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RISK ANALYSIS OF THE ISU AGN-201M REACTOR AND CONTROL ROD DRIVE 

CHANGEOVER 

Thesis Abstract 

Idaho State University (2022) 

The current Aerojet General Nucleonics 201 modified (AGN-201m) reactor at Idaho State 

University (ISU) has operated for 80 years with the current control rod mechanisms which still 

allows for adequate SCRAMming of the reactor. The original design involves a double leadscrew 

which causes binding problems and weight problems with the steel chassis. The proposed new 

design is lighter-weight and more serviceable than the original design by using newer materials 

and a single leadscrew design. This thesis provides a risk assessment of the new control rod drive 

mechanism (CRDM) versus the current CRDM and assists in the required documentation 

submitted to the Nuclear Regulatory Commission (NRC). The reliability analysis with machine 

learning yielded a result of 1.980E-10 (mean time to failure (MTTF) 3.15E+07) probability of 

failure of any two of the current CRDMs and 1.170E-14 (MTTF 5.34E+11) probability of failure 

of any two of the new CRDMs. 

 

 

 

Keywords: Probabilistic Risk Assessment, Aerojet General Nucleonics model 201 modified, 

AGN-201m, Fussell-Vesely, Rod Drive Mechanism 



Chapter 1:  Introduction 

Idaho State University (ISU) is equipped with a Nuclear Regulatory Commission (NRC) regulated 

research reactor. ISU acquired the reactor in 1969, and it is still in active operation to this day. The 

reactor is an Aerojet General Nucleonics 201-Modified (AGN-201m) model; a low power reactor 

intended for educational and research use applications within the nuclear industry. Globally there 

are five active AGN-201m reactors, historically there have been a total of 15 AGN-201 reactors 

in operation. 

The control rod drive mechanisms (CRDM) within ISU’s AGN-201m are aging components. The 

current CRDMs are still original and have been functioning well for 80 years. Currently while the 

rod drives are still guaranteed to allow for adequate ejection from the core, the ability to manipulate 

the CRDMs in a precise way and without binding of the leadscrews is becoming apparent. 

An upgrade to the CRDMs have been proposed in 2017 which aims to be more reliable, lighter 

weight, and more precise than the current rod drive mechanism [1]. This thesis will demonstrate 

qualitatively and quantitatively the new rod drive design will operate in a more precise manner 

and reduce reliability issues of the mechanism controlling the reactivity of the reactor. A grant was 

proposed and awarded to perform the upgrade in 2020 to allow ISU to undergo upgrading the 

CRDMs using the design from 2017 [2].  

The AGN-20m reactor at ISU does not have a probabilistic reliability assessment (PRA) to model 

changes made to the reactor. This thesis aims to provide a high-level PRA model of reactor systems 

in addition to a detailed fault tree model of the CRDM to allow for the potential to model future 

changes that could be made to the reactor and make statistical predictions. 
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1.1  Scope of Failure of the AGN-20m Reactor 

In the scope of this thesis, failure is defined as the loss of the ability on behalf of the operator to 

perform reactivity movements. The required SCRAM functionalities are still guaranteed to exist 

under this definition. The SCRAM functionalities of the current CRDM are still guaranteed to 

induce a SCRAM under the events described in Table 1. The functions described in Table 1 are 

NOT at risk for the foreseeable future even if the control rod drive mechanisms are not 

upgraded.  

Table 1. Reactor Control and Safety Systems Set-Point Specifications [3] 

Safety Channel Set Point Function 
Nuclear Safety Channel No.1 
(Startup Count Rate Channel) 

Low Power 

5% full Scale1 
OR 

0.5 count/second2 

Scram at levels Below the 
set points 

Nuclear Safety Channel No.2 
(Log Power Channel) 

High Power 

6 watts 
(120% of licensed power) 

Scram at power > 6 watts 

Nuclear Safety Channel No.2 
(Log Power Channel) 

Low Power 
3.0×10-13 amps 

Scram at source levels 
< 3.0×10-13 amps 

Reactor Period 5 sec Scram at periods < 5 sec 
Nuclear Safety Channel No.3 

(Linear Power Channel) 
High Power 

6 watts 
(120% of licensed power) 

Scram at power > 6 watts 

Nuclear Safety Channel No.3 
(Linear Power Channel) 

Low Power 
5% of Full Scale 

Scram at levels < 5% of 
Full Scale 

Manual Scram ---- 
Scram at operator 

discretion 

Area Radiation Monitor = 10 mR/hr 
Alarm at or below level 
set to meet requirements 

of 10 CFR 20 

 

1 Unit A is the original AGN-201m control console. 
2 Unit B is the new ISU all solid-state electronic control console. Either Unit A or Unit B will be in service anytime 
the reactor is operating. 
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Chapter 2:  Background 

2.1  The Aerojet General Nucleonics 201 Reactor 

The AGN-201m reactor is a polyethylene moderated uranium fueled reactor power rated for 5 W 

of thermal power [4]. The reactor is not designed to produce electrical power of any kind. The fuel 

contains less than a kilogram of fuel enriched to 19.9% uranium-235 [4]. The reactor is comprised 

of nine fuel disks separated across two halves of the core. The lower half is supported by a 

polystyrene thermal fuse at the center of the reactor core which is doubly dense in fuel material 

creating a thermal hotspot [4]. 

Outside of the reactor core is an aluminum encasement to mitigate gaseous fission product 

releases. Inside the aluminum encasement around the reactor core are graphite reflectors, lead 

gamma shields, and outside the aluminum is a water neutron shield to ensure mitigation of 

radiological concern [4]. The reactor is also covered by concrete and barite bricks to further 

diminish radiological exposure, and act as a structure for operations personnel to perform 

surveys on top of the reactor vessel.  
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Figure 1 shows a cross-sectional view of the different layers within the AGN-201m design 

including components and general dimensions. 

 

Figure 1. Elevation view of the AGN-201m [5]. 

The AGN-201m requires various mechanisms of engineering controls, administrative procedures, 

and organization to maintain an operating license covered by 10 CFR 50. The main mechanical 

control employed by the AGN-201m reactor is the CRDMs. The AGN-201m has two safety 

control rod drives and two control rod drives.  
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2.1.1  Decommissioned AGN-201m reactors 

The ISU AGN-201m is one of five currently operational AGN-201 reactors in the world. The four 

others currently still in operation are University of New Mexico (UNM), Texas Agriculture and 

Mechanical (Texas A&M), University of Palermo, and Kyung Hee University. Table 2 highlights 

the operational status of every AGN-201 reactor constructed. There is minimal information as to 

why many of the AGN-201 reactors were decommissioned. What little information was found on 

decommissioning implies that most were shut down due to general unrest in the local area, lack of 

funding, or personnel available to maintain the facility. 

Table 2. AGN-201 Reactors Around the World 

Name 
IAEA 
Code 

Power 
Rating 

(W) 
Status Comments 

AGN-201 Costanza IT0010 20.000 Operational  

AGN-201K KR0003 10.000 Operational 
Kyung Hee 

University, Korea 
AGN-201P CH0002 0.0000 Decommissioned  

AGN-201 California 
Polytechnic State 

University 
US0144 1.0000 Decommissioned 

US Naval 
Postgraduate School 

reactor 
AGN-201 Catholic 

University 
US0145 1.0000 Decommissioned  

AGN-201 Georgia 
Institute of Tech 

US0096 1.0000 Decommissioned 
Former University of 

Akron 
AGN-201 Idaho State 

University 
US0094 5.0000 Operational 

Original Prototype 
from San Ramon 

AGN-201 Memphis St. 
University 

US0121 1.0000 Decommissioned 
Originally AGN-201 

Argonne’s 
AGN-201 Oregon State 

University 
US0147 0.0010 Decommissioned  

AGN-201 Polytechnic 
Institute of New York 

US0153 0.0010 Decommissioned 
Formerly National 

Navy Medical 
Center’s 

AGN-201 Texas A&M 
University 

US0191 0.0050 Operational  
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Name 
IAEA 
Code 

Power 
Rating 

(W) 
Status Comments 

AGN-201 Tuskegee 
Institute 

US0146 0.0010 Decommissioned 
Formerly Oklahoma 
State University’s 

AGN-201 University 
Delaware 

US0195 0.0050 Decommissioned  

AGN-201 University of 
New Mexico 

US0201 0.0050 Operational 
Formerly University 

of California 
AGN-201 University of 

Utah 
US0210 0.0050 Decommissioned  

 

2.2  Idaho State University AGN-201m Reactor 

2.2.1  Changes Made to the Idaho State University AGN-201m 

The subject of this project is the ISU AGN-201m reactor. The AGN-201m has undergone a handful 

of prior changes during its lifetime, forming the foundation of the rod drive changeover project. 

The changes made to the reactor have extended the operational lifetime well beyond many other 

AGN-201 models. 

The ISU AGN-201m is currently undergoing an amendment to make changes to the reactor’s 

detector channels. The upgrade plans to replace old boron trifluoride ion chambers with new 

boron-10 lined ion chambers, maintaining the functionality of the original detectors, improving 

handling safety, and reducing noise from wear and tear on the equipment. 

The ISU AGN-201m console changeover has been the longest upgrade with the most work put 

into ensuring it happened. The process took many experts and many students 20 years to implement, 

and there are still improvements being made for quality of life and safety. 
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2.3  Reactor Rod Drive Designs 

The CRDMs are inserted into a confined space below the AGN-201m. The close fit limits the 

spatial dimensions of any new CRDM design to be similar to the current size and shape of the 

current CRDM. Figure 2 identifies the differences between the current CRDM (see (a)) and the 

new CRDM (see (b)) [5]. Prior to discussion of the CRDMs it is important to highlight at a high 

level the potential failure mode of the equipment included within the two designs. Components 

that perform the same function will be discussed within.  Failure modes and effect analysis (FMEA) 

is a form of qualitative analysis to determine the single-equipment failure modes and each failure 

mode’s effect on the system. A failure mode and effects analysis (FMEA) was produced for the 
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current CRDMs Table 3, the new CRDMs Table 4, and a comparison between the two was 

produced shown in Table 7.  

 

Figure 2. Comparison of the current and new designs. [5] 

2.3.1  Current Control Rod Drive Mechanism Design 

2.3.1.1  General Description 

The AGN-201m is equipped with four near-identical CRDMs containing “20 grams of core 

material” [4]. All four control rods are comprised of two chain-driven leadscrews connected to a 

motor at the bottom of the assembly. The fine and coarse CRDMs use an encoder for position 

indication driven by a second chain connected via a sprocket to the motor. In the rods current form 

there is a risk of rod drive malfunction causing loss of the ability to control reactivity due to binding 



9 

of the two leadscrews on their chain, but the reactor is still capable of SCRAMming as needed 

regardless of any malfunction. Figure 3 shows the current CRDM double leadscrew design. 

 

Figure 3. SOLIDWORKS model of current double leadscrew design. 

2.3.1.2  Current CRDM FMEA 

An FMEA was produced for the current CRDM. Within the FMEA, there are five key 

electromechanical components that perform a specific function. The FMEA provided the 

requirements of each component within the scope of failure previously discussed and within the 

scope of what is discussed in the licensing documentation [3, 4]. The FMEA for the current CRDM 

can be seen in Table 3. 
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Table 3. FMEA of the Current CRDM 

Item Description of Use Failure Modes Effects Protections Actions 
Motor Motor rotates 

leadscrews for vertical 
motion. 

Motor Fails to start 
movement 
downwards 
 
Motor Fails to run 
while moving down 

Loss of motor 
movement causes the 
loss of vertical motion 
of the copper piece 
and electromagnet. 

Auditory motion of 
the chain system 
 
Position indication 
on the copper piece 
 
Up and down 
sensors attached to 
the brass piece 
 

Loss of magnet 
current ensures 
ejection from 
reactor core 
 
Physical removal 
of power from the 
reactor console 

Electromagnet Electromagnet connect 
copper piece and 
magnet plate together 

Electromagnet fails 
to remain engaged 
during reactor 
operation outside of a 
SCRAM 
environment 
 

Rods do not swiftly 
eject from core from 
SCRAM provided 
power is not removed 
 

Contact indication 
on the console via 
the engaged light. 
 
Magnet current 
display on console 
in mA. 
 

Physical removal 
of power from the 
reactor 
 
Motor & magnets 
are connected in 
series; loss of 
electrical 
continuity one 
forces the loss of 
the other 
 

Microswitch Microswitch depresses 
at limits (upper, lower, 
engaged) to provide 
signal to console 

Microswitch fails to 
provide signal 
 
Microswitch fails to 
depress when 
reaching limit 
 

Loss of microswitch 
functionality removes 
position indication at 
upper or lower bound.  
 
Operator is unable to 
insert rod if control 

Component is 
informative to 
position limits (up, 
down, engaged) but 
not for precise 
CRDM position 
 

Loss of electrical 
circuit guarantees a 
SCRAM  
 
These components 
do not prohibit 
SCRAM events nor 
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Item Description of Use Failure Modes Effects Protections Actions 
rod drive and control 
rod are not engaged. 
 

influence the 
SCRAM System 
 

Leadscrews Leadscrews allows for 
vertical motion of the 
reactor control rods in 
conjunction with the 
motor 

Leadscrews bind 
causing the inability 
to withdraw the 
copper piece from the 
reactor core 

Copper piece is 
jammed in the upper 
position 
 

Lubricant to reduce 
friction 
 
Position indication 
on the console 
attached to chain 
system. 
 

Loss of electrical 
circuit guarantees a 
SCRAM  
 
Physical removal 
of power from the 
reactor console  

Encoder Encoder physically 
coupled to the chain 
linkage system 
allowing for vertical 
motion between the 
motor and the 
leadscrew 

Encoder fails to 
transmit signal from 
CRDM chassis to 
console 
 
Component becomes 
decoupled from the 
brass piece 

Operator is unable to 
determine precise 
position, but is still 
able to determine 
whether at lower or 
upper limit 

Only records 
position of brass 
piece meaning 
control rod drive 
SCRAM is 
independent of this 
component 
 

Loss of electrical 
circuit guarantees a 
SCRAM  
 
These components 
do not prohibit 
SCRAM events nor 
influence the 
SCRAM System 
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2.3.1.3  Dimensions 

The total height of the CRDM from the bottom of the leadscrews to the top of the brass plate is 

23.30 inches allowing for a total travel distance of about 25 cm [3]. The current CRDM has a 

length and width under 8 in allowing for the installation of all four CRDMs below the AGN-201m 

reactor. 

2.3.1.4  Components 

The AGN-201m contains three microswitches per CRDM, totaling to twelve microswitches for all 

four assemblies. The microswitches provide important limiting information to the operator. There 

is one microswitch attached to the top of the brass plate; the microswitch is responsible for sending 

the up signal to the control console and electronically stopping further upward motion. The second 

microswitch is connected to the bottom of the brass plate aside from the magnetic plate; it is 

responsible for relaying the down signal to the operator and prohibiting further downward 

movement. The last microswitch is on the side of the brass plate such that it is depressed by the 

magnetic plate when the electromagnets are active; it relays the engaged signal and is required to 
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be depressed to allow for any movement of the control rod drive chassis. Figure 4 shows a CAD 

drawing of the microswitch used in the current design. 

 

Figure 4. Microswitch used in current design [1]. 

The chain setup of the current CRDM uses two linkages, one connects the leadscrews to the motor, 

one connected to the sprocket driving the encoder. The rod drive mechanism is raised by the 

rotation of both leadscrews. Figure 5 shows the chain routes, excess slack causes notable lag 
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between each leadscrew, the motor, and the encoder. The risk of the CRDM binding increases over 

time typically requiring correction at least annually. 

 

Figure 5. Bottom view of the current CRDM. 

During a SCRAM event the rods are ejected from the core within approximately 120 milliseconds 

for each SCARAM-able rod [3]. To prevent damage to the rod drives and the fuel within, each 

SCRAM-able rod is equipped with pneumatic dashpots to soften the landing of the canisters as the 

ejection occurs [3]. These dashpots are effective at deceleration of the control rods or safety rods 

during the last 10 cm of travel [3]. The dashpot for the CRDM will not be upgraded in the new 

design. 

The leadscrew used in the current CRDM is a standard threaded screw type. The leadscrew is 

coupled to the motor via the aforementioned chain linkage; the connection allows for vertical 

movement to be supplied to the main brass piece of the control rod drive chassis. The leadscrew 
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allows for approximately 25 cm of vertical movement. The standard threading of the leadscrew 

must be lubricated and inspected annually. 

The current CRDM utilizes the original Aerojet General Nucleonics brand reversible 24 volt 

brushed DC motors connected in series [3]. Each motor is connected to the leadscrew via a chain 

and sprocket linkage allowing for around 25 cm of vertical movement [3]. The maximum removal 

rate of the SCRAMed rod drive chassis is approximately 0.5 cm/sec [3]. Figure 6 shows the course 

control rod (CCR) motor within the reactor core. 

 

Figure 6. Image of CCR motor within the reactor. 



16 

The springs currently used within the current CRDMs were determined previously by a senior 

design group to be 4.6 lbs/in [1]. Table 4 shows the experimental results of how the spring constant 

was calculated using displacement and compression of the springs under a measured load. 

Table 4. Spring Constant Determination Data [1] 

Mass 
[g] 

Force 
[N] 

Compression 
[in] 

Compression 
[mm] 

Displacement 
[in] 

Displacement 
[mm] 

0 0 3.75 85.725 0 0 
500 4.903325 3.0625 77.788 0.3125 7.9375 

1000 9.80665 2.8125 71.438 0.5625 14.2875 
1500 14.70998 2.625 66.675 0.75 19.05 
2000 19.6133 2.5 63.5 0.875 22.225 

 

The current CRDM utilizes two digital rotary encoders on the two control rod drives, the coarse 

control rod, and the fine control rod [3]. These encoders are connected to the console’s center panel 

[3]. The updated rotary encoders used currently are an upgrade upon the original synchrogenerator. 

The rotary encoders were found to be more precise than the original synchrogenerators, reducing 

the need to adjust the readout display on the console. 

The current electromagnet couples the rod drives and magnetic plate to the rest of the chassis and 

allows for the vertical movement in conjunction with the motor, leadscrew, and chain setup. The 

electromagnet is responsible for SCRAMing the reactor when necessary and the SCRAM interlock 

system ensures the SCRAM functionality is maintained. The SCRAM interlock system is not being 

modified outside of the implementation of newer electromagnets. 
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2.3.1.5  Materials 

The current CRDM is made of steel for the top and bottom plates and structural supports providing 

adequate strength. The piece holding the electromagnet and spring holders were constructed out 

of brass. With the electromechanical components and necessary wiring, the total weight of one 

current CRDM was determined to be approximately 40 lbf [1]. 

2.3.2  New Control Rod Drive Mechanism Design  

2.3.2.1  General Description 

The new rod drive design started as a project in 2017 to upgrade the rod drives to a lighter weight 

material to reduce the hazard of performing maintenance on the rod drive mechanisms and an 

attempt to reduce issues with leadscrew binding issues. The overall design exchanges substantial 

amounts of steel parts for high strength aluminum components and provides many of the other 

components with a new replacement part to refresh the overall parts and ideally reduce 

maintenance from using aged parts from the 1950s. The design incorporates: 

 Change from two leadscrews to a single-leadscrew design to reduce binding between the 

leadscrews. 

 Adding linear motion bearings to reduce risk of binding with the various guide rod tracks. 

 Reduce the weight of the design due to the material change. 

 Proprietary parts instead of purely experimental to make replacement components easier 

and standardized. 
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2.3.2.2  New CRDM FMEA 

An FMEA was produced for the current control rod drive mechanism. The new CRDM FMEA 

includes an analysis on five specific electromechanical components: motor, four electromagnets, 

microswitch, leadscrew, and linear potentiometer. Table 4 shows the single-equipment failure 

modes and effects as well as protections and actions to prevent failures of the component. 
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Table 4. FMEA of the New CRDM 

Item Description of Use Failure Modes Effects Protections Actions 
Motor Motor rotates 

leadscrew to allow for 
vertical motion. 

Motor Fails to start 
movement 
downwards 
 
Motor Fails to run 
while moving down 

Loss of motor 
movement causes the 
loss of vertical motion 
of the brass piece. 

Auditory motion of 
the chain system 
 
Position indication 
on the brass piece 
 
Up and down 
sensors attached to 
the brass piece 
 

Loss of magnet 
current ensures 
ejection from 
reactor core 
 
Physical removal 
of power from the 
reactor console 

Electromagnet 
(4x) 

Electromagnets 
connect brass piece 
and magnet plate 
together 

2 of 4 
Electromagnet fails 
to deenergize when 
SCRAM is initiated 
 
2 of 4 
Electromagnet fails 
to remain engaged 
during reactor 
operation outside of 
a SCRAM 
environment. 
 

Rods do not swiftly 
eject from core from 
SCRAM 

Contact indication 
on the console 
 
Magnet current 
display on console 

Physical 
disconnection of 
power from the 
reactor 
 
Motor and magnets 
are connected in 
series meaning loss 
of one should force 
the loss of the other 

Microswitch Microswitch depresses 
at limits (upper, lower, 
engaged) to provide 
signal to console 

Microswitch fails to 
provide signal 
 
Microswitch fails to 
depress when 
reaching limit 

Loss of microswitch 
functionality removes 
position indication at 
upper or lower bound. 
Operator is unable to 
insert rod if control rod 

Microswitches are 
informative to 
position limits (up, 
down, engaged) but 
not for control rod 
drive position 

Loss of electrical 
circuit guarantees a 
SCRAM  
 
These components 
do not prohibit 
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Item Description of Use Failure Modes Effects Protections Actions 
drive and control rod 
are not engaged. 
 

SCRAM events 
nor do the 

Leadscrew Leadscrew allows for 
vertical motion of the 
reactor control rods 

Leadscrew fails to 
withdraw brass 
piece assembly from 
the reactor core 

brass piece assembly is 
jammed in the upper 
position 

Lubricant to reduce 
friction from 
 
ball-nut leadscrew 
design reduces 
friction on the 
leadscrew 
 
Position indication 
on the console 
attached to brass 
piece 
 

Loss of magnet 
current ensures 
ejection from 
reactor core 
 
Physical 
disconnection of 
power from the 
reactor 

Linear 
Potentiometer 

Linear potentiometer is 
physically coupled to 
the brass piece 
allowing for indication 
of vertical position and 
relays data to the 
console. 

Linear 
potentiometer fails 
to transmit signal 
from CRDM chassis 
to console 
 
Component 
becomes decoupled 
from the brass piece 

Operator is unable to 
determine precise 
position, but is still 
able to determine 
whether at lower or 
upper limit 

Only records 
position of brass 
piece meaning 
control rod drive 
SCRAM is 
independent of this 
component 

Loss of electrical 
circuit guarantees a 
SCRAM  
 
These components 
do not prohibit 
SCRAM events 
nor influence the 
SCRAM System  

 



21 

2.3.2.3  Dimensions 

The new CRDM has a total height of 26.84 inches from the bottom of the motor to the top of the 

top plate’s cylinder, allowing for 24.64 inches of rod movement. The total length was found to be 

approximately 8 inches long [1]. The overall length of the bottom piece is identical to the bottom 

piece of the current CRDM. The overall width of the CRDM was derived from the motor and was 

found to be 7.35 inches. Figure 7 shows the single leadscrew design developed by the senior design 

team. 

 

Figure 7. SOLIDWORKS model of the single leadscrew design. 
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2.3.2.4  Components 

The new CRDM will use new but identically functioning microswitches to perform the same 

actions of limiting the rod’s path of motion upwards and downwards. 

The current CRDM utilizes a dual chain setup, separating position indication and vertical 

movement into two chain linkages. The division of chains and variable slack from the act of 

maintenance causes lag to occur between the actual rod insertion height and the rod insertion height 

provided to the operator. The new CRDM utilizes a simpler and shorter chain to provide the same 

function. The position indication is no longer attached to the chain meaning the chain no longer 

needs to drive both position indication and the movement of the rod drive chassis. Figure 8 shows 

the proposed simplified chain and sprocket setup used by the new design. 

 

Figure 8. CAD drawing of chain configuration of new CRDM [5]. 

The new CRDM design utilizes a ball-nut leadscrew design to provide reduced friction and 

smother vertical manipulations of the control rod drives. The leadscrews are connected to the brass 

piece along with three supplemental guide rods; these guide rods are connected to the brass piece 

via linear motion bearings to allow for smooth vertical movement.  
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The motor for the new CRDM design is a Bodine Model 4694 DV Gearmotor, because the current 

CRDM motors were made by Aerojet General Nucleonics and are therefore no longer produced. 

The new motor aims to remain as a reversible brushed 24 Volt DC type. The new motor is rated 

up to 10 lb-in of torque and a possible rotation speed of 250 RPM [1]. Figure 9 shows a schematic 

drawing of the Bodine motor in the new design. 

 

Figure 9. Motor schematics [1]. 

The springs used in the new CRDM use a spring constant of 4.6 lb/in allowing for a functionally 

identical capability of the springs within the current CRDM. 
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The new CRDM replaces the current encoder setup driven by a chain with a more precise linear 

potentiometer to increase the accuracy of CRDM manipulations. The linear motion potentiometer 

slide will be physically connected to the brass piece component. The distance traveled by the slide 

will produce a voltage differential signal to provide position indication for the operator to use for 

reactivity manipulations. Figure 10 shows the comparative differences between the current and 

new position indication systems employed by the respective designs. 

 

Figure 10. Comparison of the position indication change over. 

The new CRDM replaces the single large torus-shaped electromagnet with four smaller cylindrical 

electromagnets as shown in Figure 11 [1]. Each magnet has a 1 in diameter and a height of 1.25 in. 
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The electromagnets of each CRDM are connected in series and produce a magnetic pull of 20 lbf 

each [1].  

 

Figure 11. Digital drawing of electromagnet [1]. 

It was determined that each set of magnets would be required to exceed 31.17 lbf to hold the rods 

and keep the springs compressed [1]. A factor of safety of 2.51 determined each rod drive 

mechanism would require 80 lbf. The factor of safety ensures the magnet will be able to 

sufficiently hold the control rod drive in the most reactive position without risk of the magnet and 

magnetic plate becoming uncoupled outside of a SCRAM event. 

2.3.2.5  Materials 

The new CRDM design utilizes Aluminum 6061-T4 for the top and bottom plates and the structural 

guide rods. The new design also incorporates brass for the spring dividers, and a brass piece 

holding the magnets to the rest of the chassis. The control rods or safety rods will be physically 

connected to a threaded magnet plate constructed from stainless steel to allow for appropriate 
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magnetism to maintain adequate SCRAM-ability. The total weight of all components was found 

to be 20.7 lbf [1]. 

2.3.2.6   Cost of New Rod Components 

At the time of the project instantiation, the components for a single CRDM was projected to cost 

$6,408 as is shown by Table 5 and Table 6 from many undeclared vendors. As of 2021, the cost 

of one CRDM was determined to be $4,179.75 from various manufacturers shown in Table 5 and 

Table 6. The NEUP Grant provided $59,262 funding allocated to component procurement, and 

potential testing equipment. The NEUP Grant value covers materials, services, and indirect costs 

[2]. 
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Table 5. Electromechanical Component Costs for a Single CRDM 

Item # Component Brand / Model Number 
Estimated 
Unit Cost 

Number 
of Items 

Total 
Cost 

Purchase 
Price 

1 
Reversible DC 

Motor 
Bodine 24A-3F Series DC Right angle Gear Motor 

Model N4894 
$402 1 $ 402. $416.82 

2 
Motor Mount 

/Control 
/Accessories 

24A Brush cap – Part Number 49300037 
24A Brush and Spring – part number 49201001 

Base plate mounting kit for 3F gearmotors 
[model 0967] 

$196 1 $ 196. $35.69 

3 
Motor Sprocket, 

Leadscrew 
Sprocket 

B&B Manufacturer Model 25BF14x1/2 Roller 
Chain Sprocket 

$15 2 $  30. $18.4 

4 Motor Chain* Duty Plus #25 Roller chain-10 FT BOX $35 1 $  35. $27 

5 Springs 
The Spring Store: 

PC067-540-17600-MW-3000-CG-N-IN 
$16 8 $ 128. $44.8 

6 Electromagnet Buy Magnet BDE-1012-12 $25 4 $ 100. $104 

7 
Linear Motion 

Conductive Plastic 
Potentiometer** 

P3 America Inc. Motion Control and Automation 
Products 

$465 1 $ 465. $465 

8 Microswitches 
Omron SS-5GL – Microswitch Subminiature hinge 

Lever SPDT Solder, 5 A. 
$5 3 $  15. $5.10 

9 
Ball-Nut 

Leadscrew 
NOOK PMBS12x2R-3FW/0/T10/1K/2K/406/1/S $1200 1 $1,200. 1048 

Subtotals $2,571. $2,165. 
* 10 ft per box can be shared between rods. ** the model selected is the 610 mm stroke/10k ohm 
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Table 6. Bulk Metals and Machining Costs for a Single Drive 

Item # Component Description 
Estimated 
Unit Cost 

Number of 
Items 

Old Total 
cost (2017) 

Purchase Price 
(2020-2021) 

10 
Aluminum slides 
(high Strength) 

2 Spring Rods and 3 guide rods – 
16” length 

$55 5 $275 
N/A 

11 Brass plate 
Brass Disc to carry the 

electromagnets and nut for the 
leadscrew 

$600 1 $600 
N/A 

12 Magnet Plate 
Steel Plate to attach to the 

electromagnets 
$62 1 $62 

N/A 

13 
Bottom Aluminum 

Plate 
Drive carrier lower plate $210 1 $210 

N/A 

14 
Upper Aluminum 

Plate 
Drive carrier upper plate $190 1 $190 

N/A 

15 Spring Holder 
Hold springs in lace along the guide 

rods 
$14 6 $84 

N/A 

16 End Spring Holder 
Hold springs in lace along the guide 

rods 
$14 4 $56 

N/A 

17 Linear Bearings 
Multiple Bearings for the guide rods 

and screw 
$45 8 $360 

N/A 

18 Rod Clearance pipe 
Aluminum pipe for holding rods in 
line going from the top & bottom 

plates 
N/A 2 0 

N/A 

19 Machining Labor Machine shop cost (items 10 15) $2000 1 $2000 N/A 
Subtotals $3837 $2014.75 

 



29 

2.3.3  FMEA Comparison 

To summarize the changes made to the CRDMs with respect to an FMEA evaluation, Table 7 

describes the similarities and differences between the critical functions performed by each 

electromechanical component.  
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Table 7. FMEA Comparison of Current CRDM vs New CRDM 

Item 
Physical 

Differences 
Failure Mode 
Differences 

Effects 
Differences 

Protections 
Differences 

Actions 
Differences 

Motor 
 

Same Same Same Same Same 

Electromagnet The current CRDM has on 
torus-shaped magnet 
 
There are four times the 
number of Electromagnets in 
the new 
 

One electromagnet needs to fail in 
the current CRDM  
 
2 of 4 electromagnets need to fail in 
the new 

Same Same Same 

Microswitch 
 

Same Same Same Same Same 

Leadscrew The current CRDM contains 
two leadscrews of standard 
threading. 
 
The new CRDM contains one 
ball-nut threaded leadscrew 
 

Overall failure would be the same 
 
Current CRDM design has an 
increased issue with binding due to 
chain slack & increased friction. 
 

Same Same Same 

Position 
Indication 

Component 

The Current CRDM utilizes a 
digital encoder to provide 
position indication 
 
The New CRDM utilizes a 
linear potentiometer to provide 
position indication 

Same Same Same Same 
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2.4  Industry Standard Probability Software 

All nuclear engineering focused reliability software are made up of three user-developed models: 

event trees, fault trees, and basic events. To make the overall challenge of modelling entire 

facilities streamlined and manageable, computer software is produced to determine the probability 

of component failures and make changes as more information becomes available. The reliability 

model of ISU’s AGN-201m reactor focuses on the development of high-fidelity CRDM models as 

it is the only mechanical system presented controlling reactor power. 

2.4.1  Event Trees 

An event tree encompasses the path of response systems within a facility. Event trees are derived 

from a particular initiating event and how a facility’s  systems are impacted by said event. Event 

trees are oriented such that failures of systems move downward [6].  

Per the AGN-201m Safety Analysis Report, any credible event will induce a SCRAM and allow 

the reactor to remain subcritical by exceeding the shutdown margin of 1 % Δk/k [4]. 

Event trees are generated through the systematic approach of categorizing the broad stroke systems 

within a facility and recording how they must respond, or fail to respond, and what the outcome 

of said events would be when analyzing the facility.  

2.4.2  Fault Trees 

A fault tree is a collection of logical gates, basic events, and numerous failure probabilities; these 

are representative of the of a system that impacts the overall facility functionality in some way. 

Fault trees represent a system, or a group of systems used to perform a particular task. 
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Fault tree generation requires adhering to an analytical technique of identifying the undesirable 

and quantifying the likelihood frequency as a probability to inform operators, regulators, and 

license holders of the high importance event to regulate [6]. 

2.4.3  Basic Events 

Basic events are employed to show a singular component as part of a larger system or upset. These 

events can encompass human performance reliability, failure to begin a task, failure during a task, 

etc. For  the scope of the project, human reliability, and failure to start or perform a task are the 

only failure types of pertinence. Basic events serve as the primary building block used by nuclear 

reliability software and serve as the uncategorized form of holding data. 

2.4.3.1  Common Cause Failure Events 

Basic events serve as the foundational building blocks to fault trees and event trees; as a result, 

facilities will likely have multiple of the same component used for similar or identical functions in 

a separate fault tree or component. Common cause failure is accounted for with the introduction 

of common cause events. Either of the two main forms Alpha Factors or Multiple Greek Letters 

take into consideration factors to provide a probability of failure for multiple components of the 

same type. 

2.4.3.2  House Events 

House events represent events guaranteed to happen or not happen based on the configuration. The 

most common house event employed in industry claims all facilities with multiple system trains 

will never have more than one be out for testing or maintenance at the same time. House events 
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are used to exclude certain mutually exclusive events or investigate the facility’s probability of 

failure from removing a particular basic event. 

2.4.3.3  Human Reliability Calculations 

Human reliability events cover in a general sense an operator’s ability to perform, diagnose, or 

otherwise react to the reactor event. Human reliability relies on various factors to performing the 

task such as: available time, stress, task complexity, experience or training, procedures available, 

ergonomics, fitness for duty, and work processes. 

Chapter 3:  Materials and Methods 

3.1  System Analysis Programs for Hands-on Integrated Reliability 

Evaluations 

The NRC utilizes a reliability software to model their licensed plants; the regulatory software used 

is the System Analysis Programs for Hands-on Integrated Reliability Evaluations (SAPHIRE), the 

version used for this model is SAPHIRE 8, as a result use on older versions may not function as 

intended. 

The SAPHIRE software is a fault and event tree graphical editor which includes cut set generation, 

quantification, importance measures, and uncertainty modules to allow for more robust metrics. 

SAPHIRE is a relational database system which cross-references features and allows for external 

events analysis. Traditionally, SAPHIRE is used for rule-based recovery and end-state analysis of 

common cause failure events [7]. 
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3.2  Python Script Data Analysis 

As part of determining the failure probability of the current CRDM components, a machine 

learning approach was used to determine an approximate failure of the CRDMs as an integrated 

system. A dataframe of data from annual report data and feature engineering was created to provide 

usable data for machine learning. 

To ensure the best results, the project aims to use various different machine learning methods to 

determine the optimal method for finding the actual failure rates for all important components. The 

dataframe used started with 123 entries of a date and a description. Once all data was parsed and 

sifted through the dataframe contained 119 entries with 26 features. As shown in Table 8, the data 

obtained from Annual Reports were mainly qualitative in nature and required extensive pruning to 

produce a machine learning usable dataset as seen in Table 9. In Table 9, a 1 indicates a component 

failure and a 0 indicates nominal operational status. The total failures of each of the component 

subsystems were obtained by summing the failures in the dataframe. 



 

35 

Table 8. First Five Rows of the Unchanged Dataframe from Annual Report 

Date 
Performed 

Description3 

02/05/2010 During start up the reactor SCRAMed and all rods dropped out; but the SR-1 magnet chassis did not drive down. After 
significant trouble shooting it was found that the magnet collar was worn and that the grub screws were adjusted 
slightly off from each other. The SR-1 magnet had become weak and developed a short in the system; so it had to be 
replaced. In order to accommodate the replacement AGN magnet the brass collar was slightly modified to allow for 
wiring. The last of the problems with SR-1 were addressed on 4/14 when the rod indication micro-switches were 
slightly adjusted to engage with the rod drive chassis. 
 

03/03/2010 One of the fuses in Channel 2 was found to be blown. When the fuse was replaced, the V-12 6BW4 vacuum tube in 
Channel 2 was found to be arcing. The vacuum tube was replaced, and the channel tested successfully. 
 

04/21/2010 The Channel 1 detector release solenoid was malfunctioning and temporarily released mechanically. The solenoid was 
found to have a weak solder joint that was repaired. 
 

06/09/2010 It was found that a number of Channel 2 & 3 potentiometers were weakened from age. Appropriate replacements were 
found and installed on the Channel 1 internal calibration; Channel 2 10-7; 10-11; infinity; and + period potentiometers. 
Calibration procedures were performed on both channels the following day. 
 

08/19/2010 The fine control rod was driven up into the full up position but could not be driven back down. The rod drive chassis 
was removed and tested in the experiment stand. The situation could not be reproduced, and the drive was re-installed 
in the reactor. The drive tested successfully multiple times in core. 

 

 

3 Available online at: https://gitlab.com/WickedWess/cs-final-rod-drive-risk/-/raw/main/Decade_Compilation2010-2020.csv 
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Table 9. First Five Rows of the Pruned Dataset Usable by Python 

Rod 
Drive 

Failure 

Motor 
Failure 

Magnet 
Failure 

Lead 
Screw 

Failure 

potentiometer 
failure 

Microswitch 
Failure 

Console 
failure 

Detector 
Failure 

Channel 
1 

Failure 

Channel 
2 

Failure 

Channel 
3 

Failure 
1 0 1 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 0 0 1 1 0 0 
0 0 0 0 0 0 1 0 0 0 0 
1 0 0 1 0 0 0 0 0 0 0 
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One of the most useful visual aids for the machine learning model was the development of a 

correlation heatmap. Figure 12 shows the correlation of features used by the model. As shown, the 

total failures of a certain component and the individual failures of a certain component are highly 

correlated whereas there is a natural low correlation between independent components such as the 

console and the reactor CRDMs. 

 

Figure 12. Dataframe correlation heatmap. 
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3.2.1  Maintenance Log Cleaning 

The unmodified dataframe supplies the description and date that maintenance was performed. Each 

entry was pulled from the Annual Reports from 2016 to 2020. Preprocessing was necessary to get 

a set of unique features that can be used by machine learning algorithms. Some engineered features 

used and developed were:

 Rod Drive Failure 

 Motor Failure 

 Magnet Failure 

 Leadscrew Failure 

 Potentiometer Failure 

 Microswitch Failure 

 Console Failure 

 Detector Failure 

 Channel One Failure 

 Channel Two Failure 

 Channel Three Failure 

 Solution of Maintenance 

 New or old Console 

Many, if not all, of these features can be parsed from the information within the description; and 

with the dataset as large as it is the process was conducted manually through Excel. The dataframe 

initially had all the data configured as Boolean values but were later converted to numerical 

equivalent binary integers of zero and one, as a component cannot partially fail due to the overall 

simplicity and function of each component. 
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Many of the manually parsed features are Boolean values, where the total failures of each major 

category of component was tallied. The features listed below were tallied up to determine the total 

number for their respective component.

 Total Rod Drive Failures 

 Total Motor Failures 

 Total Magnet Failures 

 Total Leadscrews Failures 

 Total Potentiometer Failures 

 Total Microswitch Failures 

 Total Console Failures 

 Total Detector Failures 

 Total Channel One Failures 

 Total Channel Two Failures 

 Total Channel Three Failures 

Creating totals implied mutual exclusivity of the standalone failures. 

An important distinction between this data set and the actual answer is that the data set being 

collected using annual report instances allow for a quick development of the dataframe at the cost 

of being objectively incomplete. Due to only maintenance and failures being logged in the annual 

report, the probabilities are based on the condition of maintenance occurs whereas in actuality, 

some events do not require maintenance. 

3.2.1.1  k-Nearest Neighbors  

The first machine learning algorithm implemented was k-Nearest Neighbors (KNN) using 

SciKit-Learn’s KNeighborsClassifier(), KNN is commonly used for classification 



 

40 

problems. By generating a random point within the graph, the KNN algorithm determines the 

‘nearest neighbors’ to the point to determine what the random point would be. To determine the 

closest neighbors, the Minkowski distance formula shown in the equation below is used, where 

𝑝 =  2 by default (Euclidean distance). If K = 1, the algorithm finds the closest neighbor to 

determine the point’s type. 

 𝑑(𝑋, 𝑌) = |𝑥 − 𝑦 |  (2) 

 

KNN does not require splitting the data set for training and testing, thus allows for the use of the 

entire dataframe, this advantage was not used to allow for a fairer comparison between the other 

models. With an increase of data from an actively used reactor, acceptable results through machine 

learning can be applied in PRA. 

To understand the implementation of a KNN algorithm, a dataset of five fruits is given in Figure 

13 where fruits are based off of their sweetness rating of 0-1 on the y-axis and their rarity in a 

grocery store from 0-1 on the x-axis. To categorize and determine the probability of a given fruit 

being otherwise a green apple, durian, blackberry, banana, or blueberry, KNN can be used to build 
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a mathematical model to separate the data points out into categories and predict future fruits 

categories. 

 

Figure 13. Fruit types plotted based on rarity and sweetness. 

To classify the bounds between each type of fruit, a random evaluation point is created to classify. 

The nearest neighbors specified in the algorithm determine the type of fruit at the evaluation point. 

In this case, K=1, meaning only the nearest neighbor is considered. Using the Euclidean distance 

formula, each distance between the evaluation point and the known fruit points are calculated as 
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shown in Table 10 where ultimately the evaluation point was determined to be a blueberry due to 

blueberry being the closest point. 

Table 10. Fruit Euclidean Distance from Evaluation Point 

Fruit 
Distance from  

Evaluation Point 
Banana 0.30 

Green Apple 0.30 
Grape 0.40 

Blueberry 0.25 
Durian 0.40 

 

The process of generating a random point and using the distance formula to determine the closest 

neighbor is repeated thousands of times, where if the distance from the evaluation point is 

equidistantly spaced between two nearest neighbors, in a K=1 scenario, the point would be 

disregarded and regenerated. Eventually, the KNN algorithm will create a probability distribution 

of the probability that a given random fruit will be otherwise a banana, green apple, grape, 

blueberry, or durian based off the rarity and sweetness. 

3.2.1.2  Logistic Regression  

The second machine learning algorithm used was a logistic regression algorithm. Logistic 

regression provides a linear model capable of classification. Logistic regression can predict the 

likelihood of an event occurring which shows great promise for further applications of PRA within 

a nuclear facility. If the dataframe is appropriately related to the overall performance of the model 

it should be more than capable of yielding an accurate prediction.  
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Logistic regression is a logistic distribution which uses weighting functions to produce 

probabilities that have a linear relationship to feature values. Logistic regression fits values on a 

sigmoid curve as seen in the equation below, where the probability of failure, 𝑃 is given as a 

combination of weight functions 𝛽  and 𝛽  of the feature matrix 𝑿. 

 
𝑓(𝑥) =

1

1 + 𝑒 ( )
 (1) 

 

Where 𝛽  can be calculated using the mean of the sample 𝜇 and 𝛽 can be calculated using the 

standard deviation of the sample 𝑠. 

 𝛽 = 𝜇𝛽  (2) 

 

 
𝜇 =

1

𝑁
𝑥  (3) 

 

 
𝛽 =

1

𝑠
 (4) 

 

 
𝑠 =

1

𝑁 − 1
𝑥 − 𝜇  (5) 
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As an example, logistic regression can be used to predict the probabilities of an animal being a 

bird (1) versus a lizard (0) based on their weight. Two data points of a lizard weighing 19 g versus 

a bird weighing 60 g, and a test point of 35 g is tabulated in Table 11. 

Table 11. Weight of Lizard versus Bird 

Weight (g) Is the object a bird 
19 0 
35 ? 
60 1 

 

By applying the logistic regression equations, the resultant distribution and weight parameters are 

shown in Table 12. 

Table 12. Logistic Regression Parameters 

Parameter Value 
𝜇 38.033 
𝑠 20.618 

𝛽  1.8447 
𝛽  0.0485012 
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Graphically, the logistic regression model does not fit the dataset well due to the lack of features 

and datapoints. As seen in Figure 14, the logistic regression line of fit does not intersect with bird, 

lizard, or the unknown data point. 

 

Figure 14. Logistic regression model of birds verus lizards dataset. 

The resultant probabilities of each data point being a bird is given in Table 13, where despite the 

bird data point bird and the test set having a y-value of 1 on the graph, the calculated probabilities 
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of each data point of being a bird is 0.7437 and 0.4633, respectively. These probabilities indicate 

the low fidelity of the model on a small dataset. 

Table 13 Probabilities of a Datapoint being a Bird 

Point P(B) 
Lizard 0.2853 
Bird 0.7437 

Test Set 0.4633 
 

3.2.1.3  Naïve Bayes 

The last family of algorithms applied were three different naïve bayes algorithms, each with three 

different individual use cases. Bayesian Inferencing is an archaic method of machine learning, but 

Naïve Bayes is still often used in the realm of PRA in other software such as OpenBUGS for 

Markov Chain Monte Carlo modelling. In that same vein, a Bayesian model performs in similar 

methods to how an individual would apply Bayesian Inferencing but on a larger scale. Within the 

project three forms of Naïve Bayes models were used: Gaussian Bayes, Bernoulli Bayes, and 

Multinomial Bayes. Shown below is the general form of Naïve Bayes calculations. 

 
𝑃(𝑦|𝑥 , 𝑥 , … , 𝑥 ) =

𝑃(𝑦) × 𝑃(𝑥 , 𝑥 , … , 𝑥 |𝑦)

𝑃(𝑥 , 𝑥 , … , 𝑥 )
 (6) 

 

To apply Bayesian statistics within machine learning, the dataframe and the chosen model must 

be of a related distribution to the data in order to the same distribution to generate accurate results. 

The results will skew answers that do not fit the assumed model, reducing the accuracy and  making 

the model perform poorly; some of the models used demonstrate this limitation effectively. By 
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incorrectly fitting the dataframe’s distribution with the wrong machine learning model distribution, 

the results are skewed. 

3.2.1.3.1 Gaussian 

The first form of Bayesian inferencing performed was the Gaussian Bayes machine learning 

model. As the name implies, the SciKit-Learn GaussianNB() model applies a Gaussian 

distribution to the conditional given predicter event. The Gaussian naïve Bayes modified 

conditional is shown below: 

 

𝑃(𝑥 |𝑦) =
1

√2𝜋𝜎
× 𝑒 ×  (7) 

3.2.1.3.2 Bernoulli 

The second Bayesian model used a Bernoulli relation between the conditional and the predicter. 

The Bernoulli is a special case of the binomial distribution using a single trial. The specific relation 

is shown below: 

 𝑃(𝑥 |𝑦) = 𝑃(𝑖|𝑦) × 𝑥 + 1 − 𝑃(𝑖|𝑦) × (1 − 𝑥 ) (8) 

 

The specific implementation was through SciKit-Learn BernoulliNB() model. Bernoulli 

requires that the data provided is binary, as the dataframe used is represented with a binary values, 

the implementation of Bernoulli Bayes convenient. 
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3.2.1.3.3 Multinomial  

The last model of Bayesian inferencing utilized a multinomial conditional. The multinomial is a 

derivative form of the binomial distribution. The implementation used was SciKit-Learn 

MultinomialNB(): 

 
𝑃(𝑥 |𝑦) =

𝑁 + 𝛼

𝑁 + (𝛼 × 𝑛)
 (9) 

 

3.2.1.3.4 Example of Bayesian Machine Learning 

To show Naïve Bayesian predictions in a simpler example, the probability of rain, probability of 

the weather being cloudy, and the probability that the day is windy will be used. The fundamental 

work will depend on the assumed relationship between each parameter; for simplicity an example, 
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the data will be collected over a three-month period. For this example, the following assumptions 

are made: 

 Independence is assumed between the three probabilities. 

 Independence is assumed between the three experiments. 

 The assumed relationship will be gaussian 

 Events are not mutually exclusive 

 The Gaussian maximum likelihood estimators are: 

 
𝜇 =

1

𝑁
𝑥  (10) 

 

 
𝜎 =

1

𝑁
𝑥 − 𝜇  (11) 

 

Table 14 will function as the dataframe to determine the probability of rain given the parameters 

on average over this 3-month average. The calculations are performed by determining the 

maximum likelihood estimator of the parameters based on the assumed relationship as covered by 

the preceding assumptions. Table 14 covers the features that will be used to make predictions; the 

features are understood not to be mutually exclusive. For the example the hand algorithm will 
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utilize months one and two as a training set. Accuracy tests will be omitted as the sample size of 

the dataset is better for the pedagogical value as opposed to creating a good model. 

Table 14. Total Number of Rainy, Cloudy, and Windy 

Month Total Rain Total Cloudy Total Windy 
Month one 4 9 9 
Month two 1 12 20 

Month three 13 0 15 
 

Using the Gaussian maximum likelihood estimators' equations above and using month one and 

two’s data, the resultant 𝜇 and 𝜎   values are Table 15. 

Table 15. Gaussian Maximum Likelihood Estimators 

Month Rain Cloudy Windy 
𝜇  6.000 7.000 14.667 
𝜎  39.000 39.000 30.333 

 

Using the Gaussian maximum likelihood estimators above, the conditional probability of cloudy 

with rain P(C|R), conditional probability of wind with rain P(W|R), and probabilities of rain P(R), 

cloud P(C), and wind P(W) are in Table 16.  

Table 16. Conditional Probabilities of the parameters 

Month P(C|R) P(W|R) P(R) P(C) P(W) 
Month one 0.0569 0.0569 0.0607 0.0607 0.0427 
Month two 0.0403 0.0052 0.0464 0.0464 0.0453 

Month three 0.0403 0.0226 0.0341 0.0341 0.0723 
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By combining the conditional probabilities P(C|R) and P(W|R) from Table 16, the multivariate 

conditional probability of weather with rain, wind, and clouds for each of the three months are 

calculated below in Table 17. 

Table 17. Resulting Conditional Probability of Rain Given the Weather is Windy and Cloudy 

Month P(R|W,C) 
Month one 0.0759 
Month two 0.0045 

Month three 0.0126 
 

The process for obtaining P(R|W,C) for multinomial and Bernoulli Naïve bayes will be consistent 

with the Gaussian Naïve Bayes as only the probability density functions will change and thus the 

maximum likelihood estimators. 
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Chapter 4:  Analysis 

4.1  Machine Learning Algorithm Analysis 

4.1.1  Model Analysis 

Overall, all but one of the algorithms demonstrated the ability to provide highly accurate 

probability predictions, as shown in Table 18, but all models have been shown to be volatile to 

variation. This volatility is derived from the small data set.  

Table 18. Model Accuracy Scores 

Model 
Training 
Accuracy 

Testing 
Accuracy 

RMSE 
Rod Failure Prob Given 

Log Entry 
k-Nearest Neighbors 0.8868 0.8549 0.3644 0.1736 
Logistic regression 0.9114 0.8938 0.3044 0.2131 

Gaussian Naïve 
Bayes 

0.5034 0.4779 0.7172 0.2774 

Bernoulli Naïve 
Bayes 

0.9222 0.9266 0.2492 0.2228 

Multinomial Naïve 
Bayes 

0.9260 0.9096 0.2800 0.2285 

 

The only model shown to be inaccurate was the Gaussian Naïve Bayes model, this is expected due 

to the simple fact that the Gaussian distribution is not the appropriate conjugate distribution to the 

data provided. The expected distribution is the Poisson-Gamma conjugate distributions and have 

different bounds. An important distinction is the close relationship the Bernoulli and multinomial 

distributions have to the gamma distribution, meaning that statistically these models hold great 

weight to being close to the expected result. 
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4.1.2  Problems Encountered 

The greatest issue encountered with the machine learning models is the data size available. There 

were several issues with the data size used that required adjustments after the models predicted 

failures. The first one and most evident issue was the size of the dataset causing large uncertainties 

in the results, largely limits the effectiveness of using these data as for machine learning 

applications, and it limits the types of machine learning algorithms that should be considered and 

implemented. The next issue was the inherent bias encountered by these data. These data were 

taken from the corrective maintenance log which in turn causes the predictions to be conditioned 

towards failure of the components because these data comprise entirely of failures or other 

deficiencies.  

4.1.3  Conditioning the results 

The probabilities found initially may seem to be the raw probabilities of rod failure until the size 

of the data is considered. The data used are maintenance log entries presented to a regulatory body. 

The total number of entries are limited to maintenance occurrences, meaning that the resultant 

probability is an issue being fixed by maintenance. As a result, these conditions must be corrected 

with the equation below: 

 
𝑃(𝑅) =

𝑃(𝑅|𝑀) × 𝑃(𝑀)

𝑃(𝑀|𝑅)
 (12) 
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Where P(R) is the probability that a rod drive issue occurs, P(R|M) is the probability that a rod 

drive issue occurs given that maintenance occurs, P(M) is the probability that maintenance will 

occur, and P(M|R) is the probability that maintenance occurs given a rod drive issue occurs.  

4.1.4  Results and Validation 

To produce a supervised machine learning model, the data was split and trained separately. Each 

model’s mean, accuracy, and root mean squared was evaluated to determine the effectiveness. 

The first expected result for the control rod drive failure rate was 1.54𝐸 − 07 from previous 

experiments consisting of 20 failures with 132,832,800 demands of the control rod to operate [8]. 

The INL dataset is publicly available but the AGN-201m dataset is not, leading to the answer in 

Table 19. Table 19 is the expected answer through initial engineering judgement. 

Table 19. Expected Answer from INL Failure Data [8] 

Component Distribution Mean 𝜶 𝜷 
Error 
Factor 

Control Rod Fails to 
Operate 

Gamma(𝛼, 𝛽) 
1.54𝐸
− 07 

20.50 
1.33𝐸
+ 08 

1.4 

 

The Gamma distribution is a statistical conjugate to the Poisson distribution, which is derived from 

the time change of the binomial distribution. The Gamma distribution allows for certain model 

assumptions to drastically increase accuracy and viability of implementation. With the 

understanding that there is no reasonable way to achieve the mean rod drive failure probability due 

to the limited sample size and the sheer time difference, the probability can be recalculated by 

taking the total number of rod drive failures within the data and calculating a new gamma 
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distribution. The new Gamma distribution was found to have parameters 𝛼 = 26.5  and 𝛽 =

3652.5 𝑑𝑎𝑦𝑠 yielding a mean of 7.26𝐸 − 03. 

Table 20 shows the tabulated calculations following the conditional probability formula. It 

highlights the results of all the variables from the above equation. Instances of the 𝑃(𝑀|𝑅) and 

𝑃(𝑀)  are considered constant as a result of their independence to the dataframe. 𝑃(𝑀|𝑅)  is 

accepted to be 1 as all these data from the annual report are failures of some type. The value of 

𝑃(𝑀) is accepted be a gamma distribution with parameters 𝛼 = 119 and 𝛽 = 3652.5 𝑑𝑎𝑦𝑠. 

Table 20. Model Conditional Probabilities 

Model 𝑷(𝑴|𝑹) 𝑷(𝑹|𝑴) 𝑷(𝑴) 𝑷(𝑹) 
k-Nearest Neighbors 1 0.1736 3.26𝐸 − 02 𝟓. 𝟔𝟔𝑬 − 𝟎𝟑 
Logistic regression 1 0.2131 3.26𝐸 − 02 𝟔. 𝟗𝟓𝑬 − 𝟎𝟑 

Gaussian Naïve Bayes 1 0.2774 3.26𝐸 − 02 𝟗. 𝟎𝟒𝑬 − 𝟎𝟑 
Bernoulli Naïve Bayes 1 0.2228 3.26𝐸 − 02 𝟕. 𝟐𝟔𝑬 − 𝟎𝟑 

Multinomial Naïve Bayes 1 0.2285 3.26𝐸 − 02 𝟕. 𝟒𝟓𝑬 − 𝟎𝟑 
Expected Gamma Distribution N/A N/A N/A 𝟕. 𝟐𝟔𝑬 − 𝟎𝟑 

 

4.1.4.1   Individual Components Results 

For the individual components, the best performing modelling method was the expected Gamma 

distribution. The Gamma distribution was used to determine the motor fails to start, the leadscrew 

binding occurs, and the magnet failure probability. The model  provided useful insight into the 

individual component failures used in SAPHIRE models. Table 21 shows the predicted failure 
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rates for the current CRDM components including the motor failing to start, the magnets failing, 

or a leadscrew failing. 

Table 21. Machine Learning Algorithms Predictions 

Component 
Predicted 

Failure 
Probability 

Uncertainty 

Motor fails to start 2.327E-03 4.122E-07 
Magnet 1.505E-03 4.122E-07 

Leadscrew 1.505E-03 6.371E-07 
 

4.2  AGN-201m SAPHIRE 8 Reliability Model 

4.2.1  Initiating Events 

PRA is developed with a probability of an event happening that will cause a response from plant 

systems. These plant systems require a component or series of components to respond in a manner 

appropriate to mitigate or otherwise stop an undesired end. The event that initiates this chain is the 

initiating event. In PRA there are two types of initiating events that are investigated: internal and 

external events. These events occur in different ways but depending on various factors they can 

have different event trees and differing responses. 

4.2.1.1  External Events 

As is customary of PRA assessments, a discussion of fire, seismic, and severe weather PRA models 

were investigated and presented. 
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The general conclusion was that each of these external PRA events would follow identical fault 

trees for all credible initiating events due to the simplicity of the AGN-201m’s mechanical and 

electrical configurations required for SCRAM bus functionality. In any external initiating event, 

the SCRAM bus is designed to cause the magnets to de-energize and the operator is tasked with 

turning off the AGN-201m console via depressing the power button or physically removing the 

power cord from the wall and promptly evacuating the facility. Thus, any further discretization of 

the model for external initiating events is moot and unnecessary. 

4.2.1.2  Internal Events 

Initiating events pertaining to the reactor facility were investigated as well. It was concluded that 

internal flooding and internal fire events were both not credible events and not significant in 

response difference from any other initiating event to warrant discretization from the general 

initiating event. 

The most internal flooding that could occur in a quick and timely manner would be large breakage 

of the 990-to-1000-gallon shield tank around the core; this event has never occurred across any 

AGN-201 facility. Within the site boundaries there is no other form of internal water available in 

high volume. The next larges body of water inside the Lillibridge Engineering building is the 1000 

Gallon tank in the Pocatello Pile – 1; this water source is in a separate room behind a separate set 

of security doors and as such is not credible for a large break leak to impact the AGN-201m reactor 

significantly. 

Internal fire was also considered, and it was decided that the most probable source would be an 

electrical fire from adversarial action during a long period of poor maintenance of the console or 
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other electrical equipment. There are preexisting security features accommodate for an internal 

fire and the reactor staff are currently adequately adept at maintenance thus the procedure for 

internal fire is identical to the event of external fire. 

4.2.2  Constant Components 

The model will be perturbed by the changing the CRDM from the original system measured with 

the failure probability. The components left constant will consist of the overall event tree, the 

console scram bus, the ventilation system, and lastly facility containment of fission products. 

The model covers the CRDMs, operator participation within the reactor, and console components 

directly connected to or very closely associated with the reactor scram bus and rod drive 

mechanism. When making the initial event tree, the events discussed ended up falling into two 

categories for use: the reactor scram systems, and the reactor’s penthouse emergency trip system. 

Figure 15 shows the two categories of events and their associated end states. 

 

Figure 15. Event tree for ISU AGN-201m reactor. 
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On the top left of the image shows the initiating event for the event tree. Through investigation of 

the facility documentation, the overall procedure for any initiating event follows a single wholistic 

response sequence which can be surmised by the three-step process of ensuring the reactor scrams, 

ventilation does not allow for a release of nuclear or radiological material, and evacuate facility 

staff and civilians from the Lillibridge Engineering Building promptly. Steps beyond this are 

outside of the scope for PRA work and will not be discussed. 

The reactor SCRAM system is designed to shut down the reactor immediately when one of the 

conditions in Table 1. These other methods are numerous and covered in Operating Procedure #1. 

All the SCRAM options are accounted for in the SCRAM BUS ensuring the AGN-201m is 

appropriately prepared to automatically or manually respond in the event of an emergency situation, 

or unanticipated reactivity increase. 

For the first fault tree in the event tree is the scram event ‘CONSOLE’. The full fault tree can be 

seen in Figure 16. Each of the events shown at the top of the fault tree are associated with the 

electric power supply to the reactor. Due to the design of the AGN-201 reactor type, the reactor is 

fundamentally designed to exceed the shutdown margin of the reactor in the event of any power 

failure; these two events have been labelled ‘RXR-PWR-OFF’ and ‘FAC-PWR-LOSS’. 
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Figure 16. Reactor high level console fault tree. 
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The penthouse emergency trip fault tree in Figure 17 contains the data reported from the 

emergency drills performed annually, and as a result the components investigated are 

representative of an operator or observer’s ability to perform a task. The task at hand is the ability 

to engage the penthouse emergency trip button within the NEL main hallway. As a result, with 

human factors quantification a series of questions follows in determining an appropriate 

probability of failure. Upon activation of the button the ventilation system can either deactivate or 

fail to deactivate, the probability of the penthouse ventilation system to deactivate with a successful 

human activation was determined to be 2.76E-03 and is expected to follow a beta distribution 

based on the components distribution in industry. 

 

Figure 17. Penthouse emergency trip fault tree. 
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4.2.3  Model Using Original Design 

Current facility documentation does not contain a risk assessment, as a result the data was compiled 

for all events from the past 10 years. The most concise document available containing failure data 

is the annual report submitted to the NRC. The annual report contains a date on which the event 

entry occurs, and a brief description of the cause and the processes made to correct or troubleshoot 

the issue. As the original CRDMs are all pre-built with only minor changes to limit switches, the 

best way to depict the failure probability was as a single integrated unit as that is what ISU received 

the rod drives as. A single rod drive can either fail to start motion, fail to stop motion, or fail to 

power off the magnets. The rod drive failure of interest used is the failure of the rod drive to power 

off the magnet and subsequently eject the rod drive using the spring eject, gravity assisted ejection 

system. Figure 18 shows the event tree for the current three CRDM configuration. 
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Figure 18. Fault tree for all three SCRAM-able current CRDM. 
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Constituent components accounted for by the integrated failure probability is the failure of the 

motor to operate on demand, failure of either leadscrew to operate, and failure of the magnet to 

disengage during a SCRAM event.  

4.2.4  New Reactor Control Rod Drives 

The new components are intended to perform identically to the currently installed design, one 

possible assumption was making predictions using machine learning predictions as the failure 

probability for all the new components. Some of the results found with the machine learning model 

were considered to be dubious and very uncertain so two qualitative approaches were also 

performed to provide an assessment of failure of the new components. 

4.2.4.1  Fault Tree Analysis 

As the parts from the new design have been purchased as individual components, it would make 

sense to develop a fault tree for rod failure, the components modelled within the fault tree were 

the new motor, new leadscrew, and the four new magnets. As seen in Figure 19, the logic within 

the fault tree was adjusted to account for the introduction of four new electromagnets and the 

removal of one of the leadscrews and the common cause failure of each magnet.  
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Figure 19. Fault tree for all three SCRAM-able new CRDM. 
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The assumed identicality highlights the logic changes made to the reactor in lieu of component 

reliability, which implies that the components should expectantly perform in a more conservative 

manner than what is determined in the PRA model. The new CRDM’s fault tree is shown in Figure 

20. One event of note that is new is the introduction of common cause failures of the magnet 

components, and the use of an if three out of four logic gate was determined from the expected 

weight from the forces of the spring and the force of gravity from the control rod and magnet plates 

respectively. 

 

Figure 20. Fauilt tree of new components in safety control rod drive one. 
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4.2.5  Model Execution Configuration 

The models were all run under the same settings to ensure minimal impact from differing settings. 

Table 22 and Table 23 depicts the settings used for all calculations within SAPHIRE. The 

truncation setting would be determined by starting with 1E-12 and decreasing an order of 

magnitude until the change in probability was less than 5%, a common practice in industry PRA. 

Due to the simplicity of the model and the facility, it was found that truncation as is done industry 

wide proved trivial; the time to solve all cutsets for all three trees was 0.349 seconds with no 

truncation for all three event trees. 

Table 22. CRDM Event Tree Results and Settings 

Event Tree Name 
Probability 

(per demand) 
Method 

Number of 
Cutsets 

NEW-RODS 1.361E-17 Min Cut Upper Bounds 23520 
OLD-RODS-CLASSIC 2.296E-13 Min Cut Upper Bounds 1920 

 

Table 23. CRDM Fault Tree Results and Settings 

Fault Tree 
Names 

Probability 
(per demand) 

Method 
Number of 

Cutsets 
CONSOLE 4.185E-01 Min Cut Upper Bounds 10 

PHET 1.054E-02 Min Cut Upper Bounds 3 
RODS-NEW 1.170E-14 Min Cut Upper Bounds 588 
RODS-OLD 1.980E-10 Min Cut Upper Bounds 48 

 

4.2.5.1  Mean Time to Failure 

To produce an average failure frequency for the AGN-201m reactor, the average number of 

demands annually, and the failure probability per demand are required to obtain the mean time to 
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failure (MTTF). Using operational experience (OE) data from the AGN-201m for the years 2016 

through 2020, a mean number of CRDM demands was found to be 160.2 demands per year. The 

following equation was used to determine the mean time to failure for each fault tree and event 

tree. 

 𝑀𝑇𝑇𝐹 = 𝐷𝑒𝑚𝑎𝑛𝑑𝑠 × 𝑃(𝐹𝑎𝑖𝑙𝑢𝑟𝑒) (13) 

 

Table 24 shows the average failure probability and mean time to failure found for the current 

CRDMs versus the new CRDMs expressed in failure per demand, average failure per year, and 

MTTF. 

Table 24. CRDM Fault Tree and Event Tree Average Failure Frequency and MTTF 

Event Tree and Fault 
Tree Name 

Probability 
(per demand) 

Average Failure 
Frequency (per year) 

MTTF 
(years) 

NEW-RODS 1.361E-17 2.18E-15 4.59E+14 
OLD-RODS-CLASSIC 2.296E-13 3.68E-11 2.72E+10 

RODS-NEW 1.170E-14 1.87E-12 5.34E+11 
RODS-OLD 1.980E-10 3.17E-08 3.15E+07 

 

4.2.6  Importance Measures of the Components 

Fussell-Vesely, risk achievement worth, risk reduction, and Birnbaum sensitivity analyses were 

performed on both the new and the old models to determine the sensitivity of events in the current 

rod drive mechanisms. NUMARC 93-01 is the industry standard for the development of a PRA 

model in the nuclear industry. Within NUMARC 93-01 is the established the bounds of risk 

significant components via the utilization of Fussell-Vesely, risk reduction worth, and risk 



 

69 

achievement worth and CDF contribution are required for an accurate determination of the risk 

significance to of each component. 

4.2.6.1  Fussell-Vesely Importance Measure 

The Fussell-Vesely importance measures the overall percent contribution of cutsets containing a 

particular basic event to the total risk from the model. The Fussell-Vesely importance measure is 

quantified in the equation below, where 𝐹(𝑖) is the risk from the cutsets containing said particular 

event and 𝐹(𝑥) subsequently is the total risk from the model. 

 
𝐹𝑉 =

𝐹(𝑖)

𝐹(𝑥)
 (14) 

 

4.2.6.2  Risk Achievement Worth Importance Measure 

Risk achievement worth (RAW) importance measures the sensitivity of a single basic event by 

calculating the total risk in the event that an event’s probability is 1, and has two calculated values 

associated with it, the risk increase ratio (𝑅𝐼𝑅 ) and the risk increase difference (𝑅𝐼𝐼 ), as seen 

below. 

 
𝑅𝐼𝑅 = 𝑅𝐴𝑊 =

𝐹(1)

𝐹(𝑥)
 (15) 
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4.2.6.3  Risk Reduction Importance Measure 

The risk reduction importance (𝑅𝑅𝐼) measure serves is the distance of guaranteeing a failure 

happens to the actual rate existing, measure of the risk change of not having a event 𝐹(1), and can 

be calculated through the equation below.  

 𝑅𝐼𝐼 = 𝑅𝑅𝐼 = 𝐹(1) − 𝐹(𝑥) (16) 

 

4.2.6.4  Birnbaum Importance Measure 

Birnbaum importance measures the rate of change in total risk due to a change the probability of 

an individual basic event and ranks events when they are altered from normal values. 

 
𝐵𝑖 =

𝛿

𝛿𝑥
𝐹(𝑥) (17) 

 

The Fussell-Vesely, RAW, Birnbaum importance measures for each model are shown in Appendix 

B Table 26 for the old CRDMs and Table 26 for the old CRDMs as single components. 

4.2.6.5  Uncertainty Results 

The uncertainty of the results for each fault tree was quantified using the build in Monte Carlo 

sampling. SAPHIRE is equipped with a sampling capability and plotting functions to produce 

probability densities and cumulative densities. 
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4.2.6.5.1 Current Rod Drives 

The current CRDM’s uncertainty was quantified, and the resulting uncertainty looks reminiscent 

of a Gamma distribution in shape. This is fitting for most basic events use a Gamma distribution 

for their uncertainty. Figure 21 shows the resulting probability distribution for the current CRDMs. 

 

Figure 21. Probability density function of the current CRDM. 
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The current rod drive’s probability density function was also quantified, resulting in Figure 22. It 

shows the sharp increase prior to the mean from Figure 21 and the plateauing of the distribution 

thereafter.  

 

Figure 22. Cumulative density function of the old rod drives. 

Table 25 shows the important parameters calculated from Monte Carlo sampling when creating 

the plots of Figure 21 and Figure 22. The maximum was calculated to be 4.106E-12 and the mean 

was found to be 7.767E-13. Table 25 shows that the sample size produced was found to be 10,000 
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with random seed 1677. The kurtosis implies that the resulting distribution is leptokurtic which is 

appropriate for a gamma distribution. 

Table 25. Results of SAPHIRE Uncertainty Quantification for the New Rod Drives 

Parameter Value 
Sample Size 10000 

Random # Seed 1677 
Events 34 
Cutsets 1968 

Point Estimate 7.722E-13 
Mean Value 7.767E-13 
5th % Value 2.538E-13 

Median Value 6.781E-13 
95th % Value 1.641E-12 

Min Sample Value 5.629E-14 
Max Sample Value 4.106E-12 
Standard Deviation 4.503E-13 

Skewness 1.542E+00 
Kurtosis 6.833E+00 

 

4.2.6.5.2 New Rod Drives 

The approach to quantify the new CRDMs was to use the same basic event probabilities as the 

current CRDMs, assuming the new components are functionally identical to the current 

components. Despite the similar fault trees, it can be seen quantitatively that the new components 

are more reliable due to the inclusion of four cylinder magnets over one torus magnet. Using 

engineering judgement, it can be understood that the new components will perform better and have 

less probability of failure due to the lack of degradation and industry standard components instead 

of custom parts. Industry standard components will be available for a longer time than custom 

components and have higher quality assurance. 
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Chapter 5:  Conclusions 

The application of PRA practices in the nuclear industry combined with the application of machine 

learning has produced a rudimentary risk model for ISU’s AGN-201m model. The results were 

shown to be very similar to the generic reliability parameters combined with the facility data used 

as a baseline for most commercial power plants in the United States. With respect to the new 

CRDM, it has been concluded through multiple qualitative analyses that it is equally reliable in 

design to the original design, but with the advantage of new reduced friction leadscrews and 

bearings, and new components all around that the immediate impact will result in reduced risk to 

a facility already of minimal risk at PRA levels 1, 2, and 3.  

It was reasoned through a qualitative reliability analysis that the introduction of newer components 

that employ modern designs will improve the reliability, and that the implementation of newer 

technology is more likely to reduce undue failures of the reactivity manipulation required to remain 

at power. Despite the SCRAM functions not being at risk for the foreseeable future for the current 

rod drive design, the new rod drive design proved to reduce probability of loss of reactivity 

manipulation significantly. The reliability analysis with gamma distribution predictions yielded a 

result of 1.980E-10 (MTTF 3.15E+07) probability of failure of any two of the current CRDMs and 

1.170E-14 (MTTF 5.34E+11) probability of failure of any two of the new CRDMs. The reliability 

analysis also yielded event tree solutions of 2.296E-13 (MTTF 2.72E+10) with the current CRDMs 

and 1.361E-17 (MTTF 4.59E+14) with the new CRDM design. 
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Chapter 6:  Future Work 

To complete the upgrade process, there are other steps that must be taken to ensure that the new 

control rod drive prototype can be used safely and preparing for the inevitable degradation and 

replacement in the unforeseeable future. 

6.1  Code of Federal Regulations Part 10 Section 50.59 Evaluation 

An initial 10 CFR 50.59 screening was presented to the reactor safety committee prior to 

performing any testing or investigation. The initial step of this investigation is the establishment 

of a risk model for the AGN-201m reactor independent of other reactor facilities. That step has 

come to fruition. Within Appendix B is the first and second 50.59 screening form covering the 

first screening of the desired change without formal evaluation. With the screening complete the 

next step is a more formal evaluation of each 50.59 screening question. Which was not completed 

within the scope of the reliability model development. 

The initial prototype was machined constructed; however, with a physical prototype prototyping 

and testing will begin, and appropriate analysis for implementation can begin. 

6.2  Material Analysis 

The material selection comprises of brass, aluminum, and steel for the new CRDM design. It is 

known that brass is an alloy containing hazardous materials and when irradiated becomes mixed 

waste becoming a greater challenge to dispose of under current Environmental Protection Agency 

regulations. This does not pose a functional issue to implementation but does not prepare for end 

of life of the AGN-201m facility. The AGN-201m facility already has enough fuel, and materials 
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to be able to operate for the next 200 years; meaning this preparation should not be considered as 

a major obstacle for implementation of the design change. 

The current CRDM is constructed from brass meaning that the functional use of brass for large 

parts of the new design ismoot.  

6.3  Model Refinement 

The model’s human reliability conclusions have been recommended to reactor training staff to 

further improve the human performance of operators but as these changes are under current 

implementation human performance values will be subject to change and expectedly decrease over 

time. SAPHIRE is limited to the implementation of SPAR-H human reliability which is one of 

numerous metrics that can be implemented for the use of human reliability estimation. 

6.4  Data Acquisition for Machine Learning 

The current risk models use a limited amount of data of maintenance log entries over the past 10 

years that were documented within the annual report to predict a reasonable failure probability. 

The implementation of more data will produce more accurate results. It has been demonstrated 

that the application of machine learning for PRA based predictions is feasible, but the data utilized 

is insufficient for yielding results without high uncertainty.  
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Appendix B: Importance Measures 

Table 26. Importance Measures of Current CRDM 

Name Count Prob FV RIR RRR Birnbaum RII RRI Uncertainty 
CH1-FR 192 8.890E-05 0.000E+00 1.000E+00 1.000E+00 1.369E-17 1.369E-17 0.000E+00 3.045E-22 

CH1-PWR 192 4.000E-04 0.000E+00 1.000E+00 1.000E+00 1.369E-17 1.369E-17 0.000E+00 0.000E+00 
CH1-RELAY 384 2.450E-05 0.000E+00 1.001E+00 1.000E+00 2.637E-16 2.637E-16 0.000E+00 9.200E-21 

CH2-FR 192 8.890E-05 0.000E+00 1.000E+00 1.000E+00 1.369E-17 1.369E-17 0.000E+00 3.045E-22 
CH2-PWR 192 4.000E-04 0.000E+00 1.000E+00 1.000E+00 1.369E-17 1.369E-17 0.000E+00 0.000E+00 

CH2-RELAY 384 2.450E-05 0.000E+00 1.001E+00 1.000E+00 2.637E-16 2.637E-16 0.000E+00 9.200E-21 
CH3-FR 192 8.890E-05 0.000E+00 1.000E+00 1.000E+00 1.369E-17 1.369E-17 0.000E+00 3.045E-22 

CH3-PWR 192 4.000E-04 0.000E+00 1.000E+00 1.000E+00 1.369E-17 1.369E-17 0.000E+00 0.000E+00 
CH3-RELAY 384 2.450E-05 0.000E+00 1.001E+00 1.000E+00 2.637E-16 2.637E-16 0.000E+00 9.200E-21 

CON-PWR-HX 192 4.181E-01 9.983E-01 2.389E+00 5.907E+02 5.483E-13 3.191E-13 2.292E-13 0.000E+00 
FAC-PWR-

LOSS 
192 4.000E-04 9.497E-04 3.387E+00 1.001E+00 5.483E-13 5.481E-13 2.181E-16 0.000E+00 

INIT-EV 1920 2.740E-03 1.000E+00 3.650E+02 1.900E+38 8.382E-11 8.359E-11 2.296E-13 0.000E+00 
MAN-SCRAM 192 1.875E-04 4.490E-04 3.387E+00 1.000E+00 5.483E-13 5.482E-13 1.031E-16 0.000E+00 
MAN-SCRAM-

SIG 
192 1.260E-04 2.941E-04 3.387E+00 1.000E+00 5.483E-13 5.482E-13 6.753E-17 9.781E-17 

OLD-ROD-
CCR-MAG 

1280 1.510E-03 6.667E-01 4.419E+02 3.000E+00 1.014E-10 1.012E-10 1.531E-13 6.508E-14 

OLD-ROD-
CCR-MTR 

320 2.330E-03 2.887E-01 1.246E+02 1.406E+00 2.845E-11 2.839E-11 6.629E-14 2.274E-14 

OLD-ROD-
SR1-MAG 

1280 1.510E-03 6.667E-01 4.419E+02 3.000E+00 1.014E-10 1.012E-10 1.531E-13 6.508E-14 

OLD-ROD-
SR1-MTR 

320 2.330E-03 2.887E-01 1.246E+02 1.406E+00 2.845E-11 2.839E-11 6.629E-14 2.274E-14 
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Name Count Prob FV RIR RRR Birnbaum RII RRI Uncertainty 
OLD-ROD-
SR2-MAG 

1280 1.510E-03 6.667E-01 4.419E+02 3.000E+00 1.014E-10 1.012E-10 1.531E-13 6.508E-14 

OLD-ROD-
SR2-MTR 

320 2.330E-03 2.887E-01 1.246E+02 1.406E+00 2.845E-11 2.839E-11 6.629E-14 2.274E-14 

OLD-RODS-
CCR-LDSC-1 

320 1.510E-03 1.871E-01 1.247E+02 1.230E+00 2.845E-11 2.841E-11 4.296E-14 1.832E-14 

OLD-RODS-
CCR-LDSC-2 

320 1.510E-03 1.871E-01 1.247E+02 1.230E+00 2.845E-11 2.841E-11 4.296E-14 1.832E-14 

OLD-RODS-
CCR-LDSC-

CCF 
320 3.080E-05 3.809E-03 1.249E+02 1.004E+00 2.845E-11 2.845E-11 8.748E-16 2.429E-16 

OLD-RODS-
SR1-LDSC-1 

320 1.510E-03 1.871E-01 1.247E+02 1.230E+00 2.845E-11 2.841E-11 4.296E-14 1.832E-14 

OLD-RODS-
SR1-LDSC-2 

320 1.510E-03 1.871E-01 1.247E+02 1.230E+00 2.845E-11 2.841E-11 4.296E-14 1.832E-14 

OLD-RODS-
SR1-LDSC-

CCF 
320 3.080E-05 3.809E-03 1.249E+02 1.004E+00 2.845E-11 2.845E-11 8.748E-16 2.429E-16 

OLD-RODS-
SR2-LDSC-1 

320 1.510E-03 1.871E-01 1.247E+02 1.230E+00 2.845E-11 2.841E-11 4.296E-14 1.832E-14 

OLD-RODS-
SR2-LDSC-2 

320 1.510E-03 1.871E-01 1.247E+02 1.230E+00 2.845E-11 2.841E-11 4.296E-14 1.832E-14 

OLD-RODS-
SR2-LDSC-

CCF 
320 3.080E-05 3.809E-03 1.249E+02 1.004E+00 2.845E-11 2.845E-11 8.748E-16 2.429E-16 

PHET-ACT-
HX-FAIL 

480 7.790E-03 7.697E-03 1.982E+00 1.008E+00 2.272E-13 2.255E-13 1.768E-15 0.000E+00 

PHET-TRIP-FR 480 6.650E-06 0.000E+00 1.990E+00 1.000E+00 2.272E-13 2.272E-13 0.000E+00 2.135E-18 

PHET-TRIP-FS 480 2.760E-03 2.722E-03 1.987E+00 1.003E+00 2.272E-13 2.266E-13 6.251E-16 9.158E-16 
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Table 27. Importance Measures of New CRDM 

Name Count Prob FV RIR RRR Birnbaum RII RRI Uncertainty 

CH1-FR 2352 8.890E-05 1.900E+38 1.900E+38 1.900E+38 0.000E+00 0.000E+00 0.000E+00 0.000E+00 

CH1-PWR 2352 4.000E-04 1.900E+38 1.900E+38 1.900E+38 0.000E+00 0.000E+00 0.000E+00 0.000E+00 

CH1-RELAY 4704 2.450E-05 1.900E+38 1.900E+38 1.900E+38 0.000E+00 0.000E+00 0.000E+00 0.000E+00 

CH2-FR 2352 8.890E-05 1.900E+38 1.900E+38 1.900E+38 0.000E+00 0.000E+00 0.000E+00 0.000E+00 

CH2-PWR 2352 4.000E-04 1.900E+38 1.900E+38 1.900E+38 0.000E+00 0.000E+00 0.000E+00 0.000E+00 

CH2-RELAY 4704 2.450E-05 1.900E+38 1.900E+38 1.900E+38 0.000E+00 0.000E+00 0.000E+00 0.000E+00 

CH3-FR 2352 8.890E-05 1.900E+38 1.900E+38 1.900E+38 0.000E+00 0.000E+00 0.000E+00 0.000E+00 

CH3-PWR 2352 4.000E-04 1.900E+38 1.900E+38 1.900E+38 0.000E+00 0.000E+00 0.000E+00 0.000E+00 

CH3-RELAY 4704 2.450E-05 1.900E+38 1.900E+38 1.900E+38 0.000E+00 0.000E+00 0.000E+00 0.000E+00 

CON-PWR-HX 2352 4.181E-01 1.900E+38 1.900E+38 1.900E+38 0.000E+00 0.000E+00 0.000E+00 0.000E+00 

FAC-PWR-
LOSS 

2352 4.000E-04 1.900E+38 1.900E+38 1.900E+38 0.000E+00 0.000E+00 0.000E+00 0.000E+00 

INIT-EV 23520 2.740E-03 1.900E+38 1.900E+38 1.900E+38 0.000E+00 0.000E+00 0.000E+00 0.000E+00 

MAN-SCRAM 2352 1.875E-04 1.900E+38 1.900E+38 1.900E+38 0.000E+00 0.000E+00 0.000E+00 0.000E+00 

MAN-
SCRAM-SIG 

2352 1.260E-04 1.900E+38 1.900E+38 1.900E+38 0.000E+00 0.000E+00 0.000E+00 0.000E+00 

NEW-ROD-
CCR-CCF 

2240 2.610E-06 1.900E+38 1.900E+38 1.900E+38 5.571E-13 5.571E-13 0.000E+00 3.016E-19 
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Name Count Prob FV RIR RRR Birnbaum RII RRI Uncertainty 

NEW-ROD-
CCR-LDSC 

7840 1.510E-03 1.900E+38 1.900E+38 1.900E+38 2.352E-15 2.352E-15 0.000E+00 1.515E-18 

NEW-ROD-
CCR-MAG-1 

6720 1.510E-03 1.900E+38 1.900E+38 1.900E+38 2.515E-15 2.515E-15 0.000E+00 1.614E-18 

NEW-ROD-
CCR-MAG-2 

6720 1.510E-03 1.900E+38 1.900E+38 1.900E+38 2.515E-15 2.515E-15 0.000E+00 1.614E-18 

NEW-ROD-
CCR-MAG-3 

6720 1.510E-03 1.900E+38 1.900E+38 1.900E+38 2.515E-15 2.515E-15 0.000E+00 1.614E-18 

NEW-ROD-
CCR-MAG-4 

6720 1.510E-03 1.900E+38 1.900E+38 1.900E+38 2.515E-15 2.515E-15 0.000E+00 1.614E-18 

NEW-ROD-
CCR-MTR-FS 

7840 2.330E-03 1.900E+38 1.900E+38 1.900E+38 2.352E-15 2.352E-15 0.000E+00 1.880E-18 

NEW-ROD-
SR1-CCF 

2240 2.610E-06 1.900E+38 1.900E+38 1.900E+38 5.571E-13 5.571E-13 0.000E+00 3.016E-19 

NEW-ROD-
SR1-LDSC 

7840 1.510E-03 1.900E+38 1.900E+38 1.900E+38 2.352E-15 2.352E-15 0.000E+00 1.515E-18 

NEW-ROD-
SR1-MAG-1 

6720 1.510E-03 1.900E+38 1.900E+38 1.900E+38 2.515E-15 2.515E-15 0.000E+00 1.614E-18 

NEW-ROD-
SR1-MAG-2 

6720 1.510E-03 1.900E+38 1.900E+38 1.900E+38 2.515E-15 2.515E-15 0.000E+00 1.614E-18 

NEW-ROD-
SR1-MAG-3 

6720 1.510E-03 1.900E+38 1.900E+38 1.900E+38 2.515E-15 2.515E-15 0.000E+00 1.614E-18 
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Name Count Prob FV RIR RRR Birnbaum RII RRI Uncertainty 

NEW-ROD-
SR1-MAG-4 

6720 1.510E-03 1.900E+38 1.900E+38 1.900E+38 2.515E-15 2.515E-15 0.000E+00 1.614E-18 

NEW-ROD-
SR1-MTR-FS 

7840 2.330E-03 1.900E+38 1.900E+38 1.900E+38 2.352E-15 2.352E-15 0.000E+00 1.880E-18 

NEW-ROD-
SR2-CCF 

2240 2.610E-06 1.900E+38 1.900E+38 1.900E+38 5.571E-13 5.571E-13 0.000E+00 3.016E-19 

NEW-ROD-
SR2-LDSC 

7840 1.510E-03 1.900E+38 1.900E+38 1.900E+38 2.352E-15 2.352E-15 0.000E+00 1.515E-18 

NEW-ROD-
SR2-MAG-1 

6720 1.510E-03 1.900E+38 1.900E+38 1.900E+38 2.515E-15 2.515E-15 0.000E+00 1.614E-18 

NEW-ROD-
SR2-MAG-2 

6720 1.510E-03 1.900E+38 1.900E+38 1.900E+38 2.515E-15 2.515E-15 0.000E+00 1.614E-18 

NEW-ROD-
SR2-MAG-3 

6720 1.510E-03 1.900E+38 1.900E+38 1.900E+38 2.515E-15 2.515E-15 0.000E+00 1.614E-18 

NEW-ROD-
SR2-MAG-4 

6720 1.510E-03 1.900E+38 1.900E+38 1.900E+38 2.515E-15 2.515E-15 0.000E+00 1.614E-18 

NEW-ROD-
SR2-MTR-FS 

7840 2.330E-03 1.900E+38 1.900E+38 1.900E+38 2.352E-15 2.352E-15 0.000E+00 1.880E-18 

PHET-ACT-
HX-FAIL 

5880 7.790E-03 1.900E+38 1.900E+38 1.900E+38 0.000E+00 0.000E+00 0.000E+00 0.000E+00 

PHET-TRIP-
FR 

5880 6.650E-06 1.900E+38 1.900E+38 1.900E+38 0.000E+00 0.000E+00 0.000E+00 0.000E+00 
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Name Count Prob FV RIR RRR Birnbaum RII RRI Uncertainty 

PHET-TRIP-FS 5880 2.760E-03 1.900E+38 1.900E+38 1.900E+38 0.000E+00 0.000E+00 0.000E+00 0.000E+00 
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Appendix C: Literature Review 

6.4.1  Senior Design Group Rod Drive Design 

Citation: 

M. W. Beatty, B. A. Fehringer, D. E. Axelson, J. R. Harding and M. J. Daniels, "ISU AGN-201M 

Reactor Control Rod Drive Redesign," Idaho State University, Pocatello, 2018. 

 Origins: 

The Control Rod Redesign document was prepared with collaboration between the senior 

design group, lead a former senior reactor operator, and the former reactor supervisor in 

order to address the approaching obsolescence with the rod drive mechanisms within the 

AGN-201m. 

 Purpose: 

The senior design project that covers the physical design employed within the rod redesign 

process. The document covers the feasibility of the project and largely shows the physical 

possibility of implementing the new design. 

 Value: 

The Control Rod Redesign document exhibits the design being evaluated in this thesis. Part 

of what was done for the senior design is testing the material and general physics of a single 

leadscrew design, some of those tests will provide reliability data that will be used for a 

changeover comparison and lifetime investigation.  
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 Limitations: 

As is with many senior design projects, there is a notable consideration as to the accuracy 

of certain aspects. Certain claims must be scrutinized to ensure the rod drive will function 

as intended with the lifespan intended. 

6.4.2  Nuclear Energy University Program Grant  

Citation: 

A. Ali, "A New Control Rod Drive Mechanism Design for the ISU AGN-201M Reactor," Nuclear 

Energy Univerisy Program, 2020. 

 Origins: 

 The old rod drive design uses a double leadscrew mechanism, is made of steel making it 

heavy, and can be upgraded using different components. Dr. Amir Ali applied for the 

Nuclear Energy University Program (NEUP) grant to pay for the upgrade and initiate the 

redesign and implementation of the new rod drive mechanism. 

 Purpose: 

The grant is paying for the prototyping and development of the new control rod drive 

mechanisms. The grant covers the selected design from the senior design project covering 

the same goal. Taking the best design and aiming to implement it. 

 Value: 

The grant funded the machining and purchasing of new components crucial to the new rod 

drive mechanism's design and provided attainable goals with respect to publications and 

annual technical memos and a final report. 
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 Limitations: 

Although the grant lays out a design consideration and goal, the grant does not include 

methodology on the probabilistic risk assessment side of the project. 

6.4.3  Idaho State University – Technical Specifications 

Citation: 

Idaho State University AGN-201m Research Reactor, "Technical Specifications," Idaho State 

University, Pocatello, 2011. 

 Origins: 

The technical specifications document is one of the licensing documents for the AGN-

201m reactor at Idaho State University which has been amended over the years, the most 

recent being 2011. 

 Purpose: 

The purpose of the technical specifications provides is to provide limitations of the facility. 

These limitations impose design constraints on any changes that can be considered in 

addition to any changes in the administrative hierarchy. 

 Value: 

The technical specifications provide a technical description of reactor systems, lists off 

many definitions, and provides administrative controls. This document provides important 

timeframes for the AGN-201m in question. 
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 Limitations:  

Some information within the technical specifications provides specific information to the 

makeup of the reactor. Specific information will be generalized unless required for risk-

modelling purposes. 

6.4.4  Idaho State University – Safety Analysis Report 

Citation: 

Idaho State University AGN-201m Research Reactor, "Safey Analysis Report," Idaho State 

University, Pocatello, 2021. 

 Origins: 

The Safety Analysis Report (SAR) is one of the licensing documents for the AGN-201m 

Reactor at Idaho State University. The SAR was amended in 2021 following the control 

console upgrade in 2021. 

 Purpose: 

The purpose of the SAR is to provide a wholistic analysis of the facility using qualitative 

of quantitative analysis. The report describes the general location, design, and 

characteristics of the AGN-201m at Idaho State University. The safety analysis portion of 

the document highlights the reactivity considerations, shielding evaluations, and design 

basis accidents such as loss of water shielding and tornadoes.  

 Value: 

The SAR provides prior safety analysis data, including natural phenomena and the general 

design information of the current rod drive systems. 
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 Limitations: 

The SAR does not explicitly provide limitations, but is an analysis describing the current 

reactor system, and does not account for a new design. 

6.4.5  Prior Publication about the Control Rod Drive Mechanism 

Citation: 

W. Yockey, A. Ali and C. Pope, "Development of a new control rod drive mechanism design for 

the ISU AGN-201M reactor," Annals of Nuclear Energy, 2022. 

 Origins: 

Following the initiation of the rod drive upgrade project, a publication was underway on 

the specific design and development of the new rod drive mechanism versus the old rod 

drive mechanism. 

 Purpose: 

To produce a concrete and public idea of the design work of this project, the paper covers 

the differences in the two rod drive designs and the proposed benefits of the new design in 

a comprehensive manner. A discussion on the potential weight reduction, newer materials 

and methodologies, and easier maintenance is addressed within this paper to encapsulate 

the engineering benefits of the new design and its application. 

 Value: 

The paper discusses the design aspect of the project and formally discusses the senior 

design group's contributions to the project, and the idea of using probabilistic risk 

assessment to benchmark the new design. 
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 Limitations: 

The paper does not address in depth the probabilistic models developed in this project to 

benchmark the effectiveness of the design. 

6.4.6  United States Nuclear Regulatory Commission – Fault tree Handbook 

Citation: 

W. E. Vesely, F. F. Goldberg, N. H. Roberts and D. F. Haasl, "NUREG-0492: Fault Tree 

Handbook," United States Nuclear Regulatory Commission, Washington DC, 1981. 

 Origins: 

The fault tree handbook comes from a course entitled “System Safety and Reliability 

Analysis” in 1975 acting as a risk assessment training program sponsored by the 

Probabilistic Analysis Staff.  

 Purpose: 

The handbook was developed to serve for the course but to also make it available to others 

as at the time the concepts of fault tree development was barren and vacant of 

documentation. 

 Value: 

While the handbook is a very old document, the document has not changed over this time 

and the overall processes discussed in this document are not disputed, and still employed 

by regulators. This fault tree handbook overall streamlines the fault tree generation process 

and provides helpful insights on the function and requirements of SAPHIRE 8 and 

CAFTA 6 and their application. 
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 Limitations: 

With the Insights section there are some nuances with the ISU AGN-201m Reactor that are 

of course not discussed and will require justification for approval through the appropriate 

administrative personnel. 

6.4.7  SAPHIRE Basics 

Citation: 

C. Smith, J. Knudsen, M. Calley, S. Beck, K. Kvarfordt, and T. Wood, “SAPHIRE basics: an 

introduction to probabilistic risk assessment via Systems Analysis Program for Hands-on 

Integrated Reliability Evaluations (SAPHIRE) software”, Idaho National Laboratory, Idaho Falls, 

2009. 

 Origins: 

SAPHIRE, originally known as IRRAS was originally released in 1987 to assist in 

probabilistic risk assessment (PRA). In 1997, IRRAS was renamed SAPHIRE and included 

more features and reduced runtime.   

 Purpose: 

SAPHIRE is a PRA software which is used in fault tree and event tree creation, cut set 

generation and quantification, importances measurement, external event analysis, and 

common cause failure event generation. The SAPHIRE basics manual examines the 

application and validity of PRA and the use of SAPHIRE within PRA. 

 Value: 
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The manual was useful in determining how to produce certain models and quantify the 

quality of the models and produce comprehensive results. 

 Limitations: 

The SAPHIRE manual does not give information involving troubleshooting the software, 

determining the value of a model, or guidance beyond SAPHIRE usage. 

6.4.8  Nuclear Regulatory Commission – Title 10 Code of Federal Regulations 

Citation: 

Nuclear Regulatory Commission, "NRC Regulations Title 10, Code of Federal Regulations," 

Nuclear Regulatory Commission, 2015. [Online]. Available: http://www.nrc.gov/reading-rm/doc-

collections/cfr/. 

 Origins: 

Title 10 of the Code of Federal Regulations (10 CFR) is the set of rules in which the Nuclear 

Regulatory Commission (NRC) withhold following the Energy Reorganization Act of 

1974, where the NRC replaced all licensing and regulatory functions of the Atomic Energy 

Commission. 

 Purpose: 

The 10 CFR’s provide all the rules and regulations that a facility will need to meet to 

operate with nuclear material in a safe, secure, and legal manner. The site is available to 

all facilities with up-to-date information on said rules. 
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 Value: 

The AGN-201m at ISU is subject to meeting the 10 CFR rules to keep personnel safe, 

informed and competent, and to continue operation of various facilities on campus 

including but not limited to the reactor, subcritical assembly, and particle accelerator. 

 Limitations: 

The site provides the criteria to meet for the facility license but does not provide the 

methods that ISU utilizes to meet said legal requirements. This site will however provide 

guidance on the processes involved with testing and proving the improved safety 

mechanisms involved with the new CRDMs 

6.4.9  Idaho State University – Annual reports 

Citation: 

Idaho State University Nuclear Engineering Department, "Annual Reports 2010-2020," Idaho 

State University, Pocatello, 2010-2020. 

 Origins: 

As laid out in 10 CFR 50, ISU is required annually to submit an annual report ot the NRC 

covering fuel burnup in the year, dose assessments for reactor personnel, among other 

important operations information. 

 Purpose: 

The annual reports document covers the reactors maintenance, Dose Assessment, and fuel 

burnup, and works to ensure that the facility is operating within the technical specifications. 
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 Value: 

The ten-year period described within the document represents the most recent maintenance 

procedures within the facility and shall cover any rod drive issues associated with the 

current rod drive design. The data will prove valuable to generating a frequency function, 

probability density function and estimate a single failure rate for the reactor’s various rod 

drive components.  

 Limitations: 

The document covers the maintenance log’s entries, which are written by various operator 

technicians and are not always obviously clear on the verbiage used to describe an issue. 

As a result, machine learning algorithms will prove useful in developing a tally, and 

quantification system of failure rates over a time frame. 

6.4.10  Idaho State University – Emergency Drills 

Citation: 

Idaho State University Nuclear Engineering Department, "AGN-201m Emergency Drills," Idaho 

State University, Pocatello, 2010-2021. 

 Origins: 

As laid out in 10 CFR 50, ISU is required annually to perform an emergency drill to assess 

the reliability of operators and local emergency services on the performance of handling 

any reasonable emergency that can happen at the ISU AGN-201m reactor. 

 Purpose: 

The document aptly documents the drills and emergency services of reacting to reactor 
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upsets and ensures that operators can follow through with emergency operations when 

called upon. 

 Value: 

The document houses valuable human capability information for the reliability model. This 

document will also possess criticism of systems within the AGN-201m and assess some 

initiating events that are reasonable for the facility to experience in its lifetime. 

 Limitations: 

The emergency drill data will not be useful in the current form and will need to be analyzed 

to convert it into reasonable failure rates that can further be developed into an appropriate 

probability density function model or single failure probability. 

6.4.11  Handbook of Human Reliability Analysis 

Citation: 

A. Swain and H. Guttmann, “Handbook of human reliability analysis with emphasis on nuclear 

power plant applications”, Sandia National Laboratories, Albequerque, 1985. 

 Origins: 

Following the implementation of probabilistic risk assessment (PRA) in the nuclear 

industry, a method of quantifying human reliability was the next area of improvement. An 

initial draft of the Handbook of Human Reliability Analysis was circulated around the PRA 

and human reliability analysis (HRA) industry experts as a means of creating an agreeable 

and comprehensive method to standardize HRA. Given the intial draft’s comments, the 
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handbook implemented the industry experts’ recommendations to create a general guide to 

HRA. 

 Purpose: 

The Handbook of Human Reliability Analysis was produced to incorporate HRA into PRA 

in order to produce a holistic model of nuclear facilities. The book introduces basic 

concepts of PRA and HRA, technical terms in the fields of HRA and PRA, and models for 

human performance. 

 Value: 

The handbook is a comprehensive guide to the implementation of HRA including models 

and methodology behind human performance at a nuclear facility. The handbook provided 

an overall idea of the interactions between humans and machines using human machine 

interfaces (HMI) such as the AGN-201m control console, chart recorder, and wall area 

monitor. 

 Limitations: 

Due to the handbook being for facilities of a larger size than the AGN-201m and with more 

complicated controls, the general models did not conform to the AGN-201m without 

modification. 

6.4.12  Idaho State University AGN-201m – Console Changeover 

Information 

Citation: 
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D. Montenegro and J. Bennion, “New Control Console for the Idaho State University’s AGN-201 

Nuclear Reactor”, Innovations in Nuclear Engineering Education, Training, and Distance Learning, 

Idaho Falls, 2009. 

 Origins: 

Due to the obsolescence of 1950’s components being used in the AGN-201m control 

console, ISU underwent a project to update old components to more modern solid-state 

electronics, including the control console. 

 Purpose: 

To reduce the dependence on custom circuitry and vacuum tubes, the authors of this 

document designed a new control console to improve processing capacity while within 

technical specification limits. 

 Value: 

The New Control Console paper describes in discretized sections the original design of the 

“new control console” and portions of the reactor protection system being updated, 

including the control rod magnets, scram and interlock buses, and neutron channels. 

 Limitations: 

The document does not explicitly provide any data useful in risk analysis and is more of a 

proposal than a research paper, yielding no results of the final design. 

6.4.13  Idaho State University-- SCRAM, Interlock and Magnet 

Improvements 

Citation: 
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A. Mallicoat and C. Pope “Design improvements to the ISU AGN-201 reactor SCRAM, interlock, 

and magnet circuits”, Annals of Nuclear Energy, Vol. 136, 2020. 

 Origins: 

The original design of the ISU AGN-201 reactor involves 1950’s vacuum tube technology 

and custom circuit boards. To compensate for the obsolescence, ISU has created a new 

console project to upgrade components to modern standards. 

 Purpose: 

The proposed design improvements include rebuilding the AGN-201 safety circuit to 

include standard solid-state electronics and upgraded magnets to ensure the SCRAM, 

interlock, and magnet circuits are easily serviceable and repairable in modern times. 

 Value: 

The document allows for inferred reliability metrics and highlighting the new design and 

components in the new SCRAM, interlock and magnet systems. 

 Limitations: 

The paper does not discuss reliability in a probabilistic risk assessment manner, only 

implying the risk is negligible with the proposed changes. 

6.4.14  Idaho National Laboratory Light Water Reactor Sustainability 

Program- Risk Assessment  

Citation: 
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H. Bao, H. Zhang, and K. Thomas, “An Integrated Risk Assessment Process for Digital 

Instrumentation and Control Upgrades of Nuclear Power Plants”, Idaho National Laboratory, 

Idaho Falls, 2019. 

 Origins: 

The light water reactor sustainability program was designed to research and develop tools 

and methodologies to allow for the continued safe operation of current commercial nuclear 

power plants. “An Integrated Risk Assessment Process for Digital Instrumentation and 

Control Upgrades of Nuclear Power Plants” addresses the necessity for an accurate risk 

evaluation of software and hardware upgrades as the commercial fleet moves to more 

advanced technology to continue to operate. 

 Purpose: 

As analog systems age and light water reactors move towards the use of digital systems 

involving the operation and maintenance of the reactor, a comprehensive process was 

developed to accurately assess risks to factor software and digital component risks through 

common cause failure analysis and plant transient responses. 

 Value: 

A portion of “An Integrated Risk Assessment Process for Digital Instrumentation and 

Control Upgrades of Nuclear Power Plants” includes a discussion on human reliability 

assessment including common cause failure estimates for unsafe control actions. 

 Limitations: 

A majority of the document considers digital instrumentation and control upgrades in 

conjunction with cybersecurity concerns and software failures. Due to the simplicity and 
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lack of software in the proposed control rod upgrade, limitations exist on assessments of 

cybersecurity and software failures. 

6.4.15  NUREG/CR-6928 

Citation: 

Z. Ma, T. Wierman, and K. Kvarfordt, “Industry-average performance for components and 

initiating events at U.S. commercial nuclear power plants”, Idaho National Laboratory, Idaho 

Falls, 2021. 

 Origins: 

The United States Nuclear Regulatory Commission (NRC) produces a set of risk models 

known as the Standardized Plant Analysis Risk (SPAR) models to provide the NRC 

assistance in the Significant Determination Process and confirm licensee risk analysis 

during license amendments. Originally, SPAR models were produced using industry 

performance and data sets acquired in the NURGEG-1150 studies (published in 1990).  

 Purpose: 

Every few years SPAR models are updated to reflect current industry performance. 

NUREG/CR-6928 contains a comprehensive list of basic events from SPAR models, 

including distinctions between alternating/running component events, failure to run events 

(within the first hour), and failure to continue run events (beyond the first hour). 

NUREG/CR-6928 contains industry performance averages for unreliability in components, 

unavailabilities of parallel systems, special event probabilities, and initiating events. 
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 Value: 

NUREG/CR-6928 provides an estimate for component failure rates in industry standard 

components such as relays and switches. SPAR-H (Human reliability) is used for 

quantification of human events.  

 Limitations: 

The SPAR models and use of NUREG/CR-6928 fall apart with specific components not 

listed, such as radiation detection measurement failure rates and non-standard components 

such as the AGN-201’s motors. 

6.4.16  AGN-201K PRA Analysis 

Citation: 

I. Ahmed, E. Zio, and G. Heo, “Risk-informed approach to the safety improvement of the reactor 

protection system of the AGN-201K research reactor”, Kyung Hee University, Suwon, 2019. 

 Origins: 

Following the Fukushima accident in 2011, Korea has required all nuclear power plants to 

conduct periodic safety reviews including probabilistic risk assessments (PRA). Despite 

periodic safety reviews being conducted for power plants, research reactors are not required 

to conduct a periodic safety review.  

 Purpose: 
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Researchers at Kyung Hee University determined conducting a risk assessment for the 

AGN-201K reactor protection system to be a valuable endeavor. Through incorporating 

probabilistic risk assessment (PRA) importance measures and sensitivity and uncertainty 

analysis, the models produced provides potential safety improvements ranked on their 

importance to facilitate the upgrade process. 

 Value: 

The AGN-201K reactor protection system PRA provides data previously unavailable to the 

AGN-201m facility at ISU including neutron instrumentation channel failure rates and 

human reliability analysis from an AGN-201. 

 Limitations: 

The AGN-201K risk assessment includes the original un-upgraded reactor protection 

system including vacuum tube systems and AGN-201K specific data. The aim of the risk 

assessment is to assess the risk of failure of the reactor protection system, not CRDMs. 

6.4.17  Guidelines for Hazard Evaluation Procedures 

Citation: 

S. S. Grossel, Guidelines for Hazard Evaluation Procedures, Center for Chemical Process Society, 

2008. 

 Origins: 
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The Center for Chemical Process Safety (CCPS) originally published the Guidelines for 

Hazard Evaluation Procedures in 1985 to disseminate hazards and risks associated with 

chemical plant safety. The CCPS updates the text to include new findings and hazards 

analysis methods to ensure safety with chemical processes. 

 Purpose: 

The Guidelines for Hazard Evaluation Procedures provides a framework to conduct hazard 

evaluations and how the framework can be applied through multiple methodologies, such 

as failure modes and effects analysis (FMEA) or fault tree analysis. 

 Value: 

The text is used across industries to conduct hazard evaluation procedures such as FMEA 

and helped with evaluating the effectiveness of solutions presented in this thesis. 

 Limitations: 

Due to the broad scope of the document, specific nuclear hazards such as detector ruptures 

were not covered in the text. 
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Appendix D: Python Reliability Development Script 

… 
# Importing all things needed EXCEPT MODELS 
import numpy as np 
import pandas as pd 
import matplotlib.pyplot as plt 
from collections import defaultdict 
from sklearn.model_selection import train_test_split 
from sklearn.metrics import mean_squared_error 
import statsmodels.api as sm 
import seaborn as sb 
import math 
 
# This data is not used but is a demonstrative of what I started with 
DataInitial = pd.read_csv('https://gitlab.com/WickedWess/cs-final-rod-drive-risk/-
/raw/main/Decade_Compilation2010-2020.csv') 
DataInitial.head() 
 
# This will start by importing the new dataset having compiled what the description means with a set of 
boolean and single string statements. 
DataFull = pd.read_csv('https://gitlab.com/WickedWess/cs-final-rod-drive-risk/-
/raw/main/Decade_Compilation2010-2020NEW.csv') 
DataFull.head(5) 
 
DataFull["Solution"].unique() 
DataFull.head() 
 
# Start with Cleaning up the Data from som typos / empty entries 
DataFull = DataFull.drop(columns=["Unnamed: 15", "Unnamed: 16", "Unnamed: 17", "Unnamed: 18"]) 
DataFull = DataFull.dropna() 
DataFull.loc[DataFull["Solution"] == "replacement","Solution"] = "Replacement" 
DataFull.loc[DataFull["Solution"] == "repair","Solution"] = "Repair" 
DataFull.loc[DataFull["Solution"] == "recalibration","Solution"] = "Recalibration" 
# due to the excessively small data set here I will merge rebuild with modifications as they are close 
enough 
DataFull.loc[DataFull["Solution"] == "rebuild","Solution"] = "Rebuild" 
DataFull.loc[DataFull["Solution"] == "Modification","Solution"] = "Rebuild" 
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# Maintenance is not a failure so we will replace maintenance as None 
DataFull.loc[DataFull["Solution"] == "Maintenance", "Solution"] = "None" 
DataFull.loc[DataFull["Solution"] == "none","Solution"] = "None" 
DataFull["Solution"].unique() 
 
DataFull['Description'].str.len().plot.hist() 
DataFull = DataFull.drop('Date Performed',axis=1) 
DataFull = DataFull.drop('Description',axis=1) 
DataFull = DataFull.drop('Console New OR Old',axis=1) 
DataFull = DataFull.drop('Solution',axis=1) 
 
 
DataFull[['Rod Drive Failure','Motor Failure','Magnet Failure','Leadscrew Failure','potentiometer 
failure','Microswitch Failure','Console failure','Detector Failure','Channel 1 Failure','Channel 2 
Failure','Channel 3 Failure']] *= 1 
DataFull.head() 
 
# I will replace the Data Frame above with a more useable form I made on my GitLab. 
# Due to the small size and the inability of a computer to comprehend language in a neuanced manner many of 
the booleans must be added manually. 
DataFull['Console Total Failures'] = 0 
DataFull['Rod Drive Total Failures'] = 0 
DataFull['Motor Total Failures'] = 0 
DataFull['Magnet Total Failures'] = 0 
DataFull['Microswitch Total Failures'] = 0 
DataFull['Potentiometer Total Failures'] = 0 
DataFull['Detector Total Failures'] = 0 
DataFull['Channel 1 Total Failures'] = 0 
DataFull['Channel 2 Total Failures'] = 0 
DataFull['Channel 3 Total Failures'] = 0 
DataFull['Leadscrew Total Failures'] = 0 
RodFailLast = defaultdict(int) 
MotorFailLast = defaultdict(int) 
LeadscrewFailLast = defaultdict(int) 
PotFailLast = defaultdict(int) 
MicFailLast = defaultdict(int) 
MagFailLast = defaultdict(int) 
ConFailLast = defaultdict(int) 
DetFailLast = defaultdict(int) 
Ch1FailLast = defaultdict(int) 
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Ch2FailLast = defaultdict(int) 
Ch3FailLast = defaultdict(int) 
 
for index, row in DataFull.iterrows(): 
  FailureRod = row['Rod Drive Failure'] 
  DataFull.loc[index,'Rod Drive Total Failures'] = RodFailLast[FailureRod] 
  RodFailLast[FailureRod] += int(row['Rod Drive Failure']) 
  FailureMotor = row['Motor Failure'] 
  DataFull.loc[index,'Motor Total Failures'] = MotorFailLast[FailureMotor] 
  MotorFailLast[FailureMotor] += int(row['Motor Failure']) 
  FailureLeadscrew = row['Leadscrew Failure'] 
  DataFull.loc[index,'Leadscrew Total Failures'] = LeadscrewFailLast[FailureLeadscrew] 
  RodFailLast[FailureRod] += int(row['Rod Drive Failure']) 
  FailurePot = row['potentiometer failure'] 
  DataFull.loc[index,'Potentiometer Total Failures'] = PotFailLast[FailurePot] 
  PotFailLast[FailurePot] += int(row['potentiometer failure']) 
  FailureMic = row['Microswitch Failure'] 
  DataFull.loc[index,'Microswitch Total Failures'] = MicFailLast[FailureMic] 
  MicFailLast[FailureMic] += int(row['Microswitch Failure']) 
  FailureMag = row['Magnet Failure'] 
  DataFull.loc[index,'Magnet Total Failures'] = MagFailLast[FailureMag] 
  MagFailLast[FailureMag] += int(row['Magnet Failure']) 
  FailureCon = row['Console failure'] 
  ConFailLast[FailureCon] +=  int(row['Console failure']) 
  DataFull.loc[index,'Console Total Failures'] = ConFailLast[FailureCon] 
  FailureDet = row['Detector Failure'] 
  DataFull.loc[index,'Detector Total Failures'] = DetFailLast[FailureDet] 
  DetFailLast[FailureDet] += int(row['Detector Failure']) 
  FailureCh1 = row['Channel 1 Failure'] 
  DataFull.loc[index,'Channel 1 Total Failures'] = Ch1FailLast[FailureCh1] 
  Ch1FailLast[FailureCh1] += int(row['Channel 1 Failure']) 
  FailureCh2 = row['Channel 2 Failure'] 
  DataFull.loc[index,'Channel 2 Total Failures'] = Ch2FailLast[FailureCh2] 
  Ch2FailLast[FailureCh2] += int(row['Channel 2 Failure']) 
  FailureCh3 = row['Channel 3 Failure'] 
  DataFull.loc[index,'Channel 3 Total Failures'] = Ch3FailLast[FailureCh3] 
  Ch3FailLast[FailureCh3] += int(row['Channel 3 Failure']) 
 
DataFull.head() 
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# My proposal included many models that I will try to cover and compare they will be done in this section. 
#X = DataFull[['Console Total Failures','Rod Drive Total Failures','Motor Total Failures','Magnet Total 
Failures','Microswitch Total Failures','Potentiometer Total Failures','Detector Total Failures','Channel 1 
Total Failures','Channel 2 Total Failures','Channel 3 Total Failures','Leadscrew Total Failures']] 
X = DataFull[['Console Total Failures','Motor Total Failures','Magnet Total Failures','Microswitch Total 
Failures','Potentiometer Total Failures','Detector Total Failures','Channel 1 Total Failures','Channel 2 
Total Failures','Channel 3 Total Failures','Leadscrew Total Failures']] 
# For the scope of this project we are looking for specifically the rod drive. 
y = DataFull['Rod Drive Failure'] 
y = y.astype(int) 
# y = DataFull[['Motor Failure']] 
# y = DataFull[['Magnet Failure']] 
# y = DataFull[['Leadscrew Failure']] 
# y = DataFull[['potentiometer failure']] 
# y = DataFull[['Microswitch Failure']] 
# y = DataFull[['Console failure']] 
# y = DataFull[['Detector Failure']] 
# y = DataFull[['Channel 1 Failure']] 
# y = DataFull[['Channel 2 Failure']] 
# y = DataFull[['Channel 3 Failure']] 
 
# k-Nearest Neighbors 
from sklearn.preprocessing import StandardScaler 
from sklearn.neighbors import KNeighborsClassifier 
 
r2Test = 0 
r2Train = 0 
rmse_values = 0 
Rod_Prob_train = 0 
averages = [] 
 
for i in range(100): 
    X_train, X_test, y_train, y_test = train_test_split(X,y,test_size=1/5) 
    z_Data = StandardScaler().fit_transform(DataFull) 
    z_fit = StandardScaler().fit(X_train) 
    z_X_train = z_fit.transform(X_train) 
    z_X_test = z_fit.transform(X_test) 
    z_X_test 
    kNN = KNeighborsClassifier(n_neighbors=5) # Specify k = n_neighbors 
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    # I am not sure I understand the warning provided for this one. But it looks to not like something. I 
would understand it better if it also didn't occur outside of the for loop. 
    kNN.fit(z_X_train,y_train) 
    pred = kNN.predict(X_test) 
    rmse_values += mean_squared_error(y_test,pred,squared=False) 
    r2Test += kNN.score(z_X_test, y_test) 
    r2Train += kNN.score(z_X_train, y_train) 
    Rod_Prob_train = kNN.predict_proba(z_X_test)#[:,1] 
    averages.append(np.average(Rod_Prob_train[:,1])) 
 
 
print('Training accuracy: ', r2Train/(i+1)) 
print('Testing accuracy: ', r2Test/(i+1)) 
print('Mean Squared: ', rmse_values/(i+1)) 
print('Average Rod Failure Probability', np.average(averages)) 
 
# Logistic Regression 
from sklearn.linear_model import LogisticRegression 
import statsmodels.api as sm 
 
r2Test = 0 
r2Train = 0 
rmse_values = 0 
Rod_Prob_train = 0 
averages = [] 
for i in range(100): 
    X_train, X_test, y_train, y_test = train_test_split(X,y,test_size=1/5) 
    log_reg = LogisticRegression() 
    log_reg.fit(X_train,y_train) 
    pred = log_reg.predict(X_test) 
    rmse_values += mean_squared_error(y_test,pred,squared=False) 
    r2Test += log_reg.score(X_test, y_test) 
    r2Train += log_reg.score(X_train, y_train) 
    Rod_Prob_train = log_reg.predict_proba(X_test)#[:,1] 
    averages.append(np.average(Rod_Prob_train[:,1])) 
 
 
print('Training accuracy: ', r2Train/(i+1)) 
print('Testing accuracy: ', r2Test/(i+1)) 
print('Mean Squared: ', rmse_values/(i+1)) 
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print('Average Rod Failure Probability', np.average(averages)) 
 
# Naive Bayes 
 
# Guassian Naive Bayes 
from sklearn.naive_bayes import GaussianNB 
 
r2Test = 0 
r2Train = 0 
rmse_values = 0 
Rod_Prob_train = 0 
 
averages = [] 
 
for i in range(100): 
    X_train, X_test, y_train, y_test = train_test_split(X,y,test_size=1/5) 
    gnb = GaussianNB() 
    gnb.fit(X_train,y_train) 
    pred = gnb.predict(X_test) 
    rmse_values += mean_squared_error(y_test,pred,squared=False) 
    r2Test += gnb.score(X_test, y_test) 
    r2Train += gnb.score(X_train, y_train) 
    Rod_Prob_train = gnb.predict_proba(X_test)#[:,1] 
    averages.append(np.average(Rod_Prob_train[:,0])) 
 
 
print('Training accuracy: ', r2Train/(i+1)) 
print('Testing accuracy: ', r2Test/(i+1)) 
print('Mean Squared: ', rmse_values/(i+1)) 
print('Average Rod Failure Probability', np.average(averages)) 
 
# Bernoulli Naive Bayes 
from sklearn.naive_bayes import BernoulliNB 
 
r2Test = 0 
r2Train = 0 
rmse_values = 0 
Rod_Prob_train = 0 
 
averages = [] 



 

112 

 
for i in range(100): 
    X_train, X_test, y_train, y_test = train_test_split(X,y,test_size=1/5) 
    gnb = BernoulliNB() 
    gnb.fit(X_train,y_train) 
    pred = gnb.predict(X_test) 
    rmse_values += mean_squared_error(y_test,pred,squared=False) 
    r2Test += gnb.score(X_test, y_test) 
    r2Train += gnb.score(X_train, y_train) 
    Rod_Prob_train = gnb.predict_proba(X_test)#[:,1] 
    averages.append(np.average(Rod_Prob_train[:,1])) 
 
 
print('Training accuracy: ', r2Train/(i+1)) 
print('Testing accuracy: ', r2Test/(i+1)) 
print('Mean Squared: ', rmse_values/(i+1)) 
print('Average Rod Failure Probability', np.average(averages)) 
 
# Multinomial Naive Bayes -- Performed the best 
from sklearn.naive_bayes import MultinomialNB 
 
r2Test = 0 
r2Train = 0 
rmse_values = 0 
Rod_Prob_train = 0 
 
averages = [] 
 
for i in range(100): 
    X_train, X_test, y_train, y_test = train_test_split(X,y,test_size=1/5) 
    gnb = MultinomialNB() 
    gnb.fit(X_train,y_train) 
    pred = gnb.predict(X_test) 
    rmse_values += mean_squared_error(y_test,pred,squared=False) 
    r2Test += gnb.score(X_test, y_test) 
    r2Train += gnb.score(X_train, y_train) 
    Rod_Prob_train = gnb.predict_proba(X_test)#[:,1] 
    averages.append(np.average(Rod_Prob_train[:,1])) 
 
 



 

113 

print('Training accuracy: ', r2Train/(i+1)) 
print('Testing accuracy: ', r2Test/(i+1)) 
print('Mean Squared: ', rmse_values/(i+1)) 
print('Average Rod Failure Probability', np.average(averages)) 
 
# Auto associative neural network -- Model does not converge due to the lack of data 
from sklearn.model_selection import RepeatedKFold 
from keras.models import Sequential 
from keras.layers import Dense 
from keras.callbacks import EarlyStopping, ModelCheckpoint 
from sklearn.preprocessing import StandardScaler 
 
cv = RepeatedKFold(n_splits=11,n_repeats=11, random_state=42) 
 
for train_ix, test_ix in cv.split(X): 
    X_train, X_test = X.iloc[train_ix], X.iloc[test_ix] 
    y_train, y_test = y.iloc[train_ix], y.iloc[test_ix] 
 
#X_train, X_test, y_train, y_test = train_test_split(X,y,test_size=1/5) 
 
scaler = StandardScaler() 
X_train = scaler.fit_transform(X_train) 
X_test = scaler.transform(X_test) 
 
X_train_tr, X_train_v, y_train_tr, y_train_v = train_test_split(X_train, y_train, test_size=1/4, 
random_state=42) 
 
model = Sequential() 
model.add(Dense(11, kernel_initializer='he_normal', activation='relu')) 
model.add(Dense(5, kernel_initializer='he_normal', activation='relu')) 
#model.add(Dense(2, kernel_initializer='he_normal', activation='relu')) 
#model.add(Dense(5, kernel_initializer='he_normal', activation='relu')) 
model.add(Dense(11, activation='linear')) 
 
model.compile(loss='sparse_categorical_crossentropy', optimizer='adam', metrics=["accuracy"]) 
 
model.fit(X_train_tr, y_train_tr, epochs=200, validation_data=(X_train_v, y_train_v), 
callbacks=[EarlyStopping(monitor='val_loss',patience=3, verbose=1, mode='min'), ModelCheckpoint('aann', 
verbose=1, save_best_only=True)]) 
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model.evaluate(X_test, y_test) 
 
# MultinomialNB to predict other values beyond total Failure 
 
# Motor failure 
X = DataFull[['Console Total Failures','Motor Total Failures','Magnet Total Failures','Microswitch Total 
Failures','Potentiometer Total Failures','Detector Total Failures','Channel 1 Total Failures','Channel 2 
Total Failures','Channel 3 Total Failures','Leadscrew Total Failures']] 
y = DataFull['Motor Failure'] 
y = y.astype(int) 
 
from sklearn.naive_bayes import MultinomialNB 
 
r2Test = 0 
r2Train = 0 
rmse_values = 0 
Rod_Prob_train = 0 
 
averages = [] 
 
for i in range(100): 
    X_train, X_test, y_train, y_test = train_test_split(X,y,test_size=1/5) 
    gnb = MultinomialNB(fit_prior=True, class_prior=[(1-(8/119)), 8/119]) 
    gnb.fit(X_train,y_train.values.ravel()) 
    pred = gnb.predict(X_test) 
    rmse_values += mean_squared_error(y_test,pred,squared=False) 
    r2Test += gnb.score(X_test, y_test) 
    r2Train += gnb.score(X_train, y_train) 
    Rod_Prob_train = gnb.predict_proba(X_test)#[:,1] 
    averages.append(np.average(Rod_Prob_train[:,1])) 
 
 
print('Training accuracy: ', r2Train/(i+1)) 
print('Testing accuracy: ', r2Test/(i+1)) 
print('Mean Squared: ', rmse_values/(i+1)) 
print('Average Motor Failure Probability', np.average(averages)) 
 
# Magnet failure 
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X = DataFull[['Console Total Failures','Motor Total Failures','Magnet Total Failures','Microswitch Total 
Failures','Potentiometer Total Failures','Detector Total Failures','Channel 1 Total Failures','Channel 2 
Total Failures','Channel 3 Total Failures','Leadscrew Total Failures']] 
y = DataFull[['Magnet Failure']] 
y = y.astype(int) 
 
from sklearn.naive_bayes import MultinomialNB 
 
r2Test = 0 
r2Train = 0 
rmse_values = 0 
Rod_Prob_train = 0 
 
averages = [] 
 
for i in range(100): 
    X_train, X_test, y_train, y_test = train_test_split(X,y,test_size=1/5) 
    gnb = MultinomialNB() 
    gnb.fit(X_train,y_train.values.ravel()) 
    pred = gnb.predict(X_test) 
    rmse_values += mean_squared_error(y_test,pred,squared=False) 
    r2Test += gnb.score(X_test, y_test) 
    r2Train += gnb.score(X_train, y_train) 
    Rod_Prob_train = gnb.predict_proba(X_test)#[:,1] 
    averages.append(np.average(Rod_Prob_train[:,1])) 
 
 
print('Training accuracy: ', r2Train/(i+1)) 
print('Testing accuracy: ', r2Test/(i+1)) 
print('Mean Squared: ', rmse_values/(i+1)) 
print('Average Magnet Failure Probability', np.average(averages)) 
 
# Leadscrew Failure 
X = DataFull[['Console Total Failures','Motor Total Failures','Magnet Total Failures','Microswitch Total 
Failures','Potentiometer Total Failures','Detector Total Failures','Channel 1 Total Failures','Channel 2 
Total Failures','Channel 3 Total Failures','Leadscrew Total Failures']] 
y = DataFull[['Leadscrew Failure']] 
y = y.astype(int) 
 
from sklearn.naive_bayes import MultinomialNB 
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r2Test = 0 
r2Train = 0 
rmse_values = 0 
Rod_Prob_train = 0 
 
averages = [] 
 
for i in range(100): 
    X_train, X_test, y_train, y_test = train_test_split(X,y,test_size=1/5) 
    gnb = MultinomialNB() 
    gnb.fit(X_train,y_train.values.ravel()) 
    pred = gnb.predict(X_test) 
    rmse_values += mean_squared_error(y_test,pred,squared=False) 
    r2Test += gnb.score(X_test, y_test) 
    r2Train += gnb.score(X_train, y_train) 
    Rod_Prob_train = gnb.predict_proba(X_test)#[:,1] 
    averages.append(np.average(Rod_Prob_train[:,1])) 
 
 
print('Training accuracy: ', r2Train/(i+1)) 
print('Testing accuracy: ', r2Test/(i+1)) 
print('Mean Squared: ', rmse_values/(i+1)) 
print('Average Leadscrew Failure Probability', np.average(averages)) 
 
# Potentiometer Failure 
X = DataFull[['Console Total Failures','Motor Total Failures','Magnet Total Failures','Microswitch Total 
Failures','Potentiometer Total Failures','Detector Total Failures','Channel 1 Total Failures','Channel 2 
Total Failures','Channel 3 Total Failures','Leadscrew Total Failures']] 
y = DataFull[['potentiometer failure']] 
y = y.astype(int) 
 
from sklearn.naive_bayes import MultinomialNB 
 
r2Test = 0 
r2Train = 0 
rmse_values = 0 
Rod_Prob_train = 0 
 
averages = [] 
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for i in range(100): 
    X_train, X_test, y_train, y_test = train_test_split(X,y,test_size=1/5) 
    gnb = MultinomialNB() 
    gnb.fit(X_train,y_train.values.ravel()) 
    pred = gnb.predict(X_test) 
    rmse_values += mean_squared_error(y_test,pred,squared=False) 
    r2Test += gnb.score(X_test, y_test) 
    r2Train += gnb.score(X_train, y_train) 
    Rod_Prob_train = gnb.predict_proba(X_test)#[:,1] 
    averages.append(np.average(Rod_Prob_train[:,1])) 
 
 
print('Training accuracy: ', r2Train/(i+1)) 
print('Testing accuracy: ', r2Test/(i+1)) 
print('Mean Squared: ', rmse_values/(i+1)) 
print('Average Potentiometer Failure Probability', np.average(averages)) 
 
# Validation 
# To validate the models the following data was found that show the statistics for a control rod drive 
failure within a reactor, through the observed failures of over many demands / hours. 
Expected = pd.read_csv('https://gitlab.com/WickedWess/cs-final-rod-drive-risk/-
/raw/main/Final_Project_Estimates.csv') 
Expected.head() 
 
import seaborn as sb 
plt.subplots(figsize=(10,10)) 
dataplot = sb.heatmap(DataFull.corr(), annot=True) 
plt.show() 
 
# Statistics stuff that is not machine learning 
Demands = DataFull.shape[0] 
#print(Demands) 
Failures = DataFull[DataFull['Rod Drive Failure'] == 1].shape[0] 
#print(Failures) 
alpha = Failures + 0.5 # then number of failed demands + 0.5 
beta = 3652.5 # Amount of time in time units (days) 
mean_gamma = alpha / beta 
std_gamma = alpha / (beta * beta) 
print('Mean of resultant gamma distribution', mean_gamma) 
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print('Standard deviation of resultant gamma distribution', std_gamma) 
Gamma_acc = math.sqrt((mean_gamma-Expected['Mean'][2])/2) 
per_error = mean_gamma-Expected['Mean'][2]/Expected['Mean'][2] 
print("% error", per_error) 
print("RSME of Gamma",Gamma_acc) 
 
# MORE Statistics stuff that is not machine learning 
Demands = DataFull.shape[0] 
#print(Demands) 
Failures = DataFull.shape[0] 
#print(Failures) 
alpha = Failures + 0.5 # then number of failed demands + 0.5 
beta = 3652.5 # Amount of time in time units (days) 
mean_gamma = alpha / beta 
std_gamma = alpha / (beta * beta) 
print('Mean of resultant gamma distribution', mean_gamma) 
print('Standard deviation of resultant gamma distribution', std_gamma) 
Gamma_acc = math.sqrt((mean_gamma-Expected['Mean'][2])/2) 
per_error = mean_gamma-Expected['Mean'][2]/Expected['Mean'][2] 
print("% error", per_error) 
print("RSME of Gamma",Gamma_acc) 
 
# Math for the magnets 
Demands = DataFull.shape[0] 
#print(Demands) 
Failures = DataFull[DataFull['Magnet Failure'] == 1].shape[0] 
#print(Failures) 
alpha = Failures + 0.5 # then number of failed demands + 0.5 
beta = 3652.5 # Amount of time in time units (days) 
mean_gamma = alpha / beta 
std_gamma = alpha / (beta * beta) 
print('Mean of resultant gamma distribution', mean_gamma) 
print('Standard deviation of resultant gamma distribution', std_gamma) 
Gamma_acc = math.sqrt((mean_gamma-Expected['Mean'][2])/2) 
per_error = mean_gamma-Expected['Mean'][2]/Expected['Mean'][2] 
print("% error", per_error) 
print("RSME of Gamma",Gamma_acc) 
 
# Math for the Leadscrews 
Demands = DataFull.shape[0] 
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#print(Demands) 
Failures = DataFull[DataFull['Leadscrew Failure'] == 1].shape[0] 
#print(Failures) 
alpha = Failures + 0.5 # then number of failed demands + 0.5 
beta = 3652.5 # Amount of time in time units (days) 
mean_gamma = alpha / beta 
std_gamma = alpha / (beta * beta) 
print('Mean of resultant gamma distribution', mean_gamma) 
print('Standard deviation of resultant gamma distribution', std_gamma) 
Gamma_acc = math.sqrt((mean_gamma-Expected['Mean'][2])/2) 
per_error = mean_gamma-Expected['Mean'][2]/Expected['Mean'][2] 
print("% error", per_error) 
print("RSME of Gamma",Gamma_acc) 
 
# Math for the motor 
Demands = DataFull.shape[0] 
#print(Demands) 
Failures = DataFull[DataFull['Motor Failure'] == 1].shape[0] 
#print(Failures) 
alpha = Failures + 0.5 # then number of failed demands + 0.5 
beta = 3652.5 # Amount of time in time units (days) 
mean_gamma = alpha / beta 
std_gamma = alpha / (beta * beta) 
print('Mean of resultant gamma distribution', mean_gamma) 
print('Standard deviation of resultant gamma distribution', std_gamma) 
Gamma_acc = math.sqrt((mean_gamma-Expected['Mean'][2])/2) 
per_error = mean_gamma-Expected['Mean'][2]/Expected['Mean'][2] 
print("% error", per_error) 
print("RSME of Gamma",Gamma_acc)… 

 

 




