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Abstract	
	

Designing	robotic	hands	for	specific	 tasks	could	help	 in	the	creation	of	optimized	end-

effectors	for	grasping	and	manipulation.	However,	the	systematic	design	of	robotic	hands	for	a	

simultaneous	 task	of	all	 fingertips	presents	many	challenges.	 In	 this	work	 the	algorithms	and	

implementation	of	an	overall	synthesis	process	is	presented,	which	could	be	a	first	step	towards	

a	complete	design	tool	for	robotic	end-effectors.	

Type	 synthesis	 for	 a	 given	 task	 and	 number	 of	 fingers,	 solvability	 and	 dimensional	

synthesis	 for	 arbitrary	 topologies	 are	 developed	 and	 implemented.	 	 The	 resulting	 solver	 is	 a	

powerful	tool	that	can	aid	in	the	creation	of	innovative	robotic	hands	with	arbitrary	number	of	

fingers	and	palms.	Several	examples	of	type	synthesis,	solvability	calculations	and	dimensional	

synthesis	are	presented.	

An	innovative	design	process	for	designing	robotic	hands	for	specific	task	is	illustrated	in	

this	application.	Consideration	of	velocities,	acceleration	and	force	at	finger	tips	is	required	to	

evaluate	grasping	and	manipulation	abilities	in	order	to	have	a	complete	design.		
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1 Introduction 
 

1.1 Thesis Goals 

The goal of this thesis is development of algorithms for type synthesis, solvability and 

dimensional synthesis and apply them for different robotic hand topology. The work will help to 

find robotic hand topology for defined task, check the solvability of hand ,and apply dimensional 

synthesis for selected hand. 

In order to achieve this goal, first the algorithm is defined for finding solvability of robotics 

hand topology. Then this algorithm is applied as a part of type synthesis algorithm to find robotics 

hand topology for defined tasks. Finally, dimensional synthesis is applied for finding the needed 

positions. 

In this research LUA, a programing language in Linux Environment and C++ is used to 

reach the goal. The program has three main parts including type synthesis part which shows all 

possible hand topology can be used for defined task, solvability part which finds that the topology 

is solvable or not, dimensional synthesis part which applied mathematical and genetic algorithm 

solvers to solve forward kinematic equations.  

 

1.2 Literature Review 

Robotic hands are mechanical linkages where a common set of links spans a number of serial 

chains. Among the variety of robotic end-effectors, those generally defined as robotic hands are 

considered suited not only for grasping, but also for some dexterous manipulation.  

When considering applications in robotic grasping and manipulation of grasped objects, 

many aspects of robotics have to converge, including sensing, identification, learning and 

planning, to name a few, and notable results are being obtained in these fields. One field that has 

not attracted so much attention is the systematic methodology for the physical embodiment of the 
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robotic end effector; however, its effect on the successful completion of the task may be 

considerable. 

The design of end-effector robotic tools has focused on three different strategies [1], which 

yield very different designs: anthropomorphism, designing for grasping tasks, and designing for 

dexterous manipulation. The anthropomorphic hands are constrained in their design, but they are 

considered a straightforward solution for human environment and human manipulation task 

mapping [2], [3]. Of the other two design strategies, hands oriented to grasping tasks are usually 

simpler or under actuated; new efforts are being devoted to obtain under actuated or simple hands 

with some degrees of dexterity [4], [5]. Hands for in-hand manipulation tend to be more complex, 

especially if a wide range of manipulation actions are targeted, however most of them are 

anthropomorphic in design. For a current review on design efforts of anthropomorphic hands, see 

[6]. More recently, the design process for robotic hands has started receiving some attention [7], 

[8], [9].  

A task-based, systematic design process, needs to consider both the enumeration of 

topologies, or structural synthesis, and the dimensioning of the selected topologies, the 

dimensional synthesis, followed by a stage of detailed design and implementation.  

The literature in type or structural synthesis is vast, especially for linkages with closed loops, 

which present bigger challenges in their classification. Type or structural synthesis is based on 

subgroups of motion, following [10] and on the use of screw theory, such as [11], among others 

[12], combined with graph theory for the enumeration and classification. Most of the current 

methods are based on defining subgroups of motion or subspaces of potential velocities for the 

system. A task-based approach for the structural synthesis needs to take into account the shape of 

the desired workspace, or kinematic task. Pucheta [13] applied a graph theory-based method and 

precision position method consecutively for planar linkages and for multiple kinematic tasks. 

Results on structural synthesis of hands based on mobility while grasping an object has been 

studied in [14] and [15], and more recently in [16].  

For the dimensional synthesis stage, most of the research has focused on the design of 

individual, under actuated fingers; see [17] and [18]. The first tool for the systematic dimensional 

synthesis of complete multi-fingered robotic hands for given manipulation tasks, up to the authors’ 
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knowledge, was developed by Simo-Serra et al. [19]. This tool allows to design multi-fingered 

robotic hands with a set of common wrist joints and a palm branching in different number of 

fingers, see also [20], and [21] for its theoretical development.  

In this work, a complete design methodology is presented for arbitrary robotic hands. This 

includes topology enumeration and the corresponding arrays defining the topology, structural 

synthesis for an input task, and dimensional synthesis for hands that can present several splitting 

stages. Theoretical aspects, algorithmic implementation and computational aspects are included. 

The aim is to integrate these in a design tool to help in the creation of robotic hands tailored to 

specific applications.  

1.3 Organization of the Thesis 

The thesis is organized as follows. Chapter 1 discusses the theme of the thesis and the 

literature review. Chapter 2 provides the mathematical background in kinematics and synthesis. 

Chapter 3 provides the graph theory background. Chapter 4 focuses on enumeration, structural and 

dimensional synthesis of robotic hands. In Chapter 5, the software is explained. Chapter 6 focuses 

on comprehensive example. Chapter 7 provides conclusions and future works. 
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2 Kinematics Background 
	

In this chapter, the kinematic background needed for synthesis process is reviewed. As it is 

commonly accepted, “Kinematics is defined as the study of the motion, regardless of the force 

causing it and caused by it” [22]. The study of motion includes the study of derivatives of it which 

are mainly velocity and acceleration [22].  The subject is modeled as rigid body which is “a set of 

particles such that the distance between them remains fixed” [22]. In other words, in addition of 

concepts such as position, velocity and acceleration, the concepts including orientation, angular 

velocity and angular acceleration can be defined. For defining a position of rigid body three 

positions are needed and each of them includes three parameters. It means that totally nine 

parameters are needed. Since the distances between the positions must remain constant, these three 

positions are dependent to each other [22]. As a result of these constraints, only six parameters are 

needed to define. Figure 2-1 [22] shows a rigid body which three positions are defined on that. 

The six needed parameters are given by d and [R]. 

	

Figure	2-1	a	rigid	body 
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2.1 Finite Displacement  

In order to define the movement of a rigid body, a coordinate frame is attached to the rigid 

body. The coordinates of points of the rigid body is fixed in the attached coordinate frame. In 

Figure 2-2 [22], there are two different coordinates respect to frame F and frame M. A finite motion 

is called a displacement [22]. A displacement can be a translation, a rotation, or both of them. 

	

Figure	2-2	a	rigid	displacement 

2.1.1 Translation 

Translation is given by moving all of the points of a rigid body with the same amount in the 

same direction [22]. Equation 2.2 shows the representation of the translation. The translation 

vector t is applied to initial position x of the body in the space and results in new position which 

is called X. 

X = x + t               (2.2) 

where,  

X is a coordination after the translation 

x is a coordination before the translation  

t is the translation vector including direction and magnitude. 
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2.1.2 Rotation 

Rotation is a type of displacement in which a subspace of points can remain fixed while the 

rest of the points move by different amounts in different directions according to their location with 

respect to fix points [22]. Equation 2.3 shows representation of the rotation. The rotation matrix 

[R] is applied to initial position x of the body in the space and results in new position which is 

called X. 

X= [R]x           (2.3) 

where, 

X is a coordination after the rotation 

x is a coordination before the rotation 

R can be a rotation about x, y or z axes, or it can be a product of two or more. 

Figure 2-3 [22] a) shows a translation and b) shows a rotation 

 

Figure 2-3(a) shows pure translation and (b) shows pure translation. 

Equation 2.4 to 2.6 show the rotations about X, Y and Z. 
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[Rx] = 

1 0 0

0 cos	(() −sin	(()

0 sin	(() cos	(()

            (2.4) 

 

[Ry] = 

cos	(-) 0 sin	(-)

0 1 0

−sin	(-) 0 cos	(-)

             (2.5) 

 

[Rz] = 

cos	(.) −sin	(.) 0

sin	(.) cos	(.) 0

0 0 1

              (2.6) 

 

 

2.1.3 Spatial Displacement 

Spatial displacement is the combination of a rotation and a translation about an axis [22]. 

Equation 2.7 is a spatial displacement which consists of rotation of θ about X-axis and a translation. 

/

0

1

= 	

1 0 0

0 cos	(.) −sin	(.)

0 sin	(.) cos	(.)

/

0

1

	+	

45

46

47

							(2.7)	 

The equation 2.7 can be written as equation 2.8 

X= [R(θ),d]x         (2.8) 

where 
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X is a coordination after the displacement 

x is a coordination before the displacement 

[R(θ), d] is displacement matrix including translation and rotation. 

Displacement matrix is expressed as equation 2.9. 

 

/
1   =  

1 0 0

0 cos	(.) −sin	(.)

0 sin	(.) cos	(.)

0 0 0

									

45

46

47

1

;
1        (2.9) 

The above matrix is the 4×4 homogeneous transformation matrix. The fourth column is 

added to include the translation vector in the linear operation. 

2.2 Screw Displacement 

A displacement in space can be written as a screw displacement. The screw displacement is 

given by rotation and translation about an axes [22]. The screw axis is represented by six 

parameters. For defining the direction and location of the line, four parameters are needed and two 

other parameters are needed for defining the rotation and slide values. Figure 2-4 [22] shows the 

representation of screw axis. 

 

Figure 2-4 Representation of Screw axis 
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Equation 2.10 to 2.12 show the screw displacements for X, Y and Z. 

X((, =)  =  

1 0 0

0 cos	(() −sin	(()

0 sin	(() cos	(()

0 0 0

									

=

0

0

1

            (2.10) 

 

Y(-, >)  =  

cos	(-) 0 sin	(-)

0 1 0

−sin	(-) 0 cos	(-)

0 0 0

									

0

>

0

1

            (2.11) 

 

Z(θ,d)  =  

cos	(θ) −sin	(θ) 0

sin	(θ) cos	(θ) 0

0 0 1

0 0 0

									

0

0

4

1

               (2.12) 

 

2.3 Dual Quaternions 

The homogeneous matrices method has been used to represent the rigid body displacement 

in three dimensional space. The more efficient method in terms of computational speed, 

mathematical robustness and interpolation is the dual quaternions method. The main information 

which is applied by the dual quaternions method is the axis of the rotation and the translation 

vector and rotation angle. The dual quaternion for the given screw axis, S, is given by S= s+ ɛs0, 
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where ɛ2 = 0 and, s is the direction of the axis and s0 is the moment of the axis. Generally, the 

displacement of the dual quaternion is represented as below [22]. 

 

@ (.) = 

sin A
B
C5

sin A
B
C6

sin A
B
C7

cos	(./2)

             (2.13) 

 

The conjugate of the dual quaternion is 

 

@∗(.) = 

−sin A
B
C5

−sin A
B
C6

−sin A
B
C7

cos	(./2)

                (2.14) 

 

 

where, cos(./2) = cos(F
B
) +ɛ (-G

B
 sin(F

B
)) and sin(A

B
) = sin(F

B
) +ɛ (G

B
 cos(F

B
))  

 

2.4 Kinematic Synthesis 

From a kinematics point of view, a robot is a mechanical system that can be perform a 

number of tasks involving movement under automatic control [22]. Using the combination of 

translations and rotations, a robot can move in a six dimensional space. 

A mechanical system can be defined as a series of rigid links connected by joints. The degree 

of freedom of a robot is called mobility which is the number of required independent parameters 

to specify the positions of a rigid body relative to a base frame. The degree of the freedom of a 

robot is calculated using equation 2.1 [22]. 
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M = 	6(n − 1) 	−	 (6 − JK)
L
KMN           (2.1) 

where, 

n is the number of links in the serial chain. 

j is the number of joints in the serial chain. 

fi is the degree of freedom of the joint number i. i can be any number from 1 to j. 

Kinematic synthesis is the process in which an articulated system created and calculated to 

apply a motion. The main method to design the equations for the dimensional kinematic synthesis 

is setting up the forward kinematics equations of the robot. 

 

The Forward Kinematic equation (2.15) calculate a relative displacement from initial 

position to final position. This displacement can be a combination of rotations and slide along the 

axis S.  

 

@	 ΔΘ = QRS T
B
+ SUV T

B
C = 	 W

XYZ[Z
\ W

XY\[\
\ …………W

XY^[^
\ 		(2.15) 
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3 Basic Concepts of Graph Theory 
	

3.1 Introduction: 

In this chapter the concepts of graph theory are presented.  First, the definitions related to graphs 

are explained. It is followed by presenting a special type of graph which is called tree graph. 

Finally, the representation of graphs using adjacency matrix is explained.  

3.2 Graph 

The word “graph” is derived from the fact that regards it as graphical notation [23]. Each graph 

consists of two different sets. The first set defines the vertices of the graph and the second set 

consists of members that includes two members of vertices set. Those two members determine the 

end vertices of each edge. Each graph is represented by vertices and edges sets. For example, 

Figure 3-1 shows a graph (G) with the following vertices (V) and edges (E) sets which is 

represented as G = (V, E). 

V = {1, 2, 3, 4, 5}             E= {{1,2}, {1,5}, {2,3}, {2,5}, {3,4}, {4,5}} 

	

Figure	3-1	Graph	

3.2.1 Degree of a vertex 

The degree of a vertex or valency of a vertex [24] is the number of edges of the graph 

which are incident with that vertex. A vertex with degree of zero, two, and three is called isolated 
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vertex, binary vertex, and ternary vertex respectively. For the graph shown in Figure 3-1 the degree 

of vertex 1 is 2. The degree of vertices 2, 3, 4 and 5 are equal 3, 2, 2, and 3 respectively. Since 

each edge is incident with two vertices, the sum of degrees of vertices is equal 2 times the number 

of edges. 

_(`)a∈c = 2d               (3.1) 

Where V is the set of vertices, _(`) is the degree of the vertex v, and E is number of edges. 

3.2.2 Paths and cycles 

For defining path and cycle, first the adjacent vertices should be defined. Vertex u and 

vertex v are called adjacent if there is an edge between them. Path or walk is a sequence of vertices 

and edges should be beginning with a vertex and ending with a vertex [24]. In other words, a path 

can not begin or end with an edge. The length of a path is the number of edges which are included 

in the path. A path with length n is defined with a sequence including n+1 vertices and n edges. A 

path also could be defined using only a sequence of vertices. A trail is a specific path in which all 

edges are distinct. In a path, if each vertex of the graph appears at most one time except one of 

them, which appears at beginning and ending the path, the path is called cycle or circuit [23]. The 

length of a circuit is at least 3. For the graph shown in Figure 3-1, (v (1), e ({1,2}), v (2), e ({2, 

5}), v (5), e ({4, 5}), v (4)) is a path and (v (2), e ({2,3}), v (3), e ({3, 4}), v (4), e ({4, 5}), v (5), 

e ({2, 5}), v (2)) is a cycle. 

3.2.3 Connected Graph and Subgraph 

For defining a connected graph, first the connected vertices should be defined. Two vertices 

are connected if there is at least one path between them. They do not need to be adjacent for being 

connected. The graph is connected if each vertex of the graph is connected to all others vertices 

[23]. The degree of each vertex in a connected graph is at least one. If there is a vertex with degree 

zero in a graph, it means that the graph is not connected. The graph shown in Figure 3-1 is 

connected. Figure 3-2 [23] shows a graph that is disconnected. 
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Figure	3-2	Disconnected	Graph	

	

A subgraph of a graph is a graph whose vertices form a subset of vertices of the main graph 

and its edges are a subset of the edges of the main graph. In other words, the subgraph is made by 

deleting a number of edges and vertices of a graph [23]. For building a subgraph, deleting at least 

one edge is necessary. But all the vertices could be saved. If a vertex is removed, all the edges 

which are incident to that vertex should be removed. Figure 3-3 [25] shows a graph at the left and 

one of its subgraphs at the right. The main graph vertex set is V= {a, b, c, d} and its edges set is 

E= {{a, b}, {a, d}, {b, c}, {b, d}, {c, d}}. The subgraph is made by removing vertex “d” and all 

the edges which are incident with vertex “d”. The subgraph vertex set is V= {a, b, c} and its edges 

set is E= {{a, b}, {b, c}}. 

	

Figure	3-3	a	graph	and	one	of	its	subgraph	
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3.2.4 Directed Graph 

If all the edges of a graph have direction the graph is called a directed graph. In a directed 

graph the order of the vertices which are the ends of an edge is important. For example, E= {{u, 

v}} and E= {{v, u}} are different. There are two different degrees of a vertex in directed graph. 

Indegree of vertex (v) is the number of edges of the graph which starts from other edges and end 

in vertex (v). In other words, the direction of edges is into vertex (v). Outdegree of vertex (v) is 

the number of edges of the graph which starts from vertex (v) and end at other vertices. In other 

words, the direction of edges is from vertex(v) to other vertices. If a vertex has a positive outdegree 

and the indegree of that is equal to zero it is called source vertex. If a vertex has a positive indegree 

and the outdegree of that is equal to zero it is called sink vertex. If for each vertex of graph, the 

indegree is equal to the outdegree, the graph is called a balanced graph. If there is only one source 

vertex in a graph, it is called root vertex. Figure 3-4 [25] shows a directed graph. There are four 

vertices and five edges in this graph (V= {1, 2, 3, 4,} and E = {{1, 2}, {1, 3}, {1, 4}, {2, 3}, {4, 

3}}). Vertex 1 has  indegree equal to 0 and outdegree equal to 3. It means that vertex 1 is a source 

vertex and since it is the only source vertex in graph it is also root. Vertices 2 and 4 has indegree 

and outdegree equal 1. Vertex 3 has a indegree equals 3 and outdegree equals 0. It means that 

vertex 4 is a sink vertex. 

	

Figure	3-4	a	directed	graph 
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3.2.5 Complete graph  

If every vertex in a graph is connected to all other vertices of the graph by one edge, the 

graph is called a complete graph [25]. A complete graph with n vertices has n(n-1)/2 edges. The 

symbol for a complete graph with n vertices is ef. Figure 3-5 [25] shows a eg graph. This graph 

has 10 edges. 

	

Figure	3-5	a	complete	graph	with	5	vertices 

 

3.2.6 Graph Isomorphism 

Consider two graphs H and G which have the same number of edges and vertices. If there 

is a one-to-one relation between the edges and vertices of H and G, the graphs are called 

isomorphic [25]. In other words, each vertex in graph G corresponds to a vertex in graph H and 

each edge in graph G corresponds to an edge in graph H, there is an isomorphism between them. 

The graphs shown in Figure 3-6 [25] and 3-7 [25] are isomorphic. Both graphs have 6 vertices and 

9 edges. The vertices correspond to each other as follow: 

Vertex number 1 in Figure 3-6 corresponds to vertex number 1 in Figure 3-7. Vertex 

number 2 in Figure 3-6 corresponds to vertex number 4 in Figure 3-7. Vertex number 3 in Figure 
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3-6 corresponds to vertex number 2 in Figure 3-7. Vertex number 4 in Figure 3-6 correspond to 

vertex number 5 in figure 3-7. Vertex number 5 in Figure 3-6 corresponds to vertex number 3 in 

Figure 3-7. Vertex number 6 in figure 3-6 corresponds to vertex number 6 in Figure 3-7. 

	

Figure	3-6	graph1	isomorphism	

	

	

Figure	3-7	graph2	isomorphism	
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3.3 Tree 

A connected graph with no cycles is called a tree [25]. A tree has following properties: 

• There is exactly one path between any two vertices of the tree. 

• A tree with v vertices has v-1 edges. In other words, the number of vertices in the tree is 

exactly 1 more than the number of edges. 

• If two non-adjacent vertices in the tree are connected to each other, the output is a graph 

with one cycle. 

3.3.1 Definitions 

There are two types of vertices in a tree. A leaf is a vertex with degree of one and a vertex 

whose degree is at least equal to two is called internal vertex [26]. If the tree has a root, root vertex 

can be a degree 1 vertex and it is not counted as a leaf.  

	

Figure	3-8	A	tree	

	

The tree shown in Figure 3-8 [26] has 12 vertices. Vertex A is the root of the tree. Vertices 

B, C, D, and E are internal vertices and vertices K, L, G, F, H, I, and J are leaves.  
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Level of a vertex: level of a vertex is related to the length of the path between the root and each 

vertex. The level of the root vertex is equal to one. Those vertices that have a path with length of 

one with the root are in level two and so on. In the graph shown in Figure 3-8 [26], vertex A is in 

level one. Vertices B, C, and D are in level two. Vertices E, G, F, H, I, J are in level three. 

Finally, the vertices K and L are in level four. 

Parent: each vertex except the root has a parent. The parent for vertex in level n is a vertex in 

level n-1 which has a path with length of one to that vertex. In the tree shown in Figure 3-8 [26], 

the parent of vertices B, C, and D is vertex A. Parent of E and G is B. Parent of F is C. Parent of 

H, I, and J is D. Finally, Parent of K and L is E. Vertex A is the root vertex and does not have a 

parent. 

3.3.2 Weighted Tree 

There is a tag (number) for each edge of the tree in a weighted tree, which shows the weight of the 

edge [27]. Sometimes a weighted graph is called a labeled graph. The applications of weighted 

graphs are in different areas such as Computer Network, Optimization, etc. One of the most 

popular problems which use weighted graphs is shortest-path problems such as the travelling sales 

man problem [27]. Figure 3-9 shows a weighted graph. Figure 3-9 [27] shows a weighted tree 

which is used for uniform cost search application. 
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Figure	3-9	A		weighted	graph	

	

3.4 Representing a graph using Adjacency Matrix 

There are two different popular methods to represent the graphs [28]. The first way is 

representing graphs using the adjacency matrix and the second way is using a linked list. In this 

section, representing a graph using the adjacency matrix is presented. 

 Graph G = (V, E) has n vertices. For representing graph G using an adjacency matrix, define a 

V×V two dimensional array called i. If there is an edge between `Kand L̀ , then  i U j = 1 and 

i j U = 1. If there is not any edge between `K	and L̀ , then  i U j = 0 and i j U = 0. The 

following matrix shows the adjacency matrix of the graph shown in Figure 3-10 [28]. 

i =
0 1
1 0

1 1
0 1

1 0
1 1

0 1
1 0

               (3.2) 
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Figure	3-10	adjacency	matrix	for	graph	

 

If graph G = (V, E) is a directed graph and has n vertices, for representing graph G using 

the adjacency matrix define a V×V two dimensional array called i. If there is an edge between `K 

and L̀ which start from `K and end in L̀ then i U j = 1. If there is not any edge between `Kand 

L̀ which start from `K and end in L̀  then  i U j = 0. The following matrix shows adjacency 

matrix of the graph which is shown in Figure 3-10 [28]. 

i =
0 1 0
1 0 1
0 0 0

               (3.3) 
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Figure	3-11adjacency	matrix	for	directed	graph	

	

If Graph G = (V, E) is a directed weighted graph and has n vertices, for representing Graph G 

using the adjacency matrix define a V×V two dimensional array called i. If there is an edge 

between `K and L̀ which start from `K and end in L̀ then i U j  is equal to weight of the edge. If 

there is not any edge between `Kand L̀ which start from `K and end in L̀  then  i U j = 0.  
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4 Enumeration, Structural and Dimensional Synthesis 
of Robotic Hands 

 

4.1 Introduction 

Kinematic synthesis, the process of creating a mechanical system for a given motion task, 

can be used in order to select and size a topology as a candidate hand design. The synthesis process 

for robotic hands has four main steps that are detailed below: task definition, type or structural 

synthesis, solvability calculations, and dimensional synthesis.  

After this process we obtain a set of joints, their connectivity, and their relative position 

along a chain. Further steps of ranking, optimization and detailed design will be necessary to 

implement the candidates into functioning hands.  

4.1.1 Task Definition 

The task is the desired motion of the elements of the hand whose interaction with the 

environment is of interest. For a multi-fingered hand, a simultaneous motion of all fingertips or 

surface contacts, which could be any limb of the hand, is to be defined. For each fingertip or contact 

limb, a set of positions are defined as location plus orientation. Figure 4-1 shows a trajectory task 

for a hand with four fingertips.  

	

Figure	4-1	A	motion	task	for	a	four-fingered	hand,	obtained	using	human	hand	motion	capture 
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4.1.2 Type Synthesis 

Type synthesis, or structural synthesis, is the enumeration, selection and ranking of the 

kinematic chain topologies to be used as candidate designs. In the case of a robotic hand, it implies 

the selection or calculation of the number of fingers, the number of joints at the wrist, the number 

of splits or branchings, and the number of joints for the serial chain making each branch, as well 

as the type of joints to be used. This could be an a-priori selection by the designer or it could be 

calculated based on the task. Having an automatic type synthesis stage helps the designer exploring 

the sometimes vast field of possible solutions, and identify trends in the candidate topologies.  

4.1.3 Solvability 

In the case of simultaneous tasks of all fingertips, solvability is defined as the ability of all 

combination of fingers to perform their relative tasks, and it is a condition that needs to be checked 

in order to be able to do the dimensional synthesis. It consists of checking what is the maximum 

number of positions that do not overconstrain each root-to-end-effector(s) subgraph, and ensuring 

that each subgraph is less constrained than the overall graph. In this calculation, the subgraphs 

obtained by moving the root to each end-effector need to be included to account for relative motion 

between fingertips.  

4.1.4 Dimensional Synthesis 

In the dimensional synthesis stage, the position of the joint axes are to be calculated, for 

the selected solvable topology and for the desired kinematic task. There are many techniques to 

state and solve the dimensional synthesis equations; regardless of the formulation, the output is 

the position of the joint axes at a reference configuration. This output is equivalent to the set of 

parameters defining the relative location and orientation between adjacent joints. The kinematic 

solution can be then used for the detailed design of the hand.  

4.2 Tree Topologies 

A tree topology for a kinematic chain has a set of common joints spanning several 

chains, possibly in several stages, and ending in multiple end-effectors [29]. A branch of 

the hand is defined as a serial chain connecting the root node to one of the end-effectors, 
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and a palm is a link that is ternary or above. The tree topology is represented as rooted a 

tree graph; the approach of Tsai [23] is followed, with the root vertex being fixed with 

respect to a reference system.  

A multi-fingered hand is defined as a kinematic chain with several common joints - 

the wrist, which is a fundamental part of the hand manipulation- spanning several branches, 

possibly in several stages. At the end of each branch are the end- effectors, the fingertips. 

They are the main elements whose motion or contact with the environment is being defined 

by the task; this can be generalized to consider other intermediate vertices of the topology. 

Open hands, that is, hands not holding an object, are represented as kinematic chains with 

a tree or hybrid topology. For our synthesis formulation, the internal loops in the hand 

structure are removed using a reduction process [21], to obtain a tree topology with 

intermediate links that are ternary or above.  

Tree topologies are denoted as SC − (B1,B2,...,Bb), where SC is a serial kinematic 

chain representing the initial common joints and the dash indicates a branching or splitting, 

with the branches adjacent to SC contained in the parenthesis, each branch Bi characterized 

by its type and number of joints. Figure 4-2 shows the compacted and possibly reduced 

graph for a 2R−(2R, R−(3R,3R,3R),2R), or 2−(2,1−(3,3,3),2) chain if we drop the R in the 

case of all revolute joints. This hand has three branches, one of them branching again on 

three additional branches, for a total of five end-effectors or fingertips. The root vertex is 

indicated with a double circle. While most current robotic hands have a single splitting 

stage spanning several fingers, this can be generalized for greater adaptation to different 

applications by using hands with topologies such as the one presented in Figure 4-2. 
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Figure	4-2	a	five-fingered,	two-palm	hand	topology.	a)	indicates	the	numbering	of	the	edges	and	b)	indicates	the	number	of	
joints	for	each	edge.	

 

Figure 4-3 shows the kinematic sketch of the hand which presented in Figure 4-2. 

	

Figure	4-3	a	five-fingered,	two-palm	hand	kinematic	sketch.	
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A tree topology is represented by two arrays, which capture incidence and adjacency 

properties as well as information on the edges. Assume a numbering of the graph edges to 

define a parent-pointer array and a joint array. The length of both arrays is equal to number 

of edges of the tree graph after the reduction process is applied, that is, each edge, and each 

entry of the arrays, will correspond to a serial chain of the robotic hand.  

The parent-pointer array implements the parent-pointer representation, where each 

element takes the value of the previous edge, the first edge being usually the one incident 

at the root vertex. The edges incident at the root vertex have no parent and they take the 

value zero. Each element of the joint array contains the number and type of joints for each 

edge. If we are limited to revolute joints, then the joint array element will be equal to the 

number of joints for that edge. As an example, for the tree topology shown in Figure 4-2, 

the parent-pointer array and joint array are defined as p = {0, 1, 1, 1, 3, 3, 3} and j = {2, 2, 

1, 2, 3, 3, 3} for the given numbering of the edges.  

4.3 Type Synthesis and Enumeration 

Given a simultaneous motion task for all fingertips, it is important to know how many, and 

what hand topologies are suited for the task. The number of candidate hand topologies of a certain 

type is usually very high and unbounded in some cases [30]. This number of suited topologies can 

be reduced if some additional constraints are added. At the end of the process, one or a few of 

these topologies will be selected for performing the additional design steps. The approach taken 

here is different from previous research such as [14], and it is based on free finger motion.  

The conditions for considering a topology for the task are, at the least, to have the same 

number of end-effectors as the task and to be solvable, according to the criteria defined in [21] and 

[30]. The set of suited topologies can be ranked according to other criteria, such as number of 

edges, number of splits, and number of joints per edge, among others. 
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4.3.1 Candidate Topology Search 

A search method and its algorithmic implementation is presented here to find solvable 

topologies for a defined task. The task is assumed to be a general subset in the SE(3) group of rigid 

motion and its derivatives, and the goal is to find all topologies that can be paired with the task for 

dimensional synthesis, given a set of user-defined restrictions.  

User-defined inputs are the number of positions of the task m, the number of end-effectors, 

or branches, b, and the total number of edges of the graph e. Remember that every edge 

corresponds to a serial chain. The output is the set of topologies that meet the solvability criteria 

subject to these conditions.  

The task-sizing formula in [21] is applied in the first place to find all possible branch 

topologies for the given number of end-effectors. Start by calculating following equation. 

k = jK =
lmN .n.o
lpq

r
KMN                (4.1) 

where J represent the total number of joints and ji are the joints for the serial chain 

corresponding to the i-th edge of the topology. The number of joints per edge has to be between 1 

and 5 for synthesis purposes, as a serial chain of length 6 or higher does not impose any restriction 

on the motion.  

The presented method includes three steps. First, all possible tree structures (parent-pointer 

arrays p) which meet the input criteria are found, for the given number of branches and number of 

edges. In the algorithmic implementation, the parent- pointer array is filled up starting at the root 

and sequentially according to the following rules:  

• p (1) = 0. The first edge is the root node and has no parent.  

• If i is not an end-effector, p(i) can accept any value between p (i − 1) to i − 1. The values of 

parent pointer array are increasing (p(i) ≥ p(i − 1)). This condition helps to avoid adjacent branch 

isomorphism.  

• If i is an end effector, p(i) can accept any value between p(i − 1) to e − b, since the last b edges 

are end-effectors and cannot be parents.  
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Second, for each structure found in first step, construct all possible joint arrays which meet 

the input criteria. This implies writing all joint arrays with length equal to e that satisfy equation 

4.1 and with entries between 1 and 5. Constructing isomorphic trees is avoided by proper index 

and value assignment.  

Finally, after finding all possible joints arrays for each parent pointer array, check the 

solvability of each topology including parent pointer array and joint array. If it is solvable, add it 

to result as a candidate topology. This method yields all non- isomorphic trees [37] for the input 

parameters.  

4.3.2 Type Synthesis Enumeration 

Even though this search may be unbounded, reduced atlas can be created for a certain range 

on the number of end- effectors and precision positions.  

Table 4-1 shows different values for the inputs and the number of candidate topologies that 

can be found. In this table, m is the number of task positions for each fingertip, b is the number of 

end-effectors, e is the number of edges of the graph. The overall number of joints is calculated 

under Joints and the number of different joint arrays j and parent-pointer arrays p are calculated. 

The candidate topologies are the solvable combinations of joint arrays and parent-pointer arrays.  

Table	4-1	Type	Synthesis	Results	for	selected	inputs	

INPUTS OUTPUTS 

m b e Joint
s j p Candidate 

Topologies 

3 2 2 4 2 1 1 

3 2 3 4 2 1 2 

3 3 3 6 3 1 1 

5 2 3 6 6 1 4 

5 3 3 9 5 1 1 

5 3 4 9 45 2 9 



30	
	

5 3 5 9 46 1 19 

5 4 4 12 8 1 1 

5 4 5 12 187 3 14 

5 4 6 12 478 3 72 

5 4 7 12 206 1 47 

6 3 4 10 58 2 4 

6 3 5 10 76 1 13 

9 4 4 16 5 1 1 

9 4 5 16 250 3 26 

9 4 6 16 1442 3 237 

9 4 7 16 1313 1 292 

13 2 3 9 11 1 6 

13 4 5 18 187 3 4 

13 4 6 18 1645 3 161 

13 4 7 18 2137 1 233 

13 6 7 27 781 5 2 

21 2 3 10 10 1 10 

21 3 3 15 1 1 1 

21 3 4 15 45 2 24 

21 5 5 25 1 1 1 

21 5 6 25 168 4 57 

 

To illustrate the results of Table 4-1, Table 4-2 shows some of the candidate topologies 

that can be found using this method, where p denotes the parent-pointer array and j the joint array 

of the topology. Due to the high number of solvable candidate topologies, it is not possible to 

present them all in the table, however the final number is presented in Table 4-1 for each example.  
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Table	4-2	Examples	of	Type	Synthesis	

Example 1 Example 2 

m=3 b=2 e=2&3 Topologies: 

p = (0,0) j = (2, 2) 

p = (0,1,1) j = (1,1,2) 

p = (0,1,1) j = (2,1,1) 

m=5 b=4 e=6 Some selected 
topologies: 

p = (0,0,1,1,2,2) j = (1,1,2,3,2,3) 

p = (0,1,1,1,2,2) j = (3,1,1,3,3,1) 

p = (0,1,1,2,2,2) j = (3,2,1,3,2,1) 

p = (0,1,1,2,2,2) j = (2,2,2,2,2,2) 

Example 3 Example 4 

m=13 b=4 e=5 Some selected 
topologies: 

p = (0,1,1,1,1) j = (2,4,4,4,4) 

p = (0,1,1,1,1) j = (3,4,4,4,3) 

p = (0,1,1,1,1) j = (4,3,4,4,3) 

p = (0,1,1,1,1) j = (4,4,4,4,2) 

m=21 b=5 e=6 Some selected 
topologies: 

p = (0,0,0,0,1,1) j = (2,5,5,5,4,4) 

p = (0,0,0,1,1,1) j = (3,5,5,2,5,5) 

p = (0,0,1,1,1,1) j = (4,5,3,5,3,5) 

p = (0,1,1,1,1,1) j = (5,5,3,4,3,5) 

 

Figure 4-4 presents the three non-isomorphic topologies for two fingertips and three 

precision positions. 
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Figure	4-4	Kinematic	Sketch	of	all	non-isomorphic	candidate	topologies	with	two	fingertips	and	solvable	for	three	precision	
positions.	from	the	left	to	right:	0-(2R,	2R),	R-(2R,	R)	and	2R-	(R	,R)	

4.4 Solvability 

A hand is defined as solvable when it can be designed for a meaningful simultaneous task 

of all the fingertips or end-effectors, that is, a positive rational task with at least two positions. 

Because some fingers may be overconstrained while others are underconstrained for a given 

topology, solvability needs to be checked systematically for all root-to-end-effector subgraphs of 

the hand, including those obtained when changing the root vertex to one of the end-effectors.  

Equation 4.2 calculates number of positions for the exact kinematic synthesis of a tree 

topology. If the number of positions so obtained for the kinematic task of all subtrees is greater or 

equal than the number of positions for the overall tree, the tree is solvable for kinematic synthesis.  

s = tuv.wmtxy.z
tvvy .zmt{

v.w
+ 1               (4.2) 

In this equation, @|r is the vector containing the number of structural variables for each 

edge, E is the vector of ones for the edges belonging to the subgraph, @}f is the vector of possible 

extra constraints for each branch, B is the vector of ones for the branches belonging to the 

subgraph, @rrf  is the vector of degrees of freedom for the motion of each end effector, and @Lr is 

the vector containing the number of joint variables for each edge. These vectors are calculated with 

the help of the root-to-end-effector path matrix of the graph.  
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The algorithmic implementation of the solvability condition has two steps, the first step is 

creating all possible subgraphs and their corresponding arrays, and the second step is calculating 

the solvability for those subgraphs.  

As an example, for the tree topology shown in Figure 4-2, solvability needs to be checked 

for the original tree, the following root-changing trees (Figure 4-5) and all of their subtrees. Figure 

4-6 shows the new parent-pointer representation assignment.  

	

Figure	4-5	The	subtrees	which	need	to	be	checked	for	solvability	

	

	

Figure	4-6	Tree	a)	before	and	b)	after	changing	the	root	

 

The process can be itemized as follows:  
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a) Remove the common edge and set parent pointer as zero for those edges which are the 

child of the common edge. Figure 4-6 shows the tree previous root in the first tree and the tree 

after changing the root to next root in the second one, and further steps in the other two graphs. 

The parent pointer array after this step changes from ppt = {0,1,1,1,3,3,3} to ppt = {−1,0,0,0,3,3,3}. 

The value −1 means that the edge has been removed.  

 b)  There is a path between the previous root and the new root. In this step, the parent-pointer 

value of the edges that are connected in this path is updated. In the example of Figure 4-6, the path 

includes edges 3 and 6. In this step, the value of parent pointer for edges 2, 4, 5, 7 is changed. The 

parent-pointer array after this step changes from ppt = {−1,0,0,0,3,3,3} to ppt = {−1,3,0,3,6,3,6}. 

 

 c)  Finally, the parent-pointer value for the edges which are in the path is updated, by changing 

the value of parent pointer for edges 3 and 6. The parent-pointer array after this step changes from 

ppt = {−1,3,0,3,6,3,6} to ppt = {−1,3,6,3,6,0,6}.  

 d)  After the previous step, the new tree is ready and m can be calculated for all the 

combinations of the branches, as the algorithm shows. Knowing the branch connectivity is needed 

for making the [B] matrix, and the tree with b branches has 2b − 1 combinations of branches for 

the original root node; when switching the root node to each end-effector, that yields 2(2b − 1) − 

b different subtree combinations. These are defined by changing 1 → 2j to binary numbers using 

j digits, j = 1,...b. Finally, all the needed matrices are available for calculating m and comparing 

them to M. 

4.4.1 Examples of Solvability 

The following examples show the results of the solvability checking algorithm for some hand 

topologies. For the cases in which the topology is solvable, the number of positions to be used for 

exact kinematic synthesis is returned. If the tree is not solvable, the overconstrained subtrees are 

identified.  
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Table	4-3	Examples	of	Solvability	

Example 1: 

3R-(2R, R-(3R,3R,3R,3R)) 

p = (0,1,1,2,2,2)

j = (3,1,2,1,1,1) 

Solvable m = 7 

Example 2: 

R-(2R-(3R-(R, R),3R-(R, R)), 2R-(3R-(R, R),3R- 
(R, R)))

p = (0,1,1,2,2,3,3,4,4,5,5, 6,6,7,7)

j = (1,2,2,3,3,3,3,1,1,1,1, 1,1,1,1) 

Not Solvable R-(R) overconstrained 

Example 3: 

R-(R-(2R-(R, R-(R,R)),R-(R,R)) R-(R,R))

p = (0,1,1,2,2,3,3,4,4,5,5,9,9)

j = (1,1,1,2,1,1,1,1,1,1,1,1,1) 

Solvable m = 3 

Example 4: 

2R-(3R, R-(2R,2R,2R),3R 

p = (0,1,1,1,3,3,3)

j = (2,3,1,3,2,2,2) 

Solvable m = 5 

 

Figure 4-7 shows the tree topology and kinematic sketch of example 1. 

	

Figure	4-7	Tree	topology	and	kinematic	sketch	of	example	1.	

	

Figure 4-8 shows the tree topology and kinematic sketch of example 2. 
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Figure	4-8	Tree	topology	and	kinematic	sketch	of	example	2.	

	

Figure 4-9 shows the tree topology and kinematic sketch of example 3. 

       	

Figure	4-9	Tree	topology	and	kinematic	sketch	of	example	3.	

	

Figure 4-10 shows the tree topology and kinematic sketch of example 4. 
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Figure	4-10	Tree	topology	and	kinematic	sketch	of	example	4.	

	

4.5 Dimensional Synthesis 

Kinematic dimensional synthesis is used to shape the new designs for robotic hands, able to 

grasp and/or manipulate in a given application. Dimensional synthesis has the candidate topology 

and the kinematic task as inputs. The kinematic task consists of a set of simultaneous displacements 

for each fingertip, as well as velocities and accelerations defined at some or all of those positions.  

4.5.1 Automatic forward Kinematic Equations 

For the design of robotic hands with arbitrary topologies, including multiple splitting 

stages, forward kinematics equations need to be automatically created from the tree topology and 

its associated arrays, identifying the common joints that will appear in the equations of several 

branches. The strategy to accomplish this is to divide the forward kinematics in serial chains -

corresponding to graph edges-, branching points and end-effector points. Three types of objects 

are defined as outlined below:  

 1)  Chain: a set of joint axes connected in series. There are two different types of chains, those 

ending on an end effectors and those ending at a branching point. This second type is common to 

several branches, however from the point of view of the object, they are generated equally.  

 2)  Tip Contact Point (TCP): TCPs are created for each end-effector and then attached to the 

corresponding end- effector chain. In the most general case, we can attach a TCP to any link, such 
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as a palm link or intermediate finger link.  

 3)  Splitter: a vertex that spans more than one edge. Splitters are identified and created, and the 

chains spanning from each of them are attached to the splitter. If the splitter has a predecessor, 

then the splitter is attached to the common serial chain.  

This sequential process takes place until design equations are created for each chain from 

root node to end-effector node. First step is generating the end effector chains. For each end 

effector chain, generate and attach a TCP. For a single- branch topology (b=1), the process is done. 

For multi-finger topologies, Splitters are generated for each common joint and chains are attached 

to them, from end-effector to root. Finally, the tree is attached to a first Splitter (sp0) for topologies 

with no wrist, or to the serial chain of the first common edge in case of a wristed hand.  

4.5.2 Exact Synthesis 

Exact dimensional synthesis has been explored in [21]. The approach followed to create 

dimensional synthesis equations consists on equating the forward kinematics of each root-to- 

fingertip branch in the hand to the set of positions defined for the fingertip. Given a set of mp task 

positions Pˆ
k
i, k = 1 . . . mp for each end-effector (denoted by superscript i), mv task velocities 

Vi
r for each end-effector i, r = 1...mv, and ma task accelerations Ai

s for each end-effector i, s = 1 

. . . ma , where m = mp + mv + ma, design equations are created. Compute the relative 

displacements from a selected reference position, usually position 1, and equate the relative 

forward kinematics to those relative positions Pˆ
1k

i. The twist of each 1k end effector Vr
i is 

equated to the linear combination of twists for each joint axes, and similarly for the acceleration 

of the end effectors. The Plucker coordinates of the joint axes appear explicitly in the forward 

kinematics when these are computed as the product of exponentials for relative displacements, and 

linearly in the velocity and acceleration equations. For a hand with b fingertips, this yields b sets 

of equations 4.3 that are to be solved simultaneously,  
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(4.3)	

	

where the number of end-effectors, or branches as root-to- fingertip chains, is indicated by 

b, mp is the number of exact positions, and {Bi} is the set of ordered indices of the joints belonging 

to branch i, which can be obtained from the graph matrices. The set of ordered indices{Ti}and{Ri} 

correspond to positions where twists and accelerations have been defined, for each branch i. Notice 

that some of the joints will be common to several branches. The joint axes at the reference 

configuration are denoted as Sj, and the joint axes at the configuration given by position k are 

denoted as Sk
j .  

This yields a total of 6(mp − 1 + mv + ma)b independent equations to be simultaneously 

solved. The method has been applied to simultaneous rigid-body motion tasks for all fingertips 

[19], defined by a finite set of positions, and to simultaneous fingertip tasks defined by a finite set 

of displacements and associated twists. For most topologies, this method yields many potential 

designs.  

4.5.3 Multiple Velocity Synthesis or Constrained-motion synthesis 

For tasks aiming to define a free trajectory for each fingertip, the definition of a finite set 

of positions, with a single twist vector defining the velocity for each position, and possibly a single 

acceleration 6D vector, gives a full characterization of the task. However, for tasks which are 

constrained by the contact between the fingertip and an object, the definition of the allowed 

subspace of velocities at each point can be used to ensure the desired behavior for some grasping 

actions such as finger sliding or finger rolling, for a suited hand topology. Notice that the velocities 

must always be defined at a given position of the end-effector.  

Consider the desired angular velocity of the end-effector and linear velocity of the origin 
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of the end-effector frame at a given position, and calculate the fixed-frame six-dimensional twist. 

In this twist, the point velocity is calculated at the origin, so that it would yield the desired linear 

velocity at the origin of the end-effector frame.  

A constrained motion given by a contact is defined, at a given position, as a subspace of 

wrenches, W, whose magnitudes can be as high as needed. The subspace of reciprocal twists, V , 

define the potential directions of allowed motion at that position.  

A fingertip in contact with a surface can be kinematically modeled using one of the 

standard fingertip joints, see for instance [31], such as pointy fingers or soft fingers, which are 

defined by their degrees of freedom and friction cone if applicable. For a general case, the 

dimension of the subspace of reciprocal twists can be made to coincide with the mobility of the 

parallel mechanism formed when the hand is in contact with an object (defined by n links and j 

joints of fi degrees of freedom each),  

dim Ä = 6 V − 1 − (6 − JK)
L
KMN        (4.4) 

Using this method, a hand can be synthesized for a desired m-dimensional subspace of 

twists at each precision position, just by defining a set of m independent twists at that position.  

As an example, consider a hand with a 2 − (2, 2) topology, with two fingers and soft finger 

joints at the fingertip. Figure 4-11 shows the graph and kinematic sketch of the 2 − (2, 2) hand. 

This hand has two revolute joints at the wrist and two revolute joints at each of the two fingers.  
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Figure	4-11Topology	and	Kinematic	sketch	for	2-(2,	2)	hand 

 

This topology is solvable for a total of m = 5 precision positions. Define a task with mp = 

3, with one position having two specified twists each (mv = 2), and the rest of positions having no 

specified velocities. If this is a task in which both fingers contact an object, and assuming a general 

grasp, the 2 − (2, 2) hand has 4 degrees of freedom according to the general mobility formula. Two 

of them corresponds to the wrist rotations, while the other two are in-hand degrees of freedom. 

This allows us to include in the task the ability of the fingers to be compatible with a contact 

constraint at a given position.  
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5 Software 
 

5.1 Kinematic Solver 

The algorithms presented in this work have been implemented in a kinematic design 

software. A first version of the solver for dimensional synthesis, ArtTreeKS (Articulated Tree 

Kinematic Synthesis), was developed [19] for tree topologies with a single branching, 

corresponding to anthropomorphic or simple hands. A single root is sought for the system of 

equations using a hybrid solved, based on a Genetic Algorithm (GA) built on top of a Levenberg-

Marquadt local optimizer, which minimize the average error of the dual quaternions representing 

the task. This numerical solver yields a single solution but allows dealing with tree topologies with 

a very high number of joints and fingers.  

Evolutionary Algorithms have been applied in different area of Robotics such as localization 

[32], [33]. As all meta-heuristic algorithms, this genetic algorithm must be adjusted experimentally 

according to the problem being solved. Each entity in the genetic algorithm is represented as a 

vector of real numbers that allows simple integration with other numerical solver libraries like 

MINPACK [34] which is used in the Hybrid solver.  

This numerical solver has been integrated in the kinematic design package. The package 

includes a type synthesis stage, solvability checking, the ability to synthesize new designs with 

arbitrary branching stages (corresponding to hands with several palms), and the ability to define a 

task with positions and several velocities or accelerations at a given position. This second feature 

is important in order to fully determine manipulation actions such as finger rolling or finger sliding, 

or simple dexterity without changing the grasping point.  

5.2 Overall Software Architecture 

The	software implementation follows a three-layer architecture, which is shown in 

Figure 5-1, and uses the elements described below. The user interface and writing of 

input files is done using Lua, while the solver is programmed using C++.  
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Figure	5-1	Software	Architecture	

 

• Input Files: Input information from the designer.  

· Type synthesis input: contains the number of branches, task positions and edges.  

· Dimensional synthesis input: Contains the tree topology and the values for the 

task positions, velocities and accelerations. 

• Output files: Results of calculations that the designer can access.  

  · Solvability output: output file with the results of solvability calculations for a 

given topology.  
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  · Type synthesis output: output file with the atlas of solvable topologies for a given 

number of fingers and positions.  

  · Design Synthesis File: output file containing the design equations.  

  · Dimensional synthesis output: output file containing the result of the dimensional 

synthesis: Plucker coordinates of joint axes and joint variables.  

• Process files: internal calculations  

  · Solvability Library: Lua functions to calculate tree solvability.  

  · Type synthesis Library: Lua file to construct all possible topologies for a set of 

input conditions.  

  · Generator File: Lua functions to check solvability, assemble forward kinematics 

equations and assign initial values.  

  · Synthesis Library: Library of functions to communicate solver and Synthesis file.  

  · Solvers: Genetic algorithm and Minpack C++ code to generate candidate 

solutions and perform minimization.  
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6 Design Example 
	

As an illustration for the overall design process, let us consider a hand task that can be defined 

with five positions of each fingertip. For this task we can use a minimum of three fingers and a 

maximum of five fingers, for grasping and manipulation purposes. Three fingers may be sufficient 

for stable grasping but adding the extra two fingers may help in some manipulation strategies. We 

start the design process defining mp = 5 number of task positions, three to five branches b = 3 to 

b = 5, and we limit the number of edges to the interval from e = 1 to e = 9 in order to have a 

bounded search and to limit the complexity of the design. We find, for b = 3, a total of 29 solvable 

non-isomorphic topologies. For b = 4 there are 134 solvable topologies, and for b = 5 we find a 

total of 728 solvable topologies. For b = 4 and b = 5 fingertips, we notice that the minimum number 

of edges for the solvable topologies is e = 4 and e = 5 respectively. In order not to complicate the 

design too much, we limit the search to a maximum of e = 5 number of edges. Table 6-1 shows 

the solutions of the type synthesis stage for 3 fingertips, and 6-2 contains the solvable topologies 

for 4 and 5 fingertips and up to 5 edges. 

Table	6-1	Solvable	Topologies	for	5	positions,	3	fingertips	

Fingers 
Edges Topologies Parent-pointer Joint 

b=3 e=3 1 {0, 0, 0} {3, 3, 3} 

e=4 9 
{0,0,1,1} 

{0,1,1,1} 
{1,3,2,3} {2,3,1,3} {2,3,2,2} {3,3,1,2} {1,2,3,3} {2,1,3,3} 
{2,2,2,3} {3,1,2,3} {3,2,2,2} 

e=5 19 {0,1,1,2,2} 
{1,1,2,2,3} {1,1,3,1,3} {1,1,3,2,2} {1,2,2,1,3} {1,2,2,2,2} 
{1,2,3,1,2} {1,3,2,1,2} {2,1,1,2,3} {2,1,2,1,3} {2,1,2,2,2} 
{2,1,3,1,2} {2,2,1,1,3} {2,2,1,2,2} {2,2,2,1,2} {2,3,1,1,2} 
{3,1,1,1,3} {3,1,1,2,2} {3,1,2,1,2} {3,2,1,1,2} 

	

Table	6-2	Solvable	Topologies	for	5	positions,	4	and	5		fingertips	

Fingers Edges  Topologies  Parent-pointer  Joint  

b=4 e=4  1  {0,0,0,0}  {3,3,3,3}  
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e=5  14  
{0,0,0,1,1}  

{0,0,1,1,1}  

{1,3,3,2,3} {2,3,3,1,3} {2,3,3,2,2} {3,3,3,1,2} 
{1,3,2,3,3} {2,3,1,3,3} {2,3,2,2,3} {3,3,1,2,3} 
{3,3,2,2,2} {1,2,3,3,3} {2,1,3,3,3} {2,2,2,3,3} 
{3,1,2,3,3} {3,2,2,2,3}  

b=5 e=5  1  {0,0,0,0,0}  {3,3,3,3,3}  

The simplest solvable topology able to perform this task has parent-pointer array p = {0,0,0} 

and joint array j = {3, 3, 3}, that is, a 0 − (3, 3, 3) topology with three R-R-R fingers and no wrist. 

Some of the most complex topologies are the 3 − (2,1 − (1,2)) topology, with p = {0,1,1,2,2} and 

j = {3,2,1,1,2}, or the 0 − (3,2 − (2,2,3)), with p = {0,0,1,1,1} and j = {2,3,2,2,3}. Out of the 45 

candidate topologies, we select for the design the topology with p = {0,1,1,2,2} and j = {2,1,2,2,2}, 

corresponding to the 2 − (1 − (2, 2), 2) hand, with two R joints at the wrist spanning two fingers, 

the first one spanning two more fingers for a total of three end-effectors. Figure 6-1 shows the 

topology and kinematic sketch.  

	

Figure	6-1	Graph	and	Kinematic	Sketch	of	selected	topology	

	

Dimensional synthesis is used to shape this topology with five random finite displacements. 

The resulting set of equations from equation (4.3) consists of 96 highly nonlinear equations in 90 

unknowns, 72 of which are independent. The results of five runs with different initial conditions 

are presented in Table 6-3. All five obtained solutions were feasible and different, which makes 
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us infer that there will be a big number of solutions for this topology.  

Table	6-3	Dimensional	Synthesis	Solver	Result	

Run  Final error  Iterations  Time to solution  

1 

2 

3 

4 

5 

1.15 	 10−13 

6.0 	 10−12 

1.4 	 10−13 

2.0 	 10−13 

1.0 	 10−13 

1 

2 

1 

9 

1 

12 sec. 

10 sec. 

5 sec. 

29 sec. 

7 sec. 

 

The solutions obtained with the dimensional synthesis solver have been modeled using the 

automatic drawing procedure developed in [35] and are presented in Figure 6-3 and Figure 6-4. 

The positions used for this design are presented in Figure 6-2.  

	

Figure	6-2	The	position	task.	colors	correspond	to	each	position	of	all	three	fingertips.	
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Figure	6-3	Hand	design	using	the	topology	2-(1-(2,2),2)	

	

Figure	6-4	2-(1-(2,2),2)	hand	design	for	the	specific	position	

	

The output of the kinematic synthesis stage is to be used as the input for a detailed design, 

using computer-aided tools.  
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7 Conclusion  
	

This works presents the development and implementation of the different stages of kinematic 

design within a tool for the creation of innovative multi-fingered robotic hands. The resulting 

design package is able to perform type and dimensional kinematic synthesis for arbitrary tree 

topologies, enumerating candidate topologies and creating wristed hands with arbitrary number 

and type of fingers and arbitrary number and type of branchings. The solver accepts several inputs, 

basically a kinematic task and some limits on the desired topologies such as number of fingers or 

some bounds on the number of edges. The kinematic task may include finite displacements of each 

fingertip, and multiple velocities and accelerations for the fingertips at some of those finite 

positions.  

Type synthesis and solvability are implemented using an enumeration technique which 

constructs non-isomorphic trees. The implementation of the dimensional synthesis combines the 

automatic construction of the tree forward kinematics with a solver consisting of a genetic 

algorithm and a Levenberg- Marquardt stage in order to explore the space of solutions, and shows 

fast convergence to a solution for each run. The current version of the solver is freely available at 

the project webpage. Future work will focus on generalizing some other features of the solver and 

on the automatic connection to subsequent stages in the design process.  

The output of the design process is a kinematic design: a set of joint axes, defined by their 

Plucker coordinates at a reference configuration, and a set of joint variables and joint rates. Each 

kinematic design can be implemented in a final design in an unlimited number of ways, selected 

by the designer and constrained by additional specifications. The rationale is that a hand design 

tailored to an application may simplify many other aspects of the process, increasing the success 

of the grasping and manipulation actions.  

A paper [36] has been extracted from the researches in this thesis and has been submitted in 

IEEE Transaction on Robotics. 
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