
 

 

 

In presenting this thesis in partial fulfillment of the requirements for an advanced degree at Idaho 

State University, I agree that the library shall make it freely available for inspection.  I further 

state that permission to download and/or print my thesis for scholarly purposes may be granted 

by the Dean of the Graduate School, Dean of my academic division, or by the University 

Librarian.  It is understood that any copying or publication of this thesis for financial gain shall 

not be allowed without my written permission.  

 

Signature _________________________________  

Date __________________________



 

 

 

 

Mass Movement Monitoring and Susceptibility Mapping Using  

Unmanned Aerial Systems along Railway Corridors 

 

 

By 

Dana E. Drinkall 

 

A thesis  

submitted in partial fulfillment  

of the requirements for the degree of   

Masters of Science in the Department of Geosciences 

Idaho State University  

Fall 2022 

 

 

 

 

 

 

 

 



 

ii 

 

 

 

 

 

 

 

 

 

Copyright (2022) Dana Drinkall 

  



 

iii 

 

To the Graduate Faculty: 

The members of the committee appointed to examine the thesis of Dana E. Drinkall find it 

satisfactory and recommend that it be accepted. 

_________________________________________  

Dr. Donna M. Delparte, Major Advisor,  

Associate Professor at Idaho State University  

Department of Geosciences 

 

 _________________________________________  

Dr. Benjamin Crosby, Committee Member,  

Professor and Department Chair of Idaho State University  

Department of Geosciences 

 

_________________________________________  

Dr. Zachery Lifton, Committee Member,  

Hazards Geologist at the Idaho Geological Survey 

 

_________________________________________ 

Dr. Paul Bodily, Graduate Faculty Representative 

Assistant Professor at Idaho State University 

Department of Computer Science 

 

 



 

iv 

 

Acknowledgements 

I would like to thank Dr. Donna Delparte for her help, patience, and mentorship throughout this 

project. I would also like to thank my committee, Dr. Zachery Lifton and Dr. Benjamin Crosby 

for their guidance and support. I give my thanks to Matthew Belt, Dr. Carrie Bottenberg, Dr. 

James Mahar, and Dr. Di Wu for their help and advice. My family and friends have my heartfelt 

thanks for their support over the last few years. In addition, thank you to Nicholas Dryer for aid 

in our fieldwork logistics. This thesis is funded in part by AmericaView under U.S. Geological 

Survey Grant/Cooperative Agreement No. G18AP00077. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

v 

 

Table of Contents 

List of Figures........................................................................................................................ viii 

List of Tables .......................................................................................................................... xii 

Abstract ................................................................................................................................. xiii 

Chapter 1. Introduction ............................................................................................................1 

1.1 Background .......................................................................................................................1 

1.2 Types of Landslides ...........................................................................................................2 

1.3 Factors Influencing Landslide Susceptibility ......................................................................4 

1.3.1 Lithology ........................................................................................................................4 

1.3.2 Faulting and Seismicity ...................................................................................................5 

1.3.3 Hydrology .......................................................................................................................6 

1.3.4 Anthropogenic Activity ...................................................................................................6 

1.4 Study Site Characterization ................................................................................................7 

1.5 Thesis Objectives ...............................................................................................................9 

Chapter 2. Change Detection with Point-to-Point Cloud Comparison ................................. 11 

2.1 Introduction ..................................................................................................................... 11 

2.1.1 Mass movement hazard along transportation corridors .................................................. 11 

2.1.2 Airborne and UAS LiDAR Scanning for Mass movement monitoring ........................... 11 

2.1.3 Challenges in change detection comparison between LiDAR point clouds .................... 12 

2.1.4 Change detection with UAS LiDAR.............................................................................. 14 

2.1.5 Multiscale Model-to-Model Cloud Comparison ............................................................ 15 

2.2 Methodology ................................................................................................................... 17 

2.2.1 Landslide Study Sites .................................................................................................... 17 

2.2.1 2017 UAS LiDAR Configuration .................................................................................. 19 

2.2.2 2021 LiDAR UAS LiDAR Configuration ..................................................................... 21 

2.2.3 Flight Planning and Data Acquisition ............................................................................ 22 

2.2.3 Workflow to Reduce Repeat LiDAR Issues................................................................... 23 

2.2.3.1 Step 1. LiDAR Post-Processing .................................................................................. 24 

2.2.3.3 Step 3. Point Cloud Classification .............................................................................. 27 

2.2.5 Point-to-Point Cloud Comparison ................................................................................. 28 

2.2.5 Volume Calculation ...................................................................................................... 29 

2.3 Results ............................................................................................................................. 30 

2.3.1 Point Cloud Generation for 2017 and 2021 ................................................................... 30 



 

vi 

 

2.3.2 M3C2 Measured Change between 2017 and 2022 LiDAR............................................. 32 

2.3.2.1  Deep Creek M3C2 and Volume Results .................................................................... 33 

2.3.2.2  Kootenai River M3C2 and Volume Results ............................................................... 34 

2.3.2.3  Moyie River M3C2 and Volume Results ................................................................... 36 

2.3.3 Uncertainty Results ....................................................................................................... 38 

2.4 M3C2 Discussion ............................................................................................................ 43 

Chapter 3: Object Based Image Analysis ............................................................................... 45 

3.1 Introduction ..................................................................................................................... 45 

3.1.1 Definition of susceptibility, risk, and hazard for landslide mapping ............................... 46 

3.1.2 Landslide Susceptibility Environmental Factors ............................................................ 47 

3.1.3 Rockfall Susceptibility Environmental Factors .............................................................. 48 

3.1.4 Deposition Susceptibility Environmental Factors .......................................................... 50 

3.1.5 Goals and Objectives .................................................................................................... 51 

3.2 Methods ........................................................................................................................... 52 

3.2.1 Landslide Characterization of Study Sites ..................................................................... 52 

3.2.1 UAS Platforms and Sensors .......................................................................................... 55 

3.2.1 LiDAR Post Processing................................................................................................. 55 

3.2.2 OBIA Analysis ............................................................................................................. 56 

3.2.2.1 Generate Map Layers ................................................................................................. 56 

3.2.2.2  Multiresolution Segmentation ................................................................................... 58 

3.2.2.3 Assign Classes with OBIA Ruleset............................................................................. 59 

3.2.2.3.1 Landslide Initiation Ruleset ..................................................................................... 59 

3.2.2.3.2 Rockfall Initiation Ruleset ....................................................................................... 63 

3.2.2.3.3 Deposition Areas Ruleset ........................................................................................ 65 

3.3 OBIA Results .................................................................................................................. 68 

3.3.1 Landslide Initiation Ruleset Results .............................................................................. 68 

3.3.2 Rockfall Initiation Ruleset Results ................................................................................ 73 

3.3.3 Deposition Ruleset Results ............................................................................................ 78 

3.4 Ruleset validation ............................................................................................................ 82 

3.5 OBIA Discussion ............................................................................................................. 82 

Chapter 4: Conclusion ............................................................................................................ 86 

4.1 Multiscale Model-to-Model Cloud Comparison Conclusion ........................................ 86 



 

vii 

 

4.2 Object Based Image Analysis Conclusion ..................................................................... 87 

References................................................................................................................................ 89 

Appendices .............................................................................................................................. 96 

Disclaimer ............................................................................................................................. 96 

Appendix I LiDAR Tools Workflow...................................................................................... 97 

Appendix II Strip Align and LASTools Workflow for Headwall Processing .......................... 98 

Appendix III M3C2 and Volume Calculation in Cloud Compare ......................................... 101 

Appendix IV Data Layers in ArcGIS Pro ............................................................................. 104 

 

  



 

viii 

 

List of Figures 

Figure 1. Study area map of the three sites in northern Idaho near the towns of Bonners Ferry and 

Moyie Springs. There are three sites along the Kootenai River, one site along the Moyie River, 

and another one along Deep Creek. (Image Source: 2019 National Agriculture Imagery Program)

 ...................................................................................................................................................9 

Figure 2. Kootenai River site with UAS flightpaths shown in yellow. Imagery: Google Earth Pro 

Idaho, USA. 48° 40’ 54.03’’N 116° 07’ 32.00” W, Eye alt 3945 ft. ........................................... 17 

Figure 3. Deep Creek site with UAS flightpaths shown in yellow. Imagery: Google Earth Pro 

Idaho, USA. 48° 37’ 31.78’’N 116° 22’ 56.67” W, Eye alt 4233 ft. ........................................... 18 

Figure 4. Moyie Site with UAS flightpaths shown in yellow. Imagery: Google Earth Pro Idaho, 

USA. 48° 45’ 55.39’’N 116° 10’ 12.74” W, Eye alt 4192 ft....................................................... 19 

Figure 5. DJI Matrice 600 Pro equipped with a lightweight Geodetics Inc. Geo-MMS Velodyne 

LiDAR sensor configuration used in 2017 Campaign. Image credit: Aevex Aerospace 

(https://geodetics.com/product/geo-mms/) ................................................................................. 20 

Figure 6. Image of DJI Matrice 600 Pro equipped with a lightweight Velodyne LiDAR sensor 

and co-mounted with the Headwall Nano hyperspectral sensor used in 2021 campaign. Image: 

Delparte, 2021 ........................................................................................................................... 22 

Figure 7. LiDAR Post Processing Workflow Diagram ............................................................... 24 

Figure 8. Deep Creek 2021 (left) and 2017 (right) Point Clouds. The top to images are the DSMs 

for the site with the color scale based on elevation. The grey images below are the DEMs. ....... 30 

Figure 9. Kootenai River 2021 (left) and 2017 (right) Point Clouds. The top two images are the 

DSMs for the site with the color scale based on elevation. The grey images below are the DEMs.

 ................................................................................................................................................. 31 



 

ix 

 

Figure 10. Moyie River 2021 (left) and 2017 (right) Point Clouds. The top to images are the 

DSMs for the site with the color scale based on elevation. The grey images below are the DEMs.

 ................................................................................................................................................. 32 

Figure 11. Deep Creek M3C2 (Top) and Significant Change results (Bottom) ........................... 33 

Figure 12. Deep Creek main area of interest along cliff face. (A) M3C2 results showing loss 

along the cliff face and deposition below (B) both of these displacements were identified as 

significant change. (C) RGB nadir image of the area. ................................................................ 34 

Figure 13. Kootenai River M3C2 (Top) and Significant Change results (Bottom) ..................... 35 

Figure 14. Area of interest at the Kootenai River site (A) M3C2 results showing loss along the 

railroad (B) All three of these displacements were identified as significant change. (C) Matching 

RGB nadir image of the area. .................................................................................................... 36 

Figure 15. Moyie River M3C2 (Top) and Significant Change results (Bottom).......................... 37 

Figure 16. Area of 2017 derailment at the Moyie River site (A) M3C2 results showing loss along 

the railroad (B) This same area was identified as significant change. (C) Matching RGB nadir 

image of the area showing mitigation work. .............................................................................. 38 

Figure 17. Kootenai River distance uncertainty point clouds ..................................................... 39 

Figure 18. Kootenai River distance uncertainty histogram ......................................................... 40 

Figure 19. Deep Creek site distance uncertainty point cloud ...................................................... 41 

Figure 20. Deep Creek site distance uncertainty histogram ........................................................ 41 

Figure 21. Moyie River site distance uncertainty point cloud ..................................................... 42 

Figure 22. Moyie River site distance uncertainty histogram ....................................................... 42 

Figure 23. Hillshades of the three study sites ............................................................................. 54 

Figure 24. Landslide ruleset workflow for initial classification .................................................. 61 



 

x 

 

Figure 25. Continuation of landslide ruleset where the rules of this section are used to fill any 

holes in the classification........................................................................................................... 62 

Figure 26. The last section of the Landslide Ruleset which reduces noise in the model by 

removing small isolated polygons. ............................................................................................ 63 

Figure 27. Rockfall initiation ruleset workflow. A. Initial classification based on slope and how 

many other environmental factor thresholds the object meets B. Remove small, isolated polygons 

C. Add in bordering objects that meet one of the rockfall susceptibility factors ......................... 64 

Figure 28. Rockfall ruleset continued. D. Continue to fill holes in the data set based on how 

much of an objects border is already classified E. fill in any polygons that are fully surrounded 

by other classified objects ......................................................................................................... 65 

Figure 29. First part of the deposition workflow. A. Classify first based on slope and the 

presence of the other environmental parameters B. Add in bordering objects with a low slope or 

high flow accumulation C. Reclassify moderate or high objects into very high susceptibility 

category if they are mostly surrounded by very high susceptibility ............................................ 66 

Figure 30. Deposition susceptibility model workflow continued. D. uses flow accumulation and 

CHM, and object size to remove noise E. Removes steep slopes greater or equal to 38° F. Fill 

holes in larger classified objects ................................................................................................ 67 

Figure 31. Landslide initiation model for the Kootenai River site .............................................. 68 

Figure 32. Site of significant loss at the Kootenai River site ...................................................... 69 

Figure 33. Deep Creek landslide initiation susceptibility model ................................................. 70 

Figure 34. Areas of significant loss that are reflected in the high landslide initiation classification

 ................................................................................................................................................. 71 

Figure 35. Moyie River landslide initiation model ..................................................................... 72 



 

xi 

 

Figure 36. Area classified as having a very high susceptibility for landslide initiation at the 

Moyie River site. ....................................................................................................................... 73 

Figure 37. Rockfall initiation susceptibility model for the Kootenai River site ........................... 74 

Figure 38. Area of rockfall susceptibility at the Kootenai River site .......................................... 75 

Figure 39. Rockfall initiation model for Deep Creek ................................................................. 76 

Figure 40. Rockfall initiation model for the Moyie River site .................................................... 77 

Figure 41. Section of the Moyie River site model classified as an area of rockfall initiation 

susceptibility ............................................................................................................................. 77 

Figure 42. Deposition susceptibility model for the Kootenai River site. ..................................... 78 

Figure 43. Section of the Kootenai deposition model that shows overlap between the classified 

polygons (yellow, orange, and red) with the M3C2 areas of significant deposition (blue dots) ... 79 

Figure 44. Deep Creek deposition susceptibility model ............................................................. 80 

Figure 45. Moyie River site deposition susceptibility model ...................................................... 81 

Figure 46. Comparison of rockfall (right) and landslide (left) models at the Kootenai site. ........ 83 

Figure 47. Comparison of the rockfall and deposition models at Deep Creek ............................. 84 

Figure 48. Section of Kootenai River site that shows correspondence between the landslide (left) 

and deposition (right) models. ................................................................................................... 85 

 

  



 

xii 

 

List of Tables 

 

Table 1. Classification of mass movements. Varnes' abbreviated classification of slope 

movements (Adapted from Varnes, 1978). ..................................................................................3 

Table 2. 2021 LiDAR Flight Information and Collection Parameters ......................................... 23 

Table 3. BayesStripAlign Displacement in the Z-Direction Results for 2017 and 2021 .............. 27 

Table 4. Segmentation Parameters ............................................................................................. 59 

Table 5. Landslide initiation weights and symbols ..................................................................... 60 

Table 6. Parameter weights for rockfall initiation areas ............................................................. 63 

Table 7. Parameter weights for debris deposition areas .............................................................. 66 

 

 

 

 

 

 

 

 

 

 

  



 

xiii 

 

Abstract 

In northern Idaho (USA), landslides along railway transportation corridors pose a threat for 

derailments and potential for pollution. One such derailment occurred in 2017 along the Moyie 

River and in 2020 a rockslide caused a train engine to derail into the Kootenai River resulting in 

diesel fuel contamination.  In 2017 and 2021, mass movement sites were flown with Unmanned 

Aerial Systems (UAS) equipped with LiDAR along the Kootenai River, Moyie River, and Deep 

Creek in order to: (1) measure mass movement change using a Multiscale Model-to-Model 

Cloud Comparison (M3C2) and (2) model mass movement susceptibility and characterization 

along these river corridors with object-based image analysis (OBIA).  This study prototypes a 

methodology for railway companies to map geohazards along railway corridors using repeat 

LiDAR to facilitate long term monitoring and mitigate future derailments, service interruptions, 

and environmental contamination. 

 

Keywords: Repeat LiDAR, OBIA, UAS, Landslides, Rockfall



 

 

Chapter 1. Introduction 

1.1 Background 

On average, landslides annually cause around 25 deaths and 3.5 billion dollars of damage a 

year to infrastructure across the United States (US) (Idaho Office of Emergency Management, 

2018; Lifton et al., 2020). The critical infrastructure and transportation routes across the US are 

at risk to these dangerous and potentially deadly geohazards. In 2020, the United States 

government recognized the national threat from geohazards by announcing funding of over $971 

million to prioritize natural hazard assessment and monitoring and upgrades to scientific 

facilities and infrastructure within the Department of the Interior and the United States 

Geological Survey (United States Geological Survey, 2020).  Subsequently, the new National 

Landslide Preparedness Act (P.L.116-323) was enacted on January 5, 2021 and established the 

USGS National Landslide Hazards Reduction Program (United States Congress). This act 

intends to save lives and prevent property damage by characterizing and identifying landslide 

hazards. The National Landslide Preparedness Act includes the USGS 3D elevation program, an 

initiative to collect high resolution elevation data using Light Detection and Ranging (LiDAR) to 

help states and local communities across the country plan for and respond to geohazards 

(Congressional Research Service, 2020).  

To address landslide hazards at the state level, the Idaho Department of Transportation 

recently completed over $15.8 million dollars’ worth of landslide mitigation projects along state 

managed highway transportation corridors from 2013 to 2018 (Idaho Office of Emergency 

Management, 2018). Furthermore, the Idaho Geological Survey (IGS) is mapping geohazards 

across the state and has identified landslides along transportation corridors as a serious risk 

(Lifton et al., 2020; Idaho Geological Survey, 2020). In northern Idaho, for example, landslides 
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along the Kootenai and tributary river systems are a threat to not only railroad workers but also 

to the environment and community water supply. In the last few years there have been multiple 

train derailments in this part of Idaho. One was caused by a mudslide on March 15, 2017 along 

the Moyie River and another was caused by a rockslide on January 2, 2020 (Hanrahan, 2020; 

Sokol, 2017). In 2020, a debris flow derailed a train engine into the Kootenai River resulting in 

diesel fuel contamination of the river (Hanrahan, 2020). This thesis will address how railroad 

companies and local governments can map and monitor these geohazards along transportation 

corridors by leveraging high resolution LiDAR datasets. This thesis will demonstrate how 

analysis of UAS LiDAR can enable effective and efficient monitoring of landslide activity and 

map landslide susceptibility using examples from active landslide and rockfall sites in northern 

Idaho. 

 

1.2 Types of Landslides 

There are many different types of landslides or mass movements, the general definition given 

in the USGS Landslide Handbook (2008) is the landform and movement of organic material, 

soil, and rock in the downslope direction because of gravity. The USGS Landslide Handbook 

also classifies different types of mass movements depending on the characteristics and 

mechanics of the slope failure (Table 1). One of the characteristics used to classify a mass 

movement is the material that is moved, whether earth, debris, or rock. The next step is to 

classify it based on the type of movement or the mechanics; these categories include flow, 

spread, fall, slide, and topple (Highland and Bobrowsky, 2008; Varnes, 1978) . Flows are a 

downslope movement that is continuous in nature, with closely spaced, short-lived shear 

surfaces. Spreads are a combination of the subsidence of a ruptured mass of soil or rock into the 
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softer material beneath as well as the extension of the material mass. A fall is when the material 

either rolls, bounces, or falls downslope after detaching without a lot of shear displacement. 

Another type of mass movement is a slide. Slides require intense shear strain on the surface area 

where the downslope movement of the rock or soil occurs. A slide can be further divided into 

either a planar rupture, referred to as a translational slide or a rotational slide which describes a 

curved rupture. Topples are defined as a displaced mass that rotated forward around an axis 

below its center of gravity. Any mass movement can be a combination of more than one type 

(Highland and Bobrowsky, 2008). The two reported landslides at the sites along the Moyie River 

and Kootenai river were classified as a rockslide and debris flow, respectively (Hanrahan, 2020; 

Sokol, 2017). 

 

Table 1. Classification of mass movements. Varnes' abbreviated classification of slope 

movements (Adapted from Varnes, 1978). 

Type of Movement 
 

Debris (Finer Soil) Earth (Coarser Soil) Rock 

Flow   Debris Flow Earth Flow Rock Flow 

Spread  Debris Spread Earth Spread Rock Spread 

Fall  Debris Fall Earth Fall Rock Fall 

Slide 
Translational 

Debris Slide Earth Slide Rock Slide 
Rotational 

Topple   Debris Topple Earth Topple Rock Topple 
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1.3 Factors Influencing Landslide Susceptibility 

1.3.1 Lithology  

 Lithology is a very important parameter to a slope’s landslide susceptibility. Competent 

rocks are commonly less susceptible to mass movement than unconsolidated materials such as 

alluvium (Sarkar and Kanungo, 2004; Wachal and Hudak, 2000). This is due to the lack of 

friction and cohesion in unconsolidated materials allowing greater infiltration of water, thereby 

reducing the shear strength that prevents the movement of rock (Wachal and Hudak, 2000). The 

surficial deposits at the study area are mostly composed of landslide-prone glacial and alluvial 

deposits formed along with the Kootenai River (Burmester et al., 2010; McFaddan et al., 2009; 

Link, 2002). The formation of the Kootenai River and its tributaries began with the Purcell Lobe 

of the Cordilleran Ice Sheet and its interactions with the Glacial Lake Kootenai, MT and Glacial 

Lake Purcell, ID.  Glacial Lake Kootenai experienced sudden drainage during the Pleistocene, 

when the Cordilleran Ice Sheet began to retreat and Glacial Lake Kootenai flooded into Glacial 

Lake Purcell via the Kootenai River. This created the Kootenai River alluvial fan delta where the 

Kootenai and Purcell Trench converged (Peters, 2012; Peters and Brennand, 2020).  

The underlying bedrock geology of the study area consist of the clay-rich Mesoproterozoic 

Belt-Purcell Supergroup to the east, and the metamorphic and igneous rocks of the Priest River 

metamorphic core complex and intrusive Mesozoic rocks of the Kaniksu Batholith to the west. 

The Belt Supergroup contains the Prichard Formation and the Missoula Group as well as 

Cretaceous intrusions. The Priest River core complex is composed of granitic and metamorphic 

rock that was exhumed during crustal extension and faulting in the Eocene (Burmester et al., 

2010; Peters, 2012; Link, 2002; Doughty and Price, 2000; McFaddan et al., 2009).  
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1.3.2 Faulting and Seismicity 

Eocene faulting in the study area can also lead to high landslide susceptibility in materials 

with low permeability such as the metamorphic and igneous bedrock. Faulting not only indicates 

the possibility of seismicity but also the presence of weak, broken, and weathered rock (Sarkar 

and Kanungo, 2004). The two normal faults dipping east in the Purcell Trench area, the northern 

and southern Purcell Trench faults, act as a boundary separating the mafic plutons and the Belt 

Supergroup. These faults mark the boundary of the Priest River metamorphic complex uplift and 

formed the Purcell Trench basin after preferential erosion by rivers and glaciers. Another fault 

can be found farther southeast, trending northwest to southeast is a west-dipping thrust fault that 

lies roughly along the same route as the Moyie River and Kootenai River, suggesting preferential 

river incision along the thrust fault (Peters, 2012; Link, 2002). 

Seismicity is another possible trigger mechanism. There have been some earthquakes in the 

area linked to the nearby faults. According to the Idaho Bureau of Homeland Security (2005), 

there have been three earthquakes above a 2.5 magnitude near the study sites since 1952. This 

includes a 4.0 magnitude near Bonners Ferry in September of 1952 and two earthquakes in 1984. 

In 1984, one earthquake was a 4.1 magnitude near Moyie Springs and the other was ten miles 

north of Bonners Ferry and a 3.2 magnitude (Boundary County, 2005). Since then, there have 

been 12 earthquakes ranging from magnitude 2.5 to 3.9 near Sandpoint, Idaho approximately 30 

miles south of Bonners Ferry. The largest of these earthquakes, the 3.9 magnitude, had an 

estimated intensity of four and the shaking could be lightly felt in Bonners Ferry (Murray and 

Svarc, 2017). 
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1.3.3 Hydrology  

River incision is a likely trigger for the numerous landslides occurring in the area because 

of the proximity of the sites to major rivers. There have been numerous studies on the coupling 

of landslides, erosion rates, and river incision (Egholm et al., 2013; Golly et al., 2017; Larsen 

and Montgomery, 2012; Ouimet et al., 2007; Highland and Bobrowsky, 2008). There are two 

types of river incision: vertical and lateral (Larsen and Montgomery, 2012). According to 

Egholm et al., incision from the rivers steepens the slopes of the surrounding hillsides; the 

steepening of these slopes as the channel elevation lowers continues until it eventually reaches a 

threshold slope. After reaching this threshold slope, the slope can fail and landslides occur. The 

sediment input from landslides into incising rivers can either protect the riverbed from further 

erosion by forming a sediment layer on the bottom or provide more abrasion and accelerating of 

the erosion rate and incision process. Eventually, a protective sediment layer is built up on the 

bottom of the channel slowing the erosion rate and reducing the number of landslides (Egholm et 

al., 2013).  

 

1.3.4 Anthropogenic Activity 

Human activity is also a possible triggering method, as these landslides occur along 

railroad corridors where rail construction, repairs, vegetation removal, and changing drainage 

patterns have destabilized the hillslopes (Highland and Bobrowsky, 2008). Undercutting slopes 

through river incision or human activity and leaving more mass on the top of the slope can lead 

to over steepening; once it meets the required threshold slope, landslides may occur (Egholm et 

al., 2013; Highland and Bobrowsky, 2008).  Other human activities that can lead to landslides 

include creating or draining reservoirs, irrigation, improper slope grading, leaking pipes, and 
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improper excavation (Highland and Bobrowsky, 2008). Given that all the sites in this study are 

railroad corridors, they have undergone construction that has altered the natural slopes. The 

combination of the geomorphological history, underlying geology, and numerous trigger 

mechanisms makes these railroad corridors in northern Idaho very susceptible to landslide driven 

derailments; threatening the environment and necessitating a methodology that can map and 

monitor these potentially deadly geohazards. 

 

1.4 Study Site Characterization 

The Kootenai River is part of the international Kootenai River Drainage Basin, which is 721 

kilometers long and drains an area of 28,324 square kilometers stretching from British Columbia, 

Canada down into parts of northern Idaho and Montana, United States (Columbia Basin Trust, 

2021; Polzin and Rood, 2000). The study area for this thesis is located in the Purcell Trench 

section of the Kootenai River near Bonners Ferry and Moyie Springs, Idaho. This area 

experiences on average 20.47 in of precipitation and 52 in of snow annually (U.S. Climate Data, 

2022). Specifically, there are three main areas of interest consisting of one landslide site along 

the Moyie River, three sites of interest along the main Kootenai River, and one site along Deep 

Creek (Figure 1). Each of these sites have recently experienced a mass-movement event and two 

of them led to train derailments (Hanrahan, 2020; Sokol, 2017). 

The Kootenai River carves through the glacial and flood deposits (~1-50 m thick) and into 

the Belt Super group creating very steep tall corridors along the section of river from the Idaho – 

Montana border to Bonners Ferry, Idaho. Sections are also composed of exposed intrusive mafic 

sills or members of the Prichard Formation that are Mesoproterozoic age (Breckenridge et al., 

2012; Burmester et al., 2010b).  Near the junction with the Kootenai, the Moyie River cuts into 
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the glacial and flood deposits (~20m thick) as well as the underlying plutons and metamorphic 

rocks (Burmester et al., 2010; Link, 2002). The river incision created the steep canyon reach 

along the Kootenai and Moyie Rivers shown in Figure 1. 

 Deep Creek is a tributary connected to the meandering reach of the Kootenai River that 

incises into mostly colluvial deposits (~10 m thick) near steep hills of intrusive rock and sections 

of alluvial and glacial deposits (Barton et al., 2004; Burke et al., 2009; McFaddan et al., 2009). 

These river corridors are used by railway companies with the rail tracks often placed at the base 

or top of the steep hillslopes. The steep slope angle and unconsolidated flood and glacial deposits 

at the surface makes the slopes susceptible to landslides and other mass movements (Peters, 

2012; Sarkar and Kanungo, 2004).  
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Figure 1. Study area map of the three sites in northern Idaho near the towns of Bonners Ferry and 

Moyie Springs. There are three sites along the Kootenai River, one site along the Moyie River, 

and another one along Deep Creek. (Image Source: 2019 National Agriculture Imagery Program) 

 

1.5 Thesis Objectives 

The Idaho Geological Survey (IGS) is mapping geohazards across the state and has identified 

landslides along transportation corridors as a serious risk for derailment (Lifton et al., 2020; 

Idaho Geological Survey, 2020). In northern Idaho, the combination of various environmental 

factors such as the presence of faults, unconsolidated surficial deposits, the incision of nearby 

rivers forming steep slopes, and railroad construction has left the study site area predisposed to 

landslide hazards. This has led to multiple derailments along the railway corridors, including a 
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rockslide and debris flow. In partnership with the Idaho Geological Survey, study sites were 

selected located along the Kootenai River, Moyie River, and Deep Creek in northern Idaho 

(Figure 1) for preliminary analysis of landslide potential and flown with Unmanned Aerial 

Vehicles (UAS) LiDAR in 2017 by Idaho State University.  

In August 2021, we recollected UAS LiDAR data at these pilot sites. Our objectives were to: 

(1) measure mass movement change at the sites using a point cloud-to-point cloud comparison 

and (2) model mass movement susceptibility at the sites along these river corridors with object-

based image analysis (OBIA).  The main outcome of this project was the development of an 

accurate and cost-effective method for railway companies to monitor known mass movement 

sites using a temporal point cloud-to-point cloud comparison and to characterize the mass 

movement susceptibility with object-based image analysis (OBIA).  This methodology aims to 

facilitate the long-term monitoring and management of these geohazards; thereby, preventing 

future derailments, service interruptions, and environmental contamination. 
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Chapter 2. Change Detection with Point-to-Point Cloud Comparison  

2.1 Introduction 

2.1.1 Mass movement hazard along transportation corridors 

Recent landslide mitigation projects in Idaho from 2013 to 2018 along state managed 

highway transportation corridors from have cost over $15.8 million dollars (Idaho Office of 

Emergency Management, 2018). However, these geohazards are not isolated to just the highway 

network but another major transportation method in Idaho, the railroad corridors, many of which 

run along rivers. This potentially catastrophic interaction between mass movements and railroads 

is especially prevalent in northern Idaho along the Kootenai and tributary river systems, where 

landslides pose a threat to not only railroad workers but to the environment as well. Over the last 

few years there have been multiple train derailments in this part of Idaho, including one caused 

by a mudslide in 2017 along the Moyie River and another caused by a rockslide in 2020 

(Hanrahan, 2020; Sokol, 2017). In 2020, the rockslide knocked the train engine into the Kootenai 

River resulting in diesel fuel contamination (Hanrahan, 2020). Effective and efficient monitoring 

methods are important for long-term management of these geohazards and prevention of future 

derailments.  

 

2.1.2 Airborne and UAS LiDAR Scanning for Mass movement monitoring 

Light Detection and Ranging (LiDAR)-equipped UASs are a practical method of imaging 

vegetated slopes where landslides are a potential hazard. By using LiDAR imagery, we can 

measure and analyze changes in slopes over time. These changes can indicate potential landslide 

activity and is an important aspect of landslide monitoring (Eker et al., 2018).  LiDAR uses laser 

pulses and their calculated return times to compile accurate elevation data.  Although LiDAR 
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data requires more post-processing compared to other sensors, it is the ideal sensor to use for this 

study because of its high resolution and ability to penetrate vegetation (Carey et al., 2019). The 

railway corridors of interest are heavily vegetated, so we need the ability to image the ground 

through the thick vegetation. 

A UAS platform provides numerous benefits to the study. Using preprogrammed flight 

plans, UASs can autonomously fly through remote and hazardous sites (Hung et al., 2019). A 

UAS is a more efficient and cost-effective platform than airplanes or satellites. A manned 

aircraft, although having a longer flight time than a UAS, is more expensive to operate due to 

aviation fuel costs and aviator fees; it also requires more time to plan flights. In contrast, a UAS 

is more flexible to schedule, relies on rechargeable batteries instead of fuel, has lower remote 

pilot fees, and is compact for travel (Carey et al., 2019). Point clouds generated by LiDAR can 

be used to process elevation changes over time directly and to determine topographic variability 

including surface roughness, allowing for the analysis of patterns in movement history, types of 

material, and morphology of landslides (Glenn et al., 2006).   

 

2.1.3 Challenges in change detection comparison between LiDAR point clouds 

 Issues often arise when comparing LiDAR datasets collected at various time periods with 

different sensors and procedures. These include conflicts between the earth surface model used 

such as geoids or ellipsoids, poor coregistration of flightlines, variations in data resolution, 

changes in post processing steps, differences in georeferencing, and inconsistent methods to 

quantify uncertainty (Schaffrath et al., 2015; Okyay et al., 2019; Cucchiaro et al., 2020). These 

disparities can lead to vertical and horizontal biases, as well as poor uncertainty measurements 

that under or overestimate change (Schaffrath et al., 2015; Bernard et al., 2021). 
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  There are some potential solutions to these issues; studies have shown a vertical bias 

attributed to both different geoid models and localized offset strips occur from poor 

coregistration of the flight lines. One method of correcting geoid issues is to ascertain the 

difference with calculators such as the National Geodetic Survey interactive calculator or the 

National Ocean Services vertical datum transformation tool (Schaffrath et al., 2015; Cooper et 

al., 2013). When attempting to identify any horizontal bias, x and y coordinates of well-defined 

structures on both datasets can be compared (Schaffrath et al., 2015). There are issues with this 

solution at sites where ground control points cannot be used, either due to dense vegetation or 

hazardous conditions. Even after reprocessing the LiDAR data with the same georeferencing 

system poor coregistration of the flights can still cause alignment issues. This last issue of poor 

coregistration has multiple solutions; the common way to address this problem is to use the 

original GPS and LiDAR data to recalibrate the new raw data (Schaffrath et al., 2015). This can 

be difficult in areas where ground control points cannot be laid out. Methods such as the “Align” 

tool in CloudCompare software require the user to be able to identify multiple sets of equivalent 

points before even a fine registration can be used (CloudCompare, 2016).There are multiple 

algorithms that can be used for the calibration without ground control points, a popular method is 

to use the iterative closest point algorithm, which is a two-step registration process relying on 

minimum distance (Kuçak et al., 2022, Booth et al., 2020; Cucchiaro et al., 2020). Other 

common tools to correct for coregistration used in repeat LiDAR studies include the 

mathematical Generalized Procrustes Analysis, the plane structure based 4-point Congruent sets 

technique, or a Bayesian approach to realign the flight strips for both flights (Fotsing et al., 2020; 

Cucchiaro et al., 2020; BayesMap Solutions LLC, 2022).  
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2.1.4 Change detection with UAS LiDAR  

 There are multiple methods for calculating the change of a hill slope: the point cloud-to-point 

cloud methods, point cloud-to-model (C2M), and the DEM of difference methods (DiFrancesco 

et al., 2020; Esposito et al., 2017). The DEM of difference methods uses two rasters of elevation 

data and subtracts one of these rasters from the other to calculate the difference. Since this 

method projects the point cloud onto the two-dimensional x-y plane, the change detected in this 

method is one dimensional only along the z-axis (DiFrancesco et al., 2020).  This method, while 

computationally efficient, lacks accuracy when it comes to complex terrain where the surface 

orientation is greatly varied (DiFrancesco et al., 2020). The C2M method compares a point cloud 

to a triangulated mesh surface of a second point cloud. The distance is calculated from each point 

in the cloud to the nearest point on the surface mesh. For this reason, the accuracy of this method 

is dependent on the quality of the triangulated surface (DiFrancesco et al., 2020). 

 There are two methods of comparing point clouds; the cloud-to-cloud (C2C) change 

detection and the Multiscale model-to-model cloud comparison (M3C2). The distance is 

measured between the points from one cloud to the nearest point of another cloud. Due to the 

arbitrary nature of simply using the closest point this method requires dense point clouds and low 

surface roughness. Furthermore, this method has one major drawback in that it does not calculate 

sign direction which is necessary for identifying erosion or deposition.  

However, a variation on this C2C, known as the multiscale model-to-model cloud 

comparison (M3C2) is ideal for measuring material loss and gain (DiFrancesco et al., 2020). The 

M3C2 method is a direct comparison between two point clouds collected at different times, using 

an algorithm that calculates distance of a normal vector. Instead of limiting itself to just the 

nearest point in the next cloud, the vector is calculated using the points nearest neighbors 



 

15 

 

(DiFrancesco et al., 2020). This method avoids the uncertainty of vertical height that is often 

intrinsic to using DEM-to-DEM analysis (Esposito et al., 2017).  

 

2.1.5 Multiscale Model-to-Model Cloud Comparison 

For this study we used the opensource software CloudCompare which has a M3C2 plugin. 

This tool works by first computing the surface normal orientations for the reference point cloud 

(2017) over a specified diameter; for these sites we used a diameter of 1m. Once these normals 

are calculated the plugin creates a cylinder around each core point to calculate the distance 

(Figure 8). The diameter of this cylinder is determined by the user-specified projection scale and 

the cylinder height is determined by the max depth parameter. For all sites the projection scale 

and max depth was one meter, with the exception of the Deep Creek site that had a max depth of 

2 m due to the large volume loss along the cliff face. These 1 m parameters were determined 

from looking at the point cloud densities and the RMS errors (Barnhart et al., 2013; Lague et al., 

2013). Selecting 1-2m as the max depth cutoff was also based on the necessity of detecting small 

scale movements on the slope that could cause derailments or require material to be removed 

from the tracks. 

 

Figure 2. Multiscale Model to Model Cloud Comparison (M3C2) adapted from Lague et al., 

2013 and DiFrancesco et al., 2020. 

             

 

             

 

     

        

 

 

              



 

16 

 

 

The M3C2 Algorithm does not require any meshing or gridding to detect changes at a site. 

The only parameters necessary are: two point clouds, a defined normal scale, the projection, 

clearly defined registration error, and at least four core points (Eker et al., 2018). From these 

parameters, software such as the CloudCompare plugin calculates the distances between two 

point clouds, measuring the change for each site and displaying this change as a new point cloud. 

Additionally, the software will generate a scalar field for significant change. In this case, 

significant change is the local limit of detection at 95% confidence (DiFrancesco et al., 2020; 

Esposito et al., 2017). Using the precision map variant, the M3C2 plugin will generate a scalar 

field for distance uncertainty. According to the CloudCompare website 

(https://www.cloudcompare.org/doc/wiki/index.php?title=M3C2_(plugin)), this variant uses the 

precision values stored in the LiDAR point clouds instead of estimations calculated by 

CloudCompare. 

 

2.1.5 Goals and Objectives 

Accurate and efficient monitoring methods are an important aspect for long-term 

management of mass movements. In this study, we used UAS based LiDAR combined with the 

M3C2 algorithm to prototype a methodology for using repeat LiDAR to measure change at a site 

that avoids the common bias of other repeat LiDAR studies.  We chose three study sites along 

the Kootenai River, Moyie River, and Deep Creek which we flew in 2017 and again in 2021. We 

then applied a stripping correction using BayeStripAlign2.1 software. We were able to align the 

two flights and calculate precise changes at the site using CloudCompares M3C2 plugin. This 

methodology avoids the common issues surrounding repeat LiDAR as well as identifies and 
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measures significant change at the sites, allowing for accurate monitoring of the slopes for 

renewed mass movement activity. 

 

2.2 Methodology 

2.2.1 Landslide Study Sites 

For this study three sites in northern Idaho were chosen for analysis. These railroad sites have all 

recently undergone mass movement activity and run along important rivers. The three sites are 

located along the Kootenai River (Figure 2), Deep Creek (Figure 3), and Moyie River (Figure 4). 

UAS collected LiDAR at all three sites over the course of multiple flights, first in 2017 and again 

in 2021.  

 

Figure 2. Kootenai River site with UAS flightpaths shown in yellow. Imagery: Google Earth Pro 

Idaho, USA. 48° 40’ 54.03’’N 116° 07’ 32.00” W, Eye alt 3945 ft. 
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Figure 3. Deep Creek site with UAS flightpaths shown in yellow. Imagery: Google Earth Pro 

Idaho, USA. 48° 37’ 31.78’’N 116° 22’ 56.67” W, Eye alt 4233 ft. 
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Figure 4. Moyie Site with UAS flightpaths shown in yellow. Imagery: Google Earth Pro Idaho, 

USA. 48° 45’ 55.39’’N 116° 10’ 12.74” W, Eye alt 4192 ft. 

 

2.2.1 2017 UAS LiDAR Configuration 

In 2017 we flew a DJI Matrice 600 Pro equipped with a lightweight Geodetics Inc. Geo-

MMS Velodyne (VLP-16) LiDAR sensor configuration (Figure 5). Both the 2017 and 2021 

campaigns used the same LiDAR sensor (VLP-16); however, the sensors were configured by two 

different manufacturers. The VLP-16 is a 16 channel, dual return LiDAR sensor that generates 

300,000 points per second, and has an accuracy of 3 cm at a range of 100 m. The VLP-16 

rotating lasers are equally spaced between -15 and +15 to create a 30° vertical field of view and a 

horizontal view of 360° (Jacobs et al., 2021; Hyper-Tech Systems, 2017; Andrew Lassiter et al., 

2020). For both campaigns, the LiDAR sensor was mounted to the UAS with the vertical field of 
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view parallel to the ground surface. This sensor setup is commonly used with UASs for mapping 

as described in Jacobs et al. (2021). 

  

Figure 5. DJI Matrice 600 Pro equipped with a lightweight Geodetics Inc. Geo-MMS Velodyne 

LiDAR sensor configuration used in 2017 Campaign. Image credit: Aevex Aerospace 

(https://geodetics.com/product/geo-mms/) 

For the 2017 campaign, the Geo-MMS uses a proprietary Geo-MMS navigational unit for 

GPS and inertial measurement unit (IMU) data attached to the LiDAR sensor. The Geo-MMS 

system for georeferencing uses a dual antenna configuration to collect the GNSS logs. This 

system aids in the georeferencing the LiDAR datasets by recording a timestamp for every 

LiDAR pulse as well as information regarding the latitude, longitude, yaw, pitch, roll, and 

altitude (Jacobs et al., 2021). This data is collected at a measurement rate of 200 Hz (Trimble, 

2019; Jacobs et al., 2021). We used the nearby Boundary County Airport-65s as the base station 

for the Post Processed Kinematic (PPK) processing. The Airport is 9.94 km away from the 

Moyie Site, 13.25 km away from Kootenai Site 1, and 13.18 miles away from the Deep Creek 

Site. PPK is a technique where the base station and rover global navigation satellite system 
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(GNSS) location data logs are corrected after the flight instead of the Real-time kinematic (RTK) 

technique which applies the positioning algorithm corrections in real time during the flights 

(Eker et al., 2021).  

 

2.2.2 2021 LiDAR UAS LiDAR Configuration 

As in the 2017 flight campaigns, we equipped the DJI Matrice 600 Pro with a lightweight 

Velodyne LiDAR sensor, however this VLP-16 is co-mounted with the Headwall Nano 

hyperspectral sensor (Figure 6). In the Headwall configuration the LiDAR sensor is paired with 

an Applanix APX-15 GNSS inertial sensor collecting data at a measurement rate of 200 Hz 

(Trimble, 2019; Jacobs et al., 2021). The LiDAR sensor was mounted to the UAS with the 

vertical field of view parallel to the ground (Jacobs et al., 2021). The Applanix GPS sensor is 

used in tandem with a Trimble R10 GNSS base station. The Trimble receiver and antenna were 

set up at each site to run as a base station corresponding with the Headwall GPS. The Trimble 

continuously captured data for at least two hours at each site while the drone recorded its own 

location. Unlike the 2017 sensor configuration, we attached an independently mounted RGB 

camera (Ricoh GR II) triggering every two seconds to capture aerial images during the LiDAR 

surveys. 
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Figure 6. Image of DJI Matrice 600 Pro equipped with a lightweight Velodyne LiDAR sensor 

and co-mounted with the Headwall Nano hyperspectral sensor used in 2021 campaign. Image: 

Delparte, 2021 

  

2.2.3 Flight Planning and Data Acquisition 

We conducted our fieldwork at the landslide sites August 28-30, 2021. We flew a total of 

three landslide sites: one along the Kootenai River and the other two along Deep Creek and 

Moyie River. The sites along the Kootenai River were accessible by boat and we flew from 

nearby sandbars. The flights maximized coverage of the mass movement sites while remaining 

cognizant of the limited flight time of the drone (~15 minutes from takeoff to landing).  To 

improve the density of the point cloud from the 2017 campaign which flew the sites with a side 

distance of 50 m, we collected the 2021 LiDAR with a side distance of either 21 m or 25 m. The 

LiDAR flights for both 2017 and 2021 were flown at a speed of 5 m/s and an altitude of 65 m.  

The side distance for the 2021 LiDAR flights was 25 m for each site except for the Moyie 

site which had a side distance of 21 m. The Deep Creek site, Kootenai Site, and the Moyie Site 
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each required three flights to cover the entire slide area. At the start of each flight in 2017 and 

2021, we calibrated the LiDAR sensor IMU using a couple of maneuvers including a figure eight 

pattern and a straight line forward and back which is flown at a faster speed. These calibrations 

help improve the accuracy and density of the point clouds. 

 

Table 2. 2021 LiDAR Flight Information and Collection Parameters 

Site # of  

Flights 
Altitude  

(m) 
Speed 

(m/s) 
Sidelap  

(m) 
Point Density 

(per m2) 
Ground Point 

Density (per m2) 
Deep Creek 3 65 5 25 2478.9 116.2 

Kootenai  3 65 5 25 1882.6 61.6 

Moyie 3 65 5 21 1631.1 69.2 

 

2.2.3 Workflow to Reduce Repeat LiDAR Issues 

 To address repeat LiDAR issues we used the following workflow (Figure 7) that combines 

four different softwares for post processing LiDAR: LiDARTools, PosPac UAV, Bayes Strip 

align, and LAStools. First generating the Smoothed Best Estimate of Trajectory (SBET) in 

PosPac UAV, correcting the yaw, pitch, and role in LiDARtools to generate the LAS file. These 

LAS files are then processed through Bayesian Inference and classified. The final products 

generated in this workflow are ground surface classified models ready for comparison. This 

workflow is further described with detailed command instructions used in Appendix II.  
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Figure 7. LiDAR Post Processing Workflow Diagram 

 

2.2.3.1 Step 1. LiDAR Post-Processing 

 The first step in processing the 2021 LiDAR data was to create SBET files from the flight 

GPS data using the software PosPac UAV (v. 8.4). PosPac UAV software uses the IMU and 

GNSS data to georeference the flight data without the use of ground control points, since the 

sites were too hazardous for the placement of ground control points. This method not only 
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improves the accuracy but can also fill any gaps in the GNSS data that are caused when the 

connection is temporarily lost with the rover during a flight (Applanix, 2020). As we placed our 

R10 Trimble base station over an unknown reference location, we used  rimble’s Center oint 

RTX Post-Processing service to accurately reference the position from which the base data was 

collected. In PosPac we load in the Rover and Base station data files captured during each flight 

and adjust the base station location to the corrected position obtained from  rimble’s 

CenterPoint RTX service report. Next, we ran the GNSS-Inertial Processor to compute the 

trajectory from the raw data. This process matches the timestamps of the position and altitude 

data with those of the LiDAR returns. We then exported these flight trajectories as SBET files. 

With these SBET files and the timestamps of the LiDAR sensor returns we used Headwall’s 

propriety LiDARTools software to generate LAS point cloud files. LiDARtools georeferences 

the point clouds by matching the timestamps from the LiDAR returns with the timestamps from 

the Applanix APX-15 base station data in the SBETs (VanValkenburgh et al., 2020; Jacobs et 

al., 2021). Before exporting the LAS files, we had to adjust the roll of the UAS to 86.8° and the 

pitch to 0.12° in LiDAR tools.  

 Since the LiDAR data comes out of LiDARTools in a GPS time format specific to LiDAR 

Tools the global encoding needs to be set and the GPS time translated to a format that can be 

read by other softwares using  apid  asso’s LASTools. Before continuing to process the point 

clouds in LASTools the flightlines need to be aligned. In order to make sure that the flight lines 

of the UAS are as closely aligned as possible to increase the accuracy of the data and remove any 

bias from the repeat LiDAR we used a stripping correction software called BayeStripAlign2.1 to 

align the flight strips.  
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 We processed our 2017 LiDAR data with the Geodetics LiDAR Tool proprietary software 

that generates a PPK trajectory file (SBET) from the matching CORS base station data and 

onboard Geo-MMS navigational GNSS IMU unit data. The LiDAR Tool software exports .las 

outputs (AEVEX Aerospace). 

 

2.2.3.2 Step 2. Strip Alignment 

 Both the 2017 and 2021 LiDAR datasets were run through BayeStripAlign2.1. This software 

splits the flight up into individual flightlines before running a Bayesian inference to adjust the 

flight strips and correct geometric errors (BayesMap Solutions LLC, 2020). The uncertainty of 

the point cloud is improved by assigning a larger weight to the more accurate points (BayesMap 

Solutions LLC, 2020). Finally, the flight lines are realigned into a new point cloud. This paired 

with the use of the geodetic grade GPS and PPK to reduce the RMS Error for the point clouds.  

 StripAlign corrects the absolute and relative geometric errors of LiDAR swaths that are 

caused by IMU altitude and position errors. This required us to input LAS files with timestamps 

as well as the SBET trajectory files. These timestamps are used to register overlapping flight 

lines and correct low or high frequency IMU drifts, boresight misalignment, lever arm errors or 

internal geometry miscalibration (BayesMap Solutions LLC, 2020). Using this software, we first 

cut each site into individual strips of flightlines before realigning the cuts based on the 

corrections. The 2021 data had an additional step of channel splitting before realignment because 

of the IMU system used. The Geodetics IMU used in the 2017 flight did not label the channels 

and therefore channel splitting could not be applied. For these multibeam scanners the flightline 

swaths can be divided up into multiple channels based on the scan direction either forward or 

backwards. For these sites a 4-channel map was used, which is the maximum number of 
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channels. This improves the accuracy of the dataset by increasing the overlap of the swaths 

(BayesMap Solutions LLC, 2020). The corrections we applied to the swaths included a Bayesian 

Inference to adjust the strips and improve any systematic geometric errors. In order to improve 

the uncertainty, the more accurate points are given a larger weight (BayesMap Solutions LLC, 

2022). The software then generates accuracy assessments and intensity maps for the sites. The 

displacement errors in the z direction coming out of the BayesStripAlign2.1 for the 2017 flights 

are as follows: 0.011 m for the Kootenai River Site, 0.005 m for the Moyie River site, and 0.019 

m for Deep Creek. The displacement errors for the 2021 flights were 0.003 m for the Kootenai 

River site, 0.008 m for the Moyie River site, and 0.004 m for the Deep Creek site (Table 3).  

 

Table 3. BayesStripAlign Displacement in the Z-Direction Results for 2017 and 2021 

2021 Site 
Displacement in Z-Direction  

Before BayesStripAlign (m) 

Displacement in Z-Direction  

After BayesStripAlign (m) 

Kootenai Site  0.192 0.003 

Deep Creek 0.283 0.004 

Moyie River 0.277 0.008 

 2017 Site   

Kootenai Site  0.621 0.011 

Deep Creek 0.353 0.019 

Moyie River 0.897 0.005 

 

2.2.3.3 Step 3. Point Cloud Classification  

 The .las point clouds are then processed in rapidlasso’s LASTools to classify the points in the 

cloud and create the bare earth models and digital surface models. This processing required 

multiple steps and tools in LASTools. The first step is to run the LASindex tool which creates 

and appends a file containing the spatial indexing information for the point cloud. This includes 

information on what points are in each spatial region which is useful when running spatial 

queries (rapidlasso, 2012; rapidlasso). The next step is to break the site up into smaller more 
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easily processed pieces, to do this, we used LAStiles to create 100 m square tiles with 10 m 

buffers. When the site was tiled, we were able to start the classification process. To start, we ran 

LASnoise to classify the noise with the default settings. After classifying the noise, we ran 

LASground making sure to specify that all returns will be used since the default only uses the 

second return. This tool classifies certain points in a tile as ground points and computes the 

height of the ground points. The next tool we ran was LASclassify where we set the ground 

offset to 1 m to classify the vegetation in the point cloud. Now that the majority of the processing 

was done, we removed the buffers around the tiles using LAStile. We then ran the LASnoise tool 

again using a gridding method that classified a point whose nearest neighbor was 20 m away as 

noise. This helped to classify the high noise that was mistakenly classified as vegetation. With 

the LASview tool we were able to manually edit any points that were misclassified and remove 

sporadic points along the edges of the clouds. These edited tiles are saved as Lay files and need 

to be converted into Laz files with the LASlayers tool. These tiles are then merged into one cloud 

using the LASmerge tool and exported as a LAS file that can then be loaded into either 

CloudCompare or ArcGIS Pro. This tool was ran twice, once using only the ground points to 

create a DEM and the second time using the ground points and vegetation points to create a 

DSM. At this point we then used the Blast2DEM tool to create merged TIFF files of the DEM 

and DSM. All data was exported from LAStools to WGS84 UTM 11 for analysis. 

 

2.2.5 Point-to-Point Cloud Comparison 

 To perform a point cloud-to-point cloud comparison between the 2017 and 2021 point clouds 

we imported the cleaned point clouds into CloudCompare. After StripAlign processing only a 

minor alignment of the two point clouds using the fine registration tool was needed. This tool ran 
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10,000 iterations with a 2-million-point random sampling limit using the 2017 cloud as the 

reference cloud. The overlap of the point clouds was estimated to be between 15% and 40% for 

the sites. The CloudCompare M3C2 plugin was then used to calculate the distance between the 

points of the 2017 point cloud and the points of the 2021 point cloud and, therefore incorporated 

any elevation changes during that timeframe.  

 

2.2.5 Volume Calculation 

 The M3C2 plugin identifies significant change and displacement. However, it does not 

calculate any volumetric change. In order to determine the volume of material that has been lost 

or gained from 2017 to 2021 another CloudCompare tool called the 2.5D Volume tool was used. 

This tool creates a grid for each point cloud before it computes the volume between two point 

cloud grids. When running this tool the main parameters that have to be determined are: the 

before and after point clouds, the step size, projection direction, and the value of the empty cells. 

 or this project the “ efore” point clouds are the 2017 point clouds and the “After” point clouds 

are the 2021 point clouds.  he “step” for these grids are set to 1m. For the volume calculation the 

length and width of each square in the grid are 1 m, therefore, the volume equation is 1 m 

multiplied by 1 m multiplied by the height of the cell (CloudCompare, 2015). The projection 

direction is z direction because we are interested in the movement of the material downslope 

indicated by a loss and gain in volume. We experimented with leaving the empty cells empty or 

having the tools interpolate the cell’s value and determined that having the value interpolated 

with the average height provided a much more useful result for mitigation and monitoring then 

simply relying on the individual points, since only non-empty cells are used in the calculations. 
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 For the areas of interest at each site we ran the 2.5D Volume tool on the aligned 2017 and 

2021 point clouds. These areas of interest were first segmented from the rest of the cloud to 

improve accuracy and diminish the number of empty cells. The total volume, base surface, 

volume added, and volume lost values were recorded. 

 

2.3 Results 

2.3.1 Point Cloud Generation for 2017 and 2021  

 The point clouds were aligned with a fine scale Iterative Close Point alignment for an 

average RMS error of ~14 cm. The Deep Creek site had the lowest RMS error at ~12 cm, 

Kootenai site had an RMS error of ~14 cm, the, and the Moyie site had the highest RMS error 

due to the sparseness of the point cloud at 18 cm. After the clouds were aligned and the scale 

adjusted, we used the M3C2 plugin for CloudCompare.  

 

Figure 8. Deep Creek 2021 (left) and 2017 (right) Point Clouds. The top to images are the DSMs 

for the site with the color scale based on elevation. The grey images below are the DEMs. 
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This alignment method was able to align the 2017 and 2021 point clouds despite the 

differences in point cloud density. A bare earth point cloud and a classified point cloud with 

vegetation for each of the sites. The Deep Creek site final point clouds had a per square meter 

point density of 2478.9 and 447.7 for the 2021 and 2017 classified point clouds respectively. The 

bare ground point clouds had sparser density of 116.2 points per square meter and 75 points per 

square meter for the 2021 and 2017 campaigns (Figure 8). 

 

Figure 9. Kootenai River 2021 (left) and 2017 (right) Point Clouds. The top two images are the 

DSMs for the site with the color scale based on elevation. The grey images below are the DEMs. 

The Kootenai River site final point clouds had a per square meter point density of 1882.6 and 

510.1 for the 2021 and 2017 classified point clouds respectively. The bare ground point clouds 

had sparser density of 61.6 points per square meter and 44.6 points per square meter for the 2021 

and 2017 campaigns (Figure 9). 
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Figure 10. Moyie River 2021 (left) and 2017 (right) Point Clouds. The top to images are the 

DSMs for the site with the color scale based on elevation. The grey images below are the DEMs. 

 The Moyie River site final point clouds had a per square meter point density of 1631.1 and 

339.6 for the 2021 and 2017 classified point clouds respectively. The bare ground point clouds 

had sparser density of 69.2 points per square meter and 15.7 points per square meter for the 2021 

and 2017 campaigns (Figure 10). 

 

2.3.2 M3C2 Measured Change between 2017 and 2022 LiDAR 

 The M3C2 plugin outputs four new point clouds: M3C2 distance, significant change, nearest 

neighbors, and distance uncertainty. The M3C2 cloud shows the displacement between the two 

point clouds with blue areas correspond with loss and red areas with gain. The significant change 

shows a displacement with the local limit of detection at 95% confidence (DiFrancesco et al., 

2020; Esposito et al., 2017). For the section I will focus on one area of interest per site; these 
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areas are where there has been significant change that poses the most immediate threat to the 

railroad tracks. 

2.3.2.1  Deep Creek M3C2 and Volume Results 

 The significant change values for the site ranged between ~0.25–1.9 m (Figure 11). The main 

area of interest was along the near vertical cliff face; along this cliff face there was about ~1.5-

1.9 m of loss at the area of interest with a corresponding deposit of material with an average 

between ~1-1.5 m (Figure 12). 

 

 

Figure 11. Deep Creek M3C2 (Top) and Significant Change results (Bottom) 
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Figure 12. Deep Creek main area of interest along cliff face. (A) M3C2 results showing loss 

along the cliff face and deposition below (B) both of these displacements were identified as 

significant change. (C) RGB nadir image of the area. 

The total volume change for this area of interest was a loss of ~13 m3 with the total surface 

area of this section of the site is ~1,469 m2. The total volume loss for the area was ~472 m3 with 

a similar amount of gain at ~460 m3.  

2.3.2.2  Kootenai River M3C2 and Volume Results   

For the Kootenai River Site the significant change values for the site ranged between ~0.25–

1 m (Figure 13).  
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Figure 13. Kootenai River M3C2 (Top) and Significant Change results (Bottom) 

The main area of interest at the Kootenai River site was a gulley near the railroad tracks, any 

debris that would flow down this gully would be deposited directly onto the railroad tracks.  
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Figure 14. Area of interest at the Kootenai River site (A) M3C2 results showing loss along the 

railroad (B) All three of these displacements were identified as significant change. (C) Matching 

RGB nadir image of the area. 

 

The three sections of significant change identified by the yellow arrows in the above image 

ranges from ~40-90 cm of displacement between the clouds (Figure 14). The total volume 

change for this area of interest was a loss of ~553 m3 with the total surface area of this section of 

the site is ~2,434 m2. The total volume loss for the area was ~733 m3 with about 179 m3 of 

volume gain near the bottom of the track.  

2.3.2.3  Moyie River M3C2 and Volume Results   

 The significant change for the Moyie River site ranged between ~0.3–1 m (Figure 15).  
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Figure 15. Moyie River M3C2 (Top) and Significant Change results (Bottom) 

 The main area of interest for this site is the location of the 2017 derailment on the slope right 

below the track. In this area the average loss was between ~0.5 and ~1 m (Figure 16). The 

bottom of the slope below this area of loss has an average gain of material between 0.5-0.8 m of 

material. The total volume change for the area of the 2017 derailment was a loss of ~ 358m3 with 

the total surface area of this section of the site as ~2,513 m2. The total volume loss for the area 

was ~500 m3 with about 143 m3 of volume gain.  

 



 

38 

 

 

 

Figure 16. Area of 2017 derailment at the Moyie River site (A) M3C2 results showing loss along 

the railroad (B) This same area was identified as significant change. (C) Matching RGB nadir 

image of the area showing mitigation work. 

 

2.3.3 Uncertainty Results 

The M3C2 plugin in CloudCompare also generated uncertainty point clouds for each site. 

The distance uncertainty point clouds and corresponding histograms are displayed below. For the 

Kootenai River site the highest uncertainty values were found in the heavily vegetated gullies 

where there were holes in the dataset (Figure 17). As seen in the histogram a majority of the site 

has a distance uncertainty of less than 0.325 m (Figure 18). 
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Figure 17. Kootenai River distance uncertainty point clouds 
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Figure 18. Kootenai River distance uncertainty histogram 

The distance uncertainty results for the Deep Creek site are shown below. Similar to the 

Kootenai River site, the areas of the highest distance uncertainty are the edges of the holes where 

the vegetation was too thick for the two return LiDAR to penetrate (Figure 19). Overall, for the 



 

41 

 

site the majority has a distance uncertainty of less than 0.26m (Figure 20).

 

Figure 19. Deep Creek site distance uncertainty point cloud 

 

Figure 20. Deep Creek site distance uncertainty histogram 

The distance uncertainty results for the Moyie River site are shown below. Similar to the 

Kootenai River site and the Deep Creek sites, the areas of the highest distance uncertainty are 
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where the point cloud is sparse (Figure 21). This site has the highest distance uncertainty of the 

three sites with much of the site having an uncertainty of less than 0.40m (Figure 22). This is 

likely because of the sparseness of the 2017 point cloud. 

 

Figure 21. Moyie River site distance uncertainty point cloud 

 

Figure 22. Moyie River site distance uncertainty histogram 
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2.4 M3C2 Discussion 

Our method of post processing the LiDAR data was effective in eliminating the common 

issues associated with repeat LiDAR studies. The issues of differences in georeferencing 

information and different quantifications of uncertainty we resolved by processing the 2017 and 

2021 LiDAR data with the methodology outlined in this chapter to optimize alignment for 

LiDAR datasets that do not have ground control.  The issues of poor coregistration of flight lines 

and differences in data quality we solved using the stripping correction software 

BayeStripAlign2.1 to align the flight strips.  This new methodology aligned the flightlines as 

closely as possible, removing the vertical and horizontal thereby improving the accuracy of the 

analysis. The overlap of the flightlines was improved and once loaded into CloudCompare, only 

the fine registration tool was needed.  

 The results of the M3C2 analysis and volume calculation showed that the workflow 

developed in this study is able to align repeat LiDAR point clouds accurately enough to detect 

significant change as low as ~25 cm. At the Kootenai site areas of loss revealed in the point 

cloud analysis can be visualized in the RGB imagery. While the algorithm measured the 

significant loss along the slope where there were small scarps; matching deposition of displaced 

material was missing. Most of the debris from these slides was removed by the railroad 

maintenance crews, however, there is a small amount of displaced material on the tracks can be 

seen in the lower right yellow circle (Figure 9). This deposition was not detected by the 

algorithm due to a hole in the point cloud that was caused by the retaining wall placed by the 

railroad company in-between 2017 and 2021. The results of the Moyie site could also have been 

affected by the sensor picking up on the mitigation measures implemented at the site. We 

measured significant loss in the area of the 2017 derailment with significant deposition at the 
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bottom of the slope. There have been extensive mitigation efforts on the upper slope, such as the 

installation of metal netting and retaining walls that could be affecting our measurements. The 

area at the bottom of the slope appears to act as a catchment for debris coming off the slope, not 

limited to the area of interest we focused upon (Figure 11). The Deep Creek area had by far the 

most significant change between all three sites and clearly shows the correlating deposition of 

the alluvium and colluvial material below the scarp. The fallen tree below this cliff face could 

also be a result of the material displacement at the site (Figure 7). 

 The further limitation of this study are the holes in the point clouds caused by the failure of 

the LiDAR sensor to penetrate dense vegetation. The dense vegetation led to some large holes in 

the point cloud that increase the error and uncertainty in our alignment and measurements. This 

issue was compounded for the 2017 flight campaigns which were flown with a larger side 

distance (50 m for 2017 vs. 21 m in 2021). Despite this limitation the average uncertainty for the 

three sites ranged from less than 26cm to less than 40cm. The areas of higher uncertainty are 

mostly located along the edges of the holes caused by the dense vegetation. Flying with a closer 

side distance improved the point cloud density in 2021 but reduced the coverage area and 

increased the number of flights required to cover the same area. New technology such as a sensor 

with more than two returns or a sensor with more laser channels such as the VLP-32 could 

further penetrate the vegetation and improve accuracy by gathering more points per second. This 

along with a set altitude above ground for further flight campaigns to match that of the previous 

flight campaigns would be an improvement to future studies involving repeat LiDAR. 
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Chapter 3: Object Based Image Analysis 

3.1 Introduction 

 Object-based image analysis (OBIA) is a method of feature extraction at an object level 

involving multiresolution segmentation and the classification at an object level instead of a pixel 

level (Karantanellis et al., 2020; Hossain and Chen, 2019; Anders et al., 2013) In their 2013 

study, Anders et al, used LiDAR digital terrain models (DTMs) to detect geomorphological 

change in Gargellen Valley Australia from 2003 and 2011. From these DTMs, the authors 

mapped seven features: fluvial incisions, glacially eroded bedrock, recent fluvial deposits, 

alluvial fans, fluvial terraces, flow/slide deposits, and slopes subject to shallow landslides using 

stratified object-based image analysis, as well as calculating the volumetric change of the 

features. These seven features were placed into categories using a geomorphogenetic 

classification scheme and a stratified feature extraction approach with eCognition software 

(Anders et al., 2013). Karantanellis et al. (2020) used a similar method based on human 

cognition and the recognition of landslide precursors. In this study, the authors used UAS 

gathered 3D point clouds in combination with OBIA to conduct site specific landslide 

assessment. The first step was generating ortho-photos and the DSM derivatives from the 

collected point clouds. The authors then fused the different layers together before segmenting 

them. Based on morphological parameters, these segments were then classified into landslide 

characterization categories using rulesets (Karantanellis et al., 2020). These adaptive rulesets use 

expert knowledge to create a set of rules that group the objects or segments into useful categories 

(Karantanellis et al., 2021). This OBIA method was shown to be superior in building a realistic 

scheme for landslide assessment than other pixel based methods such as weighted overlay model 

(Karantanellis et al., 2020).  
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3.1.1 Definition of susceptibility, risk, and hazard for landslide mapping 

 The terms susceptibility, hazard, and risk are often used interchangeably in literature 

pertaining to landslides and the threat posed to infrastructure, the environment and people 

(Wubalem, 2021; Wang et al., 2012; Gorsevski et al., 2016). According to the USGS Landslide 

handbook (2008) susceptibility maps show areas of mass movement potential based on the 

environmental factors present at the site but not necessarily the probability of the failure 

occurring (Highland and Bobrowsky, 2008; Abbaszadeh Shahri et al., 2019). Hazards maps are 

expected to include information pertaining to the likelihood or probability of landslide activity 

over a defined period of time (Highland and Bobrowsky, 2008; Chung and Fabbri, 2003) Thus, a 

susceptibility map can reveal the spatial occurrence of landslide events and a hazard map 

describes the spatiotemporal occurrence of events over a terrain (Wubalem, 2021; Azarafza et 

al., 2021). A hazard map includes areas of mass movement initiation and the runout zone of the 

movements (Highland and Bobrowsky, 2008). Finally, risk is typically defined as the product of 

the probability of an event to occur and the severity or consequences  for human life or damage 

to infrastructure (Highland and Bobrowsky, 2008; Abdulwahid and Pradhan, 2017). In this study 

we are generating susceptibility maps based on the presence of environmental factors that 

contribute to rockfall, landslide initiation, and deposition zones.  

 Areas prone to mass movement hazards can undergo mitigation or adaptation measures 

(Oktorie, 2017; Gariano and Guzzetti, 2016). Drawing from climate change and landslide 

terminology, adaptation often refers to actions made at a through policy or regulation to human 

systems with the goal to reduce or avoid damage from hazards (Kim et al., 2018; IPCC, 2012; 

Ahmad et al., 2020). For mass movement areas along railway corridors, this includes methods 

such as changes in land use planning and zoning, climate change regulation, relocation of 
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buildings, and improvements to drainage (Oktorie, 2017; Jakob, 2022). Mitigation refers to 

structural measures taken to prevent the hazard from reoccurring, for example using rock 

anchors, shotcrete, and controlled blasting to prevent material from detaching from the cliff face 

(Jakob, 2022; Oktorie, 2017; IPCC, 2012; Highland and Bobrowsky, 2008; Gariano and 

Guzzetti, 2016).  

 

3.1.2 Landslide Susceptibility Environmental Factors 

We investigated numerous different environmental factors that influence landslide 

susceptibility at the site to use in the OBIA analysis. These layers included: canopy height, slope, 

aspect, plan curvature, profile curvature, and flow accumulation. Canopy height is an important 

aspect of slope stability since vegetation prevents erosion and weathering of slopes (Raghuvanshi 

et al., 2015) Aspect refers to the direction the slope faces and is another environmental factor that 

influences landslide potential of a site since it directly impacts weathering and vegetation 

through evapotranspiration (Esri; Mahalingam et al., 2016). Profile curvature is the curvature 

that is parallel to the direction of the maximum slope and determines the acceleration of flow 

downslope (Esri).  Plan curvature is the curvature that is perpendicular to the slope, a negative 

profile curvature indicates a gully (Esri). This curvature influences the convergence of flow, or in 

this case, those areas that provide an easy avenue for mass movements downslope.  

For landslide susceptibility, the traditional belief is that the steeper the slope the greater the 

landslide potential; this idea is expressed in studies by Hussin et al. (2012) and Sarkar and 

Kanungo (2004). However, numerous other studies have shown that there is a window of ideal 

slopes for landslide initiation. A 2002 study in Turkey by Ercanoglu and Gokceoglu (2002) 

showed that landslide frequency peaked at slopes between 26° and 30° and sharply decreased 
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over 45°. A similar study by Arnous and Green (2011) generated similar results in that the 

frequency of landslides was high between 20° to 30° and lower frequency between 12° to 20° 

and 35° to 41°. The results of this study have even been used to guide classification in another 

study by Omran et al. (2021). Studies by Wang et al. (2010) and  Cao et al., (2021)  determined 

that the the frequency of landslides is highest between 20° to 40°. These are the studies that our 

slope weights are based off and we used to determine that slopes with an inclination between 20° 

to 40° have high rockfall susceptibility, an inclination between 40° to 50° have a moderate 

susceptibility (Cao et al., 2021; Wang et al., 2010; Omran et al., 2021; Arnous and Green, 2011).  

As discussed earlier, vegetation helps prevent erosion and weathering as well as improving 

cohesion and improving shear resistance, so the potential for landslides decrease where 

vegetation is present (Raghuvanshi et al., 2015; Vorpahl et al., 2012). The larger the vegetation, 

the better the protection from these processes.  A high flow accumulation indicates area where 

water converges and can saturate the soil, reducing shear strength of the ground (Wachal and 

Hudak, 2000). 

 

3.1.3 Rockfall Susceptibility Environmental Factors 

The second mass movement type modeled in this study is rockfall. There are multiple 

parameters that increase likelihood for rockfall, this includes things such as lithology, fracturing, 

cohesion, and friction angles of the rock (Volkwein et al., 2011). However, the determination of 

these mechanical properties and fracturing of the rocks would require field investigation which 

was too dangerous for these sites. Therefore, the parameters that we used for this ruleset were 

slope, vegetation, aspect, profile curvature, and plan curvature. 
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As with landslides, for rockfall the major parameter is slope, the higher the slope the more 

likelihood of rockfall (Hussin et al., 2012). A majority of studies agree that the highest risk for 

rockfall occurred in areas of slopes greater than 45 degrees. A study by Saroglou et al. in 2019 

determined that rockfalls occurred in slopes with inclinations between 45° to 90° (Saroglou, 

2019). A similar study by Fanos et al. in 2019 described slopes between 51° to 79° to be ideal for 

rockfall (Fanos et al., 2019). The study by Omran et al. in 2021 determined that slopes with an 

inclination between 25-35 have a moderate rock fall susceptibility, an inclination between 35-

45 has a high susceptibility, and greater than 45 has a very high susceptibility (Omran et al., 

2021). These studies generally agree that the susceptibility of rockfalls increase as the slope 

increases; for this reason, two slope categories of increasing weight were used.  

Aspect is another important parameter in rockfall susceptibility because of its relation to 

precipitation, solar radiation, evapo-transpiration, and freeze-thaw cycle. The southern slope 

historically receives more precipitation and sun, leading to alternatingly wet and dry slopes so 

are more prone to rockfalls (McClelland et al., 1999; United States Department of Agriculture 

Forest Service and Boise National Forest, 1995). When looking at the Idaho landslide inventory, 

recorded landslides in the panhandle occurred more frequently on the southern slopes than other 

aspects (Lifton et al., 2020). For this, a weight of one was given for slopes with a southern 

aspect. 

 Since rockfall occurs mostly where the bedrock is exposed, there should be little to no 

vegetation in the area. Slope and terrain roughness both influence erosion and water infiltration, 

which breaks apart the rock, leading to loose pieces of material that can be brought down by 

gravity. We used the same cutoff values for the rockfall ruleset as the landslide ruleset. 
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  A negative plan curvature, indicates areas of curvature that are concave and flow converges 

(Esri). These areas of flow convergence can act as a funnel downslope for rocks or debris. Profile 

curvature determines whether flow down the slope accelerates or decelerates. The concave 

slopes with a positive profile value indicate that debris would accelerate downslope towards the 

tracks (Fanos et al., 2019; Kopp, 2021; Esri). Profile curvature was used not only because of the 

role that it plays in acceleration, but also its ability to identify the small ledges on steep cliff like 

rock faces.  

3.1.4 Deposition Susceptibility Environmental Factors 

Slope was again the most important parameter for this ruleset. Based on studies of talus 

slopes, we were able to determine the likely maximum angle of repose for rock debris to be 

about 35° (Carson, 1977;  Francou and Manté, 1990; Jaboyedoff and Labiouse, 2011). The 

minimum slope of 10° eliminated the artificially flat railroad area. Vegetation can impede the 

flow of debris, so areas with little vegetation would provide an easier path for debris to travel. 

Lack of vegetation can also be indicative of previous deposition in the area. For this model, areas 

of no vegetation were given a weight of +1. Areas of low slope can also act as a catchment area 

for upslope debris.  

Gullies are often routes for debris to travel down and deposit on the tracks. Flow 

accumulation shows where the  erosion from flowing water is likely to form gullies (Fanos et al., 

2019; Mahalingam et al., 2016). This water can easily bring debris along in a flow or when the 

gullies are dry rocks can easily tumble down.  A negative plan curvature, indicates areas of 

curvature that are concave and flow converges (Esri). These areas of flow convergence can act as 

a funnel downslope for rocks or debris. 
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The last parameter used for this ruleset is flow accumulation. Flow accumulation is 

calculated as the amount of flow into a cell from upslope, a higher value indicates a concentrated 

flow whereas very low flow accumulation indicates ridges or other topographic high points 

(Esri). For this ruleset, a high flow accumulation indicates areas where debris, as well as water, 

might concentrate and settle. 

3.1.5 Goals and Objectives 

Mapping mass movement susceptibility is an important aspect of managing geohazards along 

transportation corridors. Knowing where the conditions are ideal for initiating these mass 

movements and where deposition is likely is important for installing mitigation measures. For 

this project we modeled mass movement susceptibility at three sites along the Kootenai River, 

Deep Creek and Moyie River corridors with object-based image analysis (OBIA). We used 

topographic parameters such as canopy height, slope, aspect, plan curvature, profile curvature, 

and flow accumulation derived from UAS LiDAR to develop expert system rulesets to classify 

rockfall, landslides and deposition areas across three study sites using OBIA. We created three 

classification rulesets for each site: landslide initiation areas, rockfall initiation areas, and 

deposition areas. To validate these rulesets, the results of the models for each site were compared 

to areas that had undergone change between 2017 and 2021 as identified in Chapter 2. With 

these expert-derived rulesets railroad companies can map these susceptible slopes when planning 

mitigation and adaptation strategies.   
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3.2 Methods 

3.2.1 Landslide Characterization of Study Sites 

Three sites along the Kootenai River, Deep Creek, and Moyie River were chosen for this 

study (Figure 23). The Kootenai River landslide site is composed of till deposits (~1-50 m thick) 

on top of members of the Belt Super group with sections of the site composed of exposed 

intrusive mafic sills. These till deposits are composed of material ranging from silt to cobbles 

while the members of the Belt super group are feldspathic quartzites and argillites of the Prichard 

Formation (Breckenridge et al., 2012; Burmester et al., 2010b). Based on this information and 

the imagery of the sites where bedrock and other coarse material was the main ground cover, we 

concluded that rock and debris are the two most present material types. The next aspect of the 

site we looked at what type of movements were occurring at the site. The mass movements that 

were mostly composed of debris material were relatively small failures forming long narrow 

paths contained mostly to the gullies of the site. While the areas of exposed bedrock are mostly 

bedded and jointed slopes overhanging the tracks. However, the orientation of these joints and 

bedding planes indicate that topple is not as likely as a mass movement at the site. Therefore, we 

concluded that the two types of mass movements at the site were rockfall and debris flow. 

The Deep Creek site is composed mostly of  alluvial and colluvial deposits (~10 m thick) 

(Barton et al., 2004; Burke et al., 2009; McFaddan et al., 2009). According to the geological 

map, these deposits ranged in size from silt to gravel. Looking at the imagery for the site, a 

majority of the material appears to be very fine with occasional sections of coarser material. We 

concluded that the material is earth. The movement at the site was determined to be a rotational 

slide based on the size and slight backward tilt of the displaced material. Therefore, the mass 

movement was an earthslide with the potential for earthfall along the steep scarp. 
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The main material at the last site along the Moyie River was mostly glacial outwash deposits 

with a size range between silty and sandy gravel. The area above the tracks is mostly boulder 

lodgment till with exposed mafic intrusive rock toward the northern end of the site. The presence 

of this exposed bedrock has led to larger boulders breaking off and being deposited downslope. 

These larger chunks of bed rock mixed with gravel sized glacial deposits creates a coarse debris 

material. The mass movements at the site are thus mostly slides and falls. Looking at the imagery 

the two mass movements on the northern end of the site, the deposition partner has an interesting 

hourglass shape reminiscent of flows and are located beneath a manmade drainage pipe yet water 

does not appear to be a major factor at the site. The 2017 derailment area is large, possibly the 

result of repeated slides over time and composed mostly of debris material. The areas of exposed 

bedrock above the track are likely to fall rather than topple because of the positioning of the joint 

sets and fractures. Therefore, the two mass movement types present at the site are rockfall and 

debris slides.  
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Figure 23. Hillshades of the three study sites 
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3.2.1 UAS Platforms and Sensors 

 The UAS platform used in this study was the DJI Matrice 600 Pro. Both are compact and 

only need a small takeoff and landing site due to their multi-rotor feature, but they are limited by 

their short flight time (~ 15 minutes), short flight range, and reduced stability in high winds 

compared to fixed wing UASs. Refer to chapter 2 for UAS platform and sensor information. 

 

3.2.1 LiDAR Post Processing 

 The first step in processing the LiDAR data was to create Smoothed Best Estimate of 

Trajectory (SBET) files from the flight GPS data using the software PosPac UAV (v. 8.4). 

PosPac UAV software uses the IMU and GNSS data to georeferenced the flight data without the 

use of ground control points, since the sites were too hazardous for the placement of ground 

control points. This method not only improves the accuracy but can fill any gaps in the GNSS 

data that are caused when connection is temporarily lost with the rover during a flight (Applanix, 

2020).  LiDARtools georeferences the point clouds by matching the timestamps from the LiDAR 

returns with the timestamps from the Applanix APX-15 data in the SBETs (VanValkenburgh et 

al., 2020; Jacobs et al., 2021). Before exporting the LAS files, we had to adjust the roll of the 

UAS to 86.8° and the pitch to 0.12° in LiDAR tools. The final output LAS files were projected in 

WGS84 UTM Zone 11N. (ESPG:32611).  

 Since the LiDAR data comes out of LiDAR Tools in a GPS time format specific to LiDAR 

Tools, the global encoding needs to be set and the GPS time translated to a format that can be 

read by other software using LASTools. This process is laid out in detail in Appendix II. Before 

continuing to process the point clouds in LASTools, the flightlines need to be aligned. In order to 

make sure that the flight lines of the UAS are as closely aligned as possible thereby increasing 
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the accuracy of the data and removing any bias from the repeat LiDAR, we used a stripping 

correction software called BayeStripAlign2.1 to align the flight strips. These point clouds were 

then processed in LASTools to classify the points as either vegetation or ground and create the 

bare earth models and digital surface models which were exported as TIFFs.  

 

3.2.2 OBIA Analysis 

3.2.2.1 Generate Map Layers 

 To begin the OBIA process, we created the individual map layers of the different 

environmental factors that influence landslide susceptibility. Based on the surrounding 

environment of the sites we chose the following environmental parameter data layers for 

analysis: canopy height, slope, aspect, plan curvature, profile curvature, and flow accumulation. 

We imported the DSM and DEM TIFFs into ArcGIS Pro with a projected coordinate system of 

WGS 1984 UTM Zone 11N. The Extract by Mask tool was used to clean up the TIFFs and 

reduce any edge effects in the analysis. We carefully reviewed the TIFFs for each site and any 

local noise was removed with a pixel editor. We ran the fill tool on the rasters to fill in the 

smaller holes or gaps in the data. After cleaning and filling the two raster layers, we used the 

hillshade tool to create hillshade maps for both the DSM and DEM. Hillshade maps show the 

illumination and shadows of each pixel from a simulated light source which allows for better 

visualization of the terrain (Esri). These hillshade maps also helped illustrate what areas of the 

site had a higher resolution than others.  

We generated a canopy height model that showed areas of the site that are covered in 

vegetation by subtracting the bare earth model from the DSM. Next, we calculated the slope of 

the site using the bare earth model and Arc     ro’s surface parameters tool. This surface 
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parameters tool improves on the issue of distance distortion inherent to projected coordinate 

systems by running all calculations in geodesic space. The last major improvement over the old 

slope and other surface tools is that a quadratic surface fit the neighborhood instead of a plane, 

which is more accurate for complex terrain (Kopp, 2021). Aspect was calculated using the 

surface parameter tool on the bare earth model to calculate the aspect of each cell in the raster. 

Often this would then be classified into the four cardinal directions, however, the aspect layer 

was left reclassified so that slopes with a south aspect have a value of 1 and all other aspects 

have a value of zero for the OBIA.  

We also created two data layers for curvature at the site using the surface parameters tool in 

ArcGIS Pro: profile and plan curvature. Curvature is calculated on a cell by cell basis looking at 

the closest neighbors of the cell and calculating the ideal osculating circle that matches the 

curvature of the surface (Esri; Kopp, 2021). Consequently, a smaller circle means a larger 

curvature value (Kopp, 2021).  A positive curvature value indicates a convex surface, whereas a 

negative curvature value indicates a concave ground surface (Esri).  

To calculate the flow accumulation data layer, we first ran the flow direction tool followed 

by the flow accumulation tool on the filled bare earth raster. The flow direction tool uses the D-

infinity method to create a raster that models the flow direction from every cell to the  nearest 

downslope cell that has the steepest slope (Esri). Arc     ro’s flow accumulation tool uses the 

raster layer created by the flow direction tool to calculate the accumulated water flow in each cell 

with the D-infinity method (Esri). Lastly, the Extract by Mask tool was used to clean up the 

TIFFs and reduce any edge effects in the analysis. 
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3.2.2.2  Multiresolution Segmentation 

We exported each of the individual raster layers from ArcGIS Pro as TIF files and imported 

them into Trimble eCognition.  A multiresolution segmentation was then run on selected layers. 

A multiresolution segmentation, according to eCognition, is a segmentation method that starts 

with a single pixel object and, depending on spectral and shape characteristics, this single pixel is 

merged with neighboring pixels or objects with similar characteristics.  The layers used in this 

process were chosen based on the weight of their influence on mass movements as well as the 

best way to reduce any collinearity. For the landslide initiation zone map, the layers used for the 

segmentation were the canopy height model and slope. CHM was given a weight of 1 and slope a 

weight of 2. The rockfall initiation map used the CHM, plan curvature, profile curvature, and 

slope layers for the segmentation. The CHM, plan curvature, profile curvature layers were 

weighted with 1 and the slope layer which was weighted as 2. The deposition model used the 

slope, CHM, and plan curvature layers for the segmentation. For this segmentation we gave a 

weight of 2 to the slope layer while the rest of the layers had a weight of 1 (Table 4). 

Each segmentation used a set scale parameter, a shape weight, and a compactness weight. 

The scale parameter determines the size/number of segments. A smaller scale parameter leads to 

a noisy analysis, but too large of a scale parameter oversimplifies the site. The shape weight is 

given a value between 0 and 1 with a higher value indicating the influence of the pixel value 

compared to the average standard deviation in the segmentation (Akcay et al., 2018; Happ et al., 

2010). The compactness weight is similar in that the values are between 0 and 1; the higher the 

number the more compact the segments based on the length of the borders. Other combinations 

of scale parameters, shape weight, and compactness weight values were tested before we settled 

on the respective values which provided the best segmentation (Trimble Inc., 2019). In this case, 
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the Landslide ruleset used a scale parameter of 12, a shape weight of 0.4, and a compactness 

weight of 0.2. The rockfall ruleset used a scale parameter of 10, a shape weight of 0.2, and a 

compactness weight of 0.4. Finally, the deposition ruleset used a scale parameter of 12, a shape 

weight of 0.2, and a compactness weight of 0.3 (Table 4).  

 

Table 4. Segmentation Parameters 

Ruleset Segmentation Rockfall Landslide Deposition 

    

Scale Parameter 10 12 12 

Shape 0.2 0.4 0.2 

Compactness 0.4 0.2 0.3 

Layers (weight) 

CHM (1) 

Plan Curvature (1) 

Profile Curvature (1) 

Slope (2) 

CHM (1) 

Slope (2) 

CHM (1) 

Plan Curvature (1) 

Slope (2) 

 

3.2.2.3 Assign Classes with OBIA Ruleset 

To de elop the rulesets based on each site’s characteristics; a separate ruleset was developed 

for landslide initiation zones, rockfall initiation zones, and debris deposition zones. We then 

assessed the layers in ArcGIS Pro to determine the cutoff values for each layer. A point system 

was then used to create the different susceptibility classes with each parameter given a weight or 

point value and a symbol. These weight values and rulesets were verified by expert opinion. 

 

3.2.2.3.1 Landslide Initiation Ruleset 

The first ruleset we created was for areas with a potential to initiate landslide. The 

parameters that we used for this ruleset were slope, vegetation, and flow accumulation. After 

conducting an in-depth literature review and with expert input, the weights or point values were 

assigned (Table 5. Landslide initiation weights and symbols). Moderate slopes have a weight of 
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4 while ideal slopes have a weight of 6. High vegetation areas we assigned a weight of -1 while 

areas of no vegetation have a weight of 1. Flow accumulation was the last parameter to be 

assigned a weight of 1. 

Table 5. Landslide initiation weights and symbols 

  r m   r  W  gh /       

Moderate  lope (40 <  lope < 50) +4 

 deal slope (20 <  lope < 40) +6 

 ittle to No  egetation (CHM < 10) +1 

High  egetation (CHM > 20) -1 

 low Accumulation ( low Accumulation > 1000) +1 

 

The most important parameter for landslide initiation was slope, which was given the largest 

weight followed by vegetation and flow accumulation, which were given the same weight. With 

the exception of areas of tall vegetation which were assigned a weight of -1, the other parameters 

had a weight of 1.  
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Figure 24. Landslide ruleset workflow for initial classification 

 

This initial classification is shown in Figure 24 where the slope is the initial parameter used 

for classification followed by vegetation height and flow accumulation. The more parameters the 

object met, the higher the classification. 
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Figure 25. Continuation of landslide ruleset where the rules of this section are used to fill any 

holes in the classification. 

The next section of the workflow is used to fill any holes in the model so polygons that 

almost entirely surrounded by other classified objects will be assigned to the same class (Figure 

25). The last part of the ruleset removes the small, isolated polygons to reduce noise in the model 

(Figure 26). 
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Figure 26. The last section of the Landslide Ruleset which reduces noise in the model by 

removing small isolated polygons. 

 

3.2.2.3.2 Rockfall Initiation Ruleset 

The second ruleset we created was for areas with a potential to initiate rockfall. After 

reviewing the literature and expert input, the weights or point values we assigned to the 

following parameters: slope, vegetation, aspect, profile curvature, and plan curvature. (Table 6. 

Parameter weights for rockfall initiation areas). Steep slopes have a weight of 5 while very steep 

slopes had a weight of 6. The rest of parameters were assigned a weight of 1. 

Table 6. Parameter weights for rockfall initiation areas 

Parameter Weight/Points 

Steep Slope (50 < Slope < 60) +5 

Very Steep Slope (Slope > 60) +6 

Little to No Vegetation (Canopy Height < 10) +1 

South Aspect +1 

Profile Curvature > 0.06  +1 

Plan Curvature < 0.1  +1 
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Based on the weights of the parameter, the ruleset was written to first separate steep slope 

and the very steep slope into separate classes. Then based on how many of the additional 

parameters were met, the objects were placed into a rockfall susceptibility class (Figure 27). 

 

Figure 27. Rockfall initiation ruleset workflow. A. Initial classification based on slope and how 

many other environmental factor thresholds the object meets B. Remove small, isolated polygons 

C. Add in bordering objects that meet one of the rockfall susceptibility factors 

 

 After the initial classification, additional rules were used to close up any holes in the 

classification and reduce noise. To reduce noise small, isolated objects were removed while the 

“relati e border to” and “border to” tools were used to fill gaps in large polygons (Figure 27 and 

Figure 28). 
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Figure 28. Rockfall ruleset continued. D. Continue to fill holes in the data set based on how 

much of an objects border is already classified E. fill in any polygons that are fully surrounded 

by other classified objects 

 

3.2.2.3.3 Deposition Areas Ruleset 

The last ruleset we created was for areas with where debris is likely to be deposited. The 

parameters that we used for this ruleset were slope, vegetation, plan curvature, and flow 

accumulation. After conducting an in-depth literature review and expert input, the weights or 

point values we assigned and can be seen in Table 7 . A weight of four was assigned to areas of 

low slope while the rest of the parameters were weighted with a value of 1. 
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Table 7. Parameter weights for debris deposition areas 

Parameters Weight/Points 

Low Slope (10 < Slope < 35) +4 

Not Vegetated (Canopy Height < 10) +1 

Plan Curvature < -0.2 +1 

Flow Accumulation > 1000 +1 

 

 

Figure 29. First part of the deposition workflow. A. Classify first based on slope and the 

presence of the other environmental parameters B. Add in bordering objects with a low slope or 

high flow accumulation C. Reclassify moderate or high objects into very high susceptibility 

category if they are mostly surrounded by very high susceptibility 

The first part of the ruleset involves isolating slopes that are between 10° and 35° as slope 

angles were low enough for material to settle on (Figure 29). Then depending on how many of 

the environmental parameters are met, the susceptibility classification is determined. A low slope 

with one environmental factor is classified as a moderate deposition susceptibility, while a low 

slope with two parameters is classified as a high deposition susceptibility, and an object with all 

three influencing factors is classified as a very high deposition susceptibility. 
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The next step was to start filling in the holes of the model so an object that borders a 

classified polygon that has either a low slope or a high flow accumulation is classified as 

moderate susceptibility (Figure 30). Objects currently classified as moderate or high 

susceptibility with 60% or more of their border as very high susceptibility was classified as high 

susceptibility. 

 

 

Figure 30. Deposition susceptibility model workflow continued. D. uses flow accumulation and 

CHM, and object size to remove noise E. Removes steep slopes greater or equal to 38° F. Fill 

holes in larger classified objects 

The ruleset then reduced noise in the model by eliminating polygons with low flow 

accumulation and high vegetation as well as isolated pixels that are smaller than 750 pixels. 

Since the previous rules have introduced additional polygons with steeper slopes, the polygons in 

the same class were merged and any newly merged polygons with an average slope greater than 

38° were removed. The last part of the ruleset eliminated any last holes in the model where an 
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unclassified polygon that is completely surrounded by one other class is then classified as that 

surrounding class. 

 

3.3 OBIA Results 

3.3.1 Landslide Initiation Ruleset Results 

The landslide initiation ruleset was applied to each of the three sites, classifying the site into 

areas of moderate, high and very high landslide initiation susceptibility. These classifications 

shown in the figures below appear in yellow, orange, and red, respectively. 

 

Figure 31. Landslide initiation model for the Kootenai River site 
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The first site the landslide initiation ruleset was applied to was the Kootenai River site 

(Figure 31). This model highlighted areas of concern along the ridge top as moderate to high 

landslide susceptibility. A steep slope on the eastern part of the site was classified as mostly high 

to very high susceptibility for the entire height of the slope. While those areas did not necessarily 

correspond with places of significant change, areas along the tracks where significant loss was 

observed often matched with one of the three classifications. An example of the matching of the 

significant loss with areas of landslide initiation zones can be seen below, where the area of 

significant change overlaps with the high landslide initiation susceptibility zone (Figure 32). 

 

Figure 32. Site of significant loss at the Kootenai River site 

The next site that the landslide initiation ruleset was run on was the Deep Creek site (Figure 

33). The results of this model emphasized the areas of concern at the site. Highlighting the steep 

slopes of alluvium and colluvium material below the scarps indicated high landslide initiation 



 

70 

 

susceptibility. The model even partially overlayed an area classified as high landslide initiation 

susceptibility with a spot that had undergone significant material loss (Figure 34). 

 

Figure 33. Deep Creek landslide initiation susceptibility model 
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Figure 34. Areas of significant loss that are reflected in the high landslide initiation classification 

Lastly, the landslide initiation ruleset was used on the Moyie River site (Figure 35). The 

output landslide susceptibility model classified much of the bottom half of the site as moderate 

or high landslide susceptibility. However, the area below the location of the 2017 derailment was 

classified as very high landslide initiation susceptibility despite most of the significant change at 

the site being linked to deposition (Figure 36). There were some areas above the railway that 

were also classified as moderate or high landslide susceptibility, but the majority was on the 

slope below the tracks. 
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Figure 35. Moyie River landslide initiation model 
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Figure 36. Area classified as having a very high susceptibility for landslide initiation at the 

Moyie River site. 

 

3.3.2 Rockfall Initiation Ruleset Results 

The next susceptibility model that was applied to the three sites was the rockfall initiation 

model. This model has the same three classifications and corresponding colors outlined in the 

landslide initiation model. The first model generated was for the Kootenai River site (Figure 37). 

The model identified the areas of exposed bedrock at the site that matched the areas of 

significant loss measured by the M3C2 algorithm. 
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Figure 37. Rockfall initiation susceptibility model for the Kootenai River site 

The areas of the highest rockfall susceptibility were located mostly at the shear rock faces 

along the railroad track and along the rocky ridges running upslope from the railroad. These 

steep rock faces along the tracks were classified mostly as high or very high rockfall 

susceptibility and the ridges were classified as a combination of all three classes. These 

classifications also lined up with the M3C2 results showing significant loss of material in 

classified areas. One such area is a rockfall section in the central portion of the site along one of 
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the ridges. This area was mostly classified as either moderate or high rockfall susceptibility in 

the sections of significant loss (Figure 38). 

 

Figure 38. Area of rockfall susceptibility at the Kootenai River site 

The Deep Creek site was the next site to have the rockfall susceptibility ruleset applied 

(Figure 39). The model created showed a majority of the rockfall or in this case earthfall 

susceptible areas at the site to be isolated along the near vertical scarps at the top of the site. 

Smaller more isolated areas of earthfall susceptibility were identified closer to the tracks but the 
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majority were located along the near vertical cliffs.

 

Figure 39. Rockfall initiation model for Deep Creek 

The last rockfall model generated was for the Moyie River site (Figure 40). The model was 

able to classify the limited areas of exposed bed rock mostly located in the northern half to the 

site above the tracks into rockfall initiation susceptibility classes (Figure 41). However, very 

steep areas near the site of the 2017 derailment were also classified by the model as rockfall 

despite rock not being the main material in that section of the site. 
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Figure 40. Rockfall initiation model for the Moyie River site 

 

Figure 41. Section of the Moyie River site model classified as an area of rockfall initiation 

susceptibility 
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3.3.3 Deposition Ruleset Results 

The last set of models created showed areas where debris would likely be deposited. As with 

the last two models, the deposition ruleset classifies areas into one of three susceptibility 

categories: moderate deposition susceptibility, high deposition susceptibility, and very high 

deposition susceptibility.  

  

Figure 42. Deposition susceptibility model for the Kootenai River site. 

The deposition model for the Kootenai river site shows that the areas of higher deposition 

susceptibility are mostly the gully areas in between the high ridges of the site. Most of the large 

gullies at the site are classified as moderate or high deposition susceptibility classification 

(Figure 42). This matches some of the areas marked as significant deposition from the M3C2 
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analysis (Figure 43). Another area highlighted by the deposition model are the sections of the 

slope where the gullies meet the railroad. These sections of the gully separating the railroad from 

the slope are classified as either moderate or high deposition susceptibility. Very little of the site 

was classified as very high deposition susceptibility. 

 

  

Figure 43. Section of the Kootenai deposition model that shows overlap between the classified 

polygons (yellow, orange, and red) with the M3C2 areas of significant deposition (blue dots) 
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Figure 44. Deep Creek deposition susceptibility model 

The deposition model for the Deep Creek site was generated in eCognition (Figure 44). The 

results of the model line up with the results from the M3C2 algorithm. The areas directly below 

the steep cliff faces are classified as a moderate deposition susceptibility with the gullies that run 

perpendicular to the railroad from the cliff face classified as high deposition susceptibility. One 

area on the north end of the train tracks intersects with one of these larger gullies and that section 

of the track is classified as a potential deposition area. The moderate deposition susceptibility 

area at the base of the southern scarp also overlays a large area of significant material deposition, 

showing the correspondence between the susceptibility model and the M3C2 results. 
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Figure 45. Moyie River site deposition susceptibility model 

The last model was the deposition susceptibility model for the Moyie River site (Figure 45). 

The areas of highest deposition susceptibility are located along the bottom of the slope, along the 

railroad tracks, and in the northern edge of the site. The area below the 2017 derailment was 

classified as moderate or high deposition susceptibility matching the significant deposition from 

the M3C2 results. Another area highlighted by the deposition model is the bare area immediately 

to the north of the derailment sites where there is a large amount of debris and downed trees. 

This area is classified as a moderate to high deposition susceptibility. An interesting observation 

is the unusually large area of moderate susceptibility on the northern edge of the park that is 

dominated by relatively flat bare ground.  
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3.4 Ruleset validation 

The accuracy of the ruleset was determined by looking at the areas of high slide or fall 

initiation susceptibility and how they corresponded with areas of documented change in the 

M3C2 results. Both the OBIA and significant change results were exported as TIFF files and 

imported into ArcGIS pro for comparison. All rulesets were reviewed by a geohazards expert. A 

traditional method of susceptibility modeling the relies on the qualitative knowledge of the 

geohazard expert in identifying areas of high landslide potential (Chung and Fabbri, 2003). A 

combination of all three models classified ~71.6% of all significant change at the Kootenai River 

site, ~73.4% of all significant change at the Deep Creek site, and 62.1% of significant change at 

the Moyie River site into moderate, high, or very high susceptibility. These sites will continue to 

be monitored over time for change and the collected data will be used to continually improve the 

models. 

 

3.5 OBIA Discussion 

The three susceptibility models generated with OBIA were compared to the M3C2 results for 

each of the sites. The rockfall initiation susceptibilty model was able to isolate areas of bedrock 

or areas where falls would be the mechanical process removing material. At the Kootenai River 

site, areas of significant loss along the rocky ridges of the site were correctly classified in one of 

the three rockfall susceptibility classes. The model identified areas of significant change and 

differentiated between rockfall and landslide susceptibility. A section of steep bedrock along the 

tracks on one side of the ridge was more prone to rockfall while landslides were more likely on 

the other side (Figure 46). Both the rockfall and landslide models were successful in identifying 
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the correct corresponding area of the site for each hazard type. In both models for this section, 

polygons with significant loss were successfully classified into one of the three classes. 

 

Figure 46. Comparison of rockfall (right) and landslide (left) models at the Kootenai site. 

There was also correspondence between the rockfall model and deposition model at the Deep 

Creek site. From the M3C2 analysis we know that the southern scarp experienced a large amount 

(~1.5-1.9 m) of significant loss that corresponded with a significant amount of deposition on the 

slope below (~1-1.5 m). This same relationship is shown in a comparison of the rockfall 

initiation model and the deposition susceptibility model (Figure 47). The rockfall model clearly 

covers this area of significant change classifying it in the high and very high rockfall 

susceptibility classes while the significant deposition below is classified as a moderate deposition 

susceptibility. 
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Figure 47. Comparison of the rockfall and deposition models at Deep Creek 

The landslide initiation model also corresponded with the deposition model. An example 

from the Kootenai River site, showed a small area of landslide movement that corresponded with 

a classified area of deposition below (Figure 48). While the corresponding deposition measured 

by the M3C2 was not determined to be significant, the loss was, and is thus classified partially as 

a high landslide initiation susceptibility. The adjacent gully where the deposition likely traveled 

was classified as high and very high deposition susceptibility classes. 
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Figure 48. Section of Kootenai River site that shows correspondence between the landslide (left) 

and deposition (right) models. 

Overall, the three models, identified areas of rockfall initiation, landslide initiation, and 

deposition susceptibility that corresponded with an average of 69% of significant change 

between the three sites. These classified areas overlapped with areas of significant change, either 

material loss or gain, at the site. Even areas that we did not expect to be classified in a certain 

model matched the areas of significant change. For reference, the northern section of Moyie 

River site was heavily classified as a potential deposition area which overlapped with areas of 

significant deposition from the M3C2 analysis. 
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Chapter 4: Conclusion 

4.1 Multiscale Model-to-Model Cloud Comparison Conclusion 

In the first half of this project, we used a cloud comparison method called the multiscale 

model-to-model cloud comparison to measure change between point clouds collected in 2017 

and 2021. While similar studies have used repeat LiDAR for mass movement monitoring, there 

are intrinsic issues with this approach in regards to properly aligning two point clouds, changes 

in georeferencing, and differences in data quality. However, this methodology that we outlined 

avoids most of the pitfalls inherent to using repeat LiDAR for mass movement monitoring. 

Using a stripping correction software such as BayeStripAlign2.1 and properly calibrating the 

LiDAR sensors on the UAV the two point clouds can be initially aligned so close that only a fine 

registration tool was needed. 

The M3C2 plugin from CloudCompare was able to measure the significant change at the 

three sites. Highlighting areas along the track where material had been removed at the Kootenai 

River site and a large amount of debris fall and deposition at the Deep Creek site. For most of 

these areas of significant change the erosion/deposition could also be observed in the RGB 

imagery of the site. Overall, the M3C2 analysis was able to successfully identify and measure 

areas of change as small as 40 cm but with the average ranging from 0.5m to 2 m. 

CloudCompare’s 2.5   olume calculation tool was rather limited in its ability to measure 

volume change at the site. Future work could investigate other tools and software that would 

allow for a 3D computation of volume change at mass movement sites. 

 The one major limitation of this project are the holes in the point clouds caused by the 

sensors failure to penetrate dense vegetation with only two returns. This was the case with the 

older 2017 flight campaigns which were flown at a higher altitude than the 2021 flights. New 
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technology such as a LiDAR sensor with more than two returns would better penetrate the dense 

vegetation improving the coverage and accuracy of the point clouds. Additionally, using a set 

altitude above ground for further flight campaigns to match that of the previous flight campaigns 

would be an improvement to future repeat LiDAR studies. 

 Despite these few limitations, the methodology outlined in this study is an efficient method 

of identifying significant change at mass movement sites. BayesStripAlign2.1 was shown to be 

an effective method of resolving the common pitfalls of repeat LiDAR studies by the realigning 

flight lines. After processing the data with BayesStripAlign2.1 and classifying the point clouds 

only a simple fine registration was needed avoiding the necessity of ground control points for 

alignment. The ability to run an alignment without ground control points is necessary when the 

study sites are extremely remote or as with this case extremely hazardous. With this 

methodology the railroad companies can fly a site with a UAV, repeatedly over the course of a 

few years from a safe position and monitor for any change. 

 

4.2 Object Based Image Analysis Conclusion 

There are various environmental factors to consider when modeling mass movement 

susceptibility, including parameters such as slope, aspect, plan curvature, profile curvature, 

vegetation, and flow accumulation. The second half of this project involved using the gathered 

point clouds to generate susceptibility models with OBIA. OBIA fuses together these data layers 

of different environmental parameters that influence mass movement susceptibility or deposition, 

before segmenting them into objects and classifying those objects. This method creates a more 

accurate model for susceptibility assessment than traditional pixel-based methods like the 

weighted overlay model. With this method in Trimble eCognition we created three expert 
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validated models, one for landslide initiation zones, one for rockfall initiation zones, and one for 

material deposition zones. 

These models were based on expert opinion and compared to the M3C2 results from the 

previous section. The results of the models are promising, sections of the classifications matched 

up with some of the significant change at the sites. The initiation susceptibility models also 

corresponded with the deposition models. The Deep Creek site was a prime example of the 

significant loss at the top of the scarp getting correctly classified as high to very high rockfall 

susceptibility while the deposition immediately below classified as a moderate deposition 

susceptibility. The two initiation zone models were also able to distinguish between landslide 

and rockfall along the steep ridges at the Kootenai site.  

This expert-based model is an efficient method of mapping mass movement susceptibility at 

multiple sites. Once the ruleset is written and refined with expert knowledge it can be easily and 

quickly applied to numerous other sites. Creating these standard rulesets for landslides, rockfalls, 

and deposition is a useful method for railroad companies to identify and prioritize areas of higher 

mass movement susceptibility. With the models as a better method of prioritizing mass 

movement susceptibility, the results can be used to guide monitoring and mitigation measures to 

prevent future derailments.  

The sites in this study were chosen based on their predisposition to mass movements with the 

presence of unconsolidated surficial deposits, the incision of nearby rivers forming steep slopes, 

and railroad construction. While only three sites were used for this project, further studies could 

refine the model by running the ruleset on additional sites. The sites we chose had also already 

undergone large mass movements, continually monitoring these sites for change would be a 

method to quantitatively test the susceptibility models. 
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Appendices 

Disclaimer 

This thesis and its associated data and models are meant for research purposes only. These 

models and workflows were created as an isolated susceptibility case study for a few sites and 

are not a substitute for hazard or risk assessment analysis. The authors and contributors disclaim 

responsibility or liability for any injury to people or property resulting from any ideas, 

instructions, methods, or products referred to in this thesis. 
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Appendix I LiDAR Tools Workflow 

 

--------------------------------------------------------------------------------------------------------------------- 

Before opening LiDAR tools make sure the SBET files are in the same folder as the 

“lidar.pcap.id ” 

 

Step 1 

 elect the “lidar.pcap.id ” for the site as the “input file” 

 

Step 2 

Choose your output file destination and name in the “output file” bo . Ma e sure that the output 

file format is a LAS file. 

 

Step 3 

Change the “ rom:” and “ o:” bo   alues to reflect the start and end of data collection at the 

site. 

 

Step 4 

Change the Roll to 86.8 and the Pitch to 0.12 

 

Step 5 

Make sure the boxes for “right positi e”, “Northeast positi e”, “use post process file”, “use 

pps.t t”, and “sa e timestamps” are chec ed on. Leave the GPS Offsets set to zero. 

 

Step 6 

Clic  on the “ i A  rotation, offsets and filters” tab.  he following settings should be shown: 

“ aser angle rotation (deg)” set to 0, “ otational offset (deg)” set to -90, Minimum Rotational 

angle (deg) set to 0, “Ma imum rotational angle (deg)” set to 360, “Minimum  istance (m)” set 

to 1, “Minimum laser angle (deg)” set to -20, “Ma imum laser angle (deg)” set to 20, and 

“Ma imum  ntensity” set to 128. 

 

Step 7 

Click the start button 
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Appendix II Strip Align and LASTools Workflow for Headwall Processing 

 

---------------------------------------------------------------------------------------------------------------------  

Create file folders for cuts, laz, po, products, results, and temp (these will be used for outputs in 

the code below). Place all of your SBET files in the “po” file. Make sure your LAS file has the 

exact same name as your SBET file. Make Sure a channel map file is also in the directory.  

 

Open powershell window in the directory you will be working out of (ctrl +shift+rt click mouse) 

 

Step 1 (LAStools) 

sets global encoding and shift gps timestamps to Adjusted, 

Type in: 

las2las -i *.las -set_global_encoding_gps_bit 1 -translate_gps_time -1000000000 -set_version 

1.4 -set_point_type 6 -set_ogc_wkt -olaz -odir .\laz 

 

Step 2 (Stripalign - cut swaths) 

This cuts the flight into individual strips 

Type in: 

stripalign -UAS -cut -cut_buf 3 -po .\po\(flightline).out -i .\laz\(flightline).laz -T .\temp -O .\cuts 

-lax_append 

 

 nsert your file name in place of “(flightline)”, for example \po\Kootenai_Site1.out -i 

 

**command -cut needs only one PO file, do one flightline at a time with this command 

 

***Inspect the cut swaths with lasview -i *.laz 

 

Step 3 (Stripalign - align swaths):  

This realigns the cut swaths 

Type in: 

stripalign -align -UAS -x 2 -i .\cuts\*.laz -po .\po\*.out -split ud 4 4chan.map -ics -O .\results\ -

rmap -zmap -dmap -M -sub 2 -lax_append -full -qc -merge -T .\temp -ot -oa -op -opo -c 

 

Step 4 (index- the results) 

Adds indexing information 

Type in: 

lasindex 

Use the default settings with the exception of: 

-run on all cores -1 -chec  “ erbose” 

-select mobile or UAS -chec  “append to  A  

 

Step 5 (break the site up into tiles) 

Lastile 
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Use the default settings with the exception of: 

-run on all cores -1 -chec  “ erbose” -set an output file location 

-set the tile size to 100 -set the buffer to 10 

-set an output file location 

 

Step 6 (classify the noise) 

Type in: 

Lasnoise 

Use the default settings with the exception of: 

-run on all cores -1 -chec  “ erbose” -set an output file location 

 

Step 7 (classify ground points) 

Type in: 

Lasground 

Use the default settings with the exception of: 

-run on all cores -1 -chec  “ erbose”  -set an output file location 

-select “wilderness” or “nature”  -select “ultra” -chec  “compute height” 

Before Pressing Start:  n the command window add a space then “-all_returns” to ma e sure you 

are not only getting the second return which is the default. 

 

Step 8 (classify the vegetation points) 

Type in: 

Lasclassify 

Use the default settings with the exception of: 

-run on all cores -1 -chec  “ erbose”  -set an output file location 

-select “ignore low noise (7)” -set the ground offset to1 

 

Step 9 (remove the buffers) 

Type in: 

Lastile 

Use the default settings with the exception of: 

-run on all cores -1 -chec  “ erbose”  -set an output file location 

-Chec  “remo e buffer points” 

 

Step 10 (Rerun las noise to eliminate high noise) 

Type in: 

Lasnoise 

Use the default settings with the exception of: 

-run on all cores -1 -chec  “ erbose”  -set an output file location 

-set the step value to 1 -set the nearest neighbor value to 20 

 

Step 11 (edit the tiles) 

Type in: 

Lasview 



 

100 

 

In las view clic  “process select file”, now you go through the tiles along the edge of the site and 

manually reclassify incorrectly classified or edge noise. For this study we reclassified noisy 

ground points as unclassified (1).  a e the edited layer as a “.lay” file. 

 

Hot keys for editing: 

-Space bar: switch between pan, translate, zoom, and tilt modes 

-click and drag the mouse up and down to zoom 

-<e> enter edit mode  -<s> sa e as “.lay” 

-<g> shows ground points -<t> triangulate ground points  -<v> shows vegetation  

-<a> shows all points -hold shift <t> to un triangulate 

-rt click mouse scroll to reclassify points, select new class, <r> to reclassify points 

 

        (   v r  “.  y” F       “.  z”) 

 his ne t command con erts all the “.lay” files to *_1.laz” 

Type in: 

Laslayers -i *.laz -ilay -olaz 

After running this tool you need to go bac  through and delete the original “.laz” files for the 

tiles you edited.  elete the file right abo e any that end in “_1.laz” 

From this point you can either export as a point cloud (Step 12A) or as a DEM/DSM (Step 

12b) 

 

Step 13A (merge the tiles together) 

To export the site as a complete point cloud you need to merge the tiles together. And export as a 

“.laz” or “.las” file. 

Type in: 

Lasmerge 

Use the default settings with either laz or las selected 

 

Step 13B (create DEM and DSM) 

To generate a DEM of the site the blast2DEM is used. 

Type in: 

blast2dem  

Use the default settings with the exception of: 

-run on all cores -1 -chec  “ erbose”  -set an output file location 

-Set the step value to the scale you want (0.10 =10 cm, 0.5 = 50 cm) 

-chec  “merge into one file” 

-set the output to “tiff” 

Before Pressing Start:  n the command window add a space then “-keep_class 2” to ma e sure 

you are only getting the ground points.  

To generate a DSM use the same workflow but type “-keep_class 2 3 4 5” this limits the points 

to just vegetation and ground. 
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Appendix III M3C2 and Volume Calculation in Cloud Compare 

--------------------------------------------------------------------------------------------------------------------- 

Open Cloud Compare and load in the two DEM Point clouds 

Click “apply all” on the first pop up dialog box 

On the second dialog box, make sure the box that says “preserve global shift” is checked off 

before selecting “apply all”. 

Part I Align the two point clouds 

1. Once both point clouds are loaded in use the min-max tool to export just the ground 

points (class 2) 

2. Since the two clouds are closely aligned already, simply select both layers and click on 

the fine registration tool under “ ools> egistration> ine  egistration ( C )” 

3. In the pop up window the 2017 point cloud will be the reference cloud, under the 

parameters window select number of iterations. In this study 10,000 iterations were used 

for the Deep Creek and Kootenai River site while 20,000 iterations were needed for the 

Moyie site due to the sparseness of the dense clouds. The percent overlap was adjusted 

for each site; Deep creek had a 40% overlap, Moyie had a 20% overlap, and Kootenai 

river had a 15%. The box for adjust scale was checked in each case. Under the research 

tab the random sampling limit was increased to 2 million points, the rotation was xyz, 

and enable farthest points removal was checked. 

4. Record the final RMS error 

Part II Run M3C2 
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1. Select the newly registered point clouds and click on the M3C2 plugin 

2. In the pop up window select the 2017 cloud as the reference cloud 

3.  nder the main parameters tab change the “Normals” scale and “ rojection” scale to 1, 

 hen change the “ma  depth” to either 1 or 2 depending on the amount of change that 

you are expecting to see. 

4. Check the box for registration error and input the RMS error from the fine registration 

5. Instead of subsampling cloud 1 you want to select use cloud 1 

6. Under the normal tab select multiscale 

7. Under the output tab check both boxes for standard deviation and point density 

information 

8. Leave everything else as default. 

Part III Volume Calculation 

1. When selecting an area to calculate the volume over make sure you are perfectly nadir in 

your view of the site 

2. Highlight layers for both years and use the segmentation tool to outline the area of 

interest 

3. Go to Tools>Volume> 2.5D volume 

4. Set the 2017 layer as the ground layer and the 2021 layer as the ceiling 

5. Change empty cells to interpolate 

6. Change the step to 0.15 and the projection to z 

7. Click update grid 

8. Take screen shot of result 

Part IV Exporting M3C2 layers into ArcGIS Pro 
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1. Highlight the final point cloud and select the rasterize tool. 

2. In the rasterize window: 

a. Change “step” to 1 m 

b.  he “acti e layer” can be either significant change or M3C2 

c.  he “projection direction” should be Z 

d. “cell height” is minimum and interpolate    is left as “a erage  alue” 

e. Empty cells should be left empty 

f. Click on update grid 

g.  elect “Mesh” 

h.  elect “ aster” 

i.  n the pop up window chec  the bo es for “E port heights” and “E port all scalar 

fields” before clic ing “OK” 

3. Once the geotiff is created load it into ArcGIS Pro selecting the options to calculate 

statistics and build pyramids 

4.  ou will need to use the “ efine  rojection  ool” to define the coordinate system as 

WGS 1984 UTM 11N 

5. Since the e ported raster will show up as a multiband raster the “Ma e  aster  ayer” tool 

to create individual rasters for the M3C2 and Significant Change layers 

6. These rasters will be very large and ArcGIS may have trouble displaying them, in order 

to improve the display the “E tract by Mas ” tool to cut the larger raster into a more 

easily displayed size that focuses on the areas of interest 

 



 

104 

 

Appendix IV Data Layers in ArcGIS Pro 

 

1. Upload both the DEM and DSM tiff files into ArcGIS Pro 

a. Build pyramids and calculate the statistics 

 

2. Run the fill tool on both the DEM and DSM, with a z limit of 1 

 

3. Save all layers you generate in a TIFF Format 

 

 

4. Run the hillshade tool on each of the clipped DEMs 

a.  et the “Azimuth” to 315, “Altitude” to 45, and “z factor” to 1 

 

5. Generate the canopy height model using raster calculator to subtract the DEM from the 

DSM 

 

6. Open the Surface Parameters to create a slope layer with the DEM as the input raster, 

“Quadratic” as the local surface type, a minimum neighborhood distance of 1 m, and z 

unit of meter.  he bo  for “use adapti e neighborhood” should be unchecked. 

 

 

7. Using the Surface Parameters tool generate the aspect layer with the DEM as the input 

raster, “Quadratic” as the local surface type, a minimum neighborhood distance of 1 m, 

and z unit of meter.  he bo  for “use adapti e neighborhood” should be chec ed. 

 

8. With the reclassify tool change the values of the aspect layer so the southern facing 

slopes have a value of 1 and all other aspects have a value of 0. 

 

 

9. With the Surface Parameter tool create two curvature layers: plan curvature, and profile 

cur ature used the  EM as the input layer, “Quadratic” as the local surface type, a 

minimum neighborhood distance of 1 m, and z unit of meter.  he bo  for “use adapti e 

neighborhood” should be unchecked.  

 

10. The DEM is then input into the flow direction tool. The flow direction type is D-infinity 

and the bo  that states “force all edge cells to flow outward” is unchec ed. 

 

 

11. The next step is to calculate the flow accumulation for the site. The flow accumulation 

was calculated using the flow direction layer as the input a D-infinity flow direction type 

with the output data type of “float” 
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Run everything through OBIA in eCognition – view results.  If desired and for final products do 

the following. 

 

12. Create a polygon class feature for the site boundary that masks out the areas where the 

dense cloud is really sparse 

 

 

13. Now that all of the layers have been created they need to be exported as TIFF files. This 

is done by using the Extract by Mask tool with the site boundary as the mask and each 

layer as an input. When selecting the output location make sure that the output format is 

TIFF.  

 

 

 


