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Examining Columbian Sharp-tailed Grouse Nesting and Brood Rearing Habitat Using Machine 

Learning and Land Use and Land Cover Trends in Southeastern Idaho 

Thesis Abstract -- Idaho State University (2022) 

 
This project found a relationship between Columbian Sharp-tailed Grouse lek counts and the rate 

of change in land cover types and burned area within 4 kilometers of a lek between 1985 and 

2018. A mitigating factor is the presence of Conservation Reserve Program (CRP) within that 

nesting and brood rearing habitat. Geographically Weighted Regression analysis indicates 

reduced lek counts in areas with increased fire area (r2 = 0.944), decreased sagebrush cover (r2 = 

0.949), and low CRP area (r2 = 0.957). Additionally, we surveyed a wildfire impacted CRP field 

using Uncrewed Aerial Systems (UAS) to create a high-resolution vegetation classification map 

to compare with Sentinel-2 multispectral imagery. Support Vector Machines resulted in the best 

classification accuracy across two study fields using UAS (0.798, 0.893) and sentinel (0.454, 

0.439). The UAS habitat survey revealed increased cheatgrass and decreased sage and shrub 

cover in burned areas (+14.4% annuals, -12.6% perennials and shrubs). 

 

 

Keywords: Columbian Sharp-tailed Grouse, habitat mapping, classification, Support Vector 

Machines, Rangeland Shrub Component, wildfire, wildland fire, UAS, Sentinel-2, multispectral, 

photogrammetry, remote sensing, Conservation Reserve Program, Geographically Weighted 

Regression 
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Chapter 1. Introduction 

1.1 Background 

The sagebrush-steppe ecosystem of the Western United States supports a diverse 

community of  plant and animal species (Davies et al., 2011). Currently, the sagebrush-steppe is 

under threat from several anthropogenic pressures. Anthropogenic climate change generally 

contributes to warmer and drier conditions and increasing average wind speed (Fried et al., 

2004). Studies from Idaho National Lab show a  decrease in windspeeds during the spring and 

mixed higher and lower windspeeds during the summer (Buotte et al., 2014). Windspeed has 

direct impact on the size and frequency of wildfires in the western United States (Murphy et al., 

2018; Prudencio et al., 2018; Weber, 2020). Fires negatively affect land cover (Noson et al., 

2006) leading to the spread of invasive plant species such as Cheatgrass (Bromus tectorum) and 

reduce habitat quality (Bradley et al., 2018). Further, fire impacts soil quality, leading to soils 

which have increased erosion as well as debris flows (Meyer and Pierce, 2003, Thomas et al., 

2021). Increased development of agriculture and urbanization impacts local species, and causes 

habitat fragmentation and degradation (Hemstrom et al., 2002). Additionally, human over-

predation on wildlife species reduces biodiversity (Connelly et al., 2000). Loss and degradation 

of habitat space across the Intermountain West has impacted many species of grouse (Swenson et 

al., 1987). A species that relies on the sagebrush steppe ecosystem is the Columbian Sharp-
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Tailed Grouse (CSTG), Tympanuchus phasianellus columbianus, and is the smallest subspecies 

of Sharp-Tailed Grouse (Andersen et al., 2015).   

CSTG are endemic to the sagebrush-steppe of western North America, formerly 

occupying the area from British Columbia to Northern New Mexico, shown in Figure 1 

(Andersen et al., 2015). Idaho Department of Fish and Game (IDFG) estimates 60 – 65% of the 

entire CSTG population resides in Idaho, and because of the reduction in extent, the US Fish and 

Wildlife agency has been petitioned to add CSTG to the endangered species list, twice, in 1995 

and 2004. Ultimately the CSTG 

has not been added to the list. 

Subsequently, CSTG has been 

listed as “critically imperiled” 

in the Idaho Comprehensive 

Wildlife Conservation Strategy 

(Idaho Department of Fish and 

Game, 2017).  

In southeastern Idaho 

the sagebrush steppe includes 

three species of sagebrush: Big 

sagebrush (Artemisia tridentata 

spp., wyomingensis), Dwarf 

sagebrush (Artemisia arbuscula 

ssp. thermopola), and Threetip 

sagebrush (Artemisia 

Figure 1. Historic and Current Range of Columbian Sharp-tailed Grouse 

from Andersen et al., 2015. 
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tripartita); four species of perennial grasses: Fescue-wheatgrass (Festuca-Agropyron), 

Wheatgrass-bluegrass (Agropyron-Poa), Mountain Brome (Bromus marginatus), and Snake 

River Wheatgrass (Elymus wawawaiensis); and additionally, four species of juniper: Ground 

Juniper (Juniperus communis), Rocky Mountain Juniper (Juniperus scopulorum), Utah Juniper 

(Juniperus osteosperma), Western Juniper (Juniperus occidentalis). Changes in climate, land use 

and land cover (LULC), along with wildfire are rapidly altering the characteristics of the 

sagebrush steppe landscape, and data driven decision making is essential for land managers to 

respond with appropriate measures. Disentangling which of the changes in LULC, fire regime, 

and/or climate are most important will allow researchers and land managers to focus time and 

resources on determining characteristics that are understudied relative to their importance.  

To address the loss and fragmentation of habitat and soil cover, the Conservation Reserve 

Program (CRP) began in 1985 with the passing of the 1985 Farm Bill (Food Security Act of 

1985, 1985), and was continued by the Agricultural Improvement Act of 2018 (Robbins, 2014). 

CRP has specific goals that outline reimbursement policies for farmers for short to medium term 

restoration of plants to support the local ecology, using beneficial native and nonnative 

vegetation to maintain soil cover and lower erosion rates (Rodgers and Hoffman, 2005). 

Southeast Idaho, which is predominatly private land holdings, the CRP provides an important 

source of land cover for species like the CSTG. 

The aim of this research is to understand the CSTG lekking population’s response to 

changes in LULC in the counties of Bannock, Oneida, and Power in southeast Idaho. This 

project uses the Multi-Resolution Land Characteristics Consortium’s (MRLCC) Rangeland 

Shrub Component (RSC) data product (Rigge et al., 2020) to examine the spatio-temporal 

changes in vegetation at a regional scale in relation to changing population counts recorded at 
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CSTG leks across southeastern Idaho (n = 318) from 1984-2019 by IDFG. The RSC is a yearly 

percent cover dataset between 1984-2019 at 30 m resolution and represents several layers: shrub, 

herbaceous, bare ground, litter, sagebrush, and annual herbaceous land covers. The first objective 

of this thesis is to determine if the lekking population trend is related to changes in LULC within 

4 km of lek sites and if the amount of CRP lands near leks is influencing the population trends. 

The second objective is a pilot effort to map fine scale CSTG nesting and brooding habitat on 80 

ha of CRP lands located within 4 km of a CSTG lekking site. This effort evaluates and provides 

recommendations for uncrewed aircraft system (UAS) mapping using the Micasense Rededge 

Dual Camera System multispectral sensor for field scale vegetation and habitat mapping. In 

addition, this study evaluates the recovery of a CRP study site that was partially burned in 2014, 

with adjacent unburned area.  
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1.2 Study Areas 

 This thesis examines sagebrush-steppe habitat and lekking locations in three counties of 

southeast Idaho: Bannock, Oneida, and Power. This area is within the northeast ranges of the 

Great Basin physio geographic region and bordered to the north by the Snake River Plain (Figure 

Figure 2. Fire Boundaries and Columbian Sharp-tailed lek locations in Bannock, Power and Oneida counties. 
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2. Fire Boundaries and Columbian Sharp-tailed lek locations in Bannock, Power and Oneida 

counties). Chapter 3 examines CRP area and LULC trends over the time range of 1984 to 2019, 

using the RSC data product (Rigge et al., 2020). This area contains 314 documented CSTG lek 

sites with mean yearly population counts between 1985 and 2019, that corresponds with the 

availability of RSC data. Finally, 968 wildfires were recorded for this area between the period 

from 1939-2018.  

The study area for Chapter 4 represents 160 ha of CRP land over two fields, that offers 

refuge for a nesting and brooding population of CSTG. These fields are located on the eastern 

side of the marsh valley in central Bannock County, and are part of the northeast extent of the 

basin and range. These fields fall within the nesting and brood rearing area for three separate leks 

with mean lek counts between 9 to 14 between 2010 and 2018. Additionally, the Cambridge fire 

burned 17.5 ha along the northeastern quadrant of this area in 2014 (Figure 3).  

1.3 Broader Impacts 

This research is partially funded by, contributes to, and builds upon work by researchers 

in the Genes by Environment, Mapping, Mechanisms, and Modeling (GEM3), Idaho EPSCoR 

program (NSF Award No. OIA-1757324). The GEM3 program funds scientists who seek to 

understand how species adapt to external pressures through mapping and modeling the response 

to the environment, in this case the response in lekking behavior of CSTG to changes in the 

sagebrush steppe environment. Research outcomes from this project will support other GEM3 

projects with the goal of understanding other characteristics of adaptive capacity in the sagebrush 

steppe environment. Further, our study is conducted in collaboration with IDFG and the United 

States Department of Agriculture Farm Service Agency Conservation Reserve Program (CRP), 

to assist in identifying land use change impacting CSTG and the importance of CRP lands in 
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supporting habitat for CSTG nesting and brood rearing. Additionally, this project is partially 

supported through the United States Geological Survey (USGS) AmericaView program to 

promote research and education in remote sensing. 
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Figure 3. Conservation Reserve Program fields near Columbian Sharp-tailed grouse leks and the Cambridge wildfire 

(2014). 
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Chapter 2. Literature Review 

2.1 Columbian Sharp-tailed Grouse Behavior and Habitat 

Columbian sharp-tailed grouse (CSTG) generally subsist on several species of seasonal 

vegetation and insects, including plants native and non-native to the sagebrush steppe 

environment. Mixes of shrubs and forbs offer important habitat for CSTG, with species such as 

snowberry (Symphoricarpos albus), serviceberry (Amelanchier alnifolia), and chokecherry 

(Prunus virginiana) offering forage (Klott and Lindzey, 1990) and forbs to mid-height shrubs 

such as forbs and mid-heigh shrubs such as rabbitbrush (Ericameria nauseosa), antelope 

bitterbrush (Purshia tridentata), sainfoin (Onobrychis arenaria), yellow sweet clover (Melilotus 

officinalis), and also provide useful cover from predators (Davies et al., 2011). In addition to 

vegetation, insects such as Coleoptera, Hymenoptera, and Orthoptera (Giesen and Connelly, 

1993) found in these mixed vegetation communities supplement CSTG diet. Studies of habitat 

impact from the increased presence of cattle are mixed. Marks and Marks (1987)  predict 

increased presence of cattle may cause deteriotion of habitat and a corresponding hit to CSTG 

populations. Recent studies show livestock grazing may improve succession rates of big 

sagebrush in areas which have been replanted post fire (Copeland et al., 2021, Davies et al., 

2020). Other studies show that long term grazing may negatively affect perrinnial native species, 

especially warm season grasses (Porensky et al., 2020). Jones (1966) highlights several segments 

of CSTG diet, specifically noting two instances of non-native vegetation (Dandelion, taraxacum 

officinale; and Cheatgrass, Bromus tectorum) entering the diets of CSTG. Jones measured the 

diets of CSTG comparatively by contrasting vegetation availability with the amount of 

vegetation digested and released in their droppings. The study showed avoidance of cheatgrass 

compared to its availability, and overabundance of common dandelion found in the diet 
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compared to its relative availability, demonstrating plant availability does not necessarily affect 

preference in diet.  

A lek is a relatively flat space, lightly vegetated and generally cleared of major 

obstructions where males of a given species compete for mating rights with females (Marks and 

Marks, 1987). CSTG are considered a “classically lekking species”, in that they generally follow 

the behavioral patterns associated with lekking species. A CSTG generally picks lek locations 

that fall upon ridges or other relatively flat and high places. They prefer locations with a mix of 

shrubs and native grass, but no high cover. While vegetation is present, it is often less prevelent 

than general CSTG habitat, and it is unclear what the underlying motivation is to select 

somewhat more dense cover compared with other lekking species (Klott and Lindzey, 1990). 

The males go to the lek to compete for a mate, the females perch along the outside of the lek to 

watch the ritualistic “dance” of the males, and decide which males to mate with (Marks and 

Marks, 1987). The population of a given lek remains relatively stable from year to year, because 

CSTG often return to the same leks over their lifetime (Marks and Marks, 1987). Lekking 

behavior and it’s connection to the proximal environment can be a useful tool to make inferences 

about behavior regarding preferred habitat, and allow us to track how LULC change impacts the 

population of CSTG. Counts at a given lek provide a metric for estimating the population of a 

specific area, because CSTG are unlikely to venture far outside the area surrounding the lek 

during the crucial mating and rearing period from March to June (Marks and Marks, 1987). A 

female CSTG will generally nest within ranges as close as 1.6 kilometers (Giesen and Connelly, 

1993), as far as 4 km of the lek (Marks and Marks, 1987), and with 90% of nests falling within a 

2.7 km radius (Proett et al., 2019). Quantifying and analyzing the relationship between CSTG lek 

population and historical LULC data will improve the ability to make predictions for how this 
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species will response and adapt to changes in the enviornment. Additionally, the spatio-temporal 

relationships of wildfire and lek counts may provide clues about how CSTG will respond if a 

wildfire destroys their historical lek and surrounding nesting and brooding habitat. 

The Conservation Reserve Program (CRP) began in 1985 with the passing of the 1985 

Farm Bill (Food Security Act of 1985, 1985), and was continued by the Agricultural 

Improvement Act of 2018 (the 2018 Farm Bill) (Robbins, 2014). CRP has specific goals to 

reduce soil erosion, but has grown to include metrics for what to grow with a secondary goal of 

short to medium term restoration of plants that support the local ecology. This is accomplished 

using beneficial native and nonnative vegetation that maintain soil cover and lower erosion rates 

(Rodgers and Hoffman, 2005). CRP offers vital habitat for sage grouse (Schroeder and Haegen, 

2012) as well as CSTG (Schroeder et al., 2000). CRP seems especially important for the CSTG, 

described as “benefitting CSTG more than any other prairie grouse” (Rodgers and Hoffman, 

2005). CRP fields are managed to produce diverse, high quality plant habitat for pollinators 

(Calton, 2019). This has the added benefit of offering biodiverse landscapes that reduce 

landscape fragmentation, and provide ideal habitat for wildlife such as CSTG (Dunn et al., 

1999).  

Wildfires play a vital role in ecosystem health in sagebrush-dominated environments, but 

their heightened frequency over the period from 1950 to present (Weber, 2020) has facilitated 

the propagation of non-native annual grass species such as cheatgrass (Bradley et al., 2018). As 

fires burn larger or more resilient native vegetation cheatgrass will quickly re-establish making it 

difficult for native vegetation that have longer establishment periods (Billings, 1994a). 

Fragmentation and degradation of the sagebrush steppe environment is becoming more driven by 

wildfires as the severity and frequency of fires increase (Miller et al., 2009). Shifts in the ecology 
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from shrub-dominated to annual grass-dominated landscapes excacerbate habitat loss for 

endemic species such as CSTG. These shifts lead to increased risk of fire and threaten adjacent 

agriculture and urban communities.  As a response to this negative-feedback driven landscape 

evolution, sagebrush habitat conservation has become a focus of land management agencies. 

2.2 Previous Studies of Land Cover Mapping and CSTG Population Trends 

Initial studies from the 1950’s indicate a relationship between the introduction of 

cultivation with the decrease in the population of CSTG over time in the state of Washington 

(Buss and Dziedzic, 1955). Classifying LULC for multiple timesteps can allow us to 

quantitatively study the impacts of LULC change on a population of birds (Jetz et al., 2007). 

Previous work by Calton (2019) quantified the impacts of landuse change southeastern Idaho on 

CSTG population change between 2001 to 2016 by using the National Land Cover Dataset 

(NLCD) (Jin et al., 2019). Calton (2019) cites misclassification of cover type in the NLCD as a 

potential source of error in measuring the impact of LULC on lek population changes. The 

NLCD is maintained and made available by the Multi-Resolution Land Characteristics (MRLC) 

consortium, a group of federal agencies with interest in mapping land characteristics. Until 

recently a major limitation of the 30-m resolution NLCD was its time availability, only snapshots 

in 2001, 2006, and 2016. The RSC product (Rigge et al., 2020) is a relatively new dataset 

available from MRLC that includes yearly (1984-2019) layers of fractional cover as a percent of 

the pixel area and includes cover types of: shrub, herbaceous, bare ground, litter, sagebrush, big 

sagebrush and annual herbaceous. The fractional component layers have the potential to be 

useful for identifying ideal CSTG habitat. Unfortunately, the NLCD represents limited time span 

of 20 years compared to over a century of CSTG population decline. 



13 

 

2.3 Remote Sensing Platforms 

2.3.1 Satellite Sensors 

The longest continuously operating series of satellites is Landsat. Landsat offers the 

greatest temporal coverage of data providing a 15 day interval of multispectral data (Table 1. 

Remote sensing platforms). Landsat data collection began with the launch of Landsat 1 in 1972, 

marking the beginning of long term satellite data collection. Landsat 4 (LS4) and 5 (LS5) have 

the same thematic mapper (TM) sensor, that has been subsequently re-calibrated to produce 

similar imagery to the modern era Landsat satellites (Markham and Helder, 2012). LS4 and LS5 

also output comparable bands to the Landsat 8 (LS8) Operational Land Imager (OLI) sensor, 

with the addition of the cirrus and an ultra-blue bands to LS8. Landsat 6 failed to achieve orbit, 

and while Landsat 7 has produced useful data that is consistent with previous missions using the 

Enhanced Thematic Mapper (ETM), it suffers scan line error (SLE) which creates extra work to 

correct. Drawing conclusions from imagery that includes SLE error should be avoided. The LS5 

and LS8 satellites offer nearly continuous data collection from 1984 to present, with LS5 

operating from 1984 through May 2012, and LS8 operating from April 2013 to present. 

Comparison of vegetation indices created from LS5 and LS8 show a relative bias of 1.5-5% for 

the visible bands, and is attributed to updated atmospheric correction algorithms between the two 

sensors (Zhu et al., 2016). In 2017 the USGS released Landsat Analysis Ready Data (ARD), 

which are atmospherically corrected, projected, gridded, and calibrated relative to each other and 

produce consistent and comparable data (Qiu et al., 2019). Unfortunately, recent studies have 

shown inconsistent error with several Landsat 5 products due to orbital changes of the Landsat 5 

platform, specifically during period from 1995-2000 compared with 2007-2011 (Zhang and Roy, 

2016).  
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Table 1. Remote sensing platforms 

Sensor / Platform Collection period Resolution Bands 

Landsat 5 03/1984 – 06/2013 30-meter, 120-m 

thermal, 15 Day 

RGB, Near infrared, 

Shortwave infrared, Thermal 

Infrared 

Landsat 7 04/2015 – present 30-meter, 60 (30) 

meter, 15 Day 

RGB, Near infrared, 

Shortwave infrared, Thermal 

Infrared 

Landsat 8 02/2013 – present 30-meter, 100-

meter thermal, 15 

Day 

Coastal Aerosol, RGB, Near 

infrared, Cirrus, Shortwave 

infrared, Thermal Infrared 

Sentinel-2 06/2015 – present 10-meter, 15 meter 

Red Edge, 60-meter 

Shortwave Infrared, 

5 Day 

RGB, Near infrared, 

Shortwave infrared, Thermal 

Infrared, Red Edge 

Aqua/Terra MODIS 12/1999 – present 250-meter, 1-2day RGB, Near Infrared 

National 

Agricultural 

Imagery Program 

2003 - present 1 meter, yearly RGB, Near Infrared 

Micasense + Sony 

α6000, UAS Borne 

June 2020 7-cm Multispectral, 

2.5-cm True Color 

True Color, RGB, Near 

infrared, Shortwave infrared, 

Thermal Infrared, Red Edge, 

digital surface model 

 

 

2.3.2 UAS Sensors 

UAS borne multispectral imagery is becoming common in scientific remote sensing 

applications (Watts et al., 2012). UAS data can be collected on demand and customizeable 

sensor payloads tailored for specific needs. UAS can be split into three major categories based on 

flight styles, fixed wing, multirotor, and hybrid models (Dündar et al., 2020). Fixed wing UAS 

can carry heavy payloads over long distances, but generally must fly at higher altitudes and at 
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faster speeds. Fixed wing UAS are used for collecting imagery over large areas, at cost to spatial 

resolution. Additionally, they require a runway, or launch mechanism to take off and land.  

Multirotor UAS are able to carry payloads similar to fixed wings, but have limited flight time 

due to energy consumption and battery weight. Multirotor UAS take off vertically, fly at low 

altitudes and are useful for collecting data over smaller areas with fine spatial resolution. Hybrid 

model UAS fit in a space between multirotor and fixed wing, with motors that facilitate vertical 

takeoff and landing (VTOL) without the need for a luanching mechanism or runway. 

A variety of sensors can be mounted to UAS depending on the type of data or analysis one 

wishes to perform. In this study, we used the Micasense RedEdge Dual Camera System (MRDCS), 

a multispectral camera containing 10 bands which are spectrally similar to bands found on the 

Sentinel-2 satellite. These bands are useful for remote sensing of vegetation, and the MRDCS was 

used for observing spectral variation in potato plants to detect Potato Late Crop Blight (Fernández 

et al., 2020), as well as aerial crop monitoring and yield estimation for perrenial ryegrass (Pranga 

et al., 2021). Similar to Sentinel-2 the MRDCS observes along the red edge, an area of the 

electromagnetic spectrum that is useful for determining characteristics of plant health (Ghosh et 

al., 2018).  
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Figure 4. Spectral Bands for Landsat 8, Sentinel 2A and the Micasense Dual camera system (Source: 

https://micasense.com/dual-camera-system/)  
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This project also makes use of the Sony α6000 mirrorless digital camera for true color 

imagery collection. Imagery collected using UAS is commonly combined into orthomosaic 

imagery, with ground resolution calculation shown in Figure 5. Ground Sample Distance 

calculated from the calculated 

sensor dimensions, focal length, 

and height of flight. The 

combination of images using 

photogrammatric software also 

facilitate the creation of structure 

from motion model of surficial 

features (Westoby et al., 2012). 

Digital surface models derived 

from SFM models have been used 

for extensive scientific modeling including vegetation height and estimation of above ground 

biomass (DiGiacomo et al., 2020), produce forest canopy models to inform river temperature 

(Dugdale et al., 2019), and high precision erosion monitoring (Gillan et al., 2017). 

 2.4 Image Classification of Vegetation Composition and Habitat 

Random Forest (RF) is a supervised machine learning algorithm that uses training data to 

make either regression predictions for numerical values, or class predictions for discrete classes. 

The RF algorithm creates a group of heuristic decision trees, each of which makes predictions 

based on binary output; the final class or numerical value is chosen from the highest accuracy 

tree (Gislason et al., 2006). Each tree in a RF model is sub-sampled which splits the training 

samples beyond training and testing. This allows RF to take advantage of large training datasets 

Figure 5. Ground Sample Distance calculated from the calculated sensor 

dimensions, focal length, and height of flight. 
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while reducing the amount of overfitting the model to the training data by splitting up correlated 

variables in the samples. Support Vector Machine (SVM) is another supervised machine learning 

algorithm that works by assigning values in training data to a vector space, and the model 

maximizes or minimizes the distance between categories within the space. A prediction is made 

based on where any new data fits within that vector space. 

An accurate classification is desirable to make any inference on the influence of LULC 

change to changing CSTG population in southeast Idaho. Several techniques of classification 

using modern machine learning algorithms integrating multispectral and hyperspectral data 

inputs generate accurate LULC (Petropoulos et al., 2012). The literature has several comparisons 

of machine learning algorithms with new techniques for implementing artificial neural 

networking algorithms for LULC classification. These generally demonstrate the dominance of 

artificial neural networks for returning accurate classification maps (Rogan, 2008). A study 

comparing SVM, RF, and k-Nearest Neighbor (kNN) demonstrated accuracies of 90-95% when 

using training data from Sentinel-2 multispectral imagery to classify LULC in the Red River 

Delta of Vietnam (Thanh Noi and Kappas, 2017). Another survey study of multiple algorithms 

identified the SVM algorithm as a top performer, showing accuracy as high as 90% when 

looking at an urban area in the Haidian District of Beijing (Qian et al., 2015). The highest 

accuracies (>93.5%)  in image classification require a target number of at least 750, or 0.25% of 

the total pixel area, per class (Thanh Noi and Kappas, 2017). Consistently SVM and RF are 

considered top contendors for high levels of accuracy in the field of image classification, but 

more work could be done examining environments like the sagebrush steppe. 
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Chapter 3. Predicting Columbian Sharp-tailed Grouse Mean Decadal Lekking Population 

by Analyzing the Relationship Between Land Use and Land Cover Trends in Southeastern 

Idaho 

3.1 Introduction 

Columbian sharp-tailed grouse (CSTG), Tympanuchus phasianellus columbianus are a 

species of small upland game bird endemic to western North America. The historic range of 

CSTG , once extended from British Columbia to northern New Mexico, covering most of Idaho 

and Utah, as far west as Washington, Oregon, and the northeast corner of California, and as far 

east as western Montana, Wyoming, and Colorado; in recent decades CSTG territory shrank to 

nearly 5% of the former range (Andersen et al., 2015). This chapter examines several habitat 

disturbances including fire activity, Conservation Reserve Program (CRP) area, and land cover 

composition within a 4 km radius of 318 lek sites in southeastern Idaho over the time period 

between 1985 and 2019. 

 CSTG have only three remaining populations: in British Columbia, northern Colorado, 

and southeastern Idaho, with the southeast Idaho contingent representing 60% of CSTG in the 

United States (Hoffman and Thomas, 2007). While this represents a robust percentage of the 

population, it has been considered to be under pressure from habitat degradation and loss due to 

the expansion of agriculture in the first half of the 20 century (Buss and Dziedzic, 1955; 

Hoffman and Thomas, 2007). The decline in population is also attributed to over-harvest from 

hunting (Giesen and Connelly, 1993).  CSTG is currently listed as a “Species of Greatest 

Conservation Need” in the Idaho State Wildlife Action Plan, and US Fish and Wildlife Service 

has been unsuccessfully petitioned twice to add the CSTG to the endangered species list 

(Andersen et al., 2015). Southeast Idaho encompasses the northeast reach of the Great Basin of 
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North America and is historically covered with a mix of sagebrush-steppe rangeland, riparian 

vegetation along the Snake River and its tributaries with mixed highland forest. Understanding 

the factors that impact the population of CSTG in southeast Idaho is important because it is home 

to a substantial percentage of the few remaining healthy populations (Figure 1. Historic and 

Current Range of Columbian Sharp-tailed Grouse from Andersen et al., 2015.). 

CSTG have white and brown feathers with black spots; males are distinguished by a 

conspicuous yellow eye crest and red marking along the throat. CSTG generally subsist on 

several species of seasonal vegetation and insects (Jones, 1966), including plants native and non-

native to the brushland environment. Mixes of shrubs and forbs offer important habitat for 

CSTG, with species such as snowberry (Symphoricarpos albus), serviceberry (Amelanchier 

alnifolia), and chokecherry (Prunus virginiana) providing important forage (Klott and Lindzey, 

1990); while forbs and mid-heigh shrubs such as rabbitbrush (Ericameria nauseosa or formerly 

Chrysomthamnus spp), antelope bitterbrush (Purshia tridentata), sainfoin (Onobrychis 

arenaria), yellow sweet clover (Melilotus officinalis), which are also useful as cover from 

predators (Davies et al., 2011). In addition to vegetation, insects found in these mixed vegetation 

communities from the Coleoptera, Hymenoptera, and Orthoptera Order (Giesen and Connelly, 

1993) supplement the CSTG diet.  

CSTG habitat is impacted by the increased presence of cattle which may cause 

deteriotion of habitat and supported wildlife communities (Marks and Marks, 1987). Localized 

grazing can improve succession rates of big sagebrush in areas that have been replanted post fire 

(Davies et al., 2020, Copeland et al., 2021), while long-term grazing negatively affects perrinnial 

native species, especially warm season grasses (Porensky et al., 2020). CSTG-related similar 

Sharp-tailed Prairie grouses (Tympanuchus spp.) show preference for areas managed using rest-
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rotation grazing, which is the practice of grazing an area with a rotation of seasons off to allow 

for vegetation to recover (Milligan et al., 2020). 

CSTG congregate on ritual mating grounds called leks, to compete for mating rights. 

CSTG leks are generally located on high points such as ridges or hills and are vegetated with a 

mix of shrubs, native grass, but no high cover. Lekking behavior and its connection to the 

proximal environment can be a useful tool to make inferences about behavior regarding preferred 

habitat and allow researchers to track how land use and land cover (LULC) change impacts the 

population of CSTG. Nesting and brood rearing often occurs within proximity to the lek location, 

with ranges from 1.6 kilometers (Giesen and Connelly, 1993), and as far as 4 km (Marks and 

Marks, 1987) from the lek. Its estimated that 85% of studied females nest within 2 km of a lek 

(Boisvert et al., 2005), and 90% of nests fell within a 2.7 km radius (Proett et al., 2019). The 

population of a given lek remains relatively stable from year to year, because CSTG often return 

to the same leks over their lifetime (Marks and Marks, 1987).  

Wildfires play a vital role in ecosystem health even in sagebrush-dominated 

environments but threatens to fundamentally change the sagebrush-steppe. Wildfire are most 

commonly ignited via lightning, although they may occur from other unnatural processes, such 

as from discarded cigarettes (Prestemon et al., 2013). There is a rising frequency of fires in the 

western United States (Weber, 2020), and as global temperatures increase it is predicted there 

will be an increase in area burned for the western United States (Kitzberger et al., 2017).  

Anthropogenic climate change also has indirect impact on wildfires, such as increased average 

wind speed which increases the rate of fire spread (Fried et al., 2004). These fires often 

negatively affect ground bird populations because they destroy good ground habitat (Noson et 

al., 2006). The increasing presence of fire has facilitated the propagation of non-native annual 
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grass species such as Bromus tectorum (cheatgrass) (Bradley et al., 2018). Especially of concern 

is as fire burn larger or more resilient native vegetation, cheatgrass will quickly re-establish, 

making it difficult for native vegetation that requires longer succession periods (Billings, 1994b). 

Fragmentation and degradation of the sagebrush steppe environment is becoming more driven by 

wildfires as the severity and frequency of fires increase (Miller et al., 2009). Landscape level 

shifts in the ecology from shrub-dominated to annual grass-dominated leads to increased risk of 

fire. Sagebrush-steppe habitat conservation has become a focus of land management agencies as 

a response to this negative-feedback driven landscape evolution. 

Recent development and release of the RSC has enabled the analysis of data over a 

massive scale allowing us to make statistical inferences about trends in LULC change. The RSC 

contains yearly percent cover for each year between 1984 and 2018, as well as an overall trends 

dataset. We gathered statistics about the habitat within the nesting and brood rearing habitat for 

the CSTG using the RSC time series trends dataset that is available from the Multi Resolution 

Land Characteristics Consortium (MRLCC) (Rigge et al., 2020). 

Programs like the CRP offer vital habitat for many species of sage grouse (Schroeder and 

Haegen, 2012) and are especially important for CSTG (Schroeder et al., 2000). The CRP 

program benefits CSTG more than any other prairie grouse  (Rodgers and Hoffman, 2005), 

offering hundreds of acres of nesting and brood-rearing habitat. The CRP began in 1985 with the 

passing of the 1985 Farm Bill (Food Security Act of 1985, 1985), with specific goals set out to 

reimburse farmers for short to medium term restoration of plants which support the local 

ecology, using beneficial native and nonnative vegetation to maintain soil cover and lower 

erosion rates (Rodgers and Hoffman, 2005).  
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Determining true population from lek counts of a given species of bird is somewhat 

complicated because of the imperfect nature of observation error. A study from Copeland (et al., 

2013) examined sage grouse population trends in Wyoming with relation to energy infrastructure 

expansion over time.  Copeland used a linear regression of the log of the mean population 

abundance to create a sage-grouse population decline function to get around the large number of 

zero count leks, with an r2 of 0.82 and 95% confidence. Another study of greater sage grouse lek 

counts found discrepancies between counts and actual population due to movement dynamics of 

males in each season (Blomberg et al., 2013). Other research indicated use of probability density 

functions to grid populations using population point data (Coates et al., 2013). This is done using 

the Kernel Density function in ArcGIS, that uses the Quartic kernel formula  (Silverman, 1998) 

to generate a density in each pixel within a certain radius and generate a raster. 

The aim of this research is to understand the how the trends CSTG lekking population’s 

correlate with changes in LULC in southeast Idaho. Over this chapter we examined the and RSC 

LULC trends, CRP and wildfire location data to determine if there is spatio-temporal correlation 

with lek counts. 

3.2 Methodology 

3.2.1 Study Area 

The study area covers Bannock, Power, and Oneida counties in southeastern Idaho 

(Figure 6). This area falls in the northeast ranges of the Great Basin physio geographic region, 

along the border of the Snake River Plain. The sagebrush-steppe of this area in southeastern 

Idaho includes many species of typical vegetation. Three species of sagebrush: Big sagebrush 

(Artemisia tridentata spp., wyomingensis), Dwarf sagebrush (Artemisia arbuscula ssp. 

thermopola), Threetip sagebrush (Artemisia tripartita). Four species of perennial grasses cover 
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the same area: Fescue-wheatgrass (Festuca-Agropyron), Wheatgrass-bluegrass (Agropyron-Poa), 

Mountain Brome (Bromus marginatus), Snake River Wheatgrass (Elymus wawawaiensis). 

Finally, four species of juniper represent the sagebrush-steppe: Ground Juniper (Juniperus 

communis), Rocky Mountain Juniper (Juniperus scopulorum), Utah Juniper (Juniperus 

osteosperma), Western Juniper (Juniperus occidentalis). This area also includes many invasive 

and noxious species of weeds, important for this study is cheatgrass (Bromus Tectorum). The 

study area also contains a useful proportion of area containing a healthy population of CSTG, 

covering 314 sampled lek sites. These three counties have been affected by 968 fires over the 

period of 1939-2018, and 797 of which occurred 1984-2018. Fires in general are considered to 

be a major driver of vegetation change, facilitating conversion from native to nonnative 

vegetation (Bradley et al., 2018). 
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Figure 6. Fire Boundaries and Columbian Sharp-tailed lek locations in Bannock, Power and Oneida counties. 
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3.2.2 Data Sources 

3.2.2.1 Rangeland Shrub Component Time Series Trends Raster Dataset 

The Multi Resolution Land Characteristics Consortium (MRLCC) has released data that 

visualizes models for estimating LULC trends. The RSC dataset was made using a machine 

learning algorithms to model pixel fractional coverage, and validated using in situ and remote 

sensed data (Rigge et al., 2019, Shi et al., 2020).  This dataset includes fractional cover as a 

percent of the pixel area (e.g., 45 for 45% sub-pixel cover) for each year between 1984 – 2018. 

The six LULC classes used are: shrub, herbaceous, bare ground, litter, sagebrush, big sagebrush 

and annual herbaceous. Masked area generally encompasses urban / infrastructure, agriculture, 

water, and high elevation. It also includes a time series trends layer that assigns a value on a per 

pixel basis for the slope, standard deviation, and t-score of the data, for each landcover type, over 

the entire time period.  

3.2.2.2 Historic Fire Polygon Database  

Fire boundary data was obtained from Idaho State University Geographic Information 

Systems Training and Research Center Historic Fires Database. This database was created by 

aggregating wildfire perimeters from interested authoritative sources including: the US Forest 

Service, Bureau of Land Management, US Geologic Survey, National Interagency Fire Center, 

Idaho Department of Lands, and the California Department of Forestry and Fire Protection. This 

fire database contains wildfire perimeters and other data for 967 fires in Bannock, Power, and 

Oneida counties between 1939-2019. 
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3.2.2.3 Idaho Fish and Game Lek Count Dataset 

 Idaho Fish and Game provided spreadsheet of 314 CSTG lek locations and counts 

and their locations within Bannock, Power, and Oneida counties. The count dataset contains 

2078 counts for each lek over the period from 1985 to 2018. CSTG leks are surveyed in the 

spring when CSTG gather for male birds to display ritual dancing display.  Counts are performed 

30 minutes before sunrise to 1.5 hours after sunrise, over three consecutive days. Standardized 

survey protocol provides population estimate within 90% confidence interval (Andersen et al., 

2015). Lek population data was transformed into a value used to examine the trend over time by 

calculating the mean count for each decade per lek, and then subtracting those mean values. Leks 

that only had a single count during time period were removed. This decadal mean count value 

was used to determine whether a lek had increasing / decreasing trend over several decades. The 

change in mean lek population data displays normal distribution across the dataset Figure 7. 

Figure 7. Distribution of Columbian Sharp-tailed Grouse lekking population change between 1984 and 2018 for 

Bannock, Power, and Oneida Counties, Idaho. 

Change in Mean Lekking Population  

1984-2018 

Bannock, Power, and Oneida Counties, Idaho 

StdDev: 8.32 Mean: -4.45 
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Distribution of Columbian Sharp-tailed Grouse lekking population change between 1984 and 

2018 for Bannock, Power, and Oneida Counties, Idaho..  

3.2.2.4 Conservation Reserve Program Parcel Polygon Data 

This polygon dataset contains parcel information from the United States Department of 

Agriculture Farm Service Agency for CRP area within Bannock, Oneida, and Power Counties, 

over the time period from 2012-2018. The modern CRP was established with the 1985 Farm Bill 

(Food Security Act of 1985, 1985), farmers enrolled are paid to plant species that are beneficial 

to the environment and enhance the local habitat. These polygon data contain metadata about the 

owner, county, dates when the CRP agreement expires. This data was shared under a 

memorandum of understanding, and in order to protect confidentiality of landowner’s locations 

have been ambiguated for output products.   

3.2.3 Data Processing 

3.2.3.1 Buffering and Zonal Statistics 

This project used ArcGIS Pro 2.7 to process images, points, polygons, and generate 

statistics. Lek location points were buffered to 4 km to create zones representing the nesting and 

brood rearing habitat of the CSTG. The RSC time series trend slope raster dataset was sampled 

within a 4 km radius for each site and added to an attribute table for each lek. The 4 km buffer 

around each lek contains an amount of masked area which was used to generate a mean trend 

value for all lek area in the actual measured sagebrush steppe. Wildfire boundaries for 797 

wildfires were intersected to determine the area burned between 1984-2018 that was within the 4 

km nesting and brood rearing area for each lek. The same method was used to determine the 

percentage of CRP area fell within the 4 km buffer. Both of those parameters were added to the 

lek count attribute table, which also contains slope trends for each cover class and the area 
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burned (1984-2018), and mean percent CRP (2010s). We decided to use a decadal mean change 

in population to measure the lekking population change over time. This was used to overcome 

yearly fluctuations in lek count which may arise due to animal behavior. A simple subtraction of 

before and after was used to examine the trend change over time. The mean decadal population 

trend value was input into the kernel density tool in ArcGIS, using a search radius of 10 km, to 

create a surface raster that illustrates the mean population change. 10 km was chosen to create a 

raster including the entire area. 

3.2.3.2 Spatial Autocorrelation and Geographic Weighted Regression 

The Spatial Autocorrelation (Global Moran’s I) tool examines the spatial relationships 

and the parameter values to determine the level of clustering or randomness within a given 

dataset. I used a fixed Euclidean distance of 10 km to build neighborhoods to capture the 

relationship between leks within the same valley, but to avoid connecting to populations across 

mountain ranges. Spatial autocorrelation was determined for the change in decadal mean lek 

count, mean trend for all classes, and mean wildfire and CRP area parameters.  

Geographically weighted regression (GWR) is a tool in ArcGIS that creates a local model 

across a nearby neighborhood of points to perform a normal regression using dependent and 

independent variables. This is accomplished using a kernel algorithm that reduces the influence 

of geographically distant points on the regression calculation. GWR uses several methods for 

designing model neighborhoods, such as closest neighbors, golden search or manual interval. We 

used a manual Euclidean distance of 4 km for the neighborhood. The GWR model we created 

used the kernel density of the change in decadal mean population as the dependent variable, with 

CRP area, fire area, shrub, and sage slope trend as predictive variables. We used the continuous 

(gaussian) prediction as an additional parameter for model generation.  GWR returns a 
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coefficient of determination correlation value between the tested variables, charts showing 

several histograms of the standard residual, and a prediction raster for the dependent variable. 

3.3 Results 

3.3.1 Land Use and Land Cover Trends 

We examined the RSC landcover and trends datasets, using the mean trend value for each class 

within 4 km of each lek within the study area. The RSC slope trend value is given as a unitless, 

slope value for the trend line of percent cover by pixel. Our study area has low positive trends for 

Sage, Shrub, Herb, Annual Herbaceous, and Litter classes; and a low negative trend for Bare 

ground class (Table 2. CRP, Fire and Land Use and Land Cover Trend. The standard deviation 

for each class is given and represents the variation in percent cover by pixel for each year. Our 

results show that Bare and Shrub classes had the widest variation of percent cover. Bare has a 

standard deviation of 5.29% cover, and Shrub 4.95%.  Litter has the lowest overall variation at 

the lek scale, with a standard deviation of 1.65%. During the period of 1985-2018 there were 797 

fires impacting 22.23% of nesting and brood rearing area with a standard variance of 26.86%. 

Historically available data shows in the same areas over the period from 1939-1985, there were 

170 fires covering 4.21% of the nesting and brood rearing area. This represents an increase in 

fire disturbed area by 466.17% within CSTG nesting and brood rearing area. 

Table 2. CRP, Fire and Land Use and Land Cover Trends for Columbian Sharp-tailed Grouse nesting and brood 

rearing habitat. Each class shows the mean of each leks LULC trend slope, max and min values for 1985 and 2018. 

CRP and burned area do not have trend slopes, and CRP data is not available for 1985. 

Land Cover 

n=314 

Sage Shrub Herb Annual 

Herb 

Litter Bare CRP 

Area 

Burned 

Area 

Mean (Trend 

Slope) 

0.016 0.0189 0.0178 0.0048 0.0194 -0.0650 NA  NA 

StdDev 3.068 4.95% 3.96% 2.199% 1.653% 5.289% 12.7% 26.86% 

Mean (% Cover) 

1985 

11.69% 20.84% 29.91% 7.13% 18.57% 36.12% NA 4.219% 
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Mean (% Cover) 

2018 

14.25% 23.54% 30.68% 7.67% 20.60% 30.71% 16.51% 22.23% 

Min 1985 2.926% 8.636% 21.05% 2.039% 12.32% 13.75% NA 0 

Max 1985 21.77% 41.01% 38.94% 11.14% 23.81% 57.76% NA 65.3% 

Min 2018 2.329% 3.49% 22.71% 1.209% 16.14% 11.35% 0 0 

Max 2018 23.86% 42.95% 40.01% 13.53% 23.88% 50.79% 52.66% 99.68% 

3.3.3 Spatial Autocorrelation Results 

Spatial autocorrelation for each variable is shown in Table 3 Spatial Autocorrelation for all Land 

Cover and Land Use Classes, as well as Fire and Conservation Reserve Program Area, for 

Bannock, Power, and Oneida Counties. There is significant clustering for all independent 

variables examined, which was expected given sample values were generated via zonal statistics 

for overlapping zones. The change in decadal mean lek count has a z score of 1.597 and a 

Moran’s I value of 0.0425, and is not significantly different from random. 

Table 3 Spatial Autocorrelation for all Land Cover and Land Use Classes, as well as Fire and Conservation Reserve 

Program Area, for Bannock, Power, and Oneida Counties. 

Spatial Autocorrelation N = 

314 Moran’s I Value Z-score P value Clustering 

Change Decadal Mean Lek 

Count 0.042476 1.597083 0.110247 Random 

Sage Trend 0.75549 26.40511 <0.0001 Clustered 

Shrub Trend 0.732809 25.645803 <0.0001 Clustered 

Annual Herbaceous Trend 0.654932 22.93432 <0.0001 Clustered 

Herbaceous Trend 0.74472 26.043629 <0.0001 Clustered 

Bare Trend 0.787428 27.588852 <0.0001 Clustered 

Litter Trend 0.733697 25.691991 <0.0001 Clustered 

Fire Area 0.379144 13.309288 <0.0001 Clustered 

CRP Area  0.767351 26.807552 <0.0001 Clustered 

 

3.3.4 Regression Results 

 Geographically weighted regression was used to describe the relationship between LULC 

and the kernel density of mean population decadal change. Sage Trend, Shrub Trend, CRP Area 

and Fire Area have the highest r2 among single variable models identified using exploratory 
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regression. R2 values illustrate the strength of the relationship, and CRP area has the highest r2 

and adjusted r2 among this group, with 0.957 and 0.938 respectively (Table 4). Two variable 

predictive models showed multicollinearity between sage and shrub cover preventing modeling 

with those two land cover classes. Calculation of relationship for all other two variable 

combinations was able to be performed. Of the two-variable regressions, the combined Sage and 

CRP model produced the best r2 and adjusted r2 for predicting the change in the mean decadal 

lek population, 0.965 and 0.943. Of the single variable and dual variable regression models, the 

single variable CRP area had the lowest corrected Akaike information criterion (AICc) score of -

1844.3, lower than the two variable model using CRP and Sage which has a slightly higher 

adjusted r2 value. 

Table 4. Geographic weighted regression results which demonstrate the relationship between the kernel density of 

the change in mean lek count (Per decade) and a specific land cover characteristic. Of the land cover classes, sage 

and shrub had significant relationships with sage being the strongest relationship.  

 

 

 

3.4 Discussion 

All of the analyzed independent variables showed evidence of spatial autocorrelation, 

with high levels of confidence. If there is significant clustering within a variable, it may indicate 

bias in the model due to observations not being independent of each other. Likewise, significant 

dispersal of variable also indicates bias. Conceptually, the autocorrelation results for independent 

variables make sense because the data represents values sampled from overlapping 4 km buffer 

zones that describe the nesting and brood rearing habitat around a given lek. Additionally, there 

Model R2 AdjR2 AICc Effective Degrees of Freedom 

Shrub Trend 0.948 0.923 -1778.7 212.81 

Sage Trend 0.949 0.925 -1787.7 212.56 

Fire Area 0.944 0.918 -1762.6 215.35 

CRP Area 0.957 0.938 -1844.3 214.12 

Fire+CRP 0.962 0.940 -1812.2 194.75 

Fire+Sage 0.956 0.928 -1753.5 191.43 

CRP+Sage 0.965 0.943 -1823.9 192.39 
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are ecological, spatial controls on vegetation land cover that are governed by physical geographic 

variables, such as certain vegetation preferring south facing slopes, or clustering within a valley 

and avoiding growing on steep slopes. The apparent, random level of clustering within the 

lekking population is expected. Birds from different leks may share the same habitat, but 

individuals are unlikely to attend more than one lek during a mating season, and there is 

evidence they return to the same lek year after year (Marks and Marks, 1987). 

Wildfire area is an interesting parameter to examine as it describes the binary of disturbed 

and undisturbed land. This does not take into account that area within the perimeter is not 

equally burned or that some affected areas have been burned several times. This complication is 

compounded as wildfire often converts long living native vegetation into annual and invasive 

cheatgrass (bromus Tectorum) that reaches peak greenness in the early parts of summer, and 

browns down by July, right at the beginning of fire season (Clinton et al., 2010). The average 

percentage of burned area substantially increased from historic value, covering a mean of 23.9% 

of any given lek in 2018, but over 1985-2018, the mean annual herbaceous land cover trend had 

the lowest trend slope value of 0.0048. This is low growth trend but not low cover value, which 

means percentage of cover annual herbaceous land cover has stayed constant over the period, 

ranging between 2-11% in 1985, and 1-13.5% in 2018.  

The change in the decadal mean lek population seems to have geographic correlation 

with wildfire area, but the results are the lowest of our models. This may be due to the binary 

nature of disturbed vs undisturbed land unable to be accurately quantified for our model. There 

are places in our study area which have been repeatedly impacted by fire, that also 

geographically correlate with population loss. Several areas impacted heavily by fire also show 

low population change values as well. Several studies in the supporting literature make the claim 
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that the CSTG greatly benefits from CRP and our data appears to support that assertion. Several 

leks in our study area that have positive population change are in or near high concentrations of 

CRP land, which is also highlighted in our model that quantifies the relationship.  

Geographic weighted regression results generally describe a solid relationship between 

LULC and CSTG mean decadal population change. Some groups of LULC variables capture the 

same relationships, such as sage and fire being intertwined; others are based on the same datasets 

with tweaks to some input variables, such as shrub and sage trends from the RSC dataset. For 

this reason, we are skeptical of all two variable models that may show collinearity. While the 

Sage and CRP combined model had the highest r2, generally the principle of parsimony that the 

simplest model will generally be the best. In this case, the AICc value being lower demonstrates 

clearly that the single variable model (CRP) is better. The gain of 0.008 r2 value in the 2-variable 

model (Sage and CRP) does not outweigh the uncertainty of using an additional variable. We 

find the best fit model for predicting mean decadal population change at a given lek is made by 

examining only the amount of CRP landcover overlapping with the nesting and brood rearing 

habitat within 4 km of a lek. 
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Chapter 4. Using Uncrewed Aircraft Systems Multispectral Imagery to Map Columbian 

Sharp-tailed Grouse Nesting and Brood Rearing Habitat in Wildfire affected Conservation 

Reserve Program Fields 

4.1 Introduction 

Landscape and habitat fragmentation, loss, and degradation have historically been 

problem in Idaho. In 1985 the passing of the 1985 Farm Bill (Food Security Act of 1985, 1985), 

created the United States Department of Agriculture Farm Service Agency’s Conservation 

Reserve Program (CRP). The CRP program reimburses farmers for short to medium term 

restoration of plants which support the local ecology, using beneficial native and nonnative 

vegetation to maintain soil cover and lower erosion rates (Rodgers and Hoffman, 2005). CRP 

also offers vital habitat the Columbian Sharp-tailed Grouse (CSTG) (Schroeder et al., 2000), and 

is described as “benefitting CSTG more than any other prairie grouse” (Rodgers and Hoffman, 

2005). CRP vegetation is important for providing cover from predators and a rich source of 

insects for chicks and young birds to eat. Understanding the composition of CRP in an area 

where the CSTG are actively raising young can inform researchers about the potential benefits of 

CRP to CSTG and other wildlife. The current practice for planting in CRP fields recomends a 

combination of forbs, brush, grasses and legumes that specifically produce diverse, high quality 

habitat for pollinators (Ogle et al., 2011, Keys, 2012). This has the added benefit of producing 

biodiverse landscapes which are a boon to CSTG, help reduce landscape fragmentation, and 

provide ideal habitat for wildlife (Dunn et al., 1999).  

Another driver of habitat degradation and fragmentation is wildfire. Fires destroy dry 

habitat sagebrush and juniper, often consuming large swaths leading to succession by invasive 

annual grasses such as cheatgrass (Bradley et al., 2018). This pattern leads to a feedback loop: 
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fires destroy vegetation which often require years to decades for full recovery, leading to an 

increase in annual grasses that rapidly mature in burn scars and end up being problematic for 

propagating fires (Billings, 1994a).  Uncrewed Aircraft System (UAS) monitoring techniques in 

post-fire habitat facilitate collection of imagery that offers a useful tool. High quality imagery 

can be used to create LULC maps of areas that previously burned and determine exact site-

specific impacts. Further, returning to an area at regular intervals post wildfire can enable 

analysis of vegetation quality within areas recovering. This study focuses on one such area that 

burned in 2014 where the landowner has been active in reseeding portions of the burned area to 

enable regeneration. 

4.1.1 Efficacy of Classification Models 

An accurate classification is desirable to make any inference on the influence of LULC 

change to changing CSTG population in southeast Idaho. Often classifications of satellite 

imagery The literature has several comparisons of machine learning algorithms with new 

techniques for implementing artificial neural networking algorithms for LULC classification. A 

study comparing Support Vector Machines, Randon Forest, and k-Nearest Neighbor (kNN) 

demonstrated accuracies of 90-95% when using training data from Sentinel-2 multispectral 

imagery to classify LULC in the Red River Delta of Vietnam (Thanh Noi and Kappas, 2017). 

Another survey study of several algorithms identified the SVM algorithm as a top performer, 

showing accuracy as high as 90% when looking at an urban area in the Haidian District of 

Beijing (Qian et al., 2015). The highest accuracies (>93.5%)  in image classification require a 

target area of at least 0.25% of the total pixel area (or 750 samples), per class (Thanh Noi and 

Kappas, 2017). Consistently SVM and RF are considered top contendors for high levels of 
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accuracy in the field of image classification, but more work could be done examining 

environments like the sagebrush steppe. 

4.1.2 Objectives 

There is a long history of data collection using satellite sensors including the last 50 years 

of LANDSAT data, but free and publicly available satellite imagery still remains medium 

resolution. Currently UAS data products are generally thought of as the go to for the best 

resolution in field scale study areas. This chapter examines methods for data collection and 

processing using the MRDCS, a multispectral sensor that is easily attached to a UAS. Further, 

this chapter will compare the random trees and support vector machine algorithms for 

classification of that UAS data. Classified imagery will then be compared to similarly classified 

Sentinel-2 imagery. This classified data will be used to examine the vegetation in a conservation 

reserve program managed field, comparing the composition inside and outside the Cambridge 

fire boundary (2014).   

4.2 Methods 

4.2.1 Study Area 
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Figure 8. Conservation Reserve Program fields near Columbian Sharp-tailed grouse leks and the Cambridge wildfire 

(2014). 
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The study area was selected for its proximity to known lek locations as well as a recent 

wildfire. This area falls in the northeast ranges of the Great Basin physio geographic region, 

along the border of the Snake River Plain, east of Downey, Idaho. Each of these fields is 0.68 

km2, and are managed under the CRP starting in 2015, with the goal to provide useful habitat for 

pollinators, which has been found to be important for CSTG population as well. These fields 

contained Sainfoin (Onobrychis viciifolia), Yarrow (Achillea millefolium), blue Flax (Linum 

perenne var. lewisii), alfalfa (Medicago sativa), cheatgrass (Bromus Tectorum), rabbitbrush 

(Ericameria nauseosa), spineless horsebrush (Tetradymia canescens). Also present are several 

stands of sagebrush in undisturbed ravines, including both big sagebrush (Artemisia tridentata) 

and threetip sagebrush (Artemisia tripartitata). In 2014 the Cambridge fire burned roughly 1.5 

square kilometers including the northeast corner of the study area, which has been subsequently 

reseeded.  

4.2.2 UAS Multispectral and Optical (RGB) Imagery 

Flight planning was done using the Universal Ground Control Software (UGCS) area 

scan tool. An excel spreadsheet was used to calculate flight factors based on the desired resulting 

image attributes: flight height, camera sensor size, pixel resolution, were used to determine the 

Ground Sampling Distance (GSD) (Figure 5). GSD and the required/desired overlap for 

photogrammetry of images to be stitched together was used to determine the flight speed. UGCS 

allows you to manage these values to plan and adjust parameters in the field based on needs 
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which may arise based on field conditions such as wind speed or direction. We flew at 100 

meters above ground level, at approximately 5 meters per second speed with 75% forward and 

lateral overlap between photos, with a target ground resolution of approximately 7 centimeters. 

Summer, 2020 imagery used for this project was collected using the MRDCS sensor 

flown on a Matrice 600 Pro hexacopter. The MRDCS is a 10-band sensor that observes the same 

wavelengths as the Sentinel-2 MSI (Figure 9). Additional natural color imagery was collected 

using the Sony α6000 mirrorless camera. Settings for the camera were set to focal length of ∞, f-

stop of 4, shutter speed of 1/800, and image sensor sensitivity of 100 ISO. The α6000 was set to 

capture images at 2 second intervals to maximize coverage area and allow overlap between 

images to best facilitate photogrammetry. 

Figure 9. Spectral Band comparison between Micasense Dual Camera System and popular remote sensing satellites 

Sentinel-2A and Landsat 8. 
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Sony α6000 dSLR images were geotagged using the onboard Global Navigation Satellite 

System (GNSS) telemetry lined up with the camera shutter time. This allowed each photograph 

locations to be geotagged, at approximately 3 to 5 m of error. The MRDCS images are tagged 

using a built in GNSS receiver, which are more accurate than the α6000 locations, in the 1 to 2 m 

range. To rectify this source of error, GCP locations are used as tie points to facilitate increasing 

the accuracy of the imagery and photogrammetry to the centimeter scale.   

4.2.3 Topcon Ground Control Points 

26 ground control points (GCP) were placed in the north and south fields (Figure 3), 

evenly distributed but spaced semi-randomly to avoid clumping and linear warping of the 

imagery. GCP locations were exported as a PDF and imported into Maps Avenza application to 

facilitate accurate placement of GCP. GCP targets were placed in the field site the morning of 

the first set of flights. Often vegetation obstructed planned placement of GCP, and in such cases 

GCP targets were placed by moving local vegetation out of the way and then staking them down 

as flat as possible. The use of stakes was necessary to make sure the targets were stable because 

there were two days of flights planned. GCP were later surveyed using the Real Time Kinematic 

(RTK) method for sub-centimeter levels of accuracy. Surveying the GCP targets took place over 

2 trips in mid-late June of 2020. 

 We used the Topcon Hiper II RTK GNSS receiver for gathering survey grade 

coordinates. The base station was set up near the flight staging location and left to gather a 

continuous point while placing targets and flights. The location of the base station was marked 

with a stake that was flagged with pink tape for ease of finding the stake each time we set up the 

base station. The rover receiver connects to a Getac windows mobile device, and points are 

collected using the TopSURV Topo Tools application. Each target was surveyed by the rover for 
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60 seconds, with half second points and software enforced rover stability rules to ensure accurate 

points. The rover has a reported range of over a kilometer, and communication between the base 

and the rover was relatively stable over the entire field area. If communication ceased during the 

collection of a point, the TopSURV application would pause the count until a stable connection 

resumed. This was only an issue for points far away and behind some obstruction such as trees or 

a hill, but all points were collected for each GCP target. 

Post correction and tying of GNSS points to the National Spatial Reference System was 

done using National Oceanic and Atmosphere Administration Online Positional User Service 

website. This requires the user to upload a logfile from the base station. The correction accounts 

for accounting for interference between the GNSS satellite and receiver, correction for the height 

of the receiver, as well as correction of errors unique to individual brands/models of GNSS 

receiver. We used the logfile that represented the longest continual time period spent gathering 

over the base station location to achieve the most accurate results. The Topcon Tools software 

was used to change the base station location to the corrected value, and the correction is applied 

to all RTK connected locations. Points were exported as a CSV including latitude, longitude, and 

altitude values for all GCP. 

4.2.4 Image Processing 

We aligned the UAS imagery from both the Sony and Micasense sensors using Agisoft 

Metashape Professional. Images generated by the Sony α6000 required preprocessing in the form 

of color balance and correction using Adobe Lightroom. Image brightness was generally 

increased, and color balancing via histogram manipulation to color match images from multiple 

flights match. Processed Sony images were imported into Agisoft corresponding chunks. Initial 

batch alignment was performed in Agisoft to create a rough model of each chunk, tying image 
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locations to their geotagged locations and aligning matching pixels on overlapping images. This 

allows for the placement of GCP markers to targets located in the imagery. The OPUS corrected 

GCP values were brought in to Agisoft and placed on targets within the imagery to improve 

georeferencing. 

4.2.5 Image Classification 

Imagery collected by UAS was used to create a large scale, species level classification maps via 

the SVM and RF models. The classification tools Support Vector Machine (SVM) and Random 

trees are available to classify imagery within ArcGIS Pro 2.7. ArcGIS classification wizard takes 

training samples and segmented images and produces a high-quality classification depending on 

the model used. Applying the workflow using two models allowed creation of two classification 

maps within the same program, using the same training data. The workflow for ArcGIS for 

supervised classification using object-based methodology requires regions of interest and a 

segmented image. Regions of interest were created to represent each class; in this case, sage, 

shrub, herbaceous, annual herbaceous, litter and bare ground. These classes were chosen to 

match the RSC dataset. A segmented image is created in the wizard by clustering similar pixels 

together, and takes into account object shape and similarity when producing an output. The 

training data and segmented image are fed into the classification wizard which outputs a 

classified image and metrics regarding precision and accuracy of classification (Figure 11. 

Classification map of fields north and south of Bowman Road near Downey, Idaho. Support 

Vector Machines (SVM) classification of multispectral imagery from MicaSense Dual Camera 

System. Classification accuracy in north 0.79, south 0.89. 
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4.3 Results 

4.3.1 Maps 

 

 

 

 

Figure 10. Orthoimagery of Fields north and south of Brush Creek and Bowman Roads, collected using DJI Matrice 

600 hexacopter. False color Composite image from Micasense Dual Camera System 10 band multispectral sensor, 

and true color imagery from Sony α6000 mirrorless camera. Orthoimages created using Agisoft Metashape 

Professional. A & B show north field, C & D show South Field. False color shows bands red – (red 650 nm), green – 

(red edge 716 nm), blue – (green 560 nm), used to visually differentiate several varieties of plant. 

A B 

D 
C 
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Figure 11. 

Classification map of 

fields north and south 

of Bowman Road near 

Downey, Idaho. 

Support Vector 

Machines (SVM) 

classification of 

multispectral imagery 

from MicaSense Dual 

Camera System. 

Classification accuracy 

in north 0.79, south 

0.89. Shown with the 

boundary of the 

Cambridge wildfire 

(2014). 
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4.3.2 Classification Confusion Matrices 

Confusion matrices were calculated using 699 validation points for the north field and 

544 validation points for the south field (Table 5). All points were not used in training the 

classification. Classification accuracy for the south field, using the SVM algorithm was 0.893, 

with a kappa value of 0.866. The accuracy of the random trees (RT) algorithm was calculated as 

0.840, with a kappa value of 0.799 for the same field. The classification of the north portion of 

the study area showed an accuracy of 0.798 and kappa value of 0.734 for SVM; 0.840 accuracy 

and 0.799 kappa using RT. Finally, SVM classification of the same area using Sentinel-2 

multispectral resulted in an overall accuracy of 0.439 and 0.454 and kappa value of 0.299 and 

0.302 using the same validation points. 

Figure 12. A SVM Classification of Sentinel-2 imagery. B is map of RSC herb % cover for 

the area over Sentinel-2 base imagery. 

A B 
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Table 5 - Confusion Matrix Comparison (Random Trees and Support Vector Machine) of various classification 

algorithms used to classify fields near Bowman and Brush Creek Roads near Downey, Idaho. U(ser) Accuracy 

assesses false positives, and p(roducer) accuracy assesses false negatives. 

UAS Random 

Trees - North 
Bare Sage Herb / Shrub AnnHerb / Litter Riparian Total U Accuracy Kappa 

Bare 74 1 1 7 1 84 0.881 0 

Sage 5 96 11 26 1 139 0.691 0 

Herb / Shrub 0 2 87 5 2 96 0.906 0 

AnnHerb / Litter 28 11 16 202 1 258 0.783 0 

Riparian 1 4 39 13 65 122 0.533 0 

Total 108 114 154 253 70 699 0 0 

P Accuracy 0.685 0.842 0.565 0.798 0.929 0 0.7496 0 

Kappa 0 0 0 0 0 0 0 0.674 

UAS Support 

Vector Machine - 

North 

Bare Sage Herb / Shrub AnnHerb / Litter Riparian Total U Accuracy Kappa 

Bare 82 0 1 10 0 93 0.882 0 

Sage 9 94 7 17 2 129 0.729 0 

Herb / Shrub 0 4 108 8 1 121 0.893 0 

AnnHerb / Litter 17 16 24 210 3 270 0.777 0 

Riparian 0 0 14 8 64 86 0.744 0 

Total 108 114 154 253 70 699 0 0 

P Accuracy 0.759 0.825 0.701 0.83 0.914 0 0.798 0 

Kappa 0 0 0 0 0 0 0 0.734 

UAS Random 

Trees - South 
Bare Sage Herb / Shrub AnnHerb / Litter Riparian Total U Accuracy Kappa 

Bare 99 0 1 7 0 107 0.925 0 

Sage 3 110 16 34 2 165 0.667 0 

Herb / Shrub 0 0 77 0 14 91 0.846 0 

AnnHerb / Litter 0 2 3 79 1 85 0.929 0 

Riparian 0 1 3 0 92 96 0.958 0 

Total 102 113 100 120 109 544 0 0 

P Accuracy 0.971 0.973 0.77 0.658 0.844 0 0.84 0 

Kappa 0 0 0 0 0 0 0 0.799 

UAS Support 

Vector Machine - 

South 

Bare Sage Herb / Shrub AnnHerb / Litter Riparian Total U Accuracy Kappa 

Bare 99 0 0 13 0 112 0.884 0 

Sage 1 109 9 11 3 133 0.82 0 

Herb / Shrub 0 2 80 2 2 86 0.93 0 

AnnHerb / Litter 2 2 5 94 0 103 0.913 0 

Riparian 0 0 6 0 104 110 0.945 0 

Total 102 113 100 120 109 544 0 0 

P Accuracy 0.971 0.965 0.8 0.783 0.954 0 0.893 0 

Kappa 0 0 0 0 0 0 0 0.867 
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Sentinel Support 

Vector Machine - 

South 

Bare Sage Herb / Shrub AnnHerb / Litter Riparian Total U Accuracy Kappa 

Bare 52 10 3 10 4 79 0.658 0 

Sage 8 39 12 37 2 98 0.398 0 

Herb / Shrub 12 4 65 30 25 136 0.478 0 

AnnHerb / Litter 8 54 11 26 21 120 0.217 0 

Riparian 22 6 9 17 57 111 0.514 0 

Total 102 113 100 120 109 544 0 0 

P Accuracy 0.51 0.345 0.65 0.217 0.523 0 0.439 0 

Kappa 0 0 0 0 0 0 0 0.299 

Sentinel Support 

Vector Machine - 

North 

Bare Sage Herb / Shrub AnnHerb / Litter Riparian Total U Accuracy Kappa 

Bare 39 3 3 20 2 67 0.582 0 

Sage 7 54 15 61 12 149 0.362 0 

Herb / Shrub 16 31 93 60 10 210 0.443 0 

AnnHerb / Litter 24 17 23 93 8 165 0.564 0 

Riparian 22 9 20 19 38 108 0.352 0 

Total 108 114 154 253 70 699 0 0 

P Accuracy 0.361 0.474 0.604 0.368 0.543 0 0.454 0 

Kappa 0 0 0 0 0 0 0 0.302 

 P accuracy shows the accuracy of how many points were classified correctly of a given 

class, where u accuracy shows the accuracy of those points with known control classes (Table 5). 

In the northern field the two class pairs most often confused were herb / shrub with riparian, and 

bare ground with annual herbaceous with litter. Herb/shrub was accurately predicted at 89.3% 

(SVM) and 90.6% (RT) of control points. RT overpredicts herbaceous area as riparian 24.7%, 

and SVM overpredicts litter / annual herbaceous 15.6%. The classifications also had trouble 

distinguishing litter / annual herbaceous cover from bare ground, with 25.9% (RT) and 15.7% 

(SVM) false predictions. Confusion between LULC classes was similarly demonstrated in the 

SVM algorithm but to a lesser degree, with only 15% of false predictions. The kappa coefficient 

for RT was 0.67 in the north and 0.79 in the south. SVM models performed better in their 

respective fields, at 0.73 in the North, and 0.86 in the south. 
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4.3.3 Comparison of vegetation composition 

 Classified MRDCS imagery was used to examine the land cover composition inside and 

outside the Cambridge fire perimeter (We found varying levels of difference within the land 

cover for all classes. The largest increase within the fire perimeter represented litter/annual 

herbaceous combined land cover, at +14.41%, which includes many areas of burned sagebrush 

husks, and cheatgrass in various lifecycle stages (Figure 13). The next largest increase was 

riparian, at +4.92%. The largest negative difference was the combined herb/shrub, which had -

12.59% less herb/shrub cover inside the fire boundary compared with outside. We found a 

decrease in sage cover within the fire perimeter of -4.78% and decrease in bare ground by -

1.95%. Classified imagery from Sentinel-2 found much less change, generally within 0-3% for 

all classes.  

 

 

Micasense 
Burned 

Micasense 
CRP 

Micasense 
Difference 

Sentinel 
Burned 

Sentinel 
CRP 

Sentinel 
Difference 

Bare 0.041 0.060 -1.95 0.076 0.091 -1.78 

       

Sage 0.034 0.082 -4.78 0.185 0.196 -1.43 

Herb/Shrub 0.284 0.410 -12.59 0.415 0.394 2.29 

AnnHerb/Litter 0.557 0.413 14.41 0.209 0.201 0.967 

Riparian 0.085 0.036 4.92 0.116 0.116 -0.059 

Figure 13. Burned sagebrush comparison from Sony α6000 orthoimage and SVM Classification. 

Table 6. Land cover comparison within area burned in 2014 Cambridge Fire and rest of fields. 
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We found varying levels of difference within the land cover for all classes. The largest 

increase within the fire perimeter represented litter/annual herbaceous combined land cover, at 

+14.41%, which includes many areas of burned sagebrush husks, and cheatgrass in various 

lifecycle stages (Figure 13). The next largest increase was riparian, at +4.92%. The largest 

negative difference was the combined herb/shrub, which had -12.59% less herb/shrub cover 

inside the fire boundary compared with outside. We found a decrease in sage cover within the 

fire perimeter of -4.78% and decrease in bare ground by -1.95%. Classified imagery from 

Sentinel-2 found much less change, generally within 0-3% for all classes.  

4.4 Discussion 

4.4.1 Discussion of UAS Imagery and Classifications 

Imagery and maps created using photogrammetry techniques illustrate a fine scale 

resolution of 7.5 cm, which is useful for the ability to resolve individual plants in the field area 

with high accuracy to ground control points and inform the classification model. The 

classification model performed better for some classes than for others. False positives and false 

negatives (U and P Accuracy in Table 5) in the confusion matrix give some insight into how the 

classification algorithm is operating. The RT classification shows under classification of riparian, 

often mistaken as herb/shrub. This is because the riparian vegetation in the northern field 

contains tall grasses which are spectrally similar to leafy herbaceous and shrub plants, as 

opposed to the woody plants found in the southern area, such as willow. The SVM model has a 

higher accuracy. Herb/shrub is the most overclassified for the north field, often misclassified rom 

riparian and annual herbaceous covers. In the south field sage was often classified as annual 
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herbaceous / litter classes. This is because the sage stands in the southern field tend to be darker 

with visible wood patches (Figure 14A), which are spectrally similar to dead vegetation outlined 

as litter.  

A B 

C D 

Figure 14. Visual comparison of images of sagebrush in true and false color composite (Rededge 705 nm, Red 650 

nm, Blue 475 nm). A & C show location in South Field, B & D Show North Field. Comparison of these images 

reveals sage in the north (B&D) covered with leafy material, whereas in the south (A&C) more wood material is 

visible.  
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We compared vegetation in and outside of the Cambridge fire boundary (Table 6). One 

interesting difference was the increase in Riparian vegetation inside the fire boundary. This may 

be topologically controlled; riparian vegetation grows along drainages in the valley lows where 

the fire appears to have burned further southwest. Within the fire perimeter there are clusters of 

riparian vegetation in flat and wide areas of the northeast. These areas were soggy even in July 

during ground flag placement, and it is possible that increased moisture could have mitigated fire 

damage to these isolated locations. There is also evidence that riparian species are able rapidly 

regrow in a post fire environment when subjected to the same levels of precipitation (Reeves et 

al., 2006). One key difference to note is the presence of more willow and other woody structure 

in the overstory of the riparian areas of the south field that were not subjected to fire. This study 

only examined Sentinel-2 from before the fire, which was too coarse resolution to determine 

species change. Older aerial photography may be useful to differentiate those species. 

The Sentinel-2 classification (Figure 12A) had low overall accuracy for both fields, 44% 

(south) and 45% (north), due to the overall low-resolution of the classification with respect to the 

validation dataset (Table 5 sections 5 & 6). Validation points were created using multispectral 

imagery from the MRDCS which has 7-cm resolution, and Sony RGB imagery which has a 3-cm 

resolution. The resolution of Sentinel-2 is more than 100 times larger, 10-m, often containing 

validation points of different classes within the same Sentinel-2 pixel. The best accuracy result of 

the Sentinel-2 classification was of bare ground at 65% (south) and 58% (north); but bare ground 

was also massively overpredicted making up nearly 64% of false negatives in the north field and 

49% in the south. The RSC dataset was also examined for this study area, but were inconclusive 

due to sparse coverage (Figure 12B). 
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Chapter 5. Conclusion 

 Southeastern Idaho’s healthy sagebrush-steppe is vital habitat for CSTG lekking, nesting 

and brood rearing. This research found strong correlation between leks with positive population 

trends and increased CRP area, burned area, the sage cover trend, as well as the trend in shrub 

cover. High amounts of burned area which often translated to negative sage and shrub trends 

correlated with declining lekking population trends in proximate areas. The model we found that 

performed best was the single variable CRP area. CRP area had the lowest value Akaike 

information criterion, meaning that the least amount of information was lost from modeling the 

population. Future research should examine habitat quality of CRP to determine the relationship 

beyond presence. If there is interest the methods used for this paper could be used to assess other 

areas of conservation effort beyond CRP, or be applied to other species. Additionally, 

measurements of wildfire severity normalized to a set time period could be assessed per fire to 

examine the relationship beyond the binary of disturbed versus undisturbed land. Denser 

temporal coverage of CSTG of lek counts (more and more often) should facilitate analysis of 

how LULC change impacts lekking population in the short term. 

 Modeled satellite imagery like the RSC dataset offers a useful tool for habitat analysis. 

The RSC model for sage trend correlates well enough with fire area that multivariable analysis 

had warnings for collinearity, which seems to validate the sage cover model. While the RSC 

dataset was useful for regional scale analysis, it fell short during examination at the field scale 

just due to the lack of coverage within the mask layer. The downfall of Sentinel-2 imagery for 

this area is the very small study area to pixel size ratio, which limits the number of training 

polygons it is possible to use. Likewise, a 10 m2 pixel typically contains more than one LULC 

class which means the spectral signature for smaller objects are mixed together. The 1 km2 (or 
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less) field size is a more reasonable area to use UAS for data collection, and facilitates high 

quality image processing. Methods used for this research seem broadly applicable for future 

projects, including recommendations for flight planning, ground control placement, and image 

processing using the Micasense Rededge Dual Camera System multispectral sensor. Future work 

should facilitate super resolution of 10 m2 pixel via a fusion product of UAS and satellite 

imagery. Collection and comparison of UAS imagery and Sentinel-2 brings us a step closer to 

data fusion products which can be invaluable for time series analysis.  
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