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Abstract 
 

 

Advanced Manufacturing methods such as Continuous Electric Field Assisted Sintering 

(CEFAS) is a novel approach to create advanced materials. The CEFAS system has the 

prospect to become an indispensable technique in advanced manufacturing, however, it also 

presents challenges including the modeling and control of the process with the objective to 

achieve specific material properties.  In this thesis, the problem of modeling and regulating the 

CEFAS system has been investigated. A first principle method-based model for the CEFAS/hot 

rolling system is introduced. Furthermore, experiments are outlined to develop data driven 

models. System identification tools are utilized to extract quality linear representations of the 

system using simulation data. Proven traditional control schemes are devised to provide optimal 

solutions to the considered models. Furthermore, the prospects and possibility of implementing 

deep reinforcement learning as an intelligent control solution to the problem is studied. 

 

 

Keywords: CEFAS, SPS, Control System, System Identification, Reinforcement Learning, LQG 
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Chapter 01: Introduction 
 

1.1 Sintering Techniques 

 

The process of sintering, which refers to the solidification of a powdered material by 

applying the combination of heat and pressure, is used by humans for thousands of years to 

produce products such as bricks, pottery, porcelain, and jewelry (CISP History, n.d.). Sintered 

materials have reduced porosity and improved thermal and electrical conductivity. Particularly in 

the USA, the estimated commercial value of sintered engineering materials is about 23 billion 

dollars in 2003 and is projected to cross 35 billion dollars by the end of 2028 (CISP History, 

n.d.). Traditional sintering methods use heat and pressure as tools to consolidate powder 

particles, and thus offer limited opportunities to influence the overall process. By introducing 

electric and magnetic fields as sintering tools, more flexibility and control over the sintering 

process can be added. This technique, commonly classified as Field Assisted Sintering (FAS), 

was first introduced by W.L. Voelker in the form of resistance sintering(Olevsky & Dudina, 

2018). The progress, advantages and development strategies of FAS techniques are discussed in 

several publications (Dudina & Mukherjee, 2013; Groza & Zavaliangos, 2000; Mamedov, 2013; 

Munir et al., 2011a; Olevsky et al., 2013; Omori, 2006; Yurlova et al., 2014) since 1999. In these 

publications, authors particularly gave attention to a low voltage pulsed current assisted sintering 

called Spark Plasma Sintering (SPS). In layman's terms, SPS is a modification of the hot-

pressing process, where a mold containing the sample material replaces the furnace, and the 

sample is heated by a direct current flowing through it (Pomeroy, 2021). The presence of plasma 

during the SPS process is highly arguable(Hulbert et al., 2009). However, statistics of 
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publications and patents on SPS is showing a rapid growth and is currently considered as the 

most popular technique among the researchers. 

 

Figure 0.1: Relative distribution of different FAS techniques. (Orrù et al., 2009) 

 

Figure 0.2: Trends of publications and patents on SPS. (Olevsky & Dudina, 2018) 

However, all the current SPS technologies are batch processes (Cincotti et al., 2007; 

Holland & Muhkerjee, 2010; Hulbert et al., 2008; Morin et al., 2016) and experience tooling 

scalability problems. To encounter the scalability issues in Electric FAS, a new design called 

Continuous Electric Field Assisted Sintering (CEFAS) is proposed by Colasuonno (Method for 
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Creating Functionally Graded Materials with Spark Plasma Sintering and a Continuous 

Machine for Future Scalability, 2019.) which comes with the benefits of manufacturing materials 

faster than the traditional batch SPS techniques. Simulations using Multiphysics computational 

models showed a 200 times reduction in the processing time along with a 23 times decrement in 

the energy usage when using the CEFAS technique rather than the traditional batch SPS 

processes.  Currently, Idaho National Laboratory (INL) is investigating the effectiveness of the 

CEFAS technique for an industrial scale production of fully dense advanced ceramic and 

metallic materials.  

 

1.2 Problem Statement 

 

The novel CEFAS technique has the potential to be a key technique in advanced 

manufacturing, however, this also presents challenges to control the continuous process to 

achieve certain targeted material properties while maintaining homogeneity.  The primary goal 

of the control design is to regulate the stress and the joule heating process within the material of 

the part. Designing a controller for this purpose requires an adequate model of the system 

capturing the dynamic characteristics such as the effects of heating/cooling rate, rolling rate and 

stress relation regarding the densification process. Therefore, developing a reliable model is 

necessary prior to designing controllers. The modeling group at INL is using COMSOL 

Multiphysics® to model the system.  

To evaluate the structure and dynamics of a model, system identification techniques are 

useful. This requires exciting the system using special inputs and extracting the corresponding 
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output signals. Using these input/output datasets and applying parametric system identification 

algorithms, it is possible to estimate the model parameters. Models extracted using system 

identification techniques can be used to develop primary controllers for the CEFAS system. 

In the presence of model uncertainties and inaccuracies, robust control performs well, 

however, it still relies on linear dynamics. The CEFAS system is highly non-linear. Therefore, 

capturing the non-linear dynamics in the model is an essential to design a reliable controller. 

Currently, researchers are focusing more on developing models and controllers based on data 

instead of using a priori system models. Among these data-driven control schemes, 

Reinforcement Learning (RL) is drawing a lot of attention from the researchers. RL will be able 

to capture the non-linear system dynamics while embedding the controller into its algorithm. 

The present work consists of developing conventional and data driven control schemes 

for the CEFAS system to regulate the pressure applied in the sintered materials. It can be divided 

into three parts- 

• First principle modeling of the roller system and developing traditional controllers 

for that model. 

• Using system identification to linearize the non-linear model of the system 

developed by INL. 

• Proposing a data driven controller on the linearized system. 

 

1.3 Literature Review 
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As discussed earlier, CEFAS is a novel design, and there is no published article that 

presents the control mechanism of this system. The CEFAS system developed in (Method for 

Creating Functionally Graded Materials with Spark Plasma Sintering and a Continuous 

Machine for Future Scalability, 2019.)  only studies the scalability of the electric FAS process; 

thus, it leaves the control section for future work. Nonetheless, batch SPS is a well-known 

technique, and several researchers have proposed a number of different schemes in literature to 

control the temperature and the pressure during the process.  

In Figure (1.3), a typical batch SPS apparatus is shown with the powder sample inserted 

into a graphite die and placed between two graphite punches which are not in direct contact with 

the rams. The rams are connected to an DC source which supplies the power. Most of the 

literatures (Achenani et al., 2017; Anselmi-Tamburini et al., 2005; Jiang et al., 2021; Locci et al., 

2009; Manière et al., 2017; Sakkaki et al., 2020; Schwertz et al., 2016; Wang et al., 2010; Wei & 

Nolas, 2018) proposed proportional integral derivative (PID) controllers to regulate the entire 

process. A thorough investigation of how heating and cooling time lags influence the stability of 

a SPS PID controller is shown by Maniere et al.(Manière et al., 2017) where he proposed to 

place the temperature sensors in highly responsive areas to reduce regulation inaccuracy. 

Similarly, others (Achenani et al., 2017; Anselmi-Tamburini et al., 2005; Sakkaki et al., 2020; 

Wei & Nolas, 2018) have successfully implemented PID controllers to predict the current 

flowing through the sample; thus, evaluating the temperature distribution. 
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Figure 0.3: A typical batch SPS machine set-up.(Molénat et al., 2010) 

However, all of these works only consider the joule heating phenomena and the effect of 

pressure/stress on the sample is neglected. Several studies (Li et al., 2012; Munir et al., 2006, 

2011b) show the uniaxial load generates stresses which play a vital role in the densification 

process. In 2016, Schwertz et al. (Schwertz et al., 2016) published an article where a PID 

controller is developed to regulate a strongly coupled thermal-electrical-mechanical model. The 

authors used COMSOL Multiphysics ® to simulate a sample material from the beginning to the 

end of the densification process.  

The physical phenomena happen on the material during the process of hot rolling is 

closely related to the CEFAS process. Therefore, implemented control schemes for hot rolling 

are studied. A novel PID system based on particle swarm optimization is proposed in (A Novel 

PSO-PID Controller Application to Bar Rolling Process | IEEE Conference Publication | IEEE 

Xplore, n.d.) that shows better performance than the traditional PID controller. Another study 
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(Calvo-Rolle et al., 2013) combines the conventional PID controller with an artificial neural 

network to create a hybrid controller to control the rolling process. Several other researchers 

proposed different control schemes such as Linear Quadratic Gaussian (LQG) controllers 

(Grimble & Hearns, 1998; Pedersen & Wittenmark, 1998) and H-infinity controller (Grimble & 

Hearns, 1999) to enhance the performance. 
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Chapter 02: Applied Theories 

 

2.1 Modeling Theories 

 

This section describes the modeling theories applied in this work. The first principle 

method is used to model the system primarily, and then, system identification (SI), which is a 

data driven modeling approach, is applied to build a linear model. 

 

2.1.1 First Principle Method 

 

First principle method of modeling is based on applying fundamental propositions and 

assumptions on a system. This requires understanding the physics behind a process and applying 

the appropriate equations and laws to represent the underlying correlations. Models based on first 

principle method are utilized to design primary controllers of a system. There are four steps in 

this approach; define modeling objective, acquire system information, develop equations to 

represent the system, and then validate the model. 

 

2.1.2 System Identification 

 

System identification is widely used technique to infer mathematical models of a 

dynamic system from the input and output data. This technique requires generating input data for 
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a system and extracting the output data for that specific input. There are four major steps to 

follow(Pintelon & Schoukens, 2001; System Identification Overview - MATLAB & Simulink, 

n.d.)- 

• Step 1: Generating input and output data in either time or frequency domain. 

• Step 2: Choosing an appropriate model structure. 

• Step 3: Applying an estimation method to predict the adjustable parameters values 

in the candidate model structure. 

• Step 4: Validating the estimated model. 

To estimate a good model for a dynamic system, it is essential to design a good 

experiment to generates data that captures the dynamic behavior of the system. The input for the 

experiment should be sufficient to excite all the modes of the system. The next step is to select 

an appropriate model structure which is a mathematical relationship containing unknown 

parameters. This step is important as the SI algorithm tries to estimate the parameters based on 

the selected structure. By minimizing the error between the model output and the actual 

response, the SI algorithm fits the model parameters. To see whether the estimated model 

adequately represent the real system, a validation process is necessary.  

 

2.2 Controller Theories 

 

This section discusses the traditional and data-driven control theories that are applied in 

this work. PID and LQG control schemes are explored as traditional controllers while RL is 

studied as a data-driven controller. 
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2.2.1 PID Controller 

 

The most common control technique is the proportional integral derivative controller 

(Jens Graf, 2016; St Clair, 1999). About 95% of the control loops existing in the process control 

application industry are either PID or PI controllers (Astrom, 1995). A typical PID controller has 

three actions: proportional, integral, and derivative. The proportional controller action is 

responsible for providing a straightforward gain to amplify the error signal. The integral control 

action enables the ability to eliminate the steady-state error. The derivative control action 

monitors the rate of change of the error signal and resist any abrupt change. 

 

Figure 0.1: An ideal PID controller structure. 

Figure (2.1) shows a typical PID controller structure, where r(t) is the reference set point, 

e(t) is the error signal, u(t) is the actuation command signal or the control signal, and y(t) refers 

to the plant output. The error signal, which is the difference between the reference and the 

measured output signal, can be represented by Equation (2.1). 
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  2.1 

The error signal is then fed to the PID controller to convert it into a control signal to send 

it to the plant. The control signal is the summation of the proportional gain times e(t), the integral 

gain times of the integral of e(t), and the derivative gain times of the derivative of e(t). This 

control signal u(t) can be described using Equation (2.2) 

 
 

2.2 

Here, Kp refers to the proportional gain, Ki is the integral gain, and Kd is the derivative 

gain. The plant generates an output, y(t) which is then fed back to generate a new error signal. 

This is a recursive process while the PID controller is in effect. By taking the Laplace transform 

of Equation (2.2), the transfer function of a PID controller can be found. 

 
 

2.3 

A pure derivative term in the PID structure can amplify the measurement noises. In 

practice, a lowpass filter with filter coefficient, N is added to the derivative term. The transfer 

function for the PID with the filter coefficient term is shown in Equation (2.4). 

 
 

2.4 

 

2.2.2 Linear Quadratic Gaussian Regulator 

 

When full-state measurements of a system are available, it is possible to design a full-

state feedback controller for a system given that the system is controllable. For example, linear 
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Quadratic Regulator (LQR) is an optimal full-state feedback controller. However, in practice, the 

availability of full-state measurements is rare, especially for high-dimensional systems(Brunton 

& Kutz, n.d.). It is possible to design a full-state estimator to estimate the unmeasurable states if 

the system is observable. Linear Quadratic Gaussian (LQG) controller is a solution to this 

problem. LQG performs an optimal full-state estimation by a Kalman filter while it offers a 

control solution using an LQR. Although LQG provides an optimal control solution, it doesn’t 

have any guarantees on robustness (Doyle, 1978). Figure (2.2) shows a schematic illustration of 

the LQG controller without considering any system disturbances and measurement noises. 

 

Figure 0.2 : LQG control scheme. 

The dynamical system of LQG can be represented by the following state-space equations 

where the plant output acts as input, u as output (Brunton & Kutz, n.d.).  

 
 

2.5 
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The estimated states are denoted as x̂, Kr and Kf represent the LQR and Kalman filter 

gains, respectively. The cost function, J(t) of the LQG problem is shown in Equation (2.6) 

(Brunton & Kutz, n.d.). 

  2.6 

where Q is a semi-definite matrix used for penalizing the states and R is a positive 

definite matrix used to penalize actuator effort. By adjusting the weights in Q and R matrices, the 

closed-loop behavior of the system can be changed. The state estimation error can be treated as ε 

and the closed-loop system for LQG can be represented with Equation (2.8) where wd and wn 

represent the system disturbance and measurement noise, respectively. 

  2.7 

 
 

2.8 

The closed-loop eigenvalues of a LQG regulator are given by the eigenvalues of the two 

diagonal matrices (A-BKr) and (A-KfC), which can be optimally chosen by the LQR and the 

Kalman filter gain matrices. Although LQG is an optimal regulator, it is possible to introduce 

robustness by different methods such as loop transfer recovery (Athans et al., 2012). 

 

2.2.3 Reinforcement Learning 

 

For a lot of control theories to be applied, it is essential to have a linear-time-invariant 

(LTI) system. While linearizing a nonlinear system to apply linear control theories, crucial 

information on nonlinear dynamics can be lost (Bertsekas, n.d.). Instead of linearizing the 
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system, a machine learning (ML) training algorithm named reinforcement learning (RL) can be 

implemented to automize a reward/punishment-based method to train itself to regulate the 

system (Vamvoudakis et al., n.d.). The component that generates the decision of what action to 

perform is called an RL agent. An RL agent treats the system as an unknown dynamic 

environment, performs action on the environment based on observations, and modifies itself to 

perform better. Three different approaches are available to implement an RL algorithm: value-

based, policy-based, and model-based learning. While value-based RL method tries to maximize 

a value function, policy-based method uses Markov decision process to perform actions to 

maximize the future reward. These two are also known as model-free RL methods. For a model-

based method a virtual model of the physical system should be provided. Figure (2.3) shows a 

schematic of a typical RL controller with a policy-based learning method. 

 

Figure 0.3: A policy based RL method. 

The RL workflow can be divided into five steps which is shown in Figure (2.4). Firstly, 

an environment should be defined where the RL agent can learn. The next step is to create a 
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reward function to properly incentivize the agent to do the desired task. Then a policy should be 

constructed to structure the parameters and logic of the decision-making process of the agent. 

After setting up everything, the agent should be trained to find the optimal policy. The last step is 

to validate the trained policy to see how well it performs and then deploying it.  

 

Figure 0.4: Reinforcement learning workflow. 

The agent in RL consists of 2 components: a policy and a learning algorithm. Among several 

existing agents, Deep Deterministic Policy Gradient (DDPG) is an actor-critic type agent for 

which the action space is continuous. DDPG consists of two neural networks known as actor and 

critic. The actor network returns an action for a given observation to maximize the reward 

function and updates its weights by using feedback from the critic network. The critic network 

tries to estimate the value of the state-action pair and uses the reward to function to determine the 

accuracy of its prediction. The error is the difference between the new estimated value of the 

previous state and the old value of the previous state from the critic network. The new estimated 

value is based on the received reward and the discounted value of the current state. This error is 

used by the critic network to update itself and the actor network’s weights. This shapes the 

policy to follow the reward slope recommended by the critic and thus tries to learn the optimal 

behavior. Figure (2.5) shows the schematic of a DDPG policy based RL algorithm. 
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Figure 0.5: Schematic of a DDPG policy based RL algorithm. 
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Chapter 03: Modeling 

 

3.1 System Development by First Principle Modeling 

 

As previously discussed, the physical phenomena that happens on the material during the 

CEFAS process can be closely related to the hot rolling process. Therefore, a static model of hot 

rolling mechanism is developed using first principle method for primary investigation. 

Furthermore, a linear actuator is utilized for pressing the roller which is included into the model 

as well. 

 

3.1.1 CEFAS/Hot Rolling Model 

 

A flat plate rolling process along with two rotating rolls is considered for the modeling 

task. Figure (3.1) shows a schematic of the process considered. The sample material with an 

entry thickness or height, hb and an initial velocity, V0 passes through the rollers to produce a 

dense material with final height, hf and exiting the rollers with a final velocity, Vf. The workpiece 

zone is denoted as L which has a neutral point, N i.e., velocity of the sample is same as the roll 

velocity.  
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Figure 0.1: Schematic of hot rolling process. 

The following Equations (Aghasafari, Abdi, et al., 2014; Aghasafari, Salimi, et al., 2014; 

Dixit & Narayanan, n.d.; Hirt et al., 2013; Lenard & Pietrzyk, 1992; Nellippallil et al., n.d.) are 

used to calculate the average flow stress (Yf), thickness (h), exit pressure (Pf), rolling force 

(Froller), rolling torque (Troller), and rolling power (Proller). The thickness of the sample, h is a 

function of the angle, ϕ which designates any point of  

contact between the sample and the roller surface. The pressure at any location is a function of 

the thickness.  

  3.1 

 
 

3.2 

 
 

3.3 
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3.4 

 
 

3.5 

 
 

3.6 

 
 

3.7 

  3.8 

 

Where, R refers to the roller diameter, w is the width of the sample, A is the cross-

sectional area, L is the workpiece length, n is the work hardening exponent, k is the strengthening 

coefficient, omega is the angular frequency depends on the rpm, ε is the average strain and η is 

the friction coefficient. 

Matlab/Simulink is the platform chosen for modeling and simulation of this system. The 

primary reason behind this choice is that Simulink offers modeling and simulation of nonlinear 

systems along with the ability to design and analyze control systems. Interested readers are 

referred to the documentation provided by MathWorks(Block Libraries - MATLAB & Simulink, 

n.d.) to learn more about the blocks used for the design. Figure (3.2) shows the Simulink model 

of the CEFAS/hot rolling model using all the aforementioned equations. The Yf block generates 

average flow stress using which the Pf block calculates the exit pressure. The Froller block takes 

friction coefficient, average stress flow, average height, width and workpiece length as inputs to 

generate the roller force. The torque and power are calculated by the Troller and Proller blocks, 

respectively. The details of the subblocks are shown in Appendix A. The value and unit for 

different constants used in this model are shown in Table (3.1). 



20 

 

 

Figure 0.2: Simulink model of the CEFAS/hot rolling system. 

 

Table 0.1 : Parameters for CEFAS/hot rolling model. 

Parameter  Notation Value Unit 

Entry sample height/thickness he 0.05 m 

Roller radius R 0.1778 m 

Friction coefficient η 0.3 - 

Initial width w0 0.127 m 

Final width wf 0.18 m 

Rolling speed r 1 rpm 
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Work hardening exponent n 0.25 - 

Strengthening coefficient k 500e6 Kg/m2 

 

3.1.2 Actuator Modeling 

 

The scheme to pressurize the sample when current flowing through it involves an 

actuator to force the top roller downward. A pneumatic ram was primarily modeled as an 

actuator. However, CEFAS requires precise pressure control which in some scenarios, pneumatic 

ram is unable to provide. Therefore, an electric linear actuator i.e., Exlar T2X115 is chosen. To 

model this, mathematical equations of a typical linear actuator are considered (Antong et al., 

2014, 2016; Du et al., 2010). The linear actuator consists of two parts: a DC motor to generate 

torque and a structure to translate the torque to the load. The motor converts electrical energy 

into mechanical torque. The motor torque is converted to linear motion using a gearbox and a 

lead screw. Figure (3.3) shows the simplified equivalent diagram of a linear actuator. The desired 

force can be achieved by varying the voltage supplied to the motor. Ra denotes the motor 

armature resistance while La is the motor reactance. The term screw lead (l) refers to the linear 

displacement by the nut after one revolution. The angular motion of the screw is converted to 

linear motion using the term h which is shown by Equation (3.9). Here, Xa and XL are the linear 

displacements of the actuator and the load, respectively. The screw damping, C and the screw 

stiffness, K are accounted to calculate the working displacement on the load. 
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Figure 0.3: Equivalent model of a linear actuator with load (Antong et al., 2014). 

The following equations (Du et al., 2010) are used to model the linear actuator system.  

  3.9 

  3.10 

 
 

3.11 

 
 

3.12 

 
 

3.13 

 

Where, I is the armature current, θm represents the angular rotation of the motor shaft, Kt 

is the torque constant, Ke is the voltage constant and Km is the motor stiffness coefficient, J is 

the motor inertia, D is the damping coefficient, ML is the load mass and Ms is the screw mass. To 

facilitate the control design a state-space form of this system is also extracted. The seven states 
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considered here are current, angular position, angular velocity, screw position, screw velocity, 

load position and load velocity. The supply voltage, Vs and the load position are considered as 

input and output for the single input single output (SISO) system. The meaning, value and unit of 

the parameters and states are provided in Table (3.1). 

  3.14 

 

 

3.15 

 

Table 0.2: Parameters and States for linear actuator model 

Parameter & States Notation Value Unit 

Supply voltage Vs - V 

Armature inductance La 0.0064 H 

Armature resistance Ra 2.2 Ohm 

Equivalent viscous friction D 8e-5 Nm/rads-1 
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Motor inertia J 5.3e-5 Kg/m2 

Motor back emf constant Ke 0.121 V/rads-1 

Motor torque constant Kt 0.121 Nm/Amp 

Screw lead l 2.4e-3 m 

Load mass ML 2000 Kg 

Screw damping Cs 1.2e3 N/ms-1 

Screw stiffness Ks 1.8e5 N/m 

Motor stiffness Km 1e7 N/m 

Screw mass Ms 2 Kg 

Armature current I - Amp 

Screw position Xa - m 

Angular rotation θ - rad 

End of actuator position XL - m 

 

The developed Simulink model of the linear actuator is shown in Figure (3.4). The details 

of the four subsystem blocks are depicted in Appendix A. The Exlar T2X115 model has the 

option to control either the position, velocity, or torque. Therefore, the first principle model of 

the linear actuator is also designed to have all those three options as outputs.  
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Figure 0.4: Simulink model of the linear actuator. 

 

3.2 Models using System Identification 

 

System identification is a data-driven technique which requires to design good input. To 

identify INL’s CEFAS model, which is designed using COMSOL Multiphysics®, multiple 

experiments are outlined. This section describes the experiments, and some models identified. 

 

3.2.1 Experiments Design 

 

A total of four experiments are proposed to extract a dynamic model including the 

estimation of other parameters such as roller speed, joule heating. For each of these experiments, 

collection of timestamped measurements of pressure data in the material is proposed. At first, 

five zones are selected for data measurement with each of them having five vertical points. 

However, some initial experiments show that pressure values in data zones with greater distance 

from the neutral point of the roller don’t change with linear actuator movements. Therefore, a 
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revised experiment setup is proposed which is depicted in Table (3.3). These three data zones 

will be equally distributed, and the first and last point of each zone will be on the surface of the 

sintered material. Considering the entry zone as (0,0), the other two data zones are (-1,0), which 

is 1 inch before the entry zone, and (1,0), which is 1 inch after the entry zone. Figure (3.5) shows 

a visual representation of the data measurement zones. The results of the initial experiments are 

shown in Figure (3.6) 

Table 0.3 : Experiments for system identification. 

 Roller speed 

(rpm) 

LA movement Joule heating Output 

Experiment 1 Constant 

(1 rpm) 

Varies 

 

Constant 

(600K/min) 

3 horizontal zones, each 

with at least 2 vertical 

points 

Experiment 2 Varies 

 

Constant Constant 

(600K/min) 

3 horizontal zones, each 

with at least 2 vertical 

points 

Experiment 3 Varies Varies Constant 

(600K/min) 

3 horizontal zones, each 

with at least 2 vertical 

points 

Experiment 4 Varies Varies Varies 3 horizontal zones, each 

with at least 2 vertical 

points 
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Figure 0.5: Selected zones for data extraction. 

 

Figure 0.6: Pressure variation with respect to linear actuator movements at different horizontal 

locations on the sample. 
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The linear actuator is planned to move during the first experiment from one extreme point 

to the other (maximum and minimum) as well as randomly selected intermediate points 

producing a random set of different sample heights. Using the same setup as the first experiment, 

instead of varying the linear actuator, the roller speed varies between 0 and 4 rpm randomly, 

while keeping the linear actuator at the nominal sample height settings in the second experiment. 

The third experiment is a combination of the first two experiments where both the linear actuator 

and the roller speed varies randomly while keeping the joule heating constant. The fourth 

experiment is designed to interface the joule heating dynamics with pressure and rolling 

dynamics.   

For the first experiment, a pseudo random binary input (PRBS) is designed. However, the 

current COMSOL model doesn’t support pseudo random movements as an input. To resolve this 

issue, the entire system is divided into two sequential processes: the first one is the linear 

actuator, represented by the Simulink model, and the second one is the COMSOL model that 

captures what happens with the material being sintered. The linear actuator model receives the 

designed PRBS input and generates an output. This output is no longer a pseudo random 

sequence but will be altered by the dynamics of the actuator. This output will be collected as a 

time series data with specific sampling time. This time series data will be provided to be used as 

the linear actuator movements and hence generates the resulting pressures in the sintered 

material. A system identification on the entire system will be performed using the PRBS input 

data and the output data generated from the COMSOL model. 
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Figure 0.7: Step response of the linear actuator block. 

To design a PRBS input it is required to know the system response time. The step 

response of the linear actuator shown in Figure (3.7) doesn’t have a settling time as it shows a 

linear increment or decrement when positive or negative voltage is applied. Therefore, the entire 

model is regulated with a PID controller to find out the settling time. The Exlar T2X115 model 

has a maximum stroke length of 6 inches or 0.1524 m. A movement limiter block is used to keep 

the linear actuator movement within the 0–6-inches range. A gain is added to help creating an 

output which covers the whole range. The specifications to generate the PRBS input are listed 

below.  

• Settling time: 0.7 sec 

• Band: 20% to 300% of settling time 
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• Sampling time: 0.1 sec 

• Max. stroke length: 6 inches 

• Min. Stroke length: 0 inch 

• PRBS peaks: +/- 10V  

• Runtime: 100 sec 

 Figure (3.8) shows the schematic of data generation block which uses a PRBS input to generate 

linear actuator movements. Figure (3.9) shows the generated PRBS input and the linear actuator 

output. 

 

Figure 0.8: Schematic of linear actuator data generation block. 
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Figure 0.9: Linear actuator output for the generated PRBS input. 

 

3.2.2 Results using System Identification 

 

The linear actuator movements are used to generate pressure data on the sample at the 

neutral point and at point (-1.25,0) which is just before entering the workpiece. These data points 

are plotted in Figure (3.10) along with the linear actuator output. The plot shows a surge in 

pressure at the neutral zone along with a lot of fluctuations.    
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Figure 0.10: Pressure at (0,0) and (-1.25,0) points using the linear actuator movement as input. 

The MATLAB system identification toolbox is utilized to investigate several transfer 

functions to identify models with good fits to the data. Each of the two datasets is divided into an 

estimation and a validation dataset. The estimation dataset consists of 800 datapoints and the 

validation dataset has 201 datapoints. A closer look into the datasets reveals that although the 

actuator moves back to its initial position, there are negative pressure values appearing at some 

points. This can force the identified system to capture inaccurate dynamics. Therefore, some 

additional data pre-processing is performed to endorse explainability.  

 Both (0,0) and (-1.25,0) data zones are used to estimate models. Estimation data for (0,0) 

data zone is referred as ‘data00_test’ while validation data is denoted as ‘data00_val’. Similarly, 

estimation and validation datasets for (-1.25,0) data zone are referred as ‘data_test’ and 

‘data_val’, respectively. The naming convention for the estimated transfer functions is ‘tfmpz’. 

Here, tf means transfer function, m refers to data zone (0 for (0,0) and empty for (-1.25,0)), p 

refers to the number of poles, and z refers to the number of zeros in the transfer function. 
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Using the data_test and data00_test several transfer function models are estimated. Some 

of the good performing models using data00_test and data00_val are tf071, tf043, tf051, and 

tf011. Good performing models estimated using data_test and data_val are tf71, tf43, tf73, tf11, 

tf51, and tf41. The plots in Figure (3.11) and (3.12) show the simulated/predicted outputs of the 

estimated transfer function models where the validation data set is plotted in grey. 

 

Figure 0.11: Performance comparison for different models estimated using data00_test. 
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Figure 0.12: Performance comparison for different models estimated using data_test. 

Looking into the results, models with higher number of poles tends to perform better. 

This is an indication the studied data represents a higher order system. Further investigations are 

performed to see how these models behave when validated against different data zones. Figure 

(3.13) and (3.14) shows a cross-validation performances of the selected models.  
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Figure 0.13: Cross-validation for models estimated from data_test. 
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Figure 0.14: Cross-validation for models estimated from data00_test. 

The cross validation yields two best candidates from each estimation dataset which are 

tf051 and tf71. Both these candidates show around 65% fit to the data_val dataset and 45% fit to 

the data00_val dataset. As the (0,0) data zone shows a lot of fluctuations, a lower fitting 

percentage using data00_val is expected. Figure (3.15) shows the cross-validation performances 

for the best candidates. Transfer functions of these two models are shown in Table (3.4) and are 

considered for the primary data-driven controller investigation. 
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Figure 0.15: Cross-validation performances for the best candidates. 
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Table 0.4 : Best performed models. 

Transfe

r 

functio

n name 

Fit to 

estimatio

n 

Transfer function FPE MSE 

tf051 24.51% 
 

1.44e1

4 

1.39e1

4 

tf71 42.51%  9.75e1

0 

9.37e1

0 
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Chapter 04: Simulation 

 

4.1 Stability, Observability & Controllability Analysis 

 

A system is said to be stable if it produces a bounded output for a bounded input (Astrom, 

1995). This is an important criterion for regulator design as it allows the system to reach and stay 

at the steady-state value. For a system to be stable, the poles of the transfer function should 

remain in the left half s-plane. All the control schemes in this work, are designed based on three 

open-loop systems. The first one is the first principle model which has a transfer function with 

seven poles and one zero. The other two open-loop systems are the transfer function models 

identified from the system identification experiment. All these systems have poles with negative 

real parts, which makes all of them stable. The pole zero plots for these systems are shown in 

Figure (4.1) and (4.2). In these figures, poles and zeros are referred by crosses and circles, 

respectively. 
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Figure 0.1 : Pole-Zero map for the Simulink/CEFAS model. 
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Figure 0.2 : Pole-Zero map for identified CEFAS models. 

If a system is controllable, then there exists a control input that can drive the system to 

any desired state in a finite amount of time (Weiss, 2010). Moreover, the closed-loop poles of the 

system can be placed arbitrarily anywhere by altering the gain matrix. If a system is not 

controllable, then it is not possible to design a controller to regulate that system. On the other 

hand, a system is called to be observable if the initial states of that system can be determined by 

observing the output of the system in a finite amount of time. If a system is not observable, then 

designing a full-state feedback controller is impossible.  
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A quick check to determine if a system is controllable and observable is to see the rank of 

the controllability and the observability matrices, respectively. If both matrices are full rank, then 

the system is both controllable and observable. However, this technique fails to identify the 

uncontrollable or unobservable states. To identify the uncontrollable or unobservable states, the 

invariant subspace method can be used. This method also provides the information on which 

states are more controllable or observable than others. All the three considered models are 

checked for controllability and observability. The models identified from the system 

identification experiment are both controllable and observable. However, although controllable, 

the model derived using first principle method lacks observability.  

 

4.2 PID Controller Design 

 

A PID controller is designed to regulate the plant by utilizing the first principle method. 

The following is a description of developing the corresponding Simulink model and is depicted 

in Figure (4.3). A voltage limiter block is added before the linear actuator block to keep the PID 

control signal within the +/- 10V range. To restrict the linear actuator movement within its 0-6 

inches range, a position limiter block is added. The movement of the actuator subtracts from the 

entry sample thickness to generate the final thickness of the sintered material. The LA block 

represents the linear actuator while the static system block represents the hot rolling model. The 

step response of the closed-loop system is shown in Figure (4.4). 
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Figure 0.3: Simulink block diagram for PID controller. 

 

Figure 0.4: Step response of the closed-loop system. 

The parameters for the PID controller are tuned using the MATLAB/PID Tuner app. 

Benefits of using the PID Tuner app is that it always returns a stable controller, even if some 
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gains are negative. As long as the numerator coefficients of the PID controller transfer function 

are positive, a negative gain will yield a stable controller. The controller parameters along with 

the performance and robustness information for the designed PID controller are listed in 

Appendix A. 

A PID control scheme is also developed for the other two transfer function models i.e. 

Table (3.4). Figure (4.5) shows the closed-loop system for both of the models. For tf051, there is 

no derivative term, therefore, it is a PI controller. However, the closed-loop step response for 

tf051 is unstable and shown in Figure (4.6). On the other hand, Figure (4.7) shows the closed-

loop step response for tf71 with a tuned PID controller. Although this is a stable response, the 

settling time implies the sluggishness of the system. The details of the parameters of the 

controllers can be found in Appendix A. 

 

Figure 0.5: PID control scheme for the transfer function models. 
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Figure 0.6: Closed-loop step response for tf051 using PI controller. 
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Figure 0.7: Closed-loop step response for tf71 using PID controller. 

 

4.3 LQG Controller Design 

 

For the CEFAS/hot rolling model, all the initial states are not fully observable from the 

measured output. Therefore, a full-state feedback controller such as LQG is not applicable for 

this design. However, the other two transfer function models have full observability. Hence, it is 

possible to design a full-state observer such as a Kalman filter to estimate the unmeasured states 

and a full-state feedback regulator such as LQR. This is known as the separation principle which 

states that the state estimator and the state feedback can be designed independently and 



47 

 

combined to build an LQG. The Q and R matrices are designed such that the actuator effort is 

reduced while critical state errors get penalized heavily. Figure (4.8) shows the general LQG 

control scheme for both transfer function models where the Kalman filter block estimates all the 

states and the LQR gain acts as the full-state feedback regulator. Parameters and details of the 

design can be found in Appendix A. 

 

Figure 0.8: LQG control scheme for fully observable systems. 

Closed-loop responses for both tf71 and tf51 are shown in Figure (4.9) and (4.10), 

respectively. Although the PI controller can’t produce a stable response for the tf51 model, LQG 

is able to stabilize it. However, there is a steady-state error, which will be discussed later. 
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Figure 0.9: Closed-loop step response for tf71 using LQG controller. 
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Figure 0.10: Closed-loop step response for tf51 using LQG controller. 

 

4.4 Reinforcement Learning Controller Design 

 

MATLAB/Reinforcement Learning Toolbox® is utilized to develop a RL algorithm with 

DDPG agent to regulate the considered models. For the environment, CEFAS/hot rolling and the 

two identified models are used. To train the DDPG agent, it is required to define action and 

observation objects. The action signal for this RL algorithm is voltage. Three observations are 

defined for this environment which includes error, pressure, and integrated error. The error signal 

is the difference between the output pressure and the desired pressure. The bounds for the 
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observations are also defined. Next, a scalar reward signal is created which is shown in Equation 

(4.1). 

 

 

4.1 

Here, a, b, c, d, e, f, g, k, and h are positive numbers. These values can be tuned 

depending on the learning progress of the DDPG agent. The first part of the reward function 

punishes and rewards the error using a and b. The second part rewards or punishes the rate of 

change of pressure using c and e. The third part punishes the cumulative error by tuning h. The 

final part implements a large reward penalty if the pressure is outside the f to g range. A 

termination signal is designed when the output is out of bounds. To randomize the reference 

signal, a custom reset function is created. Figure (4.11) shows the designed RL control scheme 

for the CEFAS/hot rolling system. The observation block in the figure feeds the three 

observations to the DDPG agent. The reward calculation block calculates the reward based on 

the action taken and informs the DDPG agent. The termination block terminates the episode 

when the output goes out of bound. A gain block is added after the environment to scale down 

the output.  
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Figure 0.11: RL control scheme for the CEFAS/hot rolling system. 

The actor network is a deep neural network with one input, one output and three fully 

connected layers. The input is the observation, and the output is the action taken. On the other 

hand, the critic network has is a deep neural network which takes the action and the observation 

as inputs and one output that updates the actor network.  The configuration of the critic network 

used in the DDPG agent is shown in Figure (4.12). 
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Figure 0.12: Configuration of the critic network. 

A complete sequence of states, actions and rewards is known as one episode. An episode 

terminates either by the termination signal or by reaching the maximum steps. The simulation 

time is selected as 200 seconds with a sampling time of 0.1 second. Therefore, maximum step 

size for an episode is 2000. The training process also gets terminated once the average episode 

reward reaches a value of 15000. The performance and evolution of the RL controller is 

discussed in the next chapter. 
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Chapter 05: Discussion & Conclusion 

 

5.1 System Modeling Analysis 

 

The CEFAS/hot rolling system modeled using the first principle method is a stable 

system with seven poles and one zero. However, the transfer function of the system in Equation 

(5.1) shows some coefficients with enormous values. Investigating the model implies that the 

values of the damping coefficient, motor inertia and stiffness, screw damping and stiffness are 

the primary reason behind this large magnitude. Furthermore, it is possible to obtain a lower 

order system by factoring out the larger coefficients from the numerator and denominator. 

 
 

5.1 

 

To validate this hypothesis, an experiment using MATLAB/SystemID Toolbox is 

performed. This experiment involves generating pressure data using a PRBS input through the 

CEFAS/hot rolling model. For validation data, two different datasets are generated using the 

following inputs- 

• 12 random sinusoids are added together to generate a periodic input. 

• A random binary signal with the range of (-1,1) is used to generate a non-periodic input. 

The result from this experiment indicates that a lower order system with two poles and one zero 

(tf21_sys) performs best while a model with seven poles and one zero (tf71_LA) fails to capture 

the system behavior. The transfer functions of these two models are shown in Table (5.1). The 
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fitting percentage indicates the similarity between the model response and the measured output. 

A 100% fitting percentage means a perfect fit, and zero percent indicates a poor fit. A 

performance comparison between tf21_sys and tf71_LA is shown in Figure (5.1).  

Table 0.1: Transfer functions of the selected models. 

Model name Fitting % 

(Periodic 

data) 

Fitting % 

(Non-

periodic 

data) 

Transfer function 

tf21_sys 61.75 39.93 
 

tf71_LA 11.51 19.76  



55 

 

 

Figure 0.1: Performance analysis between two models. 

 

5.2 Performance Analysis of Traditional Controllers 

 

To investigate the close-loop performance of the considered models, PID controllers have 

been implemented. Table (5.2) represents the parameters and performance analysis of the PID 

controllers.  
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Table 0.2: PID parameters and performance analysis. 

Model Kp Ki Kd N Rise 

time(s

ec) 

Settling 

time(sec) 

Overshoot Closed-

loop 

stability 

CEFAS/hot 

rolling 

6.6e-6 3e-5 1e-8 2896 0.03 0.52 14.7% Stable 

tf71 -2.3e-7 -2.2e-9 -1.3e-6 1 153 566 7.06% Stable 

tf051 -8.8e-9 -1.9e-

10 

0 0 NaN NaN NaN Unstable 

tf21_sys 1.6e-7 3.2e-8 -6.1e-8 1 1.45 12.4 13.5% Stable 

 

Although the PID controller performed well to regulate the CEFAS/hot rolling model, the 

two identified models are not well suited to control with PID controllers. The PID controller 

designed for the tf71 model can reach the steady-state. However, the settling time is relatively 

large and there are oscillations present in the steady-state response. The impulse response of this 

system is plotted in Figure (5.2) and shows similar type of behavior. The oscillations are 

happening since five poles of this system are close to the imaginary axis. This can make a system 

marginally stable. For the tf051 model, although the open-loop system is stable, it doesn’t have 

any closed-loop stability. The designed PI controller fails to control the plant.   
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Figure 0.2: Impulse response for identified models. 

The closed-loop stability of tf051 is further investigated using the root-locus method and 

the Nyquist plot. Figure (5.3) shows the root-locus and the Nyquist plot for the tf051 model. This 

model has two poles which are close to the imaginary axis. From the root locus plot it is 

noticeable that a small gain change can make the system unstable. Furthermore, this system is 

non-minimum phase as it has a pole on the right half s-plane. For a non-minimum phase system 

which is open-loop stable, a Bode plot can be misleading for closed-loop stability analysis. 

Instead of a Bode plot, a Nyquist plot is preferred (Fan & Miao, 2020) for a non-minimum phase 

system. A non-minimum phase and open-loop stable system is also closed-loop stable if the 
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Nyquist curve doesn’t cross the critical point in the Nyquist plot. For tf051, the Nyquist plot 

shows that the Nyquist curve crosses the (0,0) critical point which makes it closed-loop unstable. 

 

Figure 0.3: Stability investigation for tf051 model. 

As the PID control scheme fails to properly regulate the identified models, other control 

schemes are explored. LQG is an optimal policy that optimizes the cost function of a full-state 

feedback controller. However, it requires full observability and controllability of the models. 

Among the considered models, the CEFAS/hot rolling model lacks observability. However, the 

identified models have full observability and controllability. Therefore, for the identified models, 

LQG controllers are studied. Figure (4.9) and (4.10) show the step responses for the designed 
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LQG regulated models. LQG is able to control both these models, however, for both cases there 

are some additional phase lags. The right half s-plane zero of the nonminimum phase system 

causes the step response to dip in the wrong direction first before recovering back to the steady 

state value. Nonminimum phase systems are susceptible to gain increment and experience lower 

phase margin due to additional phase lags. Therefore, nonminimum phase systems are harder to 

control. On the other hand, the steady-state error of the step response can be eliminated by tuning 

the Q and R matrices.  

 

5.3 Evolution of RL controller 

 

The most crucial part of designing an RL controller is to shape the reward function. The 

reward function should be optimized in such a way that will help the policy to get gradual 

feedback to get to the steady-state. For the CEFAS/hot rolling model, at first, a reward function 

that rewards when the error is within 30% is developed which punishes otherwise. Furthermore, 

a large reward penalty adds whenever an episode terminates due to out of bound output. The 

termination signal activates when output pressure exceeds the 0 to 100MPa limit.  These 

conditions terminate every episode almost immediately. The cause of this is that the termination 

condition is not allowing the agent to explore the negative region of the action field. As from the 

previous analyses, it is evident that the identified models for CEFAS/hot rolling system are 

nonminimum phase systems which forces the step response to dip in the wrong direction first.  

An RL controller trained with a negative bound may cause problems if implemented. 

However, the goal of this study is to show that an RL algorithm can capture the system response 
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behavior. Further exploration of RL controller with models that closely represent the real system 

will yield better results. To allow more exploration area to the agent, the termination limits are 

changed to -50 to 150MPa. In this case, for the first few episodes the response plummets. 

However, after some time the agent adopts to the nonminimum phase behavior of the response 

and tries to go upwards after a dip. Figure (5.4) shows how the RL agent adopts with the 

nonminimum phase behavior of the system. From the figure, it is apparent that the slope of the 

response is too steep which restricts the agent from exploring more action area and leads to 

termination. 

 

Figure 0.4: RL agent learns nonminimum phase behavior. 

One way to solve the steep slope problem is to punish the agent whenever the slope of the 

output crosses a certain threshold. By tuning this threshold value d, the agent can be forced to 

learn to rise or fall slowly. Whenever the rate of change of pressure is below the threshold value 

a positive reward is generated. However, if this positive reward is large, then the agent tends to 
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go slower rather than exploring more action space. Therefore, the value of e is kept much lower 

than the value of c. Figure (5.5) shows how the DDPG agent learnt to avoid steep rate of change 

of pressure.  

 

Figure 0.5: RL agent learns to avoid steep slope. 

Although the response tends to behave slower, it fluctuates all over the action space. A 

term to punish the integral of error is added to reduce this fluctuation. The cumulative error will 

be multiplied by h and will generate a negative reward. However, this error term can get really 

large if an episode runs for several steps. To limit the negative reward, a threshold is added. 

Figure (5.6) shows the response after implementing this reward function.  

 

Figure 0.6: RL agent performance using the complete reward function. 



62 

 

 

5.4 Conclusion 

 

This thesis presents the modeling and control scheme for the CEFAS/hot rolling system. 

Models are developed for this system using the first principle method and data driven techniques. 

Traditional control techniques such as PID and LQG are designed for the models while the 

possibility of introducing RL controllers are studied. Many questions are, however, still 

unanswered on several issues. For instance, the appearance of negative pressure on the sintered 

material during the absence of linear actuator movement. A hypothesis to explain this 

phenomenon is the expansion of the sintered material due to elasticity. Another interesting 

question is to ask the reason for such large fictional output pressure values. A possible answer 

could be the absence of friction and joule heating phenomenon in the COMSOL model. 

The models identified here are the best linear representation of a highly nonlinear system. 

The primary reason to introduce RL in this work is to capture the non-linear behavior of the 

system and the initiation of an intelligent control scheme. Although traditional control schemes 

are effective and cost-efficient as primary controllers, RL is an online learning algorithm that can 

modify itself capturing any future disturbances. Benefits of training the RL agent in offline mode 

is that it doesn’t have to start from the scratch when deployed to the real system. Therefore, the 

current reinforcement learning control scheme is a small step towards an intelligent control 

scheme.   
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5.5 Future Research Opportunities 

 

CEFAS is a novel idea for manufacturing highly dense materials. Several opportunities 

exist for further explorations and improvements of the work presented here. The majority of the 

models used in this work are identified from the first batch of INL data generated using a 

COMSOL model. This approach only considers the variation of linear actuator movements and 

the resulting pressure. It will be interesting to see how this model alters considering rolling speed 

and joule heating as variable parameters. Besides, nonlinear system identification techniques can 

also be utilized. Another intriguing area for future research would be implementing a primary 

control scheme on the real system, allowing the opportunity to collect real time data that will 

eventually help to design a better controller. Models developed from later data can be used to 

train the RL controller. 

Control schemes designed in this work do not address any robustness. LQG is an optimal 

controller explored for the nonminimum phase models does not guarantee robustness. A small 

perturbation can make it unstable. Therefore, robust PID and LQG controllers for primary 

implementation in the real system can be studied in future.  
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Appendix A: Simulink Design 
 

This appendix details the Simulink designs studied in this work. 

A.1 Hot Rolling System 

 

 

 

 



73 

 

 

 

 

 



74 

 

 

 

 

 

A.2 Linear Actuator Model 
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A.3 PID Parameters (General tuning window) 
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A.4 LQG Regulator Design 
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A.5 Reinforcement Learning Blocks 
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Appendix B: MATLAB Scripts 
 

B.1 Scripts for Linear actuator & Hot Roll Press control  

 

% Run this before running the Simulink model 

%% Linear actuator model parameters  

La = 6.4e-3; % Windings inductance in Henry 

Arm_resistance = 2.2;  % Motor resistance in Ohm 

Damp = 8e-5; % Damping coefficient in Nm/rads-1 

J = 5.3e-5; % Motor inertia in kgm2 

Ke = 0.121; % Voltage constant in V/rads-1 

Kt = 0.121; % Torque constant in Nm/A 

Km = 1e7; % Motor Stiffness in N/m 

Ks = 1.8e5; % Screw Stiffness in N/m 

lead_value = 2.4e-3; % in m/rev 

M_load = 2000; % Load mass in Kg  

M_scr = 2; % Screw mass in Kg  

C_scr = 1.2e3; % Screw damping in N/ms-1 

h = lead_value/(2*pi); % Calculate h 

 

% State-space model for a 7*7 system 

Ala = [(-Arm_resistance/La) (-Ke/La)   0                  0            0                  0           0; 

     (Kt/J)                 (-Damp/J)     (-(h^2*Km)/J)      0            ((h*Km)/J)         0           0; 

     0                      1          0                  0            0                  0           0; 

     0                      0          (h*Km)/M_scr     (-C_scr/M_scr) -(Ks+Km)/M_scr   

C_scr/M_scr   Ks/M_scr; 

     0                      0          0                  1            0                  0           0; 

     0                      0          0                  C_scr/M_load     Ks/M_load         -(C_scr/M_load) 

-(Ks/M_load); 

     0                      0          0                  0            0                  1           0] 

Bla = [1/La; 0; 0; 0; 0; 0; 0]; 

Cla = [0 0 0 0 0 0 1]; 

Dla = zeros(size(Cla,1),size(Bla,2)); 

 

% State space, transfer function and pole zero plot 

sys = ss(Ala,Bla,Cla,0); 

G_tf = tf(sys) 

num = cell2mat(G_tf.numerator); 

den = cell2mat(G_tf.denominator); 

[z,p,k] = tf2zp(num,den) 

pzplot(G_tf,'g') 

title('Pole Zero plot for Simulink/CEFAS model ') 

 

 

% Linear Actuator state space model for 5*5 reduced system 

Anew = [(-Arm_resistance/La) 0           (-Ke/La)                0         0; 
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            0                0              1                    0         0; 

          (Kt/J)            (-(h^2*Ks)/J) -(Damp+C_scr*h^2)/J  Ks*h/J     C_scr*h/J; 

          0                 0               0                     0        1; 

          0              Ks*h/M_load      C_scr*h/M_load       -Ks/M_load  -C_scr/M_load]; 

Bnew = [1/La; 0; 0; 0; 0]; 

Cnew = [0 0 0 1 0]; 

 

%% Controbality and Observability 

 

[v_Ala, d_Ala] = eig(Ala); 

Controlability_check = inv(v_Ala)*Bla 

Observability_check =  Cla*v_Ala 

 

%% Minimum Realization 

sysr = minreal(sys); 

sys_tf = minreal(G); 

 

% Load lineareized plant from PID app 

load('New_plant.mat') 

 

%% Static model (hot rolling) parameters 

he = 0.5; %thickness at entry in m 

%hf = 0.5; %thickness at exit in mm 

R = 0.1778; %Roller outer radius in m 

% phi = 50*2*pi/360; % angle in radians 

mu = 0.3; % constant 

% L = 0.010; % workplace length in m 

wo = 0.127;% initial width in m 

wf = 0.180;% we need to compute this with the densinfication factor 

% the initial height, and the initial width and final height3000; % final width in m 

w = (wo + wf)/2; % average width 

rpm = 1;  

omega = 2*pi*rpm; 

k = 500e6; % Strengthning coefficient 

n = 0.25; % Work hardning exponent 

 

%% Equations 

% phi = (acosd(1-(he-hf)/(2*R))*2*pi)/360; 

% L = R*phi 

% eps = ln(he/hf); 

% H = 2*sqrt(R/hf)* atand(sqrt(R/hf)*phi); 

% have = hf + 2*R*(1-cos(phi)); 

% Yf = k * (eps/(n+1)); 
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B.2 Script for LQG control  

 

n_state = 5; % no. of states 

n_input = 1; % no. of input 

n_output = 1; % no. of output 

% Define and create state-space system/transfer function 

A_plant = A051; 

B_plant = B051; 

C_plant = C051; 

D_plant = D051; 

H_lqg = ss(A_plant,B_plant,C_plant,D_plant); 

  

G_lqg = tf(H_lqg); 

p = size(C_plant,1); 

[n,m] = size(B_plant); 

 

Q_lqr=eye(5); 

Q_lqr(5,5) = 100; 

Q_lqr(4,4) = 50; % Q penalizes state errors 

R_lqr = 50; % R penalizes actuator effort 

K_lqr = lqr(A_plant,B_plant,Q_lqr,R_lqr);   %LQR gain 

Bnoise = eye(n); 

Vd = eye(n); % Disturbance covariance 

Vn = 0.01*eye(m); % Noise covariance 

sysKF=ss(A_plant,[B_plant Bnoise],C_plant,[0 0 0 0 0 0]);  

[Kess,Ke]=kalman(sysKF,Vd,Vn);   % Design kalman filter  

 

 

 

B.3 Script to generate PRBS input & validation dataset 

 

F = 1/0.1;  % Frequency of each element generated by PRBS method. 

Timestep = 1/F;  % Interval in sec. 

Duration = 100;  % Duration in sec. 

Ts = 0.7;  % Settling time for linear actuator 

N = ceil(Duration/Timestep)+1;  % Total number of samples. 

B = Timestep/(Ts*0.2);  % 1/B is minimum number of samples assigned to per PRBS 

element  

% 20% of the settling time 

dt = 1/F;  % Time stamp for each sample in sec.  

Range = [-10 10]; 

S_N= 3*(Ts/Timestep);  % 3 times the settling sample  

Band = [1/S_N  B];  % [0 B]; idinput takes floor(B) 

channel=1; 

 

% Generate input 
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u_input = ones(N,channel).*idinput(N, 'prbs', Band, Range); % Empty output/Binary 

hence [0,1] 

data00 = iddata([], u_input, dt); 

u_in = data00.u(:,1); 

iter = size(u_in); 

u_in_re = zeros(iter(1),1); 

for n = 1:iter(1) % flipping the original sequence to get valid output from Linear actuator 

    if u_in(n,1) == -10 

        u_in_re(n,1) = +10; 

    else 

        u_in_re(n,1) = -10; 

    end 

end 

 

time = Timestep*(0:Duration/Timestep)'; % timestep data to import in simulink 

tt = timetable(seconds(time), u_in_re); % timetable data to import in simulink inport 

 

figure() 

subplot(2,1,1) 

plot(u_input,'b'); 

title('PRBS data'); 

ylabel('Amplitude (V)') 

subplot(2,1,2) 

plot(time,out.simout) 

title('Output from LA model') 

axis([0 100 -.02 0.15]) 

xlabel('Time (sec)') 

ylabel('Movement (meter)') 

grid on; 

 

figure() 

plot(time,out.simout) 

title('Output from LA model') 

axis([0 100 -.02 0.15]) 

xlabel('Time (sec)') 

ylabel('Movement (meter)') 

 

data_fullSimmodel = iddata(out.simout,u_input, dt); 

 

data_mat = [time,out.simout] 

 

%% Validation Data 01 

Period_01 = 500; 

NumPeriod_01 = 2; 

Range_val = [-10 10]; 

Band_val = [0 1]; 
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NumSinusoids = 12; 

NumTrials = 15; 

GridSkip = 2; 

SineData = [NumSinusoids,NumTrials,GridSkip]; 

u_val_01 = idinput([Period_01 1 NumPeriod_01],'sine',Band_val,Range_val,SineData) 

plot(u_val_01) 

time_val_01 = Timestep*(1:Duration/Timestep)'; % timestep data to import in simulink 

tt_val_01 = timetable(seconds(time_val_01), u_val_01); 

out_val_01 = out.simout_val(2:1001); 

val_data_01 = iddata(out_val_01,u_val_01, dt) 

 

%% Validation Data 02 

 

NumChannel = 1; 

Period_02 = 50; 

NumPeriod_02 = 20; 

u_val_02 = idinput([Period_02,channel,NumPeriod_02],'rgs'); 

tt_val_02 = timetable(seconds(time_val_01), u_val_02); 

out_val_02 = out.simout_val_02(2:1001); 

val_data_02 = iddata(out_val_02,u_val_02, dt) 

Num = 1000; 

u_val_02 = idinput(Num); 

val_data_02 = iddata(out.simout_val_02(2:1001),u_val_02,0.1); 

tt_val_02 = timetable(seconds(time_val_01), u_val_02); 

plot(u_val_02) 

 

 

 

B.4 Data preprocessing 

data_INL = readtable("act_data01.xlsx"); 

load('u_input.mat'); 

data_INL01 = table2array(data_INL); 

column02 = data_INL01(:,2); 

column03_00 = data_INL01(:,3); 

press01 = []; 

press02 = []; 

 

%% Converting negative pressures to zero pressure 

% @(0,0) point 

for n = 1:1001 

    if column03_00(n,1) >= 0 

        press02(n,1) = column03_00(n,1); 

    else 

        press02(n,1) = 0; 
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    end 

end 

 

% @(0,-1.25) point 

 for n = 1:1001 

    if column02(n,1) >= 0 

        press01(n,1) = column02(n,1); 

    else 

        press01(n,1) = 0; 

    end 

end 

 

%% Plotting actual pressures at experiment points 

figure() 

subplot(311) 

plot((data_INL01(:,4))) 

xlabel('Sample') 

grid on 

ylabel('LA movement(m)') 

subplot(312) 

plot((data_INL01(:,2))) 

xlabel('Sample') 

ylabel('Pressure @(-1.25,0) (Pa)') 

grid on 

subplot(313) 

plot((data_INL01(:,3))) 

xlabel('Sample') 

ylabel('Pressure @(0,0) (Pa)') 

grid on 

 

%% Generating testing and training data 

p125_test_data = (press01(1:801,1)); 

p125_val_data = (press01(802:1001,1)); 

p125_val_data_trim = (press01(802:961,1)); 

 

p00_test_data = press02(1:801,1); 

p00_val_data = press02(802:1001,1); 

 

time_test = data_INL01(1:801,1); 

time_val = data_INL01(802:1001,1); 

 

input_test = u_input(1:801); 

input_val = u_input(802:1001); 

input_val_trim = u_input(802:961); 

 

data_test = iddata(p125_test_data,input_test,0.1); 
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data_val = iddata(p125_val_data,input_val,0.1); 

data_val_trim = iddata(p125_val_data_trim,input_val_trim,0.1); 

 

data00_test = iddata(p00_test_data,input_test,0.1); 

data00_val = iddata(p00_val_data,input_val,0.1); 

 

 

 

B.5 Script for SystemID experiments and plottings 

%% Plots for sysID on INL data 

Options = tfestOptions;                

Options.EnforceStability = true;       

                                        

tf71 = tfest(data_test, 7, 1, Options); 

tf11 = tfest(data_test, 1, 1, Options); 

tf43 = tfest(data_test, 4, 3, Options); 

tf73 = tfest(data_test, 7, 3, Options); 

tf41 = tfest(data_test, 4, 1, Options); 

tf51 = tfest(data_test, 5, 1, Options); 

 

figure() 

compare(data_val,tf71,'r',tf43,'b',tf73,'g',tf11,'y',tf51,'m',tf41,'c') 

ylabel('Pressure (Pa)') 

xlabel('Time') 

grid on 

 

tf071 = tfest(data00_test, 7, 1, Options); 

tf043 = tfest(data00_test, 4, 3, Options); 

tf011 = tfest(data00_test, 1, 1, Options); 

tf051 = tfest(data00_test, 5, 1, Options); 

 

figure() 

compare(data00_val, tf043,'c',tf051,'g',tf011,'r',tf071, 'b') 

ylabel('Pressure (Pa)') 

xlabel('Time') 

grid on 

 

figure() 

subplot(2,1,1) 

compare(data_val,tf71,'r',tf051,'b') 

ylabel('Pressure (Pa)') 

xlabel('Time') 

title('Validation using data__val') 

grid on 
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subplot(2,1,2) 

compare(data00_val, tf71,'r',tf051,'b') 

ylabel('Pressure (Pa)') 

xlabel('Time') 

title('Validation using data00__val') 

grid on 

 

%% Step response plotting 

plot(out.step, 'linewidth',1) 

hold on 

plot(out.pidla) 

xlabel('Time (sec)') 

ylabel('Pressure (Pa)') 

legend('Step value','Closed-loop response') 

title('CEFAS/hot rolling model') 

grid on 

 

plot(steplqg,'linewidth',1) 

hold on 

plot(tf051lqg) 

xlabel('Time (sec)') 

ylabel('Pressure (Pa)') 

legend('Step value','Closed-loop response') 

title('tf051') 

grid on 

 

 

%% SystemID TF with pressure modification 

load TF_mod_cv.mat 

num_71_mod = -tf71.Numerator 

den_71_mod = tf71.Denominator 

 

num_51_mod = -tf051.Numerator 

den_51_mod = tf051.Denominator 

 

%% Check poles and zeros for tf051 and tf71 

[z71,p71,k71] = tf2zp(num_71_mod,den_71_mod) 

[z051,p051,k051] = tf2zp(num_51_mod,den_51_mod) 

 

% Convert to state-space 

[A71,B71,C71,D71] = tf2ss(num_71_mod,den_71_mod) 

sys71 = ss(A71,B71,C71,D71); 

 

o71 = rank(obsv(A71,C71)) 

r71 = rank(ctrb(A71,B71)) 
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% % Invariant subspace for ctrb and obsv check 

% [v71,d71] = eig(A71); 

% inv(v71)*B71 

% C71*v71 

 

[A051,B051,C051,D051] = tf2ss(num_51_mod,den_51_mod) 

sys051 = ss(A051,B051,C051,D051); 

o51 = rank(obsv(A051,C051)) 

r51 = rank(ctrb(A051,B051)) 

 

figure() 

subplot(2,1,1) 

pzplot(tf71,'r') 

title('Pole Zero plot for tf71') 

subplot(2,1,2) 

pzplot(tf051,'b') 

title('Pole Zero plot for tf051') 

 

%% Impulse response for tf051 and tf71 

figure() 

subplot(211) 

impulse(sys71) 

ylabel('Pressure (Pa)') 

title('Impulse response for tf71') 

grid on 

subplot(212) 

impulse(sys051) 

ylabel('Pressure (Pa)') 

title('Impulse response for tf051') 

grid on 

 

%% CEFAS/hot rolling model reduction 

figure() 

subplot(2,1,1) 

compare(val_data_01,tf21_sys,'b',tf71_LA,'r') 

ylabel('Pressure (Pa)') 

xlabel('Time') 

title('Validation using periodic data') 

grid on 

 

subplot(2,1,2) 

compare(val_data_02,tf21_sys,'b',tf71_LA,'r') 

ylabel('Pressure (Pa)') 

xlabel('Time') 

title('Validation using nonperiodic data') 
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grid on 

 

%% Nyquist and root-locus 

figure() 

subplot(211) 

rlocus(tf051) 

subplot(212) 

nyquist(tf051) 

grid on 

 

 

 

B.6 Script for Reinforcement Learning 

% load('TF_mod_cv.mat') 

num_71 = tf71.Numerator; 

den_71 = tf71.Denominator; 

num_051 = tf051.Numerator; 

den_051 = tf051.Denominator; 

 

%% Environment interface for CEFAS Roller 

% Define the observation specification obsInfo and action specification actInfo 

 

obsInfo = rlNumericSpec([3 1],... 

    'LowerLimit',[-inf -inf 0  ]',... 

    'UpperLimit',[ inf  inf inf]'); 

obsInfo.Name = 'observations'; 

obsInfo.Description = 'integrated error, error, and measured voltage'; 

numObservations = obsInfo.Dimension(1); 

actInfo = rlNumericSpec([1 1]); 

actInfo.Name = 'voltage'; 

numActions = actInfo.Dimension(1); 

 

%% Build the environment interface object 

env = rlSimulinkEnv('RL_roller_2020','RL_roller_2020/RL Agent',... 

    obsInfo,actInfo); 

 

%% Set a custom reset function that randomizes the reference values for the model 

env.ResetFcn = @(in)localResetFcn(in); 

 

%% Specify the simulation time Tf and the agent sample time Ts in seconds. 

Ts = 0.1; 

Tf = 200; 

 

%% Fix the random generator seed for reproducibility. 

rng(0) 
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%% create the critic 

% create a deep neural network with two inputs, the observation and action, and one 

output 

statePath = [ 

    featureInputLayer(numObservations,'Normalization','none','Name','State') 

    fullyConnectedLayer(50,'Name','CriticStateFC1') 

    reluLayer('Name','CriticRelu1') 

    fullyConnectedLayer(25,'Name','CriticStateFC2')]; 

actionPath = [ 

    featureInputLayer(numActions,'Normalization','none','Name','Action') 

    fullyConnectedLayer(25,'Name','CriticActionFC1')]; 

commonPath = [ 

    additionLayer(2,'Name','add') 

    reluLayer('Name','CriticCommonRelu') 

    fullyConnectedLayer(1,'Name','CriticOutput')]; 

criticNetwork = layerGraph(); 

criticNetwork = addLayers(criticNetwork,statePath); 

criticNetwork = addLayers(criticNetwork,actionPath); 

criticNetwork = addLayers(criticNetwork,commonPath); 

criticNetwork = connectLayers(criticNetwork,'CriticStateFC2','add/in1'); 

criticNetwork = connectLayers(criticNetwork,'CriticActionFC1','add/in2'); 

 

%View the critic network configuration. 

% figure 

% plot(criticNetwork) 

 

%Specify options for the critic representation using rlRepresentationOptions 

criticOpts = rlRepresentationOptions('LearnRate',1e-1,'GradientThreshold',1); 

 

%Create the critic representation using the specified deep neural network and options. 

critic = 

rlQValueRepresentation(criticNetwork,obsInfo,actInfo,'Observation',{'State'},'Action',{'Action'},

criticOpts); 

 

% Construct the actor in a similar manner to the critic. 

% To create the actor, first create a deep neural network with one input, the observation, 

and one output, the action 

 

actorNetwork = [ 

    featureInputLayer(numObservations,'Normalization','none','Name','State') 

    fullyConnectedLayer(3, 'Name','actorFC') 

    tanhLayer('Name','actorTanh') 

    fullyConnectedLayer(numActions,'Name','Action') 

    ]; 

actorOptions = rlRepresentationOptions('LearnRate',1e-1,'GradientThreshold',1); 
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actor = 

rlDeterministicActorRepresentation(actorNetwork,obsInfo,actInfo,'Observation',{'State'},'Action'

,{'Action'},actorOptions); 

 

%To create the DDPG agent, first specify the DDPG agent options using 

rlDDPGAgentOptions. 

 

agentOpts = rlDDPGAgentOptions(... 

    'SampleTime',Ts,... 

    'TargetSmoothFactor',1e-3,... 

    'DiscountFactor',1.0, ... 

    'MiniBatchSize',64, ... 

    'ExperienceBufferLength',1e6);  

 

%Then, create the DDPG agent using the specified actor representation, critic 

representation, and agent options 

agent = rlDDPGAgent(actor,critic,agentOpts); 

 

%% Train Agent 

maxepisodes = 5000; 

maxsteps = ceil(Tf/Ts); 

trainOpts = rlTrainingOptions(... 

    'MaxEpisodes',maxepisodes, ... 

    'MaxStepsPerEpisode',maxsteps, ... 

    'ScoreAveragingWindowLength',20, ... 

    'Verbose',false, ... 

    'Plots','training-progress',... 

    'StopTrainingCriteria','AverageReward',... 

    'StopTrainingValue',8000); 

load('agent.mat','agent') 

doTraining = true; 

 

if doTraining 

    % Train the agent. 

    trainingStats = train(agent,env,trainOpts); 

else 

    % Load the pretrained agent for the example. 

    load('LAagent.mat','agent') 

end 

 

simOpts = rlSimulationOptions('MaxSteps',maxsteps,'StopOnError','on'); 

experiences = sim(env,agent,simOpts); 

 

%% Build Custom reset function 

 

function in = localResetFcn(in) 
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% randomize reference pressure 

blk = sprintf('RL_roller_2020/Desired \nPressure Level'); 

h = 20 + 60*rand(1); 

while h <= 20 || h >= 80 

     h = 20 + 60*rand(1); 

end 

in = setBlockParameter(in,blk,'Value',num2str(h)); 

 


