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ABSTRACT 

 

In recent years, subspace System Identification (SI) algorithms have seen  

 

increased research, stemming from advanced minimization methods being applied to the  

 

Nuclear Norm (NN) approach in system identification. These minimization algorithms  

 

are based on hard computing methodologies. To the authors knowledge, as of now, there  

 

has been no work reported that utilizes soft computing algorithms to address the  

 

minimization problem within the nuclear norm SI algorithm. A linear, time-invariant,  

 

discrete time system is used in this work as the basis model for characterizing a  

 

dynamical system to be identified. The main objective is to extract a mathematical model  

 

from collected experimental input-output data. Hankel matrices are constructed from  

 

experimental data, and the extended observability matrix is employed to define an  

 

estimated output of the system. This estimated output and the actual – measured – output  

 

are utilized to construct a minimization problem. An embedded rank measure assures for  

 

minimum state realization outcomes. Current NN-SI algorithms employ hard computing  

 

algorithms for minimization. In this work, we propose a simple Tabu Search (TS)  

 

algorithm for minimization. TS algorithm based SI is compared with the iterative  

 

Alternating Direction Method of Multipliers (ADMM) line search optimization based  

 

NN-SI. For comparison, several different benchmark system identification problems are  

 

used and tabulated. Results show improved performance of the proposed SI-TS algorithm  

 

compared to the NN-SI ADMM algorithm. 
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CHAPTER 1.0 - INTRODUCTION 

 

1.1 - Overview

 

Nuclear norm by definition is the sum of singular values of a matrix [1]. It  

 

involves estimating system matrices A, B, C, D of a state –space realization from given  

 

input-output data that is contaminated with noise [1]. The method is aimed at utilizing a  

 

discrete-time state space model, as well as the properties of observability and  

 

controllability matrices to develop corresponding Hankel and Toeplitz matrices  

 

respectively [1]. Amongst the benefits of this method is that of minimizing the nuclear  

 

norm of a given matrix and thereby minimizing its rank, which would represent the  

 

number of linearly independent rows or columns of the matrix [5, 6]. 

 

This thesis presents application, proof, and validation of Subspace Identification  

 

of various dynamic benchmark models through Nuclear Norm and Tabu Search  

 

optimization. In the past, significant research has been conducted in the area of system  

 

identification using nuclear norm for systems with missing inputs and outputs. It has been  

 

proven that as the amount of missing input-output data increases, the performance of  

 

nuclear norm system identification method slowly degrades with it [6]. 

 

Following the mathematical derivations, Matlab™ code and corresponding  

 

Simulink™ models are developed to apply and analyze the associated system  

 

identification procedures, in turn providing a platform to validate the derived method.   
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Nuclear Norm is computed by using definition of Schatten Norm as the starting  

 

point, as shown in Equations (1.1) and (1.2) [7].    represents the i
th

 singular value [7]. 

 

1.2 – Objective  

 

 First objective of this research work is to mathematically derive proofs for each  

 

step of Harshad Deshmane’s Iterative ADMM system identification method, and  

 

to describe Tabu Search system identification method in detail. 

 

 Second objective of this work is to programmatically engineer a system using  

 

Matlab™ and Simulink™ software for applying, simulating, and analyzing the  

 

two optimization methods of Nuclear Norm and Tabu Search, thus validating  

 

mathematical foundations of each method.  

 

 Third objective is to analyze and compare performance of both methods through  

 

rigorous testing and simulation on each of twelve benchmark systems, thereby  

 

examining the performance of the two optimization techniques. 

 

1.3 – Organization of Thesis 

This thesis is organized as follows: 

 Chapter 1.0 provides an overview and objective of the research problem. 

 Chapter 2.0 details system identification mathematical derivations and proofs. 

 Chapter 3.0 describes application of Iterative ADMM method using Matlab™ and 

Simulink™ software. 

 Chapter 4.0 describes application of Tabu Search method using Matlab™ and 

Simulink™ software. 

 Chapter 5.0 compares and analyzes the two optimization techniques. 

 Chapter 6.0 provides conclusion and future work. 
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CHAPTER 2.0 – SYSTEM IDENTIFICATION THEORY 

 

2.1 - Basis System 

 

A linear, time-invariant, discrete time system is considered as the basis system.  

 

The system description involves the state vector x(k), input u(k), process noise w(k),  

 

measurement noise v(k), output y(k), and system matrices A, B, C, and D. State vector for  

 

(k+1) element is defined as follows: 

 

                                                                                                                

                                                                                 

The output y(k), is defined as follows: 

 

                                                                                                                       

       

 

In the above system,            , and           , represent the output data  

 

sequence and input data sequence, respectively. These sequences are recorded during a 

 

system experimentation with a sample frequency   . This yields L discrete data  

 

points for the input and output sequence, respectively. Here,    represents the number of  

 

outputs, and    represents the number of inputs. Furthermore,           is  

 

representative of process noise, and            represents measurement noise.      

 

      gives the state vector.  

 

2.2 - Kalman Filter 

 

State estimation of the variable x(k) involves the use of a Kalman filter K. By  

 

definition, a Kalman filter is used to recursively and optimally estimate concerned  

 

parameters while disregarding associated inaccuracies [8]. System represented by  
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Equations (2.1) and (2.2) are reformulated using the gain K  of the Kalman filter as  

 

follows: 

 

                                                                                                                     

 

In the above representation of the Kalman filter,          is a solution to the  

 

steady-state algebraic Riccati equation. A Riccati equation by definition is any first order  

 

nonlinear ordinary differential equation [9].    in Equation (2.3) is defined as     

 

             , where E is the expectation operator and v(k) is the measurement noise.  

 

2.3 – Estimated System Representation 

 

The system representation, as given in Equation (2.1) is now represented as: 

 

                                                                                                                 

 

                                                                                                                                   

 

where                                                                                                               

 

In Equation (2.1), with the process noise represented as w(k), the system is said to  

 

be in process form. In Equation (2.4), with w(k) being replaced by Kɛ(k), the system is  

 

now in innovation form. Substitution of Equation (2.6) into Equation (2.4) gives the  

 

following: 

 

                                                                                     

 

                                                                                            

 

                                                                                                                                   

 

If we define            &           , the predictor form of the given  
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system is given as follows:  

 

                                                                                                                 

 

                                                                                                                                 

 

2.4 – Hankel & Observability Matrices 

 

A Hankel matrix by definition is one in which the elements are the same along all  

 

the reverse diagonals [10]. The Hankel matrices for the input and output respectively are  

 

represented as follows: 

 

(1) (2) ( 1)

(2) (3) ( 2)

( ) ( 1) ( )

u u u L s

u u u L s
Us

u s u s u L

  
 

  
 
 

 

,                     (2.12) 

 

 

(1) (2) ( 1)

(2) (3) ( 2)

( ) ( 1) ( )

s

y y y L s

y y y L s
Y

y s y s y L

  
 

  
 
 

 

.                   (2.13) 

 

 An observability matrix is defined to represent the internal functioning of a  

 

system [11]. The observability matrix for the system is given as follows: 

 

2

1s

C

CA

Os CA

CA 

 
 
 
 
 
 
 
 

                                                                      (2.14) 
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2.5 – Derivation of Hankel and Toeplitz Matrices 

 

Mathematically, a Hankel matrix is defined as follows [2]: 

 

                                                                                                                                           

 

In the above equation,     is the observability matrix, and      is the  

 

controllability matrix. The goal is to find a controllability matrix that can yield specific  

 

Toeplitz and Hankel structures as given in matrices (2.16) and (2.17):  

 

,

2 3

0 0

0
u s

s s

D

CB D
T

CA B CA B D 

 
 
 
 
 
 

                (2.16) 

 

,

3 2

0 0

0
u s

s s

D

D CB
H

D CA B CA B 

 
 
 
 
 
 

            (2.17) 

                       

In order to find the controllability matrix from Equation (2.15), we use the  

 

following formula: 

 

           
                                                                                                                                 

 

        

1

2

1s

C

CA

CA

CA





 
 
 
 
 
 
 
 

 

3 2

0 0

0

s s

D

D CB

D CA B CA B 

 
 
 
 
 
 

                                                                  

  

According to matrix multiplication properties, a matrix must be square and the  

 

determinant of the matrix must not be zero in order for the inverse of a matrix to exist  
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[13]. In this case, as is evident from Equation (2.14), the observability matrix is not a  

 

square matrix. To compute the best approximation of the inverse, it is possible to  

 

compute the Moore Penrose Pseudo Inverse as follows: 

 

     
         

             
                                                                                                                

    
     2 1 1 2 12

1

[ ]s s

s

C

CA

C CA CA CA C CA CA CACA

CA

  



 
 
 
 
 
 
 
 

                                   

 

    
 

    
1

1 1 2 1s s sCC CACA CA CA C CA CA CA


                                               

 

    
   2 1

1 1

1 s

s s
C CA CA CA

CC CACA CA CA



 

 
 

   
                                  

 

Through the computations presented in Equations (2.20) through (2.23), the  

 

Moore Penrose Pseudo Inverse is going to yield a 1xs matrix, having 1 row and s  

 

columns. Hence, we obtain the controllability matrix as follows:  

 

             
 

3 2

0 0

0

s s

D

D CB

D CA B CA B 

 
 
 
 
 
 

                                                                              

       2 1

1 1

1 s

s s
C CA CA CA

CC CACA CA CA



 
  

 
 
 

3 2

0 0

0

s s

D

D CB

D CA B CA B
 

 
 
 
 
 
 

  

                                                                                                                                            

 

Through the above computations, the controllability matrix will result in a 1xs  
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matrix, having 1 row and s columns. Therefore, now that the controllability matrix is  

 

known, the Hankel matrix can be computed using Equation (2.15) to yield an sxs matrix.  

 

From it, the respective Toeplitz matrix can be obtained through the property that relates it  

 

to the respective Hankel matrix. In that, a Toeplitz matrix has constant entries along the  

 

forward diagonals, and a Hankel matrix is one in which entries are constant along the  

 

reverse diagonals [12]. The controllability matrix for this system is given as follows: 

  

    

  2 1sB AB A B A B                                                                                                           

 

2.6 – State Sequence, Output, Derivation of Estimated Output Function  

  

 For the system being considered, the state sequence is defined to be: 

 

   (1) (2) ( 1)x x x L s                                                                                                 

 

 The system output, computed as a function of the matrices presented and derived  

 

in the preceding sections is as follows: 

 

                                                                                                                          

 

The actual output    is represented as follows in (2.29): 

     

1

(1) (2) ( 1)

s

C

CA
x x x L s

CA 
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2 3

0 0 (1) (2) ( 1)

0 (2) (3) ( 2)

( ) ( 1) ( )s s

D u u u L s

CB D u u u L s

CA B CA B D u s u s u L 

   
  

   
  
  

  

  

2 3

1 0 0 (1) (2) ( 1)

1 0 (2) (3) ( 2)

1 ( ) ( 1) ( )s s

e e e L s

CK e e e L s

CA K CA K e s e s e L 

   
  

   
  
  

  

                                    

 

 

 Equation (2.28) represents the fundamental structure for subspace identification  

 

utilizing the extended observability matrix form. Through this structure, it is possible to  

 

determine the columns of the observability matrix given in (2.14), as well as the state  

 

sequence given in(2.27). In order to estimate the output, the innovation term is considered  

 

to be zero, thereby yielding the following equation: 

 

                                                                                                                                      

 

 In order to derive the estimated output, the following steps are taken: 

 

      

1

(1) (2) ( 1)

s

C

CA
x x x L s

CA 

 
 
   
 
 
 

                    

    

2 3

0 0 (1) (2) ( 1)

0 (2) (3) ( 2)

( ) ( 1) ( )s s

D u u u L s

CB D u u u L s

CA B CA B D u s u s u L 
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1 1 1

(1) (2) ( 1)

(1) (2) ( 1)

(1) (2) ( 1)s s s

Cx Cx Cx L s

CAx CAx CAx L s

CA x CA x CA x L s  

  
 

  
 
 

  

            

        

    
2 2 2

3 3 3

(1) (2) ( 1)

(1) (2) (2) (3) ( 1) ( 2)

(1) (2) ( 1)

(2) (3) ( 2)

( ) ( 1) ( )

s s s

s s s

Du Du Du L s

CBu Du CBu Du CBu L s Du L s

CA Bu CA Bu CA Bu L s

CA Bu CA Bu CA Bu L s

Du s Du s Du L

  

  

  
 

       
 
 

  
 
    

 
        

       

                                                                                                                                                      

  

2.7 – Validation of Estimated Model 

 

In order to validate the estimated output, the following approaches may be used [14]:  

 

 Compare the estimated output to the actual output [14]. It is known that the  

 

difference between the estimated output and actual output would be the  

 

innovation term   , as outlined in Equations (2.28) and (2.30).  

 

 Analysis of autocorrelation and cross-correlation of residuals with input. 

 

 Analysis of model response in terms of impulse, step, or frequency response  

 

plots [14]. 

 

 Considering plots of poles and zeros of linear parametric model [14]. 

 

 Comparison between non-parametric and parametric models [14]. Non- 

 

parametric models would include impulse, step, and frequency response  

 

models; whereas parametric models would include linear polynomial models,  

 

state-space models, and non-linear parametric models [14]. 
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 Comparison between models through Akaike Information Criterion, or Akaike  

 

Final Prediction Error [14]. 

 

 Making linear and non-linear plots for Hammerstein-Wiener and non-linear  

 

ARX models [14]. 

 

 In order to validate the model, the block diagram representation given for a linear  

 

time-invariant system is used, as shown in Figure-2.1 [15]:  

 

 

  

 

                                                 

                                 

                                +                                                             +           + 

u(t)                                                                                                                  y(t) 

                                         + 

 

 

 

Figure-2.1: State Equation Block Diagram Representation [15] 

 For the basis system shown in Equations (2.1) and (2.2), the block  

diagram representation is derived to be as shown in Figure-2.2, to validate the  

result for estimation of    . 

 

 

 

 

 

 

  ∑ 

  

    ∑ 
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                                +                                                                +           

u(t)                                                                                                                                         

                                         +                                                       + 

 

 

 

 

Figure-2.2: Block Diagram Representation for the system in Equations (2.1) & (2.2) 

in continuous time 

 

2.8 – Rank & Error Squared Minimization 

 

In order to minimize the rank, Equation (2.30) is used by evaluating rank of      

 

term, which is the same as rank of                term: 

  

   

                          
                                                                                  

  

 In the above equation,      is a lower triangular block-Toeplitz matrix, meaning  

 

that all elements in the matrix above the main diagonal are zero.    is a block-Hankel  

 

matrix having p column vectors.  

 

 To obtain the error squared, the matrix obtained through computing the difference  

 

between the actual output and the estimated output is multiplied by the transpose matrix  

 

obtained from computing the transpose of the difference between the actual output and  

 

the estimated output. The expectation operator is applied on the resulting product to yield  

 

  ∑ 

  

  ∑ 

 

  

  D 

ʃ 
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the mean value. Lastly, the minimum is computed to get the smallest value of the set. 

 

                             
 
                                                                                   

 

2.9 – Null Space 

 Consider T as a linear transformation of     [16]. The nullspace of T is  

represented as the set of all vectors X such that T(X)=0 [16]. In Matlab™, the ‘null’  

command provides an orthonormal basis for null space of the respective matrix being  

considered [17]. 

 

 A matrix    is defined to be the orthogonal complement of   [15]. It is considered  

 

that the columns of    span the null space of   . Therefore, upon multiplication, the  

 

       term goes to zero. The resulting equation after the multiplication is as follows: 

 

                                                                                                                                            

 

2.10 – Nuclear Norm System Identification 

 

 In order to obtain a solution to the system by utilizing nuclear norm minimization,  

 

a technique presented by Liu and Vandenberghe in the paper titled Interior-point method  

 

for nuclear norm approximation with application to system identification is used as  

 

shown below [18]: 

 

        

  
                 

 

   

                                                                                 

 

 In the above equation,   is the Lagrange Multiplier.  
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2.11 – Proposed Iterative ADMM Algorithm 

 

 The first approach considered is the one presented in the thesis titled “System  

  

Identification via Nuclear Norm Regularization” by Harshad Deshmane [3]. In this  

 

approach, a deterministic discrete-time linear time-invariant state-space model of the  

 

following form is considered as the basis model [3]: 

 

                                                                                                                         

 

                                                                                                                               

       

It is evident from Equations (2.37) and (2.38) that the stochastic model containing  

 

process and measurement noise as given in Equations (2.1) and (2.2)is altered to be a  

 

deterministic model as shown in Equations (2.37) and (2.38) in order to implement the  

 

Iterative ADMM method [3]. This approach is outlined in Harshad Deshmane’s thesis  

 

[3].  

 

From this thesis, derivations are made to prove the different steps of the Iterative  

 

ADMM algorithm [3]. Firstly, the minimization problem is shown to lead to a local  

 

minimum point [21, 22]. From Deshman’s thesis, H(y) is equal to Hankel of output  

 

matrix Y [3]. Therefore, in all equations, formulae, and matrices that are presented from  

 

here on forward; each instance of H(y) is changed to Y [3]. Using the Lagrange  

 

Multiplier Theorem, the minimization problem is given as [21, 22]: 

 

                                                                                                                 

 

 In Equation (2.39), U is represented as follows [3]: 
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                                                       (2.40) 

 

 In Equation (2.39), Y:               ; and Z is represented as a substitution  

 

of        [3].  

 

Let        , and let     be a local minimum point [21, 22]. Then there exist a  

 

Lagrange Multiplier Ʌ such that [21, 22]: 

 

       

  
    

        

  
                                                                                                       

A Lagrange function is defined as [21, 22]: 

 

                                                                                                                          

 

 Equation (2.41) leads to the following results [21, 22]: 

 

                                                                                                                                              

 

          

   
                                                                                                                                    

 

         

  
                                                                                                                             

 

 Equations (2.43), (2.44) and (2.45) represent that L is stationary with respect to   

 

variables    and   [21, 22]. This can be regarded as an unconstrained function          

 

[21, 22]. All points that satisfy conditions of the theorem presented in Equations (2.39)  

 

through (2.45) are candidate minimum points, whereas those that don’t satisfy these  

 

conditions are not local minimum points [21, 22]. 
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 Through use of Lagrange multipliers, the minimization problem can be solved  

 

with the following necessary conditions [21, 22]:  

 

   

  
  

  
 
        

 
 

  
 

                

  
 

  
 
           

  

  
   

                     

   

  
 

          

  
 

                

  
 

  
 
           

  

  
    

                              

   

  
 

                

  
    

                       

 The three non-linear equations cannot be solved for   ,    , and   , since the  

 

respective dimensions are too large for that purpose. 

 

2.12 - Detailed Iterative ADMM Algorithm 

 

 Following the proof from the preceding section for the minimization problem  

 

given in the thesis titled “System Identification via Nuclear Norm Regularization” by  

 

Harshad Deshmane, the Iterative ADMM algorithm from that thesis is now discussed [3]. 

 

The algorithm is divided into three steps as follows [3]: 

 

 Initialize values of   ,   ,    [3]. Choose ρ to be positive [3]. 

  

Step1:  

Let             and              (if applicable) (  and   are outer & inner 

line search iteration counters respectively) 

 

In the case that there is no fixed termination criteria, compute the following [3]: 

 

                                                                                                             

                                               

In Equation (2.49),      is calculated based on the Barzilai-Borwein method: 
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where                            is dot product of          and           ,                                                                                

 

    represents current output,      represents output from previous iteration,                                                                                 

 

    represents current gradient,      represents gradient from previous iteration     

                                                                             

                                                                                                                                

 

           can be derived from the augmented Lagrangian presented in  

Deshmane’s thesis as follows [3]:  

 

                   
 

 
       

 
               

 

 
         

 

 
               

 

              can be taken from the gradient of the augemented Lagrangian  

presented in Deshmane’s thesis as follows [3]: 

 

                                                                     

 

Step2:  

 Compute the singular-value-decomposition through the following steps [3]: 

                                                                                                                      

 

For incrementing Z, do the following [3]: 

             
 

 
                                                                                                      

  

In Equation (2.54) and (2.55), variables are defined as follows [3]: 

 

 U: Hankel of input matrix [3] 

 

W, ∑, V: can be found from svd command in Matlab™ through singular-value- 

decomposition of right-side of Equation (2.54) [3] 

 

        : block Hankel matrix is given as H(y) and is substituted with Y [3] 
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 ρ: positive scalar, kept constant at 1 [3] 

 

 Ʌ: Lagrange multiplier or dual variable [3] 

 

 Z:       is used as substitution in minimization problem [3] 

 

 I: identity matrix [3] 

 

 : regularization parameter that is varied to compute the results of the Iterative 

ADMM algorithm for various values of this parameter, in order to arrive at a 

value that gives best estimation results for   having least error when compared to 

actual output data [3] 

 

Step3:  

 The Lagrange multiplier is incremented as follows [3]: 

 

                                                                                                    

                              

 

In Equation (2.56), variables are defined as follows [3]: 

 

Ʌ: Lagrange multiplier or dual variable [3] 

 

ρ: positive scalar [3] 

 

        : block Hankel matrix is given as H(y) and is substituted with Y [3] 

 

     :              is used as substitution in minimization problem [3] 

 

2.13 – Tabu Search Optimization 

 

 Aside from the Iterative ADMM method discussed in Sections 2.11 and 2.12,  

 

Tabu Searh Optimization is used as the second method for minimization and System  

 

Identification. A deterministic system, as represented in Equations (2.37) and (2.38) is  

 

considered as the basis system, in order to apply Tabu Search Optimization and Iterative  

 

ADMM, and thereby provide for possibility of analyzing and comparing performance of  
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both methods. 

 

Tabu Search aims at finding the best possible solution through iteratively  

 

searching and moving from a current solution to a better solution [19]. Through the  

 

search, paths taken are stored in the tabu list [19]. With this list, directions for new moves  

 

are determined that would yield a better local optimum solution, in turn leading to the  

 

global optimum solution [19]. Tabu Search can be broken down into the following steps  

 

[19]: 

 

1) Choose a random initial solution So from a search area having radius R [19].  

 

Solution So would be the current local optimum solution [19]. 

 

2) By random choice, N new solutions are selected through moving the current  

 

solution around So in the search space. Set       would be comprised of N  

 

solutions [19]. 

 

3) Utilize the objective function to evaluate the cost value of each member in        

 

[19]. From these, choose the best solution which would be the one with minimum  

 

cost [19, 20]. 

 

4) Compare the cost of the best solution obtained in step (3) to the cost of the  

 

solution obtained in step (1) [19, 20]. 

  

5) If the cost of the best solution from step (3) is greater than or equal to the cost of  

 

the solution from step(1), then leave So unchanged [19, 20]. Else, if the cost of the 

 

solution from step (3) is less than the cost of the solution from step (1), store the  
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best solution from step(3) in So [19, 20]. The solution with the minimum cost is  

 

the best solution [19, 20]. 

 

6) Store the best solution from step (5) in the tabu list [19, 20]. 

 

7) Repeat the process from step (2) through step (6) until the maximum number of  

 

iterations are reached [19, 20]. 

 

2.14 – Eigen-System Realization 

 

 Eigen-System Realization Algorithm (ERA) is utilized in order to identify the  

 

system using estimated output from the two estimation techniques discussed in the  

 

preceding Sections of 2.12 and 2.13 [23]. This algorithm aims to use the discrete impulse  

 

response    for constructing a square block Hankel matrix      as shown in (2.57) [23,  

 

24]. A second square block Hankel matrix      is obtained by shifting every column in  

 

the original block hankel matrix      by one unit to the left [23, 24]. Singular-value- 

 

decomposition is performed on     , the result of which are the matrices   ,   , and    
   

 

[23]. From the results of singular-value-decomposition, a matrix                  is  

 

obtained, where   represents the order of the system; that is for a second-order system,    

 

is equal to 2 [23]. Observability and Controllability matrices are calculated through using  

 

Equations (2.58), and (2.59) shown below with respect to order of system being   [23].  

 

System matrices A, B, C, and D are calculated through use of Equations (2.60) through  

 

(2.63) [23]. Once the system matrices are known, it is possible to calculate a discrete- 

 

time or a continuous-time transfer function using Matlab™   3   
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CHAPTER 3.0 – IMPLEMENTATION OF ITERATIVE ADMM 

METHOD 

 

Matlab™ and Simulink™ software are used in order to programmatically  

 

implement the Iterative ADMM method discussed in the preceding chapter [3]. Steps  

 

involved in implementing this method are described in this chapter, and associated  

 

Matlab™ code can be found in Appendix A [3]. For the purpose of explaining the  

 

procedure, the benchmark system 1 shown in equation (3.1) will be utilized [25]. 

 

3.1 - Obtaining Discrete-Time Transfer Function  

 

The first step is to analyze a benchmark research paper, and obtain a system  

 

transfer function from it. If the transfer function is in discrete-time, then it is used as is. If  

 

the transfer function is in continuous-time, then it is converted to its discrete-time  

 

equivalent using Matlab™ with a sample time of 0.1 seconds. The corresponding  

 

discrete-time transfer function for system 1 is as follows [25]: 

 

      
              

                  
                                                                                                

 

3.2 – System Matrices & Eigen-Values of Discrete-Time Transfer Function 

 

The second step is to obtain the system matrices A, B, C, D, and the eigen-values  

 

of A matrix for the discrete-time system transfer function using Matlab™. Steps outlined  

 

in Sections 3.1 and 3.2 are achieved through Matlab™ code for Main Program shown in  

 

Appendix A Section A1. A screen-shot of Matlab™ is shown in Figure-3.1 below. Part of  

 

the script of Main.m that performs steps in Sections 3.1 and 3.2 is shown in the center,  
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part of the output of running the script is shown in the Command Window at the bottom,  

 

and resulting variables including discrete-time transfer function model Hd, system  

 

matrices A, B, C, D, and eigen-values of A matrix A_eig are shown in the Workspace  

 

section in the bottom left. 

 

 
Figure-3.1: Matlab™ Window showing Main.m 

 

3.3 – Input, Output, & Measured Output Data Matrices from Simulink™ 

 

The discrete-time transfer function is described as a block in Simulink™. Due to  

 

not having measured data readily available, the measured output is obtained by using a  

 

transfer function that is a slight modification (coefficients for respective powers of z are  

 

close but not exactly equal) of the original discrete-time transfer function, to simulate the  

 

measured output data that is close to but not exactly equal to the actual ouput. A pseudo- 

 

random signal with sample time of 0.1 seconds is used as the input. Upon running the  
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Simulink™ model, the input, output, and measured output data matrices, all being  

 

1001x1 in size are obtained in Matlab™ workspace. These are saved with appropriate  

 

naming convention in the current directory, eg: Input0208 and Output0208 are saved as  

 

‘iodataactual0208.mat,’ and the measured output is saved as ‘OutputMeasured0208.mat,’  

 

where ‘0208’ is the system identifier for the benchmark system being considered.  

  

 As shown in Figure-3.2 below, the Band-Limited White Noise and Sign blocks  

 

comprise the pseudo-random input with sample time of 0.1 seconds. The system transfer  

 

function is seen in the block titled Model (Actual Output without noise – Discretized).  

 

Transfer function used for generating the measured data close to actual output data is  

 

shown in block titled Model (Estimated by slightly modifying original transfer function  

 

above, used to generate measured output that is close to but not exactly equal to the  

 

actual output). Block Output0208G performs the function of placing actual output of the   

 

system in Matlab™ workspace to be used by programs contained therein, and similarly,  

 

block for OutputMeasured0208G and block Input0208G place measured output and input  

 

of the system in the workspace. The button with a green arrow symbol in the top-left can  

 

be clicked to run the model, and the scope seen in the center right titled Output can be  

 

double-clicked to view graphical representation of the behavior of all four models versus  

 

time.  

 

 Estimated transfer functions through Iterative ADMM and Tabu Search are shown  

 

in the last two blocks in the center respectively. The block OutputEstimated0208G places   
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the estimated output in the Matlab™ workspace. Details of arriving at the estimated  

 

transfer functions using Iterative ADMM and Tabu Search will be explained in more  

 

detail in the following Sections. 

 

 
Figure-3.2: Simulink™ Window showing Block model for System0208G 

 

3.4 – Initializations 

 

 Initialization operations are performed including variable declarations, and  

 

construction of appropriate matrices to be used in inner and outer line-search routines. 

 

Matlab™ code for Get Data Function and Main Program shown in Appendix A Sections  

 

A7 and A1 respectively perform these functions, which are as follows: 

 

 Output data matrix is initialized as global variable y of size 1001x1.  

 

 Input data matrix is initialized as global variable u of size 1001x1. 

 

 Measured data matrix is initialized as global variable y_hat of size 1001x1. 



 

26 
 

 

 Number of rows of input data matrix is stored as m. 

 

 Number of rows of output data matrix is stored as p. 

 

 Number of columns of input and output data matrices, both being equal, is  

 

stored as N. 

 

 Block row dimension for construction of Hankel matrices is initialized as r=2,  

 

to construct Hankel matrices having two rows. 

 

 Measured data from y_hat is stored in variable b. 

 

 Positive scalar rho is initialized with value of 1. 

 

 Uperp is calculated by first building Hankel matrix from input matrix u, and  

 

taking null-space of the result. 

 

 Regularization parameter Gamma is initialized with value of 1. 

 

 Maximum possible number of iterations for inner-line-search is initialized as  

 

20. 

 

 Maximum possible number of iterations for outer-line-search is initialized as  

 

20. 

 

 Stopping tolerance for inner-line-search is initialized as 0.001. 

 

 Y is built as hankel matrix of output data matrix. 

 

 Z is initialized as a matrix of zeros with proper dimensions of 2x998 for the  

 

algorithm and the system. 

 

 lagrangemultiplier is initialized as a matrix of zeros with proper dimensions of  
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2x998 for the algorithm and the system. 

 

3.5 – Inner & Outer Line Search Routine 

 

 Following steps of preceding Sections 3.1 – 3.4, a basis has been established to  

 

execute inner and outer line-search routines for the system. This is done through the 

 

Matlab™ code shown in Appendix A Section A8. This function is designed to take in  

 

as inputs the following: output data matrix y as yinit, Z matrix, and lagrangemultiplier  

 

matrix. Outputs of the function could be any of the calculated parameters from within the  

 

function. The collective functioning of the inner and outer loops is described in Figure- 

 

3.3 flow diagram on the following page.  

 

 A factor of 25 is multiplied into the ratio of Gamma/rho in the Matlab™ code  

 

show in Appendix A Section A8.  Having rho fixed at 1, this factor could be regarded as  

 

the value of Gamma that would yield a reasonable estimate of the original system. Value  

 

of 25 for this factor was determined through executing the inner and outer line-search  

 

function for various values, and observing how close the estimated output ynew was to  

 

the actual output yinit for each value of this factor by calculating estimation error for  

 

each value of gamma [3]. This value of 25 is not the optimal value of Gamma for this  

 

system, as it doesn’t yield perfect estimation results, and further investigation in terms of  

 

the range of values of Gamma could be done to determine Gamma that would give  

 

optimal estimation results [3]. 
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3.6 – Eigen System Realization for System Identification 

 

 Following execution of inner and outer line-search routines, an estimation result  

 

has been obtained in the form of a matrix of the same dimensions as the original output  

 

data matrix of the system simulated in Simulink™. Using this estimated result, it is  

 

desired to identify the estimated system by finding associated system matrices A, B, C,  

 

and D.  

 

 Eigen-system realization is used for identification of estimated system. First step  

 

is to obtain a discrete-time impulse response. Matlab™ code for obtaining a discrete-time  

 

impulse response using estimated output ynew and original input Input0208G is shown in  

 

Appendix A Section A9. Firstly, an iddata object is created using ynew, Input0208G, and  

 

sample time of 1 second. Second, a transfer function estimate with 2 poles, 1 zero,         

 

io-delay of 1, and sample-time of 1 second is made. Using this estimated transfer  

 

function, a discrete-time impulse response is obtained to be used in eigen-system  

 

realization algorithm.  

 

 Using the discrete-time impulse response, eigen-system realization algorithm is  

 

computed through the Matlab™ code in Appendix A Section A10. The order of the  

 

model is 2 since it is desired to estimate a system with two poles, so as to estimate a  

 

model of the same order as the original system. The number of samples to construct the  

 

Hankel matrix can be any number that is at least two units less than number of columns  

 

of the impulse response matrix. The sample time is taken as 0.1 seconds, and def is set to  
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1 to yield estimation in discrete-time. The developed Matlab™ code implements the  

 

procedure outlined for the eigen-system realization introduced in Section 2.14, and  

 

performs the following steps: 

 

 Construction of hankel matrix from discrete-time impulse response. 

 

 Construction of second hankel matrix by shifting each column of original  

 

hankel matrix by one unit to the left. 

 

 Singular-Value-Decomposition, and computation of observability and  

 

controllability matrices with respect to the model order of 2. 

 

 Evaluation of system matrices A, B, C, and D. 

 

 Determination of discrete-time transfer function, and eigen-values of A  

 

matrix, to compare to the transfer function and eigen-values of original  

 

system. 
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CHAPTER 4.0 – IMPLEMENTATION OF TABU SEARH METHOD 

 

Matlab™ software was used in order to programmatically implement the  

 

Tabu Search method discussed in the Chapter 2.0 [3]. Steps involved in implementing  

 

this method are described in this chapter, and the associated Matlab™ code can be found  

 

in Appendix B [3]. For the purpose of explaining the procedure, benchmark system 1  

 

given in equation (3.1) will be utilized [25]. 

 

4.1 - Initializations 

 

Initialization operations are performed including variable declarations, and  

 

construction of appropriate matrices to be used in searching for best solution with  

 

minimum cost. The developed Matlab™ code for Simple Tabu Search Main Program is  

 

shown in Appendix B Section B1 to perform the following initializations: 

 

 Dimension of solution nx is initialized as 1001, due to 1001 data points.  

 

 Maximum maxx and minimum minx of search space are initialized as 100 and  

 

-100 respectively, as this is sufficient space for optimally searching and  

 

arriving at minimum solution. 

 

 Length of tabu-list tll is initialized as 5. 

 

 Length of promising-list pll is initialized as 5. 

 

 Tabu ball radius is initialized as r = 2.5/100*(maxx-minx) = 62.5x10^-6 

 

 Radius of neighborhood is initialized as r1 = r/2 = 31.25x10^-6 

 

  Promising ball radius is initialized as r3 = r1/2 = 15.625x10^-6 
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 Number of neighborhoods n1 is initialized as 25. 

 

 Number of iterations nd is initialized as 100. 

 

 x is assigned the value of Output0208G transposed, for it to be a row-vector. 

 

4.2 – Cost Function 

 

Cost function to be minimized is implemented from Deshmane thesis, and is  

 

shown in Equation (4.1) [3].  

 

        

   
                     

 

 
                                                                                    

 

 This function is programmatically implemented using Matlab™, the code for  

 

which is shown in Appendix B Section B2. For system 1, value of gamma that yields a  

 

somewhat close estimation to the original output is 25.      is the Hankel matrix of the  

 

output data matrix y having 2 block rows.   is the matrix of null-space of the Hankel of  

 

input data matrix u, and b is measured output generated from Simulink™ as described in  

 

Sections 3.3 and 3.4.  

 

4.3 – Creation of Neighbors 

 

 Creation of neighbors is a necessary step in implementation of Tabu Search  

 

algorithm. The developed Matlab™ code for creating neighbors is given in Appendix B  

 

Section B4. The code aims at computing difference between outer and inner diameters,  

 

randomizing the difference, evaluating diameter for each neighbor, and evaluating theta  

 

and xcomp. This is done for each dimension, and using the final result for xcomp,  
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xneighbor is computed for each neighborhood as candidate element from the  

 

neighborhood. 

 

4.4 – Tabu Ball Verification  

 

 In order to verify that position of candidate element is contained within the Tabu  

 

ball, the Matlab™ code given for Tabu Ball Verification Function in Appendix B Section  

 

B3 is utilized. This function checks whether a given element from Tabu-list is contained  

 

within the pre-specified Tabu-ball radius. If the verification succeeds, then the flag is set  

 

to zero, and position of element is within Tabu ball. If verification doesn’t succeed, the  

 

flag is set to one, and position of element is not within Tabu ball. 

 

4.5 – Main Loop for Tabu Search Algorithm  

 

 Through sub-blocks described in Sections 4.1-4.4, it is possible to implement  

 

Tabu search algorithm for computing solution with minimum cost. This is performed in  

 

the main loop section of Matlab™ code shown in Appendix B Section B1. Following are  

 

the steps carried out in main loop: 

 

 The main loop is executed for k ranging from 1 till 100. 

 

 The first step is to create neighbors as described in Section 4.3, based on  

 

radius of neighborhood, number of neighborhoods, dimension of solution, and  

 

candidate elements given by x.  

  

 Secondly, all candidate elements in the given neighborhood are selected one at  

 

a time, with their corresponding cost also being evaluated. The element with  
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the least cost is stored as bestelement, and its cost as minimumcost.  

 

 Using the determined bestelemnt from the previous step, it is checked if this  

 

element is within the pre-defined Tabu ball of given radius using the Tabu  

 

Ball Verification method in Section 4.4. If bestelement is within Tabu ball,  

 

and if the cost of bestelement is greater than initially determined  

 

globalbestcost, then candidate element is moved by assigning it value of the  

 

25
th

 element in neighborhood. The minimum cost is set to be cost of this  

 

candidate element with respect to the considered cost function. 

 

 It is checked if minimumcost is less than globalbestcost. If this is the case, the 

 

value of xtest is assigned to candidatex, and cost of candidate for specific cost  

 

function considered is assigned to minimum cost. If minimumcost is not  

 

greater than globalbestcost, then candidatex is assigned the value of x(k,:),  

 

where k would be the current iteration value, and cost of candidate for specific  

 

cost function considered is assigned to minimum cost. 

 

 The search limit set for the Tabu Search algorithm is checked, in that, it is  

 

checked if the position of candidate element is within the bounds specified for  

 

searching. Maximum possible value for search space is maxx and least  

 

possible value for it is minx. If position of candidate element is greater than  

 

maxx, then the position of the element is set to maxx, and minimumcost is set 

 

to the cost of the candidate element through the respective cost function.  
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Similarly, if position of candidate element is lesser than minx, then the  

 

position of the element is set to minx, and minimumcost is set to the cost of  

 

the candidate element through the respective cost function.  

 

 After the steps outlined above, the position of (k+1) element is assigned the  

 

value of candidatex. The value of mincost for the k
th

 element is assigned to the  

 

cost of the (k+1) element for the respective cost function being considered.  

 

 It is checked if the least cost of the k
th

 element is less than globalbestcost  

 

computed in an earlier step in main loop. If that is the case, then  

 

globalbestcost is assigned value of mincost of k
th

 element. Counter is  

 

incremented, and the counter value element of globalbestx is assigned the  

 

value of (k+1) element of x. 

 

 The Tabu list is updated by moving each element one position down, and the  

 

top position is filled with (k+1) element of x. 

 

 If the dimension of solution being considered is less than 3,  then two plots are  

 

generated, first plot being shown is the position of the agent as it moves to  

 

search for the global minimum solution, and second,  a plot for the minimum  

 

cost with respect to the iteration index is shown. 

 

 The last step is to output the global best solution for the position that gives  

 

globally the most minimum cost, the value for global best cost, and  

 

computation-time for executing Tabu Search algorithm. 
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CHAPTER 5.0 – OPTIMIZATION METHODS COMPARED 

 

 After results have been obtained from Iterative ADMM and Tabu Search  

 

alogorithms, it is desired to analyze the results in comparison to the true system. For this  

 

purpose, twelve systems from benchmark research papers presented at the 17
th

 IFAC  

 

Symposium on System Identification (Beijing International Convention Center, October  

 

19-21, 2015, Beijing, China) are considered, and key metrics for each system are  

 

individually computed and compared [25 - 29]. Results for Iterative ADMM and Tabu  

 

Search optimization are presented and compared to the true system as shown in  

 

Equations (5.2) through (5.37),Tables 5.1 through 5.12, and Figures 5.1 through 5.24.  

 

Key findings from the results are summarized as follows: 

 

Number of Iterations:  

 

Iterative ADMM uses more iterations than Tabu Search, due to Tabu Search  

 

method arriving at an optimal solution with minimum cost, and Iterative ADMM method  

 

not being able to arrive at fully optimal solution with minimum cost, thereby requiring  

 

more number of iterations for computation of minimal solution. 

  

Computation Time:  

 

Iterative ADMM is faster using less computation-time than Tabu Search.  

 

Error:  

 

Iterative ADMM has certain spikes of very high percent error caused due to a  

 

non-optimal value of gamma being used. This could be improved by testing the Iterative  
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ADMM method for a broader range of regularization parameter gamma, to arrive at the  

 

value that would yield better results [3]. Tabu Sarch, being fully optimized, is able to  

 

give zero percent error for all systems. Identification error for Iterative ADMM gives a  

 

measure of how close the estimation is to the actual output, and is calculated as follows  

 

[3]: 

 

         
           

       
                                                                                                                

 

Characteristic: 

 

Characteristic behavior of Iterative ADMM estimation is close for some systems,  

 

and not so close for others, due to optimal value of gamma not being known for all  

 

individual systems. The behavior of Tabu Search estimation result is such that it always  

 

perfectly matches to the true system due to it being fully optimized. 

 

Eigen-Values of A Matrix:  

 

The extracted eigen-values of A matrix of Iterative ADMM estimation are close  

 

to the true system A matrix eigen-values for some systems, but not for all systems. This is  

 

caused by a non-optimal value of gamma being used, thereby decreasing the accuracy of  

 

discrete-time impulse response used for eigen-system realization to obtain system  

 

matrices. Eigen-values of the A matrix of Tabu Search estimation are closer - but not  

 

exactly equal for all systems - to those of the true system. Slight inaccuracy in this case is  

 

caused by the chosen sample time and number of samples used for obtaining discrete- 

 

time impulse response and eigen-system realization for obtaining system matrices. 
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Recovering Wiener-Hammerstein Nonlinear State-Space Models Using Liner 

Algebra (P. Dreesen, M. Ishteva, and J. Schoukens, 2015)-System 1 [25] 

           
              

                  
                                                                                           

               
     

                       
                                                                       

                 
     

                    
                                                                         

Table-5.1: Iterative ADMM & Tabu Search Results – System 1 [25] 

 Iterative ADMM Tabu Search True System 

# of iterations 151 100 - 

Computation Time 0.3828 136.4569 - 

Gamma Value 25 25 - 

Error Identification Error=58.0721% Percent Error=0% - 

Characteristic Very Close, Needs 

Optimization 

Exact Match - 

A Eigenvalue 1 -0.7677 -0.4576 -0.5 

A Eigenvalue 2 0 -0.3138 -0.25 

 
 Figure-5.1: Iterative ADMM Output & Actual Output Compared – System 1 [25] 

 
 Figure-5.2: Tabu Search Output & Actual Output Compared – System 1 [25] 
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Recovering Wiener-Hammerstein Nonlinear State-Space Models Using Liner 

Algebra (P. Dreesen, M. Ishteva, and J. Schoukens, 2015)-System 2 [25] 

           
                         

                   
                                                                             

               
                     

                           
                                                                   

                 
                       

                            
                                                              

Table-5.2: Iterative ADMM & Tabu Search Results – System 2 [25] 

 Iterative ADMM Tabu Search True System 

# of iterations 201 100 - 

Computation Time 0.8775 128.7338 - 

Gamma Value 427.3409 427.3409 - 

Error Identification Error=42.1145% Percent Error=0% - 

Characteristic Very Close, Needs 

Optimization 

Exact Match - 

A Eigenvalue 1 0.5445 + 0.4982i 0.5096 + 0.4997i 0.5000 + 0.5000i 

A Eigenvalue 2 0.5445 – 0.4982i 0.5096 - 0.4997i 0.5000 - 0.5000i 

A Eigenvalue 3 0.5927 + 0.0000i 0.5289 + 0.0000i 0.5000 + 0.0000i 

 
Figure-5.3: Iterative ADMM Output & Actual Output Compared – System 2 [25]

 
Figure-5.4: Tabu Search Output & Actual Output Compared – System 2 [25] 
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Version 7.0 of the CONTSID Toolbox (A. Padilla, H. Garnier, and M. Gilson, 2015)-

System 1 [26] 

           
                               

                                        
                                                           

               
                                 

                                        
                                                

                 
                                  

                                        
                                            

Table-5.3: Iterative ADMM & Tabu Search Results – System 1 [26] 

 Iterative ADMM Tabu Search True System 

# of iterations 179 100 - 

Computation Time 1.0068 173.6016 - 

Gamma Value 8.9437 8.9437 - 

Error Identification Error=36.7502% Percent Error=0% - 

Characteristic Very Close, Needs 

Optimization 

Exact Match - 

A Eigenvalue 1 0.9398 + 0.1843i 0.9363 + 0.1839i 0.9328 + 0.1834i 

A Eigenvalue 2 0.9398 – 0.1843i 0.9363 – 0.1839i 0.9328 – 0.1834i 

A Eigenvalue 3 -0.1932 + 0.7219i -0.3621 + 0.6676i -0.3338 + 0.7444i 

A Eigenvalue 4 -0.1932 – 0.7219i -0.3621 – 0.6676i -0.3338 – 0.7444i 

 
Figure-5.5: Iterative ADMM Output & Actual Output Compared – System 1 [26] 

Figure-5.6: Tabu Search Output & Actual Output Compared – System 1 [26] 
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Version 7.0 of the CONTSID Toolbox (A. Padilla, H. Garnier, and M. Gilson, 2015)-

System 2 [26] 
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Table-5.4: Iterative ADMM & Tabu Search Results – System 2 [26] 

 Iterative ADMM Tabu Search True System 

# of iterations 187 100 - 

Computation Time 0.9257 135.1128 - 

Gamma Value 17.6022 17.6022 - 

Error Identification Error=69.9599% Percent Error=0% - 

Characteristic Moderately Close, Needs 

Optimization 

Exact Match - 

A Eigenvalue 1 -0.4482 + 0.000i 0.9354 + 0.1865i 0.9319 + 0.1861i 

A Eigenvalue 2 -0.0708 + 0.8303i 0.9354 – 0.1865i 0.9319 – 0.1861i 

A Eigenvalue 3 -0.0708 - 0.8303i -0.3626 + 0.6719i -0.3349 + 0.7476i 

A Eigenvalue 4 0.6764 + 0.0000i -0.3626 - 0.6719i -0.3349 – 0.7476i 

 
Figure-5.7: Iterative ADMM Output & Actual Output Compared – System 2 [26] 

Figure-5.8: Tabu Search Output & Actual Output Compared – System 2 [26] 



 

42 
 

Version 7.0 of the CONTSID Toolbox (A. Padilla, H. Garnier, and M. Gilson, 2015)-

System 3 [26] 
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Table-5.5: Iterative ADMM & Tabu Search Results – System 3 [26] 

 Iterative ADMM Tabu Search True System 

# of iterations 149 100 - 

Computation Time 0.7612 135.1274 - 

Gamma Value 0.9346 0.9346 - 

Error Identification Error=43.3266% Percent Error=0% - 

Characteristic Very Close, Needs 

Optimization 

Exact Match - 

A Eigenvalue 1 0.8662 + 0.0820i 0.8449 + 0.0665i 0.8185 + 0.0189i 

A Eigenvalue 2 0.8662 – 0.0820i 0.8449 – 0.0665i 0.8185 – 0.0189i 

 
Figure-5.9: Iterative ADMM Output & Actual Output Compared – System 3 [26] 

 
Figure-5.10: Tabu Search Output & Actual Output Compared – System 3 [26] 
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Identification of block-oriented systems with rate saturation nonlinearity (A. Y. K. 

Yong, A. H. Tan, and C. L. Cham, 2015)-System 1 [27] 
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Table-5.6: Iterative ADMM & Tabu Search Results – System 1 [27] 

 Iterative ADMM Tabu Search True System 

# of iterations 153 100 - 

Computation Time 0.7766 136.7983 - 

Gamma Value 75 75 - 

Error Identification Error=89.4514% Percent Error=0% - 

Characteristic Moderately Close, Needs 

Optimization 

Exact Match - 

A Eigenvalue 1 0.7898 + 0.2662i 0.7054 + 0.3907i 0.7500 + 0.3708i 
A Eigenvalue 2 0.7898 - 0.2662i 0.7054 - 0.3907i 0.7500 - 0.3708i 

 
Figure-5.11: Iterative ADMM Output & Actual Output Compared – System 1 [27] 

 
Figure-5.12: Tabu Search Output & Actual Output Compared – System 1 [27] 
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Identification of block-oriented systems with rate saturation nonlinearity (A. Y. K. 

Yong, A. H. Tan, and C. L. Cham, 2015)-System 2 [27] 

           
                       

                           
                                                                           

               
                               

                            
                                                      

                 
                           

                           
                                                          

Table-5.7: Iterative ADMM & Tabu Search Results – System 2 [27] 

 Iterative ADMM Tabu Search True System 

# of iterations 125 100 - 

Computation Time 0.5013 142.2242 - 

Gamma Value 25 25 - 

Error Identification Error=90.3023% Percent Error=0% - 

Characteristic Moderately Close, Needs 

Optimization 

Exact Match - 

A Eigenvalue 1 0.9461 + 0.0000i 0.9438 + 0.0000i 0.9427 + 0.0000i 

A Eigenvalue 2 0.7854 + 0.3142i 0.7431 + 0.3500i 0.7542 + 0.3720i 

A Eigenvalue 3 0.7854 – 0.3142i 0.7431 - 0.3500i 0.7542 – 0.3720i 

 
Figure-5.13: Iterative ADMM Output & Actual Output Compared – System 2 [27] 

 
Figure-5.14: Tabu Search Output & Actual Output Compared – System 2 [27] 
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Identification of block-oriented systems with rate saturation nonlinearity (A. Y. K. 

Yong, A. H. Tan, and C. L. Cham, 2015)-System 3 [27] 

           
                       

                           
                                                                           

               
                             

                            
                                                         

                 
                          

                          
                                                            

Table-5.8: Iterative ADMM & Tabu Search Results – System 3 [27] 

 Iterative ADMM Tabu Search True System 

# of iterations 159 100 - 

Computation Time 0.7058 134.9639 - 

Gamma Value 46.4 46.4 - 

Error Identification Error=87.1189% Percent Error=0% - 

Characteristic Moderately Close, Needs 

Optimization 

Exact Match - 

A Eigenvalue 1 0.8275 + 0.3400i 0.7574 + 0.3540i 0.7452 + 0.3705i 

A Eigenvalue 2 0.8275 - 0.3400i 0.7574 - 0.3540i 0.7452 - 0.3705i 

A Eigenvalue 3 0.8189 – 0.0000i 0.7849 + 0.0000i 0.6236 + 0.0000i 

 
Figure-5.15: Iterative ADMM Output & Actual Output Compared – System 3 [27]

Figure-5.16: Tabu Search Output & Actual Output Compared – System 3 [27] 
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A subspace-based identification of two-channel wiener systems (H. Ase, and T. 

Katayama, 2015)-System 1 [28] 

           
          

            
                                                                                                

               
                   

                 
                                                                         

                 
                   

                  
                                                                         

Table-5.9: Iterative ADMM & Tabu Search Results – System 1 [28] 

 Iterative ADMM Tabu Search True System 

# of iterations 152 100 - 

Computation Time 0.7088 145.6996 - 

Gamma Value 7.02 7.02 - 

Error Identification Error=71.2422% Percent Error=0% - 

Characteristic Very Close, Needs 

Optimization 

Exact Match - 

A Eigenvalue 1 0.8956 + 0.2038i 0.9056 + 0.1959i 0.9000 + 0.2000i 

A Eigenvalue 2 0.8956 – 0.2038i 0.9056 - 0.1959i 0.9000 - 0.2000i 

Figure-5.17: Iterative ADMM Output & Actual Output Compared – System 1 [28] 

Figure-5.18: Tabu Search Output & Actual Output Compared – System 1 [28] 
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A subspace-based identification of two-channel wiener systems (H. Ase, and T. 

Katayama, 2015)-System 2 [28] 
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Table-5.10: Iterative ADMM & Tabu Search Results – System 2 [28] 

 Iterative ADMM Tabu Search True System 

# of iterations 144 100 - 

Computation Time 0.7452 133.8792 - 

Gamma Value 4.4725 4.4725 - 

Error Identification Error=51.4888% Percent Error=0% - 

Characteristic Very Close, Needs Optimization Exact Match - 

A Eigenvalue 1 0.9131 + 0.0000i 0.9012 + 0.0000i 0.9012 + 0.0000i 

A Eigenvalue 2 0.2068 + 0.7576i 0.3037 + 0.7491i 0.3037 + 0.7491i 

A Eigenvalue 3 0.2068 - 0.7576i 0.3037 - 0.7491i 0.3037 - 0.7491i 

A Eigenvalue 4 0.3926 + 0.7460i 0.4157 + 0.6724i 0.4157 + 0.6724i 

A Eigenvalue 5 0.3926 - 0.7460i 0.4157 - 0.6724i 0.4157 - 0.6724i 

Figure-5.19: Iterative ADMM Output & Actual Output Compared – System 2 [28]

Figure-5.20: Tabu Search Output & Actual Output Compared – System 2 [28] 
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A least squares method for identification of feedback cascade systems (M. Galrinho, 

C. R. Rojas, and H. Hjalmarsson, 2015)-System 1 [29] 
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Table-5.11: Iterative ADMM & Tabu Search Results – System 1 [29] 

 Iterative ADMM Tabu Search True System 

# of iterations 175 100 - 

Computation Time 0.7678 159.8861 - 

Gamma Value 1.677 1.677 - 

Error Identification Error=67.9169% Percent Error=0% - 

Characteristic Very Close, Needs 

Optimization 

Exact Match - 

A Eigenvalue 1 0.2944 + 0.6233i 0.1000 + 0.7000i 0.1000 + 0.7000i 

A Eigenvalue 2 0.2944 – 0.6233i 0.1000 - 0.7000i 0.1000 - 0.7000i 

Figure-5.21: Iterative ADMM Output & Actual Output Compared – System 1 [29] 

Figure-5.22: Tabu Search Output & Actual Output Compared – System 1 [29] 
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Version 7.0 of the CONTSID Toolbox (A. Padilla, H. Garnier, and M. Gilson, 2015)-

System 4 [26] 
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Table-5.12: Iterative ADMM & Tabu Search Results – System 4 [26] 

 Iterative ADMM Tabu Search True System 

# of iterations 182 100 - 

Computation Time 0.9399 134.3384 - 

Gamma Value 23.351 23.351 - 

Error Identification Error=72.2935% Percent Error=0% - 

Characteristic Very Close, Needs 

Optimization 

Exact Match - 

A Eigenvalue 1 0.5818 + 0.5584i -0.3611 + 0.6721i -0.3333 + 0.7479i 

A Eigenvalue 2 0.5818 – 0.5584i -0.3611 – 0.6721i -0.3333 – 0.7479i 

A Eigenvalue 3 0.9292 + 0.1889i 0.9367 + 0.1838i 0.9333 + 0.1834i 

A Eigenvalue 4 0.9292 - 0.1889i 0.9367 - 0.1838i 0.9333 - 0.1834i 

Figure-5.23: Iterative ADMM Output & Actual Output Compared – System 4 [26] 

 
Figure-5.24: Tabu Search Output & Actual Output Compared – System 4 [26] 
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CHAPTER 6.0 – CONCLUSION & FUTURE WORK 

 

6.1 – CONCLUSION 

 

 In  this thesis, the author has described the use of Matlab™ and Simulink™ to   

 

build, test, validate, and analyze a tool box for performing Iterative ADMM method that  

 

uses nuclear norm technique for system identification, as outlined by Harshad Deshmane   

 

in his thesis [3].  Secondly, the incorporation and adaption of an existing programmatic  

 

tool to perform Tabu Search optimization for the same system for system identification  

 

has been presented. Matlab™ version 8.5.0.197613 (R2015a) was used for programming  

 

and analysis. Experiments were executed on a 2.40 GHz Intel® Core™ 2 Duo laptop  

 

computer with 4.00 GB of memory, and 64 bit operating system.  Through metrics  

 

presented in Chapter 5.0, it is concluded that Tabu Search optimization program achieves  

 

optimal results for system identification, whereas Iterative ADMM program is able to  

 

perform estimation through varying value of gamma to some accuracy, but is not able to  

 

produce optimal results. 

 

6.2 – FUTURE WORK 

 

Iterative ADMM program could be enhanced to perform estimation for a broad  

 

range of values for regularization parameter gamma, while observing the identification  

 

error. Further automation and adaptation could be performed to the existing program to  

 

yield an optimal solution for a given system. A higher order system could be investigated,  

 

by increasing block-row dimension for construction of Hankel matrices. 
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 In this research work, the gradient descent method is chosen in development of  

 

Iterative ADMM method involving inner and outer line search [3]. Other methods that  

 

could be investigated for development of Iterative ADMM solution include Newton and  

 

Quasi-Newton methods [3]. Newton’s method involves using    as Hessian         [3].  

 

Quasi-Newton methods use    which is an approximation to the Hessian, evaluated from  

 

information about gradient computed at present and past iterates [3]. 

 

 This research utilizes the Barzilai – Borwein method for evaluation of step size  

 

[3]. Two other methods that could be researched that involve different methods for  

 

calculation of step-size are Backtracking line search method and Wolfe line search [3].  

 

Backtracking line search is based on the requirement that step-size    meets the Armijo  

 

condition, while Wolfe line search is based on the requirement that step-size    meets the  

 

curvature condition and the Armijo condition [3]. 
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APENDIX A 

 

A1 –Main Program 

 

% File Name: Main.m 

% Date Created: 10/14/2015 

% Author: Asif Ahmed 

% Description: Harshad Deshmane Thesis, Iterative ADMM Algorithm, 

%              Section 3.3 

% Reference1: Harshad Deshmane, “System Identification via Nuclear  

%             Norm Regularization,” 2014. 

% Reference2: Dr. Kenneth Bosworth, Notes, Idaho State University,  

%             Fall 2015. 

% Reference3: Mathworks, "http://www.mathworks.com/matlabcentral/answers/64384-subtracting-two-

matrices-of-different-size-element-by-element," 2013 

% Reference4: Stackoverflow, "http://stackoverflow.com/questions/738438/removing-zeros-from-a-matrix-

not-sparse," 2013 

% Reference5: Stanford University, "https://see.stanford.edu/materials/lsoeldsee263/05-ls.pdf," 2007 

% Reference6: Mathworks, "http://www.mathworks.com/help/control/ref/impulse.html," 2016 

% _______________________________________________________________________ 

  

%% 

% Define variables: 

global m  

global p  

global N  

global u  

global y_hat   

global y 

global r 

r = 2; % Define r=2 to be used in hank.m 

global b  

% obtain b from y with number of rows = number of elements in y matrix,  

% and 1 colum, to be used in AugLagrangian.m : 

b = reshape(y_hat, [numel(y_hat), 1]);  

global rho 

rho = 1; % Define rho=1, to be used in AugLagrangian.m 

global Uperp  

global Gamma 

Gamma = 1; % Define Gamma=1, to be used in AugLagrangian.m 

global maxitinner %maxitinner for inner iteration inverter.m function 

maxitinner = 20; 

global stoptol %stoptol for inner iteration inverter.m function    

stoptol = 0.001; 

global maxitouter % maxitoutter for outer iteration 

maxitouter = 20; 

  

% Developing U as hankel matrix from u: 

U = hank(u); 

  

% Obtaining orthogonal complement of U: 

Uperp = null(U); 

  

% Developing Y as hankel matrix from y: 
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global Y 

Y = hank(y); 

  

%--------------------------------------------------------------------------  

% Example computation to make matrix dimensions work for the  

% 'AugLagrangian.m' and 'GradLagr.m' functions: 

% Z is generated randomnly with proper dimensions: 

Z = zeros(2, 998);  

% lagrangemultiplier is generated randomnly with proper dimensions: 

lagrangemultiplier = zeros(2, 998);  

%--------------------------------------------------------------------------  

  

%% 

% Simulink Model Transfer Function: 

num = [0.7071 4.2426]; 

den = [1 0.750 0.125]; 

Hd = tf(num, den, 0.1) 

% Hd = 

%   

%     0.7071 z + 4.243 

%   -------------------- 

%   z^2 + 0.75 z + 0.125 

%   

% Sample time: 0.1 seconds 

% Discrete-time transfer function. 

[ A, B, C, D ] = tf2ss(num, den) 

% A = 

%  

%    -0.7500   -1.125 

%     1.0000         0 

%  

%  

% B = 

%  

%      1 

%      0 

%  

%  

% C = 

%  

%     0.7071    4.2426 

%  

%  

% D = 

%  

%      0 

  

% Find eigen-values of A matrix: 

A_eig = eig(A) 

% A_eig = 

%  

%    -0.5000 

%    -0.2500 
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A2 –Hankel Function 

 

% File Name: hank.m 

% Date Created: 10/19/2015 

% Author: Asif Ahmed 

% Description: Harshad Deshmane Thesis, Iterative ADMM Algorithm, 

%              Section 3.3 

% Reference1: Harshad Deshmane, “System Identification via Nuclear  

%             Norm Regularization,” 2014. 

% Reference2: Dr. Kenneth Bosworth, Notes, Idaho State University,  

%             Fall 2015. 

% Reference3: Mathworks, "http://www.mathworks.com/matlabcentral/fileexchange/2290-subspace-

identification-for-linear-systems/content/vanoverschee/SUBFUN/blkhank.m", 2002. 

% _______________________________________________________________________ 

  

function [ A ] = hank( z ) 

  

% r is number of block rows of resulting hankel matrix 

% jj is number of colums of resulting hankel matrix 

  

% Define variables: 

global r; 

  

% assign size of z matrix to k rows and M colums: 

[k, M] = size(z); 

  

% If z is colum vector, obtain z as row vector: 

if M == 1 

% obtain z as row vector with number of columns = number of elements in  

% z matrix, and 1 row: 

z = reshape(z, [1, numel(z)]);  

% Obtain number of rows, and number of colums again: 

[k, M] = size(z);  

end 

  

% Allocate storage for Hankel matrix: 

A = zeros(k*r, M-r+1);  

  

% Compute Number of colums for Hankel Matrix: 

jj = M-r+1; 

  

% Build Hankel matrix based on given z matrix: 

for ii = 1:r 

        A((ii-1)*k+1:ii*k, :) = z(:, ii:ii+jj-1); 

end 

  

return 

  

end 

 

A3 –Hankstar Function 

 

% File Name: Hankstar.m 

% Date Created: 10/19/2015 

% Author: Asif Ahmed 
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% Description: Harshad Deshmane Thesis, Iterative ADMM Algorithm, 

%              Section 3.3 

% Reference1: Harshad Deshmane, “System Identification via Nuclear  

%             Norm Regularization,” 2014. 

% Reference2: Dr. Kenneth Bosworth, Notes, Idaho State University,  

%             Fall 2015. 

% Reference3: Stackoverflow, "http://stackoverflow.com/questions/18816841/obtaining-opposite-diagonal-

of-a-matrix-in-matlab," 2013. 

% Reference4: Mathworks, "http://www.mathworks.com/matlabcentral/answers/48938-delete-element-

from-vector," 2012. 

% Reference5: Mathworks, "http://www.mathworks.com/matlabcentral/newsreader/view_thread/237551," 

2008. 

%__________________________________________________________________________ 

  

function [ A ] = Hankstar( Q ) 

   

% assign size of Q matrix to k rows and M colums: 

[k, M] = size(Q); 

  

% Allocate storage for row vector: 

% If Q contains only 1 row, then A is size 1xM 

if k==1 

    A = zeros(1,M); 

% Elseif Q contains only 1 column, then A is size 1xk 

elseif M==1 

    A = zeros(1,k); 

% ElseIf Q contains only >1 rows and/or >1 columns, then A is size 1x(M+1) 

else 

    A = zeros(1, M+1); 

end 

  

% Initialize number of colums of row vector as 1: 

jj = 1; 

  

% Initialize forward & reverse diagonal counters as zero: 

fwd_diag_counter = 0; 

rev_diag_counter = 0; 

  

% Count number of diagonals above main diagonal in Q matrix: 

for ff=1:1000 

    diag(Q,ff); 

    fwd_diag_counter = fwd_diag_counter +1; 

end 

  

% Count number of diagonals below main diagonal in Q matrix: 

for rr=-1000:-1 

    diag(Q,rr); 

    rev_diag_counter = rev_diag_counter +1; 

end 

  

% Build row vector based on given Q matrix: 

  

% Exception for case when k=1 or M=1, then assign all elements of Q to  

% respective elements of A, since sum of reverse diagonals will yield same  

% A matrix in this case: 

if k==1 
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        A(1,1:M) = Q(1:k,1:M); 

         

        % Convert A from column vector to row vector: 

        %A = transpose(A); 

  

elseif M==1 

        A(1,1:k) = Q(1:k,1:M); 

  

        % Convert A from column vector to row vector: 

        %A = transpose(A); 

  

else 

    for ii=(-rev_diag_counter):fwd_diag_counter 

        A(1,jj) = Sum(ii,Q); 

        jj = jj + 1; 

    end 

end 

  

% Eliminate entries from A matrix where sum of diagonal doesn't exist: 

A = A(A~='E'); 

  

% Obtain A as column vector: 

A = reshape(A, [numel(A), 1]); 

  

return 

  

end 

 

% File Name: Sum.m 

% Date Created: 10/19/2015 

% Author: Asif Ahmed 

% Description: Harshad Deshmane Thesis, Iterative ADMM Algorithm, 

%              Section 3.3 

% Reference1: Harshad Deshmane, “System Identification via Nuclear  

%             Norm Regularization,” 2014. 

% Reference2: Dr. Kenneth Bosworth, Notes, Idaho State University,  

%             Fall 2015. 

% Reference3: Stackoverflow, "http://stackoverflow.com/questions/18816841/obtaining-opposite-diagonal-

of-a-matrix-in-matlab," 2013. 

% _______________________________________________________________________ 

  

function [ B, R ] = Sum( ii, Q ) 

  

% Compute sum of reverse diagonals: 

B = sum(diag(flipud(Q),ii)); 

  

% Compute value of 'diag' function: 

R = (diag(flipud(Q),ii)); 

% If 'diag' returns 'Empty' then assign B=E to eliminate these un-wanted 

% entries in Hankstar.m: 

F = isempty(R); 

if F == 1 

    B = 'E'; 

end 

  

return 
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end 

 

A4 –Nuclear Norm Function 

 

% File Name: nucnorm.m 

% Date Created: 10/21/2015 

% Author: Asif Ahmed 

% Description: Harshad Deshmane Thesis, Iterative ADMM Algorithm, 

%              Section 3.3 

% Reference1: Harshad Deshmane, “System Identification via Nuclear  

%             Norm Regularization,” 2014. 

% Reference2: Dr. Kenneth Bosworth, Notes, Idaho State University,  

%             Fall 2015. 

% _______________________________________________________________________ 

  

function [ r ] = nucnorm( A ) 

  

% compute nuclear norm as sum of singular values of matrix A: 

r = sum(svd(A)); 

  

return 

  

end 
 

A5 –Augmented Lagrangian Function 

 

% File Name: AugLagrangian.m 

% Date Created: 10/21/2015 

% Author: Asif Ahmed 

% Description: Harshad Deshmane Thesis, Iterative ADMM Algorithm, 

%              Section 3.3 

% Reference1: Harshad Deshmane, “System Identification via Nuclear  

%             Norm Regularization,” 2014. 

% Reference2: Dr. Kenneth Bosworth, Notes, Idaho State University,  

%             Fall 2015. 

% _______________________________________________________________________ 

  

function [ L ] = AugLagrangian( y, Z, lagrangemultiplier ) 

  

% Define variables: 

global Gamma %Constant 

global b % vec(y), meaning y as colum vector 

global rho % Constant 

global Uperp % orhtogonal basis of U 

  

% Performing part of the computation to substitute in main function below: 

T = hank(y)*Uperp; 

  

% Compute Augmented Lagrangian: 

L = Gamma*nucnorm(Z) ... 

    + 0.5*(norm((y-b), 2)) ... 

    + trace(transpose(lagrangemultiplier)*(T - Z))... 

    + (rho/2)*(norm((T - Z),'fro')); 
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return 

  

end 
 

A6 –Gradient of Lagrangian Function 

 

% File Name: GradLagr.m 

% Date Created: 10/26/2015 

% Author: Asif Ahmed 

% Description: Harshad Deshmane Thesis, Iterative ADMM Algorithm, 

%              Section 3.3 

% Reference1: Harshad Deshmane, “System Identification via Nuclear  

%             Norm Regularization,” 2014. 

% Reference2: Dr. Kenneth Bosworth, Notes, Idaho State University,  

%             Fall 2015. 

% _______________________________________________________________________ 

  

function [ G ] = GradLagr( y, Z, lagrangemultiplier ) 

  

% Define variables: 

global b % vec(y), meaning y as colum vector 

global rho; % Constant 

global Uperp % orhtogonal basis of U 

  

% Compute Gradient of Lagrangian: 

G = rho*Hankstar((((hank(y)*(Uperp)) - ... 

    (Z-((rho^-1)*lagrangemultiplier)))*(Uperp'))) + (y-b); 

  

return 

  

end 

 

A7 –Get Data Function 

 

% File Name: getdata.m 

% Date Created: 10/14/2015 

% Author: Asif Ahmed 

% Description: Harshad Deshmane Thesis, Iterative ADMM Algorithm, 

%              Section 3.3 

% Reference1: Harshad Deshmane, “System Identification via Nuclear  

%             Norm Regularization,” 2014. 

% Reference2: Dr. Kenneth Bosworth, Notes, Idaho State University,  

%             Fall 2015. 

% _______________________________________________________________________ 

  

function [ getdata_out ] = getdata() 

  

    % Define variables: 

    global m  

    global p  

    global N  

    global u  

    global y_hat 

    global y 
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    % Using pseudo-random input from Simulink: 

    % [ If Simulink Model is changed, can update the .mat files by using 

    % 'save' eg: save iodataactual.mat ] 

       

    %---------------------------------------------------------------------- 

    % SystemIdentification0208G Simulink   

    % ([0.7071s + 4.2426] / [s^2 + 0.750s + 0.125]) 

    load iodataactual0208G.mat;  

    load OutputEstimated0208G.mat; 

    load OutputMeasured0208G.mat; 

    y = Output0208G; % actual output 

    u = Input0208G; % actual input 

    y_hat = OutputMeasured0208G; % measured output - y_bar 

    %---------------------------------------------------------------------- 

     

    % assign size of u matrix to m rows and N1 colums: 

    [m,N1] = size(u); 

    % assign size of y matrix to p rows and N2 colums: 

    [p,N2] = size(y); 

     

    % Check if number of columns of u is not equal to y 

    if N1 ~= N2 

        error('error - # of y and u observed must agree') 

    else 

        N = N1 

    end 

     

    return 

end 

 

A8 –Inner & Outer Line Search Function 

 

% File Name: OuterLineSearch2.m 

% Date Created: 11/16/2015 

% Author: Asif Ahmed 

% Description: Harshad Deshmane Thesis, Iterative ADMM Algorithm, 

%              Section 3.3 

% Reference1: Harshad Deshmane, “System Identification via Nuclear  

%             Norm Regularization,” 2014. 

% Reference2: Dr. Kenneth Bosworth, Notes, Idaho State University,  

%             Fall 2015. 

% _______________________________________________________________________ 

  

function [ e_i, ynew, iter_total ] = OuterLineSearch2( yinit, Z, lagrangemultiplier ) 

%        [ e_i, ynew, iter_total ] = OuterLineSearch2( y, Z, lagrangemultiplier ) 

  

% This function is used to perform steps 1, 2 and 3 of Iterative ADMM 

% Algorithm 

  

% Define Variables: 

global maxitinner 

global stoptol 

global rho 

global Uperp 
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global Gamma 

global maxitouter 

  

% counter for total number of inner-loop iterations: 

count_inner_total = 0; 

% counter for total number of inner-loop and outer-loop iterations: 

iter_total = 0; 

  

% initialize computation_time for inner & outer line search as zero: 

computation_time = 0; 

  

% Initializations: 

Z_old = Z; 

lagrangemultiplier_old = lagrangemultiplier; 

  

% Defining yold, gold, ynew, itcount, and tol for inner-linesearch: 

yold = yinit; 

gold = GradLagr( yinit, Z_old, lagrangemultiplier_old ); 

ynew = yold - (0.1*gold); 

itcount = 1; 

itcount_outer = 1; 

tol = norm(gold,2); 

  

% Outer While Loop is for Outer-ADMM-Iteration, and inner While Loop is for 

% Inner-Line-Search_Iteration: 

while (itcount_outer < maxitouter)   

         

        % Start stopwatch timer: 

        tic 

         

        % increment outer-loop counter: 

        itcount_outer = itcount_outer + 1;    

                

        %------------------------------------------------------------------ 

        % Inner (l+1) loop:      

        while (itcount < maxitinner) && (tol > stoptol)             

           

            % increment inner-loop counter: 

            itcount = itcount + 1; 

            % calculate gnew: 

            gnew = GradLagr( ynew, Z_old, lagrangemultiplier_old ); 

            % calculate tolerance: 

            tol = norm(gnew, 2) 

            % calculate alpha: 

            alpha = dot(ynew - yold, gnew - gold) / ... 

                    dot(gnew - gold, gnew - gold); 

            % assign gold=gnew for next inner-loop computation: 

            gold = gnew; 

            % assign yold=ynew for next inner-loop computation: 

            yold = ynew; 

            % Calculate ynew: 

            ynew = ynew - alpha*gnew; 

             

        end 

         

        % increment count_inner_total used for computing total  
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        % number of iterations: 

        count_inner_total = count_inner_total + itcount; 

         

        %------------------------------------------------------------------ 

        % Outer (k+1) loop: 

         

        % Performing part of the computation to substitute in main function 

        % below: 

        T = hank(ynew)*Uperp; 

  

        % Singular-Value-Decomposition: 

        [W, Sgma, Vtrnspse] = svd(T + (rho^-1)*lagrangemultiplier_old); 

     

        %------------------------------------------------------------------ 

        % Calculate Z_new by including a factor of 25 times (Gamma/rho).  

        % It is necessary to have Z_new calculate a non-zero result. 

        % The value of 25 was determined through running the algorithm 

        % for varying values of this factor. Keeping rho fixed at 1, this  

        % factor could be regarded as value of Gamma in the algorithm that 

        % gives best results for estimate of y compared to actual y from  

        % Simulink. This is for SystemIdentification Simulink System0208G: 

        % ([0.7071z + 4.2426] / [z^2 + 0.750z + 0.125]): 

        Z_new = W*max(Sgma - (25*(Gamma/rho)), 0)*Vtrnspse; 

        %------------------------------------------------------------------ 

     

        % lagrangemultiplier: 

        lagrangemultiplier_new = lagrangemultiplier_old + rho*(T - Z_new); 

         

        % Assign lagrangemultiplier_old and Z_old to be used in next 

        % computation of inner (l+1) above: 

        lagrangemultiplier_old = lagrangemultiplier_new; 

        Z_old = Z_new; 

         

        % Set itcount=1 and tol=0.1 to force inner loop to execte again: 

        itcount=1; 

        tol=0.1; 

         

        % Count total number of iterations: 

        iter_total = count_inner_total + itcount_outer; 

  

end 

% Stop stopwatch timer: 

computation_time = toc 

  

% Build hankel matrix for ynew: 

% global Y_new 

Y_new = hank(ynew); 

  

% Identification Error: 

e_i = 100*((norm((ynew - yinit), 'fro'))/(norm((yinit), 'fro'))); 

  

% Plotting ynew and yinit to compare y before iterations to y after  

% iterations: 

subplot(5,1,1) 

plot(ynew) 

title('ynew (y-estimated)') 
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subplot(5,1,2) 

plot(yinit) 

title('yinit (y-actual)') 

y1=ynew; 

y2=yinit; 

subplot(5,1,3) 

plot(y1, 'g--') 

hold on 

plot(y2, 'b:') 

hold off 

title('ynew (y-estimated) in green, yinit (y-actual) in blue') 

subplot(5,1,4) 

plot(abs((y2) - (y1))) 

title('Error: yinit - ynew') 

subplot(5,1,5) 

plot(((abs((y2) - (y1)))./(abs(y2)))*100) 

title('Error-Percent: ((yinit-ynew)/(yinit))*100') 

  

return 

  

end 

 

A9 –Simulation & Estimation Program 

 

% File Name: SimulationEstimation.m 

% Date Created: 01/22/2016 

% Author: Asif Ahmed 

% Description: Harshad Deshmane Thesis, Iterative ADMM Algorithm, 

%              Section 3.3 

% Reference1: Harshad Deshmane, “System Identification via Nuclear  

%             Norm Regularization,” 2014. 

% _______________________________________________________________________ 

  

%% ITERATIVE-ADMM & ACTUAL-SIMULINK-OUTPUT COMPARED:  

%  System0208G: ([0.7071z + 4.2426] / [z^2 + 0.750z + 0.125]) 

  

% Need to run SIMULINK model, and save variables in order to compare 

% actual output to estimated output using era2.m function. Results from 

% OuterlineSearch2.m and era2.m appear to be closely matched, but may not 

% be exactly the same. Difference is caused by using sample time (Ts) of 

% 0.1 in era2.m function to give transfer function closest to actual 

% transfer function. 

  

load iodataactual0208G.mat;  

load OutputEstimated0208G.mat; 

  

% Plotting y and IterativeADMM estimated y: 

subplot(5,1,1) 

plot(OutputEstimated0208G) 

title('y-estimated') 

subplot(5,1,2) 

plot(Output0208G) 

title('y-actual') 

y1=OutputEstimated0208G; 

y2=Output0208G; 
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subplot(5,1,3) 

plot(y1, 'g--') 

hold on 

plot(y2, 'b:') 

hold off 

title('y-estimated in green, y-actual in blue') 

subplot(5,1,4) 

plot(abs((y2) - (y1))) 

title('Error: y-actual - y-estimated') 

subplot(5,1,5) 

plot(((abs((y2) - (y1)))./(abs(y2)))*100) 

title('Error-Percent: ((y-actual-y-estimated)/(y-actual))*100') 

  

%% TABU-SEARCH & ITERATIVE-ADMM COMPARED: 

%  System0208G: ([0.7071z + 4.2426] / [z^2 + 0.750z + 0.125]) 

  

load TS0208G_&_ITADMM_01-22-2016.mat; 

  

% Plotting ynew (from OuterLineSearch2.m) and bestx (from Tabu Search): 

subplot(5,1,1) 

plot(bestx')        % bestx is transposed to obtain it as column vector 

title('bestx-TS') 

subplot(5,1,2) 

plot(ynew)           

title('ynew-IterativeADMM') 

y1=bestx'; 

y2=ynew; 

subplot(5,1,3) 

plot(y1, 'g--') 

hold on 

plot(y2, 'b:') 

hold off 

title('bestx-TS in green, ynew-IterativeADMM in blue') 

subplot(5,1,4) 

plot(abs((y2) - (y1))) 

title('Error: ynew-IterativeADMM - bestx-TS') 

subplot(5,1,5) 

plot(((abs((y2) - (y1)))./(abs(y1)))*100) 

title('Error-Percent: ((IterativeADMM - bestx-TS)/(bestx-TS))*100') 

  

%Create hankel matrix for bestx to be used in era.m: 

Bestx_new = hank(bestx); 

  

%% TABU-SEARCH & ACTUAL-SIMULINK-OUTPUT COMPARED: 

%  System0208G: ([0.7071z + 4.2426] / [z^2 + 0.750z + 0.125]) 

  

load TS0208G_&_ITADMM_01-22-2016.mat; 

load iodataactual0208G.mat;  

  

% Plotting y (from Simulink) and bestx (from Tabu Search): 

subplot(5,1,1) 

plot(bestx')        % bestx is transposed to obtain it as column vector 

title('bestx-TS') 

subplot(5,1,2) 

plot(Output0208G)           

title('y-actual') 
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y1=bestx'; 

y2=Output0208G; 

subplot(5,1,3) 

plot(y1, 'g--') 

hold on 

plot(y2, 'b:') 

hold off 

title('bestx-TS in green, y-actual in blue') 

subplot(5,1,4) 

plot(abs((y2) - (y1))) 

title('Error: y-actual - bestx-TS') 

subplot(5,1,5) 

plot(((abs((y2) - (y1)))./(abs(y2)))*100) 

title('Error-Percent: ((y-actual-bestx-TS)/(y-actual))*100') 

  

%% Actual input-output data converted to impulse response for era.m 

%  System0208G: ([0.7071z + 4.2426] / [z^2 + 0.750z + 0.125]) 

  

% Need to input a discrete time impulse response h for era.m: 

  

% load variables: 

load iodataactual0208G.mat; 

  

% Create iddata object: 

z = iddata(Output0208G, Input0208G, 1); 

  

% Create transfer function estimate with 2 poles and 1 zeros, with  

% io-delay=1, Ts=1: 

model = tfest(z, 2, 1, 1, 'Ts', 1); 

  

% Convert model to discrete: 

% model = c2d(model, 1); 

  

% Obtain impulse response: 

[y_impulse, t] = impulse(model); 

  

% y_impulse is column vector. Transpose to get as row vector: 

y_impulse = y_impulse';  

  

%% TS results converted to impulse respose to be used in era function: 

%  System0208G: ([0.7071z + 4.2426] / [z^2 + 0.750z + 0.125]) 

  

% Need to input a discrete time impulse response h for era.m: 

  

% load variables: 

load iodataactual0208G.mat; 

load TS0208G_&_ITADMM_01-22-2016.mat; 

  

% Create iddata object (use bestx' to have it as column vector, same as 

% Input): 

z1 = iddata(bestx', Input0208G, 1); 

  

% Create transfer function estimate with 2 poles and 1 zeros, with  

% io-delay=1, Ts=1: 

model1 = tfest(z1, 2, 1, 1, 'Ts', 1); 
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% Convert model to discrete: 

% model1 = c2d(model1, 1); 

  

% Obtain impulse response: 

[y_impulse1, t1] = impulse(model1); 

  

% y_impulse is column vector. Transpose to get as row vector: 

y_impulse1 = y_impulse1';  

  

%% IterativeADMM results converted to impulse respose for era function: 

%  System0208G: ([0.7071z + 4.2426] / [z^2 + 0.750z + 0.125]) 

  

% Need to input a discrete time impulse response h for era.m: 

  

% load variables: 

load iodataactual0208G.mat; 

load TS0208G_&_ITADMM_01-22-2016.mat; 

  

% Create iddata object: 

z2 = iddata(ynew, Input0208G, 1); 

  

% Create transfer function estimate with 2 poles and 1 zeros, with  

% io-delay=1, Ts=1: 

model2 = tfest(z2, 2, 1, 1, 'Ts', 1); 

  

% Convert model to discrete: 

% model2 = c2d(model2, 1); 

  

% Obtain impulse response: 

[y_impulse2, t2] = impulse(model2); 

  

% y_impulse is column vector. Transpose to get as row vector: 

y_impulse2 = y_impulse2'; 

 

A10 –Eigen System Realization Function 

 

% File Name: era2.m 

% Date Created: 01/21/2016 

% Author: Asif Ahmed 

% Description: Harshad Deshmane Thesis, Iterative ADMM Algorithm, 

%              Section 3.3 

% Reference1: Harshad Deshmane, “System Identification via Nuclear  

%             Norm Regularization,” 2014. 

% Reference3: Mathworks, "http://www.mathworks.com/matlabcentral/fileexchange/12848-eigensystem-

realization-algorithm/content/era.m", 2006. 

% Reference4: Samuel da Silva, UNICAMP, 2006 

% Reference5: Juang, J. N. and Phan, M. Q. "Identification and Control of 

%             Mechanical Systems", Cambridge University Press, 2001 

% Note:       This function is originally the creation of Samuel da Silva  

%             from Reference3, Reference4, Reference5, and has been adapted 

%             to be used for system identification academic research 

% _______________________________________________________________________ 

  

function [A,B,C,D]=era2(h1,n1,N1,Ts,def) 
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% Call function as follows: 

% System0208G: ([0.7071z + 4.2426] / [z^2 + 0.750z + 0.125]) 

% Actual input-output data: [A,B,C,D]=era2(y_impulse,2,22,0.1,1) 

% TS: [A,B,C,D]=era2(y_impulse1,2,22,0.1,1) 

% IterativeADMM: [A,B,C,D]=era2(y_impulse2,2,22,0.1,1) 

% 

% Eigensystem Realization Algorithm (ERA) 

%  

% [A,B,C,D]=era(h,n,N,Ts,def); 

%  

% Inputs: 

%    h1: discrete-time impulse response 

%    n1: order of system 

%    N1: number of samples to build Hankel matrix 

%    Ts: sample time 

%    def: if = 1: the output will be the discrete-time state-space model 

%         if = 2: the output will be the continuous-time state-space model 

%           

% Otputs: 

%    [A,B,C,D]: state-space model 

%   

  

% Square hankel matrix construction: 

H0 = hankel(h1(2:N1+1));            % k = 0 

H1 = hankel(h1(3:N1+2));            % k = 1 

  

% Factorization of the Hankel matrix by use of SVD 

[R,Sigma,S] = svd(H0);    

  

% Sigman obtained with respect to order of system: 

Sigman = Sigma(1:n1,1:n1);             

  

% observability matrix: 

Wo = R(:,1:n1)*Sigman^0.5;     

% controllability matrix: 

Co = Sigman^.5*S(:,1:n1)';            

  

% Compute system matrices: 

% dynamic matrix: 

A = Sigman^-.5*R(:,1:n1)'*H1*S(:,1:n1)*Sigman^-.5;       

% input matrix: 

B = Co(:,1);    

% output matrix: 

C = Wo(1,:);       

% direct-transmission matrix: 

D = h1(1);                                     

  

% Obtain discrete-time system: 

sysdisc = ss(A,B,C,D,Ts);                    

  

% Obtain continuous-time system: 

if def == 2              

    % Conversion of discrete LTI models to continuous time: 

    syscont = d2c(sysdisc,'zoh');        

    % continuous-time system: 

    [A,B,C,D]=ssdata(syscont);           
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end 

  

%--------------------------------------------------------------------------  

  

% Obtain discrete time-transfer function from A, B, C, D matrices, and 

% evaluate eigen-values of A matrix: 

[num11, den11] = ss2tf(A, B, C, D); 

tf11 = tf(num11, den11, 0.1) 

eig_A = eig(A) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

71 
 

APENDIX B 

 

B1 - Simple Tabu Search Main Program 

 

% File Name: simpleTS.m 

% Date Created: 01/29/2016 

% Author: Asif Ahmed 

% Description: Simple Tabu Search Algorithm 

% Versions: Version 1.0, April 11, 2010 

% Reference1: Dr. Marco P. Schoen, Idaho State University, 2010. 

% Note:       This function is originally the creation of Dr. Marco P.  

%             Schoen, and has been adapted to be used for system  

%             identification academic research 

% _______________________________________________________________________ 

  

clear; 

% Add promising list and promising balls - tabu 

% Add adaptive neighborhood sphere size in aspiration part 

  

% Define input parameters 

input('Nominal 0, or specific 1: ');spec=ans; 

if spec==0 

    nx=2;;maxx=10;minx=0;tll=5;pll=5;r=2.5/100*(maxx-minx);r1=r/2;r3=r1/2;n1=25;x=[rand*(maxx-

minx)+minx,rand*(maxx-minx)+minx];nd=100;ftheor=-18.5547;Sopt=[9.0389 8.6674]; 

    funchoice=12; 

else 

    %input('Dimension of solution nx: ');nx=ans; 

    %input('Length of Tabu List tll: ');tll=ans; 

    %input('Length of Promising List pll: ');pll=ans; 

    %input('Tabu Ball Radius r: ');r=ans; 

    %input('Radius of Neighborhood r1: ');r1=ans; 

    %input('Radius of Promising Balls r3: ');r3=ans; 

    %input('Search space, maximum: ');maxx=ans; 

    %input('Search space, minimum: ');minx=ans; 

    %input('Number of Neighborhoods n1: ');n1=ans; 

    %input('Random point in Search space: ');x=ans; 

    %input('How many iterations to be carried out nd: ');nd=ans; 

     

    input('Cost function: 1.Spher, 2.Quad, 3.Ackl, 4.Boha I, 5.Colv, 6.Eas, 7.Griew, 8.Hypel, 9.Rast, 

10.Rosenb, 11.Schwl, 12.M:, 13.Deshmane ');funchoice=ans; 

  

    if funchoice==1 % Spherical parameters 

        nx=2;maxx=100;minx=-100;tll=5;pll=5;r=2.5/100*(maxx-minx);r1=r/2;r3=r1/2;n1=25; 

        nd=100;ns=40;nd=100;ftheor=0;Sopt=[0 0];x=[rand*(maxx-minx)+minx,rand*(maxx-minx)+minx]; 

    elseif funchoice==2 % Quadric parameters 

        nx=2;maxx=100;minx=-100;tll=5;pll=5;r=2.5/100*(maxx-minx);r1=r/2;r3=r1/2;n1=25; 

        nd=100;ftheor=0;Sopt=[0 0];x=[rand*(maxx-minx)+minx,rand*(maxx-minx)+minx]; 

    elseif funchoice==3 % Ackley parameters 

        nx=2;maxx=30;minx=-30;tll=5;pll=5;r=2.5/100*(maxx-minx);r1=r/2;r3=r1/2;n1=25; 

        nd=100;ftheor=0;Sopt=[0 0];x=[rand*(maxx-minx)+minx,rand*(maxx-minx)+minx]; 

    elseif funchoice==4 % Bohachevsky I parameters 

        nx=2;maxx=50;minx=-50;tll=5;pll=5;r=2.5/100*(maxx-minx);r1=r/2;r3=r1/2;n1=25; 

        nd=100;ftheor=0;Sopt=[0 0];x=[rand*(maxx-minx)+minx,rand*(maxx-minx)+minx]; 

    elseif funchoice==5 % Colville parameters 
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        nx=4;tll=5;pll=5;r=0.25;r1=0.125;r3=0.06;n1=25;x=[5,5,5,5];nd=100;maxx=10;minx=-

10;ftheor=0;Sopt=[0 0 0 0]; 

    elseif funchoice==6 % Easom parameters 

        nx=2;maxx=100;minx=-100;tll=5;pll=5;r=2.5/100*(maxx-minx);r1=r/2;r3=r1/2;n1=25; 

        nd=100;ftheor=-1;Sopt=[3.1416 3.1416];x=[rand*(maxx-minx)+minx,rand*(maxx-minx)+minx]; 

    elseif funchoice==7 % Griewank parameters 

        nx=2;maxx=600;minx=-600;tll=5;pll=5;r=2.5/100*(maxx-minx);r1=r/2;r3=r1/2;n1=25; 

        nd=100;ftheor=0;Sopt=[0 0];x=[rand*(maxx-minx)+minx,rand*(maxx-minx)+minx]; 

    elseif funchoice==8 % Hyperellipsoid parameters 

        nx=2;maxx=1;minx=-1;tll=5;pll=5;r=2.5/100*(maxx-minx);r1=r/2;r3=r1/2;n1=25; 

        nd=100;ftheor=0;Sopt=[0 0];x=[rand*(maxx-minx)+minx,rand*(maxx-minx)+minx]; 

    elseif funchoice==9 % Rastigin parameters 

        nx=2;maxx=5.120;minx=-5.120;tll=5;pll=5;r=2.5/100*(maxx-minx);r1=r/2;r3=r1/2;n1=25; 

        nd=100;ftheor=0;Sopt=[0 0];x=[rand*(maxx-minx)+minx,rand*(maxx-minx)+minx]; 

    elseif funchoice==10 % Rosenbrock parameters 

        nx=2;maxx=2.048;minx=-2.048;tll=5;pll=5;r=2.5/100*(maxx-minx);r1=r/2;r3=r1/2;n1=25; 

        nd=100;ftheor=0;Sopt=[1 1];x=[rand*(maxx-minx)+minx,rand*(maxx-minx)+minx]; 

    elseif funchoice==11 % Schwefel parameters 

        nx=2;maxx=500;minx=-500;tll=5;pll=5;r=2.5/100*(maxx-minx);r1=r/2;r3=r1/2;n1=25; 

        nd=100;ftheor=0;Sopt=[0 0];x=[rand*(maxx-minx)+minx,rand*(maxx-minx)+minx]; 

    elseif funchoice==12% Marco 

        nx=2;maxx=10;minx=0;tll=5;pll=5;r=2.5/100*(maxx-minx);r1=r/2;r3=r1/2;n1=25; 

        nd=100;ftheor=-18.5547;Sopt=[9.0389 8.6674];x=[rand*(maxx-minx)+minx,rand*(maxx-

minx)+minx]; 

    elseif funchoice==13 % Deshmane 

        % Start stop-watch timer: 

        tic 

         

        nx=1001; % Initialize nx as 1001 - data points from Simulink 

        maxx=100; 

        minx=-100; 

        tll=5; 

        pll=5; 

        r=2.5/100*(maxx-minx); 

        r1=r/2; 

        r3=r1/2; 

        n1=25; 

        nd=100; 

        ftheor=0; 

        Sopt=[0 0];         

        % load Simulink data, and assign Actual Output to x. Transpose it 

        % since it is necessary to have x as row vector for simpleTs.m and  

        % cost.m: 

        load iodataactual0208G.mat 

        x = Output0208G'; 

    else 

    end; 

end; 

TL=zeros(nx,tll); %TL(parameter 1, parameter 2, ..., tabu liste element 1, ...) 

  

% main loop 

xt(1,:)=x;clear x;x=xt;globalbestcost=cost(x(1,:),funchoice);%globalbestcost evaluation equals starting 

point cost 

counter=1;globalbestx(counter,:)=xt(1,:); 

for k=1:nd 
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    %create neighbhors 

    xneighbor=creatneighbors(r1,n1,nx,x(k,:)); 

     

     

    % Select element from neighborhood 

    for d=1:n1 

        xtest(d,:)=xneighbor(d,:);%pick one candidate element from each neighborhood 

        costtest(d)=cost(xtest(d,:),funchoice); % and evaluate its cost 

    end; 

    [minimumcost,bestelement]=min(costtest);%find minimum cost and element  

    candidatex=xtest(bestelement,:); 

     

    % test if it is in tabu balls 

    flag=1; 

    flag=CheckifinBall(candidatex,TL,r,tll,nx); 

    if flag==0 % New position is in tabu ball 

        if minimumcost>globalbestcost 

            %'tabu' 

            candidatex=xtest(n1,:);%use largest move 

            minimumcost=cost(candidatex,funchoice); 

        else 

        end; 

    else 

    end; 

     

     % use aspiration criteria 

    if minimumcost<globalbestcost 

        candidatex=xtest(bestelement,:); 

        minimumcost=cost(candidatex,funchoice); 

    else 

        candidatex=x(k,:); 

        minimumcost=cost(candidatex,funchoice); 

        %change neigborhood 

    end; 

     

    % test if search limit reached 

    for ik=1:nx 

        if candidatex(1,ik)>maxx 

            candidatex(1,ik)=maxx;%no wrap around 

            minimumcost=cost(candidatex,funchoice); 

        elseif candidatex(1,ik)<minx 

            candidatex(1,ik)=minx; %no wrap around 

            minimumcost=cost(candidatex,funchoice); 

        end; 

    end; 

    x(k+1,:)=candidatex; mincost(k)=cost(x(k+1,:),funchoice); 

    if mincost(k)<globalbestcost 

        globalbestcost=mincost(k); 

        counter=counter+1; 

        globalbestx(counter,:)=x(k+1,:); 

    else 

    end; 

    

    % update Tabu list 

    % move each element one down 

    for jj=tll:-1:2 



 

74 
 

        TL(:,jj)=TL(:,jj-1); 

    end; 

    TL(:,1)=x(k+1,:); 

     

    % what about promising list - best performances? 

end; 

if nx<3 

    figure(1)    

    plot(x(:,1),x(:,2));axis([minx maxx minx maxx]);grid;title('Position of Agent during course of 

Simulation'); 

    xlabel('nx(1)');ylabel('nx(2)'); 

    figure(2) 

    plot(mincost);grid;title('Minimum Cost');xlabel('Iteration Index');ylabel('Cost'); 

else 

end 

ftheor,Sopt 

globalbestcost 

bestx=globalbestx(counter,:) 

% Stop stop-watch timer: 

computation_time = toc 

 

B2 - Cost Function 

 

% File Name: cost.m 

% Date Created: 01/29/2016 

% Author: Asif Ahmed 

% Description: Computation of the cost function 

% Versions: July 9, 2009, Version 1.0 

%           January 18, 2010, Version 1.1 

% Reference1: Dr. Marco P. Schoen, Idaho State University, 2009. 

% Note:       This function is originally the creation of Dr. Marco P.  

%             Schoen, and has been adapted to be used for system  

%             identification academic research 

% _______________________________________________________________________ 

  

function [y] = cost(x,funchoice) 

  

[n,nx]=size(x);y=0; 

  

if funchoice==12 %Marco 

    y=0; 

    y = x(:,1)*sin(4*x(:,1))+1.1*x(:,2)*sin(2*x(:,2));    % fitness evaluation (objective function) 

elseif funchoice==1 %Spherical 

    y=0; 

    for i=1:nx 

        y=y+((x(:,i))^2); 

    end; 

elseif funchoice==2 %Quadric 

    y=0; 

    for i=1:nx 

        yy=0; 

        for kj=1:i 

            yy=yy+x(:,i); 

        end; 

        y=y+yy^2; 
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    end; 

elseif funchoice==3 %Ackley 

    y=0; %* 

elseif funchoice==4 %Bohachevsky 

    y=x(1)^2+2*x(:,2)^2-0.3*cos(3*pi*x(:,1))-0.4*cos(4*pi*x(:,2))+0.7; 

elseif funchoice==5 %Colville 

    y=100*(x(2)-x(:,1)^2)^2+(1-x(:,1))^2+90*(x(:,4)-x(:,3)^2)^2+(1-x(:,3))^2+10.1*((x(:,2)-1)^2+(x(:,4)-

1)^2)+19.8*(x(:,2)-1)*(x(:,4)-1); 

elseif funchoice==6 %Easom 

    y=-cos(x(:,1))*cos(x(:,2))*exp(-1*(x(:,1)-pi)^2-(x(:,2)-pi)^2); 

elseif funchoice==7 %Griewank 

    y=0; %* 

elseif funchoice==8 %Hyperellipsoid 

    y=0; 

    for i=1:nx 

        y=y+(i^2)*(x(:,i))^2; 

    end; 

elseif funchoice==9 %Rastrigin 

    y=0; 

    for i=1:nx 

        y=y+((x(:,i))^2)-10*cos(2*pi*x(:,i))+10; 

    end; 

elseif funchoice==10 %Rosenbrock 

    y=0; 

    %y=y+100*(x(2)-x(1)^2+(1-x(1)^2)); 

    for i=1:nx/2 

        y=y+100*((x(:,2)-(x(:,1)^2))^2+(1-x(:,1))^2); 

        %y=y+100*(x(i*2)-(x(i)^2))^2+(1-x(i*2-1)^2);% 

    end 

elseif funchoice==11 %Schwefel 

    y=0; 

    for i=1:nx 

        y=y+x(:,i)*sin((abs(x(:,i)))^(0.5))+418.9829*nx; 

    end; 

elseif funchoice==13 %Deshmane 

     

    % Cost Function: [have replaced y with x(:,i)] that is generated in  

    % simpleTS.m.  

    % Uperp is taken from input data from Simulink.  

    % Since H(y) is function of y, it is possible to use hank(x). 

    % b is measured output from Simulink. 

     

    load iodataactual0208G.mat; 

    load OutputMeasured0208G.mat; 

    b = OutputMeasured0208G; % Simulink Measured Output (1001x1) 

     

    % Create y1 as column vector from transpose of x: 

    y1 = x'; % 1001x1 

     

    u = Input0208G; % 1001x1 

    U = hank(u); % 2x1000 

    Uperp = null(U); % 1000x998 

     

    % Choose Gamma as 25, determined to give best results in  

    % IterativeADMM from OuterLineSearch2.m: 

    Gamma = 25; 
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    % Determine y by cost function computation: 

    y = (Gamma)*(nucnorm(hank(y1)*Uperp)) + 0.5*(norm((y1-b),2)); 

  

else 

end; 

 

B3 - Tabu Ball Verification Function 

 

% File Name: CheckifinBall.m 

% Date Created: 01/29/2016 

% Author: Dr. Marco P. Schoen 

% Description: Tabu Ball Verification Function 

% Reference1: Dr. Marco P. Schoen, Idaho State University, 2009. 

% Note:       This function is originally the creation of Dr. Marco P.  

%             Schoen, and has been used for system identification academic  

%             research 

% _______________________________________________________________________ 

  

function flag = CheckifinBall(Sx,TL,r,tll,nx); 

flag=0;NTS=zeros(tll); 

for i=1:tll 

    for t=1:nx 

        NTS(i)=NTS(i)+((TL(t,i)-Sx(1,nx))^2); 

    end; 

    NTS(i)=(NTS(i))^0.5; 

    if NTS(i)>=r %tabu if NTS < r 

        flag=1; %not tabu 

    else 

    end; 

end; 
 

B4 - Creating Neighbors Function 

 

% File Name: createneighbors.m 
% Date Created: 01/29/2016 
% Author: Dr. Marco P. Schoen 
% Description: Computation of neighboors by creating nx-dimensional spheres 
%              around current position x 
% Versions: April 17, 2010, Version 1.0 
% Reference1: Dr. Marco P. Schoen, Idaho State University, 2010. 
% Note:       This function is originally the creation of Dr. Marco P.  
%             Schoen, and has been used for system identification academic  
%             research 
% _______________________________________________________________________ 
  
function xneighbor=creatneighbors(r1,n1,nx,x) 
  
    for d=1:n1 %for each neighborhood 
        for j=1:nx %for each dimension 
            ri(d,j)=(d-1)*r1; %inner diameter of neighborhood ball 
            ro(d,j)=d*r1; % outer diameter of neighbor 
            dif=ro(d,j)-ri(d,j);difr=dif*rand; 
            rneighbor(d,j)=(ri(d,j)+difr)*sign(randn); 
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            theta(d,j)=rand(1)*2*pi; 
            xcomp(d,j)=rneighbor(d,j)*cos(theta(d,j))+x(:,j); 
        end; 
        xneighbor(d,:)=xcomp(d,:); 
    end; 

 

 

 

 

 


