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CHAPTER 1. INTRODUCTION 

1.1 Background and Motivation 

Indoor localization is the method of obtaining the location of a user or device in the indoor 

environment. Global positioning system (GPS) is used worldwide for outdoor localization, but it 

cannot detect objects located inside the building. Hence there is a requisite of detecting and 

locating objects or user in the indoor setting, especially in the sectors such as agriculture, robotics, 

supply chain management, and more [1]. Radio Frequency Identification (RFID) utilizes radio 

waves that enable us to identify, track, and locate items equipped with RFID tags [2]. While the 

roots of RFID technology can be traced back to World War II [3], Mario W. Cardullo first received 

the U.S. patent for an active RFID tag with rewritable memory in 1973 [4]. Figure 1.1 shows the 

first chip installed in a fighter plane near the end of World War II in 1944.  

Figure 1.1: Portside antennas on Boeing yb-40 flying fortress [3]. 
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Based on the frequency of operation RFID system are classified into Low Frequency (LF) [120-

145 kHz], High Frequency (HF) [13-56 MHz], Ultra High Frequency (UHF) [850-950 MHz], and 

Super High Frequency (SHF) [2.45-5.8 GHz] [5]-[6]-[7]. SHF band is used for microwave 

application and resonant frequency are designed to be operated at 2.45 GHz and 5.8 GHz. Further 

RFID tags can be classified into three major types: active, semiactive, and passive tags [8]. While 

active and semiactive RFID tags have on-board power supply, passive RFID tag do not possess an 

on-board power supply and rely only on the power emitted from the reader for both data processing 

and transmission. A basic RFID system consists of a reader, tags, antenna, and a data collecting 

device as shown in Figure1.2 [9].  

Figure 1.2: Components of Basic RFID System [9]. 
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Artificial Intelligence (AI) is the method of performing human-like intelligence like decision 

making, learning, and results analysis by intelligent machines [10]. AI enables machines to 

perform feats of human-like intelligence by making them learn from available resources such as 

big data and Machine Learning (ML) algorithms. Big data availability and higher computing 

power has enabled AI to be more efficient which is expected to transform different sectors like 

transportation [11], engineering [12], health care [13], agriculture [14], job market [15] and more. 

Development of AI and ML algorithms can be implemented to build robust and more precise RFID 

indoor localization system. 

1.2 Problem Statement and Scope 

Research on RFID applications is increasing every year with 4% of research being focused on 

indoor localization system as shown in Figure 1.3 [16]. RFID tags have been used in the tracking 

and management in different applications like circulation and tracking of books in libraries [17], 

tracking and managing medications and patients in hospitals [18], verifying authentication of halal 

foods [19], and more. Many commercial RFID tags are designed for placement on high dielectric 

objects and thus there is a limited effect when reading a tag's electronic product code (EPC) - even 

on many high dielectric objects. The issue arises once we try to localize different products/items 

based on the EPCs of RFID tags equipped on them, where not only the EPC values are significant, 

but additional information such as received signal strength indicator (RSSI) and phase are required 

to perform computations/analysis to find localized coordinates. This often results in lower 

localization accuracy in RFID systems [20]. Research involving RFID indoor localization typically 

does not consider the electromagnetic properties of the object being equipped with RFID tags for 

localization.  
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In this research, we explore the effect of dielectric constant on object localization with UHF RFID 

tags and give an insight into the impact of dielectric constants on RSSI-based indoor localization 

utilizing supervised ML algorithms. This novel work considers the material properties of 

products/items equipped with RFID tags for the purpose of indoor localization. 

Figure 1.3: Application domain research in RFID [16]. 

1.3 Research Objectives 

Following are the research objectives: 

1. Explore and study the effect of dielectric constant on object localization with UHF RFID

tags.
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2. Provide an insight into the impact of dielectric constant on RSSI-based indoor  

 localization.  

3. Evaluate the utilization of RFID data in fusion with state-of-the-art ML algorithms. 

4. Give future directions into building more precise indoor localization systems utilizing 

 RFID systems by considering object’s properties.  

1.4 Thesis structure 

Figure 1.4 shows the thesis structure.  

 

Figure 1.4: Thesis structure 
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1.5 Thesis overview 

Chapter 1 provides a brief overview of the introduction of RFID systems and ML algorithms along 

with scope and current research trend involving RFID. Chapter 2 delves into the literature review 

of RFID indoor localization, ML algorithms, and dielectric of foods. Chapter 3 provides the details 

on experimental setup and data collection process. Details of different equipment and software 

utilized are also described in chapter 3. Chapter 4 delves into data analysis, performance of 

different supervised algorithms utilized in the data analysis process followed by conclusion in 

chapter 5.   
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CHAPTER 2. LITERATURE REVIEW 

2.1 Overview of different machine learning algorithms  

ML is seen as a subset of AI that performs specific task based on scientific study of algorithms and 

statistical methods [21]. The most commonly utilized ML methods are supervised learning, 

unsupervised learning, semi-supervised learning, and reinforcement learning [22]. Less commonly 

used ML algorithms include batch learning, online learning, instance-based learning, model-based 

learning, multi-task learning, and transductive learning [23]. The relation between AI, ML, and 

commonly used ML algorithms is shown in Figure 2.1. 

 

Figure 2.1: Relation between AI, ML, and commonly used ML algorithms 
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2.1.1 Supervised Learning 

In supervised learning, the training data with desired solutions (labels) is fed into the algorithm 

[24]. After training, the algorithm will be able to give predictions to all possible inputs. Some of 

the most commonly used supervised algorithms include k-Nearest Neighbors (k-NN), Linear 

Regression, Logistic Regression, Support Vector Machines (SVMs), Decision Trees, Random 

Forests, Deep Learning (DL), and Neural networks [24]. 

2.1.2 Unsupervised Learning 

In unsupervised learning, the training data is unlabeled so the expected result is unknown [24]. 

After training and learning, the algorithm gives a structure for data after identification of similar 

data type.  Some of the most commonly used unsupervised algorithms include K-means clustering, 

DBSCAN, Principal Component Analysis (PCA), and t-distributed stochastic neighbor embedding 

(t-SNE) [24]. 

2.1.3 Semi-supervised Learning 

Semi-supervised Learning involves training with partially labeled training data with most of the 

data being unlabeled and little bit of labeled data. Most semi-supervised algorithms are results of 

combinations of supervised and unsupervised algorithms [24]. 

2.1.4 Reinforcement Learning 

Reinforcement learning (RL) involves a learning system where an agent interacts with the 

environment and performs certain tasks and gets rewards or penalties. The agent then learns to find 
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the best strategy (policy) to get utmost rewards [24]. An example of reinforcement learning is 

DeepMind’s AlphaGo program [24]. 

2.2 Overview of RFID System  

An RFID system no matter the frequency of operation subsist of elements: RFID tags, RFID 

readers, and middleware (a software interface) [25].  

2.2.1 RFID Tags 

An RFID tag or transponder is an electronic identification support which is often composed of an 

electronic circuit (for storing information) and an antenna (for receiving waves) [26]. Recent years 

has seen an increasing amount of research in RIFD chipless technology to mitigate the high cost 

and low deployment of RFID system [27]-[28]. In chipless RFID, the tag is equipped with a planar 

encoder and sometimes an antenna to communicate with the reader or interrogator [28]. Figure 2.2 

[29] and Figure 2.3 [30] show the chipped RFID tag and chipless RFID tag design respectively. 

The maximum distance at which an RFID reader can detect the backscattered signal from the tag 

is the read range and it varies from ranges as far as 12 meters for passive RFID tag whreas active 

tags can achieve ranges of 100 meters or more [31].  
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Figure 2.2: Multilayer RFID tag antenna design [29]. 

 

 

Figure 2.3: 35-bit chipless RFID tag design [30]. 
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2.2.2 RFID reader 

As the name suggests, RFID reader is a electromagnetic device, equivalent to scanner, which 

interrogates the data stored in RFID tag [32]. RFID readers can be handheld or fixed and can read 

multiple tags simultaneously even in non-line-of-sight and embedded inside packaging which does 

so by transmitting and receiving radio waves using connected antennas [33]. The information read 

by the reader is then sent to middleware for processing.  

2.2.3 RFID Middleware 

RFID Middleware is a set of software applications that manages the process the vast amount of 

data collected from the RFID tags and RFID reader [34]. RFID middleware ensures the interface 

between data collected and information system for both software and hardware of RFID system 

[35].  It is especially integral to information technology based on Extensible Markup Language 

(XML), Simple Object Access Protocol (SOAP), Web services, SOA, Web 2.0 infrastructure, and 

Lightweight Directory Access Protocol (LDAP) [36]-[37].  

2.3 Related work on RFID Indoor Localization  

Different types of techniques like triangulation, multilateration, Bayesian inference, nearest-

neighbor (NN), kernel-based learning, and proximity have been utilized in indoor localization 

[38]-[39].  RFID indoor positioning techniques utilized currently can be classified into one- 

dimensional, two-dimensional, and three-dimensional positioning. Among which three-

dimensional positioning has gained much popularity because of its expected application in 

different sectors.  
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In a one-dimensional location system, the absolute position or relative position of the target object 

can be obtained which could have uses in the assembly sectors. A change in tag signal caused by 

human movement is utilized by [40] to achieve relatively high precision relative positioning. A 

PRDL method proposed by [41] combines deep learning with relative positioning to improve the 

positioning accuracy. Ranging positioning and non-ranging positioning are often utilized for two-

dimensional (2-D) localization. Time of arrival (TOA), time difference of arrival (TDOA), angle 

of arrival (AOA), and received signal strength (RSSI) are type of ranging method utilized in the 

2-D location system [42]. The use of reference was first introduced by LANDMARC and used k-

NN algorithm to weigh the coordinates of tag and find the relative position of tags to be tracked 

based on the coordinates of reference tag [43].  

A three-dimensional positioning system can achieve the spatial information of the object to be 

localized hence it can have a significant impact on the daily livelihood of human beings. Different 

techniques and algorithms like APM [44] , 3DinSAR [45], MDS [46] have been proposed which 

uses different methods such as minimum interrogation power and multilateral measurements, 

holographic atlas to find the phase difference of tags with different heights, and path loss and 

shielding effects respectively.   

The dawn of machine learning (ML) and higher processing power has created many possibilities 

for data processing of RFID tags for indoor localization. A convolutional neural network (CNN) 

with five convolutional layers is used to determine the 3D positioning of books equipped with 

RFID tags on a bookshelf [47]. E. L. Berz, D. A. Tesch, and F. P. Hessel utilize ML methods based 

on support vector regression to estimate the location of stationary tags attached to a whiteboard 

[48]. A. Belay Adege, et.al proposes the integration of k-NN and Artificial Neural Networks 
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(ANN) to achieve a room-level classification where data is collected from three lecture rooms on 

the same floor [49] .  

2.4 Dielectric of Items/Foods 

RFID tags have been utilized in the tracking and supply chain management of food on numerous 

occasions over two decades. Walmart in 2004 AD introduced the first RFID system in its supply 

chain [50]. R. Jedermann, L. Ruiz-Garciab, and W. Lang used RFID tags for spatial temperature 

profile to monitor and analyze the refrigerated transport chain of perishable goods [51]. Abad et.al 

used RFID tags along with the integration of temperature and relative humidity sensors in a fresh 

fish logistic chain: the South African fresh hake commercial chain for the European market [52]. 

These works do not consider the relative dielectric of the tagged objects. 

Many supplies chain items or localization targets have a high relative dielectric constant due to the 

water content. Water has a dielectric of 79.5 at 915 MHz at room temperature [53]. The high 

dielectric constant of water is also noted in literature related to the limitations of RFID tag design 

near the human body [54]. 

Table 2.1 lists the relative dielectric constant and frequency at which the respective dielectric was 

measured in different literature. As it is noted from Table 2.1 that the frequency for cantaloupe and 

pineapple doesn’t fall on the 902 – 928 MHz. This is because the available literature on the 

measurement of dielectric was not available for specific frequency. Since the dielectric value does 

not change much for the range of 150 MHz, the dielectric values at closest frequency to 902-928 

MHz were utilized. Moreover, the dielectric value for cabbage is taken for blanched cabbage from 

[55] where the microwave blanching performed and dielectric constant measured were both at 915 
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MHz. Unlike blanching performed at 27 MHz, blanching at 915 MHz doesn’t change the dielectric 

value that much. Hence the dielectric value of 72.4 is chosen for our experiment. While the object 

of lower dielectric material doesn’t affect or attenuate the signal from RFID reader, higher 

dielectric materials attenuate the signal which results in improper tag readings.  

Table 2.1: Dielectric Constant of some objects 

 

 

 

 

 

 

 

  

Fruits and Vegetables 

Relative dielectric 

constant (εr) 

Frequency 

Water [53] 79.5 915 MHz 

Cantaloupe [56] 63.0 1 GHz 

Blanched Cabbage[55] 72.4 915 MHz 

Pineapple [57] 76.3 790 MHz 

Avocado [56] 56 1 GHz 

Plastic [58] 2.2 915 MHz 
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CHAPTER 3. EXPERIMENTAL SETUP AND DATA COLLECTION 

3.1 Introduction  

This chapter presents an experimental setup used for the collection of data utilizing RFID Tags, 

Antennas, Reader, and other equipment.  

3.2 Equipment and Software  

The RFID system used in the setup consists of four Vulcan RFIDTM PAR90209H (RHCP) 

Outdoor RFID Antennas [59]. Confidex Carrier ClassicTM passive RFID tags were used which 

can be applied to non-metallic surfaces for identification/tracking purpose [60]. The average cost 

of for these tags is 50 cents per tag and can operate in the temperature -9°C to 54°C [60]. Impinj 

Speedway R420 4-port (FCC) Fixed Reader [61] was used to read tags using the ItemTest software 

[62]. The transmission power (Tx) and received sensitivity (Rx) of the antenna connected to the 

reader was set to 32.5 dBm and 80 dBm respectively using ItemTest software. Three different fruits 

and vegetables: Cantaloupe, Cabbage, and Pineapple were equipped with RFID tags to collect the 

location information as shown in Figure 3.1. 
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Figure 3.1: Fruits and vegetables equipped with RFID tags. (A) Cantaloupe, (B) Pineapple, and 

(C) Cabbage. 

3.3 Setup 

A total of 32 RFID tags were used in this experiment, four of them being tracking tags and 28 of 

them being reference tags. Reference tags numbered 1-16 were affixed to the smooth foam board 

of dimension 135 x 108 cm in an x-z plane with tags being 45 cm apart on the x-axis and 36 cm 

apart on the z-axis from each other. Reference tags numbered 17-28 were affixed to the flattened-

out moving box of dimension 135 cm x 135 cm in the x-y plane with a tag separation of 45 cm in 

both the x and y-axis. An experimental setup with all equipment used in the data collection is 

shown in Figure 3.2. The cardboard box parallel to the floor in Figure 3.2(b) is elevated from the 

ground by 13 cm using additional small cardboard boxes to minimize the effect of the concrete 

floor on the electromagnetic properties of tags.  

A C B 
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Figure 3.2: Experimental setup (A) Reading and storing location information (B) pineapple under 

testing. 

The rest of the tags numbered 29-32 were labeled as tracking tags which were equipped on 

different vegetables and fruits. Two rods with sturdy bases, connected on the top by another rod, 

were used as an anchor to hold the different subjects under the test. Nylon fabrics were used to 

hold the subject from the top and to prevent the rotation to maintain fixed tracking tags’ coordinates 

as shown in Figure 3.2(B). Four tracking tags are utilized to improve triangulation, reduce blind 

spots, mitigate signal interference, and to improve precision [63]. RSSI value is utilized as a metric 

for evaluation of indoor localization as it provides decent accuracy with relatively simple setup 

and low power consumption. Techniques like phase, AOA, and TOA are not utilized because with 

a large number of tags (tag density) these techniques can lead to computational load and potential 

collision issues [64]. Moreover, the prime focus of our research is to study the effect of dielectric 

constant on RFID indoor localization, RSSI metric is used as a preliminary focus to compute 

indoor localization accuracy.   

A B 
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3.4 Data Collection  

While the coordinates for the tracking tags were different for each item under the test the 

coordinates for the reference tags are the same in all experimental setups. The fixed coordinates 

for the reference tags are shown in Table 3.1. Data was collected for a total of 9 minutes (540 

seconds) for each setup. Data was collected for a total of 9 minutes because that ensured enough 

datapoints for training and testing using ML algorithms given these the ML models utilized 

perform better with enough datapoints to ensure better accuracy for different time of data 

collection. The frequency band for this data collection is from 902-928 MHz.  

3.4.1 Data collection for dielectric constant (εr) of 76.3 

First the data is collected for a pineapple with a dielectric of 76.3. Pineapple is wrapped around a 

nylon fabric and then suspended from the vertical bar. Data is then collected for a total of 9 minutes. 

Figure 3.2(b) above shows the experimental setup for pineapple. While the coordinates for the 

reference tags are fixed as mentioned earlier, the changing coordinates for the tracking tags (29-

32) affixed to the pineapple are listed in Table 3.2.  

Table 3.1: Coordinates for reference tags 

Reference Tag X Y Z 

1 0 0 0 

2 45 0 0 

3 90 0 0 

4 135 0 0 
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Reference Tag X Y Z 

5 0 0 36 

6 45 0 36 

7 90 0 36 

8 135 0 36 

9 0 0 72 

10 45 0 72 

11 90 0 72 

12 135 0 72 

13 0 0 108 

14 45 0 108 

15 90 0 108 

16 135 0 108 

17 0 45 0 

18 45 45 0 

19 90 45 0 

20 135 45 0 

21 135 90 0 

22 90 90 0 

23 45 90 0 

24 0 90 0 

25 0 135 0 
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Reference Tag X Y Z 

26 45 135 0 

27 90 135 0 

28 135 135 0 

 

 

Table 2.2: Coordinates of tracking tags affixed to pineapple. 

Tracking Tag X Y Z 

29 95 62 66 

30 88 66 66 

31 80 59 66 

32 89 54 66 

 

3.4.2 Data collection for dielectric constant (εr) of 72.4 

Next the data is collected for cabbage with dielectric of 72.4. Light weight and spherical shape of 

cabbage was prone to rotational motion, making it challenging to maintain the fixed tracking tag’s 

coordinate. Data collection process is started only after the cease of rotational motion of cabbage. 
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Experimental setup for cabbage is shown in Figure 3.3, whereas the coordinate of tracking tags 

affixed to cabbage are noted in Table 3.3.    

 

Table 3.3: Coordinates for tracking tags affixed to cabbage. 

Tracking Tag X Y Z 

29 81 63 74 

30 80 53 74 

31 88 54 74 

32 91 61 74 

 



22 

 

 

Figure 3.3: Experimental Setup for Cabbage under testing 

3.4.3 Data collection for dielectric constant (εr) of 63.0 

Finally, the data is collected for cantaloupe which has a dielectric constant value of 63.0. An 

experimental setup for data collection of cantaloupes is shown in Figure 3.4, whereas coordinates 

of tracking tags affixed to cantaloupe are listed in Table 3.4. 
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Table 3.4: Coordinates of tracking tags affixed to cantaloupe. 

Tracking Tag X Y Z 

29 81 63 74 

30 80 53 74 

31 88 54 74 

32 91 61 74 

 

 

Figure 3.4: Experimental setup with cantaloupe under testing 
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3.5 Description of data 

Sample raw data collected from the experiment is shown is Table 3.5. Here, Timestamp is the time 

at which the tags are read, EPC is the unique identifier for each tag numbered from 1-32, Antenna 

is the antenna that reads the respective tag, and RSSI is the strength of signal in dBm associated to 

the respective tag.     

Table 3.5: Sample of raw data collected. 

  

Timestamp EPC Antenna RSSI  

2022-01-31T22:10:40.8410320-07:00 30 1 -43 

2022-01-31T22:10:40.8419730-07:00 13 3 -48 

2022-01-31T22:10:40.8435950-07:00 12 4 -49.5 

2022-01-31T22:10:40.8450660-07:00 32 1 -48 

2022-01-31T22:10:40.8456140-07:00 7 2 -46.5 

2022-01-31T22:10:40.8461580-07:00 6 1 -47 

2022-01-31T22:10:40.8490990-07:00 8 4 -48.5 

2022-01-31T22:10:40.8813860-07:00 15 1 -47 

2022-01-31T22:10:40.8853150-07:00 16 1 -48 

2022-01-31T22:10:40.8919010-07:00 31 3 -49 

2022-01-31T22:10:40.8934320-07:00 5 1 -49.5 

2022-01-31T22:10:41.2565990-07:00 29 2 -46.5 
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CHAPTER 4. DATA PROCESSING AND ANALYSIS OF DATA 

4.1 General 

In this chapter, the processing and feature engineering performed in the data, ML algorithms 

utilized, and analysis of the results is presented. The processed data is analyzed using three 

supervised ML algorithms: (i) k-NN, (ii) XgBoost, and (iii) decision tree. Python programming is 

utilized to perform the analysis.  

4.2 Data preprocessing and feature engineering  

4.2.1 Data preprocessing  

Raw data consisted of four columns and 24,000 rows on average. The columns of the data set are 

expanded to a total of 13 columns including the columns with coordinate information for each 

EPC of the tag. Coordinates information is first stored in the NumPy array and then merged into 

the entire collected dataset which is converted to pandas’ data frame. A sample dataset is shown in 

Table 4.1, where  𝐸𝑃𝐶𝑅𝑇, 𝑅𝑆𝑆𝐼𝑋 , 𝑋𝑅𝑇, 𝑌𝑅𝑇, 𝑍𝑅𝑇 are the EPC, RSSI, x-coordinate, y-coordinate, 

and z-coordinate of the reference tags, whereas 𝐴𝑛𝑡𝑋 and 𝐴𝑛𝑡𝑌 are the respective antenna that read 

reference and tracking tags. 𝐸𝑃𝐶𝑇𝑇, 𝑅𝑆𝑆𝐼𝑌 , 𝑋𝑇𝑇, 𝑌𝑇𝑇, 𝑍𝑇𝑇 are the EPC, RSSI, x-coordinate, y-

coordinate, and z-coordinate of the tracking tags. 
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4.2.2 Feature engineering 

The time column in the raw data is transformed. A new column Seconds is made which is the each 

second the data is recorded for both reference and tracking tag. This feature is engineered to protect 

the time information when analyzing data with ML algorithms. This feature basically  

Table 4.1: A sample data after preprocessing and feature engineering. 

𝑬𝑷𝑪𝑹𝑻 𝑨𝒏𝒕𝑿 𝑹𝑺𝑺𝑰𝑿 𝑺𝒆𝒄𝒐𝒏𝒅𝒔 𝑬𝑷𝑪𝑻𝑻 𝑨𝒏𝒕𝒀 𝑹𝑺𝑺𝑰𝒀 𝑿𝑻𝑻 𝒀𝑻𝑻 𝒁𝑻𝑻 𝑿𝑹𝑻 𝒀𝑹𝑻 𝒁𝑹𝑻 

10 3 -63.0 539.0 29 1 -66.5 95 62 66 45 0 72 

10 3 -63.0 539.0 31 2 -66.0 80 59 66 45 0 72 

10 3 -63.0 539.0 31 2 -66.5 80 59 66 45 0 72 

8 3 -61.5 539.0 31 2 -67.0 80 59 66 135 0 36 

8 2 -61.5 539.0 32 2 -67.0 89 54 66 135 0 36 

15 2 -62.5 539.0 32 3 -66.5 89 54 66 90 0 108 

6 4 -62.0 540.0 30 3 -65.5 88 66 66 45 0 36 

6 4 -62.0 540.0 30 3 -67.5 88 66 66 45 0 36 

6 4 -62.0 540.0 30 4 -66.5 88 66 66 45 0 36 

6 4 -62.0 540.0 30 4 -66.5 88 66 66 45 0 36 

6 4 -62.0 540.0 31 4 -64.5 80 59 66 45 0 36 

makes it easy to predict the coordinate of the tracking tag for each second which allows us to track 

objects in real time. This column ranges from value of 1 to 940, 1 indicating first second of data 

collection and 940 the last second.   



27 

 

4.2.3 Splitting dataset  

Now the dataset is split into training and testing sets without data shuffling to have data in time 

order of seconds. Training dataset included columns 𝐸𝑃𝐶𝑅𝑇, 𝑅𝑆𝑆𝐼𝑋 , 𝑋𝑅𝑇, 𝑌𝑅𝑇, 𝑍𝑅𝑇, 𝐴𝑛𝑡𝑋, 𝐴𝑛𝑡𝑌, 

𝑅𝑆𝑆𝐼𝑌, and 𝑆𝑒𝑐𝑜𝑛𝑑𝑠. The test set is taken to be 𝐸𝑃𝐶𝑇𝑇 which is the EPC of the tracking tag. The 

training dataset is taken to be 80% of the total data and 20% is allocated as testing dataset. Since 

the data is not shuffled, the training set includes data for 80% which is for the first 432 seconds of 

data collection. 

4.3. Data analysis with Supervised ML algorithms  

Now, different ML algorithms like k-NN, XgBoost, and Decision tree were used to classify the 

test set. Data was analyzed using python programming language in Jupiter notebook using google 

co-lab free version which gives access to cloud computing with CPU of single or dual core 

processor, RAM of 12 GB and storage of 100 GB. 

4.3.1 Analysis with k-NN algorithm  

A k-NN algorithm with five neighbors and distance as a weight is utilized to obtain training and 

testing accuracy. In scikit-learn's k-Nearest Neighbors (kNN) algorithm, the default distance metric 

used to measure the distance between data points is the Euclidean distance. The code below is 

utilized for this process. The average CPU time in this process for convergence of data is 71 

seconds. The results obtained for training and testing accuracy for different dielectric constants are 

listed in Table 4.2.   

%%time 
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# Perform kNN 

from sklearn.neighbors import KNeighborsClassifier 

kNN = KNeighborsClassifier(n_neighbors=5, weights='distance') # Specify k = n_neighbors 

kNN.fit(z_X_train,y_train) 

print('Training accuracy: ', kNN.score(z_X_train,y_train)) 

print('Testing accuracy: ', kNN.score(z_X_test,y_test)) 

 

Table 4.2: localization accuracy using k-NN Algorithm 

 

4.3.2 Analysis with XGBoost algorithm  

An XGBoost algorithm with XGBClassifier is utilized to obtain the testing and training accuracy. 

The code below is utilized in this process. The average CPU time in this process for convergence 

Fruits and 

Vegetables 

Relative dielectric 

constant (εr) 

Training Accuracy Testing Accuracy 

Cantaloupe 63.0 87.7 % 52.15% 

Cabbage 72.4 96.9% 77.7% 

Pineapple 76.3 96.34% 72.73% 
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of data is 15 seconds. The results obtained for training and testing accuracy for different 

dielectric constants are listed in Table 4.3.   

%%time 

from sklearn.model_selection import train_test_split 

X_train, X_test, y_train, y_test = train_test_split(X,y,test_size=1/5,shuffle=False) # 20% test no 

shuffling 

from xgboost import XGBClassifier 

xgb = XGBClassifier() 

xgb.fit(X_train, y_train) 

 

Table 4.3: Localization accuracy using XGBoost algorithm. 

 

Fruits and 

Vegetables 

Relative dielectric 

constant (εr) 

Training Accuracy Testing Accuracy 

Cantaloupe 63.0 57.1 % 54.36 % 

Cabbage 72.4 79.92 % 78.34 % 

Pineapple 76.3 78.3 % 76.9 % 
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4.3.3 Analysis with Decision Tree algorithm  

An decision tree algorithm with DecisionTreeClassifier is utilized to obtain the testing and 

training accuracy. The code below is utilized in this process. The average CPU time in this 

process for convergence of data is 10 seconds. The results obtained for training and testing 

accuracy for different dielectric constants are listed in Table 4.4. 

# Decision Trees 

%%time 

from sklearn.tree import DecisionTreeClassifier 

class_tree = DecisionTreeClassifier() 

class_tree.fit(X_train, y_train) 

print(class_tree) 

Table 4.4: Localization accuracy using decision tree algorithm. 

 

Fruits and 

Vegetables 

Relative dielectric 

constant (εr) 

Training Accuracy Testing Accuracy 

Cantaloupe 63.0           87.7 % 48.8 % 

Cabbage 72.4 96.89 % 74.5 % 

Pineapple 76.3 96.34 % 68.3 % 
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4.4. Results and Analysis  

Figure 4.1 shows the results obtained from processed data with three different supervised ML 

algorithms k-NN, Decision tree, and XGBoost. Figure 4.2 shows the scatter plot of test accuracy 

for the aforementioned ML algorithms for different values of relative dielectric constants. We can 

observe from Figure 4.1 that k-NN and the Decision tree algorithm are quite overfitting, but 

XGBoost performs well for all the items under the test. From Figure 4.2 we can see that the 

dielectric value of the item under the test has a significant effect on indoor localization using RSSI-

based indoor localization.  

The test accuracy for cantaloupe whose dielectric value is quite low has a test accuracy of 54.3 % 

with the best-performing algorithm. Whereas the test accuracy of pineapple and cabbage, which 

has relatively close dielectric value, stands at 76.9% and 78.34% respectively with the same 

XGBoost algorithm. For pineapple and cabbage which have a higher dielectric constant, these 

generally seem to have a higher localization accuracy. We suspect that increasing dielectric 

constant increases localization accuracy, but additional testing with precise dielectric values and 

uniform object size is required.       
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Figure 4.1: Train and test accuracy for indoor localization of cabbage, cantaloupe, and pineapple. 
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Figure 4.2: Testing Accuracy vs Dielectric constant 

  

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%

50 52 54 56 58 60 62 64 66 68 70 72 74 76 78

T
es

ti
n
g
  
A

cc
u
ra

cy

Relative dielectric Values (εr)

Testing Accuracy vs Dielectric

Test k-NN Test XgBoost Test Decision Tree Cantaloupe(εr=63.0) , Cabbage (εr =74.7),  Pineaaple(εr=76.3)



34 

 

CHAPTER 5. CONCLUSION 

5.1. Conclusion  

In this research we delved into one of the prominent material properties which is the dielectric 

constant and its effect on RSSI-based indoor localization using RFID systems. Three ML 

algorithms: k-NN, XGBoost, and decision tree are used to classify three different items 

(cantaloupe, cabbage, and pineapple) equipped with passive RFID tags in real-time using time 

information as one of the feature engineering. It is seen that the dielectric properties of items under 

the test have a significant effect on indoor localization accuracy. This research offers new insight 

into the effect of dielectric constant and how it should be considered an important feature while 

developing indoor localization systems. 

5.2. Recommendation for future research  

In supply chain management, these items (fruits and vegetables) are often not exposed by 

themselves but are usually boxed, wrapped, and sometimes even frozen. Further research with 

utilization of supply chain setup to collect data would be more useful to improve visibility, cold 

chain monitoring, and automated check in and check out.  

RFID (Radio Frequency Identification) tags are generally more resource-efficient compared to 

traditional barcode labels. RFID tags consume minimal power during operation, and many passive 

RFID and especially chip less tags do not require a battery which ensures their sustainability 

towards the environment. As RFID tags become more widespread, industries are likely to develop 

recycling programs for end-of-life tags. This will further reduce the environmental impact. 
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Future work of training and testing of the dataset should be focused on utilizing instead of 

averaging RSSI for each second of data collection. When rounding to nearest second can lead to 

loss of datapoints which can be crucial when developing real time location systems. This research 

focused on the static environment so the time data didn’t play a big role in the accuracy of the 

system but when developing dynamic indoor localization systems this feature will be prominent 

in prediction of the tracking coordinates.  

Based on the findings from this research, a material property such as dielectric has prominent 

impact in the RFID indoor localization system. However, further research is required to fully 

understand the impact in indoor localization with consideration of different nuances. The following 

are some of the nuanced research areas for future studies: 

1. Use of precise dielectric values and uniform object. 

2. Study the impact of phase angle along with RSSI and its impact on the indoor 

 localization accuracy. 

3. Indoor localization with dynamic of the object to localized can be studied. 

4. Research into other ML algorithms like random forests, naïve bias, support vector 

 machine, and so on.  

5. Study the impact of varying accuracy on the indoor localization with varying values of 

 transfer and receive power.  
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APPENDICES 

APPENDIX A: Confidex RFID Tag Datasheet 
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APPENDIX B: Vulcan RFID Antennas datasheet 
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APPENDIX C: Impinj RFID Reader Datasheet  
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APPENDIX D: Python Code  

from time import strptime 

import pandas as pd 

import datetime as dt 

import numpy as np 

from datetime import datetime 

import time 

 

timestamp1 = tag_data['// Timestamp']      # Counting total seconds in different feature 

seconds=[] 

for i in timestamp1: 

  seconds.append(time.mktime(i.timetuple()))    # Shows the total seconds until recorded time 

tag_data['Seconds']=seconds 

tag_data.head() 

act_cor = np.array([[0,0,0], [45,0,0], [90,0,0], [135,0,0], [0,0,36], 
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                 [45,0,36], [90,0,36], [135,0,36], [0,0,72], [45,0,72], 

                 [90,0,72], [135,0,72], [0,0,108], [45,0,108], [90,0,108], 

                 [135,0,108], [0,45,0], [45,45,0], [90,45,0], [135,45,0], 

                 [135,90,0], [90,90,0], [45,90,0], [0,90,0], [0,135,0], 

                 [45,135,0], [90,135,0], [135,135,0], 

                 [95,62,66], [88,66,66], [80,59,66], [89,54,66]]) 

 

%%time 

EPC_tt = split_data['EPC_TT'] 

EPC_rt = split_data['EPC_RT'] 

 

X_tt=[] 

Y_tt=[] 

Z_tt=[] 

X_rt=[] 
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Y_rt=[] 

Z_rt=[] 

 

for i in range(len(EPC_tt)):                  # Iterate through each of the rows in after_split_data and 

get cordinates X,Y,Z from act_cor dataframe 

  X_tt.append(act_cor.loc[EPC_tt[i], 'X']) 

  Y_tt.append(act_cor.loc[EPC_tt[i], 'Y']) 

  Z_tt.append(act_cor.loc[EPC_tt[i], 'Z']) 

  X_rt.append(act_cor.loc[EPC_rt[i], 'X']) 

  Y_rt.append(act_cor.loc[EPC_rt[i], 'Y']) 

  Z_rt.append(act_cor.loc[EPC_rt[i], 'Z']) 

 

%%time 

from sklearn.model_selection import train_test_split 

X_train, X_test, y_train, y_test = train_test_split(X,y,test_size=1/5,shuffle=False) # 20% test 

data without shuffling 
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from xgboost import XGBClassifier 

xgb = XGBClassifier() 

xgb.fit(X_train, y_train) 

 

from sklearn.preprocessing import StandardScaler 

z_after_split_data = StandardScaler().fit_transform(split_data.drop(['// Timestamp_x','// 

Timestamp_y'],axis=1)) 

z_after_split_data 

# Don't need to scale our target, and will be cumbersome to select X from z_after_split_data 

z_fit = StandardScaler().fit(X_train) 

z_X_train = z_fit.transform(X_train) 

z_X_test = z_fit.transform(X_test) 

z_X_test 




