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Redux: An Interactive, Dynamic Tool for Learning NP-completeness
and Mapping Reductions

Thesis Abstract – Idaho State University (2023)

Whereas interactive dynamic visualization tools have been successfully developed and

used for teaching some topics in computational theory (CT), there remains a noticeable lack of

such tools for teaching NP-completeness which continues to be widely taught using paper-and-

pencil methods. Despite its important theoretical and practical value, NP-completeness—and

mapping reductions in NP-completeness in particular—tends to be a challenging concept for

CT students to understand. This thesis represents work on an open-source web app called

Redux that provides a dynamic interactive user interface atop a practical knowledgebase of

NP-complete problems, reductions, and solution algorithms. A key feature of the interface is

the visualization of arbitrary problem instances, mapping reductions, solutions, and gadgets—

including those reachable via transitivity. The web app is designed to make the knowledgebase

extensible, allowing students to contribute and compare their own reductions and solutions to

those already available. We describe Redux’s development and highlight the first prototype

of the tool. Two surveys were administered, with respondents overwhelmingly indicating that

Redux helped them to better understand mapping reductions; that they would prefer using

Redux to solving similar problems manually; and that Redux makes learning NP-complete

reductions more enjoyable. Finally, we discuss how the principles of computational creativity

and NP-completeness can be unified in extending many-one reducibility to a popular flood-fill

game called KAMI. By rendering NP-complete problems as puzzles, we can unlock the KAMI

player-base to crowd-source and solve real-world NP-complete problems. Such a concept

serves as a reminder of the importance of NP-completeness in education. Redux is accessible

online via https://redux.portneuf.cose.isu.edu/.
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Chapter 1

Introduction

Computational theory (CT) in computer science (CS) education is important in helping

students to understand the capabilities and restrictions of modern-day computers. Concepts

such as automata theory, grammars, and NP-completeness play important practical roles in

fields ranging from compilers, artificial intelligence, and optimization. The theoretical field is

generally separated into two categories: the computability and complexity of problems in

computer science. Computability teaches students the frameworks of computational devices

such as automata (NFA, DFA, PDA) and Turing machines, showcasing the bounds of what

modern day computers are and are not capable of doing. Meanwhile, complexity addresses

the subset of problems that are determined to be computable and segregates them into

complexity classes dependent on how quickly computers are able to find optimal solutions at

scale. In particular, there are four complexity classes discussed throughout this thesis. They

can be defined as such:

1. The Complexity Class P

A language L is in P if and only if there exists a deterministic Turing machine M such

that:

• M runs for polynomial time on all inputs

• For all x in L, M outputs 1

• For all x not in L, M outputs 0

Generally speaking, this is the set of all problems that can be solved in polynomial

time by a Turing machine. A Turing machine is a mathematical model of computation

that manipulates symbols on a strip of tape according to a table of rules. Despite the

model’s simplicity, it is capable of implementing any modern computer algorithm and
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is computationally equivalent [70].

2. The Complexity Class NP

A language L is in NP if and only if there exist polynomials p and q, and a deterministic

Turing machine M such that:

• For all x and y, the machine M runs in polynomial time on input (x,y).

• For all x in L, there exists a string y of length q(x) such that M(x,y) = 1.

• For all x not in L, M outputs 0

Generally speaking, this is the set of all decision problems for which the answer, if yes,

can be verified in polynomial time.

3. The Complexity Class NP-Hard

A decision problem H is NP-Hard when for every problem L in NP:

• There is a polynomial-time many-one reduction from L to H

Generally speaking, this is the set of all problems for which there exists a polynomial

many-one reduction from every NP problem. You can think of a mapping reduction,

more simply, as a function f that turns one problem into another, such that their

solution maps.

4. The Complexity Class NP-complete

A decision problem H is NP-complete if and only if:

• H is in NP

• H is in NP-Hard

2



Generally speaking, this is the set of all decision problems that are verifiable in polyno-

mial time (are in NP), and contain a polynomial many-one reduction from every NP

problem (are in NP-Hard). You can think of a mapping reduction, more simply, as a

function f that turns one problem into another, such that their solution maps [72].

Fig. 1.1 showcases a map of the aforementioned complexity classes under either

assumption that P ̸= NP or P = NP, neither of which have been proven. Of these complexity

classes, NP-complete, remains a unique and important concept in computer science and the

focus of this thesis. Along with its formal definition, these are problems for which no known

algorithm exists for optimally solving the problem in a tractable time frame. Many of the

the complex problems facing the world today have been formally classified as NP-complete.

NP-complete problems play a significant role in optimization and decision-making

across a spectrum of disciplines: genome assembly; scheduling problems; nuclear core fuel

reload optimization [32]; route planning [75]; and the list grows ever longer. As a result,

there exists a widespread need for computer scientists equipped with the knowledge and

skills needed to address these problems. This includes the ability to recognize (i.e., prove)

a problem as NP-complete; leverage existing heuristic solutions to solve novel instances of

NP-complete problems; and develop novel heuristic solutions that are both time-efficient and

that provide quasi-optimal results.

While NP-completeness and theoretical computer science is the backbone of problems

we solve in our field, it also happens to be incredibly difficult to teach and instruct. Significant

shortcomings exist in the effectiveness with which the subject is taught in CS curricula with

most instructors persisting in teaching the topic using rote paper-and-pencil methods and

others not covering the topic at all [43]. Paper-and-pencil methods limit instruction to

simple instances of these NP-complete problems and make more complex reductions very

time-consuming if not outright impractical. Indeed, research suggests that a minority of
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Figure 1.1: An Euler diagram of complexity classes for P, NP, and NP-complete. The right
side is valid under the assumption that P equals NP while the left relies on the assumption
that P does not equal NP. The vertically of each class correlates to its complexity. Most
computer scientists believe P ̸= NP, and much of the theory and practical application in
academia assume they are not equal. In any case, many significant real-world problems are
demonstrably NP-complete, and more effective pedagogical methods are needed to equip
students with practical skills for recognizing and addressing these real-world NP-complete
problems. Figure is taken from Wikipedia.

undergraduates advance to their careers with the necessary skills to be able to apply this

theory in their field [7].

In particular, students struggle with reduction theory, a concept fundamental to

NP-completeness. In layperson’s terms, reduction theory deals with polynomial mapping

functions that can convert an instance of problem A into an instance of problem B. These

are also called many-one reductions and are defined mathematically as follows:

4



• Suppose A and B are formal languages over the alphabets Σ and Γ, respectively. A

many-one reduction from A to B is a total computable function f : Σ →Γ that has the

property that each word w is in A if and only if f(w) is in B. If such a function f exists,

we say that A is many-one reducible (or mapping reducible) to B. [57]

Every NP-complete problem, also being NP-Hard, is many-one reducible to every other

NP-complete problem. Indeed, this feature is what separates NP-complete problems, from

their parent class, NP. Consider for example, the infamous NP-complete traveling salesperson

problem (i.e., “Given a list of cities and the distances between each pair of cities, what is the

shortest possible route that visits each city exactly once and returns to the origin city?”).

This problem can be reduced to instances of graph coloring problems, boolean satisfiability

problems, set cover problems and virtually an infinite number of other problems that routinely

crop up in real-world contexts. An efficient, polynomial solution to any of these problems

stands to benefit societies and organizations in untold ways [61].

In order to address the existing gap in theoretical CS education, additional teaching

methods need to be explored. Several successful dynamic interactive visualization tools have

been developed to teach other topics in computational theory. Such tools have a proven

track record for helping students develop theoretical and practical mastery [18]. The most

notable of these tools is JFLAP [59], an automata visualization simulator that student surveys

indicate makes learning such concepts easier and more enjoyable [60]. Despite the apparent

success of these tools in other areas, a systematic literature review (described in Chapter

2) suggests significantly less attention has been devoted to developing tools to teach the

CT topic of NP-completeness. There exists a demonstrated need for dynamic interactive

visualization tools for teaching NP-completeness.

The work presented in this thesis outlines two years of work in developing a novel

web-based visualization tool called Redux. In particular, the tool provides examples of several

canonical NP-complete problems; allows the user to define custom instances of these problems;
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Figure 1.2: Dynamic, interactive visualization of NP-complete mapping reductions. One of
the key features of Redux is visualization of mapping reductions. Such mapping reductions
prove polynomial-time equivalence between problems and allow solutions to one problem
to solve the other. Shown here is the result of reducing an instance of 3SAT (left) to an
equivalent CLIQUE instance (right). Redux allows users to use their mouse to highlight
elements of one instance (e.g., the Boolean literal in orange on the left) and see its analogous
element highlighted in the other instance (the orange node on the right). These analogous
elements are called gadgets, and seeing how they relate is key to understanding how to identify
and implement reductions.

and visualizes these instances, their mapping reductions to other NP-complete problems,

and their possible solutions (see Figure 1.2). The interactive aspect of the tool enables the

user to examine how particular reduction algorithms work by highlighting the analogous

substructures, or gadgets, between the visualized problem instance and the reduced problem

instance. The interface lies atop an extensible knowledgebase and provides students the

educational opportunity of comparing their own reduction implementations and heuristic

solution algorithms against those already present.

To justify the need for such a tool, Chapter 2 of this thesis outlines the results of a

systematic literature review of existing visualization tools designed for teaching computational

theory. This review not only outlines existing tools designed to teach NP-completeness, but

also other fields in CT such as automata, Turing machines, and finite grammars. Of the

2492 papers examined, we found many tools that have been effective in helping students gain

6



practical mastery through simulation of state automata [52, 59, 65]; context-free grammars

[1, 59]; pushdown automata [24, 59]; pumping lemmas [13, 59]; and Turing machines [26, 59].

Yet there remains an apparent lack of tools for dynamic and/or interactive visualization

of topics related to NP-completeness, including mapping reductions between NP-complete

problems and the application of heuristic solution algorithms to NP-complete problem

instances. The most notable existing work on visualizing concepts relating to NP-completeness

is demonstrated in the OpenDSA framework [45]. OpenDSA offers an effective introduction

to NP-complete problems and mapping reducibility. The problems demonstrated in this

framework are highly limited, however, and are not designed to allow for students to interact

with or modify the example instances. Other contributions of theoretical NP-complete

visualization tools appear to have been abandoned or have shifted to no longer center on NP-

completeness [17]. For example, AlViE is an algorithm visualization environment dedicated

to helping students better conceptualize concepts in typical algorithms courses; however, the

application appears to have been moved and any mention of it appears to be confined to

algorithmic visualization [17]. This conclusion justifies the need for a more comprehensive

and extendable tool that educators can use to teach these complex subjects.

In light of the findings of the systematic literature review, we designed and implemented

a prototype to visualize NP-complete problems and their reductions. Chapter 3 focuses on the

implementation of a dynamic visualization of the reduction from 3SAT to CLIQUE as defined

by Michael Sipser, in his book “Introduction to the Theory of Computation” [66]. Included

is a detailed discussion of 3SAT, CLIQUE, and a polynomial mapping function f that maps

the problems. This chapter was published in the proceedings of the 2022 Intermountain

Engineering, Technology and Computing (i-ETC) conference and features screenshots of this

early prototype (e.g., see Figure 1.3).
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Figure 1.3: A Sample output of the visualization application detailed in Chapter 3. At the top,

the user can select a problem to reduce from, reduce to, and a polynomial mapping function

that facilitates the reduction. Users can manually enter a problem instance or pre-load

an existing configuration before reducing. The CLIQUE graph on the right is dynamically

generated from our polynomial mapping function f(ϕ) where ϕ = (x3 ∨ x2 ∨ x1) ∧ (x2 ∨ x1 ∨

x2) ∧ (x3 ∨ x1 ∨ x3). The 3SAT instance is editable and results in a dynamic, interactive

visualization of CLIQUE. At the bottom, the user has access to multiple algorithms to solve

either the original 3SAT instance or the dynamically-generated CLIQUE instance.

A subsequent version of Redux is defined in Chapter 4. We discuss the RESTful

API framework used to build Redux, allowing it to function as a dual-use application where
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students can utilize the website for pedagogical visualizations while researchers can utilize the

API for meta-level research. The chapter outlines many novel features that Redux provides

including dynamic and interactive gadget highlighting (see Figure 1.2), solution visualizations,

and the inclusion of transitive reductions. The inclusion of transitive reductions, in particular,

has the potential to be a powerful pedagogical tool.

Allowing students to use the solvers of problems many reductions away to solve the

original problem is a fundamental concept in many-one reductions that is often overlooked

and forgotten due to its complexity.

Included in the chapter are two surveys designed to assess Redux as a lecture supple-

ment. While an additional, much larger survey still needs to be conducted, these preliminary

assessments point to Redux being potentially valuable in teaching students NP-completeness.

Finally, Chapter 5 introduces a popular flood-fill game called KAMI, A one-player

combinatorial puzzle game. As an NP-complete problem itself [11], KAMI is reducible to (and

from) other NP-complete problems; but unlike many NP-complete problem representations,

thousands of mobile game players willingly devote countless hours and money in the pursuit

of designing and solving KAMI puzzles. The chapter discusses how the principles of compu-

tational creativity (CC) can be applied in the context of rendering arbitrary NP-complete

problems as KAMI puzzles in order to leverage the massive KAMI crowd-sourcing platform

to effectively solve real-world problems. Along with being the earliest publication related to

Redux, and winning “Best Research Paper: Computing” at i-ETC, this chapter showcases

the importance of teaching, and understanding, NP-completeness.
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Chapter 2

Related Work - A Systematic Literature Review

This paper will be submitted to ACM SIGCSE 2024 for publication

2.1 Introduction

Computational theory (CT) in computer science (CS) education is important in helping

students to understand the capabilities and restrictions of modern-day computers. Concepts

such as automata theory, grammars, and NP-completeness play important practical roles

in fields ranging from compilers, to artificial intelligence, to optimization. Despite this

importance, however, CT remains one of the most difficult subjects for students to learn and

teach [18, 23, 43]. Perhaps owing to the theoretical nature of the subject matter, instructors

frequently fall back on traditional paper-and-pencil methods to teach CT subjects with the

result that many students struggle to grasp the concepts well enough to develop practical

mastery [60].

Recent decades have demonstrated the power of using visualization tools for pedagogical

purposes (e.g., see Figure 2.1). The term algorithm visualization (AV) tools has evolved

to refer specifically to digital pedagogical resources designed to help students understand

algorithms and other concepts in CS [51], with some calling for there to be more effort made

to apply these same strategies in teaching and learning CT [23].
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Figure 2.1: Algorithm visualization. A screenshot of a Turing machine simulation in JFLAP,

a popular software package for visualization of computational theory concepts. Interactive

dynamic tools like JFLAP help to make difficult concepts more accessible to computer science

students, particularly in the domain of computational theory.

In the interest of identifying what AV tools exist for CT and what areas of CT may yet

be lacking in AV, we carried out a systematic literature review of 2492 publications following

the method described by Petersen et al. [56]. Our findings demonstrate that while some CT

topics (e.g., automata, grammars) have been heavily featured, there are other CT topics (e.g.,

NP-completeness, proofs) for which AV solutions are virtually no presence. We present these

findings with the hope that identifying, compiling, and categorizing existing AV solutions

in computational theory will help instructors who utilize these tools to gain confidence

and success in teaching students to understand and apply concepts in CT. Furthermore,

identifying which CT concepts are underrepresented in the domain of AV will serve to provide

direction for future research and development.
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Table 2.1: Research Questions and Rationale
Research Question Rationale

Q1 What AV solutions exist in the literature that
focus on computational theory education?

We want to identify and isolate the body of
AV literature that pertains to computational
theory and define what visualizations they
use.

Q2 Of the AV literature that pertains to computa-
tional theory, what conferences and journals
are represented?

We want to inform researchers where these
papers are being published to direct future
research and development.

Q3 What subjects in computational theory see
the most publications and are there under-
represented subjects?

We want to help direct new researchers and
developers towards areas of need and establish
what already exists in the space.

Q4 Of the visualization publications that exist,
which are dynamic and interactive?

We want to establish a distinction between
studies that have interactive and dynamic vi-
sualization tools rather than static instances.

2.2 Methods

A systemic literature review is designed to provide a holistic view of available literature

pertaining to a topic of interest. Our review follows the popular framework defined by

Petersen et al. [56]. Planning of the literature review began with the formulation of research

questions and their rationale which are shown in Table 2.1. From these research questions

were derived a set of search terms: “Visualizing reductions in computer science”, “Visualizing

NP-completeness”, “AVs in computational theory”, “Computational theory education through

visualization”, “Animations in computational theory education”, “Visualization in education

of theoretical computer science”. In the absence of a formal database for computational

theory literature, we followed Wohlin’s suggestion to use Google Scholar to find papers from

multiple publishers [78].

As a starting set, the first fifty results from each search string were collected for

evaluation. We manually screened the set using the following inclusion and exclusion criteria:

• Inclusion Criteria

– The paper must be peer-reviewed or be published by an accredited journal.
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Figure 2.2: Snowballing in literature reviews. Beginning from a start set of papers, backward
snowballing considers papers cited by those in the set. Conversely, forward snowballing
considers papers that cite those in the set. The process is iterative. Figure from Wohlin [78].

– The paper must have an English translation available.

– The paper must focus on computational theory education.

– The paper must mention a keyword identified as relating to computational theory

education through algorithm visualization.

– The paper must be published between 1996 and 2021.

• Exclusion Criteria

– The paper does not mention AVs or other visualizations as a method of computa-

tional theory education.

– The paper does not establish education as the primary purpose of the AV or

visualization.
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These criteria are first applied to a study’s title and abstract; then (for those that

survive) to the introduction, conclusion, and methods section. Papers that survive the

screening process are included as primary studies.

Once an initial set of primary studies is obtained, we expanded this set using forward

and backward snowballing. Figure 2.2 summarizes the snowballing process as set out by

Wohlin [78]. Four snowballing iterations were performed in this review. A complete summary

of our literature review can be seen in Figure 2.3.

2.3 Results

A total of 2492 papers were examined in this study yielding 57 primary studies. Within the

set of primary studies, several dozen AV platforms are represented. A few AV platforms

stood out (in terms of publication counts and external references), namely White [77] and

Rodger [59]. We discuss these more in depth below. Figure 2.4 provides a high-level summary

of the systematic literature review results categorizing all 57 primary studies by AV platform,

CT topic, and interactibility.

There are some specific conclusions that we can draw from this study before diving into

the research questions. First, while there is a respectable amount of interactive, visualization

tools for computational theory, these are primarily focused on automata, grammars, and

Turing machine visualizations. Indeed, there are only three papers in the primary studies

that focus on NP-completeness or reducibility and none of them are interactive and allow

for dynamic visualization generation. Furthermore, many of these visualization tools are no

longer supported. For example, Crescenzi et al’s. [17] paper outline an addition to a popular

AV visualization software called AlViE; however, this software has not been updated for

over a decade and both the website and application download are no longer operable. While

applications such as JFlap are still active, they have not been extended to include reduction
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Figure 2.3: Systematic literature review overview. An overview of our systematic literature
review performed on interactive visualization technology for computational theory. A total of
2492 papers are examined using rules prescribed by Petersen et al. [56].
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Figure 2.4: Primary studies by platform and topic. Categorization of primary studies resulting
from the systematic literature review by AV platform, CT topic, and interactibility.

theory and NP-completeness but offer fantastic educational visualization tools for automata,

grammars, and Turing machines.

Indeed, there is a plethora of visualization tools dedicated to particular subjects in

computational theory. Furthermore, these tools appear to replicate the pedagogical success

algorithms courses have seen with visualization technology. Students that used JFLAP, for

example, felt they understood theoretical concepts better than their peers [60].

Despite this success, our results showcase a problematic trend. Publications pertain-

ing to visualization technology for computational theory education have been in decline,

particularly in the last five years. Figure 2.5 showcases this slowdown and demonstrates a

50 percent reduction in publications in the last decade. Given the success of visualization

technology in teaching particular theoretical subjects, this slowdown represents opportunities

for future research to reverse course and create tools in under-represented subjects in theory

education.
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Figure 2.5: Publication years for primary studies. Primary studies are grouped by publication
year and platform. The plot suggests a possible downward trend in the number of CT-related
AV publications starting around 2010.

2.3.1 What AV solutions exist in the literature that focus on computational

theory education?

As previously mentioned, the most notable contributions in computational theory visualiza-

tions are part of tools such as JFlap [59], JFast [77], and AlViE [17]. JFlap offers educators

and students a Java widget for creating, manipulating, and experimenting with theoretical

concepts, namely automata and Turing machines. Many researchers have contributed to its

development and many of our primary studies outline contributions to JFlap’s automata

simulator [28, 60, 62, 63]. Despite JFlap’s focus on automata, there are contributions that add

other theoretical concepts to the application such as parsing algorithms, multi-tape Turing

machines, and grammar transformations [2, 8, 36]. JFast, while offering an independent

automata simulator, has not seen additional publications since its inception. AlViE has

also not been updated for over a decade and both the website and application download

are no longer operable. Though it was primarily developed for algorithm visualization, it

also contained a number of NP-completeness proofs [17]. Overall, the vast majority of the
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literature presents dynamic, interactive visualization tools for automata, grammars, and

Turing machines. Figure 2.4 visualizes the categorization of systems by CT subject.

The study also suggests some notable trends in AV development. Some authors

have attempted to bridge accessibility gaps by moving to mobile [10, 65, 68] and web-based

[9, 12, 19, 30, 45, 48, 49, 73] platforms. While this shift continues to feature primarily

automaton simulators, some novel approaches have emerged. One study, for example,

incorporates educational content in a virtual reality game designed to teach students about

finite state machines through treasure hunts [20].

Many unique applications exist outside of the most popular platforms. Most of

these applications are also specific to automata [24, 29, 31, 41, 46, 58, 80] and/or grammar

[13, 50, 74] visualization, and many are no longer being maintained or are not targeted

towards CS audiences [13, 25, 38, 52, 64, 69, 74]. This diversity, while offering students many

different platforms, may contribute to the range of abandoned applications. In one of the

most notable existing literature reviews of current AV solutions, Shaffer et al. [61] note that

the concerns over the field of AVs “could be mitigated by building community and improving

communication among AV users and developers”. In many ways, JFlap represents the best

attempt at accomplishing this and demonstrates this with its continued popularity among

CT educators.

2.3.2 Of the AV literature that pertains to computational theory, what confer-

ences and journals are represented?

Figure 2.6 outlines which conferences generally publish new tools and methods in educational

computational theory visualizations. Several of the AV tools represented were developed and

published as theses or dissertations.
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Figure 2.6: AV publication venues. A summary of conferences in which primary studies

relating to computational theory AV are published. Where the publisher is a university, the

primary study was a thesis or dissertation.

The publication venues represented among our primary studies—SIGSCE foremost

among them—represent the ideal communities in which conversation and collaboration

focused on AV development might find a natural following.
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2.3.3 What subjects in computational theory see the most publications and are

there underrepresented subjects?

The vast majority of AV solutions for computational theory are designed for automata,

finite state machine simulations, and formal languages. Turing machines, both single and

multi-tape, are also represented in the most popular applications [60]. This trend has stayed

consistent as every publication from the primary set in the last seven years has been about

one of these topics [10, 20, 27, 38, 44, 49, 52, 55, 65, 68].

While there are a respectable amount of visualization tools for computational theory,

and in particular automata, there is a notable lack of AVs related to NP-completeness and

proofs. The most notable studies in the primary set related to NP-completeness include those

of Pape [53], Crescenzi et al. [17], and Maji [45]. The work of Pape [53] deals largely with

static, proof visualizations rather than mapping reductions. Crescenzi et al. [17] outlines

the addition of four new proof visualizations to a popular AV visualization software called

AlViE; however, this software has not been updated for over a decade and both the website

and application download are no longer operable. Finally, the work by Maji [45] provides

a tutorial for understanding NP-completeness using the OpenDSA framework. However,

this tutorial has not been updated in many years and is largely static, limiting its ability

to effectively engage learners outside of raw introductions. Despite these shortfalls, Maji’s

work [45] provides one of the best examples of computational theory AV for NP-completeness

and mapping reducibility. Still, there is a need for additional contributions in this particular

field. Many significant real-world optimization and decision problems fall into the class of

NP-complete problems, signaling the ever-present need for students that are well-versed in

how to best approach them [40].
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2.3.4 Of the visualization publications that exist, which are dynamic and inter-

active?

The majority of the AV tools included in our review featured dynamic interactivity. We

define dynamic as the characteristic of the simulation to change its appearance in response

to user impetus (e.g., mouse click or hover over). We define interactivity as the ability for

the user to change the underlying data from which the visualization is derived. Though it is

possible to have an AV that is strictly dynamic or strictly interactive, we found that these

features usually appear together in an AV tool and that they were more common in platforms

that congregate a number of CT visualizations (e.g., JFLAP). Figure 2.4 summarizes which

of the platforms reviewed in this study included dynamic interactivity.

2.4 Conclusion

Visualization tools for computational theory have seen some attention in the last two decades.

In particular, applications such as JFlap [59] provide a rich, interactive visual experience

for students eager to learn about automata, grammars, and Turing machines via interactive

dynamic visuals. Despite there being some applications which have had success pedagogically,

most have been discontinued and are no longer supported in development. In addition,

studies detailing new applications and AV solutions are rare as there seems to be a decline in

published studies in this field starting around 2010 compared to the previous decade. Finally,

while some branches of computational theory have many applications supporting them, others

lack similar attention. In particular, NP-completeness, reducibility, and proof construction

represent some of the most powerful concepts in a computational theorist’s knowledgebase

but have received little attention in pedagogical visualization. Instructors looking to build

and reinforce learning in these particular topics may find that they lack opportunities to

expand outside traditional instruction techniques because of the lack of alternative teaching

tools. We propose that a course change may be needed to craft new resources to serve this

community. Learning through interactive dynamic visualization tools can benefit theoretical
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discussions by alleviating traditional difficulties, particularly as these tools carry the added

potential of expanding access and educational opportunities to new communities.
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Chapter 3

Visualizing the 3SAT to CLIQUE Reduction Process

Submitted and Accepted to the 2022 Intermountain Engineering, Technology and Com-

puting (i-ETC)

3.1 Introduction

Many of the complex problems facing the world today have been formally classified as what

computational theorists call NP-complete problems, meaning problems for which no known

algorithm exists for optimally solving the problem in a tractable time frame. Meanwhile,

NP-completeness consistently rank among the most difficult concepts in computer science

education. This is due to the abstract nature of the material and the perceived lack of

applicability to industry work [22]. This puts computer science professors and instructors in

a tough position; while NP-completeness and theoretical computer science is the backbone of

problems we solve in our field, it also happens to be very difficult to teach and instruct. In

particular, students struggle with reduction theory. In layperson’s terms, reduction theory

deals with polynomial mapping functions that can convert an instance of problem A into an

instance of problem B. Every NP-complete problem has this reduction property stating that

any problem in the complexity class NP can be reduced to any NP-complete problem. Fig. 3.1

showcases a map of the aforementioned complexity classes under either assumption that P ̸=

NP or P = NP. Much of the theoretical and practical application of this space assumes that

they are not equal. Nevertheless, more effective pedagogical methods are needed to equip

students with practical skills for recognizing and addressing NP-complete problems.
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Figure 3.1: An Euler diagram of complexity classes for P, NP, and NP-complete. The right

side is valid under the assumption that P equals NP while the left relies on the assumption

that P does not equal NP. The vertically of each class correlates to its complexity. Most

computer scientists believe P ̸= NP, and much of the theory and practical application in

academia assume they are not equal. In any case, many significant real-world problems are

demonstrably NP-complete, and more effective pedagogical methods are needed to equip

students with practical skills for recognizing and addressing these real-world NP-complete

problems. Figure is taken from Wikipedia.

Consider for example, the infamous traveling salesperson problem (i.e., “Given a list

of cities and the distances between each pair of cities, what is the shortest possible route that

visits each city exactly once and returns to the origin city?”). This problem can (in tractable

time) be reduced to instances of graph coloring problems, boolean satisfiability problems, set

cover problems and virtually an infinite number of other problems that routinely crop up

in real-world contexts. An efficient, polynomial solution to any of these problems stands to

benefit societies and organizations in untold ways [61]. Thus, it is fundamentally important

that we teach NP-completeness and reduction theory in a way that students can comprehend

and absorb.
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Enter, visualization. Applying visual learning to theoretical concepts such as NP-

completeness and reduction theory creates opportunities for students who may not initially

comprehend heavily abstract concepts. Using Two.js and a standard web framework stack,

we have created a interactive visualization tool to allow students to visualize the reduction

process. While still in its infancy, the results in this paper showcase a strong foundation of

growth.

3.2 Related Works

Algorithm Visualization Tools (AVs) have been examined as an educational tool for traditional

computer science education. For example, Stasko et al. finds that AVs are generally ineffective

without a host of characteristics [67] while T.L. Naps finds that they provide an effective

pedagogical tool for computer science educators [51]. While the effectiveness of AVs without

specific characteristics is still a debate, the potential benefits of such tools warrants motivations

to discover and review the bounds of existing literature. Furthermore, a comprehensive

collection of AV research when applied specifically to computational theory does not yet exist.

Before beginning this project, a systematic mapping study was performed as described by

Peterson et al. [56]. This study is in the process of being professionally published; however,

we still find it important to showcase some of its findings to highlight related works.

A total of 2492 papers were examined in this study. Of these, the most notable in

relation with this project come from White [77] and Rodger [59] who develop Java widgets

to simulate other computational theory concepts. Most notable, however, is that we find an

extreme lack of visual technologies focused on reduction theory and NP-completeness.

3.3 Problem Definitions

Before examining the visualization tool, we define the two NP-complete problems involved in

the reduction to be visualized. Michael Sipser, in his Introduction to the Theory of Computa-

tion [66], includes a reduction from 3SAT to CLIQUE for the purposes of demonstrating the
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CLIQUE problem NP-complete. While still complex, this reduction serves as an introduction

to problem equivalence. In designing an educational application for visualizing this reduction

process, we expect this particular reduction to be among those most well-known to beginning

computational theory students given that is frequently referenced in beginning computational

theory textbooks.

Along with the definitions of both these problems, we will also define the polynomial

mapping function that converts an instance of problem A into an instance of problem B.

3.3.1 3SAT

A literal is a Boolean variable as in x or x. A clause is several literals connected with

disjunctions such as in (x1 ∨ x2 ∨ x3). CNF form is defined as a Boolean formula that is

comprised of k clauses connected with ∧’s, such as (x1 ∨ x2 ∨ x3) ∧ (x1, x3, x4). k-CNF form

defines that each clause has k literals. 3SAT is defined as the problem of determining if a

satisfying assignment exists for a given Boolean formula ϕ of k clauses in 3-CNF form. An

example of a formula ϕ can be seen in Fig. 3.3.

ϕ = (x1 ∨ x1 ∨ x2) ∧ (x1 ∨ x2 ∨ x2) ∧ (x1 ∨ x2 ∨ x2)

Figure 3.3: Example of a valid 3SAT formula ϕ with three literals and three clauses.

3.3.2 CLIQUE

CLIQUE is defined as the problem of determining if an undirected graph G = (V,E) has a

subset of k nodes such that every two distinct vertices between the nodes in the subset are

adjacent. An example can be seen in Fig. 3.4.
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Figure 3.2: A breakdown of a systematic mapping study performed on interactive, visualization
technology for computational theory. A total of 2492 papers are examined using rules
prescribed by Peterson et al. We find that there is an extreme lack of visual technology
focused on reduction theory and NP-completeness.
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Figure 3.4: Example of a 5-CLIQUE in a graph as shown in red between nodes 3, 4, 6, 7,

and 9. [3]

3.3.3 Polynomial Mapping Function f

Given an instance ϕ of 3SAT, we compute f(ϕ) as follows:

• Construct a graph G = (V,E) of k clusters where k is equal to the number of clauses

in ϕ. 3 nodes should be in each cluster as we are reducing from 3SAT. Each cluster

corresponds to one of the clauses in ϕ and each node corresponds to a literal in the

associated clause.

• Label each node of G with its corresponding literal in ϕ.

• Create an edge between all pairs of nodes in different clusters except pairs that have

one, or both, of the following characteristics:

– Pairs where one is the compliment of the other (e.g., x1 and x1)

– Pairs that belong to the same cluster.

f(ϕ) runs in polynomial time. Both the construction of the nodes along with their respective

labeling runs in constant time. Creating edges between all pairs of nodes takes O(n2) time.
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The conditions check requires another O(n2) operation as we check each pair of nodes. This

is the exact formula that the algorithm relies on to construct a CLIQUE instance from 3SAT.

An example of a valid construction can be seen in Fig. 3.5.

Figure 3.5: A valid construction from ϕ = (x1 ∨ x1 ∨ x2)∧ (x1 ∨ x2 ∨ x2)∧ (x1 ∨ x2 ∨ x2). The

nodes are edges are formulated via f(ϕ) [66].

3.4 Results

Using the mapping reduction function defined in section 3.3, a user can use our tool to input

any arbitrary 3SAT or CLIQUE instance and visualize its respective counterpart.

The visualization relies on two.js to create an svg with the nodes, edges, and appropriate

intractability. We have separated out the three sections that highlight how our visualization

is created.

3.4.1 Data Wrangling

The GUI for the visualization sends a request to a public API published on Idaho State

Universities servers. This performs a full reduction on the back-end and returns an instance
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of the CLIQUE problem for graphical reconstruction. This back-end function breaks down

the user input and separates the string into its clauses, then literals. Each clause becomes

an array in the triples matrix and the name of each literal is recorded along with a Boolean

identifier determining if it is an inverse (ex,. x1).

The objective is to give the user as much flexibility in naming their literals, but also

maintain some special characters for parsing.

3.4.2 Creating the Nodes

In order to facilitate the creation of the nodes. A custom class was created to store the

necessary information for each object. Furthermore, a number of custom methods were

incorporated to help orient the graph when it is dynamically created.

Each literal passes through a block function that translates it into a node object. The

nodes maintain their cluster relationship and are categorized as being the top node, middle

node, and bottom node. Once each of the clusters are created, then are placed around the

center of the svg. This process is important as the location of each node and associated

cluster mimic most academic textbooks teaching this reduction.

These node objects are then passed into a matrix where edge creation can then take

place.

3.4.3 Creating the Edges

The creation of the edges takes the longest in terms of complexity. The time it takes to check

conditions and create edges is, at worst, O(n2) where n is the number of nodes.

Using iterative loops, we check each node in correlation with every other node to

determine if there needs to be an edge. To determine if two nodes belongs to the same cluster,

we simply use the iterative index’s and see if they are checking two nodes that belong to the

same triple in our matrix. To determine if two nodes are the inverse of one-another, we check

the name of each node along with a custom Boolean identifier attached to the node class.
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Figure 3.6: A Sample output of the visualization application. At the top, the user can select
a problem to reduce from, reduce to, and a polynomial mapping function that facilitates the
reduction. Users can manually enter a problem instance or pre-load an existing configuration
before reducing. The CLIQUE graph on the right is dynamically generated from our
polynomial mapping function f(ϕ) where ϕ = (x3 ∨ x2 ∨ x1) ∧ (x2 ∨ x1 ∨ x2) ∧ (x3 ∨ x1 ∨ x3).
The 3SAT instance is editable and results in a dynamic, interactive visualization of CLIQUE.
At the bottom, the user has access to multiple algorithms to solve either the original 3SAT
instance or the dynamically-generated CLIQUE instance.

If both conditions return false, then we build an edge between the two nodes in

question and continue iterating.

Fig. 3.6 showcases a graph that has gone through every stage of our reduction function

and represents a 3SAT problem.

3.5 Discussion

There were a number of challenges we encountered during developing. These challenges

include difficulties arranging the nodes in the correct position, incorporating the function
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from my theoretical research into a practical application, and allowing a user to dynamically

create a graph of their choice via a unique 3SAT instance. In considering these and other

challenges, there may be other ways to make even more complex visualizations that are

better able to visualize 3SAT as a CLIQUE representation. For example, in instances where

the resulting CLIQUE graph overwhelms the applicability of a 2d graph, we could resort to

multi-dimensional visualizations.

3.6 Future Work

There still is a number of features that need to implemented for the 3SAT to CLIQUE

reduction. For example, we would like to implement a verifier and solver button that will

highlight possible solutions for the given 3SAT instance and its respective CLIQUE solution.

Furthermore, work needs to be done on the educational aspect of the tool. For example, we

have plans in motion to add a “teach me” button to the GUI that will explain the reduction

at each step of the visualization. Each of these features will be implemented next semester as

a part of a thesis course.

Critically, work has been done to facilitate a open-source repository of NP-complete

problems and their reductions. This repository has seen immense growth in the coming

months and will soon be released to allow scientists and engineers easy access to problems

and their reductions via public API.

This project creates a strong foundation for which an entire team is being created

for. We have recently been awarded a number of research grants given to help us build a

team of students that will add additional NP-complete problems to this database. Within 2

years, we are confident that we will have a back-end public API with access to hundreds of

NP-complete reductions and visualizations. Developed in parallel will be a GUI visualization

tool that will showcase each of those visualizations dynamically, as shown in this paper with

3SAT to CLIQUE.
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Chapter 4

Redux: An Interactive, Dynamic Tool for Learning NP-completeness and

Mapping Reductions

This paper will be submitted to ACM SIGCSE 2024 for publication

4.1 Introduction

The ability to understand, recognize, and reduce nondeterministic polynomial-time (NP)

complete1 problems remains an important skill for students of computer science (CS) [40].

Despite this importance, significant shortcomings exist in the effectiveness with which the

subject is taught in CS curricula with most instructors persisting in teaching the topic using

rote paper-and-pencil methods and others not covering the topic at all [43]. Paper-and-

pencil methods limit instruction to simple instances of these NP-complete problems and

make more complex reductions very time-consuming if not outright impractical. Several

successful dynamic interactive visualization tools have been developed to teach other topics

in computational theory (CT) to address this same concern. Such tools have a proven track

record for helping students develop theoretical and practical mastery [18]. The most notable of

these tools is JFLAP [59], an automata visualization simulator that student surveys indicate

makes learning such concepts easier and more enjoyable [60]. Despite the apparent success of

these tools in other areas, a survey of the literature suggests significantly less attention has

been devoted to developing tools to teach the CT topic of NP-completeness. There exists a

demonstrated need for dynamic interactive visualization tools for teaching NP-completeness.

NP-complete problems play a significant role in optimization and decision-making

across a spectrum of disciplines: genome assembly; scheduling problems; nuclear core fuel

reload optimization; route planning; and the list grows ever longer. As a result, there exists

1Currently Redux only considers decision problems. However, minimal modifications envisioned as future
work will enable the framework to accommodate NP-hard optimization variants of the NP-complete problems
we consider.
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a widespread need for computer scientists equipped with the knowledge and skills needed

to address these problems. This includes the ability to recognize (i.e., prove) a problem as

NP-complete; leverage existing heuristic solutions to solve novel instances of NP-complete

problems; and develop novel heuristic solutions that are both time-efficient and that provide

quasi-optimal results. Research suggests that a minority of undergraduates advance to their

careers with the necessary skills to be able to apply this theory in their field [7].

A recent literature review of dynamic interactive visualization tools for teaching

CT showed that such tools have been effective in helping students gain practical mastery

through simulation of state automata [52, 59, 65]; context-free grammars [1, 59]; pushdown

automata [24, 59]; pumping lemmas [13, 59]; and Turing machines [26, 59]. Yet there remains

an apparent lack of tools for dynamic and/or interactive visualization of topics related to

NP-completeness, including mapping reductions between NP-complete problems and the

application of heuristic solution algorithms to NP-complete problem instances. The most

notable existing literature for visualizing concepts related to NP-completeness exists in

the OpenDSA framework [45]. OpenDSA offers an effective introduction to NP-complete

problems and mapping reducibility. The problems demonstrated in this framework are highly

limited, however, and are not designed to allow for students to interact with or modify the

example instances. Other contributions of theoretical NP-complete visualization tools appear

to have been abandoned or have shifted no longer centered on NP-completeness [17]. For

example, AlViE is an algorithm visualization environment dedicated to helping students

better conceptualize concepts in typical algorithms courses; however, the application to

appears to have been moved and any mention of it appears to be confined to algorithmic

visualization, despite literature claiming to have added NP-complete visualizations.

We present a novel web-based dynamic visualization tool called Redux designed as

a pedagogical aid for teaching NP-completeness. In particular, the tool provides examples

of several canonical NP-complete problems, allows the user the ability to define custom

instances of these problems, and visualizes these instances, their mapping reductions to
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other NP-complete problems, and their possible solutions. The interactive aspect of the tool

enables the user to examine how particular reduction algorithms work by highlighting the

analogous substructures or gadgets between the visualized problem instance and the reduced

problem instance. The interface lies atop an extensible knowledgebase and provides students

the educational opportunity of comparing their own reduction implementations and heuristic

solution algorithms against those already present.

4.2 Methods

The development of Redux was largely inspired by the features of existing visualization tools

such as JFLAP, with an emphasis on long-term sustainability. In this section, we describe

how Redux was designed and how that plays into the needs of education.

4.2.1 Implementation

In order to facilitate the most accessibility, Redux was designed using the web framework

React with a RESTful API back-end developed in C#. This allows Redux to function as a

“dual-use” application where students can utilize the website for pedagogical visualizations and

supplement information about the problems while researchers can utilize strictly the API for

meta-level research. For example, if a researcher today wanted to examine how subtle changes

to a problem input changes a reduction algorithm, they would have to manually reduce

each instance or write their own program to automate the process. Using Redux’s back-end

API, we can allow this researcher to send thousands of problem inputs directly to our API

simplifying their work. At the same time, a student can access our website from anywhere

in the world to learn about NP-completeness, reduction theory, and algorithms without

preconceived knowledge on how to structure an API call that will satisfy their curiosity.

Before development began, we considered what other solutions exist today and how

we can address current problems in the field. Previous attempts to visualize NP-completeness,
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Problems
Polynomial-time
Reduction(s) to

Heuristic Solution
Algorithm(s)

Verifier

0-1 INTEGER
PROGRAMMING

Greedy x

3D MATCHING Hurkens Schrijver [34] x

3SAT*

0-1 INTEGER
PROGRAMMING,
3D MATCHING,

CLIQUE*,
GRAPH COLORING

Backtracking [66] x

CLIQUE* VERTEX COVER* Greedy x
EXACT COVER* Greedy x
FEEDBACK ARCSET Naive approximation (2.0) x
GRAPH COLORING SAT DSatur [6] x
KNAPSACK Greedy x
SAT Greedy x
SUBSET SUM KNAPSACK Greedy x
TRAVELING

SALESPERSON
Branch and Bound,

Greedy
x

VERTEX COVER* FEEDBACK ARCSET Greedy x

Table 4.1: Current functionality in Redux. A list of all problems, reductions, solvers, and
verifiers currently available on the Redux platform. Visualization of problem instances and of
reductions is available for problems/reductions marked with an asterisk. Parentheses indicate
the approximation ratio where applicable.

most notably the AlViE framework [17], are no longer available and showcase the need for

so-called “future-proofing”. With sustained longevity in mind, both the API and the website

are hosted and supported by Idaho State University to facilitate load-balancing and future

support for the project. Furthermore, the application is hosted publicly on Gitbhub to allow

the community to reference, fork, and contribute to the project at any time. The Github

repositories can be found here:

• API: https://github.com/marckade/Redux

• GUI: https://github.com/marckade/ReduxGUI

The API is structured to allow contribution in a way that is fully compatible with the

front-end. Any change on the back-end will result in that contribution becoming available on

the front-end immediately. This design pattern allows for students specializing in algorithms
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to prioritize development on the back-end and still have their contributions made public

without ever touching the front-end.

4.3 Redux Features

When first accessed, Redux displays the visualization of the 3SAT to CLIQUE reduction—a

reduction between two canonical NP-complete problems that appears in many CT textbooks.

Users can immediately begin to change the 3SAT instance and see how these changes are

reflected in the reduced instance. They can highlight gadgets and compare the results of

different solution algorithms.

Problem instances are defined using traditional discrete math notations. For example,

Figure 4.1 showcases the visualization of a CLIQUE instance and a VERTEX COVER

instance drawn from problem definitions in set notation. In this way, each problem is

implemented with an example problem instance that demonstrates the expected syntax for

defining arbitrary problem instances. This provides students with an opportunity to learn

discrete math notations and see resulting visualizations as they modify inputs. This feature

was inspired by the many interviews we had with students and professors. Some of the early

problem notations were derived from definitions found in computer science literature. This

notation was unfamiliar to particular math professors we interviewed that used different

notations and language to describe the same problem.

All fields are paired with an information button that displays a dialog box with the

problem definition, the originator, the contributor, high-level algorithm descriptions, and

hyperlinks to find more information.

As is well-known, the proof that a problem is NP-complete requires proving two

defining features of the problem. First is the polynomial-time mapping reduction from an

existing NP-complete problem. Second is (typically) a polynomial-time verifier that, given

a prospective solution for a problem instance, proves that solution valid or invalid. Redux

includes modules to visualize and interact with both features for a selected problem. The
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inclusion of these features allows a student to understand why a problem is NP-complete

and how this theory interacts with other concepts they are familiar with. Currently, Redux

focuses on NP-complete variations of problems (decision variants) rather than their NP-Hard

counterparts. We plan to include both in the future and allow students to experiment with

either to help educate them on their respective differences.

Table 4.1 outlines what problems, reductions, solvers, and verifiers exist in Redux

today. Problems and reductions that have an accompanying star also support visualizations

on our GUI. These visualizations are fully interactive and offer instructors and students an

opportunity to take problems typically shown in set-notation and turn them into interactive

visualizations. The ability to dynamically generate visualizations for any problem (or ac-

companying reduction) is also valuable for professors who want to produce more sophisticated

lectures before class, or perform live demonstrations.

Outside of being an accessible repository for NP-complete problems, reductions, solvers,

and verifiers, Redux also provides the following novel additions to CT visualization technology:

4.3.1 Dynamic and Interactive Gadget Highlighting

One unique feature of Redux originates in our dynamic gadget highlighting. Since, by

definition, NP-complete problems map to one another, we are able to pedagogically show

the user how each element and substructure of problem A is converted to problem B. For

example, how clauses and literals in a 3SAT instance are reduced to nodes and subgraphs in

the analogous CLIQUE instance. Before we showcase this, we define 3SAT and CLIQUE as

follows.

3SAT: A literal is a Boolean variable as in x or x. A clause is several literals connected

with disjunctions such as in (x1 ∨ x2 ∨ x3). CNF form is defined as a Boolean formula that is

comprised of k clauses connected with ∧’s, such as (x1 ∨ x2 ∨ x3) ∧ (x1, x3, x4). k-CNF form

defines that each clause has k literals. 3SAT is defined as the problem of determining if a

satisfying assignment exists for a given Boolean formula ϕ of k clauses in 3-CNF form.

38



CLIQUE: A CLIQUE is defined as the problem of determining if an undirected

graph G = (V,E) has a subset of k nodes such that every two distinct vertices between the

nodes in the subset are adjacent.

Using Redux, we can not only visualize the reduction between these problems but also

dynamically highlight how each element of 3SAT relates to the nodes of the CLIQUE graph.

This feature is entirely dynamic and will work from any unique user input. This concept

helps elevate some of the current pitfalls in traditional education as it allows the student to

explore how characteristics of one problem, regardless of its input, map to another based on

a reduction. Furthermore, it helps clarify how solutions map from one problem to another as

students are able to highlight gadgets at the same time as viewing the solution. Figure ??

shows gadget highlighting in the reduction from 3SAT to CLIQUE. This feature works with

any reduction on Redux and is not limited purely to 3SAT and CLIQUE.

4.3.2 Visualizing Solutions

Redux also offers instructors and students the ability to visualize solutions using an algorithm

of their choice. The ability to generate a solution and map it directly to the visualization helps

students understand the original problems (See survey in Results section). This also proves

educational when learning the distinctions between approximation and heuristic solving

algorithms. The solution visualizer works with any problem input.

4.3.3 Transitive Reductions

The law of transitivity asserts that for some arbitrary problems A,B,C, if A is related to B and

B is related to C, then A is related to C. This law also applies to mapping reducibility. Despite

well-known laws stating that all NP-complete problems have polynomial-time reductions

to one another, the vast majority of these reductions have not been discovered yet. Many

dismiss the need to derive them as being a purely theoretical exercise. However, reduction
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Figure 4.1: Transitivity of reductions. Because Redux implements both the 3SAT to CLIQUE
and the CLIQUE to VERTEX COVER reductions, a reduction from 3SAT directly to
VERTEX COVER can be derived automatically. Besides the pedagogical value of this
example, transitivity also allows a particular problem (e.g., 3SAT) access to more solution
algorithms (e.g., CLIQUE and VERTEX COVER solvers) by which to search for more
optimal solutions.

has practical value, as well, enabling one problem to be solved by algorithms developed

for an entirely different problem. Redux has incorporated a feature that provides access to

indirect reductions via transitivity. For example, 3SAT has a valid reduction to CLIQUE

and CLIQUE has a valid reduction to VERTEX COVER, we are able to transitively reduce

directly from 3SAT to VERTEX COVER by going through two separate reduction algorithms.

As the set of problems and reductions implemented in Redux expands, the system is designed

to automatically detect and provide user access when new transitive reductions become

possible.

This novel feature has three primary benefits. First, the ability for students to

experiment with transitive reductions provides yet another angle for students to explore
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how the underlying theory applies to known problems. Second, it allows students to use

the solvers and verifiers of problems many reductions away to solve the original problem (of

which can be valuable when comparing solution algorithms). Finally, it provides students

methods of reduction that may not be discovered yet, or added to the Redux application. For

example, Redux does not have a direct reduction implemented between 3SAT and VERTEX

COVER, however users can still reduce between the two problems as shown in Figure 4.1.

4.3.4 Open-Source Contributing

In order to establish an effective repository of AV solutions, problems, and reductions, Redux

functions as an open-source application that encourages contribution. Because of how Redux

was designed, instructors and students can contribute to either the algorithmic or visualization

aspect of the project and see their results live on our website. This engagement is supported

by the web app which provides templated code stubs and instructions on how to contribute

your code.

4.4 Survey and Results

Two separate surveys were conducted to evaluate the pedagogical effectiveness of Redux.

The first survey was administered to a group of students to assess the tool’s effectiveness as a

lecture supplement. The second survey was administered to a group that included industry

professionals to assess the usability and overall effectiveness of individual features.

4.4.1 Survey 1: Assessment as Lecture Supplement

We conducted a preliminary mixed-mode pilot study of 27 students currently enrolled in

“Introduction to Computational Theory” and/or “Advanced Algorithms”. Respondents were

randomly assigned to either a control group with no access to Redux (12) or a test group

with access to Redux (15).
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After a 30-minute lecture introducing 3SAT, CLIQUE, and the reduction between

them, the groups were separated and asked a series of questions designed to assess their

conceptualization of the source material. The survey was split into two sections: practical

application and theoretical implication. The first assessed the ability to solve simple

NP-complete problems. As an example, given a simple 3SAT or CLIQUE instance respondents

were asked to identify which of several options was a valid solution to the instance. The

second assessed ability to extend theoretical concepts to new scenarios. As an example, given

a 3SAT instance, respondents were asked to identify the correct CLIQUE instance resulting

from a particular mapping reduction. Respondents were also asked conceptual questions to

correctly identify how reductions can be applied both in A) proving NP-completeness and B)

indirect solutions to NP-complete problems. Overall, the control group performed slightly

better (3%) on the first part; the test group performed slightly better (9%) better on the

second part (see Table 4.2).

Careful consideration of the results from the pilot study suggested several important

changes that needed to be made both to improve Redux’ usability and to improve the survey.

These included: adding survey instrumentation to assess the user’s ability to apply Redux to

non-trivial problems, including those involving reduction; adding a brief tutorial to acquaint

users with the tool’s features; and improving several aspects of the GUI to make basic

navigation more intuitive.

Survey section Control Group Test Group
Practical
application

63.3 ±29.6% 60 ±16.1%

Theoretical
implication

68.3 ±31.9% 77.3 ±23.7%

Table 4.2: Results of Survey 1 (Pilot Study). The results of the pilot study were largely
inconclusive and led to several important revisions in both the survey instrumentation (e.g.,
revising questions to more specifically relate to the purposes for which Redux was built:
application to non-trivial instances, breadth of application features, and usability) and in the
Redux application.
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Figure 4.2: Box plots for each group and assessment section. While the control group
performed better in the practical application of the theory, the test group performed better
on the theoretical material. Furthermore, the standard deviation and outer quartiles indicate
a much tighter score line for individuals in the test group. The ’X’ indicates the mean for
each plot.

4.4.2 Survey 2: Standalone Usability Assessment

The second survey was adjusted to better assess the usability of Redux as a standalone

application and examine how each application feature contributed to the user’s understanding

of the underlying material. Its sample size of 13 was made up of students and industry

professionals working in UI/UX, and/or positions related to the theory of computation and

algorithms. Participants were given Redux along with a short Redux tutorial before being

asked to perform calculations, find solutions, and create visualizations. Along the way, they

were asked to evaluate the layout of the application and rank how intuitive accomplishing

each task was.
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Figure 4.3: The Most Helpful Redux Features. Survey two asked participants to rank how
helpful each Redux feature was in learning the underlying concepts. The four highest-ranked
features all relate to the visualization of problems, reductions, gadgets, and solutions.

The results pointed to high usability (the average Likert score over fourteen questions

related to usability was 4.6 out of 5) with higher usability scores for tasks related to data

input, accessing problem documentation, and instance visualization. Participants were asked

to rank features by how effectively they facilitated learning. As Figure 4.3 outlines, the most

helpful features related to visualization.

Participants also indicated that the use of Redux helped make learning NP-complete

reductions more enjoyable with 77% of respondents agreeing or strongly agreeing with the

statement “Using Redux makes understanding NP-complete reductions more enjoyable.”

To evaluate the extent to which visualizing reductions aided respondents in under-

standing the concept of mapping reductions, users were asked to rank their understanding of

specifically the 3SAT to CLIQUE reduction at various steps in the survey. In particular,

participants were asked to rank their understanding 1) after seeing the reduction pane (no

visualization), 2) after visualizing the reduction and solution, and 3) after enabling and

exploring gadget highlighting. Results indicate that participants’ understanding of mapping

reductions—both the specific 3SAT-to-CLIQUE reduction and reductions generally—was

significantly enhanced with exposure to each additional visualization feature. Results from

these questions can be seen in Figure 4.4.
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Figure 4.4: Understanding the Reduction at each Visualiation Step. Survey two asked
participants to rank how easy it was to understand the 3SAT to CLIQUE reduction after
seeing the reduction text pane, after visualizing the full reduction, and after enabling gadget
highlighting. Results indicate that participants had an easier time understanding the theory
the more visualization features they had access to.

4.5 Discussion and Conclusion

More than simply providing instructors and students with an interactive dynamic pedagogical

tool for CT algorithm visualization, the vision of Redux is to provide a platform for academic

research, for open-source contributions from students and practioners alike, for facilitating

improved comparative analysis of algorithmic solutions, and for exploring ways encourage

more widespread incorporation of the applied benefits of CT in industry. Students can use

the application to explore more complex instances of problems and reductions and to uncover

how simple changes to an input can change its resulting solution, all while visualizing the
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entire process. Professors can utilize the independent back-end API for meta-level research

or can use the website to quickly generate more complex visualizations for lectures.

Additional work for the Redux application has already been scheduled. This includes

a plan for a larger, more sophisticated survey between multiple universities as well as full API

documentation for Redux users who want to take full advantage of the algorithms powering

the front-end. This work will be completed by the end of 2024 and be made accessible

on the main Redux website. Future development also includes the addition of NP-hard

(optimization) variants of currently accessible problems, along with additional visualizations

for problems such as the traveling salesperson and knapsack. The class P in Redux could also

be used to demonstrate P algorithms, for example, Dijkstra’s algorithm [21] for the shortest

path in a weighted, directed graph. Early results indicate that these additions could increase

the opportunity for students to understand these difficult theoretical concepts.

Redux represents a highly extensible framework with many possible directions for

future work. As an open-source application, we have opened the application’s code-base up

to allow for additional collaborators interested in contributing visualizations, algorithms,

or any combination of the above. As the needs of industry change, Redux aims to fill the

gap that currently exists in visualization technology and allow a greater understanding of

NP-completeness, computational theory, and its application.
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Chapter 5

KAMI: Leveraging the power of crowd-sourcing to solve complex, real-world

problems

Submitted and Accepted to the 2022 Intermountain Engineering, Technology and Computing

Awarded “Best Research Paper: Computing”

5.1 Introduction

As the winner of multiple Editors’ Choice awards, KAMI boasts a player base in the tens

of thousands. As a one-player combinatorial game with an engaging puzzle experience,

KAMI may simultaneously hold a secret that would allow it to function as a powerful tool

enabling computer scientists, doctors, and engineers to solve some of the world’s most complex

problems: NP-complete problems. NP-complete problems are uniquely characterized by

the fact that mots NP-complete problems cannot be solved in a tractable time frame by

modern day computers. They are also uniquely characterized by the fact that all NP-complete

problems can be converted (in a tractable time frame1) into the representation of any other

NP-complete problem, allowing solutions to one such problem to satisfy instances of other

NP-complete problems.

Consider for example, the infamous traveling salesperson problem (i.e., “Given a list

of cities and the distances between each pair of cities, what is the shortest possible route that

visits each city exactly once and returns to the origin city?”). This problem can (in tractable

time) be reduced to instances of graph coloring problems, boolean satisfiability problems, set

cover problems and virtually an infinite number of other problems that routinely crop up in

real-world contexts. An efficient solution to any of these problems stands to benefit societies

and organizations in untold ways [61]. It is important to note that while the solutions to these

problems can be verified in polynomial time, the reason they are classified as NP is because the

1i.e., in polynomial time
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problems themselves cannot be solved in polynomial time (NP stands for “non-polynomial”).

NP-complete problems have the same properties that NP problems do with the exception

that every existing NP problem must be reducible to it in polynomial time. This is a property

that regular NP problems don’t have. Many notable examples of NP-complete problems can

be observed in Richard Karp’s 1972 paper “Reducibility Among Combinatorial Problems”

[39]. Practical examples of NP-complete problems are virtually everywhere in the modern

world: scheduling problems [71], genome assembly and scaffolding[5], cloud-computing [76],

resource allocation [35], powergrid computing [54], water flow planning [81], route planning,

dependency planning, organizational behavior, and on and on.

As a flood fill game, a KAMI puzzle itself represents an instance of an NP-complete

problem [11]. But unlike many NP-complete problem representations, tens of thousands of

mobile game players willingly devote countless hours and money in the pursuit of designing

and solving KAMI puzzles. What makes this particular form of NP-complete puzzle so alluring

is that puzzles are creatively and artistically designed to be novel, interesting, intentional,

and surprising—in short, KAMI puzzles are considered creative artifacts. In this paper we

present an initial hypothesis on how the principles of computational creativity (CC) can be

applied in the context of rendering arbitrary NP-complete problems as KAMI puzzles in

order to leverage the massive KAMI crowd-sourcing platform to effectively solve real-world

problems. Critically, this paper will serve as a pilot to future research we intend to conduct

which would allow us to evaluate this hypothesis.

The idea of using crowd-sourcing to solve problems too complex for modern computers

has been only recently explored, particularly in domains such as bioinformatics and quantum

computing. Foldit is an online puzzle video game about protein folding (a notoriously difficult

problem in bioinformatics) that leveraged a player base of 57,000 players to obtain useful

results that matched or outperformed algorithmically computed solutions [15]. More recently,

researchers in the domain of quantum computing introduced a citizen science game, Quantum

Moves 2, and found that players were able to optimize solutions roughly on par with the best
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Figure 5.1: KAMI puzzles are characteristically artistic and creative. Finding optimal
solutions to a KAMI puzzle via computational means is an NP-complete problem.

of the tested standard optimization methods performed on a computer cluster [37]. This

area of study has been called “human computing” and is a topic of study in the field of

Human-Computer Interaction (HCI) [42].

5.2 KAMI Puzzle Representation

KAMI is an origami-inspired puzzle game that presents players with creative geometric

patterns (see Fig. 5.1). The creativity of the puzzles inspires players to work diligently to find

optimal solutions to a puzzle. An optimal solution to a KAMI puzzle is a minimum sequence

of moves that would transform the puzzle into a monochromatic plane (see Fig. 5.2). It’s

creative appeal has garnered a player base in the tens of thousands, something fundamental

for crowd-sourcing.
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Figure 5.2: Each KAMI puzzle presents itself as a multi-colored plane. The player makes a
move by replacing a colored section of the graph with a color of their choice (e.g., replacing
white with green). The goal of the game is to make the entire plane monochromatic in the
fewest possible moves.

5.2.1 Representing a KAMI puzzle as a Graph

A KAMI puzzle can be reduced to a simplified representation of the same problem as a

colored graph (see Fig. 5.3). A KAMI puzzle P can be converted to an identical graph G

according to the following algorithm:

• Each continuous monochromatic subregion of color in P , no matter its size, is shown as

a single node in G of the same color.

• An edge exists between each pair of nodes in G for which their corresponding colored

regions in P are adjacent.

As multiple KAMI puzzles can be simplified to the same graph, there exists a many-

to-one relationship between KAMI puzzles and their simplified graphical representations.

Conversely, any colored graph G with the following three characteristics has at least

one equivalent KAMI puzzle.
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Figure 5.3: We can use the graph on the right to represent a simplified version of the KAMI
puzzle on the right. There is a many-to-one relationship between KAMI puzzles and their
simplified graphical representations.

• G must be finite

• G must be colored

• G must be undirected

A move can be played on a colored graph G by selecting a node N ∈ G and performing

the following:

• Change the color of N to a color of your choice C.

• If any two adjacent nodes N and N ′ are of the same color, add the neighbors of N ′ to

become neighbors of N and remove N from G.

An example of a valid move, starting from Fig. 5.3 and then changing node 2 from

yellow to blue, is shown in Fig. 5.4.
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Figure 5.4: The above KAMI puzzle and its associated colored graph are the result of starting

from Fig. 5.3 and making the move of changing node 2 from yellow to blue.

A KAMI solution for a given graph can be defined as any sequence of moves that

results in a monochromatic graph with exactly one node. Its decision problem variant asks if

a k-move sequence exists that turns the graph monochromatic. The optimal solution is the

solution with the shortest sequence of moves. Finding the optimal solution is an NP-complete

problem [11].

The fact that a single graph can encode the basic problem for many different puzzles

creates an interesting challenge: Given an arbitrary colored graph representing an arbitrary

NP-complete problem, what is the most creative (i.e., novel, valuable, surprising, intentional)

KAMI puzzle that can be used to represent that graph?

The process of formally reducing an arbitrary NP-complete problem into an equivalent

colored graph is beyond the scope of this initial foray into the domain. Suffice it to say for

now that we know that such a reduction exists and its articulation is the focus of ongoing

research.

5.3 A Deeper Significance?

The question arrived at in the last section represents an important point of consideration for

those in the CC field. In some sense this represents yet another possible domain where CC
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stands to make a mark. But there are several things that make this particular domain of

peculiar interest.

First, there is nothing particularly new about the challenge being posed in this

domain. Many CC researchers are currently interested in designing systems that can generate

artifacts that would be considered creative in the visual art domain [14, 16, 33]. So much of

the groundwork has already been laid, and we have strong reason to hope that we will to

some meaningful extent find success in achieving a solution.

Second, the impact factor is likely to be significant. If indeed an arbitrary

NP-complete problem can be rendered as a colored graph and then as a KAMI puzzle (as

indeed we believe it can be), then an automation of that process to any extent puts real-world,

NP-complete problems right under tens of thousands of people’s itching, anxious fingertips

in a format and on a platform that they already love and are familiar with. Besides the

impact of finding solutions to some important real-world problems, the impact of empowering

people to use their collective intuition and knowledge to solve those problems—particularly

in a world where AI is continuously threatening to render such intuition and knowledge

obselete—could be equally impactful.

Third, building off of the previous point, this is an excellent example of practical

CC. One of the challenges that has been hypothesized as being a barrier to growth for the

field of CC is its practical applicability [4]. Whereas the world sees great practical value

in many of the advances of AI in general, the same has not proven as true for many of the

advances of CC. The more we can demonstrate the practical value of CC to society, the more

we will see greater growth and success as a community.

Fourth, KAMI is only one of many domains/platforms via which CC could

be used to render computationally-intractable, real-world, complex problems

in accessible mediums. We might just as easily ask: Given an arbitrary data structure

representing an arbitrary NP-complete problem, what is the most creative (i.e., novel, valuable,

surprising, intentional) musical/literary/culinary/visual art puzzle that can be used to represent
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that structure? More than simply representing an isolated example of applied CC, we are

suggesting a possible paradigm shift in motivation. Constraints lie at the heart of so many

of the forms of creativity we seek to emulate in our CC systems. Rather than learning

these constraints purely from a database of existing artifacts or arbitrarily defining them

ourselves, could we not literally derive these constraints via some algorithmic reduction from

the constraints we face in real-world problems of interest?

5.4 Challenges and Solutions

As we consider the steps necessary to reduce a real-world NP-complete problem to a colored

graph, an immediate challenge that surfaces is: What if the reduction results in a colored

graph that is too large, complex, or convoluted to be capable of being rendered as a KAMI

puzzle that anyone would want to solve? There will almost surely be real-world problems

for which this will be the case. But we might draw some hope from recalling the No Free

Lunch Theorems for Optimization [79] which put forth that “for any algorithm, any elevated

performance over one class of problems is offset by performance over another class.” We

might reasonably hope to find real-world classes of problems for which the reduction proves

effective.

An equally valid challenge to the hypothesis we have presented would be to argue that

even NP-complete problem instances of small sizes can be solved via brute-force algorithms in

relatively short order. Given the limited canvas size of a KAMI puzzle, one might reasonably

conjecture that any NP-complete problem that could be reduced to a puzzle that size would

be trivial to solve in its original form by a brute force algorithm. Such may well be true.

However, even with a canvas of the sizes shown in the figures above, the complexity of the

underlying graphs grows exponentially with the size of the canvas, suggesting that non-trivial

problem instances ought to be capable of being represented as KAMI puzzles.

In considering these and other challenges, there may be other ways to make even more

complex puzzles accessible to the power of “human computing”. For example, what if rather
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than expecting a puzzle to be solved by individuals, the puzzle is framed as a team-based

competition? What if individuals are partitioned sections of the puzzle to be solved, with

optimal sub-solutions being combined in creative ways (e.g., via dynamic programming or

divide-and-conquer algorithms)?

As stated in the introduction, as an initial exploration into the domain, our purpose

has been primarily to create a blueprint for a future research agenda that will undoubtedly

reveal a host of challenges not yet considered. But we hope that the work undertaken thus

far will suffice to facilitate meaningful conversation with the community, conversation that

may yield additional insights, solutions, and collaborations as we take next steps. In some

sense, we rely on the research community itself to be its own crowdsourcing platform.

We have presented the hypothesis that arbitrary NP-complete problems can be reduced

to a KAMI puzzle. The KAMI platform, with its tens of thousands of users, represents

an ideal means by which to crowdsource solutions to optimization and decision problems

of real-world significance. The success of the KAMI platform in this endeavor depends

on the effective application of CC principles to render the underlying problem as a puzzle

whose creativity will be sufficiently engaging so as to entice the masses to seek its solution.

As such it represents a practical and impactful application of CC. In a broader sense, the

approach suggests a possible paradigm shift towards using CC in general to represent complex

real-world problems in more accessible ways to large groups of people for the purposes of

leveraging “human computing” power. We eagerly look forward to advancing the research

agenda we have laid out and to addressing the challenges that will arise in the process.
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Chapter 6

Conclusion

Computational theory, and in particular NP-completeness, remains an important topic

in computer science education. Despite this importance, students consistently rank these

theoretical courses as being the most difficult. This is largely due to the abstract nature of the

material and the perceived lack of industry applicability. While other subjects in computer

science enjoy a plethora of visualization tools designed to alleviate these concerns, those

specific to theoretical computer science are condensed to automata; context-free grammars;

pushdown automata; pumping lemmas; and Turing machines. Chapter 2 discussed this

body of CT visualization literature in more detail and concludes there is a lack of attention

dedicated toward teaching NP-completeness and mapping reducibility. In order to remedy this,

Chapters 3 and 4 discuss the creation of a tool designed to dynamically visualize canonical

NP-complete problems, their solutions, and reductions to other NP-complete problems; we

call this tool Redux.

As it exists today, Redux offers students and educators a visualization prototype for

NP-completeness, reductions, and solutions. With its novel gadget and solution highlighting,

it allows students to experiment with unique problem instances and validate the curiosity that

static text images cannot. At the same time, instructors and CT researchers can utilize our

back-end API to do meta-level research and generate unique visualizations for their lectures.

Transitive reductions, also a novel feature of Redux, provide users with the ability to solve

problems using the solution algorithms of other NP-complete problems many reductions away.

Surveys shown in Chapter 4 indicate strong potential for Redux as it exists today. With high

usability scores, we believe the current user interface offers a strong foundation to build in

many additional features.

There are numerous opportunities for future work within Redux’s framework. Addi-

tional problems need visualizations created and published to the front-end website. Open-
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source documentation could be expanded to allow for the community to contribute directly to

the project more effectively. There are numerous visualization enhancements that could also

be developed. For example, a step-by-step visualization could be integrated for particular

problems to show how each gadget is created and connected to the rest of the data structure.

Such an addition would particularly benefit students brand new to the theory; indeed, a

full tutorial could also be developed to introduce students to the website, the concept of

NP-completeness, and many-one reductions.

Redux could also be expanded to facilitate cooperation with industry. The assembly

sequence planning (ASP) [32], for example, is a known NP-complete problem in the field of

nuclear engineering. Industry professionals could theoretically add such a problem to Redux

and reduce it to an existing problem within the Redux database. From there, ASP could

be solved using the solvers of other NP-complete problems. While ASP does have existing

heuristic solvers, this example could be extended to problems without solvers today.

More than simply providing instructors and students with an interactive dynamic

pedagogical tool for CT algorithm visualization, Redux provides a platform for a global

audience to engage with, contribute to, discuss, compare, and probe the possibilities and

limitations of computational theory. With an evergrowing knowledgebase and userbase, Redux

has the potential to be transformative well beyond the classroom, providing a platform by

which industry and research collaborators can seek out improved solutions to their problems,

fueled by a new generation of students impassioned and imbued with confidence in their

ability to apply computational theory to improve the world around them.
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