
In presenting this thesis in partial fulfillment of the requirements for an advanced degree at

Idaho State University, I agree that the Library shall make it freely available for inspection.

I further state that permission for extensive copying of my thesis for scholarly purposes may

be granted by the Dean of the Graduate School, Dean of my academic division, or by the

University Librarian. It is understood that any copying or publication of this thesis for

financial gain shall not be allowed without my written permission.

Signature:

Date:

Scalable Iterative GMRES-FFT Method for Subsurface Scattering

Problems

by

Yun Teck Lee

Dissertation

submitted in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy in the Department of Mathematics and Statistics

Idaho State University

Spring 2023

To the Graduate Faculty:

The members of the committee appointed to examine the dissertation of Yun Teck Lee find

it satisfactory and recommend that it be accepted.

Dr.Yury Gryazin,
Major Adviser

Dr. Bennett Palmer,
Committee Member

Dr.Wenxiang Zhu,
Committee Member

Dr.Ken Bosworth,
Committee Member

Dr.Marco Schoen,
Graduate Faculty Representative

ii

Acknowledgment

I would like to thank my major advisor, Dr. Yury Gryazin, for his advice, support, and

more importantly, patience throughout my time as a graduate student.

I would like to acknowledge my defense committee, Dr. Bennett Palmer, Dr. Wenxiang Zhu,

Dr. Ken Bosworth, and Dr. Marco Schoen, for being so flexible in their schedules and for

going through the grueling process of reading, commenting, and correcting this manuscript.

I appreciated their time, insight, and expertise.

I would like to acknowledge a fellow doctoral student, Ronald Gonzales, for your collaboration

and technology advice throughout our research project.

I want to thank all the staff in the Mathematics and Statistics department at ISU for the

years of continuous support, education, and an overall excellent resource.

iii

Table of Contents

List of Figures . ix

List of Tables . xi

List of Acronyms . xiii

List of Symbols . xv

Abstract . xvi

1 Introduction . 1

1.1 Overview . 1

1.2 Objectives . 3

1.3 Outline . 6

2 Model Equation . 8

2.1 Helmholtz Equation . 8

2.1.1 Subsurface inclusion model . 10

2.2 Convection-Diffusion Equation . 14

3 Compact Scheme Discretizations . 17

iv

3.1 Introduction . 17

3.1.1 Taylor series expansion . 18

3.2 Second-Order Approximation Compact Scheme for Helmholtz Equation . . . 22

3.3 Fourth-Order Approximation Compact Scheme for Helmholtz Equation . . . 23

3.4 Sixth-Order Approximation Compact Scheme for Helmholtz Equation 27

3.4.1 Second-order approximation to I2 . 28

3.4.2 Fourth-order approximation to I1 . 33

3.4.3 Derivatives term in sixth-order compact scheme 37

3.5 Fourth-Order Approximation Compact Scheme for 3D Convection-Diffusion

Equation . 40

3.5.1 Convection-diffusion equation with constant convection coefficients . . 40

3.5.2 Convection-diffusion equation with variable convection coefficient in

z-direction . 43

3.6 Boundary Condition . 45

3.6.1 Higher-order approximation scheme for Sommerfield radiation bound-

ary points . 47

4 Direct FFT Solver . 50

4.1 Introduction . 50

4.2 Compact Stencil for Direct FFT Solver . 51

4.2.1 Second-order scheme for 3D Helmholtz equation 52

4.2.2 Fourth-order scheme for 3D Helmholtz equation 53

4.2.3 Sixth-order scheme for 3D Helmholtz equation 53

v

4.2.4 Fourth-order scheme for 3D convection-diffusion equation with con-

stant coefficients . 55

4.2.5 Fourth-order scheme for 3D convection-diffusion equation with variable

coefficient in z-direction . 56

4.3 Direct FFT Solver . 57

4.3.1 Eigenvalues and eigenvectors . 57

4.3.2 Diagonalization . 60

4.3.3 Computing Fl with FFT . 61

4.3.4 Solving block tridiagonal system with LU decomposition 63

4.4 Sequential Algorithm of Direct FFT Solver 66

5 Iterative Methods . 68

5.1 Introduction . 68

5.2 Classical Iterative Methods . 69

5.3 Krylov Subspace Methods . 71

5.4 Arnoldi Iteration . 75

5.5 GMRES . 76

5.5.1 Convergence of GMRES . 78

5.6 Preconditioner . 79

5.6.1 Helmholtz equation . 80

5.6.2 Convection-diffusion equation . 82

5.6.3 Lower-order preconditioner scheme 83

5.7 Implementation . 84

vi

5.7.1 PETSc . 84

5.7.2 MATLAB . 86

6 Parallelization . 88

6.1 Introduction . 88

6.1.1 Types of parallel programming . 89

6.2 OpenMP . 90

6.2.1 Overview . 90

6.2.2 Implementation . 91

6.2.3 Conclusion . 93

6.3 MPI . 93

6.3.1 Overview . 93

6.3.2 Implementation . 94

6.3.3 Conclusion . 101

6.4 Hybrid OpenMP-MPI . 102

6.4.1 Overview . 102

6.4.2 Implementation . 103

6.4.3 Conclusion . 107

7 Numerical Results . 109

7.1 Direct FFT Solver . 109

7.1.1 Solution of Helmholtz equation . 110

7.1.2 Solution of convection-diffusion equation 113

7.1.3 Scalability of direct FFT solver . 116

vii

7.2 Iterative GMRES-FFT Solver . 122

7.2.1 Solution of Helmholtz equation . 123

7.2.2 Solution of convection-diffusion equation 126

7.2.3 Subsurface inclusion model problem 134

7.2.4 Low-order preconditioners . 138

7.2.5 Scalability of iterative GMRES-FFT solver 145

8 Conclusion and Future Work . 153

8.1 Future Work . 154

viii

List of Figures

Figure 3.1 27-point stencil operator for three-dimensional PDE 19

Figure 4.1 27-point stencil operator for preconditioner system 51

Figure 4.2 Reordering of array in 2D case . 64

Figure 6.1 Computational domain divided for 3 MPI processes 95

Figure 6.2 Data transfer for MPI implementation of preconditioner direct solver 97

Figure 6.3 Distributed matrix-vector multiplication over three processors 99

Figure 6.4 Data transfer in matrix-vector multiplication part 1 100

Figure 6.5 Data transfer in matrix-vector multiplication part 2 100

Figure 6.6 Data transfer for MPI implementation of matrix-vector multiplication 101

Figure 7.1 Scalability of OpenMP vs MPI implementation of direct FFT solver . 117

Figure 7.2 MPI implementation performance on Cori 118

Figure 7.3 MPI implementation performance on Falconviz 118

Figure 7.4 Color plot of the coefficient k2(x, y, z) with one circular inclusions . . 136

Figure 7.5 Color plot of the real part of computed solution for subsurface with

one inclusion . 136

Figure 7.6 Color plot of the coefficient k2(x, y, z) with two inclusions 137

ix

Figure 7.7 Color plot of the real part of computed solution for subsurface with

two inclusions . 138

Figure 7.8 Convergence history of the preconditioned GMRES method 139

x

List of Tables

Table 2.1 Approximate values of εr, tan δ, k
2(x) and λ for different mediums at

f = 1 GHz . 11

Table 7.1 Test for convergence for direct FFT solver on Test Problem 1 111

Table 7.2 Comparison of direct FFT solver and other iterative solvers on Test

Problem 1 . 113

Table 7.3 Test for convergence for direct FFT solver on Test Problem 2a 114

Table 7.4 Test for convergence for direct FFT solver on Test Problem 2b 115

Table 7.5 Hybrid I implementation of direct FFT solver on Test Problem 1 . . . 119

Table 7.6 Hybrid II implementation of direct FFT solver on Test Problem 1 . . . 120

Table 7.7 Comparison of MPI and Hybrid II implementation performance 121

Table 7.8 Test for convergence on 3D Helmholtz problem with variable coefficient

function . 125

Table 7.9 Test for convergence of 3D convection-diffusion equation with constant

coefficients . 128

Table 7.10 Comparison of 3D convection-diffusion solvers on Test Problem 4a . . 129

Table 7.11 Comparison of 3D convection-diffusion solvers on Test Problem 4b . . 132

xi

Table 7.12 Test for convergence of 3D convection-diffusion equation with variable

coefficient . 133

Table 7.13 Comparison of 4th order iterative solver with various order precondi-

tioner on Test Problem 3 . 140

Table 7.14 Comparison of 6th order iterative solver with various order precondi-

tioner on Test Problem 3 . 141

Table 7.15 Comparison of iterative solver with lower order preconditioner on sub-

surface inclusion model problem . 142

Table 7.16 Rate of convergence for Test Problem 4a with Re = 1 for various order

schemes . 144

Table 7.17 Rate of convergence for Test Problem 4a with Re = 10 for various order

schemes . 144

Table 7.18 Numerical results for Test Problem 4a with explicit scheme on a grid

of 73 . 145

Table 7.19 Performance of OpenMP implementation on a grid of 2563 147

Table 7.20 Performance of the MPI implementation on a grid size of 2563 148

Table 7.21 Performance of various implementations on a grid size of 2563 149

Table 7.22 Hybrid II implementation of iterative solver with 4th order scheme . . 151

Table 7.23 Hybrid II implementation of iterative solver with 6th order scheme . . 151

xii

List of Acronyms

2D Two-dimensional

3D Three-dimensional

API Application Programming Interface

CPU Central Processing Unit

CUDA Compute Unified Device Architecture

DFT Discrete Fourier Transform

DSP Digital Signal Processor

DST Discrete Sine Transform

EMI Electromagnetic Induction

FFT Fast Fourier Transform

FFTW Fastest Fourier Transform in the West

GHz Gigahertz

GMRES General Minimum Residual

GPR Ground Penetrating Radar

GPU Graphics Processing Unit

HPC High Performance Computing

IB InfiniBand

IC integrated Circuit

INL Idaho National Lab

LBNL Lawrence Berkeley National Lab

MATLAB Matrix Laborator

MIT Massachusetts Institute of Technology

xiii

MPI Message Passing Interface

OpenMP Open Multi-Processing

PETSc Portable, Extensible Toolkit for Scientific Computation

PDE Partial Differential Equation

PML Perfectly Matched Layer

RAM Random Access Memory

Re Reynolds Number

SI Système International

xiv

List of Symbols

C Set of complex numbers

N Set of natural numbers, the nonnegative integers

R Set of real numbers

Z Set of integers

Pn Set of all polynomials of degree n or smaller

Kn n-th order Krylov subspace

∆ Laplace operator

δx First order central difference approximation with respect to x

δ2x Second order central difference approximation with respect to x

∂
∂x

Partial derivatives with respect to x

∆h Sum of second order central difference approximation with respect to x, y and z

AT Transpose of the matrix A

Ap Preconditioner matrix for A

Ω Rectangular computational domain

∂Ω Boundary of the computational domain

Re(x) Real part of x

Im(x) Imaginary part of x

xv

Scalable Iterative GMRES-FFT Method for Subsurface Scattering

Problems

Dissertation Abstract - - Idaho State University (2023)

The objective of this dissertation is to present an efficient parallel implementation of the

iterative compact high-order approximation numerical solver for the forward problem of the

subsurface scattering problems derived from the 3D Helmholtz equation. The high-order

parallel iterative algorithm is built upon a combination of the generalized minimum residual

method (GMRES) method with a direct Fast Fourier transform (FFT) type preconditioner

from the authors’ previous work in [37]. High-order compact finite differences schemes are

used to compute high-resolution numerical solutions. The performance of the proposed

algorithm will be tested by computationally simulating data with realistic ranges of param-

eters in soil and mine-like targets. Additionally, the application of the proposed numerical

solver can be extended to computer numerical solutions for other partial differential equa-

tions (PDE) such as 3D convection-diffusion equations. The proposed algorithm represents

a highly parallelizable iterative algorithm suitable for excellent performance under various

parallel environments.

Key Words: Helmholtz equation, convection-diffusion equation, subsurface imaging, GPR,

high-order compact finite difference schemes, GMRES, FFT, fast scalable preconditioners,

parallel algorithms, OpenMP, MPI, PETSc

xvi

1

1 Introduction

1.1 Overview

Landmine detection has always been a challenging but essential endeavor for the protection

of civilian and military lives. While they are fairly easy to plant, detecting them can be

relatively difficult. This is in part due to the advent of plastic explosives that cannot be

discovered using energy-based detection methods, such as the kind used in metal detectors[7].

In [7], the author remarks that present-day methods mostly rely on signal analysis and

image processing techniques to identify unique shapes and signals that are representative of

landmine signatures beneath the earth. These techniques have also been employed in both

vehicle-based and hand-held sensing devices.

Nowadays many landmine detectors employ numerous sensing methods simultaneously. Some

of the most frequently used include Electromagnetic Induction (EMI), and more recently,

Ground Penetrating Radar (GPR). Unlike the former, the main advantage of GPR lies in

its ability to detect both metallic and non-metallic targets which EMI is incapable of sens-

ing. Furthermore, GPR also has the advantage that its signals can be reconstructed into an

image. This image can then be analyzed using image processing and machine learning to

recognize visual patterns within the radar [7].

To understand the physical behavior of a system, numerical modeling is a practical and

solid approach. For the case of landmine detection with GPR, numerical modeling serves as

a practical tool for designing and optimizing antennas in synthetic but realistic conditions

2

[13]. The problem of numerical simulation of the subsurface imaging usually accounts to the

solution of PDEs, which can be discretized by applying finite difference, finite elements, or

finite volume methods. The resulting linear system however is generally large and sparse.

The system can be solved via a direct or iterative method. However, this process is time-

consuming due to a large amount of computation and in general, it represents a majority of

the total simulation time.

Direct methods such as Gaussian elimination with pivoting are seen as the most accurate

and robust solvers for general linear systems as they obtain the exact solution for the linear

systems. However, it is unsuitable for large systems because of the memory requirements

and the lack of parallelism. Especially in the case of sparse matrices, Gaussian elimination

would produce fill-in which may destroy the sparsity, resulting in higher storage cost. On

the other hand, iterative methods require low memory costs. Typically they would only

store the matrix, right-hand side vector and a few additional vectors to approximate the

solution of a linear system. Thus, the iterative methods are favored in the case of large

sparse linear systems, especially arising from the discretization of three-dimensional PDEs.

However, they only give approximate solutions, and their efficiency depends on the matrix

structure. The usage of appropriate preconditioners improves the convergence rates of the

iterative methods.

The GMRES method proposed by Saad and Schultz in 1986 [32] is one of the most popular

iterative algorithms for solving a system of linear equations. It is an iterative solver that

finds approximations within a Krylov subspace of the system. The development of an efficient

iterative solver is crucial, as large general matrices arise in a variety of applications. One

way of doing this is to parallelize the numerical method.

3

Moore’s Law states that the number of transistors in a dense integrated circuit (IC) would

double about every two years. Abiding by the law, modern computers have evolved from

machines with a single processing component to complex architectures combining the likes

of central processing units (CPU) with multiple cores, graphics processing units (GPU),

and digital signal processors (DSP). Most modern computers have multiple processing cores

that enable multiple programs to run simultaneously or allow one program to use multiple

cores. As computational modeling and its resources become commonplace, numerical so-

lutions for PDE can be solved with increasing resolution and accuracy. Concurrently, the

technology development also enables more variables and processes to be taken into account,

and spatial and temporal resolutions are increased to model real field-scale events models

become more complex yet resource efficiency remains an important requirement. Multiscale

and multiphysics modeling encompasses these factors and relies on High-Performance Com-

puting (HPC) resources and services to solve problems effectively [24]. Within this context,

complexity, and scalability both play an important role. It is much preferable to have an

algorithm with low complexity and easy to implement in large computing clusters. Addi-

tionally, it needs to be flexible enough to capitalize highly optimized low-level libraries and

support new hardware architectures.

1.2 Objectives

Coherent to the objective of the Ph.D. program in Engineering and Applied Science, I would

like to present a scalable iterative solver for computing the numerical solution of PDE for this

dissertation. The proposed numerical algorithm is based on a GMRES-FFT-type algorithm

4

which can be implemented with readily available libraries. The proposed numerical algorithm

would be implemented in a large computer cluster to demonstrate its scalability as well.

The main target application of the proposed numerical solver is to find the solution for the

forward electromagnetic scattering problems arising in the area of detection, identification,

and imaging of subsurface objects. The subsurface scattering problem considered here can

be formulated in the form of a 3D Helmholtz equation

∆u(x, y, z) + k2(x, y, z)u(x, y, z) = f(x, y, z), in Ω,

with either the Dirichlet, Neumann or Sommerfeld-like boundary conditions

Γu = g, on ∂Ω,

where Ω is a three-dimensional rectangular domain, k2(x, y, z) is a complex-valued variable

function, ∂Ω is the boundary of Ω, and Γ is a differential operator corresponding to the

Dirichlet, Neumann or Sommerfeld-like boundary conditions.

The development of forward and inverse methods of subsurface scattering problems con-

tinues to impose difficult mathematical, computational, statistical, and signal-processing

challenges. One of the main challenges is to find the numerical solution to the forward scat-

tering problem with large values of the angular frequencies, i.e., for small wavelengths. This

poses a challenge to the existing numerical solvers as a large number of grid points would

be required for the numerical solver to obtain optimal results. Additionally, with the tech-

nology advancement, computational efficiency i.e., computing the approximate solution in a

fast and scalable manner, is now of concern for many numerical algorithms. The proposed

numerical algorithm in this dissertation will tackle this issue by introducing a new state-of-

the-art highly parallelizable approach that can fully capitalize on the recent development of

5

multi-core technologies.

In this dissertation, the development of an efficient iterative method for the solution of

the forward scattering problem will be presented. In the hope to serve as a necessary and

preliminary step to the solution of the inverse problem, the proposed iterative method would

represent a fast and accurate numerical method for the solution of the forward problem.

In [37], the author and co-researchers developed a parallel FFT-type direct method that uses

high-order compact approximation schemes. The proposed iterative method would utilize

this highly parallelized direct solver as a preconditioner for efficient implementation. The

scalability of the direct solvers would significantly increase the efficiency of high-resolution

iterative methods and enable computation on large grid sizes. Overall the high resolution

of the iterative method is achieved by two contributing factors. Firstly, the application of

a higher order scheme and the other contributing factor is the ability to use finer computa-

tional grids due to the increased computational power of computer clusters. The sequential

numerical method was first developed in 2014 [34]. Efforts were concentrated on making the

proposed algorithm faster and more efficient by the means of parallelization.

The proposed iterative method will be implemented using some of the most common pro-

tocols such as Open Multi-Processing (OpenMP), Message Passing Interface (MPI), and

Hybrid MPI/OpenMP within the C programming language. A protocol such as MPI allows

communication between multiple nodes. In this dissertation, the way the data and commu-

nication are handled is discussed in detail, as well as how the proposed iterative solver was

developed sequentially and it is implemented in a parallel algorithm.

6

1.3 Outline

Chapter 2 will introduce the PDE considered in this dissertation where the iterative method

could be used for computing the numerical solution. An overview of these PDEs and their

applications that motivated the development of the iterative method will be presented.

Chapter 3 shows the discretization of the PDE discussed in Chapter 2 based on a compact

approximation scheme derived from Taylor series expansion. The details of the discretization

for the second, fourth and sixth order scheme will be provided. This chapter will also

include how the Sommerfield radiation boundary condition is implemented for the subsurface

inclusion model problem.

Chapter 4 will presents the direct FFT solver as a direct method for solving PDE in Chapter

2 under certain restrictions. The direct FFT solver would serve as direct solver as the

preconditioner solver used in the proposed iterative algorithm. In-depth detail of the direct

solver would be presented.

Chapter 5 presents the outlines for the proposed iterative method. A general literature review

of the iterative method will be provided. The structure of the iterative method is shown and

its implementation via the Portable, Extensible Toolkit for Scientific Computation (PETSc)

is discussed in this chapter.

Chapter 6 focused on the parallel implementation of the proposed iterative method with

parallel techniques such as OpenMP and MPI. The algorithm and details of these imple-

mentations will be given.

Chapter 7 would showcase the performance of the direct FFT solver and proposed iterative

7

solver by presenting the numerical results from various test problems based on PDE intro-

duced in Chapter 2. These include the accuracy, computational time, and scalability of the

aforementioned solvers. The result from the numerical experiments would be presented and

analyzed.

8

2 Model Equation

2.1 Helmholtz Equation

In this dissertation, the main targeted application of the proposed iterative method is to

find the numerical solution for the forward problem of the subsurface scattering problem,

specifically as a landmine detector. Electromagnetic subsurface imaging can be formulated

as an optimization problem constrained by a set of PDE, specifically Maxwell’s equations,

which govern electromagnetic wave propagation. The Helmholtz equation which can be

derived from Maxwell’s equations can be used as an approximation of the wave equation.

As such the primary focus of the iterative method is to develop a fast and efficient numerical

solver for the three-dimensional Helmholtz equation. Let x = (x, y, z) be the coordinates in

the three-dimensional euclidean space R3, the 3D Helmholtz equation is given by,

∆u(x) + k2(x)u(x) = f(x), in Ω (2.1)

where Ω =
{
x | Ll

x ≤ x ≤ Lr
x;L

l
y ≤ y ≤ Lr

y;L
l
z ≤ z ≤ Lr

z

}
, Ll

x < Lr
x, L

l
y < Lr

y, L
l
z < Lr

z and

k2(x) is called the coefficient function. The Dirichlet boundary condition is considered, that

is

u = v, on ∂Ω (2.2)

where v is a known function defined on the boundary ∂Ω. The stability, existence, and

uniqueness analysis of this problem can be found, for example, in [3, 14]. The boundary

condition considered in this paper algorithms can be extended to the Neumann boundary

9

conditions on the sides of the computational domain (see [8, 9]) or to the first and second-

order absorbing boundary conditions [17].

Highly efficient numerical algorithms for solving the Helmholtz equation remain an area of

active research. Although this dissertation will be focusing on its application to subsurface

scattering problems, an efficient Helmholtz solver is of great interest for any wave-based in-

verse problem, given that majority rely on the ability to solve the forward problem efficiently.

Helmholtz equation finds its applications in many physics problem-solving concepts such as

seismology, acoustics, and electromagnetic radiation. Moreover let k2(x) = 0 then the 3D

Helmholtz equation becomes the 3D Poisson equation

∆u(x) = f(x), in Ω (2.3)

which has broad utility in theoretical physics. In this dissertation, the Poisson equation will

be treated as a special case of the Helmholtz equation where k2(x) = 0.

The coefficient function k2(x) is called the wave number when applying the equation to

waves. Solving the Helmholtz equation at high wave numbers is challenging because the

solutions are highly oscillatory. Even though the equation is linear, the resulting discrete

linear system is indefinite and ill-conditioned. Another difficulty in simulating the numerical

solutions at high wave number problems is the ”pollution effect” in almost all computational

schemes. A higher-order compact scheme can reduce the ”pollution effect”; alternatively

decreasing the step size h is effective.

In the past two decades, high-order compact difference methods have generated renewed

interest and a variety of specialized techniques have been developed. Previous research has

developed compact fourth-order accurate finite difference approximation for the Helmholtz

10

equation in two or three dimensions (see e.g. [6, 15]). For 3D Helmholtz equations, Turkel et

al. [5] developed the sixth-order scheme for the Helmholtz equation based on equation-based

differencing, where derivatives of the Helmholtz equation are used to eliminate higher-order

derivatives in the discretization error. In 2014, Gryazin [34] developed the numerical iterative

Helmholtz solver based on these high-order schemes was developed. In this dissertation, we

aimed to improve the iterative Helmholtz solver by the means of parallelization.

The forward problem for the subsurface scattering problem is defined as follows: given

the physical properties of the medium, in this case, the coefficient function k2(x) and the

location of the source, compute the wave-field u at the surface. Subsection 2.1.1 will present

a mathematical model to simulate this application.

2.1.1 Subsurface inclusion model

In this subsection, a simplified model of the GPR signal propagation will be presented.

The landmine-like target will be modeled as small abnormalities embedded in an otherwise

uniform media with an air-ground interface. These abnormalities are characterized by the

electrical permittivity ε and the conductivity σ, whose values differ from those of the host

media. On top of that, realistic ranges of parameters will be considered.

Define x = (x, y, z) as before. Let the electrical field E0 originated by a GPR be a linearly

polarized plane wave with the direction of propagation parallel to the positive direction of

the z-axis, E0 = (0, eiωz, 0), where ω is the angular frequency of the signal, µ0 = 4π · 10−7

Henry/m is the magnetic permeability of free space and ε0 = 8.854 · 10−12 Farad/m is the

dielectric permittivity of free space. It is assumed that the mine-like targets are located

11

in the ground. Then the following 3D Helmholtz equation for the function v(x, ω) can be

derived from Maxwell’s system

∆v + k2(x, ω)v = 0. (2.4)

Here the coefficient function k2(x, ω) has the form

k2(x, ω) = ω2µ0ε(x)(1 + i
σ(x, ω)

ωε(x)
) (2.5)

where ε(x) and σ(x, ω) represent the electrical permittivity and the electrical conductivity

of the medium. It is assumed that ε = ε0 in the air and ε = ε0εr, where εr is the relative

dielectric constant. In the air εr ≡ 1 and σ(x, ω) ≡ 0. Consider the “loss tangent”

tan δ =
σ(x, ω)

ωε(x)
(2.6)

Substitute everything into Equation (2.5) the function k2(x, ω) now has the form

k2(x) = ω2µ0ε0εr(1 + i tan δ) (2.7)

The loss tangent is assumed to be independent of ω, i.e., ∂
∂ω
[tan δ] = 0. It is satisfied with

sufficient accuracy in many practical scenarios of land mine detection. Next, the typical

parameter ranges for the coefficient k2 are presented. All units below are given in the SI

system. The frequency of the signal f = ω/2π is between 0.5 GHz and 3GHz. When the

frequency f = 1 GHz, the approximate values of the parameters εr, tan δ, and k2(x) and the

wavelength λ = 2π/Re(k) are given in Table 2.1.

Table 2.1: Approximate values of εr, tan δ, k
2(x) and λ for different mediums at f = 1 GHz

Medium εr tan δ k2(x)[1
m2] λ [cm]

Air 1 0 439.2 30

Ground/Soil 2.9 0.025 1273 + 31 · i 17

TNT 2.86 0.0018 1256 + 2.26 · i 17.7

12

To calculate the forward problem accurately, one should use at least ten grid points per

wavelength. Suppose, for example, that one wants to calculate the function v in a square

region of 2m× 2m× 2m one should at least use 117× 117× 117 grid for λ = 17 cm. This is

a great motivation for the development of a new efficient parallel algorithm for the solution

of the Helmholtz equation with complex-valued coefficients.

Statement of the forward problem

The electrical parameters ε and σ are assumed to have constant background values every-

where in the ground except in the mine-like targets, whose sizes will be small in comparison

to the size of the computational domain Ω. Let k2
0(z) be the function k2(x) without any

inclusions, that is,

k2
0(z) =


439.2, in air,

1273 + 31i, , in ground.

Hence k2
0(z) has constant values both in air and ground with a discontinuity at the air-ground

interface and is identical to the function k2(x) in the computational domain except within

the area where inclusions are present (if any). Furthermore, let u0 = u0(x) be the solution

of homogeneous Helmholtz Equation (2.1) which corresponds to the initializing plane wave

with no inclusions. Then u0 consists of the initial, reflected, and transmitted plane waves,

u0 =


eik0z + Ae−ik0z, if 0 < z < 0.5,

Beik0z, if 0.5 ≤ z < 1,

where A and B are the reflection and transmission coefficients given by:

A =
k−
0 − k+

0

k−
0 + k+

0

, B =
2k−

0

k−
0 + k+

0

.

13

Here k−
0 and k+

0 are the values of k0 for air and ground respectively. The presence of these

coefficients ensures the continuity of the function u0 together with its first derivatives at the

air-ground interface.

Seeking a solution to Equation (2.1) in the form u(x) = u0(x) + v(x), where the function v

represents the wave scattered by the mine-like targets. Then u satisfies Equation (2.1) with

the right hand side

f = f(x) =


0, outside inclusions,

−(k2(x)− k2
0(z))u0(x), inside inclusions.

Boundary condition for subsurface scattering problem

For the subsurface inclusion model, the actual problem is solved in the infinite domain R3,

and the numerical solution must satisfy the so-called Sommerfeld radiation condition, which

in three-dimensional has the form

lim
r→∞

r

(
∂

∂r
− ik

)
u = 0 (2.8)

where r =
√

x2 + y2 + z2 and i is the imaginary unit. Mathematically, this condition is

required to ensure the uniqueness of the solution (and hence the well-posedness of the prob-

lem). In a physical context, the condition ensures that the scattering of an incoming wave

only produces outgoing not incoming waves from infinity. If one performed the computation

in a finite computation domain such as Ω, spurious wave reflections are likely to be generated

at the artificial boundary ∂Ω of the computational domain.

The perfectly matched layer (PML) method truncates the euclidean space R3 into the fi-

nite computational domain Ω by surrounding Ω with a layer of ”absorbing” material. In

14

theory, the outgoing waves are absorbed without creating any artificial reflected waves at

the interface between the PML layer and the computational domain. The PML method is

implemented by modifying the coefficient function k2(x, ω) in (2.5) as follows

k2(x, ω) = k2(x, ω) + iσx(x) + iσy(y) + iσz(z) (2.9)

where i is the imaginary unit and

σx(x) =



2πa0σ0

(
Lr
x+δ−x

δ

)
, x < Ll

x + δ

0, Ll
x + δ < x < Lr

x − δ

2πa0σ0

(
x−Ll

x+δ
δ

)
, Lr

x − δ < x

with the dominant frequency σ0 of the source, the thickness δ of the PML layer, and a

constant a0. The functions σy(y) and σz(z) are defined in similar way. Now Equations (2.1)

would represent a Helmholtz equation with PML boundary conditions. In this dissertation,

2πa0σ0 = 7 is considered.

2.2 Convection-Diffusion Equation

To demonstrate the robustness of the numerical method, the numerical solution of the steady-

state 3D convection-diffusion equation is also considered. Define x = (x, y, z) to be the

coordinates in R3 as before, the 3D convection-diffusion equation is given by,

∆u(x) + α
∂

∂x
u(x) + β

∂

∂y
u(x) + γ

∂

∂z
u(x) = f(x), in Ω (2.10)

where Ω is the same rectangular grid defined in Section 2.1 and α, β and γ are constants

known as convection coefficients in the x-, y- and z-directions respectively and f is a forcing

function. For simplicity, f is assumed to be twice continuously differentiable. The Dirichlet

15

boundary condition with u = v is imposed on the boundary of the computational domain

where v is a known function defined on the boundary, ∂Ω.

The convection-diffusion equation is very important in computational fluid dynamics to

model the transport phenomena, including heat transfer and fluid flows [28, 29]. The un-

known function u may represent the concentration of a pollutant being transported (or

”convected”) along a stream moving at velocity (α, β, γ) that is also subjected to diffusion

effects. Alternatively, it may represent the temperature of a fluid moving along a heated

wall, or the concentration of electrons in models of semiconductor device [10].

The values for the convection coefficients do not have to be constant. In this dissertation, a

variant of the 3D convection-diffusion equation is considered in the form

∆u(x) + γ(x)
∂

∂z
u(x) = f(x), in Ω (2.11)

In this variation, γ is now a function of x while the value of α and β are small enough to be

assumed as zero. The proposed numerical solver would compute the numerical solution of

Equation (2.11) with the same computational domain and boundary condition as Equation

(2.10).

The magnitude of the convection coefficient is also usually referred to as the Reynolds number

in much literature. Typically, diffusion is a less significant physical effect than convection.

For large values of the convection coefficients, Equation (2.10) is said to be convection-

dominated and is generally difficult to solve numerically [18, 20].

For convection-dominated problems, basic iterative methods fail to converge for solving the

linear systems arising from the second-order central difference scheme, or it may produce

nonphysical oscillations for large Reynolds numbers [23]. On the other hand, the upwind

16

difference scheme is usually stable but reduces the order of accuracy to the first order. In

either case, the traditional numerical method has low accuracy and thus needs fine dis-

cretization to obtain the desired accuracy. These pose many computational challenges due

to the prohibitive computer memory and CPU time requirements, especially for solving

three-dimensional problems. Similar to the Helmholtz equation, using a higher-order finite

difference approximations scheme would address these challenges. In this dissertation, the

proposed iterative method will implement the numerical algorithm based on a fourth-order

approximation scheme to find the numerical solutions for 3D convection-diffusion equation

in the form of Equation (2.10) and (2.11).

17

3 Compact Scheme Discretizations

3.1 Introduction

In the field of applied mathematics, discretization is used for approximating the differential

term in PDE with a prescribed accuracy. In this chapter, the model problem introduced in

Chapter 2 will be discretized based on a high-order compact finite difference scheme. The

finite difference scheme would convert the PDE into a system of linear equations that can

be solved with matrix algebra techniques. This is the crucial first step for implementing a

numerical solver for PDE problems on digital computers.

In numerical analysis, a stencil is a geometric arrangement of a nodal group that relates to the

point of interest by using a numerical approximation routine. The stencil algorithm serves as

a basis for a variety of algorithms to numerically solve PDE problems and is commonly found

in parallel applications. The stencil algorithm operates on nodes that divide a computational

domain. These nodes would hold one or multiple values, and they each have neighboring

nodes. In the case of a compact stencil, the stencil would only use the center node and all

its adjacent nodes. In the two-dimensional case, the stencil would be presented as a 9-point

stencil and a 27-point stencil in the three-dimensional case. They are non-overlapping and

of equal size to improve load balancing. The design of the stencil algorithm makes it easy for

a parallel implementation of optimal running problems with large computational domains

on multiple nodes.

The process of developing the second, fourth and sixth-order compact finite difference schemes

18

for the discretization of the Helmholtz equation will be presented. Moreover, the coefficient

matrix of the linear system arising from the discretization would be presented in stencil

notation.

This chapter will be focusing on the 3D Helmholtz equation (2.1) define in the computational

domain

Ωh = {(x, y, z) ∈ R3 | xi = Ll
x + ihx, yj = Ll

y + jhy, zl = Ll
z + lhz,

i = 1, ..., Nx, j = 1, ..., Ny, l = 1, ..., Nz} (3.1)

where hx =
(
Lr
x − Ll

x

)
/(Nx + 1), hy =

(
Lr
y − Ll

y

)
/(Ny + 1) and hz =

(
Lr
z − Ll

z

)
/(Nz + 1)

are grid steps in x-, y- and z-directions respectively. The corresponding result for the two-

dimensional case will be shown without much emphasis.

The last section of this chapter will showcase the fourth-order discretization for the 3D

convection-diffusion equation (2.10) and (2.11) as an extended application for the iterative

solver to solve a wider class of PDE problems.

3.1.1 Taylor series expansion

Compact schemes are derived from Taylor series expansion. With the Taylor series, the

derivatives of a function at a single point can be expressed as a linear combination of the

values of the function around and at the same point. This enables the differential problems

to be turned into a system of linear equations. The scheme is called compact because it only

involves the 26 neighboring grid points (8 in the case of 2D) nearest to the reference grid

point in a unit cube as seen in Figure 3.1.

In general the Taylor series for the function u(x, y, z) at the point (xi, yj, zl) can be presented

19

ui−1,j−1,l+1

ui,j−1,l+1

ui+1,j−1,l+1

ui−1,j,l+1

ui,j,l+1

ui+1,j,l+1

ui−1,j+1,l+1

ui,j+1,l+1

ui+1,j+1,l+1

ui−1,j−1,l

ui,j−1,l

ui+1,j−1,l

ui−1,j,l

ui,j,l

ui+1,j,l

ui−1,j+1,l

ui,j+1,l

ui+1,j+1,l

ui−1,j−1,l−1

ui,j−1,l−1

ui+1,j−1,l−1

ui−1,j,l−1

ui,j,l−1

ui+1,j,l−1

ui−1,j+1,l−1

ui,j+1,l−1

ui+1,j+1,l−1

Figure 3.1: 27-point stencil operator for three-dimensional PDE

as

ui±1,j,l = ui,j,l ± hx
∂ui,j,l

∂x
+

h2
x

2

∂2ui,j,l

∂x2
± h3

x

3!

∂3ui,j,l

∂x3
+

h4
x

4!

∂4ui,j,l

∂x4
± h5

x

5!

∂5ui,j,l

∂x5

+
h6
x

6!

∂6ui,j,l

∂x6
± · · · (3.2)

where ui,j,l = u(xi, yj, zl). The difference between the two equations in (3.2) would yield

ui+1,j,l − ui−1,j,l = 2hx
∂ui,j,l

∂x
+

2h3
x

3!

∂3ui,j,l

∂x3
+

2h5
x

5!

∂5ui,j,l

∂x5
+ · · ·

The left-hand side of the equation is defined as the first-order central differences at (i, j, l)-th

grid point after dividing both sides of the equation by 2hx, that is

δxu = δxui,j,l =
ui+1,j,l − ui−1,j,l

2hx

(3.3)

On the other hand, the addition of the two equations in (3.2) yield

ui+1,j,l + ui−1,j,l = 2ui,j,l + h2
x

∂2ui,j,l

∂x2
+

2h4
x

4!

∂4ui,j,l

∂x4
+

2h6
x

6!

∂6ui,j,l

∂x6
+ · · ·

20

ui+1,j,l − 2ui,j,l + ui−1,j,l

h2
x

=
∂2ui,j,l

∂x2
+

h2
x

12

∂4ui,j,l

∂x4
+

h4
x

360

∂6ui,j,l

∂x6
+ · · ·

Define the left-hand side of the equation as the second-order central differences at (i, j, l)−th

grid point, that is

δ2xu = δ2xui,j,l =
ui+1,j,l − 2ui,j,l + ui−1,j,l

h2
x

(3.4)

Repeat the steps above but for the variables y and z. Then define the first and second central

difference operators δy, δz, δ
2
y and δ2z similarly. Furthermore, define the following notation

∆hu = (δ2x + δ2y + δ2z)u =
1

h2
x

(ui+1,j,l + ui−1,j,l) +
1

h2
y

(ui,j+1,l + ui,j−1,l) +
1

h2
z

(ui,j,l+1 + ui,j,l−1)

− 2

(
1

h2
x

+
1

h2
y

+
1

h2
z

)
ui,j,l

δxyyu = δx(δ
2
yu) =

ui+1,j+1,l + ui+1,j+1,l − ui−1,j+1,l − ui−1,j−1,l − 2 (ui+1,j,l − ui−1,j,l)

2h3

and similarly in other directions too. Before introducing more notation, it is worth showing

that the second-order central differences operator is commutative in Lemma 3.1.

Lemma 3.1. The operators δ2x, δ
2
y and δ2z commute.

Proof. Let u be a function of x,y and z. By definition

δ2x
(
δ2yui,j,l

)
= δ2x

(
ui,j+1,l − 2ui,j,l + ui,j−1,l

h2
y

)
=

1

h2
y

(
δ2xui,j+1,l − 2δ2xui,j,l + δ2xui,j−1,l

)
=

1

h2
y

(
ui+1,j+1,l − 2ui,j+1,l + ui−1,j+1,l

h2
x

− 2
ui+1,j,l − 2ui,j,l + ui−1,j,l

h2
x

+
ui+1,j−1,l − 2ui,j−1,l + ui−1,j−1,l

h2
x

)
=

1

h2
xh

2
y

(ui+1,j+1,l − 2ui+1,j,l + ui+1,j−1,l − 2 (ui,j+1,l − 2ui,j,l + ui,j−1,l)

+ ui−1,j+1,l − 2ui−1,j,l + ui−1,j−1,l)

21

=
1

h2
x

(
ui+1,j+1,l − 2ui+1,j,l + ui+1,j−1,l

h2
y

− 2
ui,j+1,l − 2ui,j,l + ui,j−1,l

h2
y

+
ui−1,j+1,l − 2ui−1,j,l + ui−1,j−1,l

h2
y

)
=

1

h2
x

(
δ2yui+1,j,l − 2δ2yui,j,l + δ2yui−1,j,l

)
= δ2y

(ui+1,j,l − 2ui,j,l + ui−1,j,l)

h2
x

= δ2y
(
δ2xui,j,l

)

This proves that the operators δ2x and δ2y commute without any dependency on the spatial

direction. In short, both of the operators can be replaced with any other operator and be

proven similarly. Without any loss of generality, we may conclude that all three operators

δ2x, δ
2
y , and δ2z would commute with each other.

Now the following operators would be equal by Lemma 3.1

δ2xδ
2
yu = δ2yδ

2
xu =

1

h2
xh

2
y

[
ui+1,j+1,l − 2ui+1,j,l + ui+1,j−1,l − 2 (ui,j+1,l − 2ui,j,l + ui,j−1)

+ ui−1,j+1,l − 2ui−1,j,l + ui−1,j−1,l

]
δ2xδ

2
zu = δ2zδ

2
xu =

1

h2
xh

2
z

[
ui+1,j,l+1 − 2ui+1,j,l + ui+1,j,l−1 − 2 (ui,j,l+1 − 2ui,j,l + ui,j,l−1)

+ ui−1,j,l+1 − 2ui−1,j,l + ui−1,j,l−1

]
δ2yδ

2
zu = δ2zδ

2
yu =

1

h2
yh

2
z

[
ui,j+1,l+1 − 2ui,j+1,l + ui,j+1,l−1 − 2 (ui,j,l+1 − 2ui,j,l + ui,j,l−1)

+ ui,j−1,l+1 − 2ui,j−1,l + ui,j−1,l−1

]
Moreover when the grid steps are equal, that is h = hx = hy = hz, the following operator

can be simplified as

(δ2xδ
2
y + δ2xδ

2
z + δ2yδ

2
z)u =

1

h4

[
ui+1,j+1,l + ui+1,j−1,l + ui−1,j+1,l + ui−1,j−1,l + ui+1,j,l+1 + ui+1,j,l−1

22

+ ui−1,j,l+1 + ui−1,j,l−1 + ui,j+1,l+1 + ui,j+1,l−1 + ui,j−1,l+1 + ui,j−1,l−1

− 4(ui+1,j,l + ui−1,j,l + ui,j+1,l + ui,j−1,l + ui,j,l+1 + ui,j,l−1)

+ 12ui+1,j,l

]
δ2xδ

2
yδ

2
zu =

1

h6

[
ui+1,j+1,l+1 + ui−1,j+1,l+1 + ui+1,j−1,l+1 + ui−1,j−1,l+1 + ui+1,j+1,l−1

+ ui−1,j+1,l−1 + ui+1,j−1,l−1 + ui−1,j−1,l−1 − 2(ui+1,j+1,l + ui−1,j+1,l

+ ui+1,j−1,l + ui−1,j−1,l + ui+1,j,l+1 + ui−1,j,l+1 + ui+1,j,l−1

+ ui−1,j,l−1 + ui,j+1,l+1 + ui,j−1,l+1 + ui,j+1,l−1 + ui,j−1,l−1)

+ 4(ui+1,j,l + ui−1,j,l + ui,j+1,l + ui,j−1,l + ui,j,l+1 + ui,j,l−1)

− 8ui,j,l

]

3.2 Second-Order Approximation Compact Scheme for

Helmholtz Equation

From the Taylor series expansion, it is evident that the second order central differences δ2x,

δ2y and δ2z is a direct estimation for the derivatives ∂2u
∂x2 ,

∂2u
∂y2

and ∂2u
∂z2

with exactly second-order

accuracy. Therefore one could simply substitute the central differences into the Helmholtz

equation (2.1), that is

δ2xu+ δ2yu+ δ2zu+ k2u+O
(
max{h2

x, h
2
y, h

2
z}
)
= f (3.5)

Equation (3.5) is the second-order approximation scheme for the Helmholtz equation (2.1)

and the resulting matrix form with this discretization can be presented as a 27-point stencil

23

notation with the following coefficients at each point

ui,j,l : k
2
i,j,l − 2

(
1

h2
x

+
1

h2
y

+
1

h2
z

)
; ui±1,j,l :

1

h2
x

; ui,j±1,l :
1

h2
y

; ui,j,l±1 :
1

h2
z

;

ui,j±1,l±1 = ui±1,j,l±1 = ui±1,j±1,l = ui±1,j±1,l±1 : 0

In a two-dimensional case, the term δ2zu would be removed from Equation (3.5) and the

stencil only consists of the center, corner, and the side points, so the coefficient reduces to

ui,j : k
2
i,j − 2

(
1

h2
x

+
1

h2
y

)
; ui±1,j :

1

h2
x

; ui,j±1 :
1

h2
y

; ui±1,j±1 : 0

It is worth noting that by setting k2 = 0 to be the zero function, the 3D Helmholtz equation

would be reduced to a 3D Poisson equation. This implies that by setting the coefficient k2

to be zero in the stencil notation, one would obtain a discretization for the Poisson equation

of second order. Similarly, the compact scheme for the upcoming fourth and sixth-order

scheme for the Helmholtz equation can be modified to become a compact scheme for the

Poisson equation.

3.3 Fourth-Order Approximation Compact Scheme for

Helmholtz Equation

The fourth-order approximation to the derivatives based on the Taylor series expansion is

given by

δ2xu =
∂2

∂x2
u+

h2
x

12

∂4

∂x4
u+O(h4

x) (3.6)

In contrast to the second-order scheme, to derive a fourth-order accuracy scheme, one would

be required to approximate the values of ∂4

∂x4u up to second-order accuracy. To accomplish

24

this, the standard fourth-order Padé approximation scheme is considered (see e.g. [27]). The

idea is to apply the Taylor series to the derivatives of u with respect to xx. As a result

δ2x(
∂2

∂x2
u) =

∂2

∂x2

(
∂2

∂x2
u

)
+O(h2

x) =
∂4

∂x4
u+O(h2

x)

This implies that the derivative ∂4

∂x4u can be estimated by δ2x

(
∂2

∂x2u
)

with second order

accuracy. Substitute the new expression for ∂4

∂x4u into (3.6) and observed

δ2xu =
∂2

∂x2
u+

h2
x

12

∂4

∂x4
u+O(h4

x)

=
∂2

∂x2
u+

h2
x

12

(
δ2x

(
∂2

∂x2
u

)
+O(h2

x)

)
+O(h4

x)

=

(
1 +

h2
x

12
δ2x

)(
∂2

∂x2
u

)
+O(h4

x)

Define Ax =
(
1 + h2

x

12
δ2x

)
. It follows that the fourth-order rational approximation for the

second-order derivatives with respect to xx is given by

∂2

∂x2
u = A−1

x δ2xu+O(h4
x) (3.7)

The fourth order approximation for the derivatives ∂2

∂y2
u and ∂2

∂z2
u can be obtained by repeat-

ing the steps above with the variable y and z respectively. Substituting these approximations

into the Helmholtz equation yield

A−1
x δ2xu+ A−1

y δ2yu+ A−1
z δ2zu+ k2u+O

(
max{h4

x, h
4
y, h

4
z}
)
= f (3.8)

Now all inverse term in Equation (3.8) is required to be removed to express the fourth

order scheme in stencil notation. Lemma 3.2 shows that the three operators Ax, Ay, and Az

commute with each other. This will enable one to remove all the inverse terms by multiplying

both sides of the Equation (3.8) with the operator AxAyAz.

Lemma 3.2. The operators
(
1 + h2

x

12
δ2x

)
,
(
1 +

h2
y

12
δ2y

)
and

(
1 + h2

z

12
δ2z

)
commute.

Proof. Let u be a function of x,y and z. First we will prove that the operators
(
1 + h2

x

12
δ2x

)

25

and
(
1 +

h2
y

12
δ2y

)
commute. By Lemma 3.1 the operator δ2x and δ2y commute. Hence(

1 +
h2
x

12
δ2x

)(
1 +

h2
y

12
δ2y

)
u =

(
1 +

h2
y

12
δ2y

)
u+

(
h2
x

12
δ2x

)(
1 +

h2
y

12
δ2y

)
u

= u+
h2
y

12
δ2yu+

h2
x

12
δ2xu+

h2
xh

2
y

144
δ2xδ

2
yu

= u+
h2
x

12
δ2xu+

h2
y

12
δ2yu+

h2
y

12

h2
x

12
δ2xδ

2
yu

=

(
1 +

h2
x

12
δ2x

)
u+

(
h2
y

12
δ2y +

h2
y

12

h2
x

12
δ2xδ

2
y

)
u

=

(
1 +

h2
x

12
δ2x

)
u+

[
h2
y

12
δ2y +

(
h2
y

12
δ2y

)(
h2
x

12
δ2x

)]
u

=

(
1 +

h2
x

12
δ2x

)
u+

(
h2
y

12
δ2y

)(
1 +

h2
x

12
δ2x

)
ui,,lj

=

(
1 +

h2
y

12
δ2y

)(
1 +

h2
x

12
δ2x

)
u

This prove that the operators
(
1 + h2

x

12
δ2x

)
and

(
1 +

h2
y

12
δ2y

)
commute. Similar to the proof in

Lemma 3.1, this proof has no dependency on the spatial direction as well. Without any loss

of generality, all three operators would commute with each other.

Now both side of Equation (3.8) is multiplied by AxAyAz and the fourth order Padé approx-

imation scheme can be written as

AyAzδ
2
xu+ AxAzδ

2
yu+ AxAyδ

2
zu+ AxAyAzk

2u+O
(
max{h4

x, h
4
y, h

4
z}
)
= AxAyAzf (3.9)

Expanding the operator AxAy gives us

AxAy =

(
1 +

h2
x

12
δ2x

)(
1 +

h2
y

12
δ2y

)
= 1 +

h2
x

12
δ2x +

h2
y

12
δ2y +

h2
xh

2
y

144
δ2xδ

2
y

Since this is a fourth-order approximation scheme, one may remove all terms with h2
xh

2
y.

Expanding the terms AxAz, AyAz and AxAyAz would produce similar results. Overall we

26

get

AxAy = 1 +
h2
x

12
δ2x +

h2
y

12
δ2y

AxAz = 1 +
h2
x

12
δ2x +

h2
z

12
δ2z

AyAz = 1 +
h2
y

12
δ2y +

h2
z

12
δ2z

AxAyAz =

(
1 +

h2
x

12
δ2x +

h2
y

12
δ2y

)(
1 +

h2
z

12
δ2z

)
= 1 +

h2
x

12
δ2x +

h2
y

12
δ2y +

h2
z

12
δ2z

Substituting these term into Equation (3.9) yields

∆hu+
(h2

x + h2
y)

12
δ2xδ

2
yu+

(h2
x + h2

z)

12
δ2xδ

2
zu+

(h2
y + h2

z)

12
δ2yδ

2
zu+

(
1 +

h2
x

12
δ2x +

h2
y

12
δ2y +

h2
z

12
δ2z

)
(k2u)

=

(
1 +

h2
x

12
δ2x +

h2
y

12
δ2y +

h2
z

12
δ2z

)
f +O

(
max{h4

x, h
4
y, h

4
z}
)

(3.10)

The matrix generated by the left-hand side of Equation (3.10) can be presented in stencil

notation with the following coefficients

ui,j,l :
k2
i,j,l

2
− 4

3

(
1

h2
x

+
1

h2
y

+
1

h2
z

)
;

ui±1,j,l :
k2
i±1,j,l

12
+

2

3h2
x

− 1

6

(
1

h2
y

+
1

h2
z

)
;

ui,j±1,l :
k2
i,j±1,l

12
+

2

3h2
y

− 1

6

(
1

h2
x

+
1

h2
z

)
;

ui,j,l±1 :
k2
i,j,l±1

12
+

2

3h2
z

− 1

6

(
1

h2
x

+
1

h2
y

)
;

ui,j±1,l±1 :
1

12

(
1

h2
y

+
1

h2
z

)

ui±1,j,l±1 :
1

12

(
1

h2
x

+
1

h2
z

)

27

ui±1,j±1,l :
1

12

(
1

h2
x

+
1

h2
y

)

ui±1,j±1,l±1 : 0

After removing all terms with δ2z is removed from Equation (3.10), the coefficient for the

two-dimensional case is given by

ui,j :
2k2

i,j

3
− 5

3

(
1

h2
x

+
1

h2
y

)
;

ui±1,j :
k2
i±1,j

12
+

5

6h2
x

− 1

6

(
1

h2
y

)
;

ui±1,j :
k2
i,j±1

12
+

5

6h2
y

− 1

6

(
1

h2
x

)
;

ui±1,j±1 :
1

12

(
1

h2
x

+
1

h2
y

)

3.4 Sixth-Order Approximation Compact Scheme for

Helmholtz Equation

From the Taylor expansion in Equation (3.4) we have

∂2u

∂x2
= δ2xu− h2

x

12

∂4u

∂x4
− h4

x

360

∂6u

∂x6
+O(h6

x)

A similar result can be obtained for the second derivatives in y- and z-directions. Substituting

these expressions into the Helmholtz equation yield

∆hu− h2

12

(
∂4u

∂x4
+

∂4u

∂y4
+

∂4u

∂z4

)
− h4

360

(
∂6u

∂x6
+

∂6u

∂y6
+

∂6u

∂z6

)
+ k2u+O(h6) = f (3.11)

Define I1 =
∂4u
∂x4 +

∂4u
∂y4

+ ∂4u
∂z4

and I2 =
∂6u
∂x6 +

∂6u
∂y6

+ ∂6u
∂z6

. Then to have a sixth-order accuracy

scheme for the Helmholtz equation it is required to approximate I1 to fourth-order accuracy

28

and I2 to second-order accuracy.

This sixth-order compact scheme for the approximation of the 3D Helmholtz equation was

developed by Turkel et al [5]. Unlike the previous compact schemes, the sixth-order compact

scheme requires a uniform grid step that is h = hx = hy = hz. Hence in this section only,

we will assume that the grid step in all directions is equal and the notation h would be used

instead.

Furthermore, the sixth-order scheme is going to require derivatives of the coefficient k2

and right-hand side f to be known or be able to approximate up to second or fourth-

order accuracy. Presently, all derivatives for the function k2 and f will be assumed to be

computable analytically. At the end of this section, the issue concerning the derivatives

would be addressed to lessen the condition required for this approach. The work presented

in this section closely follows Turkel et al works in [5].

3.4.1 Second-order approximation to I2

The idea for developing the sixth-order approximation scheme is to introduce the term I2

into the Helmholtz equation by differentiating the Helmholtz equation. By doing so, we

wish to express I2 in a way it can be computed efficiently. Thus, the Helmholtz equation is

differentiated three times, with respect to xxxx, yyyy, and zzzz.(
∂6

∂x6
+

∂6

∂x4∂y2
+

∂6

∂x4∂z2

)
u+

∂4

∂x4
(k2u) =

∂4

∂x4
(f)(

∂6

∂y4∂x2
+

∂6

∂y6
+

∂6

∂y4∂z2

)
u+

∂4

∂y4
(k2u) =

∂4

∂y4
(f)(

∂6

∂z4∂x2
+

∂6

∂z4∂y2
+

∂6

∂z6

)
u+

∂4

∂z4
(k2u) =

∂4

∂z4
(f)

Adding all three equations and rearranging the terms on the left-hand side of the equation

29

would result in

I2 =

(
∂6

∂x6
+

∂6

∂y6
+

∂6

∂z6

)
u =−

(
∂6u

∂x4∂y2
+

∂6u

∂x4∂z2
+

∂6u

∂y4∂x2
+

∂6u

∂y4∂z2
+

∂6u

∂z4∂x2
+

∂6u

∂z4∂y2

)
−
(

∂4

∂x4
+

∂4

∂y4
+

∂4

∂z4

)
(k2u− f) (3.12)

By the assumption made earlier, all fourth-order derivatives of f can be calculated analyt-

ically. So the challenge lies with the remaining terms. Let J1 = ∂6u
∂x4∂y2

+ ∂6u
∂x4∂z2

+ ∂6u
∂y4∂x2 +

∂6u
∂y4∂z2

+ ∂6u
∂z4∂x2 + ∂6u

∂z4∂y2
and J2 = (∂4

∂x4 + ∂4

∂y4
+ ∂4

∂z4
)(k2u). To find an approximation for the

term J1, the Helmholtz equation is differentiated with respect to xxyy, xxzz and yyzz and

we have (
∂6

∂x4∂y2
+

∂6

∂x2∂y4
+

∂6

∂x2∂y2∂z2

)
u+

∂4

∂x2∂y2
(k2u) =

∂4

∂x2∂y2
(f)(

∂6

∂x4∂z2
+

∂6

∂x2∂y2∂z2
+

∂6

∂x2∂z4

)
u+

∂4

∂x2∂z2
(k2u) =

∂4

∂x2∂z2
(f)(

∂6

∂x2∂y2∂z2
+

∂6

∂y4∂z2
+

∂6

∂y2∂z4

)
u+

∂4

∂y2∂z2
(k2u) =

∂4

∂y2∂z2
(f)

Adding and rearranging all three equations again would allow us to express J1 as

J1 = −3

(
∂6

∂x2∂y2∂z2

)
u−

(
∂4

∂x2∂y2
+

∂4

∂x2∂z2
+

∂4

∂y2∂z2

)(
k2u− f

)
Now all the derivatives are only second order in each spatial direction and the estimation only

requires second-order accuracy. This meant that the value of J1 can now be estimated by re-

placing the second-order derivatives with the second-order central difference approximations.

In particular,

J1 = − 3δ2xδ
2
yδ

2
zu−

(
δ2xδ

2
y + δ2xδ

2
z + δ2yδ

2
z

)
(k2u) +

(
∂4

∂x2∂y2
+

∂4

∂x2∂z2
+

∂4

∂y2∂z2

)
(f) +O(h2)

(3.13)

Now it remains to approximate J2 with second-order accuracy. A straightforward expansion

of the fourth derivatives of (k2u) would require the fourth derivatives of k2. If k2 is a

30

complicated formula then its fourth-order derivatives become exceedingly complex. Hence

Turkel et al took an alternative approach and derive an explicit formula that would require

only second derivatives of k2. The following lemmas are established for this purpose.

Lemma 3.3.

∂

∂x
u =δxu+

h2

6

(
δxδ

2
yu+ δxδ

2
zu+ δx(k

2u)− ∂

∂x
f

)
+O(h4)

Proof. From the Taylor expansion we have

∂

∂x
u = δxu− h2

6

∂3

∂x3
u+O(h4) (3.14)

Then differentiating the Helmholtz equation with respect to x yield

∂3

∂x3
u+

∂3

∂x∂y2
u+

∂3

∂x∂z2
u+

∂

∂x
(k2u) =

∂

∂x
f

∂3

∂x3
u = −

(
∂3

∂x∂y2
u+

∂3

∂x∂z2
u+

∂

∂x
(k2u)

)
+

∂

∂x
f

= −
(
δxδ

2
yu+ δxδ

2
zu+ δx(k

2u)
)
+

∂

∂x
f +O(h2) (3.15)

Substitute (3.15) into (3.14) give us exactly

∂

∂x
u = δxu+

h2

6

(
δxδ

2
yu+ δxδ

2
zu+ δx(k

2u)− ∂

∂x
f

)
+O(h4)

Lemma 3.4.

∆(k2u) = k2f +
(
∆(k2)− k4

)
u+ 2

(
∂

∂x
(k2)

∂

∂x
(u) +

∂

∂y
(k2)

∂

∂y
(u) +

∂

∂z
(k2)

∂

∂z
(u)

)
Proof. From the product rules of derivatives

∂2

∂x2
(k2u) =

∂2

∂x2
(k2)u+ 2

∂

∂x
(k2)

∂

∂x
(u) + k2

(
∂2

∂x2
u

)

31

Repeat this for the variables y and z, then the sum of all three equations yield

∆(k2u) = ∆(k2)u+ 2

(
∂

∂x
(k2)

∂

∂x
(u) +

∂

∂y
(k2)

∂

∂y
(u) +

∂

∂z
(k2)

∂

∂z
(u)

)
+ k2∆u

Using the fact that u is the solution of the Helmholtz equation, so ∆u = f − k2u, we can

rewrite it as

∆(k2u) = ∆(k2)u+ 2

(
∂

∂x
(k2)

∂

∂x
(u) +

∂

∂y
(k2)

∂

∂y
(u) +

∂

∂z
(k2)

∂

∂z
(u)

)
+ k2(f − k2u)

= k2f + (∆(k2)− k4)u+ 2

(
∂

∂x
(k2)

∂

∂x
(u) +

∂

∂y
(k2)

∂

∂y
(u) +

∂

∂z
(k2)

∂

∂z
(u)

)

Combining Lemma 3.3 and Lemma 3.4 would provide a fourth order accuracy approximation

to the term ∆(k2u) as follows

∆(k2u) = (k2)f + (∆(k2)− k4)u+ 2
∂k2

∂x

(
δxu+

h2

6

(
δxδ

2
yu+ δxδ

2
zu+ δx(k

2u)− ∂f

∂x

))
+ 2

∂k2

∂y

(
δyu+

h2

6

(
δyδ

2
xu+ δyδ

2
zu+ δy(k

2u)− ∂f

∂y

))
+ 2

∂k2

∂z

(
δzu+

h2

6

(
δzδ

2
xu+ δzδ

2
yu+ δz(k

2u)− ∂f

∂z

))
+O(h4) (3.16)

Lemma 3.5.

h2

12
J2 = ∆h(k

2u)−∆(k2u) +O(h4)

where ∆(k2u) is given to fourth order accuracy by (3.16)

Proof. Replacing the function u for the Taylor series expression in Equation (3.6) with (k2u)

yield

δ2x(k
2u) =

∂2

∂x2
(k2u) +

h2

12

∂4

∂x4
(k2u) +O(h4)

32

Repeat it for y- and z-directions then adding all three directions to get

(
δ2x + δ2y + δ2z

)
(k2u) =

(
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2

)
(k2u) +

h2

12

(
∂4

∂x4
+

∂4

∂y4
+

∂4

∂z4

)
(k2u) +O(h4)

∆h(k
2u) = ∆(k2u) +

h2

12
J2 +O(h4)

h2

12
J2 = ∆h(k

2u)−∆(k2u) +O(h4)

It is worth remarking that the assumption where the step sizes are equal is crucial in this

lemma to combine all fourth-order derivatives of (k2u) and obtain the term J2. Without

this assumption, it would not be possible to compute the value of J2 with this lemma. Now

Lemma (3.5) allowed the term J2 to be estimated up to second order accuracy as follows

J2 =
12

h2

[
∆h(k

2u)−∆(k2u)
]
+O(h2) (3.17)

The term I2 can now be approximated by substituting Equation (3.13) and Equation (3.17)

into Equation (3.12) as follows

I2 =

(
∂4

∂x4
+

∂4

∂y4
+

∂4

∂z4

)
f − J1 − J2

=

(
∂4

∂x4
+

∂4

∂y4
+

∂4

∂z4
− ∂4

∂x2∂y2
− ∂4

∂x2∂z2
− ∂4

∂y2∂z2

)
f + 3δ2xδ

2
yδ

2
zu

+
(
δ2xδ

2
y + δ2xδ

2
z + δ2yδ

2
z

)
(k2u)− 12

h2

[
(δ2x + δ2y + δ2z)(k

2u)−∆(k2u)
]
+O(h2) (3.18)

where ∆(k2u) is given to fourth order accuracy by Equation (3.16).

33

3.4.2 Fourth-order approximation to I1

Recall that I1 =
∂4u
∂x4+

∂4u
∂y4

+∂4u
∂z4

. Similar to the previous subsection, we begin by differentiating

the Helmholtz equation twice with respect to xx, yy, and zz and we observe that(
∂4

∂x4
+

∂4

∂x2∂y2
+

∂4

∂x2∂z2

)
u+

∂2

∂x2
(k2u) =

∂2

∂x2
(f)(

∂4

∂y2∂x2
+

∂4

∂y4
+

∂4

∂y2∂z2

)
u+

∂2

∂y2
(k2u) =

∂2

∂y2
(f)(

∂4

∂z2∂x2
+

∂4

∂z2∂y2
+

∂4

∂z4

)
u+

∂2

∂z2
(k2u) =

∂4

∂z2
(f)

Adding all three equations and rearranging the terms would result in

I1 =

(
∂4

∂x4
+

∂4

∂y4
+

∂4

∂z4

)
u = − 2

(
∂4

∂x2∂y2
+

∂4

∂x2∂z2
+

∂4

∂y2∂z2

)
u−∆(k2u) +∆f

(3.19)

By Equation (3.16) the term ∆(k2u) has been approximated up to fourth-order accuracy

and we assume the derivatives of f can be computed analytically. Hence it remains to

compute the term
(

∂4

∂x2∂y2
+ ∂4

∂x2∂z2
+ ∂4

∂y2∂z2

)
u up to fourth order accuracy. The next lemma

is developed for this purpose.

Lemma 3.6.

δ2xδ
2
yu =

∂4

∂x2∂y2
u+

h2

12

(
∂6

∂x4∂y2
+

∂6

∂x2∂y4

)
u+O(h4)

Proof. Recall from the fourth-order approximation of the second-order derivatives as in

Equation (3.6) we have

δ2xu =
∂2

∂x2
u+

h2

12

∂4

∂x4
u+O(h4) (3.20)

δ2yu =
∂2

∂y2
u+

h2

12

∂4

∂y4
u+O(h4) (3.21)

34

Replaced the function u in (3.20) with the function (δ2yu) and then substitute the expression

for (δ2yu) in (3.21) yield

δ2x(δ
2
yu) =

∂2

∂x2
(δ2yu) +

h2

12

∂4

∂x4
(δ2yu) +O(h4)

=
∂2

∂x2

(
∂2

∂y2
u+

h2

12

∂4

∂y4
u+O(h4)

)
+

h2

12

∂4

∂x4

(
∂2

∂y2
u+O(h2)

)
+O(h4)

=
∂2

∂x2

∂2

∂y2
u+

h2

12

∂2

∂x2

∂4

∂y4
u+

h2

12

∂4

∂x4

∂2

∂y2
u+O(h4)

=
∂4

∂x2∂y2
u+

h2

12

(
∂6

∂x4∂y2
+

∂6

∂x2∂y4

)
u+O(h4)

The results of Lemma 3.6 could also be applied to the operators δ2xδ
2
z and δ2yδ

2
z for similar

results. The sum of all three operators would give us

(δ2xδ
2
y + δ2xδ

2
z + δ2yδ

2
z)u =

(
∂4

∂x2∂y2
+

∂4

∂x2∂z2
+

∂4

∂y2∂z2

)
u

+
h2

12

(
∂6

∂x4∂y2
+

∂6

∂x2∂y4
+

∂6

∂x4∂z2
+

∂6

∂x2∂z4
+

∂6

∂y4∂z2
+

∂6

∂y2∂z4

)
u

+O(h4)

=

(
∂4

∂x2∂y2
+

∂4

∂x2∂z2
+

∂4

∂y2∂z2

)
u+

h2

12
J1 +O(h4)

where J1 can be approximated up to second-order accuracy with Equation (3.13). So(
∂4

∂x2∂y2
+

∂4

∂x2∂z2
+

∂4

∂y2∂z2

)
u = (δ2xδ

2
y + δ2xδ

2
z + δ2yδ

2
z)u− h2

12
J1 +O(h4)

Thus,

I1 = − 2

(
∂4

∂x2∂y2
+

∂4

∂x2∂z2
+

∂4

∂y2∂z2

)
u−∆(k2u) +∆f

= − 2(δ2xδ
2
y + δ2xδ

2
z + δ2yδ

2
z)u+

h2

6
J1 −∆(k2u) +∆f +O(h4) (3.22)

With Equation (3.18) and Equation (3.22), now we have

h2

12
I1 +

h4

360
I2 = − h2

6
(δ2xδ

2
y + δ2xδ

2
z + δ2yδ

2
z)u+

h4

72
J1 −

h2

12
∆(k2u) +

h2

12
∆f

35

+
h4

360

(
∂4

∂x4
+

∂4

∂y4
+

∂4

∂z4

)
f − h4

360
J1 −

h4

360
J2 +O(h6)

= − h2

6
(δ2xδ

2
y + δ2xδ

2
z + δ2yδ

2
z)u+

h4

90
J1 −

h4

360
J2 −

h2

12
∆(k2u)

+
h2

12
∆f +

h4

360

(
∂4

∂x4
+

∂4

∂y4
+

∂4

∂z4

)
f +O(h6)

= − h2

6
(δ2xδ

2
y + δ2xδ

2
z + δ2yδ

2
z)u− h4

30
δ2xδ

2
yδ

2
zu− h4

90

(
δ2xδ

2
y + δ2xδ

2
z + δ2yδ

2
z

)
(k2u)

− h2

30
(δ2x + δ2y + δ2z)(k

2u)− h2

20
∆(k2u) +

h2

12
∆f

+
h4

360

(
∂4

∂x4
+

∂4

∂y4
+

∂4

∂z4

)
f +

h4

90

(
∂4

∂x2∂y2
+

∂4

∂x2∂z2
+

∂4

∂y2∂z2

)
f

+O(h6) (3.23)

Let (k2)x = ∂
∂x
(k2), (k2)y =

∂
∂y
(k2), (k2)z =

∂
∂z
(k2) and define Uα = (1+ k2h2

α
)u where α ∈ R.

The left-hand side of the sixth-order approximation scheme is given by

∆hU30 +
h2

6
(δ2xδ

2
y + δ2xδ

2
z + δ2yδ

2
z)U15 +

h2

10

[
(k2)xδx + (k2)yδy + (k2)zδz

]
U6

+
(k2)xh

4

60
(δxyy + δxzz)u+

(k2)yh
4

60
(δxxy + δyzz)u+

(k2)zh
4

60
(δxxz + δyyz)u

+
h4

30
δ2xδ

2
yδ

2
zu+

h2

20
(∆k2 − k4)u+ k2u (3.24)

On the other hand, the right-hand side of the sixth-order approximation scheme is given by(
1− k2h2

20

)
f +

h4

60

(
(k2)x

∂

∂x
+ (k2)y

∂

∂y
+ (k2)z

∂

∂z

)
f +

h2

12
∆f

+
h4

360

(
∂4

∂x4
+

∂4

∂y4
+

∂4

∂z4

)
f +

h4

90

(
∂4

∂x2∂y2
+

∂4

∂x2∂z2
+

∂4

∂y2∂z2

)
f

(3.25)

36

Before rewriting Equation (3.24) in terms of stencil notation, both sides of the sixth-order

compact scheme would be multiplied by the term h2. By doing so, it removes the amount

of division required in the coefficient. Moreover, in terms of computation cost, the division

is much more computationally heavy than multiplication. This allows the implementation

of the coefficient to be calculated faster and more efficiently. Consequently, the matrix from

the sixth-order scheme would have the following coefficients

ui,j,l : −
64

15
+

14

15
h2k2

i,j,l +
h4

20

(
∆(k2)− k4

i,j,l

)
;

ui±1,j,l :
7

15
− 1

90
h2k2

i±1,j,l ±
h3

60
(k2)x

(
1 +

1

2
h2k2

i±1,j,l

)
;

ui,j±1,l :
7

15
− 1

90
h2k2

i,j±1,l ±
h3

60
(k2)y

(
1 +

1

2
h2k2

i,j±1,l

)
;

ui,j,l±1 :
7

15
− 1

90
h2k2

i,j,l±1 ±
h3

60
(k2)z

(
1 +

1

2
h2k2

i,j,l±1

)
;

ui+1,j±1,l :
1

10
+

1

90
h2k2

i+1,j±1,l +
h3

120

[
(k2)x ± (k2)y

]
;

ui−1,j±1,l :
1

10
+

1

90
h2k2

i−1,j±1,l −
h3

120

[
(k2)x ∓ (k2)y

]
;

ui+1,j,l±1 :
1

10
+

1

90
h2k2

i+1,j,l±1 +
h3

120

[
(k2)x ± (k2)z

]
;

ui−1,j,l±1 :
1

10
+

1

90
h2k2

i−1,j,l±1 −
h3

120

[
(k2)x ∓ (k2)z

]
;

ui,j+1,l±1 :
1

10
+

1

90
h2k2

i,j+1,l±1 +
h3

120

[
(k2)y ± (k2)z

]
;

ui,j−1,l±1 :
1

10
+

1

90
h2k2

i,j−1,l±1 −
h3

120

[
(k2)y ∓ (k2)z

]
;

ui±1,j±1,l±1 :
1

30

37

The value of k2 is always evaluated at the same stencil point as u. However, the derivatives

(k2)x, (k
2)y, (k

2)z and ∆(k2) are always evaluated at the center point of the stencil (i, j, l).

In a two-dimensional case, this stencil becomes to

ui,j : −
10

3
+

41

45
h2k2

i,j +
h4

20

(
∆(k2)− k4

i,j

)
;

ui±1,j :
2

3
+

1

90
h2k2

i±1,j ±
h3

20
(k2)x

(
1

6
h2k2

i±1,j +
2

3

)
;

ui,j±1 :
2

3
+

1

90
h2k2

i,j±1 ±
h3

20
(k2)y

(
1

6
h2k2

i,j±1 +
2

3

)
;

ui+1,j±1 :
1

6
+

1

90
h2k2

i+1,j±1 +
h3

120
(k2)x ±

h3

120
(k2)y;

ui−1,j±1 :
1

6
+

1

90
h2k2

i−1,j±1 −
h3

120
(k2)x ±

h3

120
(k2)y

3.4.3 Derivatives term in sixth-order compact scheme

As mentioned earlier, the sixth order scheme (3.24) and (3.25) contains terms such as deriva-

tives of k2 and f which needed to be calculated either analytically or computationally to

second or fourth-order accuracy. This subsection will address how the derivatives term would

be computed in the proposed algorithm.

Derivatives of right-hand side function, f

The right-hand side of the scheme (3.25) contains the first and mixed partial derivatives of

f . However, they only require second-order accuracy so they could simply be estimated by

using the first or second-order central difference. To deal with the fourth derivatives of f in

38

the right-hand side of the scheme, replace the function (k2u) with f in Lemma 3.5. Then(
∂4

∂x4
+

∂4

∂y4
+

∂4

∂z4

)
f =

12

h2
[∆h(f)−∆(f)] +O(h2)

h4

360

(
∂4

∂x4
+

∂4

∂y4
+

∂4

∂z4

)
f =

h2

30
[∆h(f)−∆(f)] +O(h6)

Unlike the term ∆(k2u) in Lemma 3.5, there is no fourth-order approximation for the term

∆f available yet. So we can first combine it with the other ∆f term in (3.25). Now Equation

(3.25) can be written as(
1− k2h2

20

)
f +

h4

60

(
(k2)xδx + (k2)yδy + (k2)zδz

)
f +

h2

30
∆hf +

h4

90

(
δ2xδ

2
y + δ2xδ

2
z + δ2yδ

2
z

)
f

+
h2

20
∆f +O(h6)

The remaining derivative term of f yet to be computed is ∆f which requires to be approxi-

mated up to fourth-order accuracy. It is possible to compute second derivatives of f up to

fourth order accuracy by replacing the function u in Equation (3.7) with f . Specifically

∂2

∂x2
f = A−1

x δ2xf +O(h4)

∆f = A−1
x δ2xf + A−1

y δ2yf + A−1
z δ2zf +O(h4)

where Aα =
(
1 + h2

α

12
δ2α

)
and α = x, y, z. In practice, the numerical algorithm would only

require the derivatives of f to be computed once at the start of the algorithm. In addi-

tion, the operator Ax, Ay, and Az would form a tridiagonal or block tridiagonal matrices.

Given the value ∂2

∂α2f at the boundary of the computational domain, each of the system

Aα(
∂2

∂α2f) = δ2αf can be solved directly via a method such as LU decomposition (or called

LR decomposition in [25]). As such the numerical algorithm would only require values of the

second-order derivatives of the right-hand side function f analytically at the boundary of

the computational domain or impose some additional boundary conditions such as ∂2

∂α2f = 0

39

on ∂Ωh to the Helmholtz equation.

Derivatives of k2

The sixth-order compact approximation scheme also requires the first order derivatives and

∆(k2) either analytically or computationally up to fourth-order accuracy. ∆(k2) can be com-

puted in the same way as how the term ∆f was calculated in the previous sub-subsection.

The value of ∆(k2) would then be stored for each iteration in the proposed iterative algo-

rithm. For the first order derivatives of k2, we have

δx(k
2) =(k2)x +

h2

6

∂3

∂x3
(k2) +O(h4)

δx(k
2) =(k2)x +

h2

6

(
δ2x(k

2)x +O(h2)
)
+O(h4)

δx(k
2) =

(
1 +

h2

6
δ2x

)
(k2)x +O(h4)

Let Bx =
(
1 + h2

6
δ2x

)
then

∂u

∂x
= B−1

x δxu+O(h4)

The operator of Bx is similar to Ax and would form a tridiagonal matrix (block tridiagonal

matrices for By and Bz). Hence it can also be solved with the LU decomposition. Overall

this subsection proves that the sixth-order compact approximation scheme would only require

the first and second derivatives of the coefficient function k2 and the second derivatives of

the function f at ∂Ωh. They could be computed analytically or by imposing additional

boundary conditions to the Helmholtz equation. For a majority of the test problems in this

dissertation, we will assume that the value can be computed analytically.

40

3.5 Fourth-Order Approximation Compact Scheme for

3D Convection-Diffusion Equation

In this section, the versatility of the proposed numerical solver is demonstrated with the

two cases of the 3D convection-diffusion equation (2.10) where the first case consider the 3D

convection-diffusion equation (2.10) with constant convection coefficient and the second case

where the 3D convection-diffusion equation has a variable convection coefficient but only in

the z-direction. In both cases, the computational domain is as defined in Equation (3.1).

3.5.1 Convection-diffusion equation with constant convection co-

efficients

Replaced the derivatives in the 3D convection-diffusion equation with the central differences

of fourth-order accuracy yield

∆hu− h2
x

12

∂4

∂x4
u−

h2
y

12

∂4

∂y4
u− h2

z

12

∂4

∂z4
u

+ α

(
δxu− h2

x

6

∂3u

∂x3

)
+ β

(
δyu−

h2
y

6

∂3u

∂y3

)
+ γ

(
δzu− h2

z

6

∂3u

∂z3

)
= f(x, y, z) +O(h4)

(3.26)

To obtain a fourth-order scheme, the third and fourth-order derivatives of u are required up

to second-order accuracy. The standard fourth-order Padé approximation scheme is made

harder to use for this problem due to the simultaneous existence of the third and fourth

derivatives of u in Equation (3.26). Hence an alternative approach to derive the fourth-order

compact scheme is considered. This approach is inspired by work done by Kalita et al in

41

[16] by extending their work on the two-dimensional convection-diffusion equation to the

three-dimension case.

Differentiating the convection-diffusion equation with respect to x yield

∂3

∂x3
u+

∂3

∂x∂y2
u+

∂3

∂x∂z2
u+ α

∂2

∂x2
u+ β

∂2

∂x∂y
u+ γ

∂2

∂x∂z
u =

∂

∂x
f(x, y, z)

The second order approximation for ∂3

∂x3u is now given as

∂3

∂x3
u =

∂

∂x
f(x, y, z)− ∂3

∂x∂y2
u− ∂3

∂x∂z2
u− α

∂2

∂x2
u− β

∂2

∂x∂y
u− γ

∂2

∂x∂z

=
∂

∂x
f(x, y, z)− δxδ

2
yu− δxδ

2
zu− αδ2xu− βδxδyu− γδxδzu+O(h2)

For the fourth derivatives of u, differentiating the convection-diffusion equation with respect

to xx yield

∂4

∂x4
u+

∂4

∂x2∂y2
u+

∂4

∂x2∂z2
u+ α

∂3

∂x3
u+ β

∂3

∂x2∂y
u+ γ

∂3

∂x2∂z
u =

∂2

∂x2
f(x, y, z)

So

∂4

∂x4
u+ α

∂3

∂x3
u =

∂2

∂x2
f(x, y, z)− ∂4

∂x2∂y2
u− ∂4

∂x2∂z2
u− β

∂3

∂x2∂y
u− γ

∂3

∂x2∂z
u

=
∂2

∂x2
f(x, y, z)− δ2xδ

2
yu− δ2xδ

2
zu− βδ2xδyu− γδ2xδzu

Approximations for the derivatives with respect to y- and z-directions can be obtained sim-

ilarly. Now (3.26) can be rewritten as

(∆h + αδx + βδy + γδz)u− h2
x

12

(
∂4

∂x4
+ α

∂3

∂x3

)
u−

h2
y

12

(
∂4

∂y4
+ β

∂3

∂y3

)
u

− h2
z

12

(
∂4

∂z4
+ γ

∂3

∂z3

)
u− α

h2
x

12

∂3

∂x3
u− β

h2
y

12

∂3

∂y3
u− γ

h2
z

12

∂3

∂z3
u

= f(x, y, z) +O(h4) (3.27)

Substitute the approximation into the equation would give us

(∆h + αδx + βδy + γδz)u+
h2
x

12

(
δ2xδ

2
y + δ2xδ

2
z + βδ2xδy + γδ2xδz

)
u

42

+
h2
y

12

(
δ2xδ

2
y + δ2yδ

2
z + αδxδ

2
y + γδ2yδz

)
u+

h2
z

12

(
δ2xδ

2
z + δ2yδ

2
z + αδxδ

2
z + βδyδ

2
z

)
u

+ α
h2
x

12

(
δxδ

2
y + δxδ

2
z + αδ2x + βδxδy + γδxδz

)
u

+ β
h2
y

12

(
δ2xδy + δyδ

2
z + βδ2y + αδxδy + γδyδz

)
u

− γ
h2
z

12

(
δ2xδz + δ2yδz + γδ2z + αδxδz + βδyδz

)
u

= f +

(
h2
x

12

∂2

∂x2
+

h2
y

12

∂2

∂y2
+

h2
z

12

∂2

∂z2

)
f +

(
α
h2
x

12

∂

∂x
+ β

h2
y

12

∂

∂y
+ γ

h2
z

12

∂

∂z

)
f

+O(h4)

The derivatives of f in the right-hand side of the equation can be approximated using the

central differences with second-order accuracy. The matrix generated from the left-hand side

of the equation can be presented in stencil notations with the following coefficients

ui,j,l : −
4

3

(
1

h2
x

+
1

h2
y

+
1

h2
z

)
− 1

6

(
α2 + β2 + γ2

)
;

ui±1,j,l :
1

6

(
4

h2
x

− 1

h2
y

− 1

h2
z

)
± α

12

(
4

hx

− hx

h2
y

− hx

h2
z

± α

)
;

ui,j±1,l :
1

6

(
4

h2
y

− 1

h2
x

− 1

h2
z

)
± β

12

(
4

hy

− hy

h2
x

− hy

h2
z

± β

)
;

ui,j,l±1 :
1

6

(
4

h2
z

− 1

h2
x

− 1

h2
y

)
± γ

12

(
4

hz

− hz

h2
x

− hz

h2
y

± γ

)
;

ui±1,j+1,l :
1

12

(
1

h2
x

+
1

h2
y

± αhx

2h2
y

± α

2hx

)
+

β

24

(
1

hy

+
hy

hx2
± αhy

2hx

± αhx

2hy

)
;

ui±1,j−1,l :
1

12

(
1

h2
x

+
1

h2
y

± αhx

2h2
y

± α

2hx

)
− β

24

(
1

hy

+
hy

hx2
± αhy

2hx

± αhx

2hy

)
;

ui±1,j,l+1 :
1

12

(
1

h2
x

+
1

h2
z

± αhx

2h2
z

± α

2hx

)
+

γ

24

(
1

hz

+
hz

h2
x

± αhz

2hx

± αhx

2hz

)
;

43

ui±1,j,l−1 :
1

12

(
1

h2
x

+
1

h2
z

± αhx

2h2
z

± α

2hx

)
− γ

24

(
1

hz

+
hz

h2
x

± αhz

2hx

± αhx

2hz

)
;

ui,j±1,l+1 :
1

12

(
1

h2
z

+
1

h2
y

± βhy

2h2
z

± β

2hy

)
+

γ

24

(
1

hz

+
hz

h2
y

± βhz

2hy

± βhy

2hz

)
;

ui,j±1,l−1 :
1

12

(
1

h2
z

+
1

h2
y

± βhy

2h2
z

± β

2hy

)
− γ

24

(
1

hz

+
hz

h2
y

± βhz

2hy

± βhy

2hz

)
;

ui±1,j±1,l±1 : 0

3.5.2 Convection-diffusion equation with variable convection co-

efficient in z-direction

In this subsection, the discretization for the 3D convection-diffusion equation in the form

of Equation (2.11) is presented. For the discretization of 3D general convection-diffusion

equations with variable coefficients, Ananthakrishnaiah et al. [30] proposed a procedure of

developing fourth-order compact finite difference schemes using a lot of pencil and paper

analysis. The formulas given in [30] are however too implicit and abstract that it would

require too much time and effort to derive an explicit scheme. In [19] by employing the

computer algebra package Mathematica, Zhang was able to derive an explicit fourth-order

scheme for a 3D convection-diffusion equation based on the general implicit formulas from

[30].

The author in [19] also assumes that the discretization is done on a uniform grid with mesh

size h. A simplified version of the fourth order compact finite difference scheme derived in

44

[19] for 3D convection-diffusion equation (2.11) can be presented as

ui,j,l : −[24 + h2γ2
i,j,l + h(γi,j,l+1 − γi,j,l−1)];

ui,j,l+1 : 2−
h

4
(2γi,j,l − γi+1,j,l − γi−1,j,l − γi,j+1,l − γi,j−1,l − 3γi,j,l+1 + γi,j,l−1)

+
h

8
γi,j,l(4γi,j,l + γi,j,l+1 − γi,j,l−1);

ui,j,l−1 : 2 +
h

4
(2γi,j,l − γi+1,j,l − γi−1,j,l − γi,j+1,l − γi,j−1,l + γi,j,l+1 − 3γi,j,l−1)

+
h

8
γi,j,l(4γi,j,l − γi,j,l+1 + γi,j,l−1);

ui±1,j,l = ui,j±1,l : 2;

ui±1,j±1,l : 1;

ui±1,j,l+1 : 1 +
h

2
γi,j,l ±

h

8
(γi+1,j,l − γi−1,j,l);

ui±1,j,l−1 : 1−
h

2
γi,j,l ±

h

8
(γi+1,j,l − γi−1,j,l);

ui,j±1,l+1 : 1 +
h

2
γi,j,l ±

h

8
(γi,j+1,l − γi,j−1,l);

ui,j±1,l−1 : 1−
h

2
γi,j,l ±

h

8
(γi,j+1,l − γi−1,j−1,l);

ui±1,j±1,l±1 : 0

and the right-hand side is given by

h2

2
(6fi,j,l + fi+1,j,l + fi−1,j,l + fi,j+1,l + fi,j−1,l + fi,j,l+1 + fi,j,l−1) +

h3

4
γi,j,l(fi,j,l+1 − fi,j,l−1)

45

3.6 Boundary Condition

For the finite domain problem, the discretization shown in this chapter is incomplete. For

instance, when i = 1, then one can express the second-order approximation compact scheme

of the Helmholtz equation in Equation (3.5) explicitly as

u2,j,l − 2u1,j,l + u0,j,l

h2
x

+
u1,j+1,l − 2u1,j,l + u1,j−1,l

h2
y

+
u1,j,l+1 − 2u1,j,l + u1,j,l−1

h2
z

+ k2
1,j,lu1,j,l

= f1,j,l +O(h2
x)

The term u0,j,l is called a ghost point and is the value of the numerical solution u at the

boundary of the computational domain, ∂Ωh. When the Dirichlet boundary condition is

imposed then the value of these ghost points are known, say u0,j,l = vj,l, and no approximation

is required. In practice, the ghost points would then be moved to the right-hand side of the

equation as follows

u2,j,l − 2u1,j,l

h2
x

+
u1,j+1,l − 2u1,j,l + u1,j−1,l

h2
y

+
u1,j,l+1 − 2u1,j,l + u1,j,l−1

h2
z

+ k2
1,j,lu1,j,l

= f1,j,l −
vj,l
h2
x

For the subsurface inclusion model problem, the Sommerfeld radiation conditions are im-

posed when the unbounded domain is truncated to a finite domain. The simplified Sommer-

feld radiation condition for the boundaries in the x-direction has the form

∂

∂x
u1,j,l − ik1,j,lu1,j,l = 0

∂

∂x
uNx,j,l + ikNx,j,luNx,j,l = 0

where i is the imaginary unit. To avoid confusion consider i strictly as i =
√
−1 and not an

index; ι will used for indexing for this section.

46

The Sommerfeld radiation boundary conditions only differ only by the sign of iku on both

ends of the computational domain, which is true for all spatial directions. For the subsurface

inclusion model considered in this dissertation, one may assume that kι,j,l is a constant, say

k, near the boundaries in the x-direction. The assumption is valid as the inclusion will

not be near the boundary so the function kι,j,l would be a step function depending on the

variable z on boundaries in both x- and y-directions, and a constant function on boundaries

in z-direction.

The Sommerfeld radiation conditions would allow one to approximate the ghost points with

elements of the solution vector that are not on the boundary. To maintain the order of the

schemes these ghost points require higher-order approximation by at least two due to the

division of h2
x, h

2
y, or h

2
z presented in all compact schemes for Helmholtz equations. Therefore,

the fourth-order approximations of the boundary conditions are given in this section for the

second-order scheme of the Helmholtz equation.

The fourth-order accuracy for the left boundary in x-direction is given by

0 =
∂

∂x
u1,j,l − iku1,j,l

= δxu1,j,l −
h2
x

6

∂2

∂x2

(
∂

∂x
u1,j,l

)
− iku1,j,l +O(h4

x)

= δxu1,j,l −
h2
x

6

∂2

∂x2
(iku1,j,l)− iku1,j,l +O(h4

x)

= 6δxu1,j,l − h2
xδ

2
x(iku1,j,l)− 6iku1,j,l +O(h4

x)

= 6hxδxu1,j,l − ihxk(h
2
xδ

2
xu1,j,l)− 6ihxku1,j,l +O(h5

x)

= (3− ihxk)u2,j,l − 4ihxku1,j,l − (3 + ihxk)u0,j,l +O(h5
x)

47

Thus u0,j,l can be expressed as

u0,j,l =
−4ihxk

3 + ihxk
u1,j,l +

3− ihxk

3 + ihxk
u2,j,l +O(h4

x)

This is combined with the second-order discretization of the Helmholtz equation at the

(1, j, l)-grid point to eliminate all u0,j,l terms. Similar derivation can be used to eliminate

uι,0,l and uι,j,0 terms. For the right boundary in x-direction

0 =
∂

∂x
uNx,j,l + ikuNx,j,l

= δxuNx,j,l −
h2
x

6

∂2

∂x2

(
∂

∂x
uNx,j,l

)
+ ikuNx,j,l +O(h4

x)

= δxuNx,j,l −
h2
x

6

∂2

∂x2
(−ikuNx,j,l) + ikuNx,j,l +O(h4

x)

= 6δxuNx,j,l + h2
xδ

2
x(ikuNx,j,l) + 6ikuNx,j,l +O(h4

x)

= 6hxδxuNx,j,l + ihxk(h
2
xδ

2
xuNx,j,l) + 6ihxkuNx,j,l +O(h5

x)

= (3 + ihxk)uNx+1,j,l + 4ihxkuNx,j,l − (3− ihxk)uNx−1,j,l +O(h5
x)

Thus uNx+1,j,l can be expressed as

uNx+1,j,l =
−4ihxk

3 + ihxk
uNx,j,l +

3− ihxk

3 + ihxk
uNx−1,j,l +O(h4

x)

The terms uι,Ny+1,l and uι,j,Nz+1 are found similarly. This will complete the second-order

discretization of the Helmholtz equation with the Sommerfield radiation boundary condition.

3.6.1 Higher-order approximation scheme for Sommerfield radia-

tion boundary points

Both the fourth and sixth-order scheme for the Helmholtz equation has more additional

ghost points compared to the second-order scheme for the Helmholtz equation such as u0,j,0

48

and u0,0,l. The values of u0,j,0 can first be approximated by using u0,j,1 and u0,j,2. Then

one can approximated u0,j,1 with u1,j,1 and u2,j,1 (similarly for u0,j,2 with u1,j,2 and u2,j,2).

These points would require accuracy at least four higher than the compact scheme due to the

division of h2
x, h

2
y, and h2

z twice. It is worth mentioning that the eight ghost points such as

u0,0,0, uNx,0,0, u0,Ny ,0, uNx,Ny ,0, u0,0,Nz , uNx,0,Nz , u0,Ny ,Nz , and uNx,Ny ,Nz are not divided by the

step size in both fourth and sixth-order scheme. As such u0,0,0 can be approximated by u1,0,0

and u2,0,0 which are subsequently approximated by u1,1,0, u1,2,0, u2,1,0, and u2,2,0 and lastly

with u1,1,1, u1,1,2, u1,2,1, u1,2,2, u2,1,1, u2,1,2, u2,2,1 and u2,2,2. The higher-order approximations

of the boundary conditions are given in this section for the fourth and sixth-order compact

scheme of the Helmholtz equation.

In general, one may approximate the first-order derivative with respect to x by

uι+1,j,l − uι−1,j,l

2hx

=
∂

∂x
uι,j,l +

h2
x

6

∂3

∂x3
uι,j,l +

h4
x

120

∂5

∂x5
uι,j,l +

h6
x

7!

∂7

∂x7
uι,j,l +O(h8

x)

=
n∑

p=1

h2p−2
x

(2p− 1)!

∂2p−1

∂x2p−1
uι,j,l +O(h2p

x)

Hence at the boundaries on x-direction, we have

u0,j,l = u2,j,l − 2
n∑

p=1

h2p−1
x

(2p− 1)!

∂2p−1

∂x2p−1
u1,j,l +O(h2p+1

x)

uNx+1,j,l = uNx−1,j,l + 2
n∑

p=1

h2p−1
x

(2p− 1)!

∂2p−1

∂x2p−1
uNx,j,l +O(h2p+1

x) (3.28)

From the Sommerfield radiation boundary condition, one may derive

∂3

∂x3
u1,j,l =

∂

∂x

(
∂

∂x

(
∂

∂x
u1,j,l

))
= (ik)3u1,j,l = −ik3u1,j,l

In general, we have ∂n

∂xnu1,j,l = (ik)nu1,j,l and similarly ∂n

∂xnuNx,j,l = (−ik)nuNx,j,l. Substituting

these expressions into Equation (3.28), the ninth-order accuracy scheme is given by

u0,j,l = u2,j,l − 2i

[
hxk − (hxk)

3

3!
+

(hxk)
5

5!
− (hxk)

7

7!

]
u1,j,l +O(h9

x)

49

uNx+1,j,l = uNx−1,j,l − 2i

[
hxk − (hxk)

3

3!
+

(hxk)
5

5!
− (hxk)

7

7!

]
uNx,j,l +O(h9

x)

and the eleventh-order accuracy scheme is given by

u0,j,l = u2,j,l − 2i

[
hxk − (hxk)

3

3!
+

(hxk)
5

5!
− (hxk)

7

7!
+

(hxk)
9

9!

]
u1,j,l +O(h11

x)

uNx+1,j,l = uNx−1,j,l − 2i

[
hxk − (hxk)

3

3!
+

(hxk)
5

5!
− (hxk)

7

7!
+

(hxk)
9

9!

]
uNx,j,l +O(h11

x)

Overall, using the Maclaurin series for sine function, the accuracy scheme is given by

u0,j,l = u2,j,l − 2i
n∑

p=1

(hxk)
2p−1

(2p− 1)!
u1,j,l +O(h2p+1

x) = u2,j,l − 2i sin(hxk)u1,j,l

uNx+1,j,l = uNx−1,j,l − 2i
n∑

p=1

(hxk)
2p−1

(2p− 1)!
uNx,j,l +O(h2p+1

x) = uNx−1,j,l − 2i sin(hxk)uNx,j,l

The approximation scheme for y- and z-directions can be derived similarly.

50

4 Direct FFT Solver

4.1 Introduction

In this chapter, an efficient parallel direct solver called Direct FFT Solver will be presented.

This direct solver was developed by the authors and other researchers based on a combination

of the separation of variables technique and FFT type method [37]. The direct FFT solver

is designed to solve a system of linear equation

Ax⃗ = b⃗

with certain restrictions imposed on the matrix A. The idea behind this direct solver is to

transform the coefficient matrix A into a tridiagonal matrix and solve the resulting matrix

with LU decomposition. As such the matrix A is required to have certain symmetry to

ensure it can be transformed into a tridiagonal or block tridiagonal matrix. In particular,

to solve for the numerical solution of PDE, the coefficient of the stencil obtained from the

discretization of the PDE are required to attain certain aspect of symmetry which will be

shown shortly in the next section.

While the proposed numerical solver is restricted to a class of linear with specific restrictions,

the direct solver has demonstrated highly accurate and scalable results for solving PDE that

meets the criteria [37]. It would also be used as the preconditioner solver for the proposed

iterative method.

51

4.2 Compact Stencil for Direct FFT Solver

The direct FFT solver is designed to solve PDE whose numerical scheme at every grid point

(i, j, l) can be presented systematically as

Σν=l+1
ν=l−1 (aν [u⃗i−1,j−1,ν + u⃗i−1,j+1,ν + u⃗i+1,j−1,ν + u⃗i+1,j+1,ν]

+ bν [u⃗i−1,j,ν + u⃗i+1,j,ν] + cν [u⃗i,j−1,ν + u⃗i,j+1,ν]

+ dν u⃗i,j,ν) = f⃗i,j,l. (4.1)

This equation corresponds to the (i+ j ·Nx+ l ·Nx ·Ny)-th row in the resulting linear system

Au⃗ = f⃗ where the vectors u⃗, f⃗ ∈ CNx·Ny ·Nz are such that u⃗ is the solution vector and f⃗ is

right hand side vector. Figure 4.1 illustrates an example of a 27-point stencil that would

satisfy Equation (4.1) for the three-dimensional case. A grid with the same color is required

to have the same coefficient. Moreover, the values of these coefficients have to be constant

at every Nx ·Ny layer.

al+1

cl+1
al+1

bl+1

dl+1

bl+1

al+1

cl+1
al+1

al
cl

al

bl
dl

bl

al
cl

al

al−1

cl−1
al−1

bl−1

dl−1

bl−1

al−1

cl−1
al−1

Figure 4.1: 27-point stencil operator for preconditioner system

52

In the case of the 3D Helmholtz equation, this symmetry can be achieved when the coefficient

function k2 depends only on the variable z. This also implies that the direct FFT solver is

capable of solving any 3D Poisson equation directly. For the 3D convection-diffusion equation

with constant coefficient, if two of the convection coefficients, namely α and β, would be

zero then the resulting stencil from discretization would also satisfy these constraints.

The updated stencil coefficients for the specific 3D Helmholtz and 3D convection-diffusion

equation that satisfy this restriction will be presented. Both sides of the equation for the

second and fourth order scheme (3.5, 3.10) will be multiplied by h2
z as a way to reduce the

computational cost by reducing the number of divisions. Denote the term Rzx = h2
z/h

2
x and

Rzy = h2
z/h

2
y for the rest of this section. Additionally, the index notation would be replaced

to match the label shown in Figure 4.1.

4.2.1 Second-order scheme for 3D Helmholtz equation

The second-order compact scheme for the modified equation can be obtained by replacing the

coefficient function k2(x, y, z) with some coefficient function k2
0(z). Then the newly updated

coefficient for the stencil can be presented as

dl : h
2
zk

2
l − 2 (Rzx+Rzy + 1) ; bl : Rzx; cl : Rzy; dl±1 : 1;

al = al±1 = bl±1 = cl±1 : 0

where k2
l = k2

0(zl).

53

4.2.2 Fourth-order scheme for 3D Helmholtz equation

Similar to the second-order scheme, the coefficient of the stencil for the fourth-order scheme

is obtained by replacing the coefficient function. In this case, we have

al :
1

12
(Rzx+Rzy) ;

bl :
h2
zk

2
l

12
+

2

3
Rzx− 1

6
(Rzy + 1) ;

cl :
h2
zk

2
l

12
+

2

3
Rzy − 1

6
(Rzx+ 1) ;

dl :
h2
zk

2
l

2
− 4

3
(Rzx+Rzy + 1) ;

al±1 : 0 ;

bl±1 :
1

12
(Rzx+ 1) ;

cl±1 :
1

12
(Rzy + 1) ;

dl±1 :
h2
zk

2
l±1

12
+

2

3
− 1

6
(Rzx+Rzy)

4.2.3 Sixth-order scheme for 3D Helmholtz equation

Unlike the previous compact scheme, there are significant changes in the sixth-order compact

scheme. Since the coefficient function k2 now depends only in the z-direction, the derivatives

of k2 in x- and y-directions are now zero and Equation (3.24, 3.25) can be simplify as

∆hU30 +
h2

6
(δ2xδ

2
y + δ2xδ

2
z + δ2yδ

2
z)U15 +

h2

10
(k2)zδzU6

54

+
(k2)zh

4

60
(δxxz + δyyz)u+

h4

30
δ2xδ

2
yδ

2
zu+

h2

20
[(k2)zz − k4]u+ k2u

=

(
1− k2h2

20

)
f +

h4

60
(k2)z

∂

∂z
f +

h2

12
∆f +

h4

360

(
∂4

∂x4
+

∂4

∂y4
+

∂4

∂z4

)
f

+
h4

90

(
∂4

∂x2∂y2
+

∂4

∂x2∂z2
+

∂4

∂y2∂z2

)
f

where (k2)zz = d2

dz2
(k2). Multiply both sides of equations by h2 as before, the sixth-order

scheme stencil coefficient can be simplified into

al :
1

10
+

1

90
h2k2

l ;

bl = cl :
7

15
− 1

90
h2k2

l ;

dl : −
64

15
+

14

15
h2k2

l +
h4

20

[
(k2)zz − k4

l

]
;

al±1 :
1

30
;

bl±1 = cl±1 :
1

10
+

1

90
h2k2

l±1 ±
h3

120
(k2)z;

dl±1 :
7

15
− 1

90
h2k2

l±1 ±
h3

60
(k2)z

(
1 +

1

2
h2k2

l±1

)

The derivatives (k2)z and (k2)zz are always evaluated at the center point zl.

55

4.2.4 Fourth-order scheme for 3D convection-diffusion equation

with constant coefficients

Let α = β = 0 for the 3D convection-diffusion equation. Then both sides of the equation

are multiplied by h2
z and we have the following coefficients

al :
1

12
(Rzx+Rzy) ;

bl :
1

6
(4Rzx−Rzy − 1) ;

cl :
1

6
(4Rzy −Rzx− 1) ;

dl : −
4

3
(Rzx+Rzy + 1)− h2

z

6
γ2;

al±1 : 0

bl±1 :

(
1

12
± hzγ

24

)
(1 +Rzx) ;

cl±1 :

(
1

12
± hzγ

24

)
(1 +Rzy) ;

dl±1 :
1

6
(4−Rzx−Rzy)± hzγ

12
(4−Rzx−Rzy ± hzγ) ;

Since α = β = 0, one may modified the coefficients bl, cl, and dl slightly as follows

bl :
1

6
(4Rzx−Rzy − 1) +

h2
z

12
α2;

cl :
1

6
(4Rzy −Rzx− 1) +

h2
z

12
β2;

dl : −
4

3
(Rzx+Rzy + 1)− h2

z

6
(α2 + β2 + γ2);

56

Adding these terms would modify the coefficient to be closer to the 3D convection-diffusion

equations with nonzero convection coefficients in subsection 3.5.1, which is extremely impor-

tant for designing the preconditioner matrix for the iterative method.

4.2.5 Fourth-order scheme for 3D convection-diffusion equation

with variable coefficient in z-direction

In this case, we consider a similar approach to the 3D Helmholtz equation and modified the

coefficient so that it depends only on the variable z, that is γ(x, y, z) is replaced by γ0(z).

The coefficient of the stencil is then given by

al : 1;

bl = cl : 2;

dl : −[24 + h2γ2
l + h(γl+1 − γl−1)]

al±1 : 0

bl±1 = cl±1 : 1±
h

2
γl;

dl+1 : 2−
h

4
(−2γl − 3γl+1 + γl−1) +

h2

8
γl(4γl + γl+1 − γl−1);

dl−1 : 2 +
h

4
(−2γl + γl+1 − 3γl−1) +

h2

8
γl(4γl − γl+1 + γl−1);

where γl = γ0(zl). It is worth noting that if γ is a constant function, then this scheme

is exactly a multiple of the fourth-order scheme for the convection-diffusion equation with

constant coefficients before the modification by a factor of 6, assuming the grid size is equal.

57

4.3 Direct FFT Solver

Now the numerical scheme (4.1) can be presented in block tridiagonal form as

C1u⃗1 + Cp
1 u⃗2 = f⃗1,

Cm
l u⃗l−1 + Clu⃗l + Cp

l u⃗l+1 = f⃗l; for l = 2, . . . , Nz − 1,

Cm
Nz
u⃗Nz−1 + CNz u⃗Nz = f⃗Nz . (4.2)

Here, the vectors u⃗l and f⃗l are the parts of the solution vector u⃗ and the right hand side f⃗ of

size Nx ·Ny, where l = 1, ..., Nz. The block tridiagonal matrices Cm
l , Cl, and Cp

l are defined

by the coefficients in (4.1) based on the order of the scheme.

The goal for the next step is to diagonalize all the block tridiagonal matrices Cm
l , Cl, and

Cp
l . This would transform the system into a block tridiagonal system that can be solved

easily with a method such as LU decomposition.

4.3.1 Eigenvalues and eigenvectors

In this subsection, we will find the eigenvalues and eigenvectors (eigenpairs) for the matrices

Cm
l , Cl, and Cp

l in Theorem 4.1 so that they can be diagonalized in the next subsection.

Theorem 4.1. The (Nx · Ny) × (Nx · Ny) matrix of eigenvectors V of Cm
l , Cl, and Cp

l is

defined by

V =
[
v1,1 v2,1 · · · vNx,1 v1,2 v2,2 · · · vNx,Ny

]
where and vm,n are a vector of size (Nx ·Ny), m = 1, · · · , Nx and n = 1, · · · , Ny and its

58

components is given by

vm,n
i,j =

2√
(Nx + 1)(Ny + 1)

sin

(
πmi

Nx + 1

)
sin

(
πnj

Ny + 1

)
,

where i = 1, · · · , Nx and j = 1, · · · , Ny. The corresponding eigenvalues λ
m,n
ν , for the matrices

Cm
l , Cl, and Cp

l , defined by

λm,n
ν = 4aν cos

(
mπ

Nx + 1

)
cos

(
nπ

Ny + 1

)
+ 2bν cos

(
mπ

Nx + 1

)
+ 2cν cos

(
nπ

Ny + 1

)
+ dν ,

where ν ∈ {l − 1, l, l + 1}

Proof. Let vm,n be as define in Theorem 4.1. First, consider the trigonometric addition

theorem,

1

2
sin

(
πm(i− 1)

Nx + 1

)
+

1

2
sin

(
πm(i+ 1)

Nx + 1

)
= cos

(
πm

Nx + 1

)
sin

(
πmi

Nx + 1

)
Observe that by multiplying both side of the equations with 2bν

2√
(Nx+1)(Ny+1)

sin
(

πnj
Ny+1

)
we

would get

bν
(
vm,n
i−1,j + vm,n

i+1,j

)
= 2bν cos

(
πm

Nx + 1

)
vm,n
i,j (4.3)

Notice that the right-hand side of the equation minus the vm,n
i,j coincides with the second term

in the definition of λm,n
ν in Theorem 4.1. Similarly replacing some index in the trigonometric

addition theorem yield

1

2
sin

(
πn(j − 1)

Ny + 1

)
+

1

2
sin

(
πn(j + 1)

Ny + 1

)
= cos

(
πn

Ny + 1

)
sin

(
πnj

Ny + 1

)
Multiplying both side of the equations with 2cν

2√
(Nx+1)(Ny+1)

sin
(

πmi
Nx+1

)
instead resulted in

cν
(
vm,n
i,j−1 + vm,n

i,j+1

)
= 2cν cos

(
πn

Ny + 1

)
vm,n
i,j (4.4)

Similar to before, the right-hand side of the equation minus vm,n
i,j coincide with the third

term in the definition of λm,n
ν in Theorem 4.1. Additionally replacing the index j in (4.3)

59

with j − 1 and j + 1 then adding both of them give us

bν
(
vm,n
i−1,j−1 + vm,n

i+1,j−1

)
= 2bν cos

(
πm

Nx + 1

)
vm,n
i,j−1

bν
(
vm,n
i−1,j+1 + vm,n

i+1,j+1

)
= 2bν cos

(
πm

Nx + 1

)
vm,n
i,j+1

bν
(
vm,n
i−1,j−1 + vm,n

i+1,j−1 + vm,n
i−1,j+1 + vm,n

i+1,j+1

)
= 2bν cos

(
πm

Nx + 1

)(
vm,n
i,j−1 + vm,n

i,j+1

)
Multiply both side of the equation by cν now then using the equality establish by (4.4) we

have

bνcν
(
vm,n
i−1,j−1 + vm,n

i+1,j−1 + vm,n
i−1,j+1 + vm,n

i+1,j+1

)
= 2bν cos

(
πm

Nx + 1

)[
cν
(
vm,n
i,j−1 + vm,n

i,j+1

)]
= 2bν cos

(
πm

Nx + 1

)[
2cν cos

(
πn

Ny + 1

)
vm,n
i,j

]
= 4bνcν cos

(
πm

Nx + 1

)
cos

(
πn

Ny + 1

)
vm,n
i,j

Multiply both sides of the equation by aν
bνcν

this would give us the first term in the definition

of λm,n
ν in Theorem 4.1 minus vm,n

i,j on the right-hand side of the equation.

aν
(
vm,n
i−1,j−1 + vm,n

i+1,j−1 + vm,n
i−1,j+1 + vm,n

i+1,j+1

)
= 4aν cos

(
πm

Nx + 1

)
cos

(
πn

Ny + 1

)
vm,n
i,j (4.5)

Now observe that adding all Equations (4.3), (4.4) and (4.5) along with the term dνv
m,n
i,j and

we get

aν(v
m,n
i−1,j−1 + vm,n

i+1,j−1 + vm,n
i−1,j+1 + vm,n

i+1,j+1) + bν
(
vm,n
i−1,j + vm,n

i+1,j

)
+ cν

(
vm,n
i,j−1 + vm,n

i,j+1

)
+ dνv

m,n
i,j = λm,n

ν vm,n
i,j

By definition the left-hand side of the equation is the same as Cm
l vm,n, Clv

m,n and Cp
l v

m,n.

60

4.3.2 Diagonalization

Before proceeding to the next subsection, it is necessary to show that the matrix V in

Theorem 4.1 is an orthogonal matrix. First take note that the vector vm,n is always an

eigenvector of the matrices Cm
l , Cl, and Cp

l regardless of the value of aν , bν , cν , or dν may

take.

Hence consider the special case where aν , bν , cν , or dν are real, i.e, for the case of the 3D

Helmholtz equation with the second-order scheme and real coefficient k2
0(z); or even 0 for

the case of Poisson equation. vm,n would still be an eigenvector for the matrix C1. But the

matrix C1 is now a real symmetric matrix and thus it will also be Hermitian. It follows that

the vectors vm,n are eigenvectors of a Hermitian matrix thus they formed an orthogonal basis

in Cn by Theorem 3.29 in [25] which states the eigenvalues of a Hermitian n× n matrix are

real, and the eigenvectors form an orthogonal basis in Cn.

This meant that we can define Λm
l = V TCm

l V , Λl = V TClV and Λp
l = V TCp

l V where Λm
l , Λl

and Λp
l are the diagonal matrices of eigenvalues. It follows that, for l = 2, . . . , Nz − 1,

Cm
l u⃗l−1 + Clu⃗l + Cp

l u⃗l+1 = f⃗l

V TCm
l V V T u⃗l−1 + V TClV V T u⃗l + V TCp

l V V T u⃗l+1 = V T f⃗l

Λm
l w⃗l−1 + Λlw⃗l + Λp

l w⃗l+1 = Fl

where w⃗l = V T u⃗l and Fl = V T f⃗l. Overall system (4.2) can be rewritten as

Λ1w⃗1 + Λp
1w⃗2 = F 1,

Λm
l w⃗l−1 + Λlw⃗l + Λp

l w⃗l+1 = F l; for l = 2, . . . , Nz − 1,

Λm
Nz
w⃗Nz−1 + ΛNzw⃗Nz = FNz . (4.6)

61

This resulted in a block tridiagonal system that can be solved using LU decomposition. The

computations in this solution are independent with respect to both the x and y directions

of the computational domain. Therefore, it can be parallelized in either direction.

4.3.3 Computing Fl with FFT

Prior to solving the block tridiagonal system in Equation (4.6), Fl = V T f⃗l must be found.

The computational complexity of this matrix-vector multiplication alone would be O(N2
x ·

N2
y). Moreover the calculation is required for each f⃗l where l = 1, . . . , Nz. Transforming the

right-hand side in this manner is not ideal even on modern computers. However

Definition 4.3.1. The discrete sine transform of the vector x⃗ = [x1 . . . xn]
T ∈ Cn is

given by DST(x⃗) = [x̂1 . . . x̂n]
T where

x̂k =
n∑

l=1

sin

(
klπ

n+ 1

)
xl

for k ∈ {1, . . . , n} [25].

Thus the matrix-vector multiplication V T f⃗l is simply the discrete sine transform (DST) in

both the x and y directions. The computational cost may be reduced even further with a fast

Fourier transform (FFT). FFT is an algorithm that computes the discrete Fourier transform

(DFT) of a sequence, or its inverse (IDFT). The subsequent definition utilizes i =
√
−1 and

i is not an index.

Definition 4.3.2. The discrete Fourier transform of the vector y⃗ = [y1 . . . yn]
T ∈ Cn

is given by ŷ = [ŷ1 . . . ŷn]
T where

ŷk =
n∑

l=1

exp

{
−2πi(l − 1)(k − 1)

n

}
yl

62

=
n∑

l=1

[
cos

(
2π(l − 1)(k − 1)

n

)
− i sin

(
2π(l − 1)(k − 1)

n

)]
yl

for k ∈ {1, . . . , n} [25].

Lemma 4.1. Let x⃗ ∈ Cn and y⃗ ∈ C2n+2. If y⃗ =
[
0 x⃗T 0 · · · 0

]T
then x̂ = −Im (ŷ2:n+1)

where x̂ is the discrete sine transform of x⃗, ŷ is the discrete Fourier transform of y⃗ and

−Im (ŷ2:n+1) is the negative of the complex part of the vector elements in ŷ from the second

entry to the (n+ 1)-st entry.

Proof. Let N = 2n + 2, then 2
N

= 1
n+1

. Define y1 = yn+2 = yn+3 = · · · = y2n+2 = 0 and

yl+1 = xl for l = 1, . . . , n. Then for k = 1, . . . , n,

−Im(ŷk+1) = −Im

(
N∑
l=1

[
cos

(
2π(l − 1)k

N

)
− i sin

(
2π(l − 1)k

N

)]
yl

)

=
N∑
l=1

sin

(
2k(l − 1)π

N

)
yl

=
n+1∑
l=2

sin

(
k(l − 1)π

n+ 1

)
yl

=
n∑

l=1

sin

(
klπ

n+ 1

)
yl+1

=
n∑

l=1

sin

(
klπ

n+ 1

)
xl

= x̂k

Lemma 4.1 shows that computing the DST of a vector can be accomplished by using the

discrete Fourier transform on an extension of the vector. In particular, let FFTx and FFTy

63

be the DFTs in the x and y directions respectively. Then Fl = V T f⃗l = FFTy(FFTx(fl))

where fl is the appropriate extension of f⃗l. Now the computational cost for finding Fl is

reduced significantly from order O(N2
x ·N2

y) to O(Nx ·Ny log(N)) where N = max{Nx, Ny}.

4.3.4 Solving block tridiagonal system with LU decomposition

System (4.6) can be presented as
Λ1 Λp

1

Λm
2 Λ2

. . .
. Λp

Nz−1

Λm
Nz

ΛNz



w1

w2
...

wNz

 =


F 1

F 2
...

FNz

 (4.7)

Let Λ be the matrix in Equation (4.7). Then Λ is a block tridiagonal matrix where each

block is a diagonal matrix. Before the solution to Equation (4.7) is computed, it is preferable

to permute the matrix Λ.

This is done to improve the data locality which is a key to good performance on all modern

CPUs and fine-grained architectures. Data locality refers to the process of moving computa-

tion to the node where that data resides, instead of vice versa. This help minimizes network

congestion and improves computation throughput. In this instance, since each block in Λ

are diagonal matrix or zero matrix, the data locality can be improved by placing the nonzero

entries right next to each other.

Thus a permutation of Λ, say P , is considered where the permutation of Λ, denoted by

Λ̃ = P (Λ), would be a tridiagonal matrix instead. For the proposed numerical solver, the

creation of Λ̃ is considered as a preliminary step, that is, it is only necessary to compute

the matrix once at the start of the algorithm and can be stored for repeated uses. As such

it would not hinder the performance of the numerical algorithm. For the vector F , one can

64

easily reorder this array by simply rearranging the index so that the array would loop in the

z-direction first.

Figure 4.2 illustrates a simple example of reordering the array in which the array loop in the

vertical, y-direction first for the two-dimensional case. The number shows the order in which

the array is stored and x represents the horizontal direction while y represents the vertical

direction. Algorithm 1 shows how to reorder the array for three-dimensional cases in the C

programming language environment.

1 4 7 10 13

2 5 8 11 14

3 6 9 12 15

1 2 3 4 5

6 7 8 9 10

11 12 13 14 15

Figure 4.2: Reordering of array in 2D case

Algorithm 1 Reordering array for 3D cases in C

1: for l = 1, . . . , Nz do
2: for i = 1, . . . , Nx ·Ny do
3: F̃ [l + i ·Nz] = F [i+ l · (Nx ·Ny)]
4: end for
5: end for

65

Now Λ̃ is a tridiagonal matrix which can be illustrated as

Λ̃ =


A1 0

0 A2
. . .

. 0
0 ANx·Ny


where Ai are tridiagonal matrices of size Nz × Nz with non zero entries on its main diag-

onal term for i = 1, . . . , Nx · Ny. Now the newly modified system can be solved with LU

decomposition for each of the Ai. Each Ai can also be solved simultaneously as well making

it highly scalable. The LU factorization of Ai = LiUi is given explicitly as

Ai =


ai,1 api,1

ami,2 ai,2
. . .

. api,Nz−1

ami,Nz
ai,Nz

 =


1
li,2 1

.

li,Nz 1



ui,1 api,1

ui,2
. . .
. . . api,Nz−1

ui,Nz


where the formula for ui,1, ui,k and li,k where k = 2, . . . , Nz are given by

ũi,1 =
1

ui,1

=
1

ai,1

li,k = ami,k · ũi,k−1

ũi,k =
1

ui,k

=
1

ai,k − li,k · api,k−1

,

In practice, rather than saving the values of ui,k, it is better to store the values of its reciprocal

as a way to reduce the division required. Moreover, none of the terms in the main diagonal

would be zero so ũi,k is well-defined. After the LU factorization, solving system (4.6) is now

equivalent to solving

F̃i = Aiw̃i = LiUiw̃i

for i = 1, . . . , Nx · Ny. Here F̃i and w̃i are vector of size Nz that is parts of F̃ = P (F) and

w̃ = P (w⃗) respectively where P is the permutation on A mentioned earlier. The tridiagonal

linear system can be solved by first finding y⃗ = [y1 · · · yNz]
T in Liy⃗ = F̃i and then solving

66

for w̃i in Uiw̃i = y⃗. The formula to solve Liy⃗ = F̃i is given by

y1 = F̃i,1

yk = F̃i,k − li,kyk−1; for k = 2, . . . , Nz,

and Uiw̃i = y⃗ can be solve with

w̃i,Nz = yNz · ũi,Nz

w̃i,k =
(
yk − api,k · w̃i,k+1

)
· ũi,k; for k = Nz − 1, . . . , 1,

Solving F̃i = LiUiw̃i would required O(Nz) multiplication for each i. At the end of this

process the order of the solution would be reverted to its original order, i.e., w⃗ = P−1(w̃).

With all these steps, the direct FFT solver can solve the PDE by computing the solution

vector u⃗ which is simply the reverse DFT of w⃗, that is u⃗l = V w⃗l for l = 1, . . . , Nz. This

is equivalent to calculating u⃗l = V w⃗l = FFTy (FFTx (wl)) where wl is the appropriate

extension of w⃗l. The computational complexity of calculating u⃗l from w⃗l is O(Nx ·Ny log (N))

where N = max{Nx, Ny}. These are the complete steps of the direct FFT solver.

4.4 Sequential Algorithm of Direct FFT Solver

Algorithm 2 details the sequential implementation of the direct FFT solver.

67

Algorithm 2 Sequential Implementation of Direct FFT Solver

1: Create FFTW plan
2: for l = 1, . . . , Nz do
3: 2D forward DST of the RHS in x−, y−direction
4: Reorder the RHS to improve data locality
5: end for
6: for i = 1, . . . , Nx ·Ny do
7: Solve the tridiagonal system Aiwi = fi using LU decomposition
8: Reorder the solution vector back
9: end for
10: for l = 1, . . . , Nz do
11: 2D reverse DST of the solution w in x−, y−direction
12: end for

It is worth mentioning that the reordering of the array in Algorithm 1 is done at the same

time when the array is stored after the computation of FFT and solving the tridiagonal

system. So that there would be no additional cost required to perform said action. The

FFT transform used in the direct FFT solver algorithm in Algorithm 2 is calculated using

an open source C subroutine library developed at Massachusetts Institute of Technology

(MIT), namely, FFTW [22]. This subroutine is currently considered the standard in FFT

calculation and is available for free to the public. Additionally, Algorithm 2 can also be

implemented in MATLAB as MATLAB already has a build-in fft function readily available.

68

5 Iterative Methods

5.1 Introduction

To find the numerical solution of a PDE, it is a common practice to convert the differential

equation, which may be nonlinear, into a system of the linear equation as follows

Au⃗ = f⃗

where A is the coefficient matrix arising from the discretization of the PDE as seen in

Chapter 3, u⃗ is the unknown solution vector and f is the right-hand side vector that is given.

Generally, the coefficient matrix is very large and sparse. It is also usually non-symmetric

and non-positive definite when the coefficient function k2 is not constant for the case of the

Helmholtz equation. For the convection-diffusion equation, it will be non-symmetric and

non-positive definite if the convection coefficients are nonzero.

The direct methods introduced in Chapter 4 would only be capable of solving PDE that sat-

isfies certain constraints on its coefficient matrix after discretization. Other direct methods

such as Gaussian elimination could apply the sparse-elimination method to exploit sparsity

in the coefficient matrix and reduce computational requirements. Generally, direct methods

work well for systems with thousands of degrees of freedom, but they require unfeasible

computation resources for linear systems of much larger dimensions. The practical limit

for feasibility is often that direct sparse methods are competitive for two-dimensional PDE

problems but iterative methods are required in three-dimensional cases [10]. See Duff et al.

[12] or George & Liu [1] for an overview of these ideas.

69

Iterative solution methods are considered the best choice in this type of situation. A feature

of iterative methods is that they can take full advantage of the sparsity of the coefficient

matrix. In particular, their storage requirements typically depend only on the number of

non-zeros in the matrix. The aim then becomes to make convergence as fast as possible.

The proposed iterative solvers are based on the GMRES-type algorithm. In this chapter,

an overview of classical iterative methods such as Jacobi and Gauss-Seidel methods will be

provided, to introduce a modern class of Krylov subspace methods, Arnoldi iteration, and

GMRES method in the following sections. A section will be dedicated to the discussion of

the preconditioner which is often the heart of the iterative methods. This chapter will end

with a section showing how the iterative algorithm will be implemented.

5.2 Classical Iterative Methods

The iterative method is a numerical method that uses an initial value to create a series of

improving approximate solutions for a class of problems, in which the k-th approximation is

derived from the previous ones.

Let u⃗k be the approximate solution obtained at k-th iteration and u⃗0 be the initial guess.

Also define the error and residual as e⃗k = u⃗ − u⃗k and r⃗k = f⃗ − Au⃗k respectively. Then the

error equation is given by

Ae⃗k = A(u⃗− u⃗k) = f⃗ − Au⃗k = r⃗k

This equation can be solved for e⃗k to find the unknown solution u⃗ = A−1r⃗k + u⃗k.

In classical iterative methods, the coefficient matrix A is considered as the sum of a non-

singular matrix Ap, which is called preconditioner, and As = A − Ap. So that the matrix

70

A−1 can be approximated using A−1
p , which is easier to invert, and the next approximate

solution is

u⃗k+1 = u⃗k + A−1
p r⃗k (5.1)

for k = 0, 1, . . .

The Jacobi method defines Ap = diag(A) as the diagonal part of A while the Gauss-Seidel

method uses the strictly upper triangular part of A as its preconditioner Ap. In either case,

the matrix A−1
p is not necessarily a good approximation to the inverse of A. To obtain a

better result, a non-stationary iterative method is introduced by adding a parameter αk ∈ C

into Equation (5.1) as follows

u⃗k+1 = u⃗k + αkA
−1
p r⃗k (5.2)

referred to as the non-stationary Richardson iteration. The parameter αk is used to control

the length of the vector A−1
p r⃗k at each step. The optimal choice for the parameters αk is

still an area of active research but there is no need to retrieve them explicitly in modern

Krylov subspace methods. For the non-stationary Richardson method, one can observe that

the residuals are related by

r⃗k+1 = f⃗ − Au⃗k+1 = f⃗ − A(u⃗k + αkA
−1
p r⃗k) = r⃗k − αkAA

−1
p r⃗k (5.3)

for all k ≥ 0. Suppose that Ap = I the identity matrix in Equation (5.3), then Equation

(5.3) can be rewritten as

r⃗k+1 = (I − αkA)r⃗k =
k∏

i=0

(I − αiA)r⃗0 (5.4)

Equation (5.4) shows that residual r⃗k+1 can be expressed as product of a polynomial in A of

degree k and its initial residual, r⃗0. Substitute this expression into Equation (5.2) it follows

71

that any approximation u⃗k+1 generated by the non-stationary Richardson method can be

written as a combination of the initial guess u⃗0 and a polynomial pk ∈ Pk in A:

u⃗k+1 = u⃗0 + pk(A)r⃗0

Thus the non-stationary Richardson method can reach any element in the affine space u⃗0+Kk

where Kk = span{r⃗0, Ar⃗0, · · · , Ak−1r⃗0} which is the Krylov subspace. Note that from the

perspective of approximation theory, A−1 is approximated by a polynomial as A−1 ≈ pk(A).

In the next section, we will see that the inverse of A can be expressed exactly as a polynomial

of the highest degree n so that the solution u⃗ = u⃗0 +A−1r⃗0 would lie within the affine space

u⃗0 +Kn for some n ≥ 0.

5.3 Krylov Subspace Methods

Previously we have seen that classical iterative methods iterate within an affine space u⃗0+Kk

where the latter space is a Krylov subspace. In this section, we will show that the exact

solution to a linear system is an element in this subspace. This is a powerful result for

iterative methods which use a Krylov subspace as their search space for the solution. Now

the numerical solution to the PDE can be found in a fixed number of iterations if the Krylov

subspace is enlarged at each iteration. Note also that a new basis vector for the Krylov

subspace is simply found by a single matrix-vector product with the previous basis vector.

Various iterative methods have been proposed which use this subspace as a search space

for the solution. These Krylov subspace methods will be classified in this section, and the

Arnoldi iteration will be discussed in the next section as a method for finding a numerically

stable basis for the Krylov subspace.

72

Definition 5.3.1. A Krylov subspace denoted by Km(A, f⃗) is a subspace of Cn spanned by

m vectors, induced by a matrix A ∈ Cn×n and a vector f⃗ ∈ Cn as

Km(A, f⃗) = span{f⃗ , Af⃗ , · · · , Am−1f⃗}

Km is called the m-th order Krylov subspace.

As a consequence, every element v⃗ ∈ Km(A, f⃗) of a Krylov subspace can be expressed as a

polynomial pm−1 ∈ Pm−1 as v⃗ = pm−1(A)f⃗ . Krylov subspace is of particular interest because

the solution u⃗ of the linear system Au⃗ = f⃗ lies within a Krylov subspace as long as A is a

non-singular matrix. To show this, we construct a polynomial q(A) of the lowest degree for

which q(A) = 0.

Definition 5.3.2. The minimal polynomial with respect to A ∈ Cn×n is the unique, monic

polynomial q over A with lowest degree such that

q(A) = 0

where 0 refers to the zero matrix.

Theorem 5.1 will show that the degree of the minimal polynomial does not exceed n which

in turn guarantees that A−1 ∈ Pn(A). This implies the numerical solution to the PDE can

be found within n iterations for a n× n matrix A with the Krylov subspace methods.

Theorem 5.1. Let V be a vector space of dimension n over the field of either real numbers

R or complex numbers C. Let A : V → V be a linear transformation. Then the minimal

polynomial q(A) is of degree less than or equal to n.

Proof. We prove the theorem by using mathematical induction on the dimension of V .

73

Suppose that the dimension of V is 1, that is dim(V) = 1. Then any nonzero vector from V

is a constant multiple of a generating vector x⃗. Since A is a linear transformation, A(x⃗) = kx⃗

for some scalar k. Hence, (kI − A)x⃗ = 0⃗. Then q(A) = kI − A = 0 and degree of q is 1

which is equal to dim(V). So it is true for dim(V) = 1.

Now, suppose that the theorem is true for all V of dimension k − 1 where 1 < k ≤ n. Let

dim(V) = k, and suppose that x⃗ is a nonzero vector in V . Then consider the k + 1 vectors

{x⃗, Ax⃗, A2x⃗, . . . , Akx⃗}, this will be linearly dependent set since there are more vectors than

the dimension of the space, that is there exist scalars αi, i = 0, 1, . . . , k, where not all them

are zero, depending on x⃗ such that

α0x⃗+ α1Ax⃗+ · · ·+ αkA
kx⃗ = 0⃗

Define f(T) = α0I + α1T + · · · + αkT
k where T : V → V is a linear transformation. Then

the degree of f would be less than or equal to k and f(A)x⃗ = 0⃗. If f(A)v⃗ = 0⃗ for all v⃗ ∈ V ,

then we are done as f(A) = 0 so the degree of the minimal polynomial would be less than

the degree of f which is n.

Otherwise suppose f(A)u⃗ ̸= 0⃗ for some u⃗ ∈ V . Define U = {u⃗ ∈ V | f(A)u⃗ ̸= 0⃗}, then

clearly x⃗ is not an element of U so U is a proper subspace of V , in particular we have

1 ≤ dim(U) < dim(V). By the mathematical induction assumption there exist a polynomial

g1 of degree less than or equal to dim(U) = l such that g1(A)u⃗ = 0⃗ for all u⃗ ∈ U . Now

consider the quotient space V/U . Once again dim(V/U) = k− l < k so by the mathematical

induction there exist a polynomial g2 of degree less than or equal to k−l such that g2(A)w⃗ = 0⃗

for all w⃗ ∈ V/U .

Let h(T) = g1(T)g2(T). Since g1 and g2 are polynomials they do in fact commute with each

74

other. Now for any v⃗ ∈ V , v⃗ = u⃗+ w⃗ where u⃗ ∈ U and w⃗ ∈ V/U . Furthermore

h(A)v⃗ = h(A)(u⃗+ w⃗) = g2(A)g1(A)u⃗+ g1(A)g2(A)w⃗ = 0⃗

By definition the minimal polynomial q would have degree less than h which equal deg(h) =

deg(g1) + deg(g2) = k. Thus the theorem holds in all cases and the proof is complete.

A stronger version of Theorem 5.1 is given by the Cayley-Hamilton theorem [2] which states

that for any square matrix A, there exists a polynomial p that annihilates A, that is p(A) = 0.

This theorem also specifies that the characteristic polynomial pA is an annihilator for A.

Lemma 5.1. Let A be a non-singular n×n matrix. If u⃗ is the solution to the linear system

Au⃗ = f⃗ , then u⃗ ∈ Km(A, f⃗) for some 0 ≤ m ≤ n.

Proof. Suppose A has distinct eigenvalues {λ1, · · · , λd} with d ≤ n where each eigenvalue λj

has index mj. Denote m =
∑d

j=1 mj the sum of the indexes, then

pA(A) =
d∏

j=1

(A− λjI)
mj

is the characteristic polynomial of A. By the Cayley-Hamilton theorem [2], when the poly-

nomial is expended we have

0 = pA(A) = α0I + α1A+ · · ·+ αmA
m

for all αj ∈ C, it is clear that α0 ̸= 0 since the eigenvalues are non-zero. By using I = AA−1

and moving terms around, we have

−α0AA
−1 = α1A+ α2A

2 + · · ·+ αmA
m

AA−1 = − 1

α0

(
α1A++α2A

2 + · · ·+ αmA
m
)

A−1 = − 1

α0

(
α1I ++α2A+ · · ·+ αmA

m−1
)

75

So the inverse of A can be written as a polynomial of the highest degree m− 1 that is

A−1 = − 1

α0

m−1∑
j=0

αj+1A
j

Therefore, the solution u⃗ = A−1f⃗ is an element of the Krylov subspace Km(A, b⃗).

From a numerical point of view, it is necessary to find a better basis for the Krylov subspace,

as the basis vectors in Definition 5.3.1 is exactly the first iterates of the power method.

Since the power method converges to the eigenvector corresponding to the eigenvalue of the

largest magnitude if it exists, the basis vectors tend to become numerically dependent due

to finite precision. To overcome this problem, Arnoldi’s algorithm is often used to create an

orthonormal basis for the Krylov subspace.

5.4 Arnoldi Iteration

The Arnoldi iteration is an eigenvalue algorithm used to explicitly constructs an orthonormal

basis {v⃗1, · · · , v⃗m} for the Krylov subspace Km(A, r⃗0) and a Hessenberg matrix Hm = (hij).

In this method, the modified Gram–Schmidt process is used to produce a sequence of or-

thonormal vectors, {v⃗1, · · · , v⃗m} called the Arnoldi vectors, such that for every m ≥ 1, the

vectors {v⃗1, · · · , v⃗m} span the m-th order Krylov subspace, Km. The Arnoldi vectors form

the matrix Vm = [v⃗1 · · · v⃗m]. The algorithm begins with a normalized vector v⃗1 , and or-

thogonalizes each new basis vector Av⃗i to all previous vectors {v⃗1, · · · , v⃗i−1}. The algorithm

terminates after step j if hj+1,j = 0. If the Arnoldi algorithm does not terminate at the

m-th step, it can also be formulated in terms of the matrices Vm+1 and Hm. Explicitly, the

76

algorithm is as shown in Algorithm 3

Algorithm 3 The Arnoldi algorithm

1: v⃗1 := r⃗0/∥r⃗0∥
2: for j = 1, . . . ,m do
3: for i = 1, . . . , j do
4: hi,j = (Av⃗j, v⃗i)
5: end for
6: w⃗j+1 = Av⃗j −

∑j
i=1 hi,j v⃗i

7: hj+1,j = ∥w⃗j+1∥2
8: if hj+1,j = 0 then
9: return
10: else
11: v⃗j+1 = w⃗j+1/hj+1,j

12: end if
13: end for

5.5 GMRES

GMRES was developed by Saad & Schultz [32] is a Krylov subspace method that computes

at the r-th step the best least squares solution u⃗r from the Krylov subspace Kr(A, r⃗0). While

the application of the classical iterative solvers was limited to either diagonally dominant or

positive definite matrices, the GMRES method can be used for linear systems Au⃗ = f⃗ with

arbitrary (nonsingular) square matrices A. The essential ingredient in this general iterative

solver is the Arnoldi iteration.

The main idea behind the GMRES method is to minimize the residual in Euclidean norm

over all vectors of the m dimensional affine space u⃗0+Km(A, r⃗0), where u⃗0 ∈ Cn is an initial

guess and the latter space is them-th order Krylov subspace induced by A and r⃗0. This space

is iteratively enlarged until a satisfactory approximate solution is found. Thus formally, at

77

every m-th iteration of GMRES the approximate solution u⃗m is

u⃗m = arg minz⃗∈u⃗0+Km(A,r⃗0)∥Az⃗ − f∥2

It is trivial that the Krylov subspace generated at each iteration contains the previous Krylov

subspaces, i.e. Km(A, r⃗0) ⊂ Km+1(A, r⃗0) for all m ≥ 1. Therefore it holds that the sequence

of norms of minimal residuals found by GMRES is non-increasing, this is referred to as the

optimal property of GMRES.

To find such a minimizing vector u⃗m ∈ u⃗0+Km(A, r⃗0), write u⃗m = u⃗0+ y⃗ for a y⃗ ∈ Km(A, r⃗0).

Let the matrix Vm be obtained by the Arnoldi iteration to span the Krylov subspace, then

there exists a vector z⃗ ∈ Cn such that y⃗ = Vmz⃗.

One of the difficulties with the full orthogonalization method is that it becomes increasingly

expensive as the step numberm increases. Whenm increases, the number of vectors requiring

storage increases like m and the number of multiplications like 1
2
m2N where N is the size

of A. To remedy this difficulty, the GMRES algorithm is restarted after a fixed number,

say k, of iterations. The resulting method is called GMRES(k) or Restarted GMRES. A

drawback to this is that the iterative method may suffer from stagnation in convergence as

the restarted subspace is often close to the earlier subspace.

The overall GMRES(k) algorithm is shown in Algorithm 4 where the initial guess u⃗0 is the

zero vector

78

Algorithm 4 GMRES(m)

1: Let r⃗0 = f⃗ , β = ∥r⃗0∥2 and v⃗1 = r⃗0/β
2: for j = 1, 2, · · · ,m do
3: Compute the vector w⃗j = Av⃗j
4: for i = 1, 2, · · · , j do
5: hi,j := (w⃗, v⃗i) and w⃗ := w⃗ − hi,j v⃗i
6: end for
7: Compute hj+1,j = ∥w⃗∥2 and v⃗j+1 = w⃗/hj+1,j

8: end for
9: Define Vm = [v⃗1, · · · , v⃗m], Hm = {hi,j}1≤i≤j+1;1≤j≤m

10: Form the approximate solution:
Compute u⃗m = Vmy⃗m where y⃗m = argminy⃗∥βe⃗1 −Hmy⃗∥ and e⃗1 = [1, 0, . . . , 0]T

11: If satisfied then stop else restart the algorithm by setting r⃗0 = f⃗ −Au⃗m go to 2

5.5.1 Convergence of GMRES

By its design, GMRES iteration will always converge in at most n steps for a system with

n× n matrix A. Moreover, convergence is monotonic since ∥r⃗m+1∥ ≤ ∥r⃗m∥. This latter fact

is true since r⃗m+1 is minimized over Km+1(A, r⃗0), and we have Km(A, r⃗0) ⊂ Km+1(A, r⃗0).

Thus, minimization over a larger subspace will allow us to achieve a smaller residual norm.

For practical computations, the only case of interest is when the algorithm converges (to

within a specified tolerance) in k iterations where k < n. Usually, the relative residual is

used to control the convergence, i.e., we check whether

∥r⃗k∥
∥r⃗0∥

≤ tol

where tol represents the specific tolerance which is usually around 10−6.

79

5.6 Preconditioner

Preconditioning techniques are effective for accelerating the convergence of the GMRES

algorithm. The general principle of preconditioning is to construct a matrix, say Ap, that

approximates the coefficient matrix A but for which it requires little work to apply the action

of the inverse of Ap, that is, to compute A−1
p x⃗. Thus one may consider solving

A−1
p Au⃗ = A−1

p f⃗

instead of Au⃗ = f⃗ ; they clearly have the same solution. This is also called the left pre-

conditioning. Now the GMRES in Algorithm 4 would be modified as follow to match this

modified system as seen in Algorithm 5 with the initial guess u⃗0 = 0⃗.

Algorithm 5 GMRES(m) with Left Preconditioning

1: Find r⃗0 = A−1
p f⃗ by solving Apr⃗0 = f⃗ with preconditioner solver

2: Compute β = ∥r⃗0∥2 and v⃗1 = r⃗0/β
3: for j = 1, 2, · · · ,m do
4: Compute the matrix-vector multiplication g⃗ = Av⃗j
5: Compute the vector w⃗ = A−1

p g⃗ by solving Apw⃗ = g⃗ with preconditioner solver
6: for i = 1, 2, · · · , j do
7: hi,j := (w⃗, v⃗i) and w⃗ := w⃗ − hi,j v⃗i
8: end for
9: Compute hj+1,j = ∥w⃗∥2 and v⃗j+1 = w⃗/hj+1,j

10: end for
11: Define Vm = [v⃗1, · · · , v⃗m], Hm = {hi,j}1≤i≤j+1;1≤j≤m

12: Form the approximate solution:
Compute u⃗m = Vmy⃗m where y⃗m = argminy⃗∥βe⃗1 −Hmy⃗∥ and e⃗1 = [1, 0, . . . , 0]T

13: If satisfied then stop else set r⃗0 = A−1
p (f⃗ −Au⃗m) go to 2

If Ap is a good approximation of A, then it is expected that the iterative algorithm would

converge at a rapid rate. In fact, for very large problems, preconditioning is necessary to

make computation feasible. Effective preconditioning is often at the heart of efficient solution

algorithms, in particular when solving three-dimensional PDE problems.

80

In this section we will discuss two different types of preconditioning techniques considered

in this dissertation:

(i) approximating the numerical solution of the original PDE with a similar PDE that can

be solved directly with the direct FFT solver, for example in the case of Helmholtz

equation, one may replace the coefficient function k2(x, y, z) with some coefficient func-

tion k2
0(z)

(ii) approximating the higher order approximation scheme by using the lower order ap-

proximation scheme as a preconditioner

5.6.1 Helmholtz equation

The basic principle of preconditioning is to create an approximation to the original system

where the preconditioner system can be solved efficiently with a preconditioner solver. In

the proposed iterative method, the preconditioner system is modeled as a variation of the

original PDE problem that could be solved directly with the direct FFT solver introduced

in Chapter 4.

Hence, for the case of the Helmholtz equation, we consider the numerical solution of the

Helmholtz equation with the same right-hand side function f(x, y, z) and computational

domain as in (2.1) but with a different coefficient function k2
0 that depends only on the

variable z, that is

∆uh(x, y, z) + k2
0(z)uh(x, y, z) = f(x, y, z) (5.5)

where uh(x, y, z) is the numerical solution of Equation (5.5) that can be computed with

direct FFT solver. Here are some examples and reasonable options for the function k2
0(z).

81

General examples

Consider the case where k2(x, y, z) is a separable function that is k2(x, y, z) = g(x, y)h(z)

for some functions g and h. Let k2
0(z) = h(z) and x = (x, y, z). Then

∆u(x) + k2(x)u(x) = ∆uh(x) + k2
0(z)u(x)

∆u(x) + k2(x)u(x)− k2
0(z)u(x) + k2

0(z)u(x) = ∆uh(x) + k2
0(z)u(x)

∆[u(x)− uh(x)] + k2
0(z)[u(x)− uh(x)] = −[k2(x)− k2

0(z)]u(x)

and

∥k2(x)− k2
0(z)∥ = ∥g(x, y)− 1∥∥k2

0(z)∥

As such, the preconditioner system is expected to have better performance when the value

of ∥g(x, y) − 1∥ is small. Similar approach can be taken if k2(x) = g(x, y) + h(z) then let

k2
0(z) = h(z) and we have ∥k2(x)− k2

0(z)∥ = ∥g(x, y)∥.

Subsurface inclusion model problem

For the main targeted application of the proposed numerical method, the coefficient function

k2
0(z) in the preconditioner system is constructed by considering the case when the function

k2(x, y, z) has no inclusions, that is,

k2
0(z) =


439.2, if 0 < z < 0.5,

1273 + 31i, , if 0.5 ≤ z < 1.

With this preconditioner system, one can observe that the size of the inclusion would de-

termine the difference between k2
0(z) to k2(x, y, z) and consequently the performance of the

82

preconditioner. However, in practice, the size of the inclusion would be small in comparison

to the computational domain, so excellent performance can be expected from the iterative

methods with this preconditioner.

It is worth noting that the only requirement for the choice of k2
0 is that it depends on one and

only one spatial variable, that is the function k2
0 could be k2

0(x) or k
2
0(y) whichever would be

a better approximation. In the former case define the function g(x, y, z) = f(z, y, x). Once

this condition is satisfied, then Equation (5.5) could be solved directly with the direct FFT

solver.

5.6.2 Convection-diffusion equation

Convection-diffusion equation with constant coefficients

For the convection-diffusion equation with constant coefficients, the numerical solution of a

variant of Equation (2.10) is considered where α = β = 0 as seen in subsection 4.2.4. Let

x = (x, y, z) then the modified convection-diffusion equation is given by

∆uh(x) + γ
∂

∂z
uh(x) = f(x) (5.6)

with the same right hand side function f and computational domain as Equation (2.10). In

this setup, we have

∆[u(x)− uh(x)] + γ
∂

∂z
[u(x)− uh(x)] = −

(
α

∂

∂x
u(x) + β

∂

∂y
u(x)

)
If the values of α and β are small and negligible, the iterative method is expected to converge

at a faster rate.

83

Convection-diffusion equation with variable coefficient

For the case with variable convection coefficient only in z-direction, the same approach as in

subsection 5.6.1 is taken where the problem is modified into a similar problem that can be

solved with the direct FFT solver. In this instance, the modified problem is given by

∆uh(x) + γ0(z)
∂

∂z
uh(x) = f(x)

This modified convection-diffusion equation would be solvable by the direct FFT solver as

seen in subsection 4.2.5. on a uniform grid. Similar to subsection 5.6.1, one can show that the

difference between the numerical solution of the original problem and the modified problem

is bounded by ∥γ(x)− γ0(z)∥∥u(x)∥.

All the examples above show that the solution obtained from the modified problem, uh, will

be a good approximation to solution u of the original PDE provided that the modified PDE

closely resembled the original PDE.

5.6.3 Lower-order preconditioner scheme

This approach uses a strategy that combines the high-order compact approximation scheme

and lower-order approximation preconditioner. Specifically, the matrix A is derived from

a high-order compact scheme, while the preconditioner matrix Ap is derived from a lower-

order compact scheme. This strategy was shown in [35] where a sixth-order explicit finite

difference scheme is used with a second-order approximation preconditioner. This approach

would be practical in scenarios where an efficient lower approximation solver already exists.

Additionally, this approach higlights another advantage of the iterative method over the

direct method. In particular, it is possible for a compact scheme to achieve the higher order

84

accuracy via the iterative methods.

In this dissertation, the proposed iterative method would implement the higher-order com-

pact scheme with a lower-order approximation scheme for the preconditioner. Chapter 7 will

present the numerical result for the accuracy and computational cost.

5.7 Implementation

5.7.1 PETSc

PETSc is a modular set of libraries, data structures, and routines developed and maintained

by Argonne National Laboratory and a thriving community around the world [26]. It is

designed to provide a parallel component environment for the implementation of parallel

solvers for PDE based on MPI standards. PETSc libraries offer a variety of support for

different numerical formulations, including finite element [31], finite volume [21], or finite

difference methods. The wide array of fundamental tools for scientific computing makes

PETSc an ideal environment for modeling scientific applications as well as for rapid algorithm

design and prototyping. As of today, PETSc has been regarded as an efficient numerical

simulation environment more than a sophisticated set of software tools.

Designed to be used by large-scale scientific applications, PETSc makes it possible to use

GPUs, threads, and MPI parallelism in the same model for different effects, further optimiz-

ing code performance. In the proposed iterative algorithm, PETSc will be used for parallel

data distribution model and MPI communications. Through PETSc, the proposed numerical

scheme is expected to perform computation on large numbers of cores and computational

85

grid sizes. Additionally, PETSc also supports OpenMP and GPU acceleration, which will

be useful for application optimization [24]. The strategies used to parallelize the proposed

numerical scheme using the PETSc libraries will be presented in Chapter 6, with the result

that the model attains a reasonable speed up and scale in a parallel environment.

PETSc Implementation

In this paper, PETSc will be used as a programming platform for the implementation of

the proposed numerical scheme in combination with the preconditioner strategies discussed

in Section 5.6. PETSc libraries contain KSP, a package of solvers for linear systems, which

includes direct/iterative methods and several preconditioners. Among them is the KSPGM-

RES method that implements the default GMRES with a restart method and supports

left-preconditioning. To implement the proposed iterative algorithm two modifications are

made. First, the preconditioner in KSPGMRES is replaced with the preconditioner system

of our own. Second the matrix-vector multiplication step, that is line 4 of Algorithm 5, is

replaced with our version of matrix-vector multiplication to implement the high-order com-

pact scheme presented in Chapter 3. Algorithm 6 shows how KSPGMRES was implemented

in the proposed numerical solver.

86

Algorithm 6 KSPGMRES implementation

1: MatShellSetOperation(A,MATOP MULT,(void(*)(void))my Mat Vec Mult);
//set up our own matrix-vector multiplication

2: KSPCreate(comm,&ksp);
3: KSPSetOperators(ksp,A,Ap);

//set the system operator, the last input is the preconditioner
4: KSPSetType(ksp, KSPGMRES);
5: KSPSetInitialGuessNonzero(ksp,PETSC TRUE);
6: KSPGMRESSetRestart(ksp, 100);

//set the GMRES to restart every 100 iterations
7: KSPGetPC(ksp,&pc);

//get the preconditioner object
8: KSPSetTolerances(ksp,tol,PETSC DEFAULT,PETSC DEFAULT,100);
9: PCSetType(pc,PCSHELL);

//set the preconditioner object
10: PCShellSetApply(pc,mySolver);

//applying our own preconditioner solver
11: PCShellSetContext(pc,(void*)&sys);
12: KSPSetPCSide(ksp,PC LEFT);

//set gmres with left preconditioning

For the proposed iterative algorithm, it is very convenient to use PETSc for verifying the

performance of the numerical algorithm. Through the PETSc platform, there is no need to

consider many details of implementation for the Krylov iteration itself such as the Arnoldi

iteration. Users can instead focus on their preconditioner solver and the matrix-vector mul-

tiplication portion of Algorithm 5.

5.7.2 MATLAB

For numerical test problems on small grid sizes, the proposed iterative algorithm can also

be implemented in MATLAB. MATLAB also has built-in functions such as gmres readily

available for the sequential implementation of the iterative algorithm. Similar to PETSc

implementation, the user may just pass in the functions for matrix-vector multiplication

87

and the preconditioner and left other tasks completed by MATLAB itself. This allows for

ease in implementation for testing the sequential algorithm of the iterative solver on a local

machine.

88

6 Parallelization

6.1 Introduction

In sequential computing, all the computations run one after another without overlapping,

whereas, in parallel computing, computations are broken down into multiple, smaller, in-

dependent, often similar parts to be executed by multiple processors simultaneously. The

results of each calculation are combined upon completion as part of an overall algorithm.

The primary goal of parallel computing is to reduce computational time by fully capitalizing

on all available computation power.

The sequential algorithm for the direct FFT solver presented in Section 4.4 is very expensive

when the matrix Ap is large. Therefore, a standard implementation often turns out to be

unsatisfactory, especially for real-time computations. To obtain high performance, we need

to exploit the hierarchical parallelism of novel architectures such as multi-core, a cluster of

multi-processors, and GPUs.

In general, an algorithm can be split into a parallelizable part and another which is not. Let

S be the execution time to compute the part of the application that cannot be parallelized

and B be the sequential time to compute the parallelizable part. The idea of parallelization

would be to archive an execution time of S+(B/p) on p processors. However, some overheads

may occur and factors such as data latency or memory bandwidth would make the theoretical

time slightly different. To achieve the best result for parallelization, it is crucial to divide

the work or tasks of an application as evenly as possible among the processes.

89

This chapter aims to provide a general perspective on parallelization and the parallel tool-

box that was used during the development of the proposed numerical algorithms. A detailed

explanation of the parallel implementation of the developed model under various parallel

programming environments will be presented in this chapter and the results of the imple-

mentation will be shown in the following chapter.

6.1.1 Types of parallel programming

With the rise of multi-processor systems, so does the variety of parallel programming. At

large, these parallel programming techniques can be easily categorized based on which type

of memory is used.

It is crucial to distinguish which type of memory is used on parallel computers as the reduc-

tion of both latency and bus contention are often determinant factors to their performance.

The latency defines the time from the request to data access to the answer. Bus contention

refers to the fact that more than one device attempt to simultaneously access memory.

There are two main categories of memory systems namely the shared memory system and

the distributed memory system. A shared memory system relies on a centralized memory

shared between all processors. In a shared memory system, a set of processors is linked to

a memory system through an interconnection network, and a processor has access to each

memory location without any software support. The interconnect can either connect all the

processors to the main memory, or each processor has its local memory and has access to

other memory locations.

On the other hand, distributed memory is located at different locations where each processor

90

does not have direct hardware access to this memory bank. In the distributed memory

system, each processor or group of processors is paired with its private memory paired

with an interconnection network. Distinct processors at various locations may explicitly

communicate by sending messages to exchange data. Some well-known examples include

clusters, composed of multiple nodes with their own local and private memory. Nodes are

then linked by interconnection networks such as Ethernet or InfiniBand (IB).

For the implementation of the proposed numerical algorithm, OpenMP will be used as a ref-

erence to shared memory parallel programming while MPI would be the choice for distributed

memory-based parallel programming.

6.2 OpenMP

6.2.1 Overview

OpenMP is the well-known standard in shared memory parallel programming. OpenMP is

an implementation of multithreading, a method of parallelization whereby the system divides

a task among a set number of threads. In OpenMP, threads refer to independent processing

units that are capable of performing computations concurrently where every thread has

access to the same memory.

Thanks to its shared memory architecture, OpenMP is an easy parallelization tool to im-

plement but it is also restrictive. Programs using strictly OpenMP can only run on a single

computer with shared memory. On a large multi-node cluster this typically restricts the

parallel execution to just a single node with only 16 to 32 processors. More importantly,

91

OpenMP restricts the algorithm to a single node limiting its usage to the amount of random

access memory (RAM) available on that node. In many situations, the computations that

require vast amounts of RAM that are simply unavailable for OpenMP applications.

Despite its shortcoming, OpenMP has some promising features. OpenMP has a tool called

runtime environment which automatically balances and allocates the workload to different

threads. It is relatively simple to implement and offers an excellent speed-up in the execution

of structured blocks.

In OpenMP, compiler directives are used to specify the computations that should be executed

in parallel. This will create a team of threads and every thread will execute the parallelized

section of code (or parallel region) independently. At the end of a parallel region, there is

an implied barrier that forces all threads to wait until the computation inside the region

has been completed. The C compiler directives are formed exclusively with #pragma omp

directive-specification.

This key feature of OpenMP helps avoid the need to rewrite the entire program from scratch.

6.2.2 Implementation

Preconditioner direct FFT solver

OpenMP implementation of the direct solver discussed in Chapter 5 is accomplished primar-

ily by dividing a for-loop iteration in Algorithm 2 among separate processing units. This

can be easily implemented by simply adding the compiler directives before the for-loops.

This key feature of implementation helps avoid the need to rewrite the entire program from

scratch. Algorithm 7 shows how OpenMP was implemented for the preconditioner direct

92

solver portion of the proposed iterative method.

Algorithm 7 OpenMP Implementation of Direct FFT Solver

1: #pragma omp parallel {
2: #pragma omp critical
3: Create FFTW plan
4: #pragma omp for
5: for l = 1, . . . , Nz do
6: 2D forward DST of the RHS in x−, y−direction
7: Reorder the RHS to improve data locality
8: end for
9: #pragma omp for
10: for i = 1, . . . , Nx ·Ny do
11: Solve the tridiagonal system Aiwi = fi using LU decomposition
12: Reorder the solution vector back
13: end for
14: #pragma omp for
15: for l = 1, . . . , Nz do
16: 2D reverse DST of the solution w in x−, y−direction
17: end for
18: }

The compiler directives #pragma omp parallel creates a parallel region that encapsulates

the entirety of direct FFT Solver as seen in Algorithm 7. This is because creating a parallel

region can be quite costly, especially for the iterative method. However an FFTW plan is a

necessary component that sets up the calculation of the FFT and the creation of these plans

is unfortunately not thread-safe, that is this process cannot be parallelized. So they must

be created within a critical region within the parallel section of the code. This meant that

this section is executed by a single thread at a time.

Matrix-vector multiplication

Algorithm 8 shows how OpenMP was implemented to parallelize the matrix-vector multipli-

cation portion of the proposed iterative method, that is line 4 of Algorithm 5.

93

Algorithm 8 OpenMP Implementation of Matrix-Vector Multiplication

1: #pragma omp parallel for collapse(3)
2: for l = 1, . . . , Nz; j = 1, . . . , Ny; i = 1, . . . , Nx do
3: g⃗i,j,l = Av⃗i,j,l
4: end for

where A is the coefficient matrix that can be expressed as a 27-point stencil obtained from

the discretization of the original PDE in Chapter 3. One can observe that the computation

of each value of the result vector g⃗ is the scalar product between a row of A and the vector v⃗.

This implies that each scalar product is independent and can be executed in any order and

parallel. Thus the collapse clause was suggested to improve OpenMP performances. This

will allows all three loops to be distributed evenly over all threads.

6.2.3 Conclusion

Overall, the simple structure and implementation of OpenMP implementation would suggest

a promising result in terms of scalability. This would indicate that the OpenMP implemen-

tation is perfect for a small to medium-sized grid problem. The performance of OpenMP

implementation will be shown and analyzed in the next chapter.

6.3 MPI

6.3.1 Overview

While OpenMP provides a very simple and efficient implementation for parallel program-

ming, for a large enough computational grid, the memory required to allocate the necessary

arrays can easily overrun the random access memory (RAM) available on a single node.

94

The natural solution to this problem is to distribute the working arrays and computational

tasks between the nodes of a cluster. Several application programming interfaces (API) were

developed for this, but the de facto standard for communication among processes today is

the MPI.

In this section, a process (or MPI process) will refer to either an individual processor or a

compute node of a cluster as both can be used in MPI. Each process in MPI is assigned a

unique positive integer value starting with zero, called a rank. The rank is used to determine

which calculations need to be executed in that process.

MPI enables a numerical solver on a large computational grid by dividing the computational

domain across multiple nodes on a cluster. This effectively removes the memory limitation

due to the use of a single node. MPI process no longer has access to the same memory. This

meant that communication between processors is necessary for computation that requires

memory from other processors. Communication here refers to the act of transferring data

from one process to another. The size of the data required and the number of communication

needed would impose a challenge to the MPI implementation.

6.3.2 Implementation

Unlike OpenMP, a program utilizing MPI does not have specific sections of parallelization.

Each process runs the entire program and only communicates with one another when explic-

itly specified by the programmer. Therefore, the program must be modified to only perform

the appropriate calculations and communicate the information back and forth as efficiently

as possible.

95

The proposed numerical algorithm is very well suited for this type of parallelization. This

is because each step of the algorithm can be carried out with a selected portion of the

computational domain. To implement MPI into the numerical algorithm it is necessary

to modify the sequential algorithm so that each node is allocated the minimum required

memory on each.

The computational domain for the numerical algorithm is primarily divided as evenly as

possible along the z-direction with some exceptions. Figure 6.1 illustrates how the computa-

tional domain is divided among three processes in the z-direction. Each process is associated

with one color.

Figure 6.1: Computational domain divided among 3 processes for MPI implementation

The exceptions mentioned earlier were matrices and arrays required to solve the block tridi-

agonal system in Equation (4.6). Unlike other portions of the numerical solver, solving

Equation (4.6) is dependent on the z-direction but independent in the x- and y-directions.

As such all matrices and vectors used specifically for solving Equation (4.6) would be divided

in the y-direction instead. There is no overlapping in terms of matrices as those matrices

are only used exclusively for solving Equation (4.6). As for the right-hand side array, f , and

the solution of the system w in Algorithm 2, duplication of these arrays with the right size

96

and data is required.

For the remaining section of this chapter, we shall denote NP as the total number of MPI

processes used and Nz(rank) be the grid size in z-direction obtained after dividing the

computational domain for each process identified by its rank. The value of Nz(rank) can be

computed by

Nz(rank) = Nz/NP + (1 if rank < (Nz mod NP) else 0) (6.1)

Ny(rank) would be defined similarly replacing Nz in Equation 6.1 with the grid size in y-

direction, Ny instead.

Preconditioner direct FFT solver

Algorithm 9 shows how the direct FFT solver was implemented with MPI.

Algorithm 9 MPI implementation of Direct FFT Solver

1: Create FFTW plan
2: for l = 1, . . . , Nz(rank) do
3: 2D forward DST of the RHS in x−, y−direction
4: Reorder the RHS to improve data locality
5: end for
6: Scatter the data via MPI to the appropriate process
7: for i = 1, . . . , Nx ·Ny(rank) do
8: Solve the tridiagonal system Aiwi = fi using LU decomposition
9: Reorder the solution vector back
10: end for
11: Scatter the data via MPI to the appropriate process
12: for l = 1, . . . , Nz(rank) do
13: 2D reverse DST of the solution w in x−, y−direction
14: end for

The MPI implementation is almost identical to the sequential algorithm of the direct FFT

solver except for changes to the size of the loop to reflect the changes in the computa-

tional domain. Additionally, there is a need for communication before and after solving the

97

tridiagonal system which is the main challenge of MPI implementation.

Data transfer in preconditioner direct FFT solver

Since the calculation of FFT and the solution of the tridiagonal system have a different

dependency on the spatial directions, the MPI processes must communicate and transfer the

required information to the appropriate processes. For the best performance out of MPI

implementation, both the amount of communication and the size of the data transfer should

be kept at their bare minimum.

Assuming the use of three processes for simplicity, Figure 6.2 illustrates the transfer of data

between three processes in Algorithm 9.

Figure 6.2: Data transfer between forward DST, solving tridiagonal systems and reverse
DST steps

The first step shows how the domain is divided as evenly as possible among the three pro-

cesses in the vertical, z-direction. This is where the forward transform is computed since the

98

calculations do not depend on the variable z. Once the FFT is computed, a certain portion

of the computational domain is required to be sent to different processes as the tridiagonal

solver is now dependent on the z-direction and independent in the y-direction.

To keep the size of the data transfer to each process at the bare minimum required, the

second step shows how the domain on each process is further divided into smaller domains.

Then each of the sections is sent only to the appropriate MPI process that requires it with

commands such MPI Scatterv.

All individual sections of the domain are then assembled on their respective process in the

third step. Now the computational domain is divided in the y-direction. The solution to the

tridiagonal system is then calculated. Once the solution vector w⃗ is obtained, the entire data

transfer step is reversed. So that the computational domain can be divided in the z-direction

again for the computation of the reverse transform.

Matrix-vector multiplication

Unlike OpenMP implementation, the vector v⃗ used for the matrix-vector multiplication step

has been divided in the z-direction over separate nodes. This meant that to compute the

matrix-vector multiplication communication between processes is required. Fortunately, the

proposed numerical algorithm uses a compact scheme to formulate the coefficient matrix

A. This meant that A is a block tridiagonal matrix and to calculate the matrix-vector

multiplication it would be sufficient to have a specific portion of the data. In particular,

for the case of three-dimensional problems, each process would only require the data of size

Nx ·Ny at the boundary layer of their neighboring processes.

Figure 6.3 illustrates the distributed matrix-vector multiplication for a problem of grid size

99

33 over three processes. All data with the same color are stored on the same processor. Each

block would represent a 9× 9 matrix and the block without any label are the zero matrices.

Observe that for the first processor to complete matrix-vector multiplication it would only

require the block label ”u4” from the second processor. While the second processor would

require the block label ”u3” from the first processor and the block label ”u7” from the third

processor. Lastly, the third processor would only require the block label ”u6” from the

second processor.

Figure 6.3: Distributed matrix-vector multiplication over three processors

Data transfer in matrix-vector multiplication

To optimize the performance of MPI implementations, each processor would only send the

required data needed to the corresponding processor. The size of the vector v⃗ would also be

increase to from Nx ×Ny ×Nz(rank) to Nx ×Ny × (Nz(rank) + 2) which is denoted by v̂.

Some extra buffer arrays (tempSend and tempReceive) may be introduced as a temporary

placeholder to assist with the data transfer.

Figure 6.4 shows the first step of the communication between three processors. In general,

every processor beside the highest rank processor would duplicate the required data (last

100

Nx · Ny layer of the vector) and send the data to a processor with a rank one higher than

itself.

Figure 6.4: Data transfer in matrix-vector multiplication part 1

Figure 6.5 shows the next step for the communication between three processors. In this step,

every processor beside the processor rank 0 would duplicate the necessary data (first Nx ·Ny

layer of the vector) and send the data to the processor with rank one lower than itself.

Figure 6.5: Data transfer in matrix-vector multiplication part 2

Then all the data are collected and organized into the extended array v̂ as in Figure 6.6. The

block label with 0 is the zero matrices so that the size of the array would be consistent across

all processes. Now every process has access to all data required to perform matrix-vector

multiplication in parallel.

101

Figure 6.6: The data is stored in v⃗ for distributed matrix-vector multiplication over 3 pro-
cessors. All data with the same color are on the same processor.

Algorithm 10 shows how MPI was implemented to parallelize the matrix-vector multiplica-

tion step of GMRES.

Algorithm 10 MPI Implementation of Matrix-Vector Multiplication

1: Duplicate the data at the highest level in z− direction to tempSend
2: for i = 0, . . . , NP do
3: MPISend(tempSend, rank + 1);
4: MPIRecv(tempRecv, rank − 1);
5: end for
6: Store and organized the data to the extended array v⃗
7: Duplicate the data at the lowest level in z− direction to tempSend
8: for i = 0, . . . , NP do
9: MPISend(tempSend, rank − 1);
10: MPIRecv(tempRecv, rank + 1);
11: end for
12: Store and organized the data to the extended array v⃗
13: for l = 1, . . . , Nz(rank); j = 1, . . . , Ny; i = 1, . . . , Nx do
14: Compute matrix-vector multiplication g⃗i,j,l = Av⃗i,j,l
15: end for

6.3.3 Conclusion

In conclusion, the implementation of MPI is harder than that of OpenMP implementation

due to the necessity to manually have the processes communicate with each other. Nonethe-

less, thanks to its distributed memory architecture, the numerical solver is now capable of

102

solving problems on extremely large grid sizes.

6.4 Hybrid OpenMP-MPI

6.4.1 Overview

This section discusses an approach based on a combination of OpenMP and MPI implementa-

tion called the Hybrid OpenMP-MPI (or Hybrid OpenMP/MPI). From a user’s perspective,

the most convenient approach to any parallel programming is to ignore the hybrid approach

and use a pure message-passing programming model. This is an effective approach since

most MPI library developers have taken advantage of the shared memory within a node and

optimized the intra-node communication [11].

However, the MPI implementation discussed in the previous section has an unexpected

limitation on the preconditioner solver for the iterative solver. Since this algorithm uses 2D

FFT, the algorithm only parallelizes in just one direction to avoid the additional need of

sharing data across processes. That is, the operations are divided only in the z-direction in

both the forward and reverse transforms and only in the y-direction for the tridiagonal solver.

Since parallelization with MPI is accomplished through dividing the grid size, specifically

Ny and Nz in the solver, the number of MPI processes that can be used will be limited

by N = min(Ny, Nz). This would imply that the proposed algorithm can only achieve a

maximum of N -times speed up even if there may be more than N processes available.

This is a potential issue when running on extremely large grid size problems. The issue

becomes more evident upon the realization that as the grid size of the problems increases

103

cubically so does the memory and number of processes required, but the limitation N would

only increase linearly. For example, suppose that each supercomputer has a total of 32

processes and it would require a minimum of two supercomputers to compute a 10003 size

problem. Then to compute a 100003 size problem, we would require a minimum of 2000

supercomputers. Despite having access to all 2000 supercomputers with a total of 2000×32 =

64000 processes, the MPI implementation in Algorithm 9 is only capable of using 10000 MPI

processes due to this limitation. In short, in this example, the MPI implementation could

only take advantage of 15.63% of the given resources despite having additional resources

available.

This leads to the development of hybrid implementation and how it would help remove this

limitation. As a disclaimer, one can resolve this limitation in MPI by further parallelization

in the y-direction when performing 2D FFT and in the x-direction for the tridiagonal solver

at the cost of extensive communication time which is not ideal.

6.4.2 Implementation

Consider a cluster with p nodes each with q cores. To use the full power of a cluster, that

is to utilize all p · q available cores, a combination of both the OpenMP and MPI tools into

a hybrid program is required. In this approach, each node can represent an MPI process

while the cores are used for the OpenMP threads. The computational domain would first

be divided among the p MPI processes, then OpenMP allows all q threads to have the same

access to all memory within the same MPI process. At this moment this approach has yet

to remove the limitation imposed by N but it is worth to be considered.

104

This approach has an advantage over using the strictly MPI approach since it reduces the

amount of communication between MPI processes by reducing the amount of MPI processes

used. It is worth experimenting with and comparing the performance between this hybrid

approach and MPI implementation. This will be the first approach to the hybrid OpenMP-

MPI also referred to as Hybrid I in this dissertation.

To implement hybrid OpenMP-MPI, for the intended purpose of removing the limitation

imposed by the grid, the idea is to use each parallel tool for different loops or sections of the

algorithm. This approach is referred to as Hybrid II in this dissertation.

Preconditioner direct FFT solver

Algorithm 11 shows the implementation of Hybrid I. This is a simple direct OpenMP imple-

mentation applied to the MPI implementation shown in Algorithm 9.

105

Algorithm 11 Hybrid I implementation of Direct FFT Solver

1: #pragma omp parallel {
2: #pragma omp critical
3: Create FFTW plan
4: #pragma omp for
5: for l = 1, . . . , Nz(rank) do
6: 2D forward DST of the RHS in x−, y−direction
7: Reorder the RHS to improve data locality
8: end for
9: Scatter the data via MPI to the appropriate process
10: #pragma omp for
11: for i = 1, . . . , Nx ·Ny(rank) do
12: Solve the tridiagonal system Aiwi = fi using LU decomposition
13: Reorder the solution vector back
14: end for
15: Scatter the data via MPI to the appropriate process
16: #pragma omp for
17: for l = 1, . . . , Nz(rank) do
18: 2D reverse DST of the solution w in x−, y−direction
19: end for
20: }

For the Hybrid II approach, MPI and OpenMP must be used to parallelize different sections

of the algorithm. In particular, for the FFT transforms, MPI has been used to divide the

computational domain in the z-direction, so OpenMP threads have to parallelize the 2D

DST. This can be accomplished by using FFTW multi-threading [22]. As for the tridiagonal

solver, this step is already independent of both x and y variable and the for-loops has been

combined in all previous implementation. This implies that this step can be parallelized by

Nx × Ny processes which are already above the limitation so there is no need for the extra

procedure. The implementation of this modified approach is outlined in Algorithm 12.

106

Algorithm 12 Hybrid II implementation of Direct FFT Solver

1: Create a multi-threaded FFTW plan
2: for l = 1, . . . , Nz(rank) do
3: 2D forward multi-threading DST of the RHS in x−, y−direction
4: Reorder the RHS to improve data locality
5: end for
6: Scatter the data via MPI to the appropriate process
7: #pragma omp parallel for
8: for i = 1, . . . , Nx ·Ny(rank) do
9: Solve the tridiagonal system Aiwi = fi using LU decomposition
10: Reorder the solution vector back
11: end for
12: Scatter the data via MPI to the appropriate process
13: for l = 1, . . . , Nz(rank) do
14: 2D reverse multi-threading DST of the solution w in x−, y−direction
15: end for

Matrix-vector multiplication

Since the limitation of the grid only exists on the preconditioner direct solver of the proposed

numerical algorithm. There will only be one hybrid OpenMP-MPI implementation for the

matrix-vector multiplication. Algorithm 13 shows the hybrid implementation of the matrix-

vector multiplication. Due to the simplicity of the matrix-vector multiplication, there are

not many changes besides applying the OpenMP implementation to the for-loop in line 13

of Algorithm 10.

107

Algorithm 13 Hybrid OpenMP-MPI Implementation of Matrix-Vector Multiplication

1: Duplicate the data at the highest level in z− direction to tempSend
2: for i = 0, . . . , NP do
3: MPISend(tempSend, rank + 1);
4: MPIRecv(tempRecv, rank − 1);
5: end for
6: Store and organized the data to the extended array v⃗
7: Duplicate the data at the lowest level in z− direction to tempSend
8: for i = 0, . . . , NP do
9: MPISend(tempSend, rank − 1);
10: MPIRecv(tempRecv, rank + 1);
11: end for
12: Store and organized the data to the extended array v⃗
13: #pragma omp parallel for collapse(3)
14: for l = 1, . . . , Nz(rank); j = 1, . . . , Ny; i = 1, . . . , Nx do
15: Compute matrix-vector multiplication g⃗i,j,l = Av⃗i,j,l
16: end for

6.4.3 Conclusion

The author and co-researchers are interested to compare the performance of strictly MPI

implementation and Hybrid I implementation on a problem size not limited by N . Nu-

merical experiments would be conducted in the next chapter to present the results. The

Hybrid II implementation is expected to deliver excellent results on large grid sizes by being

able fully to utilize all available resources. However, it is worth mentioning that the FFTW’s

multi-threading support used in Hybrid II implementation does not necessarily translate into

performance gains since there is an overhead required for synchronization that may outweigh

the computational parallelism [22]. Therefore, one can only benefit from threads if the prob-

lem has a sufficiently large grid size. When this method was tested in OpenMP environments

on medium to small grid problems, the overhead drastically increased. Nonetheless, for the

hybrid implementation of the solver on relatively large grids, Hybrid II implementation has

108

some significant advantages. The approach alleviates a critical restriction on the number of

MPI processes used by the direct FFT solver in the distributed memory environment. So, in

the hybrid algorithm for large grids (test problem with grid larger than 10003), the Hybrid

II implementation was preferable while Hybrid I implementation is applied on medium to

small grid problems (test problem with grid around or less than 5003).

109

7 Numerical Results

This chapter will present the results of numerical experiments which will demonstrate the

quality of the proposed parallel numerical algorithm. The proposed algorithm is implemented

in the C programming language unless stated otherwise. A majority of the numerical ex-

periments were conducted on a standard Alienware desktop with an Intel Core i7, 2.8 GHz

processor, and 16 GB of RAM. The result of computation on a large grid size problem,

however, was obtained from a run on two different supercomputer clusters, these include the

Falconviz clusters at Idaho National Lab (INL) and the Cori cluster at Lawrence Berkeley

National Laboratory (LBNL). The Falconviz compute nodes contain dual Intel Xeon E5-

2695 v4 2.10 GHz processors with 18 cores each and a total of 128 GB of memory. The Cori

supercomputer consists of Haswell nodes where each node has two sockets, each socket is

populated with a 16-core of Intel Xeon 2.3 GHz processor for a total of 32 physical cores

with 128 GB DDR4 2133 MHz memory.

7.1 Direct FFT Solver

First, we demonstrate the efficiency of the developed direct solvers in the case of a three-

dimensional test problem. In the section, we will be using the following measures related to

the computed approximate solution uh and analytic solution u of the test problems.

• L2-res (the relative L2 residual) is ∥Auh − f∥2

• L2-err (the relative L2 error) is ∥u− uh∥2/∥u∥2

110

• max-err denotes the maximal component-wise error: ∥u− uh∥∞

For an Nth-order convergence rate, the errors would decrease approximately by a factor

of 2N when the grid size is double. The rate of convergence for the second, fourth, and

sixth order scheme is calculated by ln
(

|errm,N |
|err2m,N |

)
/ ln(2) where errm,N is the max-err obtained

from PDE problem with Nth-order scheme on a grid of m3. Hence for an Nth-order compact

scheme, the rate of convergence is expected to be N.

7.1.1 Solution of Helmholtz equation

To illustrate the quality of the developed direct methods, the numerical experiment is done

on the test problems recently published in [5]. In [5], the authors considered the solution

of the 3D Helmholtz problem using iterative block-parallel CARP-CG method [4]. We shall

compute the solution to the same problem by applying the direct FFT solver presented in

Chapter 4.

Test Problem 1

For the first test problem, the coefficient k is defined by

k(z) = a− b sin(cz) with a > b ≥ 0

Since the coefficient only depends on one spatial variable, the direct FFT solver can be used

to obtain the approximate solution of the Helmholtz equation with the following analytic

solution

u(x, y, z) = sin(βx) sin(γy)e−k(z)/c, where β2 + γ2 = a2 + b2

111

define over the domain Ω = [0, π]× [0, π]× [0, π]. The number of grid points in all directions

will be equal to include a comparison for the sixth-order scheme. For this test problem, the

right-hand side is given by

f(x, y, z) = ∆u(x, y, z) + k2(z)u(x, y, z) = −b(2a+ c) sin(βx) sin(γy) sin(cz)e−k(z)/c

All numerical experiments in this section will be performed using this test problem with the

following parameter: a = 10, b = 9, c = 10, β = 10, and γ = 9 unless stated otherwise.

Convergence of the numerical scheme

To demonstrate the convergence of the proposed numerical scheme, a series of tests was

conducted on test problems with various grid sizes, that is 1253, 2503, and 5003. For this

test, all implementations (sequential and parallel) can give consistent results on all grid sizes

considered with different sets of processing units. Table 7.1 shows the convergence of the

second-, fourth- and sixth-order implementations, respectively.

Table 7.1: Test for convergence for direct FFT solver on Test Problem 1

Grid Scheme max-err L2-err L2-res Rate of Convergence

1253 2nd 5.7570466e-03 6.4986713e-03 4.7269292e-13 -

4th 3.4493268e-05 3.5925614e-05 3.6301725e-13 -

6th 2.1875397e-06 1.9909214e-06 3.1581209e-13 -

2503 2nd 1.4853854e-03 1.6510028e-03 2.5846930e-12 1.95

4th 2.1782070e-06 2.2582699e-06 1.9857221e-12 3.99

6th 3.4942928e-08 3.1643311e-08 2.0541112e-12 5.97

5003 2nd 3.7448165e-04 4.1516358e-04 6.5883688e-12 1.99

4th 1.3726414e-07 1.4187594e-07 5.0832056e-12 3.99

6th 5.5211108e-10 4.9939925e-10 5.2147803e-12 5.98

The presented outcomes of the numerical experiments confirm the declared rate of conver-

112

gence for each corresponding approximate solution.

Comparison with existing iterative solver

Table 7.2 presents a comparison of various solvers: the first two rows show the result of the

iterative solver used in [5], with results from runs on a Supermicro cluster consisting of 12

nodes. Each node contained two Intel Xeon E5520 2.27 GHz quad processors that shared 8

GB of memory.

The remaining rows present the results of the second-order direct solver considered in our

previous publications [36, 34], and fourth and sixth-order solvers presented in Chapter 5.

Rows three to five give results for the Xeon X5690 server with a 3.47 GHz processor and 144

GB of memory. While the last three rows exhibit the results achieved on an iMac PC with

Intel Quad-Core i7 2.93 GHz processor and 16 GB 2133 MHz LPDDR3 memory.

The first column represents the hardware used in the numerical experiment. The second and

third columns indicate the order of approximation of the solver and the type of the solver

(direct or iterative). In the fourth column, the number of grid points required to achieve

the indicated relative accuracy (L2-err < 0.001). The fifth column shows the number of

iterations until the convergence of the iterative solver, where in the case of the direct solvers

we put 1. The last column displays the CPU time required for each test run.

Table 7.2 shows that the direct FFT solver on the X5690 and iMac i7 was approximately 46

and 36 times faster than the iterative solver respectively in the second-order case. With the

sixth-order scheme, the direct FFT solver was approximately 18 and 13 times faster on the

X5690 and iMac i7 than the iterative solver, respectively. This is an expected result since

the iterative CARP-CG method was designed to solve the general 3D Helmholtz equation

113

Table 7.2: Comparison of direct FFT solver and other iterative solvers on Test Problem 1

Machine Scheme Type N # Iterations Time(s)

Supermicro 2nd iterative 333 1970 703

Supermicro 6th iterative 45 350 1.01

X5690 2nd direct 353 1 15.18

X5690 4th direct 62 1 0.078

X5690 6th direct 50 1 0.055

iMac i7 2nd direct 353 1 19.8

iMac i7 4th direct 62 1 0.097

iMac i7 6th direct 50 1 0.08

instead of the problems with specific restrictions considered in this test problem. Table 7.2

also indicates to reach the desired accuracy on the approximation scheme the direct solver

requires more slightly larger grid size. This is not a detriment to the direct solver as due

to the optimality condition of the FFT method, sometimes it is advantageous to consider a

slightly larger number of grid points which has more factors of 2 in its prime factorization.

The CPU time for the fourth-order scheme on the 643 grid was 0.07 sec on X5690.

7.1.2 Solution of convection-diffusion equation

To demonstrate the robustness of our approach, this subsection presents the result for com-

puting the numerical solution of the 3D convection-diffusion equation (5.6) using the direct

FFT solver.

114

Test Problem 2a

For the next test problem, we consider the 3D convection-diffusion equation with the follow-

ing analytic solution.

u(x, y, z) = sin

(
πx√
2

)
sin

(
πy√
2

)
e−γz/22e

γ/2 sinh(σz) + sinh(σ(1− z))

sinhσ

where σ =
√
π2 + γ2/4 define over the domain Ω = [0,

√
2]× [0,

√
2]× [0, 1]. Let γ = −100

and the right-hand side is given by

f(x, y, z) = ∆u(x, y, z) + γ
∂

∂z
u(x, y, z) = 0

It is worth mentioning that the step size hx = hy =
√
2/(N + 1) and hz = 1/(N + 1) for

Test Problem 2a are not equal. The direct FFT solver will be using the stencil shown in

subsection 4.2.4 for Test Problem 2a.

Convergence of the numerical scheme

The fourth-order convergence of the approximate solution to the analytic solution on a

sequence of grids is presented in Table 7.3. As expected the rate of convergence of the

maximum error verified the accuracy of the numerical method.

Table 7.3: Test for convergence for direct FFT solver on Test Problem 2a

Grid max-err L2-err L2-res Rate of Convergence

643 3.2612907e-03 4.6813690e-04 1.5435312e-15 -

1283 2.0579387e-04 2.9792890e-05 4.6094565e-15 3.99

2563 1.2939970e-05 1.8507601e-06 9.9002420e-15 3.99

5123 8.1975702e-07 1.1559163e-07 3.2599029e-14 3.98

115

Test Problem 2b

For the next test problem on the convection-diffusion equation, we consider the 3D convection-

diffusion equation with α = β = 0 and γ(z) = Re cos(z) where Re = 100 is the Reynolds

number. The analytic solution is given by

u(x, y, z) = sin(x) sin(y) sin(z)

define over the domain Ω = [0, 1] × [0, 1] × [0, 1]. In this test problem, the right-hand side

would be

f(x, y, z) = ∆u(x, y, z) + γ(z)
∂

∂z
u(x, y, z)

= −3 sin(x) sin(y) sin(z) + γ(z) sin(x) sin(y) cos(z)

γ(z) in this test problem is now a function of z so the direct FFT solver will be using the

coefficient shown in subsection 4.2.5.

Convergence of the numerical scheme

The fourth-order convergence of the approximate solution to the analytic solution on a

sequence of grids is presented in Table 7.4. Similar to the previous test, the result from the

numerical runs verified the accuracy of the numerical method.

Table 7.4: Test for convergence for direct FFT solver on Test Problem 2b

Grid max-err L2-err L2-res Rate of Convergence

643 6.31161e-08 7.58421e-15 1.48463e-07 -

1283 4.07262e-09 1.40755e-14 9.43177e-09 3.95

2563 2.58605e-10 1.46549e-14 5.94238e-10 3.98

116

7.1.3 Scalability of direct FFT solver

Subsection 7.1.1 has displayed the strength of the developed direct FFT solver over one of the

most well-known general iterative methods. In this subsection, we focus on the scalability

properties of the developed algorithms and their limitations. The parallel implementation of

the direct FFT solver introduced in Chapter 6 will be used to compute approximate solutions

to the same test problem shown in the previous subsection. For the remaining of Section 7.1,

the numerical experiment would be run with Test Problem 1 from subsection 7.1.1 with the

following parameter: a = 10, b = 9, c = 10, β = 10 and γ = 9 and the sixth-order scheme,

unless stated otherwise.

First, a comparison between the OpenMP and MPI implementation was made with a nu-

merical test on the grid of 5123. The results from both implementations were obtained from

a run on a single Haswell node on Cori. The sets of OpenMP threads and MPI processes

were also chosen to be the same and the results of this comparison are presented in Figure

7.1.

Figure 7.1 shows the solution time required for both of the parallel implementations demon-

strates near linear scalability. The solution wall time (in seconds) decreases by a factor of

close to 2 as the number of processes doubles. This numerical test also supported the idea

that OpenMP has slightly better performance than MPI on a single node.

However, the limitation of OpenMP is revealed while attempting to run the test problem on a

grid size of 10243. The machines tested, including a single Haswell node on Cori, were unable

to run this experiment due to a lack of memory. The experiment was repeated with the MPI

implementation on one, two, and four Haswell nodes on Cori. The attempts with both one

117

Figure 7.1: Scalability of OpenMP vs MPI implementation of direct FFT solver

and two nodes failed, again due to a lack of memory. However, the program was able to run

successfully with four Haswell nodes. This highlights the power of MPI implementation.

An experiment was conducted to further investigate the performance and limitations of the

MPI implementation. The setup, communication, and computation times were recorded as

the number of MPI processes used increased. Computation time here refers to the time taken

for all the MPI processes to complete the forward and inverse 2D DST, and tridiagonal solver

steps. The communication time measures the longest time taken for the MPI processes to

scatter the data to the appropriate processes and assign data to a local array, while the

setup time gives the time required to prepare the parallel environment. The total time is

the sum of both of these run times. This test is run on a grid size of 5123 on Cori as well

as on Falconviz and the results are displayed in Figure 7.2 and 7.3. The time shown in both

figures is measured in seconds (s) and then apply the natural logarithmic.

One can observe that the computation time decreases almost linearly with a slope close to

118

Figure 7.2: MPI implementation performance on Cori

0

1

2

3

4

5

1 2 4 8 16 32

Computation Setup and Communication Total

Figure 7.3: MPI implementation performance on Falconviz

−0.5 in both figures. It is worth noting that the setup and communication time improved

significantly from 8 MPI processes to 16 MPI processes on Cori. The author suspects that

the increase in performance could be attributed to the computation domain being divided

small enough to fit into the cache. Thus making the data transfer process faster. This trend

improvement in computation time is observed throughout all numerical tests for the hybrid

implementation of the direct and iterative solvers on Cori on the same grid.

On the other hand, the communication time would show a trend of decreasing and then

119

started to increase past a certain threshold (16 for Cori and 8 for Falconviz). Past the

threshold, the setup and communication time is seen to be increasing and even exceeding the

computation time (as seen with the case on Falconviz). This numerical test has successfully

demonstrated the weakness of MPI implementation when the increase in the number of MPI

processes causes the overhead to increase and outweighs the computational parallelism.

To overcome this hurdle from MPI implementation, the hybrid OpenMP-MPI approach

is considered. A sequence of test runs was performed to verify the hypothesis that once

the number of MPI processes reaches a certain threshold, reducing the number of MPI

processes used while maintaining the number of physical processors utilized will improve the

computation time over MPI. Table 7.5 shows the computation times in seconds for Hybrid

I implementation of direct FFT solver on a grid of 5123 on Cori. Similarly, Table 7.6 shows

the computation times for Hybrid II implementation instead of on the same grid. The nodes

in the table indicate the number of Haswell nodes the solver is using which also serves as

the number of MPI processes used. It is worth reiterating that each Haswell node has 32

physical cores available which serve as the number of OpenMP threads. Here, the number

of OpenMP threads changes horizontally, and the MPI processes change vertically.

Table 7.5: Hybrid I implementation of direct FFT solver on Test Problem 1

Nodes 1 Thread 2 Threads 4 Threads 8 Threads 16 Threads 32 Threads

1 39.61 24.56 15.04 10.78 8.88 8.07

2 19.90 11.90 7.19 4.97 4.00 3.44

4 10.31 6.11 3.66 2.60 2.28 1.90

8 5.30 3.34 2.09 1.52 1.30 1.22

16 2.42 1.48 0.85 0.55 0.47 0.41

32 1.81 1.35 1.06 0.86 0.77 0.86

120

Table 7.6: Hybrid II implementation of direct FFT solver on Test Problem 1

Nodes 1 Thread 2 Threads 4 Threads 8 Threads 16 Threads 32 Threads

1 39.61 21.73 12.93 8.83 6.84 5.62

2 19.87 10.94 6.48 4.56 3.48 2.92

4 9.99 5.66 3.48 2.52 2.10 1.82

8 5.27 3.11 1.99 1.55 1.37 1.27

16 2.49 1.42 0.85 0.64 0.58 0.58

32 1.85 1.33 1.09 0.93 0.76 0.80

In general, both of the hybrid implementations produce similar results to each other on

medium size grids. It is worth noting that the result of using 16 nodes and 2 threads appears

to have a slight edge over using 32 nodes and 1 thread (which is comparable to a strictly MPI

implementation) in both hybrid implementations. This small edge in performance could be

observed on the last two rows when comparing the result diagonally down and to the left

in both Table 7.5 and 7.6. This could support the hypothesis mentioned earlier that once

the number of MPI processes reaches a certain threshold then reducing the number of MPI

processes used while maintaining the number of physical processors utilized will improve

the computation time over MPI. This hypothesis is also supported by Figure 7.2 which

shows that the computation time begins to increase when users increase the amount of MPI

processes used from 16 to 32.

Nonetheless, the true strength of the hybrid approach lies in a problem with relatively

large grids. To highlight the strength of hybrid OpenMP-MPI implementation, further

experiments were conducted on a sequence of larger grids ranging from 5123 up to 40963.

The results of these experiments were obtained from a run on Cori as well. The performance

of the MPI and Hybrid II implementation of direct FFT solver is shown in Table 7.7. The

121

first column represents the number of grid points used in the experiment. The second column

indicates the type of method used for the parallel implementation. The third and fourth

columns represent the number of Haswell nodes used and the total number of processors

used by the numerical solver. For the MPI implementation, the total number of processes

is equivalent to the number of MPI processes used, while for Hybrid II implementation, the

number of nodes represents the number of MPI processes used and each node has 32 cores

which serve as the number of OpenMP threads used. The CPU time required for each test

run is recorded in seconds and presented in the last column.

Table 7.7: Comparison of MPI and Hybrid II implementation performance

N Method Nodes # Processes Time(s)

512 MPI 1 32 2.830525

Hybrid II 1 32 7.793963

1024 MPI 4 128 8.759851

Hybrid II 4 128 16.911352

2048 MPI 32 1024 40.465395

Hybrid II 32 1024 19.417831

4096 MPI 256 4096* 445.803343

Hybrid II 256 8192 27.522366
* Despite having 8192 processors available the implementation limits the use to 4096

One may observe that while running the numerical solver on a medium grid size the MPI

implementation performed better than the hybrid implementation. This is likely due to the

overhead required by OpenMP, in particular of those multi-threading FFTW, as discussed

in sub-subsection 6.4.2. However, the Hybrid II implementation was able to outperform the

MPI implementation by almost a factor of 2 when working with a grid size of 20483. This

could be an indication of how the setup and communication time will become a bottleneck

122

for MPI implementation alluded to by Figure 7.2. The result on the grid size of 40963 then

demonstrates another limitation of the MPI implementation for the proposed algorithm.

As mentioned in Section 6.4 the MPI implementation is only able to utilize at most 4096

processors which is the grid size in z-direction. The Hybrid II implementation, however,

significantly alleviates this restriction and can fully utilize all available resources almost

doubling the number of processes used in MPI implementation. As a result, the Hybrid II

implementation significantly outperforms the strictly MPI implementation by 16 times.

All in all, while restricted to specific types of problems, the direct FFT solver managed to

represent highly accurate and scalable methods for the solution of the considered problems.

These features make the direct FFT solver desirable as the preconditioner solver for the

proposed iterative method.

7.2 Iterative GMRES-FFT Solver

In this section, numerical experiments for the proposed iterative method will be presented.

Let uk represent the computed approximate solution after the k-th iteration of the iterative

solver and u0 represent the initial guess of the iterative solver. The proposed iterative solver

set the u0 = 0 as the initial guess and computes r⃗0 by solving r⃗0 = A−1
p f with the direct

FFT solver where Ap represents the preconditioner matrix.

This section will be using the following measurements to analyze the performance of the

iterative method

• the relative residual is ∥Aun − f∥2/∥r⃗0∥2

• max-err denotes the maximal component-wise error: ∥u− un∥∞

123

where the iterative method stops at the n-th iteration and u is the analytic solution of the

test problem (if any). The rate of convergence is calculated by ln
(

|errm,N |
|err2m,N |

)
/ ln(2) where

errm,N is the max-err obtained from PDE problem with Nth-order scheme on a grid of m3

where an analytic solution is known as in Section 7.1.

The first two subsections will focus on test problems based on the 3D Helmholtz problem

and the 3D convection-diffusion problem. Test problems that are not solvable with the

direct FFT solver will be presented. The third subsection will present the application of the

developed iterative method for the forward problem of the subsurface scattering problem.

Each of the subsections would also include a sub-subsection to discuss the preconditioning

system used. The next section would present the performance of the iterative method when a

lower-order scheme preconditioner is used. The scalability of the proposed iterative method

would be displayed via the performance of the parallel algorithm at the end of the section.

7.2.1 Solution of Helmholtz equation

In this subsection, we shall consider the 3D Helmholtz equation where the coefficient function

k2 is a multivariate function dependent on the variables x, y, and z. Hence the matrix from

the discretization of this Helmholtz equation would fail the restriction for direct FFT solver

introduced in Chapter 4. This meant that the direct solver could not be used to find the

numerical solution for the Helmholtz equation. All numerical experiments in this subsection

were conducted on a standard Alienware desktop described earlier in this chapter.

124

Test Problem 3

Define the coefficient k2 as

k2(x, y, z) = −2

(
1

x2
+

1

y2
+

1

z2

)
Then we shall considered the 3D Helmholtz equation (2.1) with the following analytic solution

u(x, y, z) =
1

xyz

defined over the domain Ω = [0.5, 2.5] × [0.5, 2.5] × [0.5, 2.5]. The numerical experiments

will be running with an equal number of grid points in all directions to include a comparison

with the sixth-order scheme. For this particular test problem, the right-hand side function

would be the zero function, that is f(x, y, z) = ∆u(x, y, z) + k2(x, y, z)u(x, y, z) = 0.

Preconditioning system

As mentioned in Section 5.6, the preconditioner plays a huge role in the performances of

the iterative method. We shall consider the preconditioning strategy discussed in subsection

5.6.1 by approximating the coefficient k2(x, y, z) in Test Problem 3 with k2
0(z) = −2/z2.

Then the modified Helmholtz equation for the preconditioning system

∆u(x, y, z) + k2
0(z)u(x, y, z) = 0

could be solved with the direct FFT solver. The iterative process is set to stop once the

relative residual falls below 10−12.

Convergence of numerical scheme

To demonstrate the convergence of the proposed iterative method, a series of numerical tests

were conducted on Test Problem 3 with various grid sizes, that is 323, 643, 1283, and 2563.

125

The results of this series of numerical tests are presented in Table 7.8. The first column

of Table 7.8 displays the grid size N = Nx = Ny = Nz of the grids used for the numerical

experiments. Column two of the table would display the order of the scheme used and column

three presents the number of iterations required before the desired error is obtained. The

fourth column reports the maximal component-wise error of the initial guess and the analytic

solution. The max-err is then reported in the fifth column. Also shown is the sequential

CPU time (in seconds) for the iterative algorithm to complete in the sixth column. Finally,

the last column of the table shows the rate of convergence.

Table 7.8: Test for convergence on 3D Helmholtz problem with variable coefficient function

N Scheme Iteration ∥u1 − u∥∞ max-err Time(s) Rate of Convergence

32 2nd 10 0.437 4.12e-03 0.05 -

4th 10 0.433 4.71e-05 0.06 -

6th 10 0.436 5.62e-07 0.08 -

64 2nd 10 0.439 1.06e-03 0.42 1.96

4th 10 0.438 3.05e-06 0.51 3.95

6th 10 0.439 9.03e-09 0.70 5.96

128 2nd 10 0.439 2.67e-04 3.99 1.99

4th 10 0.439 1.91e-07 4.60 4.00

6th 10 0.440 1.42e-10 6.11 5.99

256 2nd 10 0.440 6.69e-05 35.09 2.00

4th 10 0.440 1.20e-08 40.46 3.99

6th 10 0.440 2.50e-12 53.09 5.83

Recall that u1 = u0 +A−1
p r⃗0 = A−1

p r⃗0 is in fact the solution to the system Apx = f obtained

with the direct FFT solver. Hence the fourth column of Table 7.8 is the undeniable proof

that the direct FFT solver fails to find a numerical solution for Test Problem 3. On the

other hand, the fifth column shows that through the iterative method, one may obtain a

126

significantly better approximation to the analytic solution. Furthermore, the last column of

Table (7.8) displays strong evidence that when the grid size is doubled, the max-err obtained

is reduced by approximately 2n where n denotes the order of scheme used. This confirmed

the declared rate of convergence for each corresponding approximate scheme.

It is worth mentioning that while all three schemes require the same number of iterations,

the max-err would suggest that the sixth-order scheme has a significantly better result. In

particular, one can observe that the second order scheme with a grid of 2563 has an error

that is about 120 times larger than that of the sixth order scheme with a mesh of 323 (i.e.

1/512 of the number of grid points of the second order scheme). On the other hand, the

sixth-order accurate scheme with a grid of 643 solves the Helmholtz equation with accuracy

approximately the same as the fourth-order accurate scheme on a mesh of 2563. This meant

that in terms of computational time, the sixth-order scheme is capable of obtaining a solution

of the same accuracy at about 58 times faster than that of the fourth-order scheme.

In conclusion, these numerical experiments demonstrate the convergence properties of the

proposed GMRES-FFT-type iterative method for the general 3D Helmholtz equation. It also

displayed the advantages of using a sixth-order accurate scheme over the other two schemes.

7.2.2 Solution of convection-diffusion equation

In this subsection, we shall consider the 3D convection-diffusion problem but with non-zero

convection coefficients α and β instead. The matrix from the discretization of this problem

is expected to fail the restriction for the direct FFT solver. The results of the numerical

experiments in this subsection are obtained from runs on the standard Alienware desktop

127

described earlier.

Test Problem 4a

The accuracy of the finite difference scheme is first tested. To illustrate this, we used the

same numerical experiments in [23] where the following 3D convection-diffusion equation

with constant convection coefficients is consider

α = −Re cos(A) cos(B)

β = −Re cos(A) sin(B)

γ = −Re sin(A)

u(x, y, z) = sin(πx) sin(πy) sin(πz)

with A = 35◦ and B = 45◦ define over Ω = [0, 1] × [0, 1] × [0, 1]. This numerical test is

repeated for small to moderate values of the Reynolds number (Re ≤ 103) and various step

sizes as in [23].

Preconditioning system

As discussed in subsection 5.6.2, the preconditioning system considers approximating the

original test problem with the following 3D convection-diffusion equation

∆u(x, y, z)− γ
∂

∂z
u(x, y, z) = f(x, y, z)

whose discretization is shown in subsection 4.2.4. Direct FFT solver can solve this system

directly and the iterative process is set to stop once the relative residual is below 10−10. The

result of the numerical experiments was obtained from runs on a standard Macbook Pro

laptop with a 2.3 GHz Quad-Core Intel Core i5. The numerical algorithm was implemented

128

in MATLAB.

Convergence of numerical scheme

Table 7.9 presents the results for the test of fourth-order convergence of the approximate

solution to the analytic solution. The first column shows the value of the Reynolds number

used for the numerical test. The step size of the experiment, h = 1/(N + 1) and max-err is

reported on the second and third column of the table respectively. The last column of the

table displayed the rate of convergence.

Table 7.9: Test for convergence of 3D convection-diffusion equation with constant coefficients

Re h max-err Rate of Convergence

1 1/16 1.5014e-05 -

1/32 9.4463e-07 4.00

1/64 5.9003e-08 4.00

10 1/16 5.7296e-05 -

1/32 3.5854e-06 4.00

1/64 2.2409e-07 4.00

100 1/16 1.5857e-03 -

1/32 1.0279e-04 3.95

1/64 6.4460e-06 4.00

1000 1/16 9.0426e-03 -

1/32 1.1538e-03 2.97

1/64 8.3612e-05 3.79

1/128 5.3502e-06 3.97

Overall the result shown in Table 7.9 were nearly identical to the result shown in [23].

Numerical tests with Re = 1, 10, and 100 have proven the fourth-order convergence rate

for the proposed iterative method. The fourth-order scheme performed relatively poorly

at Re = 1000 on a small grid. However, as the grid is increased to allow more grid points

129

inside the computational domain, the accuracy of the fourth-order compact scheme increases

rapidly.

Comparison with existing numerical solver

Table 7.10 presents the comparisons between the proposed iterative solvers and the numerical

results from [23]. The authors of [23] compute the numerical solution for Test Problem 4a

using the four-color Gauss-Seidel and backward relaxation technique with the best results.

The numerical experiment results were obtained from runs on a C-90 supercomputer at the

Pittsburg Supercomputing Center. The C-90 is a vector machine with 16 processors.

The method used in the experiments is shown in the first row of the table. The iterations

column displays the number of iterations required for the iterative methods to converge while

the CPU time shows the computational time measured in seconds. The numerical result for

h = 1/32 and h = 1/64 with various values of the Reynolds number, Re = 1, 10, 100, and

1000 is presented.

Table 7.10: Comparison of 3D convection-diffusion solvers on Test Problem 4a

Re Four-Color Gauss-Seidel Iterative GMRES-FFT

Iterations CPU time (s) Iterations CPU time (s)
for h = 1/32

1 8 1.02 7 0.20
10 10 1.14 17 0.36
100 18 1.64 39 0.81
1000 61 4.19 47 1.09

for h = 1/64

1 8 6.86 7 0.73
10 10 7.62 16 1.47
100 19 10.47 46 5.15
1000 60 22.97 65 6.23

Table 7.10 reveals that the iterative GMRES-FFT method requires more iterations to con-

130

verge. However, the computational time taken for the iterative GMRES-FFT method is

consistently faster than the four-color Gauss-Seidel method used in [23] for Test Problem

4a. It is also worth noting that if the coefficient bl, cl, and dl were not modified as in Section

4.2.4, the iterative GMRES-FFT solver would require a total of 375 iterations and 22.60

seconds to compute the numerical solution of Test Problem 4a with Re = 1000 and step size

h = 1/64.

Test Problem 4b

To further illustrate the quality of the developed iterative methods, we compared the pro-

posed solver with another numerical solver but for the convection-diffusion equation with a

large Reynolds number instead. The numerical experiment in [33] is conducted.

In [33], the 3D convection-diffusion equation with constant convection coefficients is consid-

ered. The test problem has a very large Reynolds number, (Re = 107) and α = β = γ = Re.

In this case, traditional iterative and multigrid methods would either fail to converge or has

a slow convergence rate. The analytic solution is given by

u(x, y, z) = cos(4x+ 6y + 8z)

defined on Ω = [0, 1]× [0, 1]× [0, 1].

The authors in [33] considered the solution of this test problem by the multigrid method with

their developed fourth-order scheme (FOC) using either plane relaxation smoother or point

relaxation smoother. The stopping criteria they used for the operator-based interpolation

and the V-Cycle on the 2h and h grid steps were 10−10. The result of their test was obtained

from running on one processor of an IBM HS21 blade cluster at the University of Kentucky.

131

The processor has 2 GB local memory and runs at 2.0 GHz. We shall compute the solution

of the same problem by applying the iterative method with the preconditioner system that

assumes α = β = 0 as in Test Problem 4a. The iteration method is set to stop once the

relative residual falls below 10−10. The numerical results were obtained from runs on the

standard Alienware desktop. Also, we demonstrate that even the sequential variant of the

developed iterative method is significantly faster than the multigrid method used in [33]. But

this could be expected since the multigrid method used in [33] was designed to solve general

3D convection-diffusion equations with variable convection coefficients instead of problems

with constant convection coefficients like this particular test problem.

The numerical results are listed in Table 7.11. The first column displays the step size,

h = 1/(N+1), used for the numerical experiments. Column two shows the type of numerical

solvers used. Here FOC with the point or plane relaxation were the methods used in [33] and

the iterative GMRES-FFT solver is the proposed iterative method in this dissertation. The

max-err and CPU time (in seconds) for the algorithm are reported in the last two columns

respectively.

Table 7.11 has demonstrated the efficiency of the proposed iterative method. The proposed

iterative solver computes a similar approximation solution in a shorter amount of time for a

3D convection-diffusion equation with constant convection coefficients and a large Reynolds

number.

Test Problem 4c

Test problems 4a and 4b have demonstrated the excellent performance of the iterative solver

for computing numerical solutions of 3D convection-diffusion equations with constant con-

132

Table 7.11: Comparison of 3D convection-diffusion solvers on Test Problem 4b

Step size Method # iter max-err Time (s)

1/8 FOC with point relaxation 52 6.10e-02 0.009

FOC with plane relaxation 8 6.10e-02 0.017

Iterative GMRES-FFT solver 25 6.89e-02 0.109

1/16 FOC with point relaxation 164 1.41e-02 0.262

FOC with plane relaxation 17 1.41e-02 0.320

Iterative GMRES-FFT solver 38 1.99e-02 0.290

1/32 FOC with point relaxation 500 3.36e-03 7.621

FOC with plane relaxation 26 3.36e-03 4.852

Iterative GMRES-FFT solver 52 5.45e-03 1.012

1/64 FOC with point relaxation Does not converge - -

FOC with plane relaxation 46 8.21e-04 70.073

Iterative GMRES-FFT solver 69 1.41e-03 6.395

vection coefficients. In this sub-subsection, we present the result of the iterative solver on a

3D convection-diffusion equation with the variable coefficient on z-direction as follows

α(x, y, z) = 0

β(x, y, z) = 0

γ(x, y, z) = Re sin(x) sin(y) sin(z)

u(x, y, z) = xyz(1− x)(1− y)(1− z)

defined on Ω = [0, 1]× [0, 1]× [0, 1] and Re = 10. The right-hand side is given by

f(x, y, z) = ∆u(x, y, z) + γ(x, y, z)
∂

∂z
u(x, y, z)

= − 2(yz(y − 1)(z − 1) + xz(x− 1)(z − 1) + xy(x− 1)(y − 1))

− γ(x, y, z)xy(x− 1)(y − 1)(2z − 1)

133

Preconditioning system

As discussed in subsection 5.6.2, the preconditioning system considers approximating the

original test problem with the following 3D convection-diffusion equation

∆u(x, y, z)− γ0(z)
∂

∂z
u(x, y, z) = f(x, y, z)

where γ0(z) = Re sin(z) for this test problem. Then this preconditioner system can be solved

by the direct FFT solver and the iterative process is set to stop once the relative residual is

below 10−12.

Convergence of numerical scheme

Table 7.12 presents the results for the test of fourth-order convergence of the approximate

solution to the analytic solution for Test Problem 4c. The first column shows the grid size

of the grids used for the numerical experiments. Column two of the table shows the number

of iterations required until the convergence of the iterative solver. The third and fourth

columns report the max-err and the sequential CPU time (in seconds) for the algorithm to

complete. The rate of convergence is displayed in the last column of the table.

Table 7.12: Test for convergence of 3D convection-diffusion equation with variable coefficient

N Iteration max-err Time(s) Rate of Convergence

32 15 5.008e-10 1.687 -

64 15 3.336e-11 11.898 3.91

128 15 2.151e-12 90.094 3.96

The numerical experiments stop at grid 1283 since the computed solution obtained was

already very close to the analytical solution as evidenced by the max-err at 1283 grid which

134

is at 10−12. All in all, the results show promising performance for the iterative solver for the

convection-diffusion equation with variable coefficient in the z-direction.

7.2.3 Subsurface inclusion model problem

In this subsection, we consider the mathematical model for subsurface imaging such as

landmine detection that was introduced in subsection 2.1.1. In this model, mine-like targets

are considered to be hidden within the ground represented by {0.5 ≤ z ≤ 1.0} and {0 ≤ z <

0.5} representing the air. The frequency ω = 1 GHz was chosen here so that the value of the

coefficient k2 is given by Table 2.1. In particular, the coefficient function k2 is defined as

k2(x, y, z) =


439.2, in air,
1273 + 31i, in soil and outside inclusions,
1256 + 2.26i, inside the inclusions.

(7.1)

Here inclusions refer to parts of the computational domain that would correspond to the

position of the mine-like target.

Preconditioning system

In this subsection, we will consider the preconditioning strategy discussed in subsection 5.6.1.

where the preconditioner matrix is created by approximating k2(x, y, z) with k2
0(z) given by

k2
0(z) =

{
439.2, for 0 ≤ z < 0.5,
1273 + 31i, for z ≥ 0.5,

(7.2)

The numerical algorithm for these numerical experiments is run on the standard Alienware

desktop unless stated otherwise. The iterative method is set to stop once the relative residual

is below 10−6.

The real part of the solution vector obtained from the iterative method is then stored and

drawn using MATLAB libraries. The plot from the approximated solution vector is compared

135

to an actual illustration of the computation domain with inclusion. The residual after each

iteration is also stored to analyze the rate of convergence.

Single mine-like target inclusion in ground

In the first experiment for the model problem, we consider the case where circular mine-like

targets were embedded within the ground. The mine-like target is modeled as a sphere with

center (0.7, 0.7, 0.7) with a radius of r = 0.1. Specifically the coefficient function k2 can be

written as

k2(x, y, z) =


439.2, for 0 ≤ z < 0.5,
1273 + 31i, for (x− 0.7)2 + (y − 0.7)2 + (z − 0.7)2 > 0.01 and z > 0.5,
1256 + 2.26i, for (x− 0.7)2 + (y − 0.7)2 + (z − 0.7)2 ≤ 0.01,

(7.3)

The first two rows in Equation (7.3) correspond to k2
0 mentioned earlier, and the third one

is due to a mine-like target. Figure 7.4 illustrates the coefficient function k2 for this setup

while Figure 7.5 shows a color plot of the real part of the approximated numerical solution U

over the computational domain. Both figures display the slices of the computational domain

at x = 0.2 and y = 0.7 and the approximate solution uh is obtained by using the sixth-order

scheme on a computational grid of size 1173. It took a total of 18 iterations for the iterative

method to converge for this model problem with the sixth-order scheme.

Figure 7.5 proves that the proposed numerical method can recognize the existence of the

mine-like target and is capable of estimating the general location of the mine even on a

small grid of 1173.

136

Figure 7.4: Color plot of the coefficient k2(x, y, z) with one circular inclusions

Figure 7.5: A color plot of the real part of the computed solution for subsurface with one
inclusion

Multiple mine-like targets inclusion in ground

The next numerical test involved the case where multiple, in this case, two, mine-like targets

of different sizes and shapes embedded inside the ground. Similar to the previous test, the

values of the coefficients k2 are given by Table 2.1. However, in addition to the circular mine

target in the previous test another mine-like target will be embedded within the ground. The

new mine-like target will be modeled as a cube centered at (0.2, 0.1, 0.85) with its length set

137

as 0.1.

The coefficient k2 is illustrated in Figure 7.6 while Figure 7.7 shows a color plot of the

real part of the approximate numerical solution uh over the computational domain using a

computational grid of size 1173. Both figures display the slices of the computational domain

at x = 0.2 and y = 0.7 and the approximate solution U is obtained by using the sixth-order

scheme. It took a total of 19 iterations for the iterative method to converge for this model

problem with the sixth-order scheme.

Figure 7.6: Color plot of the coefficient k2(x, y, z) with two inclusions

This numerical experiment proves that the proposed numerical method can clearly identify

and distinguish multiple mine-like targets and even provide an estimation for the general

location of the mine-like targets.

Lastly, Figure 7.8 displays and compares the scaled convergence history of the relative resid-

ual on each iteration in the preconditioned GMRES method based on the second, fourth, and

sixth-order compact approximation scheme on the computation grid of 1173. The logarithmic

scale is used to represent the convergence history.

The sixth-order scheme appears to have the best convergence rate for this modeling problem

138

Figure 7.7: A color plot of the real part of the computed solution for the subsurface with
two inclusions

as shown in Figure 7.8. All in all, these numerical experiments were able to successfully

prove that the proposed iterative solvers are capable of producing images that display the

location of the targets embedded inside the ground. This is important to the main targeted

application for subsurface imaging as now the iterative solver can be used to generate multiple

images for various types of inclusion for the inverse problem of the subsurface scattering

problem.

7.2.4 Low-order preconditioners

In this subsection, we shall test the performance of the iterative method based on a high-order

scheme with a low-order preconditioner. Specifically, the matrix used in the matrix-vector

multiplication step in GMRES will be based on high order scheme, that is fourth or sixth

order while the preconditioner system would be solving the preconditioner system with a

lower order scheme. Thus a fourth-order scheme iterative method would use a second-order

scheme preconditioner and a sixth-order iterative method could use either a fourth or second-

139

Iterations

Lo
g

R
es

id
ua

l

-8

-6

-4

-2

0

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

2nd

4th

6th

Relative Residual for the second, fourth and sixth order schemes.

Figure 7.8: Convergence history of the preconditioned GMRES method

order preconditioner.

Numerical experiments with Test Problem 3 and the subsurface inclusion model problem

with one inclusion are repeated. The numerical experiment with test Problem 4a will also

be repeated to demonstrate how a higher-order accuracy solution can be obtained with the

iterative method. The same preconditioning system in previous test problems would be

applied but with lower order preconditioning scheme instead.

All results for the numerical experiments in this subsection are obtained by a run on a

standard Macbook Pro laptop with a 2.3 GHz Quad-Core Intel Core i5. Moreover, the

numerical algorithm is also implemented via MATLAB.

Test Problem 3 with low-order preconditioning

Table 7.13 shows the result of fourth-order iterative solver with second and fourth-order

preconditioner, while the result of sixth-order iterative solver with second, fourth, and sixth-

140

order preconditioner is displayed in Table 7.14. The first column of both tables displays the

grid size used. The second column shows order of the preconditioning system. The number

of iterations until the iterative method converges is reported in the third column and the

final two columns report the max-err and total computation time (in seconds) respectively.

Similar to before, the iterative method is set to stop once the relative residual falls below

10−12.

Table 7.13: Comparison of 4th order iterative solver with various order preconditioner on
Test Problem 3

N Preconditioner Scheme Iteration max-err Time(s)

32 2nd 16 5.225e-05 0.226

4th 10 5.225e-05 0.202

64 2nd 16 3.575e-06 1.247

4th 10 3.575e-06 0.864

128 2nd 16 2.314e-07 11.167

4th 10 2.314e-07 6.834

256 2nd 15 1.470e-08 153.718

4th 10 1.470e-08 96.870

The results show that except for the sixth-order scheme with the second-order precondition-

ing system showing signs of deteriorating performance at the end, every other combination

considered can compute similar results to the iterative solver using a matching order pre-

conditioner. Additionally, this numerical test shows a consistent result to support the use of

a sixth-order iterative scheme with a fourth-order preconditioner which can produce compa-

rable accuracy with the sixth-order preconditioner in less computation time.

141

Table 7.14: Comparison of 6th order iterative solver with various order preconditioner on
Test Problem 3

N Preconditioner Scheme Iteration max-err Time(s)

32 2nd 15 4.693e-07 0.242

4th 10 4.693e-07 0.147

6th 10 4.693e-07 0.171

64 2nd 15 8.244e-09 1.488

4th 10 8.243e-09 0.990

6th 10 8.243e-09 1.016

128 2nd 15 1.496e-10 13.339

4th 10 1.361e-10 9.193

6th 10 1.361e-10 9.845

256 2nd 14 7.844e-10 185.004

4th 10 3.890e-12 133.160

6th 10 2.504e-12 136.730

Subsurface inclusion model problem with low-order preconditioning

Table 7.15 displays the performance of the iterative solver with matching and lower order

scheme preconditioner on a grid of 1173. The first column shows the order of the iterative

scheme. The ordering scheme of the preconditioner is shown in the second column. The

number of iterations required for the iterative method to converge, the relative residual,

and the computation time is taken (in seconds) are displayed on the last three columns

respectively.

The results from Table 7.15 would suggest that the order of scheme used by the precondi-

tioning system does not have a huge impact on the performance of the proposed iterative

method for the application of subsurface imaging.

142

Table 7.15: Comparison of iterative solver with lower order preconditioner on subsurface
inclusion model problem

Iterative Scheme Preconditioner Scheme Iteration L2-res Time(s)

4th 2nd 19 4.89e-07 24.239

4th 18 5.79e-07 23.828

6th 2nd 19 4.83e-07 31.204

4th 18 5.74e-07 30.250

6th 18 5.77e-07 30.035

Test Problem 4a for higher accuracy with low-order preconditioning

In this subsubsection, we explore the possibility of obtaining higher-order accuracy for the

numerical solution of Test Problem 4a. Wang and Zhang [33] use an operator-based in-

terpolation scheme combined with an extrapolation technique to approximate a sixth-order

accurate numerical solution. To the best of the author’s knowledge, there is no other explicit

sixth-order compact scheme for the convection-diffusion equation.

Given the analytic solution for Test Problem 4a, a sixth-order compact scheme can be

obtained by modeling Test Problem 4a after the Helmholtz equation. Specifically defined

the coefficient function k2(x, y, z) as

k2(x, y, z) = α
ux

u
+ β

uy

u
+ γ

uz

u

= απ cot(πx) + βπ cot(πy) + γπ cot(πz)

where ux = ∂
∂x
u and similarly for uy and yz on Ω = [ϵ, 1 − ϵ] × [ϵ, 1 − ϵ] × [ϵ, 1 − ϵ] where

ϵ = 10−300. The computational domain is changed because k2 is undefined when the variables

are 0 or 1. The coefficient matrix for Test Problem 4a can be derived from the sixth-order

approximation compact scheme in Section 3.4. The preconditioner matrix is still derived from

143

the fourth-order scheme for the 3D convection-diffusion equation with constant coefficients

in subsection 4.2.4. It is worth mentioning that the magnitude of k2 in Test Problem 4a

is incredibly large near the boundary of the computational domain. Hence, the resulting

matrix would be ill-conditioned and even fail to converge for medium to large Reynolds

number (Re ≥ 100).

A series of numerical tests were conducted on Test Problem 4a with various grid sizes, that

is 83, 163, 323, and 643 and the Reynolds number, Re = 1 and 10. The iterative process is set

to stop once the relative residual is below 10−10. The results of this series of numerical tests

are presented in Table 7.16 and Table 7.17. The first column of the table displays the grid

size N = Nx = Ny = Nz used for the numerical experiments. Column two of the table would

display the order of the scheme used and column three presents the number of iterations

required before the desired error is obtained. The fourth column reports the max-err. Also

shown is the sequential CPU time (in seconds) for the iterative algorithm to complete in the

sixth column. Finally, the last column of the table shows the rate of convergence, the rate

of convergence for the explicit scheme is not shown as the method would always converge to

the desired accuracy or stop as GMRES hit the maximum number of iterations.

Table 7.16 and Table 7.17 show the promising result as the iterative method can approximate

an almost sixth-order accurate solution for Test Problem 4a with Re = 1 and 10 in the same

computational time as the fourth-order scheme.

Incidentally, from the trigonometry angle addition and subtraction theorems, we have

sin(πx+ πh) = sin(πx) cos(πh) + cos(πx) sin(πh)

sin(πx− πh) = sin(πx) cos(πh)− cos(πx) sin(πh)

144

Table 7.16: Rate of convergence for Test Problem 4a with Re = 1 for various order schemes

N Scheme Iteration max-err Time(s) Rate of Convergence

8 4th 7 1.51e-04 0.12 -

6th 7 8.75e-06 0.10 -

16 4th 7 1.19e-05 0.18 3.67

6th 7 1.95e-07 0.23 5.49

32 4th 7 8.34e-07 0.28 3.83

6th 7 3.65e-09 0.23 5.74

64 4th 7 5.55e-08 0.73 3.91

6th 7 6.45e-11 1.02 5.82

Table 7.17: Rate of convergence for Test Problem 4a with Re = 10 for various order schemes

N Scheme Iteration max-err Time(s) Rate of Convergence

8 4th 15 5.69e-04 0.11 -

6th 20 3.31e-05 0.11 -

16 4th 16 4.46e-05 0.18 3.67

6th 20 1.26e-06 0.14 4.71

32 4th 17 3.16e-06 0.32 3.82

6th 20 3.42e-08 0.38 5.20

64 4th 16 2.10e-07 1.73 3.91

6th 20 7.77e-10 2.69 5.46

where h = hx = hy = hz is the grid step size. Thus

cos(πx) =
sin(πx+ πh)− sin(πx− πh)

2 sin(πh)

Similar results can be obtained in the y- and z-directions. Let C = π/ (2 sin(πh)), Test

Problem 4a can be discretized explicitly as 7-point stencil as follows

−3π2ui,j,k + αC(ui+1,j,k − ui−1,j,k) + βC(ui,j+1,k − ui,j−1,k) + γC(ui,j,k+1 − ui,j,k−1) = fi,j,k.

Using this explicit scheme, the iterative method can compute the numerical solution for Test

145

Problem 4a for any Reynolds number at the cost of a higher number of iterations. Table

7.18 presents the numerical results of running Test Problem 4a with the explicit scheme for

the Reynolds number, Re = 103, 105, and 107 on a grid of 73. The first column displays the

value of the Re used while the second column reports the max-err. The number of iterations

required before the relative residual is below 10−15 is shown in the third column. Lastly, the

computational time taken for the iterative algorithm to complete is in the fourth column.

Table 7.18: Numerical results for Test Problem 4a with explicit scheme on a grid of 73

Re max-err Iterations Time(s)

1000 1.4323e-13 306 0.54

100000 6.1441e-11 319 0.62

10000000 1.3583e-09 318 0.54

Overall the numerical tests in this subsection have shown that one may attempt to ap-

proximate a higher-order scheme with a preconditioner of lower order especially when the

order was close enough. Numerical experiments on Test Problem 4a also demonstrated the

strength of the iterative method that enables a fourth-order compact scheme to compute the

numerical solution with higher accuracy. This could open the door for more applications for

the direct FFT solver as a potential option as a preconditioner solver for an iterative method

based on a higher-order scheme in the future.

7.2.5 Scalability of iterative GMRES-FFT solver

In this subsection, the numerical results of each parallel implementation will be presented.

The performance will be evaluated and analyzed in depth. All numerical experiment results

146

obtained in this section were conducted on the standard Alienware desktop unless stated

otherwise.

The numerical experiments on the subsurface inclusion test problem presented in subsection

7.2.3 with a single mine-like target embedded in the ground are repeated. The numerical

experiment is performed on a grid of size 2563 with the sixth-order scheme. For this particular

series of tests, the iterative method is set to stop once the relative residual is less than

10−6. The iterative GMRES-FFT solver was able to successfully converge after a total of 27

iterations for all types of implementations (sequential or parallel) regardless of the number

of processes used.

The overall run time, measured in seconds, of the whole iterative method as well as individual

parts or steps of the method, were also recorded to analyze its performance. The run time

was rounded off to the nearest two decimal places and presented in the following table. The

average time for each iteration is calculated by taking the ratio between the overall run time

and the number of iterations it took, in this test that would be 27.

The result of the OpenMP implementation of the numerical algorithm with various numbers

of OpenMP threads is presented in Table 7.19 for comparison. The first row in Table

7.19 shows the average run time for the preconditioner direct solver discussed previously

for all 27 iterations discussed previously. It also shows the timing for each step inside the

preconditioner algorithm. The second row displays the time it took for the algorithm to

perform the matrix-vector multiplication while the third row presents the estimated time

for other steps that were left entirely up to PETSc such as the Arnoldi method, the timing

of which is calculated by subtracting the time for preconditioner direct solver and matrix-

vector multiplication from the average time for each iteration. The second column of Table

147

7.19 represents running the algorithm sequentially and the remaining column in Table 7.19

represents the results obtained from OpenMP implementation using two and four OpenMP

threads respectively.

Table 7.19: Performance of OpenMP implementation on a grid of 2563

Step Sequential 2 threads 4 threads

Preconditioner Direct Solver

Forward FFT 2.95 1.56 0.81

LU Tridiagonal Solver 0.38 0.22 0.11

Inverse FFT 3.03 1.66 0.83

Total 6.38 3.46 1.77

Matrix-Vector Multiplication 2.11 1.29 0.75

Other 2.30 2.23 2.33

Average time for each iteration 10.79 6.98 4.85

Overall 291.41 188.41 130.82

Similar to its performance in direct FFT solver, the OpenMP implementation was able to

successfully reduce the run time for both the preconditioner and matrix-vector multiplication

step almost linearly by a factor of two as the number of threads doubled. However, the time

taken for the iterative methods to complete other steps within the GMRES method such as

the Arnoldi method appears to be unchanged despite the increase in the number of OpenMP

threads used. Unfortunately, this is to be expected as PETSc by default is not thread-safe

[26] and hence it does not support OpenMP implementation unless the code is manually

modified as we did for the preconditioner solver and matrix-vector multiplication. Table

7.19 also supports this viewpoint as it shows that the only step OpenMP implementation

managed to parallelize were steps that were manually modified.

Hence GMRES implementation that relies on PETSc libraries such as the proposed iterative

148

method will not be able to perform optimally with OpenMP implementation. Moreover

looking at the performance of using four OpenMP threads, one can observe that this step

has overtaken the previously most computational heavy preconditioner direct solver step.

For the OpenMP implementation, these would become a big bottleneck and heavily restrict

its performance.

On the other hand, the result of MPI implementation of the iterative algorithm with various

numbers of MPI processors is presented in Table 7.20 for comparison. Now the second column

of Table 7.20 represents running the algorithm sequentially and the remaining column in

Table 7.20 represents the results obtained from MPI implementation using two and four

MPI processors respectively. A new row is included within the preconditioner step to report

the communication time between processors.

Table 7.20: Performance of the MPI implementation on a grid size of 2563

Step Sequential 2 processors 4 processors

Preconditioner Direct Solver

Forward FFT 2.95 1.48 0.78

LU Tridiagonal Solver 0.38 0.23 0.12

Inverse FFT 3.03 1.48 0.78

Communication - 0.22 0.13

Total 6.38 3.42 1.83

Matrix-Vector Multiplication 2.11 1.19 0.66

Other 2.30 1.31 0.75

Average time for each iteration 10.79 5.92 3.24

Overall 291.41 159.88 87.58

Contrasting to the OpenMP performance, one can observe that the MPI implementation

has a significantly better performance. It is reasonable to assume this could be because

149

PETSc does have better support for MPI implementation. This hypothesis is supported by

the observation that the run time in the row label ”Other” from Table 7.20 has shown a

visible reduction as the number of MPI processors doubled. Thus MPI implementation can

archive a significantly better performance overall.

Table 7.21 shows the run time of different parallel implementations for each step in the

iterative method. The second column of the table displays the performance of running the

algorithm sequentially. The third and fourth columns of the table show the performance

of running the algorithm using four OpenMP threads and four MPI processors respectively.

Hybrid I refers to the hybrid implementation shown in Algorithm 11 and Hybrid II refers

to the hybrid implementation shown in Algorithm 12. The result for each respective hybrid

implementation is presented in the fifth and sixth columns of Table 7.21. Both the hybrid

implementation uses exactly two OpenMP threads and two MPI processors.

Table 7.21: Performance of various implementations on a grid size of 2563

Step Sequential OpenMP MPI Hybrid I Hybrid II

Preconditioner Direct Solver

Forward FFT 2.95 0.81 0.78 0.78 0.88

LU Tridiagonal Solver 0.38 0.11 0.12 0.13 0.13

Inverse FFT 3.03 0.83 0.78 0.79 0.89

Communication 0.00 0.00 0.13 0.17 0.18

Total 6.38 1.77 1.83 1.90 2.09

Matrix-Vector Multiplication 2.11 0.75 0.66 0.63 0.63

Other 2.30 2.33 0.75 1.33 1.33

Average time for each iteration 10.79 4.85 3.24 3.86 4.06

Overall 291.41 130.82 87.58 104.11 109.53

The numerical test shown in Table 7.21 suggested that both hybrid OpenMP-MPI implemen-

150

tations have almost similar performance when running on a medium size problem. Hybrid

II implementation also took the longest time to compute both forward and inverse FFT

does show the increase in overhead for using multithread FFTW. The overall performance

for both hybrid implementations is better than the OpenMP implementation but falls be-

hind the performance of the MPI implementation. This is to be expected based on results

from previous numerical tests and could be attributed to PETSc support for strictly MPI

implementation.

Nonetheless, numerical experiments on direct FFT solver in subsection 7.1.3 have proved

that the true strength of hybrid OpenMP-MPI implementations is shown when running on

larger grid size problems. As such numerical experiments were performed on a grid of 10243.

The results of the test were obtained from a run on the Cori supercomputer as there is not

enough memory to run the algorithm on a local machine. It would require a minimum of

8 Haswell nodes to perform a run on a grid of 10243. The iterative process is set to stop

when the relative residual is below 10−6. It took a total of 22 iterations for the fourth-order

scheme to stop while the sixth-order scheme requires 26 iterations.

Table 7.22 and 7.23 shows the computations times measured in seconds for the Hybrid II

implementation of the iterative solver on a grid of 10243 on Cori with fourth and sixth order

scheme respectively. Similar to the previous table, the nodes in the table indicate the number

of Haswell nodes the solver is using which also serves as the number of MPI processes used.

It is worth reiterating that each Haswell node has 32 physical cores available which serve as

the number of OpenMP threads. Here, the number of OpenMP threads changes horizontally,

and the MPI processes change vertically.

One can observe from Table 7.22 and 7.23 that the computation times displayed almost linear

151

Table 7.22: Hybrid II implementation of iterative solver with 4th order scheme

Nodes 1 Thread 4 Threads 16 Threads 32 Threads

8 1609.37 633.04 364.98 315.03

16 805.82 319.73 184.62 168.63

32 391.51 159.76 86.33 73.37

Table 7.23: Hybrid II implementation of iterative solver with 6th order scheme

Nodes 1 Thread 4 Threads 16 Threads 32 Threads

8 2022.59 777.82 461.24 401.76

16 991.24 401.28 284.56 259.48

32 489.56 196.32 112.66 94.43

scalability as the number of MPI processes increased. However, the scalability observed when

OpenMP threads increased did not perform optimally. Nonetheless, the presented results

are consistent with other numerical experiments on the iterative solver.

Lastly, the numerical experiments for the Hybrid II implementation with a sixth-order scheme

were repeated but with a grid of 20893 instead. The test was performed using LBNL’s

supercomputer Cori using a total of 64 Haswell nodes. The run would take 31 iterations to

reach the desired tolerance of 10−6 with a total computational time of 1283 seconds which

is equivalent to 21 minutes and 23 seconds. Unfortunately, due to the limited resources

allocated to the author and co-researchers, the run was only able to complete once before

running out of node hours and memory. This is the limit of the numerical experiment

performed on the proposed iterative solver.

In conclusion, this dissertation has presented an iterative scalable GMRES-FFT-type algo-

rithm for a class of compact numerical approximations on a rectangular grid. The developed

152

algorithms represent highly accurate and scalable methods for the solution of the considered

problems. The advantages of the iterative method over the direct method are shown by the

wide variety of test problems it manages to compute whereby the direct method would fail.

Specifically, the iterative solver is now capable of solving general 3D Helmholtz equation and

3D convection-diffusion equation with a constant convection coefficient. The parallel imple-

mentation also enables the developed method to solve these problems with a considerably

large size in a short amount of time.

153

8 Conclusion and Future Work

The recent development of multi-core technologies on modern desktop computers makes

parallelization of the proposed numerical approaches a priority in algorithmic research. This

dissertation presented an efficient parallel generalized GMRES-FFT-type iterative algorithm

with near-optimal complexity for PDE such as the Helmholtz equation on a rectangular grid.

The iterative solvers utilize high-order approximations to provide high-resolution solutions

for the PDE. Moreover, the robustness of the solver is demonstrated by finding the numerical

solution for 3D convection-diffusion equation. Numerical results from various test problems

based on the Helmholtz and convection-diffusion equation were able to verify the effectiveness

of the proposed iterative approach. Above all, the iterative solver has proven its capability to

find the solution for the forward problem of propagation of high-frequency GPR signals using

PML boundary conditions over regions with small inclusions. Test problems with realistic

parameter ranges were used to verify the performance of the proposed iterative method.

Chapter 6 has shown how one may convert the sequential algorithm to a parallel algorithm

with relative ease. This is also supported by numerical experiments in Chapter 7 that demon-

strated the efficiency of the OpenMP, MPI, and hybrid OpenMP-MPI implementations of

the proposed parallel algorithms. This includes the vast improvement in computation time

and the ability to compute solutions for problems with large grid sizes.

154

8.1 Future Work

The performance of the OpenMP implementation on the iterative solver is less than ideal.

An improvement to the hybrid approach can be considered by replacing the OpenMP with

other parallel toolboxes. In particular, one may attempt GPU-enabled GMRES algorithms

that were designed to use NVIDIA’s Compute Unified Device Architecture (CUDA). All of

the Krylov methods in PETSc except KSPIBCGS run on the GPU systems from NVIDIA

using CUDA, and AMD and Intel using OpenCL/ViennaCL and HIP [26]. While PETSc still

supports strictly MPI implementation, a hybrid approach with the aforementioned technique

may be considered.

The development of a fast and accurate numerical method for the solution of the forward

problem is just a necessary preliminary step to the solution of the inverse problem. The

proposed iterative solver could be used to compute solutions to the forward problem with

multiple variations of the inclusion such as different locations, sizes, and shapes of the inclu-

sion. These solutions generate images at the surface that can be used to train a convolutional

neural network (CNN) to accurately identify the location, shape, and size of the inclusion.

155

Bibliography

[1] A.George and J.W.Liu, Computer Solution of Large Sparse Positive Definite Prentice

Hall, New Jersey, 1981.

[2] Cayley-Hamilton theorem Encyclopedia of Mathematics. URL: http://encyclopedia

ofmath.org/index.php?title=Cayley%E2%80%93Hamilton_theorem&oldid=22272

[3] D.Colton, and R.Kress, Inverse Acoustic and Electromagnetic Scattering Theory 2nd

Edition, Springer, 1998.

[4] D.Gordon, and R.Gordon, Solution methods for linear systems with large off-diagonal

elements and discontinuous coefficients Comp. Model. Eng. Sci. 53 (2009) 23–45.

[5] E.Turkel, D.Gordon, R.Gordon, and S.Tsynkov, Compact 2D and 3D Sixth Order

Schemes for the Helmholtz Equation with Variable Wave Number. Journal of Compu-

tational Physics 232 (2013) 272-287.

[6] G.J.Hicks, Arbitrary source and receiver positioning in finite difference schemes using

Kaiser windowed sinc functions. Geophysics 67 (2002) 156–166.

[7] G.Reid, Landmine detection using semi-supervised learning Electronic Theses and Dis-

sertations, University of Louisville, 2018, Paper 3132. https://doi.org/10.18297/etd

/3132

[8] H. Elman, and D.O’Leary, Efficient iterative solution of the three- dimensional Helmholtz

equation J. Comput. Phys. 142 (1998) 163–181.

156

[9] H.Elman, and D.O’Leary, Eigenanalysis of some preconditioned Helmholtz problems Nu-

mer. Math. 83 (1999) 231–257.

[10] H.Elman, S.David, and W.Andy, Finite Elements and Fast Iterative Solvers: with Ap-

plications in Incompressible Fluid Dynamics, 2nd edn Oxford University Press, 2005

[11] H.Jin, D.Jespersen, P.Mehrotra, R.Biswas, L.Huang, and B.Chapman, High perfor-

mance computing using MPI and OpenMP on multi-core parallel systems Parallel Com-

puting. 37. 562-575. https://doi.org/10.1016/j.parco.2011.02.002

[12] I.Duff, A.Erisman, and J.Reid, Direct Methods for Sparse Matrices, 2nd edn Oxford

University Press, 2002

[13] I.Giannakis, Realistic numerical modelling of Ground Penetrating Radar for landmine

detection 2016

[14] I.G.Graham, and S.Sauter, Stability and finite element error analysis for the Helmholtz

equation with variable coefficients Math. Comp. 89 (2020) 105–138.

[15] I.Singer, and E.Turkel, A perfectly matched layer for the Helmholtz equation in a semi-

infinite strip. J. Comput. Phys. 201 (2004) 439–465.

[16] J.Kalita, A.Dass, and D.Dalal, A transformation-free hoc scheme for steady convection-

diffusion on non-uniform grids. Int. J. Numer. Meth. Fluids 44 (2004) 33–53.

[17] J.Toivanen, and M.Wolfmayr, A fast fourier transform based direct solver for the

Helmholtz problem Numer. Linear Algebra Appl. 27 (e2283) (2020) 272–287.

157

[18] J. Zhang, Multigrid acceleration techniques and applications to the numerical solution of

Partial Differential Equations Ph.D. Thesis, The George Washington University, Wash-

ington, DC, 1997.

[19] J.Zhang, An explicit fourth-order compact finite difference scheme for three dimensional

convection–diffusion equation Commun. Numer. Meth. Eng. 14 (1998) 263–280.

[20] J. Zhang Preconditioned iterative methods and finite difference schemes for convec-

tion–diffusion Appl. Math. Comput., 109 (2000), pp. 11-30.

[21] L.Liu, R.Li, G.Yang, B.Wang, L.Li, and Y.Pu, Improving parallel performance of a

finite-difference AGCM on modern high-performance computers J. Atmos. Ocean. Tech-

nol. 2014, 31, 2157–2168.

[22] M.Frigo, and S.Johnson, FFTW Manual Massachusetts Institute of Technology, January

2003).

[23] M.Gupta, and J. hang, High Accuracy Multigrid Solution of the 3D Convection-Diffusion

Equation Applied Mathematics and Computation. 1998, 113. 249-274. https://doi.or

g/10.1016/S0096-3003(99)00085-5

[24] M.Valera, M.P.Thomas, M.Garcia, and J.E.Castillo, Parallel Implementation of a

PETSc-Based Framework for the General Curvilinear Coastal Ocean Model J. Mar. Sci.

Eng. 2019, 7, 185. https://doi.org/10.3390/jmse7060185

[25] R.Kress Numerical Analysis Springer, (1998).

158

[26] S.Balay, S.Abhyankar, M.Adams, J.Brown, P.Brune, K.Buschelman, L.Dalcin, A.Dener,

V.Eijkhout, W.Gropp, D.Karpeyev, D.Kaushik, M.Knepley, D.May, L.Curfman McInnes,

R.Mills, T.Munson, K.Rupp, P.Sanan, B.Smith, S.Zampini, H.Zhang, and H.Zhang

PETSc Users Manual- Revision 2.3.2 ARGONNE NATIONAL LABORATORY,

September 1, 2006.

[27] S.Lele, Compact finite difference schemes with spectral-like resolution. Journal of Com-

putational Physics 103 (1992) 16-42.

[28] S.V.Pakantar, Numerical Heat Transfer and Fluid Flow McGraw-Hill, New York (1980).

[29] T.M.Shih, Numerical Heat Transfer Hemisphere, Washington, DC (1984).

[30] U.Ananthakrishnaiah, R.Manohar, and J.W.Stephenson, High-order methods for elliptic

equation with variable coefficients Numer. Meth. Partial Differen. Eqns. 3 (1987) 219–227.

[31] W.Wang, T.Fischer, B.Zehner, N.Böttcher, U.J.Görke, and O.Kolditz, A parallel finite

element method for two-phase flow processes in porous media: OpenGeoSys with PETSc

Environ. Earth Sci 73, 2269–2285 (2015). https://doi.org/10.1007/s12665-014-357

6-z

[32] Y.Saad, and M.H.Schultz, GMRES: a generalized minimal residual algorithm for solving

nonsymmetric linear systems Siam Journal on Scientific and Statistical Computing, 1986,

7, 856-869.

[33] Y.Wang, and J.Zhang, Fast and Robust Sixth Order Multigrid Computation for 3D

Convection Diffusion Equation J Comput Appl Math. 2010 Oct 15;234(12):3496-3506.

https://doi.org/10.1016/j.cam.2010.05.022

159

[34] Y.A.Gryazin, High order approximation compact schemes for forward subsurface scat-

tering problems in: Proceedings of the SPIE 9077, Radar Sensor Technology XVIII Con-

ference, 2014, pp. 1–9. https://doi.org/10.1117/12.2050189

[35] Y.Gryazin, Preconditioned Krylov Subspace Methods for Sixth Order Compact Approx-

imations of the Helmholtz Equation ISRN Computational Mathematics, 2014, https:

//doi.org/10.1155/2014/745849

[36] Y.Gryazin, M.Klibanov, and T.Lucas, Gmres computation of high frequency electrical

field propagation in land mine detection J. Comput. Phys. 158 (2000) 98–115.

[37] Y.Gryazin, R.Gonzales, and Y.T.Lee, Parallel FFT algorithms for high-order approxi-

mations on three-dimensional compact stencils Parallel Computing, Volume 103, 2021,

102757, ISSN 0167-8191, https://doi.org/10.1016/j.parco.2021.102757

