive, Type1error, in a groupofhypothesis

test. It is calculatedby taking theprobability value (p-value) for a set of tests and rejecting

hypothesis that fail a specified test. A common test for this rejection is the Bonferroni

test[59]. This test rejects p-values based on the following expression:

Re j ect i f pi ≥ α

h

Where: alpha is the specified criteria for the hypothesis test and h is the number of

hypothesis tested.

The scikit-learn method for FWER is .SelectFwe. This method uses a statistical ap-

proach in order to calculate the p-value, such as Chi-Square or F-value. The F-value is

used by default. Also, an alphamay be specified by the use. The default alpha is 0.05.

Figure 19 and 20 show an FWER example from the scikit-learn documentation [32].

This example loads the wine data from the scikit-learn repository. This set has 178 sam-

ples and 13 features. The FWER method used Chi-Square to find p-values and a 0.01

alpha was selected for the evaluation criteria. Five features from the dataset failed the

FWER test and were removed from the dataset.

45

Figure 19: Example Code of Family Wise Error Rate Feature Selection

Figure 20: Sample Output of Family Wise Error Rate Feature Selection

2.3.11 Select Percentile

The select percentile method, similar to FWER, is another univariate selection method

thatusesa statistical test todeterminewhich features shouldbe removed fromthedataset.

The key difference between the select percentile method and FWER is that instead of

specifying an alpha for the p-value rejection criteria, the user inputs a percentile value.

P-values are either rejected or accepted, based on the scoreswhen compared to that per-

centile. Thescikit-learn function for the selectpercentile technique is .SelectPercentile().

Similar to the FWER function, the user selects the method for determining the p-values

of the desired feature and the percentile for the p-value evaluation. This project uses the

default F-value method for determining the p-values and a 10 percentile for the evalua-

tion criteria.

46

2.3.12 Variance Threshold Selection

The variance threshold technique examines the features and does not factor the model

outcomes, unlike univariate methods such as FWER. As such, variance threshold is an

ideal feature selection method for unsupervised learning. Variance threshold selection

calculates the variance of the individual features and removes those that donotmeet the

user specified requirements. The scikit-learn function for variance threshold is .Vari-

anceThreshold(). This function requires the user inputs a variance for the evaluation

criteria. The default value of this is 0, which removes features that have the same value

in all samples. This was themethod used for this project. Figure 21 from the scikit-learn

documentation shows a code example of the techniquebeing applied. This example cre-

Figure 21: Example of Variance Threshold Feature Selection

ates a Python list with the 1st and 4th feature, 0 and 3, repeated in each row. The default

variance of 0 is used for the feature selection. Once the method is applied, the repeated

features have been removed from the dataset, leaving only the non-zero variance data in

the set.

47

2.4 Machine LearningModels

When dealing with machine learning there is no rule of thumb to determine if one type

ofmodel will preform better than anothermodel. This can only be determined by train-

ing and testing different models. TPOT can train and test several models and determine

which produces the optimal model. However, it is useful to see how other models per-

form and compare to the optimal model. To do this, a custom TPOT dictionary can be

used to limit the types of models trained in the process. In this phase of the project,

six different models were trained using different machine learning techniques. These

are: Naïve Bayes with a Bernoulli, Gaussian andmultinominal distributions, logistic re-

gression, decision tree classification and k-nearest neighbors. Table 2 summarizes these

techniques. This chapter will go over each of these type of models and explain the ad-

vantages and disadvantages of each.

Table 2: Machine LearningModels Trained Using TPOT for Initial Experiment

Gaussian Naïve Bayes Bernoulli Naïve Bayes Multinomial Naïve Bayes
K-nearest Neighbors Decision Tree Classification Logistic Regression

2.4.1 Naïve Bayes Classification

NaïveBayesclassification isa supervisedmachine learningalgorithmthat reliesonprob-

abilities. Thismethod is based on Bayes’ theorem and assumes statistical independence

between two data points. Naïve Bayes classification is used in a variety of industries, i.e.

themedical industry and spam email detection. Due to the probabilistic nature of naïve

Bayes classification, there are several different models that can be created based on dis-

tributions. This project uses three different naïve Bayesmodels: Gaussian, Bernoulli and

multinomial. Detailed explanations on each will be given below[60].

48

2.4.1.1 Bayes Theorm Bayes’ theorem when applied for naïve Bayes classification is

given by the following equation:

P (Y |X1, ..., Xn) = (P (Y)∗P (X1, ..., Xn |Y))

P (X1,, Xn)

Where:

P(Y) represents the probability of event Y occurring

P(X1,....,Xn) represents the probability of the X events occurring

P(X1,...,Xn | Y) represents the probability of the X events occurring given

P(Y|X1,...,Xn) represents the probability of event Y occurring given the X events It is im-

portant tonote that naïveBayes always assumes statistical independence, as such the re-

lationship between the event Y and the X events can be simplified to the following equa-

tion:

P (Y |X1, ..., Xn) = (P (Y)
∏n

i=1 P (Xi |Y)

P (X1, ..., Xn |Y)

Under these assumptions, the Maximum A Posteriori (MAP) technique can be used

to determine P(Y) and P(XiY). In this case, the MAP technique estimates P(Y) based on

the mode of P(Xi|Y). The key difference between the several naïve Bayes techniques is

how P(Xi| Y) is calculated.

2.4.1.2 Naïve Bayes Advantages & Disadvantages Naïve Bayes classification mod-

els have several advantages over other supervised classification techniques. The first

of these is that the time required to calculate the model is less than that of other tech-

niques, such as k-nearest neighbors. Also, naïve Bayes techniques can be performed us-

ing less test data than other techniques, due to the conditional independence assump-

tion of the technique. Finally, again due to the conditional independence assumption,

the technique is less likely to suffer from overfitting due to a high number of features in

49

the dataset. This is because feature distributions are decoupled, allowing each feature

distribution to be estimated as a single distribution. There are drawbacks to this tech-

nique though. Statistical independence is not common in the real world. As such, this

technique is poor at creating estimates and is not a useful tool in regression analysis.

Still, real-world applications have proven it to be an effective classification tool, as the

dependencies between features tend to cancel out in the classification process[61].

2.4.1.3 Gaussian Naïve Bayes The first naïve Bayesmethod used for this project was

the Gaussian classification technique. As the name suggests, this method assumes that

the probabilities of features are Gaussian, or a standard normal distribution. Gaussian

distributions are symmetrical and only have a single peak. The Gaussian naïve Bayes

technique uses the following equation to calculate the probability of the set events Xi

given event Y:

P (Xi |Y) = 1√
2σ2

y

e
−Xi −µY

2σ2
Y

Where:

µy is themean of event Y

σy is the standard deviation of event Y.

2.4.1.4 Bernoulli Naïve Bayes The Bernoulli naïve Bayes method assumes the data

follows a multivariate Bernoulli distribution. A Bernoulli distribution assumes that the

values are Boolean, either 0 or 1. Due to this, the values entered into the model must be

converted into this format. The probability of the set of events Xi given event Y, is found

using the following equation:

P (Xi |Y) = P (i |y)xi + (1−P (i |y)(1−xi)

50

It should be noted that this method penalizes the score of the model if the feature i

does not occur for a given Y.

2.4.1.5 MultinomialNaïveBayesThefinalnaïveBayesmethodused for thisproject is

themultinomial classification technique. Multinomial distribution is a generalized form

of the binomial distribution. Unlike a binomial distribution, a multinomial distribution

can have values other than 0 or 1. This is typically used to determine the probability

of a series of mutually exclusive events occurring at a given time. A key difference be-

tween the multinomial and Bernoulli methods is that the multinomial technique does

not penalize the score of themodel if a feature does not occur within a given data point.

Probability of a set of events Xi given event Y is calculated using the following equation:

P (Xi |Y) =σyi =
Nyi +α

Ny +αn

Where:

Nyi is the number of times a features appears in the training set

Ny is the number of times a features occurs in both the testing and training sets

α: is a smoothing factor to prevent the non-occurrence of a feature from penalizing the

model

2.4.1.6 NaïveBayesClassificationExampleUnlike thek-nearestneighbor, naïveBayes

classification is difficult to visualize as itmakes use of probabilities, rather thandistance.

As such, this example is provided in order to demonstrate how a naïve Bayes classifica-

tion works in real-world applications. Perhaps, the most common application of naïve

Bayes classification is for spam/junk email detection. In this type of classification there

are only two possible outcomes: the email is either spam or it not spam. As naïve Bayes

is a supervisedmethod, the first step is to have a training set of email data that is already

classified as either spam or not-spam.

51

The key with naïve Bayes classification is that the outcome probabilitiesmust be cal-

culatedusing thedataset features. The features of this typeof datasetwouldbe thewords

inside the email. Using the training set data, the probability that if an email contains a

certain word that the email is spam is calculated. Since there are only two outcomes, the

probability that given a certain word that the email is not spam is simply 1 minus the

probability that given the word an email is spam. Typically, common words such as ‘it’

will be assigned neutral probabilities, while other keywords are assigned higher prob-

abilities. Next, the probability of a general email being spam or not being spam is de-

termined. This can be done using either the training dataset, to better tailor the model

to a specific email account, or the probability can be assigned using outside data and

assumptions [62].

Once all of the probabilities have been determined, the probabilities of an email be-

ing spam given a certain word, can be calculated using Bayes’ theorem. This process is

repeated for every word in the email. Once probabilities have been done for every word

in the email, the probabilities are then combined, so the probability of the email being

spam given the set of words can be determined. This is done using the following equa-

tion:

P (S|W) = P1 ∗P2 ∗ . . . PN

P1 ∗P2 ∗ . . . PN + (1−P1)(1−P2)...(1−PN)

Where:

P(S | W) is the probability of the email being spam given the set or words

PN are the probabilities of the email being spam given an individual word

Using this total probability, the system determines whether to classify the email as

spam or not-spam, based on user preferences.

52

2.4.2 K-Nearest Neighbors

K-nearest neighbors is a supervisedmachine learning algorithmused in both, classifica-

tion and regressionmodels. Thismethod is non-parametric,meaning that the algorithm

does not rely on a set number of parameters and can be flexible depending on the situ-

ation. K-nearest neighbors works by using a user-defined constant integer known as k.

K is the number of nearest neighbors that the algorithm looks for in the classification.

A majority vote of the nearest neighbors is used to determine which class a data point

belongs to. This means that the testing data point will be classified according to which

training data it is closest to, in the feature space. The size of kmust be balancedwhenus-

ing thismethod. If k is too small, themodelmay be overfit. If k is too large, the possibility

of an under-fit model that leaves out important details increases[63].

The k-nearest neighbors algorithmalso requires adistance function inorder to calcu-

late thedistancebetweenagiven testingdatapoint and thedifferent trainingdatapoints.

This algorithm typically uses Euclideandistance, also knownas the straight line distance

between two points in Euclidean space. This is very similar to the distance formula used

inbasic algebra andgeometry. It shouldbenoted, that other distancemetrics suchas the

ManhattanDistance, can be used instead. This projectmakes use of Euclidean distance.

The Euclidean distance is found using the following equation:

D(xi , x j) =
√√√√ D∑

m=1
(xi m −x j m)2 =

√
|xi |2 +|x j |2 −2xT

i x j

Where:

D(xi, xj) is the distance between the 2 points

|xi|2 and |xj|2 are norm of the respective points

2xiTxj is the dot project between the two points

The k-nearest neighbors algorithmworks best when the data points are scaled to bal-

53

ance themagnitudeofdifferent features andarenormalized. K-nearestneighbors is sim-

ple in nature and easy to visualize, especially in datasets with fewer features. Also, with

more data and a large k, the algorithm can produce very accurate results. Unfortunately,

there are disadvantages associatedwith using k-nearest neighbors. The first is that it can

be computationally expensive, especially with larger datasets. Also, it can be sensitive

to statistical noise from features. Finally, the model can suffer if too many features are

used[64].

2.4.3 Logistic Regression

Logistic regression is a supervised machine learning algorithm designed to deal with

complex scenarios. While its name suggests this method is a regressionmethod, it is ac-

tually a classificationmethod. Similar to thenaïveBayesmethod, logistic regressionuses

probabilities to predict to what class a set of features belongs to, i.e. the probability of Y

given X, or a set Xi. Outputs can be Boolean, multinomial or for cases where more than

one class exists, One vs. Rest. An important difference between the twomethods is that

naïve Bayes assumes the features are statistically independent, while logistic regression

does not. This results in the naïve Bayesmodel havingmore bias but less variance when

compared to a logistic regression model. The decision of which model is best depends

on the data used in creating the two models. Typically, logistic regression is preferred

when the data has a large number of features, while naïve Bayes works better with less

complex data. Logistic regression takes the different outcome probabilities of a given

data point andmodels them using a logistic function[65]. This project makes use of sev-

eral different categories for classification. TheOne vs. Restmethod of logistic regression

will be used to create the classification model. One vs. Rest logistic regression uses the

following equation:

P (Yk |X) = 1

1+∑k=1
j=1 ew j o+

∑n
i=1 w j i Xi

54

Where:

P(Yk | X) is the probability of Y belonging to class k given X

wjo and wji are the weights associated with class j Scikit-learn has the ability to optimize

this equation by modifying the weights with user specified input[66]. This can be done

using three methods: L1, L2 or Elastic Net regularization. L1 solves issues with weight

optimization given by the following equation:

L1 = mi nwc |w |+C
n∑

i=1
l og (e−yi (X T

i w+c))+1

L2minimizes the cost function of the weights using the following equation:

L2 = mi nwc
1

2
w T w +C

n∑
i=1

log (e−yi (X T
i w+c))+1

andElasticNet regularization is usedwhen there are issueswithboth, cost andoptimiza-

tion using the following equation:

mi nwc
1−p

2
w T w +p|w |+C

n∑
i=1

log (e−yi (X T
i w+c))+1

2.4.4 Decision Tree Classification

Decision tree analysis is a non-parametric, supervised learningmethod that can be used

inbothclassificationandpredictive regression. Decision treeanalysis, unlikeothermeth-

ods, such as k-nearest neighbors and naïve Bayes, is designed to deal with statistical

noise that can deter a model’s performance. Common applications for decision tree

analysis include: credit and loanassessment,medicaldiagnosticsandperformanceeval-

uation/prediction.

The top of a decision tree is the outcome of the analysis. Decision tree analysis be-

gins by taking instances from the data provided. These are typically the different classes

of the data provided to the model. Next, a data point is tested, typically using a true or

55

false evaluation, though it is possible to use non-boolean responses for testing, if appro-

priate. Depending on the outcome, further testing may occur or the model may have

enough information to make a determination and classify a data point. If more testing

is needed, the model will continue to evaluate the data point provided until a determi-

nation can be made or there are no more evaluation metrics to test. A good analogy for

a decision tree classification would be a personality test, such as the Myers-Briggs Type

Indicator. In this survey, the respondent is asked several questions and at the end of the

test, the user is put in a class based on the responses to the questions. In a decision tree

classification, the features provided in a data point are the responses to the questions

at each root of the tree[67]. Decision trees have several advantages over other machine

learning methods. Unlike logistic regression or naïve Bayes methods, decision trees are

easy to visualize and conceptually simple. Decision trees can work with both, qualita-

tive and quantitative data, and data does not need to be of the same type. Also, decision

trees are better able to deal with missing values and a classification can still be done if

some features aremissing. This reduces the amount of data preparation that needs to be

done in order to perform the analysis. Finally, decision trees are able to handle multiple

output models, which allow the method to apply more complex problems. Still, there

are some disadvantages associated with decision trees. The order of the evaluations in

the tree is extremely important. Some ordersmay filter out critical data and lead to inac-

curate results and misclassifications. This can be managed by creating several different

trees to determine which order best fits the model. This can be computationally expen-

sive and time consuming. A better method of dealing with this would be to calculate an

evaluation’s entropy or Gini Impurity. This will be explained below. Another issue with

decision trees is thatmodels canbecomeoverly complex andaremoreprone tooverfit, if

toomany features are present. Data preprocessing and selectionmethods, such as PCA,

as well as tree pruning can be used to helpmanage this issue.

56

2.4.4.1 Entropy In order for decision trees to bemost effective, themanner in which

the tree is built is critical. Ideally, the most valuable features would be near the top of

the tree allowing for quicker determinations. One approach is the use of entropy. In this

context, entropy is ameasure of the purity/impurity of the data samples and canbeused

to calculate the information gain from each features used in the tree’s construction. This

can be calculated using the following equation:

S =∑
pl og2p

Where:

S is the Entropy of the collection of data

P is themass probability function of the evaluation If the responses to the evaluation are

Boolean, the equation can be expressed as the combination of the negative responses

and the positive responses with the following equation:

S =−pl og2p −pl og2p

Evaluations with higher entropy are considered more insightful and are prioritized

earlier in the tree, while those with lower entropy values are placed lower in the tree.

This allows themodel to determine the sequence that yields themost gain[68]. This ap-

proach is known as a ‘greedy’ algorithm, where the algorithm searches for the optimal

result rather than the best. Decision Trees trained using entropy with sklearn are based

on the Iterative Dichotomiser 3 (ID3) algorithm.

2.4.4.2 Gini Impurity Another approach to building a decision tree is to use Gini Im-

purity. Gini Impurity uses the features provided to calculate the probability of amisclas-

sification. The probability is calculated using the following equation:

57

G =∑
p(1−p)

Where:

G is the probability of a misclassification

p is the probability of selecting a given data point within a dataset

Once the probabilities for each feature have been calculated, the features with the

lowest Gini Impurity should be placed at the top of the tree. This is the approach that

will be used for all decision tree models trained in this project. Sklearn’s Gini Impurity

decision tree algorithms are based off of the Classification and Regression Tree (CART)

algorithm.

2.5 Model Validation

Once a machine learning model has been trained and tested, it is necessary to validate

the model to determine how well the model performed. Regression models use metrics

likeMeanAbsolute Error andRelative Square Error to evaluate themodel’s performance.

Classificationmodels such as those trained during this project canmake use of a variety

of metrics for performance, such as accuracy and recall. This section will go over the

different evaluationmetrics used on this project.

2.5.1 Accuracy

Accuracy is themost common validationmeasurement used to assess a model’s perfor-

mance. Theaccuracyof themodel is simply thenumberof correct classificationsdivided

by the total number of test classifications performed[69]. Scikit-learn uses the .accu-

racy_score() method tomeasure amodel’s accuracy using the following expression:

58

accur ac y(y, ybar) = 1

ns amples

nsampl es−1∑
i=1

(ybar = yi))

2.5.2 Precision

In addition to accuracy, other validation measurements are needed when evaluating a

classification model. Relying only on accuracy measurements would only tell the user

that a misclassification had occurred. Using other validation measurements allows for

further exploration of amodel’smistake and the ability to identify potential issueswith a

model. Measuring amodel’s precision allows the user to see the ratio of true positives to

predictedpositives. This showshowmany falsepositives, orType I errors, occurred in the

model’s testing. Scikit-learn uses the .precision_score() method to calculate a model’s

precision using the following equation:

Pr eci son = Number o f Tr uePosi t i ves

Number o f F al sePosi t i ve +Number o f Tr uePosi t i ves

2.5.3 Recall

The next validation measurement performed for this project is recall. Recall is a mea-

surement of a model’s ability to classify positive samples. This is referred to as sensi-

tivity. Recall allows the user to evaluate a model’s false negative error, or Type II error.

Scikit-learn uses the .recall_score method to calculate a model’s recall using the follow-

ing equation:

Recal l = Number o f Tr uePosi t i ves

Number o f F al seNeg ati ves +Number o f Tr uePosi t i ves

2.5.4 F1 Score

In classifying reactor transients, false positive errors potentially result in action that is

costly and time consuming. False negatives can result in potential reactor damage and

59

events hazardous to the public. Both of thesemust be consideredwhen evaluatingmod-

els. As such, it is necessary to have a validation measurement that balances Type 1 and

Type II error. This measurement is known as the F1 score. The F1 score measures a

weighted average betweenprecision and recall. Scikit-learnuses the .f1_score() function

to calculate amodel’s F1 score using the following equation:

F 1 = 2∗ Pr eci si on ∗Recal l

/
Pr eci si on +Recal l

It should be noted the the F1 score can take different forms if it is determined that the

model evaluation shouldput ahigher emphasis oneither recall or precision. This project

will use the balanced form of the F1 score.

2.5.5 ConfusionMatrix

Indealingwithpercentages it is important to consider the context of the situation. In this

phase of the project, over 15,000 samples are being tested by themodel. In these cases a

1% change in accuracy or precision would affect 150 samples. As such, it is necessary to

use a method that tells the exact number of Type 1 and Type II errors that occurred and

between which transients these occurred. To do this a confusion matrix can be created.

A confusionmatrix shows the true positives for each classification down the diagonal of

the matrix. The false positives are shown in the columns and the false negatives are in

the rows. This allows not only for the exact number and type of errors to be shown, but

also where they occurred. This can provide insight into where and why a classification

model is having issues. These results can also be used to determine the model’s ability

to classify specific classes within the dataset. Confusion matrices will be generated for

models trained in this project to diagnose reactor transients.

60

2.6 Generic PressurizedWater Reactor Simulator

Due to the high cost of nuclear reactors and the risk associated with a reactor accident,

it is unfeasible to collect data formodel training using actual reactor transients. Instead,

this project relies on synthetic data from a reactor simulator. Data used for this experi-

ment was collected using the Generic Pressurized Water Reactor (GPWR) simulator lo-

cated in the Audio Visual Laboratory at theCenter for Advance Energy Studies (CAES) in

IdahoFalls, Idaho. TheGPWRsimulatorwas purchasedby theUniversity of Idaho, Idaho

StateUniversity and INL from theWestern Services Cooperation (WSC). This sectionwill

provide an overview on the GPWR simulator and it’s capabilities.

GPWRemulates thebehaviorof a ‘generic’ pressurizedwater reactor (PWR).The ther-

mal output is rated at 4000 MWth/1400 MWe. Although the simulator does not directly

incorporate the design of any specific PWR, it is based off aKEPCOAPR1400, a SouthKo-

rean design[70]. The reactor systems include a single high-pressure turbine, three low-

pressure turbines, and a configuration that includes two loops, four coolant pumps and

two steam generators. It also provides simulation of a switch yard, transmission lines,

and two loads; representative of cities. This simulator fits best under IAEA’s basic prin-

ciple simulator category, as it does notmimic a specific reactor. Typical use ofWCS sim-

ulators includes reactor operator training at several nuclear sites around the world and

research that involves analyzing reactor behavior. Figure 22 shows the simulator setup

at the CAES Audio Visual Laboratory.

2.6.1 Simulator Capabilities

The GPWR has a number of different pre-programmed operating conditions. The simu-

lated conditions include reactor core life, power level, and operational state. The user is

able to switch between several different control panels to control a variety of the plants

components, suchaspumpsandbreakers. This allows theuser tobeable tocontrol func-

tions, such as coolant flow to the reactor, power produced, etc. It should be noted that

61

Figure 22: GPRWReactor Simulator at CAES

the simulator is able to replicate the behavior of all safety systems in the reactor includ-

ing the containment under different accident events, as well as operating normally. For

example, under certain conditions, the simulator will scram the reactor. The user may

also select the individual components and designate them as malfunctioned. Possible

malfunctions include: heat exchanger degradation, motor shearing/seizures, valve fail-

ure to open/close, etc. These events can be triggered by the user or programmed as part

62

of an accident scenario. Figure 23 shows an overview display that is used to navigate and

control the different functions.

The GPWR displays critical parameters to the user. Many of these are those that an

operator would see while running an actual reactor. There are 18 different parameters

that are always displayed to the user. Figure 24 shows how this output is displayed to

the user. The user is also able to see how long the simulator has been running, as well

as pause and restart simulations. The simulation can be run in real-time, slowed down

to 0.1 times normal speed or speed up to 10 times normal speed. This can be changed

at any time during the simulation. In addition, the user has the ability to backtrack to a

previous time in the simulation. The software will automatically save conditions every

few minutes in order for the user to easily return to a previous state. These save states

are usually over 100MB in size. The simulator also allows for the user to switch between

different interfaces in order to observe, manipulate and record the behavior of compo-

nents that are not shown on the reactor interface page. This is done using a navigation

panel which allows the user to select a more detailed interface of a specific component.

This is shown in Figure 22.

63

Figure 23: GPRW Interface

[h!]

Figure 24: GPWR Simulator Setup

64

Figure 25: GPWR Simulator Overview Panel

65

2.6.2 Verification & Validation

One of the changes that came out of the TMI accident was the expanded use of simu-

lation in the nuclear industry. In order for a simulator to be effective, it must be able to

represent the systems being simulated accurately to what would occur in the real world.

In theUnited States, the NRC plays a large role in this. TheNRC has developed a Verify &

Validate (V&V) standard for approving software that will be used in nuclear simulations.

This is covered under NRC Regulatory Guide 1.168.

Regulatory Guide 1.168 covers the basic outline for gaining approval for nuclear re-

lated software related to safety systems. This includes how such codes are updated and

audited while they are in use. These guidelines are an adaptation IEEE Std 1012-1998,

Standard for Software Verification and Validation. Some of the steps in the V&V process

include independent quality assurance audits, security assessment, as well as provid-

ing guidelines for software validation. Well known software that has gone through this

process includes: INL’s Sapphire for systems analysis and SPARmodels for reactor over-

sight[71].

In order to ensure that simulations performed by the GPWR are representative of

real reactor behavior, the GPWR makes use of several validated reactor codes. Some

examples include RELAP5 and MARS, developed by INL and the Korea Atomic Energy

Research Institute respectively, for thermal hydraulics. The NESTLE code, developed

by NCSU, for neutronics and the MELCOR code from Sandia National Lab for accident

modeling were also used. This type of simulator is similar to those used by INL’s Human

Systems Simulation Lab. Table 3 summarizes many of the codes used in the GPWR

66

Table 3: Nuclear Software Codes using in GPWR

Software Code Primary Developer Regulator Purpose in GPWR
RELAP5 North Carolina State University NRC Thermal-hydraulics
Nestle Idaho National Lab NRC Neurotics
MARS Korea Atomic Energy NRC Thermal-hydraulics

Research Institute
MELCOR Sandia National Lab NRC Accident Modeling

67

3 Developing InitialMachineLearningModelsUsingTPOT

The first goal of this project was to determine if TPOT could trainmodels that could cor-

rectly identify a small number of transients in a reactor system. This chapter will go over

the methodology used to perform this experiments, such as data collection and model

training. Finally, this chapter will go over the results of the first phase of this study.

3.1 Methodology

3.1.1 Data Collection

The most critical step, as is the case with most data science projects, is to collect data.

As mentioned, this project relies on synthetic data collected from the GPWR simulator.

It was decided that for this project, the data gathered would consist of features that a

reactor operator would likely have access to and be readily available. Thirty three fea-

tures were chosen and programmed into the simulator data collector, including: reactor

power output, steam generator temperature, flow and pressure, as well as reactor tem-

perature. Table 4 summarizes the features that were collected for thee initial dataset. All

of the features collected fromthe reactor simulatorwerequantitative. Inorder to seehow

themodel would be impacted by changes in the reactor systemover time, it was decided

that several simulations would be conducted changing the initial conditions of the sim-

ulated system for each run. The first change to the system was the power output of the

reactor. Three different conditions were used: full power, where the reactor is operating

as to generate electricity; half power, where the reactor is being shut down and output

is at approximately 50%; and low power where the reactor is critical and being prepared

for startup, but power generation is between 0 and 1% capacity. The second initial con-

dition changed for the reactor system involves the stage of the reactor’s lifetime. Three

different conditions were available for use: Beginning of Life (BOL), where the reactor is

brand new; Middle of Life (MOL), where the reactor is close to 30 years old; and End of

68

Table 4: Features Collected fromGPWR Simulator

Normalized Flux RCS LVL Loop 1WR
RCS LVL Loop 1 NR Hot Leg 1 Temperature

Hot Leg 2 Temperature Cold Leg 1B Temperature
Cold Leg 2B Temperature Cold Leg 1A Temperature
Cold Leg 2A Temperature RC Loop 1A Norm Flow
RC Loop- 2A Norm Flow RC Loop 1B Norm Flow
RC Loop 2B Norm Flow Containment Temperature

Pressurizer Surge Line Temperature PORVDischarge Pressurizer Temperature
Containment Pressure SG-1 NR Level

SG-2 NR Level FW Flow to SG-1
FW Flow to SG-2 Pressurizer Pressure

MS Flow from SG-1 Line-1B MS Flow from SG-1 Line-2B
SG-1 Pressure SG-2 Pressure

Pressurizer Steam Temperature Norm Pressurizer Level
Pressurizer Water Temperature Generator Power

Average Temperature MS Flow from SG-1 Line-1A
MS Flow from SG-1 Line-2A

Life (EOL), where the reactor is close to decommission, approximately 60 years into its

operating life. Using these two features, it was possible to collect data on nine different

initial condition combinations while the reactor is functioning as intended. Each run

was conducted for 1200 seconds and data was collected for each of the 33 measurable

features every second during the run. Seconds are the smallest increment of time that

can be used for data collection on the GPWR. Table 5 list the initial conditions used in

this part of the study.

3.1.2 Transient Events

In addition to collecting data when the reactor is under normal operating conditions,

it was also necessary to collect data with the system experiencing transient events. The

NRCdefinesa transient event "Achange in the reactor coolant systemtemperature, pres-

sure, or both, attributed to a change in the reactor’s power output."[72]. This includes ac-

cident conditions. For the purposes of this study, it should be assumed that all transient

69

Table 5: Initial Conditions used for Simulations

Core Life 1 Power Level
Initial Condition 1 BOL 100%
Initial Condition 2 MOL 100%
Initial Condition 3 EOL 100%
Initial Condition 4 BOL 50%
Initial Condition 5 MOL 50%
Initial Condition 6 EOL 50%
Initial Condition 7 BOL 1% (Critical)
Initial Condition 8 MOL 1% (Critical)
Initial Condition 9 EOL 1% (Critical)

events are either anticipated operational occurrences or postulated accident events, as

defined in 10 CFR Part 50. Four transient events were chosen for this part of the study.

Simulations were ran using as many of the nine initial conditions as applicable for the

each transient. This sectionwill go intodetail on the transient events simulated. Thefirst

transient event selected was a simultaneous trip of all feed water pumps. In this tran-

sient, the primary and auxiliary feed water pumps malfunction and cease operations.

The breakers connected to these two pumps also trip. The transient was programmed

to occur 20 seconds after the simulation began. A simulation under each of the nine

different initial condition configurations was performed and data was collected for 600

seconds after the transient occurred. Under this transient, the runs that were performed

at full power and half power scrammed the second the transient occurred. During the

run that occurred at low power, no scram occurred during the simulation[73].

The next transient event that was used to collect data was a simultaneous closure of

Main Steam Isolation Valves (MSIV). In this transient, a command signal is sent to all

MSIVs after 20 seconds, switching the valves from the open position to the closed po-

sition. Data was collected for 600 seconds after the command signal was sent. Each of

the nine different initial condition configurations was used to collect data on this tran-

sient. In this event, runs performed under full and half power experienced a scram 40

70

second after the simulation began, 20 seconds after the command signal was sent. Runs

performed at low power did not scram during the simulation.

The third transient event used in this experiment was a maximum reactor coolant

rupture combined with a complete LOOP. During this transient, a double ended guil-

lotine break occurs within line 1A of the reactor coolant system. This is combined with

a complete loss of electrical power to the plant. The transient occurred 20 seconds af-

ter the simulation began and data was collected for 600 seconds after the transient oc-

curred. Nine separate runs were performed using the initial condition configurations.

During this simulation, the reactor experienced a scram at all power levels used. The fi-

nal transient event used to collect data was a rapid power change. In this transient, the

reactor begins 1400 MWe full power and drops to 1050 MWe, approximately 75% of the

plant’s maximum power, before returning to 1400MWe. Data was collected until the re-

actor reached fullpower, approximately1000seconds. Due to thenatureof this transient,

only the reactor core life initial conditionswere changed and three runswere performed.

3.1.3 Dataset Preperation

After the completion of a run, the datawas saved from the reactor simulator to a Comma

Separated Values (CSV) file. In total, 39 different CSV files were generated and saved.

Table 6 list the simulations thatwereperformed for each. Again, all data gathereddirectly

from the simulatorwas quantitative. After each run, the reactor core lifetime featurewas

added to each instant from the dataset from the run using either BOL,MOLor EOL. Also,

the transient that occurred was added to each instant in the dataset. It should be noted,

that the instances up to the 20 second mark were labeled as normal operations, as the

transient had not yet occurred. These additions were done using Microsoft Excel. The

datasets remained in a CSV format. Figure 26 shows a screenshot of one of the CSV files

collected from the simulator.

71

Table 6: Simulations Run for Initial Dataset

Simulation 1 BOL 100% Normal Operations
Simulation 2 MOL 100% Normal Operations
Simulation 3 EOL 100% Normal Operations
Simulation 4 BOL 50% Normal Operations
Simulation 5 MOL 50% Normal Operations
Simulation 6 EOL 50% Normal Operations
Simulation 7 BOL 1%(Critical) Normal Operations
Simulation 8 MOL 1%(Critical) Normal Operations
Simulation 9 EOL 1%(Critical) Normal Operations
Simulation 10 BOL 100% Feedwater Pump Trip
Simulation 11 MOL 100% Feedwater Pump Trip
Simulation 12 EOL 100% Feedwater Pump Trip
Simulation 13 BOL 50% Feedwater Pump Trip
Simulation 14 MOL 50% Feedwater Pump Trip
Simulation 15 EOL 50% Feedwater Pump Trip
Simulation 16 BOL 1%(Critical) Feedwater Pump Trip
Simulation 17 MOL 1%(Critical) Feedwater Pump Trip
Simulation 18 EOL 1%(Critical) Feedwater Pump Trip
Simulation 19 BOL 100% MSIV Closure
Simulation 20 MOL 100% MSIV Closures
Simulation 21 EOL 100% MSIV Closure
Simulation 22 BOL 50% MSIV Closure
Simulation 23 MOL 50% MSIV Closure
Simulation 24 EOL 50% MSIV Closure
Simulation 25 BOL 1%(Critical) MSIV Closures
Simulation 26 MOL 1%(Critical) MSIV Closure
Simulation 27 EOL 1%(Critical) MSIV Closure
Simulation 28 BOL 100% LOCA-LOOP
Simulation 29 MOL 100% LOCA-LOOP
Simulation 30 EOL 100% LOCA-LOOP
Simulation 31 BOL 50% LOCA-LOOP
Simulation 32 MOL 50% LOCA-LOOP
Simulation 33 EOL 50% LOCA-LOOP
Simulation 34 BOL 1%(Critical) LOCA-LOOP
Simulation 35 MOL 1%(Critical) LOCA-LOOP
Simulation 36 EOL 1%(Critical) LOCA-LOOP
Simulation 37 BOL 100% Rapid Power Change
Simulation 38 MOL 100% Rapid Power Change
Simulation 39 EOL 100% Rapid Power Change

72

Figure 26: Screenshot of Dataset Collected fromGPWR

73

3.1.4 Data Compiling

In order for the data collected from the reactor simulator to be used to create amachine

learningmodel, some datamodifications needed to be performed. First, the data was in

39 separate datasets, to avoid issues with the constant moving, modifying, loading etc.

of the data, these sets were combined into one complete dataset. This set consisted of

30,710 data points, each consisting of the 33 measured features and the features added

for reactor core life and transient event. Also, to minimize confusion and ensure only

the data was imported into the machine learning model, the feature labels and heading

information was not included in the final dataset. These preparations were done using

Microsoft Excel and the final dataset was saved as a CSV file. The 39 individual datasets

will bemaintained in the event any unexpected issues occur with the complete dataset.

3.1.5 Data Exploration andModification Using Python

Once thedatawas compiled into a single dataset, Pythonwasused tomodify andexplore

the data. All codewritten for this part of the project was done using Python version 3.7.2,

the most up-to-date version available at the time of performing the study. The scripts

werewrittenusingAtomtext editor andall code compilingwasdoneusing theAnaconda

Python distribution. The complete CSV file was imported using Pandas. This converted

thedata fromaCSVfile intoaPandasDataFrame. Noheaderwasused in the importingof

thedata. The contents of theDataFramewas thenverifiedusing the .head(), .shape() and

.describe() commands. The .head() command allows the user to view the contents of the

first 5 rows of a dataset. This was done to ensure that all the features appear correctly in

the DataFrame. The .describe() command provides the descriptive statistics of the data

stored in the DataFrame. This includes the mean, standard deviation, data point count,

as well as the minimum and maximum values of each feature. The summary statistics

for the first and last 3 columns of the dataset are shown in Figure 27. This also allowed

for verification that all the data points had imported into the DataFrame.

74

Figure 27: Sample Descriptive Statistics from Initial Dataset

Analysis of the dataset’s descriptive statistics showed that a number of the features

collected were just percentages of actual values. For example, normalized neutron flux

is simply a percentage of power generated. These features were deemed redundant for

model training and dropped. Also, a couple of features were consistent throughout the

dataset, suchas the levelof thenarrowrangeof theRCS.These featureswerealsodropped

from the dataset. In total, 22 features were used in training thesemodels. The final list of

features used in training, as well as themaximum andminimum values for each feature

are given in Table 7. The addition of the reactor core life introduced a qualitative feature

into the dataset. Machine learning algorithms are only able to use quantitative data to

produce a model. In order to properly account for the reactor lifetime, it was necessary

to convert the qualitative data into quantitative data; this was done using dummy vari-

ables. Dummy variables are typically used to represent qualitative data in a 0, 1 scale. In

this case, since there are three different types of qualitative data (BOL, MOL and EOL),

three dummy variables and two extra factors were needed. It was possible to convert

this data using the Pandas function .get_dummies. This function was used to create

a dummy variable DataFrame using the reactor core life column of the dataset. The

dummy variable DataFrame consists of 2 columns. BOL data points were converted to

0,0, EOL data points were converted to 1,0 andMOLwere converted to 0,1. The dummy

variableDataFramewas then added to the endof the dataset using Pandas’ .concat func-

tion, which is used to merge two or more DataFrames. Finally, the original reactor core

lifetime columnwas dropped from the DataFrame. To ensure that the process had been

done correctly, the newDataFramewas explored once again. The next step in preparing

75

Table 7: Final Features used in Initial Dataset

Feature MinimumValue Max Value
Hot Leg 1 Temperature (F) 183.631 622.519
Hot Leg 2 Temperature (F) 201.266 577.808
Cold Leg 1A Temperature (F) 98.079 577.808
Cold Leg 1B Temperature (F) 220.353 622.652
Cold Leg 2A Temperature (F) 122.800 577.435
Cold Leg 2B Temperature (F) 101.278 577.435

Pressurizer Surge Line Temperature (F) 181.631 651.354
PORVDischarge Pressurizer Temperature (F) 107.736 117.229

Containment Pressure (PSI) 0.0 108.244
Containment Temperature (F) 89.4057 246.052

FW Flow to SG-1 (LB/S) 0.0 2508.38
FW Flow to SG-2 (LB/S) 0.0 2582.82

MS Flow from SG-1 Line-1A (LB/S) 0.0 1244.16
MS Flow from SG-1 Line-1B (LB/S) 0.0 1244.21
MS Flow from SG-1 Line-2A (LB/S) 0.0 1293.26
MS Flow from SG-1 Line-2B (LB/S) 0.0 1295.33

SG-1 Pressure (PSI) 117.753 1265.71
SG-2 Pressure (PSI) 183.387 1268.57

Average Temperature (F) 179.241 598.453
Pressurizer Pressure (PSI) 1700 2314.58

Pressurizer Steam Temperature (F) 213.138 657.763
Generator Power (MW) -19.3393 1549.11

(Consuming Power)
Reactor Core Life N/A N/A

the data was to prepare the target data of the dataset. As mentioned earlier, each data

point was given a label of the transient event that occurred when the data was collected.

This columnwas also a qualitative feature. Unlike the reactor core lifetime, there was no

need to use dummy variables when modifying this dataset. Instead, each transient was

designated a number: the feed water pump trip was assigned 1, the LOCA-LOOP 2, the

steam generator valve closure was assigned 3 and the rapid power change was assigned

a 4. Normal operations were assigned 0. Using Pandas’ .map function it was possible to

change all the qualitative data to the assigned numerical value. The dataset was once

again explored to ensure that the process had been implemented correctly.

76

3.1.6 Data Splitting

The final step in preparing the reactor simulator dataset was to split the dataset into a

training set and a testing set. In supervised machine learning, data should be split in

order to validate the results. Validation allows for a measurement on the quality of the

model’s results. In the case of this project, validation is critical. Asmentioned, regulatory

agencies, such as the NRC, have strict requirements in proving that any system or com-

ponent within a reactor will behave as it is intended, especially if it will be relied upon

in abnormal events. An important aspect of validation is that the data used in the test-

ing must be completely independent of the data used in creating the model. Failure to

ensure this could result in biased models that do not learn the actual case of the testing

data.

It is important to balance how much of the data is split between the two sets. If too

little data is put into the training dataset, the algorithm will not be able to learn the dif-

ferences between the data points. This will result in less accurate models, which will be

less effective in performing the task intended for the model. It is also necessary to have

enough testing data. If the algorithm lacks sufficient testing data it will be difficult to ver-

ify that the model created by the supervised learning algorithm is reliable. Finally, as is

the case in most statistical procedures, it is important that the data splitting be random

to avoid any biases and to provide a good sample for both, the testing and training sets.

The data splitting for this project was done using scikit-learn’s tools. This is done us-

ing the test_train_split function. This function uses Bernoulli sampling in order to cre-

ate testing and training sets that are pseudo-random. The pseudo-randomnature of the

splitting allows for the process to be repeated over and over again with no changes to

the outcome while maintaining the randomness of the selection. The function requires

that features and target data be provided aswell, as the desired split between testing and

training data. Also, the user may specify the seed of the random number generator, if

desired. The output will be four different NumPy arrays, two arrays for the feature and

77

Figure 28: Test Train Split Code for Initial Dataset

Figure 29: Sample from X Train Dataset

target training data and two arrays will be for the feature and target testing data. These

were labeled as X_test and X_train for the feature data and Y_test and Y_train for the tar-

get data. For this model, the target data will be the numerically-labeled transient types

and the feature data will be the 22 features collected from the reactor simulator. Half of

the data collectedwill be used for training and the other half will be used for testing. The

default random number seed for this function will be used for all data splitting on this

phase of the project. The Python code used is shown in Figure 28. Figure 29 shows the

portion for the X_train array.

3.2 Results

The TPOT Classifier specified in the previous chapter was then used to train the six ma-

chine learning models. Each model was scored with using the four validation measure-

78

ments: accuracy, precision, recall and F1 score. The results from each of these models

will be presented in this section.

3.2.1 K-Nearest Neighbors

The entire process of building and evaluating the k-nearest neighbors model in TPOT

took approximately 1 hour and 30 minutes. The accuracy of this model was 98.35%, the

precision was 98.02%, recall was calculated to be 98.01%, and the F1 score was also cal-

culated tobe 98.01%. Table 8 shows the individual accuracies for each transient from this

model.

Table 8: K-Nearest Neighbors Initial Model Individual Accurcies

Transient Event Model Accuracy
Normal Operations 100%
Feedwater Pump Trip 96.6%

LOCA + LOOP 97.57%
Valve Closure 98.01%

Rapid Power Change 97.86%

The k-nearest neighborsmethodwas able to correctly identify 15,103 instances of the

15,355 samples tested during the validation process. Of the 252 misclassified instances,

the largest amounts of misclassifications were from the feed water pump trip transient.

172 of the 252 misclassifications, 60% of total errors, were from this transient. Of those

172 errors, 95 were false positives and 77 were false negatives. The model’s biggest is-

sue was distinguishing the feed water pump trip transient from the valve closure tran-

sient: a total of 76 instances, 30% of the total misclassifications were between these two

transients. The k-nearest neighbors model was able to perfectly distinguish normal op-

eration instances from transient instances, as there were no type I or type II errors for

the normal operation transient. Figure 30 shows the confusion matrix for the k-nearest

neighbormodel. Thecodewasdesigned toexport the instanceswheremisclassifications

occurred. Initial analysis of these instances showedno truepatternor bias ofwhen in the

79

transient themisclassifications occurred.

80

Figure 30: ConfusionMatrix for Initial K-Nearest Neighbors Model

3.2.2 Bernoulli Naïve Bayes Results

UsingTPOT, theBernoulli naïveBayesmodel tookapproximately 1hour tobuild andval-

idate. The accuracy of thismodel was 97.45%, the precisionwas calculated to be 97.18%,

the recall of the model was 96.73 %, and the F1 score was 96.87%. Table 9 shows the ac-

curacies of the individual transients from this model.

The Bernoulli naïve Bayes model correctly identified 14,964 instances of the 15,355

tested. Of the 391 incorrect classifications, 258 of them or 66% of total misclassifica-

tions, were from the feed water pump trip transient. Of these, 191 were false positives

for the valve closure transient. Themodel also scored 33 false positive classifications for

the rapid power change transient. Under this configuration, the model was able to cor-

81

Figure 31: ConfusionMatrix for Initial Bernoulli NaïveModel

rectly distinguish between a transient and non-transient event with no Type I or Type II

errors for the normal operations event. The Bernoulli naïve Bayes model had no Type I

errors for theLOCA-LOOP transient, norwere there anyType II errors for the rapidpower

change transient. The confusionmatrix for the Bernoulli naïve Bayes model is shown in

Figure 31.

Table 9: Bernoulli Naïve Bayes Initial Model Individual Accurcies

Transient Event Model Accuracy
Normal Operations 100%
Feedwater Pump Trip 90.05%

LOCA + LOOP 100%
Valve Closure 96.1%

Rapid Power Change 93.72%

82

3.2.3 Gaussian Naïve Bayes Results

Similar to theBernoulli naïveBayesmodel, theGaussiannaïveBayesmodel tookapprox-

imately 1 hour to build and test. The accuracy of thismodel was found to be 97.45%. The

precision was scored at 97.2%, the recall was calculated at 96.83%, and the F1 score was

96.96%. Table 10 shows the model’s accuracy for the individual transients. This model

was able to correctly identify 14,833 of the 15,355 samples tested. The Gaussian naïve

Bayes model performed perfectly in identifying the non-transients and transients, as

therewereno falsepositives ornegatives for thenormal operationevent. Therewere also

no false positives for the LOCA LOOP transient and no false negative for the rapid power

change transient. Themodel struggled themost with correctly classifying the feedwater

pump trip transient. Of the 522misclassified transients, 337 of them or nearly 65% of all

the model’s total errors were from this transient. Of those, 302 were misclassifications

between the feed water pump transient and the valve closure transient. The confusion

matrix for the Gaussian naïve Bayes model is shown in Figure 32.

Table 10: Gaussian Naïve Bayes Initial Model Individual Accurcies

Transient Event Model Accuracy
Normal Operations 100%
Feedwater Pump Trip 88.77%

LOCA + LOOP 100%
Valve Closure 96.59%

Rapid Power Change 94.0%

83

Figure 32: ConfusionMatrix for Initial Gaussian NaïveModel

3.2.4 Multinomial Naïve Bayes Results

Themultinomial naïve Bayesmodel took approximately 1 hour to be built and tested us-

ingTPOT.Theaccuracyof themultinomial naïveBayesmodelwas 96.71%. Theprecision

of this model was calculated to be 96.38%, the recall was 95.41%, and the F1 score was

calculated to be 96.10%. Table 11 shows the accuracies of the individual transients from

this model.

The multinomial naïve Bayes model was able to correctly classify 14,833 of the reac-

tor transient instances tested. Similar to the other naïve Bayes models, the multinomial

method was able to perfectly distinguish between transient events and non-transient

events, as there were no Type I or Type II errors for normal operations. The rapid power

84

Table 11: Multinominal Naïve Bayes Initial Model Individual Accurcies

Transient Event Model Accuracy
Normal Operations 100%
Feedwater Pump Trip 90.05%

LOCA + LOOP 100%
Valve Closure 96.1%

Rapid Power Change 93.72%

transient also had no false negative results and the LOCA LOOP transient had no false

positives. Also, the model struggled most with the feed water pump trip transient with

296misclassifications occurringwith this transient. The confusionmatrix for thismodel

is shown in Figure 33.

Figure 33: ConfusionMatrix for Initial Multinominal Naïve BayesModel

85

3.2.5 Logistic Regression

The logistic regression model took approximately 48 hours to run. This was the most

computationally expensive of all the models evaluated. The accuracy of the logistic re-

gressionmodelwas found tobe98.55%. Theprecisionwas calculated tobe98.41%, recall

was 98.04%and theF1 scorewas found tobe 98.21%. Table 12 shows the individual accu-

racies for the reactor transients for this. This model correctly identified 15,133 transient

instances of the 15,355 samples tested. The logistic regressionmodel perfectly classified

transient and non-transient events; there were no false positives or negatives from the

normal operation event. The model also had no false positives for the LOCA LOOP and

there were no false negatives for the rapid power change. The model scored well on all

the transients with accuracies above 95% across all 5 events. Themodel had the highest

number of misclassifications with the feed water pump, though the rapid power change

had a lower accuracy. The largest number of errors, 52, came from false positives of the

feed water pump transient from the valve closure transient. Figure 38 shows the confu-

sion matrix for this model. No easily identified groups were found when looking at the

misclassified instances, similar to some of the other models the misclassifications ap-

pear spread out. Figure 34 shows a graph of themisclassifications.

Table 12: Logistic Regression Initial Model Individual Accurcies

Transient Event Model Accuracy
Normal Operations 100%
Feedwater Pump Trip 96.87%

LOCA + LOOP 100%
Valve Closure 97.62%

Rapid Power Change 95.71%

86

Figure 34: ConfusionMatrix for Initial Logistic RegressionModel

87

3.2.6 Decision Tree

The decision treemodel took approximately 3 hours to build and validate. The accuracy

of thismodelwas 98.6%, precisionwas calculated at 98.46%, recallwas found tobe98.1%

and the F1 score was 98.27%. Table 13 shows the individual accuracies of the transient

events for the decision treemodel. The decision treemodel was able to classify correctly

15,140 of the 15,355 transient instances tested. The model was able to perfectly classify

all of the normal operation instances and there were no false positive or false negative

errors from that event. Themodel was able to classify the LOCA LOOP transient with no

false positives and the rapid power change transient had no false negatives. As with the

other models, the decision tree model’s biggest issues were from the feed water pump

transient: 35% of the errors and 76 instances were from this transient. 41 of those were

false positives with the valve closure transient. The confusion matrix for this model is

shown in Figure 35 . Looking at misclassified instances, no obvious grouping appeared.

With the exception of the Bernoulli naïve Bayesmodel, it appears that themisclassifica-

tions experienced were typically spread out rather than grouped together.

Table 13: Initial Decision TreeModel Individual Accurcies

Transient Event Model Accuracy
Normal Operations 100%
Feedwater Pump Trip 97.33%

LOCA + LOOP 100%
Valve Closure 97.57%

Rapid Power Change 95.62%

3.3 Discussion

3.3.1 Overall Model Performance

The results from themachine learningmodels show very positive results. All of themod-

els had validation scores in themid-90’s. Under the configurations selected for the TPOT

88

Figure 35: ConfusionMatrix for Initial Decision TreeModel

89

dictionary, all of themodelswere able to perfectly tell the difference betweennormal op-

erations and transient events. It shouldbenoted that thedataset did containmoreof this

type of data, but this should not be an issue, as with real nuclear reactors the amount of

data, aswell as the quality, will almost certainly be higher for a real reactor under normal

operations. With the exception of the k-nearest neighbors model, the models were able

to correctly classify the LOCA LOOP transient with perfect accuracy, though there were

false negative classifications across all these models in the study. All of the models had

themostdifficultydistinguishingbetween the feedwaterpumptripand thevalveclosure

transients, as this transienthad the lowest individual accuracyof thefiveevents across all

themodels. Also, a largepercentageof the total errors fromthesemodels came fromfalse

positives between these two transients. The models appear to have a tendency towards

havingmoreType II error over Type 1, as the precision of all themodels is higher than the

recall. Since Type II error can result in amore dangerous scenario with a nuclear reactor,

it is important that the recall always be considered whenmaking determinations. Table

14 and Table 15 summarize all the validation results from this part of the project.

Table 14: Summary of Machine Learning Model Results: Overall Validation Measure-
ments

Accuracy Precision Recall F1 Score Time
K-Nearest Neighbors 98.35% 98.02% 98.01% 98.01% 1.5 hrs
Bernoulli naïve Bayes 97.45% 97.18% 96.73% 96.87% 1 hr
Gaussian naïve Bayes 97.45% 97.2% 96.83% 96.96% 1 hr
Multinomial naïve Bayes 96.71% 96.38% 95.41% 96.10% 1
Logistic Regression 98.55% 98.41% 98.04% 98.21% 48 hrs
Decision Trees 98.6% 98.46% 98.1% 98.27% 3 hrs

3.3.2 Best PerformingModels

In terms of performance, the decision tree, k-nearest neighbors and logistic regression

models were better than the naïve Bayes models, having validation measurements all

above 98%. The decision tree model performed the best. Interestingly, the decision tree

90

Table 15: Summary ofMachine LearningModel Results: Individual Transient Accuracies

Normal Feedwater LOCA + Valve Rapid Power
Operation Pump Trip LOOP Closure Change

K-Nearest Neighbors 100% 96.6% 97.57% 98.01% 97.86%
Bernoulli naïve Bayes 100% 90.05% 100% 96.1% 93.72%
Gaussian naïve Bayes 100% 88.77% 100% 96.59% 94.0%
Multinomial naïve Bayes 100% 90.05% 100% 96.1% 93.72%
Logistic Regression 100% 96.87% 100% 97.62% 95.71%
Decision Trees 100% 97.33% 100% 97.57% 95.62%

model slightlyoutperformed the logistic regressionmodel. This is important as the logis-

tic regressionmodel is more computationally expensive, requiring 48 hours to compute

on its initial run, while the decision tree model only took 3 hours. In this case, it is likely

the data was not overly complex, so the decision tree model was able to better fit the

data without needing to perform the large amount of feature analysis required with the

logistic regression model. This is encouraging, as time is a major consideration when

selecting a model that will be used in real-time. Using more sophisticated equipment,

it is possible that a decision tree or k-nearest neighbors model could provide valuable

information to reactor operators in a matter of minutes, if a model needs to be trained

quickly. A TPOT model was constructed early on in the experiment without defining a

specificmachine learningmodel to be built. The optimal model from this run was a de-

cision tree, with an accuracy of 98.57%. This verifies the results from the individual tests,

where the decision tree was themost accurate model.

3.3.3 Models with Potential Issues

The naïve Bayes models, while having high validation measurements, did not perform

as well as the other three models. The multinomial model had the lowest accuracy of

the six models. A likely cause of this is that the data better fit the Gaussian and Bernoulli

distributions than the multinomial. The accuracies with the feed water pump transient

were the lowest with the Gaussian model, only scoring 88% accuracy for that transient.

91

Themost likely cause of this is that the probabilities calculated by the naïve Bayesmod-

els favored the feed water transient over the valve closure, resulting in the false positive

classifications. The overall accuracies of the Gaussian and Bernoulli models were iden-

tical. This is likely coincidental, as bothmodels have different accuracies for three of the

individual transients.

3.3.4 Final Thoughts

Due to the high validation measurements, it does appear from this analysis that there

is promise in the area of applying machine learning to reactor safety. Applying trained

machine learningmodels to reactor safety could lead to faster transient diagnoses, acci-

dent mitigation, and help keep the general public better informed of issues at a nuclear

power plant. Areas that will be further explored include introducing more transients to

see how the models perform and which models perform better with the more complex

data. Also, further exploration into the errors within these models to look for more pat-

terns and factors behind the existing errors, will bedone. Finally, othermachine learning

models, such as those using ensemblemethodswill be trained to see if they can perform

better.

92

4 Expanded Dataset & Optimal Model Analysis

The first phase of this project was presented at the American Nuclear Society’s Annual

Conference in the Fall of 2019. The final results were also published in the journal Nu-

clear Technology in the Spring of 2021. This was done in order to gather feedback on

possible improvements that could be explored for the next phase of the project. One of

the comments on the initial phase of this research effort was the limited number of tran-

sient events the models were trained on. The primary goal of this phase of the project

is to test the ability of TPOT to train models with a larger number of transient events. In

addition to the original six methods used in the previous phase of the project, this study

will look to train amodel using Random Forest Classification.

Another area of interest for this phase of the project is to address some of the pos-

sible concerns that the implementation of a machine learning based diagnostic system

may encounter. As mentioned earlier, systems used in the area of nuclear safety must

undergo a great deal of scrutiny by regulatory authorities such as the NRC. This phase of

the project will take a more in depth look at where misclassifications occurred with the

models. Another area of concern with a safety related system is what to do in the event

certain data is unavailable when a transient occurs. Finally, as many machine learning

models make use of random numbers in some form, the variation of models will be ex-

amined. The goals of this phase of the project are summarized below.

Goals of Second Phase of the Effort

1. Use of an expanded dataset to determine if models can be relied upon with a great

number of transient events.

2. Train amodel using Random Forest Classification.

3. Examine where in the simulations, classifications occurred to determine if major

patterns or concerns exist.

4. Train models with key features missing to determine if models can be trained and

93

relied on if features are missing during a transient.

5. Examine the effect changes in random states have on the validation results of high

performingmodels.

4.1 Ensemble Learning

In the area of machine learning, Ensemble Learning has quickly become on of the most

powerful techniques in producing high scoring models. The idea of Ensemble Learn-

ing is to collect results from several differentmodels and aggregate the collective results.

This has the ability to takemodels that perform relatively poorly and create a better per-

formingmodel. Ensemble approaches have become popular in recent times due to this

capability.

One example of a well known Ensemble learningmodel was the winning submission

in a competition held byNetflix in the late 2000s. Netflix in an effort to improve itsmovie

recommender algorithm, held a three year competition to seewhat improvements could

bemade. The winningmodel is known as BellKor solution, named after its creators[74].

Thismodel was an Ensemblemethod blending several types of regressionmodels, most

prominently k-nearest neighbors. The results produced a RMSE of 0.8712, a near 10%

improvement fromNetflix’s algorithm.

There are a number of Ensemble Learning techniques available in scikit-learn. A

commonly used one is the Voting Classifier, which selects the result that receives the

majority of votes from the different models. Another approach is called Bagging, which

makes use of the same classifier, but uses different subsets of the training data, similar to

cross validation. Another ensemblemethod that canbeused to improvemodels is gradi-

ent boosting. Typically used in regression, gradient boosting uses weak learners and the

errors from those learners to compute a residual. Themodel is then trained on the resid-

ual and the model then tries to predict those residuals. It should be noted that boosting

is a greedy algorithm and can produce overfit. models[75].

94

4.1.1 Random Forest

This project willmake use of the RandomForest technique. RandomForest is an averag-

ingEnsemblemethod that canbeused ineither regressionor classification. Thismethod

constructs several different decision trees rather than just a single tree. The results from

each of the different trees are averaged and a final result is determined. In classification,

the result is determinedbywhich result received themost votes from the individual tress

in the forest. Regression uses the average of output to determine the final result. The use

of randomforest can reduceoverfittingand improveaccuracy. RandomForestmakesuse

of many of the same hyperparameters that a single decision tree uses[76]. This includes

max depth, criterion andmax features. Aswas the case in the previous study, Gini Impu-

rity will be used. TPOT has full compatibility with scikit-learn’s RandomForest Classifier

and Random Forest Regressor.

4.2 Methodology

4.2.1 Expanding The Dataset

In the original study, data was collected on a reactor operating normally and experienc-

ing four individual transient events. These transients were: a simultaneous trip of all

reactor feed water pumps, simultaneous closure of reactor steam isolation values, large

break LOCA coupled with a loss of offsite power, rapid power change from 100% to 75%

and back to 100%. Data was recollected for these transients using the GPWR simulator.

In addition, data was collected on seven additional transients. These were: trip of single

reactor coolant pump, simultaneous trip of all reactor coolant pumps, a rapiddepressur-

ization, amax steam line rupture, a turbine tripwithout aSCRAM,a rejectionof electrical

load and an accidental manual reactor trip. Table 16 lists all the transient events simu-

lated for this study. A brief description of each of the new transient events is given in the

next subsection.

95

Table 16: Transient Events Simulated fromGPWR .

Normal Operations Simultaneous trip of all reactor feed
water pumps

Large Break LOCA coupled with a loss
of offsite power

Simultaneous closure of reactor steam
isolation values

Rapid Power change from 100% to 75%
and back to 100%

Trip of Single reactor coolant pump

Simultaneous trip of all reactor coolant
pumps

Rapid Depressurization

Max Steam Line Rupture Turbine trip without a SCRAM
Rejection of electrical load Accidental manual reactor trip

In order for the dataset to have a more complete picture of reactor behavior, it was

also necessary to collect data using different initial conditions. In the original study, nine

initial conditionswere used. These consisted of different combinations of reactor power

level and reactor core life. In this study, six additional initial conditions were simulated.

ABOL core at 25%power at xenon equilibrium, aMOLcore at 5%power in a startup con-

figuration, a MOL core at 15% power in a startup configuration, as well as a sub-critical

core at 1% with all three reactor core lives. Table 17 lists the 15 initial conditions used

in the data collection. Most simulations with the GPWR ran for 600 seconds. The rapid

power change transient however, requiredmore than 1000 seconds to complete the sim-

ulation and due to the nature of the transient, only three simulations were performed.

Since it is likely that any actual implementation would have access tomore data on nor-

mally operating reactors, the normal operations simulation was run for 1,200 seconds.

This does create an unbalanced dataset, but is realistic for this type of application.

Table 17: Initial Conditions Used for GPWR Simulation .

Simulation # Core Life Power Level
1 BOL 100% Power
2 MOL 100% Power
3 EOL 100% Power
4 BOL 50% Power
5 MOL 50% Power
6 EOL 50% Power
7 BOL 1% Power, (Critical, Startup Configuration)

96

Table 17: Initial Conditions Used for GPWR Simulation .

Simulation # Core Life Power Level
8 MOL 1% Power, (Critical, Startup Configuration)
9 EOL 1% Power, (Critical, Startup Configuration)
10 BOL 1% Power, (Sub-critical, Shutdown Configuration)
11 MOL 1% Power, (Sub-critical, Shutdown Configuration)
12 EOL 1% Power, (Sub-critical, Shutdown Configuration)
13 BOL 25% Power, (Critical at Xe Equilibrium)
14 MOL 5% Power, (Critical at Startup Configuration)
15 MOL 15% Power, (Critical at Startup Configuration)

4.2.2 New Transient Events

Asmentioned, thisphaseof theprojectmadeuseof sevennewsimulated transientevents.

This section will briefly describe each of these new events. The first of these is a manual

reactor trip. In this simulation, once the trip is initiated the neutron flux is expected to

drop from whichever level it was at to a delayed neutron state for a sub-critical system.

Parameters of interest include thepressurizer level andpower, aswell as average temper-

ature, reactor power and hot leg temperature from any loop. The next added transient

for this experiment was the the trip of a single reactor coolant pump. In this transient,

it is expected that the temperature of the moderator and coolant, water in both cases,

will begin to increase, to provide a negative net reactivity. The flux of the reactor should

decrease to a sub-critical state if the system is not already in this state. In addition, sim-

ulations were run where all reactor coolant pumps trip. As was the case with a single

trip, moderator temperature is expected to increase and the reactor should SCRAM to

reach a sub-critical state. Parameters of interest for these transients include steam and

feedwater flow, cold/hot leg temperature and neutron flux. The fourth new reactor tran-

sient simulated for this experiment was the tripping of the main turbine without a re-

actor SCRAM. In this transient, reactor power will still decrease due to the steam dump

and the automated rod controller. Power is expected to drop to 30% if the system is not

97

already at or below this level. Parameters ofmajor interest include neutron flux, average

temperature and the steam generator pressure and level.

The next new transient used for this experiment was amaximum steam line rupture.

In this transient, neutronflux is expected todecrease to sub-critical levels ifnot already in

this state. Containment temperature will increase rapidly at first, but should decrease as

the simulation continues. Pressure within the system should rapidly decrease to that of

the containment. Other parameters of interest include the pressure of the narrow range

pressurizer and level of the pressurizer.

The sixth new transient event introduced in this study is a slow depressurization of

the reactor’s primary system. During this transient neutron flux will decrease slowly for

a short time until the reactor SCRAMS. Pressurizer pressure should decrease to the sat-

uration level. The level of the pressurizer is expected to reach a solid state within five

minutes of the simulation. Other areas of interest include the loop levels, the surge line

temperature and temperature of the hot legs. The final new transient simulated for this

effortwas amaximumdesign load reject. At the start of this simulation bothmain break-

ers of the reactor are opened. The reactor is expected to SCRAMif it is not in a sub-critical

state. The average temperature of the system will increase at first, but decrease rapidly

due to steam dumping. Pressure in the system will increase, but the increase should be

limited to heat removal activities. Areas of interest include the neutron flux, pressurizer

level, temperature and pressure, as well as steam flow.

4.2.3 Data Exploration

In the previous study data on 33 reactor featureswas collected during each second of the

simulation. These featureswere chosenbecause they are features that a reactor operator

would generally have quick and easy access to. Since the models trained in that study

were able to produce reliable measurements, the same features were collected during

the new simulations. Table 4 lists all of the features that were collected for this part of the

98

study. The data collection resulted in 168 individual datasets, 15 for each event, except

the rapid power change. These were combined into a single dataset tomake exploration

andmodel training simpler. This set consisted of more than 110,000 data points. This is

more than triple than the 30,000 used in the previous study.

As is the case with most machine learning projects, the first step to to analyze the

dataset prior to performing anymodel training. This was done using basic Pandas func-

tions. This analysis ensured that there were no missing values for any of the features in

the dataset and allowed for the examination of the dataset’s descriptive statistics. The

analysis also ensured that all the features were in the correct data type and helped in de-

termining if anymajor outlierswere present in the set.Once this analysiswas completed,

the next step was to determine which feature themodel would be trained on. As was the

case with the initial dataset, the normalized values, such as power and pressure, were

dropped from the dataset as they are redundant for model training.

The next step in the data exploration was to determine if any of the features in the

dataset were consistent, where the feature value is unchanged through the dataset. In

the previous study, two features were found to be consistent, however, this was not the

case with the expanded dataset. As such, these features remained in the set for training.

The complete list of 25 features used inmodel training is listed in Table 18. Also included

in this table are the ranges for all the features collected.

99

Table 18: Features used in in ExpandedModel Training

Feature MinimumValue Max Value
RCS LVL LOOP 1WR 0 2.4
RCS LVL LOOP 1 NR 2.4 4.5

Hot Leg 1 Temperature (F) 4.5 623.947
Hot Leg 2 Temperature (F) 199.179 624.07
Cold Leg 1A Temperature (F) 140.984 617.622
Cold Leg 1B Temperature (F) 109.407 577.809
Cold Leg 2A Temperature (F) 111.09 617.659
Cold Leg 2B Temperature (F) 99.2419 577.4340

Pressurizer Surge Line Temperature (F) 99.4619 651.343
PORVDischarge Pressurizer Temperature (F) 107.732 648.149

Containment Pressure (PSI) 0 108.297
Containment Temperature (F) 86.2528 246.051

FW Flow to SG-1 (LB/S) 0 2623.08
FW Flow to SG-2 (LB/S) 0 2583.99

MS Flow from SG-1 Line-1A (LB/S) 0 2000
MS Flow from SG-1 Line-1B (LB/S) 0 1244.73
MS Flow from SG-1 Line-2A (LB/S) 0 1645.35
MS Flow from SG-1 Line-2B (LB/S) 0 1645.78

SG-1 Pressure (PSI) 26.9171 1273.78
SG-2 Pressure (PSI) 40.8375 1275.66

Average Temperature (F) 175.722 598.453
Pressurizer Pressure (PSI) 1700 2318.73

Pressurizer Steam Temperature (F) 153.072 658.021
Generator Power (MW) -19.3392 1549.1

(Consuming Power)
Reactor Core Life N/A N/A

As was the case in the previous chapter, it was necessary to convert the reactor core

life feature toanumericaldummyvariable, using scikit-learn’sdummyvariable function.

Next, the transient data needed to be labeled numerically. Each transient was given a

numberbetween1 and11. Normal operatingdatapointswere assigned the label 0. Once

these changes were made, the dataset was examined again to ensure the changes were

implemented properly. The final step prior to model training was to split the data into

testing and training sets. This was done once again using scikit-learn’s test_train_split

function. In machine learning, there is no standard on how much data to set aside for

100

testing and howmuch to use for data. To ensure the model will be changed adequately

and help address possible overfit issues, the data was again randomly divided in two. At

this point, the time stamp feature was dropped from both, the training and testing, as

the data is irrelevant for the model training. It should be noted that this information is

necessary to determine where in the simulation misclassifications occurred. As such,

this feature was set aside to be used after training. The training and testing dataset sizes

were checked to ensure the splitting was done properly.

4.2.4 Training NewModels Using TPOT

The approach for training the machine learning models on the expanded dataset was

similar to that used in the previous study. For this study, the same feature selection and

data reprocessing techniques used in the previous study were used again. The complete

list of feature prepossessing techniques used in the TPOT dictionary is given in Table

2. These functions are commonly used in machine learning efforts and provided high

results in the previous study. In the previous study, six different types of models were

trained. These were: decision tree classification, k-nearest neighbors, logistic regression

and naive Bayes classification, using three different distributions: Gaussian, Bernoulli

and multi-nominal. Since all six of these models originally produced validation results

in the 90’s, they were trained again with the expanded dataset. In addition, a model was

trained using the random forest classifier for a total of seven differentmodels. Since this

dataset ismulti-class, a support vectormachinemodel could not be trained using TPOT

at this time. Table 19 lists themachine learningmodels trained in this study. Aswas done

in the last study, eachmodel will be trained for 100 generations with a population size of

100 to ensure that a largenumberof pipelines are tested. The randomstate for thesebase

models was set at 0. In order to train the models in a timely manner, High Performance

Computing (HPC) resources from the INL were used. This will allow up to 48 CPUs to

be utilized during model training, which should greatly improve the computation time

101

needed to train themodels.

Table 19: Machine Learning Techniques Used to TrainModels With Expanded Dataset

Gaussian Naïve Bayes Bernoulli Naïve Bayes
Multinomial Naïve Bayes Logistic Regression
K-nearest Neighbors Decision Tree Classification

Random Forest Classification

4.2.5 Validation of TrainedModels

In the previous study, models were scored on four validation results based on the num-

ber of true positives, false positives and false negatives. These were: accuracy, precision,

recall and f1 Score. These measurements were again used for scoring all seven models

trained on the expanded dataset. This also allowed for confusionmatrices to be created

for each model. This will allow for individual accuracies to be measured for each tran-

sient to help address concerns with the unbalanced dataset.

4.2.6 Misclassification Analysis

Many studies in machine learning put a strong emphasis on validation results, such as

accuracy and precision. These results however, should only be the start of examining

a model’s potential to be applied in practice, especially in a multi-class classification

model. In this study, the misclassified points of the model trained were examined to

determine where in the simulation themisclassifications occurred and see if there were

any significant patterns. Thiswas done by using the simulation time stamp for each data

point used in themodel validation. The time column removedduring themodel training

was re-added to the data set and each point was checked to see if it was correctly iden-

tified or not. The number of misclassifications that occurred at each time during the

simulation will be tracked. Using this information, it can be determined at which points

during a transient event themodel will bemost reliable.

102

4.2.7 Impact of Losing Features

Due to high safety expectations by regulatory agencies and the general public, nuclear

power systems require a great deal of redundancy to help mitigate possible accidents.

The TMI accident showed that missing critical information and having sensormalfunc-

tionscan lead toseriouserrorsanddamagingconsequences. Today, operatorsare trained

to account for these possibilities and high quality assurance programs have been en-

acted. This has greatly reduced the probability of a misdiagnosis due to a sensor failure.

However, if machine learning is to be implemented as a diagnostic tool, especially in an

automated fashion, studies will need to be conducted on how models will be affected

when features are lost. This is especially concerning if model relies on tens or hundreds

of features, asmanyneural networkmodels used inother applicationsdo. Oneapproach

to address this concern is to remove features fromaproposedmodel and train newmod-

els with fewer features. If themodel can still produce reliable results with fewer features,

then a system designed to help diagnose issues with the reactor, can simply switch to a

new model if a feature becomes unavailable or unreliable. To contribute to this effort,

this study took the models with the highest validation results and removed a number of

key features to see if TPOT can train a reliable model with the feature missing.

Inmachine learning, it is likely some featureswill havemore importance to themodel

than others. In the previous study, the decision tree model using Gini Impurity was one

of the most reliable models produced. Assuming that this holds true for the expanded

study, the optimal decision tree diagram will be extracted from the TPOT pipeline and

the featurewith the lowest impurity, i.e. the feature at the top of the tree, will be removed

from the set and the model retrained. If TPOT is able to produce a reliable model, this

process will be repeated for the five features with the lowest Gini Impurity in the optimal

model. Another approach is to use scikit-learn to help identify possible key features.

Scikit-learn has developed a number of functions that can be used to determine fea-

ture importance for a number of different models, including tree basedmodels, such as

103

decision trees and randomforests. This process usesGini Importance to assign a score to

each feature used in the model training. According the documentation for scikit-learn’s

Decision Tree Classifier, Gini Importance is the total reduction of the criterion brought

by that featureor simply themeandecrease impurity. This is calculatedby summingover

thenumber of splits in eachbranchof the tree[77]. This could be applied to all tree based

models. As with the Gini Impurity, the feature with the highest importance score will be

removed from the dataset and themodel retrained. The process will be repeated for the

top five individual features that have the highest importance.

4.2.8 Variation in Results fromChanges in Random State

In order for effective machine learning models to be trained, there usually is a reliance

on random numbers. Data sets should be split between testing and training randomly

to ensure as little bias in themodel as possible. This does leave open the possibility that

the results from the training are a result of a favorable split. To address this concern,

cross validation was used in the model training. The cross validation function within

both scikit-learn and TPOT, creates different divisions of the training dataset, known as

k-folds or simply folds. One fold is set aside for validation purposes and the other folds

areused in themodel training. Thenumberof foldsused is determinedby theuser. Once

completed, this process is repeated again using a different fold, until all the folds have

beenused invalidation. Anaverageof all the results is then takenandusedas the training

model[78]. This technique not only address the concerns with randomly split data, but

also helps address the possibility of themodel being overfit.

Data splitting is not the only area that makes use of random states. Many machine

learning models make use of random numbers. This includes the process used by the

TPOT classifier to create pipelines. Both scikit-learn and TPOT make use of random

numbergeneratorsor randomstates inmodel training. Inorder toviewtheeffect changes

in the random state have on the trained TPOTmodels for this study, it was necessary to

104

train themodels using different random states. To ensure the impact is determined, this

was donewith twenty different random states for allmodels that achieve high validation

scores in the initialmodel training. Once completed, the variation in the resultswere an-

alyzed using descriptive statistics. This will provide an idea on how each differentmodel

type is impacted by the change in random state. If the variation is small, then themodel

can be considered reliable in terms of random state.

4.3 Expanded Dataset Model Results

In thispartof theproject sevenmodelswere trainedon theexpandeddatasetusingTPOT.

This section will go over the results from these models and compare them to the results

from the previous section. Also, the results on themisclassification analysis will be given

in this section.

4.3.1 Bernoulli Naive BayesModels

The three naive Bayes models trained on the expanded dataset experienced significant

differences from the models trained in the first part of this project. Of the three naive

Bayesmodels trainedusing theexpandeddataset, theBernullinaiveBayesmodels scored

the highest in validation results. Accuracy was scored at 81.01%, precision at 80.64%, re-

call at 83.24% and F1 score at 80.19%. This is much lower than the 96% 97% scores that

were obtained from the original dataset. The biggest contributors to this decrease were

two transients: the feedwater pump transient and the turbine trip without scram. This

model only score an individual accuracy of 58.66% with the feedwater pump transient

with an individual accuracy of only 58.77%. The model performed even more poorly

with the individual accuracy of only 11..31%.It should be noted that this model was still

able to perfectly distinguish a normally operating reactor from one experiencing a tran-

sient. Also, themodel scoredwellwith the load rejection transientwhencompared to the

othermodels with an accuracy at 71.23%. Table 20 summarize the individual accuracies

105

for this models. Figure 36 shows the confusionmatrix for this model.

Table 20: Bernoulli Naïve BayesModel Individual Accurcies For Expanded Dataset

Transient Event Model Accuracy
Normal Operations 100%
Feedwater Pump Trip 58.77%

LOCA + LOOP 98.37%
Valve Closure 87.99%

Rapid Power Change 100%
Depressurization 95.00%

Max Steam Line Rupture 99.89%
Manual Trip 83.81%
Load Rejection 71.23%

Single Coolant Pump Trip 78.78%
Total Coolant Pump Trip 82.54%

Turbine Trip without SCRAM 11.31%

106

Figure 36: ConfusionMatrix for Expanded Bernoulli Naive BayesModel

107

In terms of where misclassifications occur, the largest number of misclassifications

occurrednear the start of the transient event, withmore than 60misclassfications occur-

ring at each of the first few seconds of the simulations. This number decreases to around

20 after the first half of the simulation. Figure 37 shows at what point in the simulations

misclassfications occurred.

Figure 37: Misclassifications for Expanded Bernoulli Naive BayesModel

4.3.2 Multinominal Naive BayesModel

The multinominal naive Bayes model performed similarly to the Bernulli model. This

model scored an overall accuracy of 79.60%, a precision of 79.19%, recall of 81.83% and

F1- score of 79.19%. The higher recall implies that this models leans more toward false

positives classifications rather than false negatives. Themultinominal models struggles

in the same areas as the Bernoulli model in both, the feedwater pump and turbine trip

without SCRAM transients. However, thismodel did perform better in turbine trip with-

out SCRAM transient with an accuracy of 19.56%. Thismodels however, struggledmuch

morewith the single turbine trip transient than all othermodels trainedwith this dataset

with an accuracy of only 67.18%. Figure 38 shows the confusion matrix for this models

and Table 21 summarizes the individual validation results.

108

Figure 38: ConfusionMatrix for ExpandedMultinominal Naive BayesModel

109

Table 21: Multinominal Naïve Bayes Individual Accurcies For Expanded Dataset

Transient Event Model Accuracy
Normal Operations 100%
Feedwater Pump Trip 57.86%

LOCA + LOOP 98.00%
Valve Closure 81.75%

Rapid Power Change 100%
Depressurization 97.97%

Max Steam Line Rupture 99.88%
Manual Trip 77.78%
Load Rejection 67.18%

Single Coolant Pump Trip 64.30%
Total Coolant Pump Trip 85.70%

Turbine Trip without SCRAM 19.56%

The behavior for the misclassifications for this model were similar to those with the

Bernoulli models. The number of misclassfications occurring at a single point again

starts above 60 during the beginning of the simulations and within a 3 minutes of the

simulations, decreases down to around 20. Figure 39 shows the misclassfication behav-

ior for themultinominal model.

Figure 39: Misclassifications for Multinominal Naive BayesModel

110

4.3.3 Gaussian Naive Bayes

The Gaussian naive Bayes model was not only the worst performing model of the three

naive Bayes models, but also the worst performing model trained for this part of the

project. Themodels scored an overall accuracy of 77.92%, a precision of 77.44%, a recall

of 80.65% and a F1-score of 76.98%. As was the case with the other naive Bayes models,

this model tends to experience more false positive misclassifications than false nega-

tives. The Gaussian model was the only model trained in this experiment that was un-

able to perfectly distinguish the normally operating reactor from the transient events.

Though it should be noted only 22 points of nearly 10,000 points tested were misclas-

sified for this. The model struggles with the same two transients that the other naive

Bayes models struggled with, but it is also hurt by issues diagnosing the load rejection,

51.97%and the total coolant pump trip, 64.30%. Both of these results are lows for this ex-

periment. The model does have the best performance with the max steam line rupture

performance, 100%, and the single coolant pump trip, 82.92%. Table 22 shows the indi-

vidual accuracies for this model. Figure 40 shows the confusion matrix for this model.

In terms of misclassfication behavior, the Gaussian model behaves very similarly to the

other two naive Bayesmodels, with high numbers of misclassifications at the beginning

of the simulations which decrease and level off to about 20 within a couple of minutes.

It should be noted, that with this model, the first two three seconds have a low number

of misclassifications compared to the rest. The reason behind this is likely a result of the

model using more points for early in the simulations, as the model resumes the same

behavior as the rest of the models afterwards. There is a good chance these may also

be some of the normal operating points that were misclassified by the model. Figure 41

shows themisclassification behavior for the Gaussianmodel.

111

Figure 40: ConfusionMatrix for Expanded Gaussian Naive BayesModel

112

Table 22: Individual Accurcies For Gaussian Naïve BayesMode (Expanded Dataset)

Transient Event Model Accuracy
Normal Operations 99.82%
Feedwater Pump Trip 51.81%

LOCA + LOOP 99.41%
Valve Closure 83.17%

Rapid Power Change 100%
Depressurization 97.62%

Max Steam Line Rupture 100%
Manual Trip 80.29%
Load Rejection 51.97%

Single Coolant Pump Trip 82.92%
Total Coolant Pump Trip 66.25%

Turbine Trip without SCRAM 15.93%

Figure 41: Misclassifications for Gaussian Naive BayesModel

113

4.3.4 Logistic RegressionModel

In the previous part of this project, the logistic regression model was among the high-

est performing models trained with overall validation results, all above 98% and indi-

vidual accuracies also all above 98%. However, with the expanded dataset the logistic

regression model failed to perform as strongly. In overall validation results, this model

scored only 86.83% in accuracy, 86.27% in precision, 85.99% in recall and 85.85% for f1

score. Thiswas unexpected as themodel hadperformed stronglywith the initial dataset.

The main issue for this model, as is the case with the other models, is the Turbine Trip

without SCRAM transient. The logistic regression model only scored individual accu-

racy of 29.11%. While this is better than the three naive Bayes models, it is still quite

low. Themodel also struggles with the load rejection transient, with an accuracy of only

50.64%. The remaining transients scoredwell, all above 80%. The logistic regression per-

formedbetter thanall othermodelswith the feedwaterpumptransient,withanaccuracy

of 80.25%andwas able to perfectly diagnosis themax steam line rupture transient. Table

23 summarizes the individual transient accuracies for the logistic regressionmodel and

Figure 42 shows the confusionmatrix for this model.

Table 23: Individual Accuracies For Logistic RegressionModel (lExpanded Dataset)

Transient Event Model Accuracy
Normal Operations 100%
Feedwater Pump Trip 80.25%

LOCA + LOOP 99.97%
Valve Closure 97.86%

Rapid Power Change 98.60%
Depressurization 97.84%

Max Steam Line Rupture 100%
Manual Trip 85.58%
Load Rejection 50.64%

Single Coolant Pump Trip 97.34%
Total Coolant Pump Trip 96.20%

Turbine Trip without SCRAM 29.11%

114

Figure 42: ConfusionMatrix for Expanded Logistic RegressionModel

115

Themisclassication for the logistic regressionmodel behave similarly to those for the

other models. However, unlike the naive Bayes models, the misclassifications reduced

muchmorequickly. In thecaseof thismodel, thenumberofmisclassificationsdecreased

consistentlybelow20after approximately 100 seconds. It shouldbenoted that thepoints

at the end of the graph are a result of misclassifications occurring later within the rapid

power transient. This graph is shown in Figure 43

Figure 43: Misclassifications for Logistic RegressionModel

4.3.5 K-Nearest Neighbors Model

During the initial phase of this project, the k-nearest neighbors models had produced

some of the strongest results with the original dataset. The technique was able to once

again produce strong results when usedwith the expanded datasets. This approach pro-

duced the best model from a non-tree based machine learning model for this experi-

ment. In termsof overall validation results, the kNNmodel scoredanaccuracyof 91.15%,

a precision of 90.93%, recall of 90.97% and f1 score of 90.91%. While this was a decrease

from the initial dataset, the results are still strong. The kNNmodel struggled most with

the load rejectionmodels, only scoring an accuracy of 59.73%, one of the weakest scores

with this transient. The model also struggled with the Turbine Trip without Scram with

116

an accuracy of 65.29%, but thiswasmuchhigher than the four probability basedmodels.

With the exception of these two transients and the feedwater pump transient, the mod-

els was almost able to perfectly predict the remaining eight transients, with accuracies

between 98% and 100%. Table 24 summarizes the individual accuracies for this model

and Figure 44 shows the confusionmatrix.

The kNN model produced one of the strongest results for this phase of the project

and as such, it was used extensively in the other parts of this phase. Due to this, it was

important to understand towhat extent themodelwas under/overfit. To determine this,

themodel was tested using the training data. The accuracy of themodel when tested on

the training data was 93.12%. Less than 2% higher than with the testingmodels, as such

there are few concerns with overfit. This was mostly due to issues with the feedwater

pump transient, individual training accuracy of 87.9%.

Table 24: Individual Accuracies For kNNModel (Expanded Dataset)

Transient Event Model Accuracy
Normal Operations 100%
Feedwater Pump Trip 73.98%

LOCA + LOOP 99.99%
Valve Closure 98.37%

Rapid Power Change 100%
Depressurization 99.66%

Max Steam Line Rupture 99.97%
Manual Trip 97.42%
Load Rejection 59.73%

Single Coolant Pump Trip 98.45%
Total Coolant Pump Trip 98.31%

Turbine Trip without SCRAM 65.29%

In the area ofmisclassificationbehavior, the kNNmodel behaved similarly to the four

probability basedmodels, where there are a relatively large number ofmisclassifications

at the start of the simulations and the number decreases as the simulation continues.

In the case of the kNNmodel, the number of misclassifications drops to around 20 after

about 10 seconds. Figure 45 shows themisclassification behavior for this model.

117

Figure 44: ConfusionMatrix for Expanded kNNModel

118

Figure 45: Misclassification Behavior for kNNModel

4.3.6 Decision TreeModel

In the previous part of this project, the decision tree model trained using TPOT was the

best performing model of the six models trained. When the decision tree model was

trained using the expanded dataset, the model once again proved to be one of the best

performing. The overall accuracy of this model was 92.38%, with a precision and recall

of 92.15%and a f1 score of 92.14%. In terms of individual accuracy, themodel performed

strongly with all but three of the transients. The three lower performing transients were:

feedwater pump transient, accuracy of 72.98%, turbine tripwithout SCRAM, 74.71%and

the load rejection, 63.48%. While thesewere significantly lower than theother transients,

thesewereamong someof thehighest scoreswith these three transients. Figure46 shows

the confusionmatrix for thismodel and Table 25 summarizes thismodel’s individual ac-

curacies. Since this model was one the best performing models in both parts of the

project, it was necessary to evaluate how overfit the model is by comparing the training

and testing accuracies of themodel. The training accuracywas found to be 99.68%, a lit-

tlemore than six points higher testing accuracy. This ismostly a result of the threepoorer

performing transients. This does indicate themodel is notably overfit. It is important to

119

Figure 46: ConfusionMatrix for Expanded Decision TreeModel

120

Table 25: Individual Accuracies For Decision TreeModel (Expanded Dataset)

Transient Event Model Accuracy
Normal Operations 100%
Feedwater Pump Trip 72.98%

LOCA + LOOP 100%
Valve Closure 99.44%

Rapid Power Change 99.53%
Depressurization 99.84%

Max Steam Line Rupture 97.84%
Manual Trip 97.84%
Load Rejection 63.48%

Single Coolant Pump Trip 99.92%
Total Coolant Pump Trip 99.05%

Turbine Trip without SCRAM 74.71%

note that most tree based models experience a degree of overfit, and this amount while

notable, does not disqualify the usefulness of themodel. In the area of misclassification

behavior, the decision treemodel behaved similar to the kNNmodel. Themodel experi-

ences around 50 misclassifications in the first second of the transient simulations. This

number decreases below20 at around the seven secondmark. Thenumber stays around

10 for themajority of the time across all simulations. Figure 47 shows a graph of themis-

classification behavior for this model.

121

Figure 47: Misclassifications for Decision TreeModel

4.3.7 Random Forest Model

At the time of the first phase of this project, TPOT had just begun to implement support

for scikit-learn’s packages on support vector machines and random forests. As such, it

was not possible to train a random forest model for the initial dataset. Using the ex-

panded dataset, a random forest model was trained with TPOT. This resulted in the best

performingmodel of the seven trained for this phase of the project. Themodel scored an

accuracy of 92.44%, recall of 92.23% and a precision and f1 score of 92.22%. All slightly

higher than the singledecision treemodel. Individual accuracieswerealso similar to that

of thedecision treemodel. Themodel scoredhighwith theeight transient events that the

decision treemodel scoredhigh. Themodel also strugglesmostwith the same three tran-

sients, with an individual accuracy of 75.5% for the turbine trip without SCRAM, slightly

higher than thedecisionmodel, 70.98% for the feedwater pump transient and62.89% for

the load rejection transient, both slightly lower than the decision tree model. Figure 48

shows the confusionmatrix for this model and Table 26 summaries themodel’s individ-

ual accuracies. Table 27 shows the accuracies for the first 30 seconds of the simulation

for the decision treemodel.

122

Figure 48: ConfusionMatrix for Expanded Random Forest Model

123

Table 26: Individual Accuracies For Random Forest Model (Expanded Dataset)

Transient Event Model Accuracy
Normal Operations 100%
Feedwater Pump Trip 70.78%

LOCA + LOOP 100%
Valve Closure 99.53%

Rapid Power Change 99.86%
Depressurization 99.84%

Max Steam Line Rupture 100%
Manual Trip 99.08%
Load Rejection 62.89%

Single Coolant Pump Trip 99.58%
Total Coolant Pump Trip 99.55%

Turbine Trip without SCRAM 75.50%

As was done with both, the single decision tree and the kNN model, it was neces-

sary to check this model for overfit, as it was one of the better performing models. The

random forest model’s training data scored a 99.68%. This is similar to the decision tree

indicating that this model does experience some overfit once again, in the area of the

three problematic transient events. It is important to note then, that while this model

does experience some notable overfit, this is expected due to the nature of tree based

models.

In terms of misclassifications, the random forest model experienced the same be-

havior of the single decision tree model. The model experienced around 45 misclassifi-

cations at the first second of the transient simulations and this number dropped quickly

below 20 within 5 seconds. Throughoutmost the remaining time of the simulations, the

model scored fewer than 10 misclassfications at each second. Figure 49 shows the be-

havior for the random forest model.

124

Table 27: Accuracies of Decision TreeModel During The First 30 Seconds

Time Counts Tested Counts Misclassified Accuracy
0 76 47 38.16%
1 85 49 42.35%
2 88 33 62.5%
3 74 36 64.86%
4 78 23 70.51%
5 88 12 86.36%
6 85 22 74.11%
7 78 14 82.05%
8 82 15 81.70%
9 85 13 84.71%
10 79 13 82.28%
11 91 16 82.41%
12 88 20 77.27%
13 93 15 83.87%
14 89 13 85.39%
15 73 14 80.82%
16 69 5 92.75%
17 91 13 85.39%
18 94 11 88.29%
19 81 11 86.41%
20 79 12 84.81%
21 79 12 84.81%
22 88 7 92.05%
23 86 9 89.54%
24 85 10 88.23%
25 86 9 86.20%
26 85 10 89.41%
27 87 12 85.89%
28 85 12 89.41%
29 82 5 93.90%
30 87 9 89.65%

125

Figure 49: Misclassifications for Random Forest Model

4.4 Random State Variation Analysis

The decision tree model has been one of the best performing models throughout both,

this study and the previous experiment. The model experienced minimal variation in

terms of overall validation results when the random state was changed. Of the twenty

models trained, the highest accuracy score was 93.09% and the lowest was 92.30%. The

median accuracy between the twenty decision tree models was 92.41%, close to the ac-

curacy reported for the base model. This trend is similar for the precision, recall and f1

scores, with median scores of 92.18% for precision and 92.17% for recall and f1 score.

This shows for the decision treemodel, there is little variation between different random

states. Table 28 summarizes the statistics for the twenty decision treemodels.

Table 28: Statistics for Decision Tree Variation Analysis

Model Accuracy Precision Recall F1 Score
Mean 92.45% 92.22% 92.23% 92.22%
Median 92.41% 92.18% 92.17% 92.18%
Standard Deviation 0.16% 0.17% 0.18% 0.15%
Minimum 92.30% 92.06% 92.07% 92.07%
Maximum 93.09% 92.90% 92.94% 92.83%
Range 0.79% 0.84% 0.87% 0.76%

126

The random forest model has also produced high results in this experiment. Sim-

ilar to the decision tree, the random forest model also experienced minimal variation

between the twenty different models. The highest trained accuracy for the random for-

est models was 92.48% and the lowest was 92.34%. Themedian accuracy between these

models was 92.42%, again very close to the 92.41% scored for the base model. The me-

dian precision for these models was 92.20%, as was the median f1 score. The median

recall was 92.21%. The random forest models showed less variation than the decision

tree models, with a range of accuracy less than 0.14%. Table 29 shows the statistics for

the random forest models.

Table 29: Statistics for Random Forest Variation Analysis

Model Accuracy Precision Recall F1 Score
Mean 92.42% 92.20% 92.21% 92.20%
Median 92.42% 92.21% 92.22% 92.21%
Standard Deviation 0.03% 0.03% 0.03% 0.03%
Minimum 92.34% 92.12% 92.11% 92.27%
Maximum 92.48% 92.26% 92.28% 92.27%
Range 0.14% 0.14% 0.16% 0.15%

Although the k-nearest neighbors models was not as accurate as the two tree based

models, the base model produced high results in the low 90’s. This model was also the

least overfit of the three best models trained in this phase of the project. The twenty

k-nearest neighbors experienced more variation than the tree based models. The me-

dian accuracy of 91.42% is slightly lower than the accuracy of the base model at 91.82%.

The other three validationmeasurements are similar with amedian precision of 91.20%,

recall of 91.08% and f1 score of 91.01%. The range of accuracies measured was 1.08%,

slightly larger than the range of the two tree basedmodels.The statistics for the k-nearest

neighbors models are summarized in Table 30.

127

Table 30: Statistics for K-Nearest Neighbors Variation Analysis

Model Accuracy Precision Recall F1 Score
Mean 91.27% 91.05% 91.14% 91.01%
Median 91.24% 91.01% 91.05% 91.98%
Standard Deviation 0.69% 0.71% 0.74% 0.72%
Minimum 88.74% 88.48% 88.53% 88.33%
Maximum 92.06% 92.18% 91.99% 91.80%
Range 3.32% 3.34% 3.46% 3.47%

4.5 Improving theModel

Once amachine learningmodel has been trained, it is commonpractice to look for ways

to improve themodel. This is especially true ifweaknesseswithin themodel canbe iden-

tified. In this case, the three best performing models all struggled with three of the 12

different transient events classified on. This section will explore different methods used

to improve these models. Two different approaches were used for this part of the exper-

iment. The first was changing the split between testing and training data to see if more

training data can improve model performance. The second approach is to increase the

number of generations andpopulation size usedwith theTPOTClassifier. It is important

to note that there are other approaches that could be used to improve a machine learn-

ingmodel’s performance.Inmany cases, the first strategy to improve amachine learning

model is to better tune hyperparameters by trying different combinations to see if a bet-

ter model can be produced. In machine learning hyperparameters are parameters that

cannot be changed in the training process. Some common examples of hyper param-

eters include, the number nearest neighbors in a kNN model, the max depth of a tree

basedmodel, the number of neurons used in a layer in training a neural network and the

activation function used in training a neural network model. Tuning can be a complex

process and their are a number of different approaches that can be used such as Grid

Search, gradient boosting, etc. However, in the case of this project an AutoMLpackage is

128

used to train themachine learningmodels. One of the benefits of AutoML packages like

TPOT is that the package will try several different hyperparameter combinations. While

this is a brute force approach and is time consuming, it is effective in producing better

performingmodels. TheuseofHPCmakes theuseofAutoML feasible in this case. Due to

this approach, there is noneed for furtherhyperparameter tuning. Another commonap-

proach to try and improve amachine learningmodel’s performance is to addmore data

to the dataset. This can be done in two different ways. The first is to collect more sam-

ples and increase the size of the dataset. Since the expanded dataset already consisted

of over 100,000 data points and already several initial conditions had been simulated,

it was decided that a better approach would be to change the split between testing and

training data. As has beenmentioned, the dataset was split in two for the training of the

models. To see if additional data would improve the model, this split was changed from

50% testing and 50% training to 55% testing/45% training, 60% testing/40% training and

65% testing/35% training. The three optimalmodels were then re-trained and validated.

All three models were also re-trained using a 45% testing/65% testing to see the impact

that reducing the data would have on the optimal models.

The results from increasing the testing data were surprising. Instead of improving

the model’s accuracy and other validation measurements, the measurements actually

appear to have slightly decreased as the testing data split increased. It should be noted

that thedrop is very smallwithin the rangeof the variation shown in theprevious section.

For example, the decision treemodel’s original accuracy was 92.38%. This dropped very

slightly to 92.33%with the split changed to 55% training and 45% testing. The trend con-

tinued as the amount of testing data increased. When themodel was trainingwith a 60%

training split, the accuracy dropped down to 92.16%. The model’s accuracy remained

the same when the split was increased to 65%. The model improved very slightly to an

accuracy of 92.43% when the split was decreased to 45%. Table 31 shows the validation

results for all four different splits for the decision tree. The random forest model experi-

129

enced a similar trend with validation measurements decreasing as data was added and

increasing when training data was reduced. Table 32 summarizes the results for the ran-

dom forestmodel. It should also be noted that the gap in validation results stayedwithin

the same range as the originalmodelwith a 6 7%difference. The reason for the change in

validation results with these tree basedmodels is most likely themodel becomingmore

overfit andmore rigid to outlying data as more testing data is brought in. When this oc-

curs it can become more difficult for the model to classify correctly data that has some

outliers.

Table 31: Validation Results for Decision TreeModels Trained with Different Splits

Model Accuracy Precision Recall F1 Score
55%-45% Split 92.33% 92.10% 92.11% 92.10%
60%-40% Split 92.16% 91.97% 91.94% 91.95%
65%-35% Split 92.16% 91.96% 91.94% 91.95%
45%-55% Split 92.43% 92.20% 92.19% 92.19%

Table 32: Validation Results for Random Forest Models Trained with Different Splits

Model Accuracy Precision Recall F1 Score
55%-45% Split 92.28% 92.05% 92.07% 92.05%
60%-40% Split 92.28% 92.14% 91.94% 91.93%
65%-35% Split 92.10% 91.89% 91.88% 91.88%
45%-55% Split 92.60% 92.37% 92.39% 92.38%

The kNN model behaved differently than the two three based models. The original

kNN model scored an accuracy of 91.15%. When the split was changed to 55% training

data 45% testing, the accuracy of model decreased to 90.95% and then down to 90.85%

when the split was changed to 60%-40%. However, when the split was changed to 65%-

35% themodel’s accuracywent up to 92.3%, a fairly significant increase. Themodel’s ac-

curacy also increased slightly, to 91.69%when the split was decreased to 45%-55%. This

suggests that the increase invalidation results ismore likelydue toTPOTexploringdiffer-

ent pipelines rather than any significant gain from having additional data or the model

beingoverfit. It shouldbenoted that the kNNmodel’s validationaccuracy remainedonly

1 2% higher than the testing accuracy through this process. Table 33 summarizes this

130

model.

Table 33: Validation Results for kNNModels Trained with Different Splits

Model Accuracy Precision Recall F1 Score
55%-45% Split 90.95% 90.70% 90.84% 90.70%
60%-40% Split 90.85% 90.62% 90.75% 90.62%
65%-35% Split 92.34% 92.13% 91.20% 91.14%
45%-55% Split 91.69% 91.45% 92.50% 92.45%

Another possible approach to add data to the dataset is to look to collect more fea-

tures for the dataset. This is sometimes referred to as increasing the dimensionality of

the dataset. By adding more features it is possible the model could better identify their

target data in supervised classified learning or discover new trends in unsupervised clas-

sified learning. It should be noted there are a number of drawbacks associated with this

approach. For example, adding new features will add more complexity to the dataset

and likely increase the overfit of the models produced. This is known as the "Curse of

Dimensionality".

There are also a number of issueswith increasing the dimensionality that are specific

to this experiment. The first is the time associatedwith collecting the data. The data col-

lected for the expanded dataset took a number of weeks to compile through simulation.

To add more features to this dataset it would likely take a number of months to identify

potential features, re-run the simulations, compile the dataset and retrain themodels. A

more important consideration for collecting additional features is the potential to create

more dependency in the model. The second approach performed in order to improve

the performance of themodels was increasing the number of generations and pipelines

used in the training. This approach is one of the advantages of TPOT, as it allows the

classifier more time to produce a better model. This primary issue is that training is al-

ready a time consuming process and increasing the population size and/or increasing

the number of generations run will significantly increase the time for the training pro-

cess. However, with the use of HPC it is possible to train these models in a reasonable

amount of time.

131

The first attempt to improve the model was done by increasing the population size,

number of pipelines retained in each generation from 100 to 150. This was run for 100

generations. In the next attempt, the population sizewas increased to 200while running

for 100 generations. The final two attempts to improve themodel increased the number

of generations run along with the number of pipelines. The number of generations was

first increased to150and thenagain to 200. Thepopulation size for these two runs stayed

at 200. This was performed for each of the three optimal models.

The initial increase in population size to 150 made little difference on all three mod-

els. The decision tree model scored an accuracy of 92.37%, about the same as the origi-

nalmodel 92.38%. The random forestmodel scored a 92.46% in accuracy, slightly higher

than the original model at 92.44%, but still within the range from the variation analy-

sis. The kNN model dropped slightly to 91.00% from the original 91.15%, still within

the range from the variation analysis. The results from increasing the population size

to 200 were similar. The decision tree model improved up to 92.40% and the random

forest model score remained at 92.46%. The kNNmodel experienced amore significant

increase to 91.62% higher than both of the other models trained using the technique,

however this value is still within the 3.32% range established in the previous section.

The attempt to improve the model by increasing the number of generations TPOT

ran, also had little impact on the three model’s overall performance. When the number

of generations was increased to 150 with the population size remaining at 200, the deci-

sion tree model score 92.42% in accuracy, the random forest model scored 92.44% and

the kNNmodel scored a 91.64%. All three of these results, while slightly higher than the

previousattempt,were stillwellwithin the rangeestablished in the randomvariance sec-

tion. This pattern continuedwhen the number of generations was increased to 200. The

decision tree model and random forest models dropped slightly to 92.38% and 92.42%

and thekNNmodel increased to91.72%. All of these valueswerewellwithin theexpected

range. Table 34, 35 and 36 summarize all the validation results for these attempts.

132

Table 34: Validation Results for Decision Tree Models Trained with Different TPOT Pa-
rameters

Model Accuracy Precision Recall F1 Score
150 Population Size- 100 Generations 92.37% 92.13% 92.14% 92.13%
200 Population Size- 100 Generations 92.42% 92.17% 92.17% 92.17%
200 Population Size- 150 Generations 92.42% 92.19% 92.20% 92.19%
200 Population Size- 200 Generations 92.38% 92.15% 92.17% 92.15%

Table 35: Validation Results for Random Forest Models Trained with Different TPOT Pa-
rameters

Model Accuracy Precision Recall F1 Score
150 Population Size- 100 Generations 92.46% 92.24% 92.25% 92.24%
200 Population Size- 100 Generations 92.46% 92.25% 92.25% 92.25%
200 Population Size- 150 Generations 92.44% 92.22% 92.22% 92.22%
200 Population Size- 200 Generations 92.44% 92.20% 92.22% 92.21%

Table 36: Validation Results for kNNModels Trained with Different TPOT Parameters

Model Accuracy Precision Recall F1 Score
150 Population Size- 100 Generations 91.00% 90.76% 90.85% 90.74%
200 Population Size- 100 Generations 91.62% 91.39% 91.42% 91.37%
200 Population Size- 150 Generations 91.64% 91.41% 91.44% 91.40%
200 Population Size- 200 Generations 91.71% 91.49% 91.53% 91.47%

4.6 Identifying Reasons BehindMisclassifications

Since the efforts to improve the three optimal models didn’t resolve the issues with the

models, it was necessary to examine themodels and try to determinewhat is causing the

misclassifications. Of the 12 events the models attempted to classify, ninodels scored

in the 70% range, while the load rejection transient scored in the 60% ragne. It should

be noted that the vast majority of misclassifications occurred between these three tran-

sients, i.e. load rejections were misclassified as feedwater pump trips or turbine trips,

etc. Themodels trained using TPOTmake use of a variety of feature reduction and selec-

tion techniques. As such, it can be difficult to identify a single root cause for a transient.

133

To better examine the reason behind the larger number of misclassifications with these

three transients, it was necessary to further examine the data used in testing the mod-

els. In order to do this, an optimal pipeline from the the variation analysis was re-trained

and tested. Using Pandas, it was possible to create dataframes consisting of the data that

was correctly classified for each of the three transients. These dataframes consisted of

2797 points for the load rejection transient, 3290 for the feedwater pump transient and

3463 points for the turbine trip without SCRAM. Six separate dataframes were created

containing the misclassfied data for each of the transients. The descriptive statistics for

each set of data were calculated and then compared to look for similarities and differ-

ences that could have resulted inmisclassifications.

In examining the possible reasons behind the misclassifications, the load rejection

transient’s descriptive statistics show a number of significant differences between the

correctly identified load rejection points and the 899 load rejection points incorrectly

identified as feedwater pump trips. Themost significant of thesewas the level of the nar-

row range of SG-2. In the correctly identified load rejections points, the level was found

to be 63% above capacity, level 163%, while in the incorrect points, the level was found

to be on average 25%. This value is much closer to the correct feedwater pump trip’s av-

erage of 10%. The model also incorrectly identified 714 points load rejection as turbine

trips without SCRAM. Once again, the most significant area of difference was the SG-2

NR LEVEL feature, where the incorrect load rejection points diagnosed as turbine trips

without SCRAMhadanaverage level of 127%compared to the163%of the correct points.

The correct turbine trip points had an average level of 136%. Other featureswith notable

differences for load rejection included MS FLOW FROM SG-1 LINE-1A, 1B, 2A & 2B, as

well as the FW FLOWTO SG-2.

Examining the feedwater pump transient data, there were 883 feedwater pump trip

points incorrectly identified as turbine trips without SCRAM. The most notable differ-

ence was with the narrow range level of SG-1. The correct feedwater pump points had

134

anaverage level of 12%,while themisclassifiedpoints hadamuchhigher average at 54%.

The average for the correct turbine trip pumpswasmuch closer to the incorrect points at

55%. The trend was similar for the 883 feedwater pump trip points that were incorrectly

classifiedas load rejection. The average value for the SG-1NRLEVEL for thesepointswas

54%, very close to the average for the correct load rejection points at 55%. The generated

power and pressure from SG-2 were also noticeably different between sets.

Finally, for the turbine tripwithout scramdata, 331 points weremisclassified as feed-

water pump trips. Similar to the load rejection data, the most notable feature was the

SG-2 NR LEVEL. The mean for this feature from the incorrect data was 25%, very close

to the value for the correct feedwater pump transient and significantly lower from the

136% average of the correct turbine trip without SCRAM data. In the case of the turbine

trip without SCRAM points that were incorrectly identified as load rejection, there ap-

pears to be no noticeable similarity between the narrow range levels of SG-1 and 2, as

both correct sets of data have noticeable differences from the incorrect set. It is likely

that this incorrectly classified data is the result of the data being extremely close to the

data of the other transient and not the result of a single feature. Table 37 and 38 show the

averages for both SG-1 and SG-2 Levels for all of the data subsets. The complete list of

descriptive statistics for the subsets can be seen in the Appendix section.

Table 37: SteamGenerator Level Averages for Correctly Classified Data

Transient SG-1 LV (%) Average SG-2 LV (%) Average
Electrical Load Rejection 53.779056 162.777024
Turbine TripW/O SCRAM 55.364462 136.219546
Feedwater Pump Trip 12.910617 10.124434

4.7 Decision Tree Analysis

As was the case in the previous study, the decision tree model scored some of the high-

est results of the study. This allowed for a deeper analysis of the decision treemodel and

its reliance on certain features. The first step to perform this analysis was to extract the

135

Table 38: SteamGenerator Level Averages for incorrectly Classified Data

Transient SG-1 AVG
Level(%)

SG-2 AVG
Level(%)

SG-1
Difference

SG-2
Difference

Turbine Trip as Load Rejection 110.192612 54.220982 1.14348 110.418089
Turbine Trip as Feedwater Pump 54.361579 25.274029 1.002883 110.945517
Feedwater Pump as Load Rejection 54.220982 25.801457 41.310365 15.677023
Feedwater Pump as Turbine Trip 54.220982 25.801457 41.310365 15.677023
Load Rejection as Turbine Trip 2.861543 127.372561 0.605488 63.379265

Load Rejection as Feedwater Pump 54.384544 99.397759 0.408784 136.789748

decision tree from the optimal pipeline produced, using TPOT and graph the tree us-

ing scikit-learn. The tree produced from this model was quite large, due to the number

of classes and features used in training. The top five levels of the tree are shown in Fig-

ure 50. It can be seen that this optimal model is able to make some quick classifications

based on a single feature in the dataset. This leaves the following question: can amodel

be trained, that lacks one or more of these key features and still make an accurate diag-

nosis? To determine this, the top five features of the tree were dropped one by one and

newmodels retrained using TPOT. Table 39 lists the features that were dropped from the

dataset. The first feature droppedwas the Pilot Operating Relief Valve (PORV) discharge

Table 39: Features Removed fromOptimal Decision Tree (Gini Impurity)

Feature Feature Number
PORVDischarge Temperature 15

RCS LVL Loop 1 NR 3
Cold Leg 2A Temperature 8
Hot Leg 2 Temperature 7
Hot Leg 1 Temperature 4

temperature. Themodelproducedusing thedecision treewasmuchmorecomplex,with

amuch larger tree produced. However, TPOTwas still able to produce a high performing

model. The accuracy of this model was scored at 92.33%, amarginal difference from the

original decision tree model’s 92.38%. The other validation measurements scored simi-

136

Figure 50: Top 5 Levels of Optimal Decision Tree

lar as well. Themodels trained using the random forest increased slightly with a score of

92.46%. The k-nearest neighborsmodel also increasedup to 91.60% from91.15%. This is

not entirely unusual as performance can degrade in this type ofmodel with a high num-

ber of features and there is some expected variation due to the use of random numbers.

The second feature that was removed from the dataset was the water level narrow

range for RCS loop. This time, the decision tree’s accuracy increased slightly to 92.40%

The random forestmodel fell slightly to 92.39% and the k-nearest neighborsmodel once

again, improved up to 92.42%. This trend continued when the third feature, the 2A cold

leg temperature was removed, the decision tree once again improved up to 92.45% and

the random forest stayed consistent at 92.39%. The k-nearest neighborsmodel however,

fell down to 91.76%. The fourth feature dropped from the dataset was the temperature

for the secondhot leg of the reactor system. Thedecision treemodel began to fall slightly

when this featurewas removed, scoring anaccuracyof 92.36%. The randomforestmodel

slightly improved with the removal of this feature to 92.46%, while k-nearest neighbors

models also scored slightly lower at 91.07%. The final feature dropped for this part of

the study was the temperature for the first hot leg of the reactor system. Once again,

137

the decision tree rebounded to an accuracy score of 92.45%. The random forest model

and k-nearest neighbors model’s accuracy scored consistently the same, at 92.46% and

90.08%, respectively. This analysis shows that while these five features certainly assist in

training more efficient models, they are not critical to make an accurate diagnosis. Still,

the question remains: are there more important features that might affect performance

to a greater degree? Using scikit-learn’s feature importance function for decision trees,

it was possible to calculate the Gini Importance for each feature used in the model. Ta-

ble 40 shows the top five individual features by importance of the initial decision tree

model. Figure 51 shows the importance value for each of those features. The feature

Table 40: Features Removed fromOptimal Decision Tree (Gini Importance)

Feature Feature Number
Containment Temperature 17
Hot Leg 2 Temperature 7
RCS LVL LOOP 1WR 2
Hot Leg 1 Temperature 4
Cold Leg 2B Temperature 9

with the highest Gini importance in the initial decision treemodel was the containment

temperature. When removed from the dataset and a new decision tree model trained,

the accuracy did decrease to 91.81% from the 92.33%. The random forest and k-nearest

neighbor models experienced larger drops from the initial accuracy. The random forest

model’s accuracy scoredecreased to 90.27%and the k-nearest neighborsmodel dropped

to 90.37%. Although the decrease was larger with the containment temperature, TPOT

was still able to produce an accurate model. The feature with the second highest im-

portance was the second hot leg temperature. The decision tree model trained without

the top two features scored an accuracy of 90.38%, only slightly lower than the previous

model. The random forest model stayed consistent with a score of 90.28%. This is very

similar to the last model trained. The k-nearest neighbor model’s accuracy dropped to

89.85%. The decision treemodel’s accuracy remained consistent when the third feature,

138

Figure 51: Top 5 Features by Gini Importance

the water level for the wide range of the RCS loop, was dropped, scoring a 90.38% in ac-

curacy. The random forest model remained consistent at 90.28%, while the k-nearest

neighbormodel scored slightly lower at 89.48%. The fourth feature droppedwas the first

hot leg temperature. Two of the models experienced improved scores when dropping

this feature. The decision tree model scored a 91.8% and the k-nearest neighbors mod-

els scored a 90.07% for accuracy. The random forest remained consistent at 90.26%. The

final feature dropped was the 2B cold leg temperature. The decision tree model only

scored slightly lower with an accuracy of 91.66%. The random forest model scored a

90.29%, a similar score to the others trained using this method. Finally, the k-nearest

139

neighbors dropped again down to 89.40%. Table 41 shows the validation results for all

themodels trained for the decision tree analysis. Table 42 shows the difference in valida-

tion scores from the basemodel trained.

140

Table 41: Validation Results from Feature Removal Analysis)

Model Accuracy Precision Recall F1 Score
DTW/O Top G. Impurity Feature 92.33 92.09 92.12 92.10
DTW/O Top 2 G. Impurity Features 92.4 92.16 92.19 92.10
DTW/O Top 3 G. Impurity Feature 92.42 92.18 92.19 92.19
DTW/O Top 4 G. Impurity Features 92.36 92.12 92.15 92.13
DTW/O Top 5 G. Impurity Features 92.45 92.22 92.24 92.23
kNNW/O Top G. Impurity Feature 91.6 91.37 91.41 91.36
kNW/O Top 2 G. Impurity Features 92.42 92.42 92.36 92.17
kNNW/O Top 3 G. Impurity Features 91.76 91.52 91.59 91.53
kNNW/O Top 4 G. Impurity Features 91.07 90.85 90.94 90.82
kNNW/O Top 5 G. Impurity Features 91.08 90.85 90.95 90.8
RFW/O Top G. Impurity Feature 92.46 92.24 92.25 92.25
RFW/O Top 2 G. Impurity Features 92.42 92.21 92.22 92.21
RFW/O Top 3 G. Impurity Features 92.30 92.17 92.19 92.18
RFW/O Top 4 G. Impurity Features 92.46 92.25 92.26 92.25
RFW/O Top 5 G. Impurity Features 92.45 92.24 92.24 92.24
DTW/O Top G. Importance Feature 91.81 91.63 91.68 91.58
DTW/O Top 2 G. Importance Features 90.38 90.15 90.10 90.12
DTW/O Top 3 G. Importance Features 90.37 90.11 90.07 90.00
DTW/O Top 4 G. Importance Features 91.82 91.63 91.72 91.72
DTW/O Top 5 G. Importance Features 91.66 91.47 92.58 91.28
kNNW/O Top G. Importance Feature 90.37 90.17 90.23 90.00
kNNW/O Top 2 G.Importance Features 89.85 89.61 89.63 89.53
kNNW/O Top 3 G.Importance Features 8948 89.25 89.26 89.04
kNNw/o Top 4 G.Importance Features 90.07 89.86 89.85 89.71
kNNw/o Top 5 G.Importance Features 89.40 89.16 89.12 89.02
RF w/o Top G.Importance Feature 90.27 90.03 90.00 90.01
RF w/o Top 2 G.Importance Features 90.28 90.04 90.01 90.02
RF w/o Top 3 G.Importance Features 90.29 90.06 90.04 90.04
RF w/o Top 4 G.Importance Features 90.26 90.02 90.00 90.01
RF w/o Top 5 G.Importance Features 90.29 90.06 90.04 90.04

141

Table 42: Differences In Validation Results from Feature Removal Analysis)

Model Accuracy
Difference

Precision
Difference

Recall
Difference

F1 Score
Difference

DTW/O Top G. Impurity Feature -0.05 -0.06 -0.03 0.96
DTW/O Top 2 G. Impurity Features 0.02 0.01 0.04 1.03
DTW/O Top 3 G. Impurity Features 0.04 0.03 0.04 1.05
DTW/O Top 4 G. Impurity Features -0.0 -0.03 0.00 0.99
DTW/O Top 5 G. Impurity Features 0.0 0.07 0.09 1.32
kNNW/O Top G. Impurity Feature 0.45 0.45 0.44 0.22
kNNW/O Top 2 G. Impurity Feature 1.20 1.50 1.39 1.26
kNNW/O Top 3 G. Impurity Features 0.61 0.6 0.62 0.39
kNNW/O Top 4 G. Impurity Features -0.08 -0.07 -0.03 -0.09
kNNW/O Top 5 G. Impurity Features -1.35 -0.07 -1.32 -0.08
RFW/O Top G. Impurity Feature 0.03 0.02 -0.02 0.03
RFW/O Top 2 G. Impurity Features -0.01 -0.01 -0.05 -0.01
RFW/O Top 3 G. Impurity Features -0.04 -0.05 -0.08 -0.04
RFW/O Top 4 G. Impurity Features 0.03 0.03 -0.01 0.03
RFW/O Top 5 G. Impurity Features 0.02 0.02 -0.03 0.02
DTW/O Top G. Importance Feature -0.50 -0.52 -0.47 0.44
DTW/O Top 2 G. Importance Features -2.00 -2.00 -2.03 -1.02
DTW/O Top 3 G. Importance Features -2.01 -2.04 -2.08 -1.06
DTW/O Top 4 G. Importance Features -0.56 -0.52 -0.4 0.58
DTW/O Top 5 G. Importance Features -0.72 -0.68 0.43 0.14
kNNw/o Top G. Importance Feature -0.78 -0.75 -0.74 -0.91
kNNw/o Top 2 G.Importance Features -1.30 -1.31 -1.34 -1.38
kNNw/o Top 3 G.Importance Features -1.67 -1.67 -1.71 -1.87
kNNw/o Top 4 G.Importance Features -1.073 -1.06 -1.12 -1.2
kNNw/o Top 5 G.Importance Features -1.75 -1.76 -1.85 -1.89
RF w/o Top G.Importance Feature -2.16 -2.19 -2.27 -2.21
RF w/o Top 2 G.Importance Features -2.15 -2.18 -2.26 -2.2
RF w/o Top 3 G.Importance Features -2.14 -2.16 -2.23 -2.18
RF w/o Top 4 G.Importance Features -2.17 -2.2 -2.27 -2.21
RF w/o Top 5 G.Importance Features -2.14 -2.16 -2.23 -2.18

4.8 Discussion

This phase of the experiment aimed to expand the scope of the previous effort by deter-

mining if the non-nerual network models could continue to provide accurate diagnosis

142

when considering a larger number of different reactor transient events. In this phase,

data was once again collected from the GPWR simulator to develop machine learning

models using TPOT. This resulted in a dataset consisting of over 110,000 points, with 12

different classes of data.

The validation results from the models trained in this study were mixed when com-

pared to theprevious section. The threenaiveBayesmodels and logistic regressionmod-

els suffered significant drops in validation results. However, the decision tree and k-

nearest neighbors models, along with the new random forest model, maintained high

validation results, in the low 90’s. This demonstrates that these types of machine learn-

ingmodels caneffectivelydistinguishbetween several different typesof transient events.

Also, all but one of the seven models were able to perfectly identify a reactor operating

normally from one experiencing a transient.

To take the analysis of the models to a great level of detail, the time stamp data was

used to identifywhere in thesimulationmisclassificationsoccurred. Thisanalysis showed

that for the three higher performing models, a higher number of misclassifications oc-

curred within the first five seconds of the transient simulation. After 30 seconds, the

model was better able to classify the transients. Past this point in the simulation, the

model only experienced an average of 10 misclassifications in each second of the sim-

ulation. This indicates that a highly accurate diagnosis could be provided to operators

within 30 seconds of the event occurring using thesemodels.

The three best performing models had struggles correctly identifying the electrical

load rejection, feedwater pump trip and turbine tripwithout SCRAM transients, with ac-

curacies in between 60% and 70%. To improve themodel different data splits were used

with testing and training the data, however this did not lead to a significant change in

validation results. Another attempt to improve themodel involved allowing TPOTmore

time to find an optimal model by increasing the number of pipelines retained in each

generation, as well as the number of generations the trainingwas ran for. Unfortunately,

143

this also did not result in any significant change in performance. Since there were no

simple changes to apply to themodel to fix themisclassification issues, it was important

to try and understand the cause of the issues. To do this, the incorrect testing data was

divided into subsets based onwhich transient the data was classified as. The descriptive

statistics were then calculated and examined for each of these six subsets. The values

were compared to the descriptive statistics for the data that was correctly classified. It

was found that the two steam generator levels had significant differences from the cor-

rectly classified data for five of the six subsets. This appears to be part of the reason the

data was incorrectly misclassified for these cases. In order to address the concern of key

data features missing when a diagnosis is needed, the three higher performing models

were trained with features removed. Five features were removed based on Gini Impurity

and Gini Importance from the optimal model. TPOT was able to train new models that

still had high validation results despite missing key features, based on both categories.

These results were also in the low 90’s. These kinds of models could be used as a contin-

gency in the event sensors are damage or have failed in the course of a transient event.

Finally, analysis was done to see how the three higher performing models are affected

by changes in the random state used in model training. These results showed that the

random state only had aminimal impact on themodels, as each of themodels only had

a variation around 1% across twenty different random states.

Major findings from this phase of the project were -

• A larger number of transient events can be diagnosed accurately using non-neural

networkmodels, such as decision trees and k-nearest neighbors.

• In the event key features are missing, TPOT trained models can still make highly

accurate diagnoses.

• The randomstateused to train thehigherperformingmodelshasaminimal impact

onmodel validation results.

144

5 Anomaly Detection

The expanded use of data science, machine learning, etc. in the world today, will likely

have a large impact on every day life in the near future. As was mentioned earlier, many

people already interact with these systems, most without even realizing it. However,

there are a number of issues that will need to be addressed as the use of machine learn-

ing increases. One of these issues relates to the ability to determine if there is something

wrong with the data being used with a machine learning model. This can be the result

of equipment failure, such as a sensor malfunction, or even be part of a security breach,

such as a hacker altering the data. One approach to deal with this is the use of a ma-

chine learning model for the purpose of identifying anomalies in data. This section will

explore the use ofmachine learning anomaly detectionwith the data used in the reactor

transient identification phase of this project.

5.1 Background

5.1.1 Data Security

In recent times, the fear of cyber related attacks has increased. InMarchof 2021, theGov-

ernment Accountability Office (GAO) issued a report that strongly recommended DOE

update its cybersecurity strategy to include the electrical grid and distribution[79]. The

NRC released requirements for nuclear facilities making use of digital assets in 10 CRF

73.54.[80]. The requirements include: the determination of whether the digital asset

could be the target of an attack, whichmediums could be used to perform such an attack

and how an attack would be mitigated. The specifics are left to the individual licensees.

Due to this, any machine learning system used with a nuclear power plant will have to

have some sort of assessment performed. In machine learning, there are two possible

threats to the integrity of a model. The first occurs when the training data for a model

is altered. This results in faulty models that do not truly represent the actual data. This

145

is referred to as data poisoning. The second threat involves altering training data, so the

prediction provided by themodel is not accurate.

In practice, the probability of data poisoning occurring is fairly low. Personnel that

would be involved in implementing a model at a nuclear plant will be highly vetted per

United States law. Also, securitymeasureswould be in place thatwould prevent any out-

side person from interfering inmodel training. Amore likely scenario would be that the

outside attacker would look to interfere with the data from the reactor through the sen-

sors. This possible threat can be addressed by training a model to look for anomalies in

the testingdatabefore it is actually tested. Onceananomaly isdetected, the systemcould

simply switch to a model that doesn’t use the feature where the anomaly was detected.

If the anomaly is large enough, it could be used as part of a threat detection system. It

should be noted that this type of system shouldn’t be limited to looking for cyber threats.

An anomaly detector couldbeused as away to identify sensors that havemalfunctioned.

5.1.2 Auto encoders

Auto encoders are a machine learning approach that has in recent years found several

different applications. An auto encoder is a type of ANN that doesn’t rely on target data

i.e. a unsupervised approach. In general, an auto encoder’s purpose it to take inputs

that may or may not contain statistical noise and reconstruct those inputs resulting in

outputs with little or no distortion[81]. The technique was first proposed in the 1980s,

butmajor interest in the approach didn’t occur until the renewed interest in ANNs in the

early 2010s.

An auto encoder consists of twomajor pieces. Thefirst is knownas an encoder, which

coverts the inputs into a latent representation[1]. The decoder takes the representations

produced by the encoder and produces the outputs of the model, commonly refereed

to as reconstructions. The key with the auto encoder is that the number of neurons in

the output layer of this model cannot exceed the number of inputs,that is, the number

146

of features of the data. Both the encoder and decoder consist of a number of hidden

layers known as bottleneck layers. Bottleneck layers are used between the decoder and

encoder output layers to compress the data. In these layers the number of neurons de-

creases from layer to layer in the decoder and increases back up to the original in the

encoder. The idea behind this is that the network will be forced to learn the important

characteristics of the data. Auto encoders are otherwise implemented in the sameman-

ner as other ANNs. For example, an auto encoder used for imagemodificationwill likely

take the form of a CNN, consisting of convolutional and pooling layers. Auto encoders

also make use of activation functions, loss functions, etc. In addition to anomaly detec-

tion, auto encoders can be used for feature reduction, in a similar manner as PCA, and

imagemodification.

5.1.3 TensorFlow

Since autoencoders are neural network typemodels, it will be necessary to use a python

neural network library to construct the model. Today there are a number of neural net-

work packages such asMeta/Facebook’s PyTorch andNvidia’s CUDA. For this project the

Python package Keras will be used, as it is one of the most established neural network

tool kits available at this time. Keras is a built in package of the TensorFlow Library and

as such this project will rely on both, TernsorFlow and Keras.

TensorFlow isa freeopensource library focusedarounddevelopingmachine learning

algorithms. Originally developed by Alphabet’s Google[82], the package is well known

for its ability to support neural network models. Version 2.0 of TensorFlow was released

by Google in 2019 and was the first public release of TensorFlow[83], but older version

are still available and have support. One of the key advantages of TensorFlow is that the

package has support for a variety of programming languages including Python, Java and

C++.

TensorFlow has been designed to have the optimal ability to use andmanipulate the

147

tensor data structure. A tensor is a type of data flow graph data structure that is used

inmany linear algebra applications, a key in neural networks. TensorFlow has also been

developed tomakeuseofmulti-coreCPUs,multi-threadGPUsandGoogle’s customTen-

sor Processing Unit. According to TensorFlow, a number of large companies other than

Google make use of TensorFlow, such as Coca-Cola, Intel, General Electric Health Care

and AirBNB[84].

5.1.4 Keras

Keras is a Python deep learning API designed to interface with TensorFlow. Keras is in-

cluded in the standard installationof TensorFlow. As of 2022, the library supports Python

Versions 3.6-3.9 and can be used with Microsoft Windows, Mac OS and Ubuntu operat-

ing systems[85]. The library is promoted as an easy to use tool for the development of

neural network machine learning models. According to Keras, organizations including

NASA, YouTube andWaymo, make use of the library.

Keras has support for a number of different neural network applications. This in-

cludes the training of RNNs for things such as natural language processing and CNNs

for photo recognition and analysis. Models can be trained using the Sequential, Func-

tional or Subclass API to best suit the user’s needs and preferences. Keras has support

for a number of different hyperparameters such as batch size, optimization and activa-

tion functions. Keras also supports exporting applications to Java and other web-based

platforms, such as Java Script.

5.2 Literature Review

Auto encoders have been used in a number of recent studies in machine learning. As

mentioned, one proposed use for auto encoders is feature engineering. One study from

Peking University in China proposed using an auto encoder feature selector to better

identify features for use in machine learning models[86]. According to the paper, one

148

of the advantages of this type of feature selector method is the ability to consider both

linear and non-linear informationwhen considering the importance of the feature. This

differs frommore traditional approacheswhich can only consider linear information. In

this study, the authors used the auto encoder on a variety of different dataset including

theMNIST and Isolet datasets and compared the results to those using five other feature

selection techniques, such as Loplacian Score andUnsupervisedDiscriminative Feature

Selection. The results from this test were positive, as the auto encoder approach pro-

duced better results in all but one of the datasets. In the one set that it was not the best

approach, the auto encoder was a close second. The authors hope that this type of fea-

ture selection can help produce machine learning models faster, as data sets becomes

more andmore complex.

In the area of anomaly detection, there has also been a number of studies done in

recent times. One study from the University of Pisa in Italy, explored the use of auto en-

coders to find defects during themanufacturing of goods. This study combined an auto

encoderwith a deep neural network and a discriminator to attempt to identify defects in

the manufacturing process[87]. The initial results were positive when applied to other

case studies according to the authors. The hope is that this type of systemcan be utilized

by operators with little or no data science background.

A studydoneusingauto encoders in theareaof cyber securitywasperformedatYildiz

Technical University in Turkey. The authors proposed using auto encoder basedmodels

to better detect network attacks on day zero of the attack. The authors note that inmany

intrusion detection systems there is a high reliance on data from previous attacks. This

creates a potential hazard for newer networks, as the systemmay not have the necessary

data needed to detect the breach[88].

To this end more modern network breach detection systems have begun to explore

the use of machine learning based systems to detect issues earlier. In this study the au-

thor proposed designing a model that would detect anomalies to help indicate the start

149

of an attack. This approach requires either an unsupervised or semi supervised model,

whichmakes the auto encoder an appealing choice.

This study explored the use of two different types of auto encoders. The first is a tra-

ditional auto encoder similar to those described in previous sections and the other was

a de-nosing autoencoder, which can be used to explore statistical relationships between

data. One of the keys in this study was determining the threshold. This is the amount

of reconstruction error that would be lead to a point to be considered an anomaly. Most

autoencoders use a deterministic approach to calculate this point. This study used a

stochastic approach instead.

The autoencoder models were scored based on accuracy, precision, recall and f1-

score. All of these measurements came back positive with results between the upper

80%sand90%s. These results comparedverywellwithother similar efforts thathadbeen

preformed prior. The authors hope that the results from this study will allow for earlier

detection of network intrusions.

5.3 Methods

5.3.1 Data Exploration and Preprocessing

Due to better compatibility with TensorFlow and Keras, this portion of the experiment

was done using Google’s Colaboratory Notebook and cloud resources, rather than INL’s

HPC. The first step in performing this study was to prepare the data collected from the

GPWR simulator to be trained. Aswas the case in the previous part of the project, a num-

ber of features needed to be dropped from the dataset, as they were simply percentages

of other features collected and are considered redundant. The same eight features that

were dropped in earlier phases of this project, were once again dropped. The descriptive

statistics and the shape of the new Pandas dataframewere verified to ensure the process

was done correctly. Dummy variables were once again added for reactor core life.

150

Autoencoders are a form of unsupervised machine learning, as such the target data

from the dataset was dropped.Since no AutoML packages were used in this part of the

experiment, itwasnecessary topre-process thedatamanually. Asmentionedearlier, one

of the common techniques for this is standard scalingwhich scalesbasedon thevariance

of the data. Due to these factors, it was decided to gowith this technique. Normalization

would have been another choice for this. This was done using scikit-learn’s Standard

Scaler method. It should be noted that the features on time and reactor core life were

not scaled. Thiswas donebecause simulation timewill not beused in themodel training

and reactor core life represents a categorical feature.

The next step in preparing the data was to split the data and set data aside for test-

ing and training purposes. As was done previously, this was done with scikit learn’s test

_train_split method, with half the data used for training and half for testing. In order

for the autoencoder’s ability to detect anomalies to be tested, it was necessary to alter

a portion of the data with random statistical noise. First, a quarter of the testing data,

approximately 13,884 points, were split off from the dataset. This data was modified by

adding random noise with an average of zero, to better represent the scaled data, and a

standard deviation of two. The noise was created using Numpy’s random function. The

size of the modified datafame was verified and the dummy variables added back to the

dataframe. A column was created to indicate both, the clean and noisy data, to indicate

if the data was unaltered or altered. Clean data was assigned a 1 and noisy data a 0. This

will be used in validation later on and dropped before testing. A dataframe was created

containing both, clean and noisy data. All data used in training will consist of the 27 fea-

tures used in both earlier studies.

5.3.2 Building the Autoencoder

The autoencdoer built for this experiment was trained using Keras. The architecture for

this model included an input layer, an encoder and a decoder. The input layer used a

151

defined shape of 27 for the features to be trained on. The encoder consisting of four hid-

den layers, three dense layers and a single dropout layer, with a dropout rate of 0.2. The

Relu activation function was used in all of these layers. The number of neurons used in

the dense layers halved with each layer, starting at 27 and ending at 7. The decoder also

consisted of four hidden layers. The dropout layer was the same as that in the encoder.

The first dense layer consisted of 14 neurons and the remaining two used 27. Again the

Relu activation function was used. The summary of the model was printed and can be

seen in Figure 52.

Figure 52: Keras Summary of Autoencoder

152

5.3.3 Training the Autoencoder

With the parameters of the autoencoder defined, it now was possible to compile and

train the model. The Adam optimizer was used for compiling the model and loss was

calculated using Mean Absolute Error. The model was then fit using only the data set

aside for training, approximately 55,000 data points. The batch size was set to 100. 100

epochs were ran for training. Validation was done using only the unaltered portion of

testing data. The training process took approximately 160 seconds. The training loss

and validation loss of each epoch was recorded and graphed for comparison. This can

be seen in Figure 53.

Figure 53: Training Vs. Validation Loss of Autoencoder

153

5.3.4 Validating the Autoencoder

The first step in determining how the Autoencoder performed is to determine the recon-

struction error fromboth, the clean andnoisy data. Todo this, it was necessary to use the

Autoencoder to predict both, the noisy and clean data. Once that was done, it was pos-

sible to begin calculating the reconstruction error using NumPy. In this case, the Mean

Squared Error was calculated for each point in both, the clean and noisy datasets. Once

this was determined, a threshold was identified to determine if a point is an anomaly or

not. There are a number of ways this can be done, for example, this can be done visu-

ally by graphing the reconstruction error of the points or can be donemathematically. In

this case, the thresholdwas set toaverage training lossof themodelplusa single standard

deviation of the training loss, yielding a threshold reconstruction error of approximately

1.83.

Once the threshold is established, it is possible to determine how many points are

considered to be anomalies in the dataset. Any point that contained a reconstruction

error above 1.83 is consider an anomaly. From this the number of True positives, false

positives and false negatives can be determined. This data was used to calculate the ac-

curacy, precision, recall and f1-score for the model. This process was repeated for three

lower levels of noise to determine how the autoencoder performs when the altered data

is modified to a smaller degree.

5.4 Results

The results from the initial test of the autoencoderwere positive. Of the over 55,000 sam-

ples tested with the autoencoder, the model scored an 91.05% in accuracy, or 55,561 of

the data points testedpoints correctly. At this threshold and level of noise, themodelwas

able to nearly perfectly distinguish the altered points correctly. The model only identi-

fied 13 of the over 13,000 altered data points as unaltered data for a recall of 99.90%. The

154

model did have some issues with a group of data from the set. This resulted in themodel

identifying 4959 of the over 41,000 unaltered points as anomalies. This gives the model

a scored precision of only 73.66%. The resulting f1-score for this model was 84.80%. The

confusionmatrix for this model can be seen in Figure 54.

Figure 54: ConfusionMatrix For Autoencoder Results

Through visual inspection, it can be seen that all of the 6379 false positive points had

a reconstruction error between 1.83 and 6.00. This is almost certain the result of por-

tions of the dataset being considerably different than others. This is not unexpected as

this dataset contains data on 12 different reactor events and it is expected that some of

this data will significantly vary from transient to transient, especially in different points

155

in time during the transient. A graph of the reconstruction error of the clean data points

can be seen in Figure 55.In terms of altered data points, the vast majority of altered data

points, over 11,000 points, had a reconstruction error between 1.83 and 6. The remain-

ing points, approximatelymodified 2000points, had reconstruction error between 8 and

14 and were easily identified by the model. Figure 56 shows the plot of the altered data’s

reconstruction error. Figure 57 shows the plot of both, the altered and cleandata’s recon-

struction error.

Figure 55: Reconstruction Error for Clean Data Points

156

Figure 56: Reconstruction Error for Altered Data Points

Reducing the amount of noise used in altering the data had a adverse effect on the

model. As less noise was introduced into the data, the autoencoder had a more diffi-

cult time identifying the altered points,as expected. When the noise was reduced from

two standard deviations from the mean to just 1.5, the impact was fairly minimal. The

threshold was reduced slightly to 1.13. Despite the lower amount of noise and the re-

duced threshold, the autoencoder was still able to correctly identify the majority of the

points. Over 48,000 were correctly identified as anomalies or normal data with this level

of noise. The accuracy of this model was calculated to be 87.94%, a less than 4% differ-

ence when tested on noisier data.

The testingof this autoencoder on this data showedacontinued trendwith themodel

in termsofprecisionand recall. Onceagain, theautoencoderdidagood job inclassifying

altered data correctly, with only 200 altered points being classified as normal. This gave

themodel a recall of 98.56%, very close to the recall when tested on thenoisier data. Also,

157

Figure 57: Reconstruction Error for All Data Points

themodel had close to the same difficulty correctly distinguishing normal data from al-

tered data, with 6496 normal points being incorrectly classified as altered. This yielded

a precision of 67.8%.The f1-score from this testing was 80.34%.

The pattern of decreasing performance as noise decreased continued as the noise

in the data was decreased to 1 standard deviation and again, to 0.5 standard deviation

from the mean. The accuracy when tested with the single standard deviation data, was

significantly lower, at only 77.8%. When lowered again to 0.5, the model accuracy was

once again significantly lower at only 66.7%. It was at a single standard deviation where

the recall of the model began to suffer. The model incorrectly identified noisy data as

normal, with over 3500 noisy points incorrectly identified, resulting in a recall of 74.38%.

When themodel was tested at 0.5 standard deviation, the recall dropped down to 33.5%.

158

This resultwasnot unexpected, as the reducednoise and thresholdwould result inmuch

lower reconstruction error.

In terms of precision, altering the threshold for the data points also caused the results

to decrease. At a single standard deviation, the precision dropped to 54.07% and down

to 33.57% at 0.5 standard deviation. Again, this was not unexpected, however it should

be noted had the threshold been left at the original 1.83, the score would have remained

the same as in the previous test. However, the recall would likely have also decreased.

The f1-score for the single and half standard deviation test were 66.62% and 33.57%, re-

spectively. Table 43 summarizes the results for all four tests done with the autoencoder.

The confusionmatrices and reconstruction error plots for the 1.5,1 and 0.5 standard de-

viation test can be seen in the Appendix section.

Table 43: Results From Autoencoder Test

Level of Noise Accuracy Precision Recall F1 Score
Mean=0, Standard Deviation=2 91.05% 73.66% 99.90% 84.80%
Mean=0, Standard Deviation=1.5 87.94% 67.8% 98.56% 80.34%
Mean=0, Standard Deviation=1 77.80% 54.07% 74.38% 62.62%
Mean=0, Standard Deviation=0.5 66.72% 33.50% 33.58% 33.54%

5.5 Discussion

These results show that autoencoder based models do have the ability to detect data

points with high levels of noise within the dataset collected from the GPWR simulator.

The high validation marks with the data altered by two standard deviations from the

mean of the standard scaled data are encouraging. This autoencoder was able to pro-

duce results above 90% for this level of noise. Another encouraging result from this study

is that the autoencoder can easily distinguish the normal points from those with the

higher level of noise, with a recall in the high 90% range for both, high noise data points.

It should be noted that this model leans towards prioritizing the identification of false

159

negatives, rather than false positives. This is shown with the lower precision results of

themodel when tested with the noisy data.

The lower precision of the autoencoder model at higher levels of noise does imply

policies will need to be implemented regarding when to take action and when investi-

gation is needed. In the case of the autoecnoder trained for this model, there were three

distinct regions of the error reconstruction plot. The first was between 0 and the thresh-

old. In the higher level noise test, the points in the region were nearly all normal points.

Points found to be in this region have a high confidence that they are safe for use. The

second region is the area from the threshold to about 6.0. Here, themajority of the points

are altered and the model classified them as such, however, there are a notable number

of normal data points in the region. It would be prudent to investigate and possibly take

preliminary actionwhenpoints are in this region. Finally, the third region exists from6.0

and higher. Points in this region, while fewer than those in the previous area, are exclu-

sively noisy points. These points should be disregarded right away and the cause of the

issue investigated.

The autoencoder did struggle as the noise level decreased in the altered data. At 0.5

standarddeviations frommean themodelwasunable to effectively distinguish thenoisy

points from the normal points. While this is a concern, it should be noted that the lower

noise in the dataset, the less likely the noise will adversely affect the classifying model.

When the optimal decision tree was tested with the a low level of noise, 0.1 standard de-

viation from themean, themodel still maintained its accuracy.

It should also be noted that autoencoders and other anomaly detector approaches

should only be a small piece of any cyber security systemwith amachine learning based

safety system. Ideally, systems will be in place to prevent any type of breach before the

autoencoder is needed. Prevention and proactive security is a more effective approach

than implementing reactive measures. Any facility looking to apply machine learning,

or any digital based system for reactor monitoring, needs to implement robust security

160

measures. This includes administration controls and policies that encourage best safety

practices, as well as physical/cyber systems designed to only allow authorized individ-

uals access to sensitive parts of a reactor system. The NRC and DOE have a history of

implementing and mandating high security measures at nuclear facilities. These orga-

nizations will need to continue to be proactive in their approach to security.

One final note, is that the use of autoencoders should not be limited to just security

applications. As the models are able to detect high levels of noise, autoencoders could

also be used in the area of detecting failures with equipment. Nuclear power plants rely

on a number of sensors and instruments to provide operators at the facility information

needed to properly run the facility. The use of an autoencoder to detect malfunctions

and failures with these type of sensors would be an approach worth exploring. For ex-

ample, if a sensor were to fail, the autoencoder should detect the noise from the data

being transmitted to the operator. This could potentially allows for quicker identifica-

tions of equipment failures, such as the PORV failure at TMI. This would add another

layer of protection to nuclear power and contribute to the safety efforts at power plants.

161

6 AutoML Comparison

Theuseofmachine learningandartificial intelligencehasgrownsignificantly in research

and business as shown in the BackgroundChapter. Large companies such as Coca-Cola,

Spotify, Amazon and G.E. has invested large amount of resources intomachine learning

programs. However, it shouldbenoted that thesecompanieshavevast resourcesandcan

have dedicated departments and teams to developmodels for use. In order formachine

learning to become a standard in industry, it will be necessary for smaller and smaller

companies to adopt the technology. One study showed that in Germany about 25% of

companies make use of machine learning and artificial intelligence in operations[89].

The same study noted that only 10% of smaller and medium sized companies have im-

plemented machine learning. There are a number of potential reasons for this. Smaller

companies tend to have fewer staff involved in information science and that staff gen-

erally has minimal experience dealing with machine learning. Also, with more limited

resources, companies may be reluctant to invest a great deal of resources in an area the

majority have significant little understanding in.

To address this gap in the implementation of machine learning and predictive ana-

lytics there are a couple of solutions. The first is the development of dedicated firmswho

can perform the work for the small businesses or companies. There is great potential in

this, as small firmsmaybe use to outsourcing similar work, such as accounting, market-

ing, etc. Companies such as Google already offermany of these services. This does have

the drawback that firms would have to share their information with outside groups and

there could be reluctance to do this. A company’s information can contain things like

trade secrets, client information, etc. This likely also pertains to a company’s competi-

tive advantage and is highly sensitive.

The second approach to deal with gap is to simplify the process of training machine

learning models. Simplifying the process could allow for fewer dedicated staff in per-

forming the analysis, reduce costs and reduce the level of expertise needed to perform

162

the work. All of these could lead to higher implementation by firms. As has been noted

in this study, AutoML is one approach that canbe used to simplify the process of training

machine learningmodels. This section of this effort seeks to examine and compare three

different AutoML packages. These are TPOT, H2O AutoML and Google’s Cloud AutoML

service. The factors that will be compared are performance, time, functionality and ease

of use.

6.1 Background

The use and history of TPOT was discussed in a previous section in this report. Due to

this, this section will focus on the H2O and Google’s AutoML Service.

6.1.1 H2O AutoML

H2OAutoMLisa freeopensource softwarepackage thatbegan itsdevelopment in2012.The

software is under development by the independent company H2O.ai. The founder and

original developer of the packagewas Sri Ambati, who continues to run the organization

as of 2022[90].

H2O was developed to simplify the machine learning process and allow users of all

levels of expertise the ability to train models. The organization claims that the software

can be used at the enterprise level. The software was developed in Java and has sev-

eral APIs that allow for use in several different languages, including R and Python and

aGraphical User Interface (GUI) called flow is in the early stages of deployment[91]. The

first official release of H2O occurred in 2017 though other versions were available as far

back as 2013.H2O supports the training of regression, binary and multi-class machine

learning models using tabular datasets. Similar to other AutoML packages, H2O begins

work in the preprocessing stage of model training. Data exploration and wrangling are

still left up to the user. Unlike TPOT however, H2O has included functionality for cate-

gorical data. H2O.ai is also looking todevelopbetter algorithmsupport for feature reduc-

163

tion and selection techniques. It should be noted that all functionality in H2O is based

onH2O.ai’s owndeveloped algorithms, not those implementedby another organization,

such as scikit-learn. Though there is support for use of basic scikit-learn functions, such

as .fit() and .predict(). In terms of models, H2O has a variety of different techniques de-

veloped for the AutoML package. This includes random forest classification and regres-

sion, support for XGBoost, as well as deep neural networks. The package does make use

of cross validation and has support for GPU accelerated training. One important factor

to make note of is hyperparameter tuning. H2O makes use of benchmark to determine

the ranges for tuning, rather thanallowing theuser to specify the range. Thebenchmarks

are continuously evaluated to ensure quality. Similar to TPOT, H2Owill make use of en-

sembles to train better performingmodels.

Oneof the keyhighlights fromH2O’s documentation andpublished review is the idea

of reducing input parameters for the user. Typically, the user should only have to specify

the feature data, target data andany limits on thenumber ofmodels to train and the time

allowed for training. Another key feature in H2O is the ability to store what is known as

an object called a leader board for themodels trained, which allows the user to compare

the different models trained using the package.

6.1.2 Google Cloud AutoML

In the area of data analytics there are few companies that have the capabilities of Alpha-

bet’s Google. Known for its internet search engine, webmarketing operations, as well as

role indevelopingTensorFlow, it is onlynatural that the companyoffermachine learning

as a service. To this end, Google has developedGoogleCloudAutoML, a service designed

to offer users access to tools needed to createmachine learningmodelswith little experi-

ence. Google Cloud AutoML is a paid subscription based service offered by Google. The

servicenotonlyoffers assistance trainingmachine learningmodels, but alsoallowsusers

the ability to make use of Google’s HPC capabilities. The service provides functionality

164

for users to train models for a variety of specialized applications. This includes natural

language processing, text processing, language translations, video analysis, etc[92]. For

the purposes of this study, the AutoML Tables service will be utilized.

AutoMLTables allows theuser tomakeuse of a specializedGUI toprepare thedataset

for training. Data is uploaded to the Google system via the user’s cloud storage, com-

puter or repository. Data wrangling and exploration is highly encouraged by Google and

the service will provide information to assist the user in this process. For example, the

software will inform the user of the number of missing values and null-able data points.

Categorical features can be specified as well. From here, the data can be explored by the

user and changes can bemade to the dataset. The user then specifies the target data and

training can begin[93]. AutoMLTables has a number of parameters that can be specified

by the user. The most important one is the number of hours training should be run, as

the service does charge by the hour for model training. It should be noted that the pro-

cess does includepreprocessing and theuser is not charged for those operations. Google

doesprovideguidelines for theamountof timenecessary toeffectively trainmodels. This

is shown in a screenshot from the documentation in Figure 58.

Figure 58: Timing Guidelines for Google’s AutoML Tables Model[93]

Although AutoML Tables uses proprietary algorithms, Google does provide some in-

formation on themodels being trained. Similar to TPOT andH2O, AutoML Tables trains

models using ensemble methods, gradient boosting, decision trees, etc. The software

alsomakesuseofneuralnetworks, AdaNetandothermachine learning techniques. Other

165

AutoML services, such as BigQuery ML, allow for more user customization. Once the

modelhasbeen trained, the softwarewill provide testing results fromthemodelusing in-

dependent testing points. In the area of classification, the standard four measurements

of accuracy, precision, recall and f1 score are provided. The software will also automat-

ically create a confusion matrix based on the results. A feature importance chart is also

produced. Finally, the user also has the ability to export the final model that was pro-

duced by the software. Support is also provided if the user wishes to test new data using

the exportedmodel with Google’s resources.

6.2 Literature Review

In addition to the two studies done as part of this project, AutoML packages have been

used in a number of other research projects. This section will explore some of the differ-

ent research studies that have beendoneusingTPOTandH2OAutoMLpackages, aswell

as the Google AutoML service.

6.2.1 TPOT

One recent study that made great use of TPOT was a collaboration between the Univer-

sity of Pennsylvania and researchers in the United Kingdom, Finland and the Nether-

lands. In this study, the authors made use of TPOT to help generate models used to di-

agnose Connery Artery Disease[94]. Data for this study was obtained from the Angiog-

raphy and Genes Study database. The final dataset consisted of 73 metabolic features

and 27 demographic and clinical features. The study made use of the full TPOT classi-

fier with 14 feature selectors and 11 feature processors. The authors chose to evaluate

a number of different models including random forest, logistic regression and Bernoulli

Naive Bayes. The optimal TPOTmodel for this study was a Bernoulli Naive Batesmodel,

which made use of 4 different preporcessing methods. This model achieved a balanced

accuracy of close to 78%. The authors hope to continue applying thismethods to expand

166

computer aideddiagnostics. Another study thatmadeuse of TPOT tookplace in thefield

on neuroscience. Researchers in the United Kingdom used TPOT to create models that

predict the age of a subject’s brain[95]. This studymade use of TPOT’s regressionmodel

capabilities. In this study, the authors made use of over 10,000 MRI results for patients

between the ages of 18 and89. The resultswere obtained from13different publicly avail-

ablemedical databases. Trainingwasdone for a relatively short time, only 10generations

for about six hours. The authorsmade use of TPOT to find amodel with the lowestmean

absolute error. A number of different models were produced using techniques such as

random forest regression, kNN regression, SVM regression, etc. Researchers found that

manyof thesemodels produced results that compared verywell to other techniques that

hadbeen tried inotherworks. Theauthorsnoted thepositive results indicated thatTPOT

trainedmodels performed well in estimating a subject true brain age.

6.2.2 H2O

H2O AutoML has also been the center of a number of research studies in recent years.

One such study, out of India, made use of the package to predict the patterns of infec-

tion from the COVID-19 virus[96]. This studymade use of publicly available data from a

number of sources. This included the Kaggle and the World Health Organization. Over

150,000 data points were used in this study. These consisted of information such as age,

gender and clinical manifestation. Much of this data was either categorical or ordinal in

nature.

One of the goals from this study was to use this data to predict the recovery of a pa-

tient from COVID-19. The results from this experiment yielded four different machine

learning models. These were a kNN, decision tree, logistic regression and naive Bayes.

All of these models scored in the mid to high 90%s, with the logistic regression scoring

the highest in the areas of accuracy, specificity and sensitivity.

Researchers have used AutoML in the training of neural network based models as

167

well. One example of H2O being used in this area was a study from Portugal, which

looked to train aCNNtodetect surfacedefects[97]. As is the casewithmostCNNmodels,

the authors used image data to train their model. The authors used several well known

architectures, including ResNet and DenseNet to create a "CNN Fusion" architecture

that combines theweights from eachmodel. The data used in this experiment consisted

of over 1000 images, with only 10% containing defects. The results from this experiment

were very positive withmany of themodels scoring near perfect scores.

6.2.3 Google Cloud AutoML

Recently, researchershavebegun tomakeuseof themany toolsofferedbyGoogle’sCloud

AutoML service. One of these efforts has taken place in Malaysia, where researchers

looked to use these tools in the area of Biomechanics[98]. In this case, the study made

use of the AutoML Tables services offered by Google. In this study, data was collected

using mobile smartphone applications to capture data on the different motions being

performed by the user, such as kicking angle and flex input. 1000 samples were taken

with four features and one target.

The purpose of this study was to try and classify a person as either, an athlete or

an non-athlete, based on their movements. The models trained by AutoML Tables pro-

duced near perfect results and identified two features as key in the classification. The re-

searchers hope to expand the scope of this research andmake continued use of Google’s

AutoML services.

6.3 Methodology

The purpose of this part of the project was to compare the three AutoML packages to

one another. This was to be done using only the default settings of each package with as

little customization as possible. This will allows for a better analysis of ease of use and

functionality.

168

In testing TPOT, no customdictionarywas used, instead the TPOTClassifierwas con-

figured to run for 100 generations with a population size of 100, just as was done in pre-

vious parts of this project. As was the case in the earlier stages of the project, the data

needed to be explored and configured for training using Pandas. Target data had to be

assigned a numeric value and dummy variables had to be configured. Data had to be

split using scikit-learn. Once the idealmodel was trained and scored, the optimalmodel

was exported and a confusionmatrix created using scikit-learn.

H2O is a very different package from TPOT. Instead of relying on Pandas and scikit-

learn, H2O has been designed as an all in one tool. All functionality in H2O is only com-

patible with the H2O data structure, the H2O Dataframe. Although H2O has GUI sup-

port through Flow, it was decided to use the Python H2O package. For simplicity, the

GPWR was imported using Pandas, and the dataset reduced to the same 26 features as

the dataset used in the TPOT training. This could have been done with H2O, if needed.

It is important to note, the data was not otherwise altered, no dummy variables were

configured and no changes to target data were done. The Pandas dataframe was then

converted to an H2ODataframe.

Once the data was in the correct format, it was possible to begin using H2O tools to

explore the dataset. The H2O dataframe has similar tools to those found in Pandas and

the .describe()methodwas used to ensure datawas ready for training. The datawas split

in half using H2O’s split_framemethod. TheH2O AutoML instance was configured with

a maximum number of models set at 20, max run time of 10,000 seconds and a scoring

metric of accuracy. This can be seen in Figure 59. Due to an issue with INL HPC not

having a Python kernel with H2O installed at the time, it was necessary to use Google’s

Colaboratory notebook and server to train the model. As there is a limit to the amount

of memory this system allows, the run time was only allowed for three hours.

Once theH2Omodelwasconfigured, itwaspossible tobegin training themodel. H2O

required the range of the feature data and the column with the target data be specified,

169

Figure 59: H2O AutoML Configuration

along with the frame to be used. H2O ran for the allotted time and produced validation

results. It is important to note that theH2OAutoML instance is used for both, regression

and classification models and the package makes the determination on which model

to use, based on the target data provided. In addition to producing the validation results

from the training, H2Oalso provided a table of listing the feature importance for the best

producing model. A H2O leader board was also produced showing the top models pro-

duced during the training. The model with the highest accuracy was saved and used to

produce a confusionmatrix using H2O’s functionality.

Google’s AutoML Tables is also a very different approach than both, TPOT and H2O

AutoML. Google’s AutoML Tables uses only a GUI, over a web browser, rather than cod-

ing, as it was in the previous two approaches. AutoML Tables functions similarly to a

Windows Installation Wizard, where the software will guide the user through the major

steps. The first of the these is importing the data. Data was uploaded to the AutoML

Tables Console directly from the computer. This must be in a .CSV format.

The next step in the AutoML Tables process was to explore the data and train the

model. The console does provide support with data exploration, providing a quick anal-

ysis of all fields in the imported dataset. Information provided included data type of

the field, number of missing values and distinct values. As was the case with the other

two tests, the dataset was reduced to 26 features. The default split of 80-20 was used, as

Google AutoML Tables requires that the user modifies the .CVS file to change the split.

The target field was specified and the AutoML program run for three hours, as directed

by Google’s guidelines.

Once the AutoMLprogramfinished running, the AutoMLTables console provided an

170

overview of validation results from the optimalmodel produced. This included area un-

der the curve for both, the precision-recall and receiver operating characteristic curves,

as well as precision, recall, f1 score and log-loss. Google AutoML also provided informa-

tion on feature importance, as well as the balance between the different classes used in

the training. Typically, the consolewill provide a confusionmatrix, but since thenumber

of classes was higher than 10, it was unable to do this.

6.4 Results

Although the TPOTmodel ran for the full 100 generations, over 20 hours, it was possible

to track the model’s performance over time due to the enhanced verbosity that shows

the timeof each generation’s completion. This is enabledwhenusing TPOT’s default set-

tings. Since the other two approaches were only ran for three hours, the optimal model

produced at this time was examined, around 17 generations. This model was a XGBoost

model with an estimated validation accuracy of 93.32%. Further examination of this

model showed themodel was able to better predict the turbine trip without SCRAM that

those trained in the previous part of the project, over 90%. However, the model had to

sacrifice accuracy with the electrical load rejection transient, scored below 60%, lower

than those from the optimal models in the previous section.

TheH2OAutoML test was able to produce a number of highly accuratemodel within

the three hour time frame allotted. In total, tenmodels were trained during the run. The

leader board from this run can be seen in Figure 61. The model with the highest accu-

racy was a stacked ensemble method. This model scored a 93.77% accuracy. Other high

performing models made use of XGBoost, as did TPOT. Examination of the confusion

matrix produced from this optimal model shows that similarly as in the case with the

TPOT models, the H2Omodel struggled with the Feedwater Pump Trip, Electrical Load

Rejection and Turbine trip without SCRAMmodel. The confusionmatrix for this model

is shown in Figure 60.

171

Figure 60: H2O AutoML ConfusionMatrix

172

Figure 61: H2O AutoML Leaderboard

The validation results provided by Google’s AutoML Tables is unique in that nomea-

surement for accuracy was given. However, the precision result was very high at 97%,

higher than the results from the TPOT and H2O runs. That said, recall was in the same

range as the other models, at 91.5%. This resulted in a f1 score of 94.1%. As was men-

tioned earlier, no confusion matrix was provided due to the number of classes used in

training. Thismakes it difficult to provide an accuracynumber. However, AutoMLTables

does provide a log-loss value, the cross entropy value between the predictions and ac-

tual values provided. According to Google, the closer the log-loss value is to 0, the higher

quality the model is. The log-loss for this model was 0.105. Figure 62 shows the results,

as provided by AutoML Tables. It should be noted, that AutoML Tables does not provide

the user with the type of model that was produced or any summary of what techniques

were used to produce themodel.

Figure 62: Google AutoML Tables Output

173

6.5 Discussion

6.5.1 Performance

TPOT, H2OAutoML and AutoML Tables were able to produce high performancemodels

in a short time through the use of HPC. Both, TPOT and H2O AutoML, were able to pro-

duce models with accuracies over 93%, although both models struggled with the same

three transient events. Although there was no accuracy measure for the AutoML Tables

model, it can be inferred through the high precision and recall measurements that the

models scored very high, certainly higher than the other two tests. The precision recall

and f1 score from both, TPOT and H2O AutoML, indicates that both models balanced

out false negatives and positives relatively well, while Google AutoML’s results indicate

themodel ismore inclined to false negatives rather than false positives. In terms of over-

all performance, AutoML Tables produced the highest scoringmodels.

6.5.2 Functionality

AlthoughGoogle AutoMLTables produced the best results with the data, functionality is

still an important aspect to evaluate, especially for research purposes. TPOT’s ability to

export the optimal pipeline is extremely useful in research to better examine themodel.

The ability to easily convert TPOT pipelines to and from scikit-learn pipelines, allows

models trained using TPOT easy access to all of scikit-learn’s validation and evaluation

tools, such as confusionmatrices, easy validation results, etc. The TPOT dictionary also

allows users better control over the approach TPOT takes in training the model, such as

model types, feature selection and preprocessing. Also, TPOT has access to a number of

open source models including most of the scikit-learn supervised learning algorithms,

PyTorch neural networks and NVIDIA’s GPU CUDA. An issue with TPOT is the random

nature ofmodel trainingmaking the reproduction of the optimal pipeline throughTPOT

difficult.

174

Similar to TPOT, H2O can store the optimal model produced in training, however,

H2O can store several different models and the user can pick and choose which ones to

evaluate, rather than just the optimal choice. H2O also provides good exploration tools

within the package, unlike TPOTwhich relies on Pandas and scikit-learn to perform this.

H2O AutoML also only makes use of a small number of techniques compared to TPOT,

since all tools used are developed by theH2O.ai, where TPOTmakes use of already exist-

ing algorithms. H2O does have a number of validation tools that can be used, such as its

own confusionmatrix algorithm. Unlike TPOT,H2OAutoMLwill provide the userwith a

feature importance list automatically. Figure 63 shows the exported table for the trained

models. This provides a lot of value for the user when evaluating the produced model

and the dataset’s application.

AutoMLTablesprovides toolsand functions toalloweasydeploymentofmodels, such

as automatic validation results and the ability to reference a scoring threshold, which al-

lowsusers to comparedifference confidence levels. A comparison from this test is shown

in Figure 64. Although AutoML Tables does provide the user with a confusion matrix

under certain circumstances, the inability to produce one with more than 10 classes is

extremely limiting. Also, the inability to see the exact contents of the model within Au-

toMLTables is concerning. This black box environmentmakemodel evaluation difficult

and does suggest it would be difficult to make use of AutoML Tables for research. Also,

the inability to adjust the split of training and testing data within the GUI is disappoint-

ing. However, AutoML Tables does provide a number of excellent tools for exploring and

selecting data for training, such as the GUI based data tables. Finally, AutoML Tables

provides a feature importance table for the user after training. The is shown in Figure 65.

175

Figure 63: Exported H2O Feature Importance Table

6.5.3 Ease of Use

In order to evaluate ease of use, it is important to consider the end user of software. The

use of GUI in Google AutoML Tablesmakes it the go to for users who are unfamiliar with

176

Figure 64: Comparison of Different Scoring Thresholds from AutoML Tables

Figure 65: Feature Importance from AutoML Tables

177

the Python, R or programming in general. That said, researchers and experienced data

scientistwill havedifficultymakinguseof thepackageeffectivelydue to theblackboxen-

vironment, as they will be unable to examine themodel at the level that will be required.

Otherwise, Google AutoMLTables is very simple to use. During this experiment, the area

with the most difficulty was importing the data. During the first attempt to import the

data to the software, an error came up saying the column names were invalid. A header

wasadded to the .csvfileusing the featurenames fromtheGPWR,but theerrorpersisted.

In the end, it was necessary to replace the header with column numbers to get the data

imported properly. The error and documentation provided little help in addressing this

issue.

In terms of researcher use, both TPOT and H2O AutoML have different features that

can improve ease of use. For TPOT, the functionality with scikit-learn can make the us-

ing TPOT relatively simple, as scikit-learn is a commonly used package with a high level

of support in the field of data science. That said, documentation on the use of the TPOT

dictionary does increase the difficulty. Also, it can be difficult to extract necessary com-

ponents, such as a decision tree frompipelines if the user is unfamiliar with the concept.

Also, TPOT does not currently have support for categorical features and targets which

can add time to data preparation.

H2O has a number of strengths, including the ability to easily export several models

and support for categorical features which can speed up data preparation. One of the

biggest issues with H2O is that the AutoML instance automatically chooses if the model

is classification or regression and there is no way for the user to choose. This can cause

a number of issues, like ensuring the model is trained correctly. Also, H2O defaults to

regression evaluation regardless of which type of model is trained. This add extra effort

for evaluation and can cause confusion when themodel is trained. Finally, H2O’s use of

its own dataframe for operations can add some additional difficulty.

178

6.6 Summary Remarks

All three of the AutoMLmethods, TPOT, H2O AutoML and AutoML Tables tested in this

phase of the project, have the potential to increase the use of machine learning both, in

application and research. All threewere able to take theGPWRdata andproducemodels

with high validation remarks. Although there are issues with all three approaches, it is

likely that effortswill bemade to continue to improve each in functionality, performance

and ease of use to meet the needs of user. The following lists summarize the pros and

cons of each AutoML approach.

TPOT Pros

1. Large number ofmodels available across several othermachine learning packages

2. Ease of transition from TPOT to scikit-learn functions

3. Ability to easily and transparently export optimal model

4. Ability to configure customized dictionary

5. Free open source Python package

TPOT Cons

1. No support for categorical features

2. Difficult to configure customization for models

3. Stochastic in nature, makingmodel reproduction difficult

4. Only available in Python

H2O AutoML Pros

1. Support for categorical features

2. Ability to store and export multiple models

3. All functionality availability in a single package

4. Available for use in Python, R, etc.

5. Free open source package

179

H2O AutoML Cons

1. Little functionality with other packages

2. Combined regression and classification instance

3. Difficult to extract model components

4. Somewhat confusion documentation

Google AutoML Tables Pros

1. Support for categorical features

2. Easy to use GUI

3. Several easy to use tools for data exploration

4. Automated evaluation

5. Easy to deploymodel

Google AutoML Tables Cons

1. Paid service

2. Inability to adjust split without modifying dataset

3. Limited ability to evaluate model

4. Inability to view specifics on trainedmodel

180

7 Conclusions

7.1 Future Research

7.1.1 Development of a A.I. Standard for Nuclear

The work on this project as well as other efforts around the world show the promise of

data science and machine learning in the nuclear industry. However, there are a great

number of barriers and challenges that must be overcome until real world application

of these techniques can take place. The first major issue that needs to be addressed for

actual implementation is regulatory approval. As has been mentioned, the nuclear in-

dustry in the United States is under strict regulatory control from the NRC. Any efforts

to implement or rely on a machine learning based system, will have to be accepted by

this body. To made progress in this area the NRC should begin developing a standard

for the use of machine learning and data based systems in a nuclear reactor. This stan-

dard should establish validation benchmarks researchers canusewhendeveloping their

models, such as how accurate a model must be before it can be relied on. The stan-

dard should also address the types of models that can be used, as well as the extent a

model must be explained and/or visualized before it can be relied upon. Perhaps the

most critical question that needs to be addressed in such a standard is the types of tran-

sients a model must be able to identify. Nuclear reactors are complex machines and as

such, there are a number of things that can happen within the system. Many of these

are extremely unlikely to ever occur within a system. For example, the failure rate of re-

actor vessel at the Dominion Surry Power Station in Virginia is one failure for every 6.7

million years[99]. It does not make sense to spend time and resources on events like

these. Instead, it would be better to determine which events are most likely to happen

and develop models to identify those events. The NRC already requires that all licensed

commercial reactors have a detailed Probabilistic Risk Assessment (PRA) performed be-

fore a reactor can begin operations. The purpose is to identify the events at greatest risk

181

of occurrence. This allows for the plant to better respond in the event one of these is-

sues occurs. The NRC should develop a probability of occurrence threshold to guide re-

searchers. Then, researches can focus their efforts on developing models that identify

the events at greatest risk of occurrence. This in turn would allow for the training of the

most effective machine learning models. Selecting transient events based on a PRA of

the reactor system has additional benefits. One issue with any classification system for

a diagnosis is that the models can generally only classify based on known outcomes. As

noted, one study proposed training a model with "I don’t know option" to help inform

users when the system has encountered an unknown outcome. This option has merit,

but there are a number of issues that need to be considered. For example, when does the

model decide it can’t classify a transient? Is that criteria acceptable, and how effective is

themodel if it cannot diagnosismore likely transients? The use of a threshold to develop

guidelineswhile still leaving open the possibility of encountering anunknown transient,

could greatly reduce this probability. Also, it may ensure higher risk transients are more

likely to be identified.

7.1.2 Human Factors When InteractingWith A.I.

Another area of potential research that must occur before implementation, is the eval-

uation of human behavior when interacting with machine learning based systems. Au-

tomation has reduced defects and improved safety in a number of industries, but there

is a tendency for users of such systems, to either become dependent on the system or

find themselves unable to override the automation when the system fails. One indus-

try that has seen this occur a number of times is the aviation industry. Due to the life or

deathnature of these issues in aviation,much researchhas beendone to try andhelp ad-

dress these human factors to automotive system interaction. A study in aviation posed a

number of questions to consider when designing these kind of systems. These include:

How information fromthe system isprocessed,what information ispresented to theper-

182

son in control of the system and how decisions based on that information were imple-

mented[100]? This approach should be applied in the nuclear industry as well, regard-

less if themachine learning system is used as a guide to assist operators or if the system is

designed tomake a preventive response. Studying how operators behave when working

and interacting with these types of systems, can identity potential pitfalls and allow for

better safety and accident response training. This will ensure operators are able tomake

decisions independent of the system if necessary. Also, if themachine learningmodels is

going to be used as part of an autonomous system, it will ensure operators and staff have

the ability to override and stop the system should it become necessary. This type of ef-

fortwould likely take the formof aHumanReliabilityAssessment (HRA) study. Currently,

there is not standard one-size fits all approach for HRA in the nuclear field, but the NRC

has performed numerous studies in this area and has developed a list of good practices

for this type of analysis[101]. If the implementation of amachine learning based system

requires major changes to instrumentation, research has been done to produce guide-

lines for providing operators the best possible layout for knowledge elicitation[102].

7.1.3 FutureMachine Learning Studies in Nuclear Science

As interest continues to increase in implementingmachine learning for transient detec-

tion, it will be important to begin training models on different more modern designs.

Oneof the newest designs to gain attention is theNuScale SmallModular Reactor (SMR).

The first of these reactors is expected to be built at the INL in the late 2020s and the SMR

concept has generated great interest. In 2021 University of Idaho, DOE and NuScale an-

nounced the opening of a new simulation lab for this new design, at the Center of Ad-

vance Energy Studies[103]. This could provide an excellent opportunity to collect data

formachine learningmodels. Since the PRA for the NuScale design will need to be com-

pleted before the reactor begins construction, it could provide a good start for potential

implementing amachine learning based diagnosis systemwith amodern reactor.

183

7.1.4 Other Approaches for Anomaly Detection

Anomaly detection will continue to be an area of high interest in the field of machine

learning. As security concerns grow and the need to assure the reliability of data in real

timebecomes a greater concern, it is likely techniques like autoencoderswill find greater

use. However, there are a number of new techniques that may be applied in the future.

Perhaps the most exciting of these is the concept of generative learning, where ma-

chine learning models generate their own noise and altered data, based on what the

model has learned from existing data. Training models in this manner usually takes

the form of a Generative Adversarial Network (GAN). This type of machine learning ap-

proach was first proposed in 2014 by Ian Goodfellow and since, gained a lot of attention

with the continued rise of neural network basedmodels[104]. A GAN is a neural network

approach where two separate neural networks are trained, similar to an autoencoder.

Thefirstnetwork is trained togeneratenoisydatapointsbasedon thedata. This is known

as the generator. Then a separate network is trained to be able to tell the difference be-

tween the real and the noisy data. This is the discriminator network. The generator is

then retrained to try and fool the discriminator and process repeats itself. Many appli-

cations of this technique have been proposed, such as image and video generation.

Although this is an exciting prospect, there are still a number of issues that need to

be addressed with GANs. Geron notes that it is difficult if not impossible to determine

when the models reach an equilibrium. This can cause the models to begin forgetting

things they have learned and cause a sort of infinite loop. Also, validation is challenging

as there is no guidance on when to start and end the evaluation. A GAN was attempted

for this experiment, but evaluation of the two models could not be done at this time. A

number of studies have proposed using GANs as anomaly detectors and as the concept

begins to be refined and the issues addressed, it is likely the techniquewill showpromise

in the area for the future.

In addition to neural network approaches, it may be worth taking a look at SVM to

184

examine theGPWRdata for anomalies. SVMhave produced highly accurate binary clas-

sificationmodels inmany studies, including the area of anomaly detection for a number

of years. One such study proposed using an unsupervised SVMmodel in order to better

address the evaluation of outlier data[105]. This was an issue that was encountered in

this study with the autoencoder approach. It may be worth comparing SVMs, autoecn-

oders and GANs, once the techniques have been better refined to see which techniques

can better classify clean and noisy data.

7.1.5 AutoMachine Learning

One of the themes focused in this project is the use of AutoML to better streamline the

machine learning training process. The expansion of neural networks and the ever in-

creasing number of hyperparameters will ensure interest in the concept of AutoML, es-

pecially in real world applications. In this study only three AutoML approaches were

evaluated. In the coming years however, it is likely others will mature and becomemore

viable, especially asmachine learning as a service begins to seemorewidespread use. As

these approaches to AutoML release, it would be very useful to continue to evaluate the

different packages to see how they compare. For example, Amazon Web Services and

Meta, the parent company of Facebook, both have begun offering AutoML services to

customers. As companies begin to better compete with each other, it is likely new inno-

vations in theareasofdataexploration, preparation,model training/evaluationandHPC

capabilities will occur. As this happens, it would be interesting to evaluate the groups of

users that may find better use of which techniques, as different users will have different

needs. This will allow users to make better choices when looking at using AutoML and

allow for improved efficiencies.

185

7.2 Final Summary

The four different experiments run for this effort help demonstrate the value that ma-

chine learning and artificial intelligence can add not only the to nuclear industry, but

potentially to other fields as well. In the first effort, data was collected from the GPWR

reactor simulator atCAES.Thisdata consistedof over 30different features fromanuclear

reactor during five different events. This allowed for the creation of a dataset with over

30,000 data points. This datawas then exploredusing the Pythonpackage Pandas to pre-

pare thedata formachine learningmodel training. Half of thedatawasused tocreatefive

machine learningmodels using naive Bayes classification, logistic regression, kNN clas-

sification and decision tree classification using the AutoML package TPOT. These mod-

els were extremely successful in classifying the five initial events. All five of thesemodels

scored overall validation in the high 90% range, all six models were able to perfectly dis-

tinguish normally operating reactors from those experiencing transient events, and in-

dividual transient accuracies were in the high 80 to high 90% range. In this phase of the

project, the logistic regression, kNN and decision tree models performed the best, with

accuracies of 98.35%, 98.55% and 98.60%. The precision, recall and f1 score also scored

very high. The results from the first experiment were encouraging, as non-neural net-

work models trained using AutoML produced high performing models. However, many

questions still remained. Most concerning is whether models could be trained to iden-

tify an even larger number of transient events. To determine this, the GPWR simulator

was used again to collect data on a number of simulations. This time over 168 simu-

lations were run using more initial conditions with 12 different events. This expanded

data included over 110,000 data points. Once the data was prepared using Pandas, new

models were trained using TPOT. In addition to using the six approaches from the first

study, itwasnowpossible to train amodel using random forest classification. The results

from this study were mixed with the three naive Bayes models and logistic regression

model dropping significantly in accuracy and other validationmeasurements. However,

186

thekNNand the two treebasedmodelswereable tomaintainvalidation results in the low

90% range. That said, these three models did struggle with three transients. Those were

the feedwater pump trip, turbine trip without SCRAM and electrical load rejection. The

individual accuracies only reached between 60 and 70%, while the remaining 9 events

scored in the high 90% range. Despite this, the results from both studies showed that

non-neural network basedmodels can produce highly accuratemodels in the area of re-

actor transients. Also, AutoMLpackages such as TPOT canbeused to train thesemodels.

Since the models trained from the expanded GPWR dataset scored high in validation,

it was possible to address a number of other concerns with the models and approach.

The first of these was how would the models perform if feature data was unavailable or

deemed unreliable for some reason, such as sensor failure or a security breach. To ex-

plore this impact, features were removed from the dataset based on two criteria. The

features with the lowest Gini Impurity and the the features with the highest rated im-

portance were removed. This was done for the top five features in both criteria. In total,

ten additional models were trained for each of the three approaches. The results from

this were positive, as TPOT was able to train models with only a small impact in vali-

dation results, around 2%. This shows that reliable models can be produced even with

important features missing, increasing the redundancy of any implemented system for

a reactor. This would be a high point of emphasis for any regulatory body. Another issue

that needed tobe addressedwas the variance in themodel due to changes in the random

states used. TPOT relies on a stochastic process and a different random states are used

in the process. To asses the impact of changing the random states onmodel training, the

three optimal models were trained using 20 different random states. The results from

this showed only aminimal impact for the threemodels, less than 1% change for the two

tree basedmodels and 3.32% for the kNNmodel. This is very encouraging as regulatory

agencies would likely want to know the impact random state changes would have on re-

sults and a minimal impact suggest the results of the training and testing are relatively

187

stable despite the use of random numbers. Two final areas were addressed for the opti-

malmodels from the expandeddataset. First, an effortwasmade to improve themodels.

Five different data splits were used to see if more data would allow the models to better

learn some of the transients that the models were having issues with. The results from

this showed nomajor impact on validation results for the threemodels. The scores from

this were all within the range of the variation analysis. The next attempt to improve the

model was to allow TPOTmore time to find a bettermodel. To accomplish this, the pop-

ulation size andnumberof generationswas increased in fourdifferent runswith thefinal

run incrementally increasing the generations and population size to 200. This also had

a minimum impact onmodel performance, as all results were still within the validation

range. Since there was no noticeable improvement in themodels, it was necessary to try

and identify why the models struggled with the three transients. Back tracing along the

a given decision tree would not necessarily provide a great deal of insight into the issues.

This was due to the number of preprocessing steps a dataset undergoes before training.

Instead, a decision tree model was taken from the variation analysis and the data that

was misclassified was separated into six sets. The descriptive statistics were calculated

for each set and compared to the correct classifications for the three transients. Analysis

of the statistics showed a great deal of variation in both levels for steam generator. Many

of the misclassified points showed more similarity in this feature to the transient they

were incorrectly classified as. This provided strong evidence that this is the issue behind

misclassification.

The third phase of this project involved using machine learning to detect anomalies

within thedata collected from theGPWRsimulator. Having amachine learningmodel to

filter the data coming from the reactor and detect data that is significantly different from

what was expected can have a number of applications, especially in nuclear safety. In

somesituations, it canbeafinal lineof defense in a cyber attack, but it canalsobeused to

help operators identify sensors that aremalfunctioning, allowing for quicker repairs and

188

more reliable instrumentation systems. In this experiment aportionof thedata collected

from the expanded GPWR dataseet was split and randomly altered at different levels be-

tween0.5 and2 standarddeviations from themean. Anautoencoder neural networkwas

built to try identify thesealteredpoints. Usinga thresholdcalculated fromthedata, itwas

found that themodel coulddetect all alteredpoints at thehigh levels of noise. Themodel

did have issues identifying about a quarter of the true data as an anomaly. Also, as the

noise level decreased, themodel’s performancedecreased. At the lowest level, themodel

struggled distinguishing between altered and unaltered data, but this was expected. As

innovation in anomaly detection continues, the development and implementation of

these techniques for nuclear applications, such as reactor instrumentationmonitoring,

could contribute greatly to system security and reliability. The final phase of this project

was to compare and contrast TPOT and two other AutoML approaches. H2O AutoML

and Google AutoML Tables. The GPWR data was used to train classification models us-

ing the most basic options for each approach. Each model was allowed to run for three

hours in a cloud computing environment. Once the model were trained, all three ap-

proaches were evaluated based on performance, functionality and ease of use. In terms

of performance, H2O and TPOT compared very well with each producing amodel using

XGBoost with accuracy measurements around 93%. While AutoML Tables did not pro-

vide an accuracy measurement, the precision of 97% suggests a highly accurate model.

All threemodels scored within the range in recall.

In terms of functionality, all three packages had their strengths and weaknesses. Au-

toML Tables provides excellent exploration tools and evaluation visualizations, but due

to the black box environment, it is difficult to get specifics. TPOT has access to a large

number of models from different packages, but it does rely completely on other soft-

ware and can only export one model. Finally, H2O has a large number of data explo-

ration/evaluation tools and the leader board allows for users to examine a large number

of models, but the selection of models is muchmore limited than TPOT.

189

Finally, in terms of ease of use, AutoMLTables is by far the easiest to use due to its full

use of a GUI and export capabilities, which allows access to those with limited program-

ming experience. TPOT should be easy to use for anyone familiar with scikit-learn and

this makes it a good entry point for those with a Python background. That said, model

customization can be challenging due to lack of documentation and there are still chal-

lenges with the CUDA GPU and PyTorch extensions. H2O is similar to scikit-learn and

many functionalities that are easy to learn for those familiar with Python. That said, the

AutoML instances can be difficult to use since it chooses between regression and classi-

fication and the user has no control over the selection. This can result in very confusing

validation results, especially in the area of classification.

The results from this project have helped to demonstrate the potential of machine

learningandAutoML in thenuclear industry. Nuclear requires someof themost rigorous

safety controls of any industry and the implementation machine learning could help in

the perception of the field. These concepts will continue to improve and develop in the

coming years and as a result and will be more widely used in daily life. It is hoped that

this research will help contribute to both, nuclear safety and data science.

190

References

[1] Aurelien Geron. Hands-On Machine Learning with Scikit-Learn, Keras & Tensor-

Flow 2nd Edition.O’Reilly. September 2019.

[2] The economic impact of artificial intelligence on the UK economy. PWC. 2017.

[3] Reactor analytics drives nuclear industry towards machine learning. Nuclear En-

ergy Insider. November 15th, 2017.

[4] Kislay Keshari. Top 10 Applications of Machine Learning : Machine Learning Ap-

plications inDailyLife. Edureka,https://www.edureka.co/blog/machine-learning-

applications/. November 2020.

[5] Bernard Marr. The Amazing Ways Coca Cola Uses Artificial Intelligence And Big

Data ToDrive Success. Forbes, https://www.forbes.com/sites/bernardmarr/2017

/09/18/ the-amazing-ways-coca-cola -uses-artificial-intelligence-ai-and-big-data-

to-drive-success/. September 2017.

[6] Michael Martinez. Amazon: Everything you wanted to know about its algorithm

and innovation. IEEE Computing Society, https://www.computer.org/ publica-

tions/tech-news/trends/amazon-all-the-research-you-need-about-its-algorithm-

and-innovation. 2017.

[7] J. O. Awoyemi, A. O. Adetunmbi and S. A. Oluwadare. Credit card fraud detection

usingmachine learning techniques: A comparativeanalysis. InternationalConfer-

ence on Computing Networking and Informatics (ICCNI), Lagos, Nigeria, 2017,

pp. 1-9, doi: 10.1109/ICCNI.2017.8123782. 2017.

[8] Who is using scikit-learn? Scikit-learn developers, https://scikit-learn.org/stable

/testimonials/testimonials.html# who-is-using-scikit-learn.

191

[9] Bill Siwicki. Machine learning helps cancer center with targeted COVID-19 out-

reach.HealthcareITNews,https://www.healthcareitnews.com/news/machine-learning-

helps-cancer-center-targeted-covid-19-outreach. February 2021.

[10] Zeki Murat Çınar, Abubakar Abdussalam Nuhu, Qasim Zeeshan, Orhan Korhan,

Mohammed Asmael and Babak Safaei. Machine Learning in Predictive Mainte-

nance towards Sustainable Smart Manufacturing in Industry 4.0. Sustainability.

2020.

[11] UsingAI-PoweredVisual Inspection toSpotDefects.” IBMMediaCenter. IBM,mediacenter

.ibm.com /media/ Using+AI-powered+visual+ inspection +to+spot+defects%20

/0_11oe6sng.

[12] Hongfei Li,Dhaivat Parikh,QingHe,BuyueQian,ZhiguoLi,DongpingFang,Arun

Hampapur. Improving rail network velocity: Amachine learning approach to pre-

dictivemaintenance. TransportationResearchPartC:EmergingTechnologies,Vol-

ume 45, Pg 17. 2014.

[13] ZhiyiWang, JiachenZhong, JingfanLiandCuiXi.Faultdiagnosis ofair-conditioning

refrigeration system based on sparse autoencoder. International Journal of Low

Carbon Technologies, Vol. 14 Issue 4, p487. December, 2019.

[14] Knief Ronald. Nuclear Engineering: Theory and Technology of Commercial Nu-

clear Power 2nd Edition. American Nuclear Society. 2014.

[15] Hopkins Andres.Was Three Mile Island a "Normal Accident"? Journal of Contin-

gencies and Crisis Management, Vol. 9 Issue 2 Pg. 67. 2001.

[16] ChenWL. Simulation for training and decision-making in large-scale control sys-

tems: Part 6: Power plant simulators. SIMULATION., 1980;35(4):133-136. 1980.

[17] NUCLEARPOWERPLANTSIMULATIONFACILITIESFORUSEINOPERATORTRAIN-

ING,LICENSEEXAMINATIONS,ANDAPPLICANTEXPERIENCEREQUIREMENTS.

U.S. NUCLEAR REGULATORY COMMISSION. April, 2011.

192

[18] KennethThomas.RonaldBoring JuliusPersensky.DeploymentofaFull-ScopeCom-

mercial Nuclear Power Plant Control Room Simulator at the Idaho National Lab-

oratory. Idaho National Laboratory. 2011.

[19] VERIFICATION,VALIDATION,REVIEWS,ANDAUDITSFORDIGITALCOMPUTER

SOFTWAREUSED IN SAFETY SYSTEMSOFNUCLEARPOWERPLANTS. U.S. NU-

CLEAR REGULATORY COMMISSION. July 2013.

[20] Use of control room simulators for training of nuclear power plant personnel. In-

ternational Atomic Energy Agency. September 2003.

[21] F.ChenandM.R. Jahanshahi.NB-CNN:DeepLearning-BasedCrackDetectionUs-

ing Convolutional Neural Network and Naïve Bayes Data Fusion. IEEE Transac-

tions on Industrial Electronics, Vol. 65, Pg 4392. May 2018.

[22] S.Million-Weaver.Eagle-eyedmachine learningalgorithmoutdoeshumanexperts.

University of WisconsinMadison. July, 2018.

[23] J. Bae, A. Rykhlevskii, G. Chee, K. Huff. Deep learning approach to nuclear fuel

transmutation in a fuel cycle simulator. Annals of Nuclear Energy, Vol. 139.

[24] A.Erdo gana, M. Geckinlib. A PWR reload optimisation code (XCore) using artifi-

cial neural18networks and genetic algorithms. Annals of Nuclear Energy Vol. 39.

[25] H.Vella.WhatWill thePowerPlantof theFutureLookLike?GeneralElectric.April,

2018.

[26] Y. Zeng, J. Liu, K. Sun, L. Hu.Machine learning based system performance predic-

tionmodel for reactor control. Annals of Nuclear Energy, Volume 113, Pg. 270.

[27] X. Liab, X. Fu, F. Xiong, X.Bai. Deep learning-based unsupervised representation

clustering methodology for automatic nuclear reactor operating transient identi-

fication. Knowledge-Based Systems, Vol.204.

193

[28] YO-IMORU, R.M.; CILLIERS, A. C.Continuousmachine learning for abnormality

identification to aid condition-basedmaintenance innuclear power plant.Annals

of Nuclear Energy, Vol. 118, Pg. 61.

[29] R. Gronberg. AI could one day control nuclear reactors; NC State researchers could

make it happen. News Observer. June 2018.

[30] Lin L. , BaoH.,DinhN.On the Formalization ofDevelopment andAssessment Pro-

cess for Digital Twins. Transactions of the American Nuclear Society Vol. 123, Pg

268. 2020.

[31] M.Kim, etc.NN-Based online anomaly detection innuclear reactors for highly im-

balanced datasets with uncertainty.Nuclear Engineering & Design. Vol. 364.

[32] Y. Yuantao, etc.mall-batch-size convolutional neural network based fault diagno-

sis system for nuclear energy production safety with big-data environment. Inter-

national Journal of Energy Research, Vol. 44, 5841.

[33] Y. Chen, M. Narita, T.Yamada.Nuclear reactor diagnostic system using genetic al-

gorithm (GA)-trained neural networks. Electrical Engineering in Japan, Vol 115,

88. 1995.

[34] S Cheon, S. Chang. Application of Neural Networks to a Connectionist Expert Sys-

tem for Transient Identification in Nuclear Power Plants. Nuclear Technology, Vol

102, Pg. 177.

[35] M. dos Santos, etc. Deep rectifier neural network applied to the accident identifi-

cation problem in a PWR nuclear power plant. Annals of Nuclear Energy, Volume

133, 400.

[36] T. Kim, J.Park, B.Lee, S. Seong.Deep-learning-based alarm system for accident di-

agnosis and reactor state classification with probability value. Annals of Nuclear

Energy, Volume 133, Pg. 723.

194

[37] D. Chang, M. Liu, Y. Lee. Accident diagnosis of a PWR fuel pin during unprotected

loss of flow accident with support vector machine. Nuclear Engineering and De-

sign, Volume 352, 110184.

[38] C. Gottlieb, V. Arzhanov, W. Gudowski, N. Garis. FEASIBILITY STUDY ON TRAN-

SIENT IDENTIFICATION IN NUCLEAR POWER PLANTS USING SUPPORT VEC-

TORMACHINES. Nuclear Technology, Volume 155, Pg. 67.

[39] Electric Power Monthly with Data for May 2020. Energy Information Administra-

tion. July 2020.

[40] AmjithRamanujam,EllenLivengood.PythonatNetflix. https://netflixtechblog.com/

python-at-netflix-bba45dae649e. April,2019.

[41] Thomas. Oliphant.Guide to NumPy. December 2006.

[42] McKinney Wes. “pandas: powerful Python data analysis toolkit Release 0.24.2.”.

March 13 2019.

[43] Mckinney Wes. “pandas: a Foundational Python Library for Data Analysis and

Statistics”. 2011.

[44] Scikit-learnDevelopers. "AboutUs”. Scikit-learn.org.https://scikit-learn.org/stable

/about.html#people.

[45] Scikit-learnDevelopers. “Who isusing scikit-learn?”. Scikit-learn.orghttps://scikit-

learn.org/stable/testimonials/testimonials.html.

[46] etc all Pedregosa. scikit-learn: Machine Learning in Python. JMLR 12, pp. 2825-

2830. 2011.

[47] “Scikit-Learn User Guide Release 0.21.2”. Scikit-learn.org. May 2019.

[48] Alphabet. “Cloud AutoML”. https://cloud.google.com/automl/docs/.

[49] Epistassislabs. “Home-TPOT”. https://epistasislab.github.io/tpot/.

195

[50] R. Olson, N. Bartley, R. Urbanowicz, &Moore. Evaluation of a Tree-based Pipeline

Optimization Tool for Automating Data Science. GECCO, pg 485. 2016.

[51] J.DarbonSmithL.Likforman-Sulem.EffectofPre-ProcessingonBinarization. Boise

State University. January 1, 2010.

[52] Scikit-learn Developers. 5.3. Preprocessing data. https://scikit-learn.org/stable

/modules/preprocessing.html#.

[53] Scikit-learn Developers. Compare the effect of different scalers on data with out-

liers. https://scikit-learn.org/stable/auto_examples /preprocessing/plot_all_scaling.html

#sphx-glr-auto-examples- preprocessing-plot-all-scaling-py.

[54] B. Recht A. Rahimi. Weighted Sums of Random Kitchen Sinks: Replacing mini-

mization with randomization in learning. UC Berkeley.

[55] Scikit-learnDevelopers. sklearn.cluster.FeatureAgglomeration. https://scikit-learn.org

/stable/modules/generated/sklearn.cluster.FeatureAgglomeration.html.

[56] Scikit-learnDevelopers. “2.3.Clustering”. https://scikit-learn.org/stable/modules

/clustering.html#hierarchical-clustering.

[57] L. Smith.ATutorial onPrincipalComponentAnalysis.UniversityofMontreal. Febru-

ary 26th 2002.

[58] Scikit-learn Developers. 2.5. Decomposing signals in components.

[59] P. Breheny. Family Wise Error Rates. University of Iowa. January 25th, 2016.

[60] Scikit-learnDevelopers.NaiveBayes. https://scikit-learn.org/stable/modules /naive

_bayes.html.

[61] H. Zhang. The Optimality of Naïve Bayes. University of New Brunswick.

[62] J. Eberhardt. Bayesian SpamDetection. University of MinnesotaMorris.

[63] P. Rai. Supervised Learning: K-Nearest Neighbors andDecision Trees. University of

Utah. August 25, 2011.

196

[64] Scikit-learnDevelopers.1.6.NearestNeighbors. https://scikitlearn.org/stable/mod-

ules/neighbors.html#.

[65] T.Mitchel.GENERATIVEANDDISCRIMINATIVECLASSIFIERS:NAIVEBAYESAND

LOGISTIC REGRESSION. Carnegie Mellon/McGrawHill. September 23 2017.

[66] Scikit-learnDevelopers.1.1.GeneralizedLinearModels. https://scikit-learn.org/stable

/modules/ linear_model.html#logistic-regression.

[67] R. Mitchel.Decision Tree Learning. Princeton University.

[68] Scikit-learnDevelopers.1.10.DecisionTrees. https://scikit-learn.org/stable/mod-

ules/tree.html.

[69] Scikit-learn Developers. 3.3. Model evaluation: quantifying the quality of predic-

tions. https://scikit-learn.org/stable/modules/model_evaluation.html#.

[70] GENERIC PWR SIMULATOR Training Guide. Western Service Cooperation. May

2017.

[71] N. Siu. Software Verification and Validation: Examples from the Safety Arena. U.S.

Nuclear Regulatory CommissionOffice of Nuclear Regulatory Research. Septem-

ber 2015.

[72] NRC.NUREG-0800, 15.0 INTRODUCTION - TRANSIENT AND ACCIDENT ANAL-

YSES. 2007.

[73] WCS.GENERIC PWR SIMULATORMajor Transients Report. June 2014.

[74] Robert M. Bell, Yehuda Koren and Chris Volinsky. The BellKor solution to the Net-

flix Prize. AT&T Labs – Research.

[75] Scikit-learnDevelopers.1.11.Ensemblemethods. https://scikit-learn.org/stable/modules

/ensemble.html#forest.

[76] Scikit-learnDevelopers. sklearn.ensemble.RandomForestClassifier. https://scikit-

learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html.

197

[77] Alexis Perrier. Feature Importance in Random Forests. https://alexisperrier.com/

datascience/2015/08/27/feature-importance-random-forests-gini-accuracy.html.

2015.

[78] Scikit-learn.3.1.Cross-validation: evaluatingestimatorperformance. https://scikit-

learn.org/stable/modules/cross_validation.html.

[79] ELECTRICITY GRID CYBERSECURITY DOE Needs to Ensure Its Plans Fully Ad-

dress Risks to Distribution Systems. Government Accountability Office, GAO-21-

81. March 2021.

[80] NRC.REGULATORYGUIDE 5.71 (NewRegulatory Guide) CYBER SECURITY PRO-

GRAMS FORNUCLEAR FACILITIES. 2010.

[81] Pierre Baldi. Autoencoders, Unsupervised Learning, and Deep Architectures. Pro-

ceedings of ICMLWorkshop on Unsupervised and Transfer Learning, vol 27., Pg

37-40. 2012.

[82] all Martin Abadi etc. TensorFlow: A system for large-scale machine learning. 12th

USENIX symposium on operating systems design and implementation, pp. 265-

283. 2016. 2016.

[83] TensorFlow.TensorFlow2.0 isnowavailable!Medium.com,https://medium.com/

tensorflow/ tensorflow -2-0-is-now-available-57d706c2a9ab. 2019.

[84] TensorFlow.Why TensorFlow? https://www.tensorflow.org/about.

[85] Keras. About Keras. https://keras.io/about/.

[86] K. Han, etc, all. AUTOENCODER INSPIRED UNSUPERVISED FEATURE SELEC-

TION. IEEE InternationalConferenceonAcoustics, Speech andSignal Processing

(ICASSP) pp. 2941-2945. 2018.

198

[87] Antonio L. Alfeo, etc, all. Using an autoencoder in the design of an anomaly de-

tector for smartmanufacturing. Pattern Recognition Letters, Volume 136, Pg 272-

278. 2020.

[88] A. Gokhan Yavuz R. Can Aygun. Network Anomaly Detection with Stochastically

Improved Autoencoder BasedModels. 2017 IEEE 4th International Conference on

Cyber Security and Cloud Computing. 2017.

[89] Thiée,L.-W.Asystematic literature reviewofmachine learningcanvases.Gesellschaft

für Informatik, Bonn. (S. 1221-1235). DOI: 10.18420/informatik2021-101. 2021.

[90] H2O.ai.H2O.aiLeadership. https://www.h2o.ai/company/team/leadership-team/.

[91] LeDell E,Poirier S.H2oautoml: Scalableautomaticmachine learning. InProceed-

ings of the AutoMLWorkshop at ICML 2020. 2020.

[92] Alphabet. AutoML Products. https://cloud.google.com/automl/docs.

[93] Alphabet.AutoMLTablesdocumentation. https://cloud.google.com/automl-tables/docs.

[94] Alena Orlenko et al. “Model selection for metabolomics: predicting diagnosis of

coronary artery disease using automated machine learning”. In: Bioinformatics

36.6 (Nov. 2019), pp. 1772–1778. ISSN: 1367-4803. DOI: 10.1093/bioinformatics/

btz796. URL: https://doi.org/10.1093/bioinformatics/btz796.

[95] Jessica Dafflon et al. “An automatedmachine learning approach to predict brain

age from cortical anatomicalmeasures”. In:HumanBrainMapping 41.13 (2020),

pp. 3555–3566. DOI: https://doi.org/10.1002/hbm.25028. URL: https://

onlinelibrary.wiley.com/doi/abs/10.1002/hbm.25028.

[96] Gomathi S. et al. “Pattern Analysis: Predicting Covid-19 Pandemic in India Using

AutoML”. In:World Journal of Engineering ahead-of-print (Nov. 2020). DOI: 10.

1108/WJE-09-2020-0450.

199

[97] Alexandre L.A Lopes V. “Auto-Classifier: A Robust Defect Detector Based on an

AutoML Head”. In: Lecture Notes in Computer Science (2020). DOI: https://doi.

org/10.1007/978-3-030-63830-6_1.

[98] Nurul Afiqah andNur Anida Jumadi. “Leg Flexibility ClassificationUsing AutoML

Tables”. In: 1 (Dec. 2020), pp. 270–279. DOI: 10.30880/eeee.2020.01.01.032.

[99] S. Levine. RESEARCH INFORMATION LETTER - ID, PRESSURE VESSEL FAILURE

PROBABILITY PREDICTION. Office of Nuclear Regulatory Reserach. 1977.

[100] ValerieGawron.Automation inAviation—AccidentAnalyses. Center forAdvanced

Aviation SystemDevelopment, MITRE. January 2019.

[101] Sandia National Lab Nuclear Regulator Commission. Good Practices for Imple-

menting Human Reliability Analysis (HRA). NUREG-1792. 2005.

[102] R. Boring, etc, all. “Guideline for Operational Nuclear Usability and Knowledge

Elicitation ”. In: (2015). ProcediaManufacturing, Volume 3.

[103] Office of Nuclear Energy. NuScale SMR Simulation Lab Opens in Idaho. https:

//www.energy.gov /ne/articles/nuscale-smr-simulation-lab-opens-idaho. 2021.

[104] Ian Goodfellow et al. “Generative Adversarial Nets”. In: Advances in Neural In-

formation Processing Systems. Ed. by Z. Ghahramani et al. Vol. 27. Curran Asso-

ciates, Inc., 2014. URL: https://proceedings.neurips.cc/paper/2014/file/

5ca3e9b122f61f8f06494c97b1afccf3-Paper.pdf.

[105] Mennatallah Amer, Markus Goldstein, and Slim Abdennadher. “Enhancing one-

class support vectormachines for unsupervised anomaly detection”. In:Proceed-

ingsof theACMSIGKDDworkshoponoutlierdetectionanddescription. 2013,pp. 8–

15.

200

Appendix A Publications fromResearch

1. ReactorTransientClassificationUsingMachineLearning, Transactionof theAmer-

ican Nuclear Society Vol. 121, Winter 2019.

2. Nuclear Reactor Transient Diagnostics using Classification and AutoML, Nuclear

Technology, Volume 208 Issue 2

3. ExpandedAnalysis of AutoMLModels forNuclear Transient Classification,Nuclear

Engineering and Design. (Paper accepted February, 2022, publication pending.)

201

Appendix B Python Packages Used

Table 44: Model Training Expanded Dataset

Python Package Initial Version Used
Python 3.7.6
NumPy 1.18.1
Pandas 1.0.1
Scikit Learn 0.22.1
TPOT 0.9.5

Table 45: Auto Encoder Study

Python Package Initial Version Used
Python 3.7.12
NumPy 1.19.5
Pandas 1.1.5
Scikit Learn 1.0.1
TensorFlow 2.7.0

Table 46: AutoML Study

Python Package Initial Version Used
Python 3.7.6/3.7.12
NumPy 1.19.5
Pandas 1.1.3/1.1.5
Scikit Learn 1.0.2
TPOT 0.11.5
H2O 3.36.0.2

202

Appendix C Optimal Tree Output

Figure 66: Optimal DT Section 1

/

203

Figure 67: Optimal DT Section 2

Figure 68: Optimal DT Section 3

204

Figure 69: Optimal DT Section 4

Figure 70: Optimal DT Section 5

205

Figure 71: Optimal DT Section 6

Figure 72: Optimal DT Section 7

Figure 73: Optimal DT Section 8

206

Figure 74: Optimal DT Section 9

Figure 75: Optimal DT Section 10

207

Figure 76: Optimal DT Section 11

Figure 77: Optimal DT Section 12

208

Figure 78: Optimal DT Section 13

Figure 79: Optimal DT Section 14

209

Figure 80: Full Optimal DT

210

Appendix D Process Visualization

Figure 81: Re-create Optimal Tree From TPOT

211

Figure 82: RawData to Test

212

Figure 83: Transformed Data Using Pipeline

Figure 84: Decision Tree Rules Part 1

213

Figure 85: Decision Tree Rules Part 2

214

Appendix E TPOTModel Convergences

Figure 86: ExpandedModel Training Convergence

215

Appendix FMisclassification Subset Descriptive Statistics

Figure 87: Descriptive Statistics For Correct Turbine TripW/O SCRAMClassification 1 of 2

Figure 88: Descriptive Statistics For Correct Turbine TripW/O SCRAMClassification 2 of 2

216

Figure 89: Descriptive Statistics For Correct Turbine TripW/O SCRAMMisclassified as Feedwater Pump Trips 1 of 2

Figure 90: Descriptive Statistics For Correct Turbine TripW/O SCRAMMisclassified as Feedwater Pump Trips 2 of 2

217

Figure 91: Descriptive Statistics Turbine TripW/O SCRAMMisclassified as Electrical Load Rejection 1 of 2

Figure 92: Descriptive Statistics Turbine TripW/O SCRAMMisclassified as Electrical Load Rejection 2 of 2

218

Figure 93: Descriptive Statistics for Correct Electrical Load Rejection 1 of 2

Figure 94: Descriptive Statistics for Correct Electrical Load Rejection 2 of 2

219

Figure 95: Descriptive Statistics for Electrical Load RejectionMisclassified as Feedwater Pump Trip 1 of 2

Figure 96: Descriptive Statistics for Electrical Load RejectionMisclassified as Feedwater Pump Trip 2 of 2

220

Figure 97: Descriptive Statistics for Electrical Load RejectionMisclassified as Turbine TripW/O SCRAM 1 of 2

Figure 98: Descriptive Statistics for Electrical Load RejectionMisclassified as Turbine TripW/O SCRAM 2 of 2

221

Figure 99: Descriptive Statistics for Correct Feedwater Pump Trip 1 of 2

Figure 100: Descriptive Statistics for Correct Feedwater Pump Trip 2 of 2

222

Figure 101: Descriptive Statistics for Feedwater Pump TripMisclassified as Load Rejection 1 of 2

Figure 102: Descriptive Statistics for Feedwater Pump TripMisclassified as Load Rejection 2 of 2

223

Figure 103: Descriptive Statistics for Feedwater Pump TripMisclassified as Turbine Trips W/O SCRAM 1 of 2

Figure 104: Descriptive Statistics for Feedwater Pump TripMisclassified as Turbine Trips W/O SCRAM 2 of 2

224

Appendix G Plots from Autoencoder

Figure 105: Reconstruction Plot for Autoencoder at 1.5 SDNoise

225

Figure 106: Reconstruction Plot for Autoencoder at 1.0 SDNoise

Figure 107: Reconstruction Plot for Autoencoder at 0.5 SDNoise

226

