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Abstract

The NIFFTE collaboration seeks to make nuclear data measurements with
uncertainties below 1.0% using a time projection chamber (TPC). To achieve
this goal, each of the 5952 signal collection and processing channels of the
TPC must be routinely calibrated. The calibration constants are fundamental
to the TPC data collection effort. The TPC channels are distributed amongst
192 32-channel cards specifically designed for the challenges of the project.

A diagnostic platform has been developed to interrogate the 32-channel
cards over their full dynamic range by leveraging existing software, originally
designed as a testing interface during card development, and enhancing the
functionality to provide an appropriate data collection platform.

An independent analysis framework was implemented to provide the
infrastructure required to carry out bulk calibration analyses of the vast
amount of channel-by-channel calibration data collected.

xvi



Chapter 1

Introduction

1.1 Background [1]

Reactors, weapons, and nucleosynthesis calculations are all dependent on nuclear

physics for cross sections and particle kinematics. These applications are very

sensitive to the nuclear physics in the fast neutron energy region and, therefore,

have overlaps in nuclear data needs. Computer codes interface to nuclear data

through nuclear data libraries, which are a culmination of experimental results

and nuclear theory and modeling. Uncertainties in the data contained in these

libraries propagate into uncertainties in calculated performance parameters.

The impact of nuclear data uncertainties has been studied in detail for reactor

and weapon systems, and sensitivity codes have subsequently been developed that

provide nuclear data accuracy requirements. Sensitivity studies have provided

specific requirements for uncertainties on many fission cross sections, many of

which are beyond the reach of current experimental tools.

1



1. Introduction

The proposed method to obtain high-accuracy precision fission measurements

is to employ a tpc
1 and perform neutron energy dependent fission cross measure-

ments relative to H(n,n)H elastic scattering. The tpc is the perfect tool for mini-

mizing most of the systematic errors associated with fission measurements—the

technology that has been in use in high-energy physics for over two decades—but

must be optimized for the task. This includes miniaturization, design for hydrogen

gas, and large dynamic range electronics.

The fission tpc is specifically engineered for delivering fission cross section

measurements with uncertainties below 1.0%. The result of these new measure-

ments will be a refined understanding of computational results, thus reducing

the liability from nuclear data in the overall uncertainties of calculated integral

quantities. Measuring fission cross sections relative to H(n,n)H elastic scattering

removes the uncertainties associated with using the U235 fission cross section for

normalization; a primary goal is to provide the world’s best differential measure-

ment of the U235 fission cross section. This will impact nearly all fission library

data, since the U235 fission cross section has been used as a standard in much of

the available experimental fission data.

The fission tpc design contains nearly 6000 charge collection pads for record-

ing the events inside the detection volume. The charge signals are individually

amplified and converted to a digital waveform representation for later event recon-

struction and data analysis. This amplification and digitization is performed by

two paired cards, shown in fig. 1.1. The right board serves to amplify the charge

signals, while the left digitizes and transmits the signals to the daq
2 system. These

cards are known respectively as a preamp and EtherDAQ card, and together are

1time projection chamber
2digital acquisition

2



1. Introduction

Figure 1.1 – EtherDAQ/Preamp Card Pair

referred to as a E/P pair. A fully-instrumented tpc contains 192 E/P card pairs. Each

E/P pair is instrumented with 32 channels, with one channel providing the readout

for a single charge collection pad. Every channel needs to be individually and

repeatedly calibrated in order to achieve the measurement goals.

This work describes the approach at developing a framework for performing

the required calibration measurements. Existing equipment and software were

modified to create a platform for sending charge signals to an E/P card pair, per-

forming an initial health evaluation, and recording the results. A new framework

was developed for performing advanced analyses on the calibration data. The

framework was demonstrated to be capable of the detailed analyses required for

generating the calibration constants needed for the tpc data reconstruction efforts.

1.2 The Fission TPC Project

The effort for ultra-precise nuclear data measurements is coordinated under the

niffte
3 collaboration.4 The immediate objective of this effort is to implement a

fission cross section measurement program with the goal of providing the most

3Neutron Induced Fission Fragment Tracking Experiment
4
niffte Collaboration homepage: http://nuclear.calpoly.edu/~niffte/

3
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1. Introduction

needed measurements with unprecedented precision and accuracy using a tpc.

The current focus is on generating precision Pu239/U235 and U238/U238 fission ratio

measurements.

The U235/H(n,n)H measurement will provide the best single measurement of

the U235 fission cross section and will allow the niffte collaboration to convert

the initial, and any subsequent, ratio experiments to the world’s best absolute

measurements. After completion of the U235 and Pu239 ratio measurements, the

collaboration will move on to other measurements, such as minor actinide cross

sections and fission fragment distribution. This information will play a crucial role

in current and future nuclear research and development campaigns.

1.3 The TPC Signal Processing System [2]

The niffte tpc, shown in fig. 1.2, operations under the same principles as an

ionization chamber. It consists of a target placed between two pressure chambers,

each known as a volume, resulting in 4π detection capabilities.

Each volume is instrumented at the far end by a pad plane that contains 2976

hexagonal charge collection pads. Each charge collection pad is instrumented by

an E/P channel. Figure 1.3 shows the pad plane layout; each plane is split into

sextants, each sextant into sixteen sectors, and each sector into 32 pads.5

Each channel is instrumented with a preamplifier, an adc,6 and a digital readout.

The challenge of accommodating a large number of densely packed high-speed

channels has been met in the past with relatively expensive custom asic
7 chips.

5The four triangular sectors on the outside edge of each sextant are instrumented with only 28
pads, which is why the total number of pads for each side is not 3072

6analog to digital converter
7application-specific integrated circuit

4



1. Introduction

Figure 1.2 – The NIFFTE TPC with One Instrumented Volume

The technology for adc and fpga
8 type devices has improved considerably over the

last decade. It is now possible to use off-the-shelf components to accomplish the

same task for considerably less development cost, less time to working prototypes,

and considerably more flexibility in the final design.

This, combined with pcb
9 manufacturing advancements, has made small-

budget custom electronics a viable option. The solution for the niffte tpc was to

8field-programmable gate array
9printed circuit board

5



1. Introduction

Figure 1.3 – Pad Plane Layout

create two pcbs intended to be paired together. These are called: 1) the EtherDAQ

card, and 2) the preamp card. The actual design and performance of each are

detailed elsewhere [3]. The E/P pairs can be identified in fig. 1.2 as the green pcbs

arranged around the outer edge of the tpc. The orange cables contain the fiber

optics for data transmission.

The card pairings are intended to be permanent, which insures that valid cali-

bration measurements are maintained even between different tpc configurations.

Each tpc contains 192 E/P pairs. The primary goal for low data uncertainties

requires a very high measurement fidelity. Each card pairing must be individually

6



1. Introduction

tested to ensure it meets the necessary quality requirements. Acceptance criteria

will require information regarding the number of dead or noisy channels, the level

of crosstalk and the gain linearity

Additionally, minor variations naturally exist in the electronic components

between each channel. Thus, each channel must be individually calibrated—–a

nontrivial task for such a large number of channels. Routine inspection for time-

dependent performance is also required. Furthermore, the card pairs are subject

to failure due to experimental conditions and are occasionally replaced with fresh

counterparts. The individual testing and calibration of each card pair is ill-suited

for a manual process due to large time requirements. A manual process for such

a large number of cards is also susceptible to human-based error. An automated

system is, therefore, the most desirable solution for testing and calibration [4] and

is the focus of the work described herein.

1.4 Scope of Work

The capability for testing and calibrating the E/P card pairs is a fundamental com-

ponent of the goal for the success of making precision nuclear data measurements

using the niffte tpc. This capability requires testing hardware and a companion

software interface for rapid testing of the E/P card pairs, performing initial health

checks, and recording data. A robust analysis platform is required to generate

the calibration measurements and perform more detailed studies. This work will

embody the creation of a comprehensive test stand solution for testing the E/P

card pairs. This will include modifications to a hardware testing solution, a soft-

ware based system for systematic interrogation of the cards, as well as a software

analysis package; these are described next.

7



1. Introduction

An existing test stand setup will be adapted to provide the necessary hardware

for performing calibration measurements. A crucial element will be the ability

to test all 32 channels in an E/P pair simultaneously. The input signals must also

be completely reproducible over a large time frame, i.e. the pulse generation

equipment must have extremely tight performance and repeatability tolerances.

The current interface software will be modified to be more user friendly; in its

current state it can communicate with and configure EtherDAQ cards, but lacks

an automated and easy-to-use interface. It will also be modified to configure

and operate the pulse generation equipment used to provide input signals to the

test stand; the parameters controlling the test must be configurable. It must be

developed to include basic functions for preliminary analysis, i.e. inspecting the

results of a test for a basic health evaluation. Further, provisions must be made

for a user to change the test parameters. Lastly, it will be expanded to save the

generated waveform data to an external file for subsequent processing on a more

robust analysis platform.

An analysis framework will be developed to carry out detailed user-specified

analyses that will result in calibration constants for use in the tpc experiment.

It must be capable of fitting the waveforms and extracting the characterizing

parameters. The parameter of interest is the gain, which is the primary source of

information for channel health and calibration. However, the other fit parameters

must also be available if extended analysis needs arise. Further, the framework

must be designed to be flexible and adaptable to any future needs.

8



Chapter 2

Calibration Hardware

A test stand is required to provide the necessary hardware for performing calibra-

tion measurements. A crucial element is the ability to test all 32 channels in an

E/P pair simultaneously. The input signals must also be completely reproducible

over a large time frame, i.e. the pulse generation equipment must have extremely

tight performance and repeatability tolerances. Finally, the calibration hardware

needs to be integrated with a single unified user interface to control the various

components. The interface software development is detailed in chapter 3.

2.1 Basic Setup

The test stand (see fig. 2.1) was originally designed at llnl
1 for characterizing and

debugging the EtherDAQ and preamp cards. It is constructed of steel paneling so

that it functions like a Faraday cage and minimizes emi.2 Bnc
3 connectors serve to

carry signals to the internal components.

1Lawrence Livermore National Laboratory
2electromagnetic interference
3Bayonet Neill-Concelman

9



2. Calibration Hardware

Figure 2.1 – Test Stand Setup at ISU

The back of the case contains a pass-through for power cables, and the left side

contains a second pass-through for the fiber-optic data cable. Clips for holding

wires are mounted internally as a preventative measure against accidental tugging

or other damage. A cooling fan is also mounted to the front.

2.1.1 Power and Clock

Three bnc connectors on the left-side panel provide ports for an external clock

signal, an external trigger, and a timestamp reset. An srs
4 CG635 is used to

generate the clock signal required by the EtherDAQ card.5 Power is supplied via

a set of coupled Agilent E3620A and E3630A DC power supplies. Two power

supplies are required because of the unique power requirements—the EtherDAQ

card requires +24 V, while the preamp requires −3.0 V, +3.3 V, and +7.0 V. The

4Stanford Research Systems
5No internal clock is built into the EtherDAQ cards. For the tpc application the EtherDAQ cards

must be synchronized, which is accomplished by driving all 192 cards with a single clock source [3]—
the tpc reconstruction methods disintegrates if the EtherDAQ clocks are not synchronized. This is
not required for the test stand’s purposes, but the external clock signal must still be provided.

10



2. Calibration Hardware

+24 V and clock signal leads are soldered to the dbb,6 and the preamp power leads

are connected to the designated power header pins on the breakout board. An AC

adapter is used to power a fan for cooling.

Internally, the test stand is designed replicate the seating of an E/P pair onto the

tpc. The setup uses the same dbb for the EtherDAQ cards as is used in the actual

tpc. The only difference is that just the first EtherDAQ seat is configured and active

since the test stand is designed to evaluate E/P pairs one at a time.

2.1.2 Protective Measures

Insulation mats were placed under the test stand. The intent was to prevent

acoustic interference as well as static-based emi.

The timestamp reset was disabled by opening the connection with a 50 Ω

resistive load terminator. It is not currently needed due to the 40 day maximum

value of the timestamp value. An accidental timestamp reset in the middle of a

card testing procedure could even cause an error in the adapted daq system; the

timestamp reset is reserved primarily for use between long data runs during actual

tpc operation.

A interlock relay system (see fig. 2.2) was installed that closes the power

supply circuits only when the cooling fan is on. This precautionary measure was

implemented to prevent accidental overheating of the EtherDAQ components.

6digital bus board

11



2. Calibration Hardware

Figure 2.2 – Interlock Relay Modification

2.2 Pulse Distribution System

Function generators are used to the provide voltage pulses that drive the test stand

system. The front of the test stand provides 8 bnc ports for supplying the input

voltage pulses internally.

Capacitors are used to convert each pulse’s voltage into a charge signal, emulat-

ing of the charge collection behavior of the tpc detection pads. Mezzanine boards,

referred to as breakout boards, are used to deliver the capacitor-generated charge

signals to the preamp card through the exact same connector as used on the tpc.

The breakout boards are also used to supply power to the preamp card, which is

12



2. Calibration Hardware

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
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Preamp ChannelBank 
Output

Figure 2.3 – Bank to Channel Correlation

provided through a set of jumper connectors on the bottom. The locations of the

channel and power connections are printed on the breakout boards7 for clarity.

The channels are configured so that sequentially numbered channels do not

neighbor each other on the preamp card. The top-half of fig. 2.3 illustrates this

configuration.

2.2.1 Pulse Generation

An srs DG645 generator was used initially at lanl
8 for preliminary testing pur-

poses. However, extended testing with the DG645 yielded inconsistent results.

After consulting the spec sheets and contacting customer support, it became appar-

ent that the DG645 performance was a poor match for the testing and calibration

requirements—it was designed with a focus on precise timing—whereas the listed

7The hardware design, source code, and older gui interfaces generally employ a 0-based
indexing scheme, meaning that the channels are numbered 00 through 31. The gui interfaces
designed during this project (see chapters 3 and 4) use a 1-based indexing scheme so that the
channel numbering starts with 1 and goes to 32. A 1-based indexing is employed in these situations
because a typical user is not familiar with 0-based indexing.

8Los Alamos National Laboratory

13



2. Calibration Hardware

amplitude uncertainty was 100 mV± 5%. Evaluation of the DG645 pulses were

performed under a variety of environmental conditions, loads, usage duration,

and pulse parameters. The observed variations confirmed the documentation

specifications.

Consistent pulse amplitude behavior was absolutely necessary for testing and

calibrating the preamp cards. The ArbStudio line, manufactured by Teledyne

LeCroy, was identified as the best option. The ArbStudio units are arbitrary wave-

form generators, enabling a wider range of testing conditions than the DG645’s

square pulse.

A demo ArbStudio 1104 unit was evaluated over the period of a month and

compared against the DG645 using the same pulse evaluation tests. Compatibility

with the interface software was also verified. Niffte project management deter-

mined that the ArbStudio 1104 fulfilled project requirements, actually meeting

or improving on the information listed in the spec sheets. The demo unit was

shipped back and a new unit purchased for use with the test stand.

2.2.2 Individual Channel Testing

A special breakout board, shown in fig. 2.4, provided the capability to isolate a

single channel and test it independently of the 31 other preamp channels.

Individual testing is accomplished using individual leads, each with an em-

bedded capacitor, soldered to the bnc connector. The embedded capacitors are

used to create charge signals from the voltage pulses, which action emulates to

the charge collection behavior of a pad on the tpc. The current configurations are

summarized in table 2.1. The capacitance affects the formation characteristics of

14



2. Calibration Hardware

Figure 2.4 – Individual Channel Testing Setup

Table 2.1 – Channel Isolation Capacitance Configuration

Test Stand Connector AB CD EF GH
Capacitance 0.5 pF 1.0 pF unused unused

the charge signal generated from the voltage pulse. Further, the ideal capacitance

will generate charge signals within the dynamic range of an E/P pair.

The jumper connector on the end of each lead was given a silver orientation

mark on one side. The mark indicates which side must face the channel number

printed on the breakout board. Proper orientation is required for the proper

charge polarity; an inverted charge signal will not be detected and converted into

a waveform by the adc system.

15



2. Calibration Hardware

(a) Conversion from Banks to Channels (b) Breakout Board Connector

(c) Wiring Profile

Figure 2.5 – Distribution Board

2.2.3 Distribution Board

The distribution board (see fig. 2.5), created at lanl, splits the signals from the

four banks into 32 separate pulses. The banks are, ordered from the top/back to

the bottom/front: AB, CD, EF, and GH. In figs. 2.5a and 2.5c the channels are

numbered 1 to 32 from right to left. The channel ordering is reversed for fig. 2.5b

since it shows the flip-side.

Small capacitors, ≈0.5 pF in size, are soldered between the pulse splitters and

the jumper connection to the preamp. These capacitors can be seen between the

colored wires and jumper solder points in fig. 2.5a, with local detail on the channel

07 capacitor in fig. 2.6.

A breakout board (detailed in fig. 2.7), conducts the 32 pulses created by the

distribution board to the 32 channels on the preamp. The channels are organized

16



2. Calibration Hardware

Figure 2.6 – Detail on the Channel 07 Capacitor

(a) Top (b) Bottom

Figure 2.7 – Breakout Board

such that neighboring and opposite-side channels are all fed by different banks.

In other words, a channel’s source bank is different from its neighboring and

opposite-side channel’s source banks, which are all themselves different from each

other. Figure 2.3 illustrates this separation by using a color-coding scheme to

represent the bank to channel correlations.

17



Chapter 3

Interface Software

The name of the interface software for the test stand is EtherDaqGUI, and was

developed at llnl by Dr. Vincet Riot. EtherDaqGUI runs in Windows1 XP and

is coded in C++ using the Visual Studio2
ide.3 Its primary purpose was for the

continual testing and debugging of the EtherDAQ and preamp cards throughout

the hardware design phase (see chapter 2).

EtherDaqGUI must be modified in order to perform to perform quick, basic

health evaluations on the E/P card pairs, provide complete control over the test

stand hardware, and save all the hardware configuration and waveform data to

a file for subsequent analysis. Specifically, the interface must be modified to be

more user friendly; in its original state it could communicate with and configure

EtherDAQ cards, but lacked an automated and easy-to-use interface. It must also

be modified to configure and operate the pulse generation equipment used to

provide input signals to the test stand. The user must be able to modify all the

test parameters. EtherDaqGUI must then save the configuration data along with

1Windows® operating system is a registered trademark of Microsoft Corporation
2Visual Studio® is a registered trademark of Microsoft Corporation
3integrated development environment
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3. Interface Software

the generated waveform data to an external file for subsequent processing on a

more robust analysis platform. Finally, a full test suite should last only a few

minutes, depending on the test parameters. The resulting data should be studied

in much greater detail using a newly developed analysis platform, later discussed

in chapter 4.

3.1 Conversion from a Debugging Tool

It was decided to adapt the existing EtherDaqGUI code by inserting the additional

abilities required for the card testing process. The alternative, redeveloping these

capabilities from scratch,4 was not considered to be a time-effective solution.

EtherDaqGUI already contained the following basic features required for the card

testing procedure:

• network interface

– scanning

– card identification

• initialization

• status interrogation

• data collection

The application gui
5 is organized by dividing the various functions into tabs.

A new tab, <Card Test>, was created for the purpose of automated card testing.

4The resulting interface from re-development would have been purpose-built, potentially
increasing the run-time efficiency. This does not mean that the existing interface had poor
performance, but that there was potential for improvement by stripping out unneeded functionality.
However, the chance for performance gains was not sufficient justification when compared to the
estimated development time.

5graphical user interface
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Figure 3.1 demonstrates the final repurposed version of EtherDaqGUI with the

<Card Test> tab in action.

3.2 Automated EtherDAQ Configuration

The EtherDAQ cards first perform a post
6 when supplied with power. They do not,

however, start sending data upon post completion; the data recording device must

first configure the EtherDAQ card(s).

The original framework required the user to perform a multi-step process in

order to identify and configure an EtherDAQ card. First, the network must be

scanned for mac
7 addresses that are pre-configured to be associated with the

EtherDAQ cards. Next, the operational parameters must be set. These are, in no

order of importance: 1) destination mac address, 2) lookback duration, 3) high and

low trigger thresholds, 4) neighbor triggers, and 5) sampling frequency. Finally, the

desired channels must be enabled, as they are all disabled by default. This is done

by calling CMD_SetSetAnalogChannelEnable().89 Enabling and disabling of individual

channels is a necessary part of operating the EtherDAQ cards for the tpc application.

This way a channel’s output can be suppressed if its electronics fail and begin to

introduce erroneous waveforms into the data stream.

An automated configuration process was designed that simplifies this process.

The user is required only to click on the <Refresh List> button whenever a change

is made to the system. The network is then scanned for EtherDAQ cards and

6power-on self test
7media access control
8TPCPacketParser.cpp:1847–1866
9This sends a packet containing a single 32-bit mask value. The individual bit positions correlate

directly to the channel numbering; the 1st bit maps to channel 1 and the 32nd bit maps to channel 32.
A bit value of '1' enables the channel, whereas '0' disables the channel. For example, a '1' for the 1st

bit causes channel 1 to be enabled; conversely, a '0' in the same position would disable channel 1.

20



3. Interface Software

(a) Test Running

(b) Test Completed

Figure 3.1 – EtherDaqGUI Card Test Tab In Action
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Figure 3.2 – EtherDaqGUI Advanced Settings Dialog

the configuration steps are performed for each discovered EtherDAQ card. In

some cases the changes are not immediately detected. In this instance it may be

necessary to click on the <Refresh List> button until the changes are recognized.

If nothing is detected after a few refreshes then there is likely an error in the

hardware setup; some items to check are: 1) the EtherDAQ card is powered on,

2) the fiber-optic adapter is properly connected, and 3) the optic fibers are seated

properly and have no sudden corners.10

Default operating parameters are defined in CTSetDefaults().11 These default

parameters are selected from experience to fit most testing needs. The parameters

are user-configurable via the <Advanced Settings> dialog, as shown in fig. 3.2. All

changes to the operating parameters can be reverted to the default values by

clicking on the <Load Defaults> button within the <Advanced Settings> dialog.

10If none of these conditions exists the problem may lie in the network communication interface
of EtherDaqGUI. The only recourse is to close EtherDaqGUI down, use the Task Manager to ensure
the process is closed, then re-open EtherDaqGUI.

11CardTest.cpp:1528–1605
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Figure 3.3 – EtherDaqGUI Advanced Settings Dialog in Disabled State

Help is available by clicking on the <Help> button. This opens up a window with

descriptions about each of the items and how they influence the testing procedures.

The syntax and substitutions of the <File save name format> box are also fully listed

and described.

Modifying the parameters is possible only when EtherDaqGUI is idle. The user

can always open the advanced setting dialog to view the settings, but the parame-

ters are grayed out and cannot be modified if the pulse generation equipment is

being operated. Figure 3.3 shows the appearance of the <Advanced Settings> dialog

with the parameters locked.

3.3 Driver Compatibility Issues

EtherDaqGUI depends on ndisprot, a raw Ethernet communications service library,

to communicate with the EtherDAQ cards. This allows the communication based on
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mac addresses instead of ip
12 address, enabling more efficient packet transmission

and routing.

It was discovered during development that ndisprot was not compatible with

Windows 7. Although the computer driving the test stand used Windows XP and

suffered no compatibility issues, the development computer ran Windows 7. Dif-

ferent potential solutions were investigated to resolve the Windows 7 compatibility,

each without success. It was determined that the lack of compatibility was caused

by changes to underlying architectural design differences and driver registration

restrictions in Windows 7.

The primary development continued on the Windows 7 system. Final testing

and debugging was performed on the test stand system. Svn
13 was used to keep

the code between the development and test stand computers synchronized. Two

tweaks enabled the necessary debugging on the development system.

First, it was necessary to inspect the gui as the <Card Test> tab and associated

items were designed and laid out. Originally, EtherDaqGUI exited automatically if

ndisprot was not detected. This behavior was replaced by a message box warning

of the situation. Once the warning was acknowledged the main EtherDaqGUI

window opened up.

Second, the validity of the waveform analysis routines needed to be checked. The

PseudoPulseGenerator class was created which emulated the acquisition of waveforms

from the EtherDAQ card. These simulated results were feed directly into the Card

Test class’s daq component. This class was configured to be used automatically if

no pulse generator was detected upon starting a card test. Again, the user was

notified via a warning message.

12internet protocol
13Apache Subversion
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3.4 Pulse Generator Operation

A detailed understanding of the inputs to the system is a critical component of

performing calibration measurements. This is best achieved if the test system itself

specifies the input signal characteristics. Thus, controls for operating the pulse

generating equipment were added to EtherDaqGUI. A standard pulse configuration

defines the following items:

• voltage amplitude & offset

• frequency

• duty cycle

• number of pulses

Nothing should be assumed about previous operational states—the entire pulse

definition sequence should be transmitted to reprogram the generator when a test

is begun, with any previous settings or changes overwritten. EtherDaqGUI must

completely also maintain control the pulse generating equipment throughout the

entire card testing procedure.

3.4.1 Remote Programming

The remote programming of the DG645 is achieved via its Ethernet port. Originally,

the DG645 was controlled with hand-modified script written in C. An executable

program wass produced by compiling the script in a Cygwin environment14 and

linking it against the Windows WinSock32 libraries.15 Running this program opened

a connection to the DG645, sent all the commands, then closed the connection once

all the commands were executed.

14Refer to the Cygwin website for more information: https://www.cygwin.com/
15The WinSock32 libraries provide the framework for communicating over Ethernet
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A template file was been created to simplify this process based on an example

script found in the manual [5, pp. 70–72]. Still, compilation or run-time errors

often occurred after modifying the template from minor mistakes, e.g. mistyping

a single character. Often these were challenging to locate and resolve. The need

for frequent modifications due to changing testing requirements compounded the

inefficiency of this approach.

Ultimately, the communications protocols were embedded into EtherDaqGUI,

which provided the necessary dynamic communication interface. This mirrored

much of the work required by the external template file modification, while

reducing the potential points of failure. This also enabled near-instantaneous

programming of the DG645, limited only by the response time of the generator.

3.4.2 Common Control Features

Throughout testing the pulse generator is sent more commands to change the pulse

parameters as needed. Trigger events are also sent by EtherDaqGUI to initiate

the next burst of pulses. The controls are implemented such that each of the four

outputs can be independently defined.

It was determined that compatibility with the DG645 would be retained when

support was added for ArbStudio devices (see section 3.4.4). To accomplish this the

complementary macros USEARBSTUDIO16 and USESRS17 were created. The interface for

the ArbStudio devices is used if USEARBSTUDIO is defined at compile time. Otherwise,

the preprocessor defines USESRS and the DG645 interface is used. This provides

support for both generators with only a slight decrease in source code legibility.

16CardTest.cpp:8
17CardTest.cpp:19–21
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3.4.3 SRS DG645 Interface

The controls for DG645 were implemented in the PulseGeneratorEthernetInterface18

class. The class handles the initialization procedures, status interrogation, and

setting the pulse parameters. EtherDaqGUI constructs an instance of the PulseGen-

eratorEthernetInterface class when launched. Commands are immediately sent to

open the connection and give control to the computer. This places the DG645 into

remote lock out mode. The led
19 labeled ‘REM’ is lit to indicate when the remote

lock out mode is active.

For the current setup the DG645 was assigned 192.168.1.6 as its static ip address.

This value was manually keyed into the DG645 using the front panel and hard

coded into the PulseGeneratorEthernetInterface class initializer.20

3.4.4 ArbStudio 1104 Interface

The ArbStudio line of devices communicate using usb.21 An sdk
22 for integrating

device control was provided by Teledyne LeCroy. The sdk was built and compiled

using Visual C] from the Microsoft23 .NET Framework.

3.4.4.1 License Issue Resolution

Forcing the ArbStudio sdk to function properly was a complicated process; the

sdk depended on an NI24 .dll that failed when verifying licensure. The .dll was

18SRSGeneratorInterface.(h/cpp)
19light-emitting diode
20SRSGeneratorInterface.cpp:16
21universal serial bus
22software development kit
23Microsoft® is a registered trademark of Microsoft Corporation
24NI is a trademark of National Instruments. This publication is independent of National

Instruments, which is not affiliated with the publisher or the author, and does not authorize,
sponsor, endorse or otherwise approve this publication.
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critical to device control and utilized to generate Fourier series from arbitrary pulse

shape descriptions. The Fourier series coefficients, not the potentially millions of

individual discrete data steps, are transmitted to the pulse generator to define the

pulse characteristics.

The ArbStudio software engineers were unable to resolve the issue; this issue

was completely unknown since the same .dll was successfully used in their own

software package. A back-door solution was discovered that required modifying

the code of the failing .dll. This was possible only because of the partially-compiled

nature of .NET Framework executables and libraries. Using a decompiler, the

offending code was commented out and then the .dll regenerated.

3.4.4.2 Implementation

EtherDaqGUI was originally written using unmanaged C code, while the ArbStudio

sdk was written using managed Visual C] code. Because of the complexities

relating to interfacing these two different programming languages and design

paradigms, it was necessary to create an separate ArbStudio project within the

EtherDaqGUI solution. The new project was written in Visual C] and linked against

the ArbStudio sdk. The unmanaged to managed code connection was implemented

in the EtherDaqGUI project as the ArbStudioGeneratorInterface25 class, and includes

the necessary functions for mapping the unmanaged function calls to a managed

scope.

In additional to the capabilities of the DG645 interface, the ArbStudio project

included the ability to customize the shape of the pulse. Although any arbitrary

cyclic function is possible, only a few standard options are currently available.

These are square, triangular, sinusoidal, and Erf. The default shape is square,

25ArbStudioGeneratorInterface.(h/cpp)
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Figure 3.4 – Waveform Customizer Dialog

which is the most similar to the output of the DG645. The <Waveform Customizer>

dialog, shown in fig. 3.4 with parameters selected purely for demonstration, was

created to support this functionality. It is accessed through the <Waveform Customizer>

button in the <Advanced Settings> dialog.
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(a) Mezzanine Board (b) Chip

Figure 3.5 – EtherDAQ SN Placement

Figure 3.6 – Preamp ID Location

3.5 Card Testing

Card testing can be performed using a few different procedures, depending on the

analysis needs. Each test is associated with the date and unique E/P card identifiers.

The E/P pair is identified using both the EtherDAQ sn
26 and the preamp id,27 which

must be entered by the user. The EtherDAQ sn can usually be found on a printed

label affixed to the mezzanine board (fig. 3.5a) or a chip (fig. 3.5b). The preamp

id can be found on the backside of the preamp card, as shown in fig. 3.6. It is of

the form XXXX-XXXX, where ‘X’ represents a digit. Occasionally a blank space

is used instead of a digit; this is replaced by ‘0’ for consistency. For example, the

preamp id shown in fig. 3.6 should be read as ‘0110-0006.’

26serial number
27identification
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The <Start> button is enabled when all the parameters are set and an EtherDAQ

card has been found. Once the testing is started the <Start> button is replaced by a

<Cancel> button. When the <Cancel> button is clicked 1) the current testing operation

will terminate, and 2) the equipment will be returned to an idle state.

3.5.1 Sanity Test

A sanity test is performed once card testing has been initiated and before any

actual testing begins. First, the output path for the data is checked to ensure

validity. Second, the EtherDAQ sn and preamp id are checked against an internal

history. If the same pair has already been tested then the user notified and asked if

they wish to stop or continue. Third, the connection to the pulse generator is tested

and verified. If no pulse generator is found then the user is warned and the testing

proceeds using an internal waveform simulation framework. Fourth, the network

conditions are checked as described in section 3.5.1.1. Fifth, the (user-defined) test

parameters are examined. Any errors are corrected with valid values and the user

is notified of the changes. Finally, the internal data buffers are reset and prepared

for the new data.

3.5.1.1 Network Conditions

The network is sniffed briefly to verify that the packet transmission rate is zero. If

network activity is detected then a soft reset of the EtherDAQ card is attempted.

This check is performed to counter the behavior of the EtherDAQ card under

certain situations. Fundamentally, packets are stored in the buffer before being

transmitted over the network. When a data packet is transmitted an acknowledge-

ment from EtherDaqGUI is expected in return. If no acknowledgement is received
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then the data packet is retransmitted at a regular interval until an acknowledge-

ment is received. This behavior was implemented to prevent any data loss and

performs admirably under most conditions.28

Occasionally and for reasons still unknown, the EtherDAQ card and EtherDaq-

GUI fall out of sync with each other: the EtherDAQ card fails to recognize the

acknowledgements sent from EtherDaqGUI. As a result the network becomes satu-

rated as each tries unsuccessfully to communicate with the other. This condition

is colloquially known as a “10 to the 4th” error, taken from the magnitude of the

number of packets being transmitted every second.

3.5.1.2 Soft EtherDAQ Reset

All the channels are disabled, the configurations settings are retransmitted, the

internal buffer is flushed with six housekeeping29 requests, and then the desired

channels are re-enabled. Receipt of all six housekeeping packets is checked once

the network returns to a silent state. If any packets are found missing then the

system is still out of sync and the process is repeated.

The card testing is terminated if too many sequential re-sync attempts fail. At

this point the only current recourse is to power-cycle the EtherDAQ card and restart

EtherDaqGUI. Restarting the computer is not necessary.

28This does not guarantee data preservation—if a packet sits in the EtherDAQ buffer too long it
may be overwritten by newer data

29“Housekeeping” is another term for using the GetAnalogChannelStatus() function. This request
causes a large packet, with information for each of the requested channels (supplied by a 32-bit
argument bit-mask), to be placed into the buffer. Six of these requests for all 32 channels will fill
two buffer blocks, hopefully precipitating a complete buffer flush.
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3.5.2 Preliminary Analysis

EtherDaqGUI contains preliminary analysis capabilities to check the health of an

E/P card pair. The <Advanced Settings> dialog can be used to change the sensitivity

of the preliminary analysis to bad channels or waveforms.

Capabilities for both automated and manual preliminary analysis are available.

Fundamentally, both depend on the estimated pedestal and plateau values for each

waveform. The pedestal is the average of the first ten data points; similarly the

plateau is the average of the last ten data points. Finally, the waveform amplitude is

the difference between the pedestal and plateau.

3.5.2.1 Automated Preliminary Analysis

The automated preliminary analysis was designed to provide a quick method of

evaluating the performance of an E/P based on the pulse amplitude. Two different

health metrics are used: channel response and linearity.

Channel Response

The channel response analysis requires a simple check of the amplitude. A

channel passes if the response is above the given threshold. If the amplitude is

below the threshold the channel is flagged for closer investigation. A channel that

fails the response test is likely dead and will not be able to collect data at any pulse

voltage.

Linearity

Linearity is an analysis performed using the combined results of the waveform

amplitude at each voltage set during a phase. Simple linear regression is used

to analyze the amplitude as a function of the voltage. The ‘R’ value is used to
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determine the statistical quality of the fit. A bad statistical fit is indicative of a

channel that is not linear over the range of input voltages. Manual analysis should

be done to determine the cause and decide whether the channel is usable.

3.5.2.2 Manual Preliminary Analysis

The manual analysis tool collection is designed to aid in further investigating the

health of a card. The tools are activated by clicking on the <Analysis Viewer> button

under the <Card Test> tab. The resulting perspective is shown in fig. 3.7. On the

right are the controls for selecting the analysis tools and data ranges; on the left is

the <display pane> which shows the output.

Two sets of controls are used to operate the manual analysis. The first is the

<Mode> drop-down menu. The second set are the bank and channel selection controls.

The mode controls 1) how the analysis results are displayed in the <display pane>,

and 2) the available bank and channel selection controls. Each mode is described

in appendix C.

3.5.3 Card Testing Procedures

One and only one of the three primary procedures must be selected: 1) Quick

Linearity, 2) Single Channel, and 3) Cross Talk. Burn-in, the fourth selection, is

optional and can be selected along with with one of the primary procedures.

These procedures determine the how the pulse generator is configured, which

data are recorded, and if a preliminary analysis method is performed.
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(a) Pedestals Histogram

(b) Waveform Statistics

Figure 3.7 – Waveform Analysis Tools Perspective
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3.5.3.1 Single Channel

EtherDaqGUI is set to test only one channel. This is used in conjunction with

the single channel testing equipment described in section 2.2.2. EtherDaqGUI

configures the first output on the pulse generator as the pulse source.

The desired dynamic range determines which bank on the test stand to use;

refer to table 2.1 for the available capacitances and connecting banks. The number

of the channel being tested30 must be entered into the edit box located to the right

of the <Single Channel> radio button.

3.5.3.2 Cross Talk

The cross talk procedure fulfills the primary role of the automated card testing—it

is the most definitive and comprehensive test performed. The data generated from

the cross talk test is used extensively by the analysis framework (see chapter 4).

The distribution board is used for this test.

The test names comes from the focus of the test parameters to investigate

the system for cross talk. Voltage pulses are sent to only one bank (and its 8

corresponding channels) at a time—the other three banks and 24 corresponding

channels are idle. The sync output of the pulse generator is connected to the force

trigger bnc connector on the test stand. A ttl
31 pulse is sent to the sync output

coincident with the leading edge of the voltage pulse. This forced trigger causes

the EtherDAQ fpga to record data for all 32 channel, regardless of whether the

filtering algorithms detect a signal or not. Any cross talk existing in the system

can then be detected and/or recorded by the idle channels.

301-based
31transistor-transistor logic

36



3. Interface Software

The procedure is divided up into four phases. Each phase pulses only one

bank, and the phases each pulse a different bank. Each phase contains a number of

subphases equal to the number of voltage steps. The first subphase sends pulses at

the minimum voltage. Amplitudes for the subsequent subphases increase linearly,

with the final subphase voltage at the maximum voltage. Separately pulsing each

bank fulfills the cross talk measurement requirements.

Performing each phase with a number of subphases provides data for two

additional quality checks. First, it allows a linearity test to be performed on each of

the channels. As described previously, linearity is a required characteristic for the

intended use of the preamp cards. Second, it allows for the discovery of non-linear

cross talk. The calibration and analysis is based on the assumption of linear cross

talk. The presence of non-linearity would indicate either a flaw in the analysis

assumptions or a bad channel; either would require further detailed interrogation.

3.5.3.3 Quick Linearity

Quick linearity was designed to be a fast test that can be used to verify that each

preamp channel exhibits a linear response. In consists of only a single phase with

all four banks pulsed simultaneously. Cross talk cannot be evaluated using this

test data, although the distribution board is used.32 The linearity test results can

be viewed with the <Linearity> analysis tool described in table C.1.

32It is assumed that the cross talk scales linearly with the pulse amplitude, and thus can be
overlooked in this context
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3.5.3.4 Burn-in

This test is optional, and can be enabled by selecting the <Burn-in> check-box on

the main <Card Test> tab. The burn-in can be used with any of the primary tests,

and is always the first operation when enabled.

The pulse generator is idle for a specified time, which allows the electronics

to reach a steady-state condition. Additionally, EtherDaqGUI does not send any

communications to any device. It has been observed that altering settings on both

the pulse generator and EtherDAQ will occasionally cause an unexpected waveform

event, especially with the DG645 pulse generator.

This idle time is also used to identify poor or noisy channels on the preamp card.

Since no pulses are being introduced into system, the system logs any spurious

waveforms that may be generated by the preamp card. A channel is flagged if the

count exceeds the given threshold parameter.33 The entire card is considered faulty

if a preamp card has too many flagged channels; the testing is terminated and the

user notified.

3.5.4 Data Export Files

EtherDaqGUI generates all output in text form. All output files are saved into

the directory displayed in edit box below the Main Save Folder label. The path is

selected using a folder browser which is opened by clicking on the <...> button.

The generated output depends on the testing procedure. All of the test pro-

cedures record data to the Waveform Data and Analysis Information files. The single

channel test generates an additional Single Channel file.

33Waveforms collected from flagged channels are ignored during the primary test
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All files are written in text-based output and formatted so that they are human-

readable. Only the layout of the Waveform Data is explicitly defined below; it is

designed to be parsed by the analysis framework (see chapter 4) and must follow

a strict formatting structure. The contents of the two other file types are self-

explanatory. The headers and footers of the files all contain the same information.

3.5.4.1 Waveform Data
Naming: *.txt
Purpose: Stores the measurement values of the collected waveforms

The Waveform Data file is the primary method of transferring the data collected by

EtherDaqGUI to the analysis framework. The file format, shown in Table 3.1, is

well defined so that the analysis framework can parse it correctly. Any changes to

the format made in EtherDaqGUI will need to be also implemented in analysis

framework—no time was invested into maintaining an option for backwards-

compatibility with different formats since the additions to EtherDaqGUI were

essentially finalized when development on the analysis framework was begun.

Lines containing waveform data begin with ‘Sample.’ All other lines are either

empty or begin with a ‘#’ symbol. This syntax removes the need to specify the

number of waveform data entries in each data block; parsing of the waveform data

‘Sample’ lines continues until the ‘#’ character is encountered. The remainder of that

line is then parsed to determine whether to read another data block or the file

footer.

3.5.4.2 Analysis Information
Naming: *.ana
Purpose: Contains a quick overview of the analysis parameters and results

The first data block contains all the test parameters from the <Advanced Settings>

dialog, which govern the data collection and preliminary analysis behaviors. This
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Table 3.1 – Waveform Data File Contents

Line Description Format

Header

B1 comment # 〈S|purpose of file|〉
B2 EtherDAQ serial number # EtherDAQ ID: 〈S〉
B3 preamp identification # Preamp ID: 〈NNNN〉-〈NNNN〉
B4 original save directory # File save directory: 〈S|path|〉
B5 save name # File save name: 〈S|name|〉
B6 test start date # Start Date: 〈X|month|〉-〈X|day|〉-〈X|year|〉
B7 test start time # Start Time: 〈X|24hour|〉:〈X|min|〉:〈X|sec|〉

Data blocks, repeated, one per subphase

R1 phase voltage #### voltage: 〈F〉 ####
R2 initial temperature #### Temperature: 〈F〉 ####
R3 waveform data Sample Time:〈H〉 Ch〈NN|channel|〉 〈X|values|〉...
...

R〈X〉 waveform data Sample Time:〈H〉 Ch〈NN|channel|〉 〈X|values|〉...
Footer

E2 test end date # End Date: 〈X|month|〉-〈X|day|〉-〈X|year|〉
E1 test end time # End Time: 〈X|24hour|〉:〈X|min|〉:〈X|sec|〉

This table uses substitutions; see table A.2 for more information
‘B’ represents a line relative to the beginning of the file
‘E’ represents a line relative to the end of the file
‘R’ represents a line relative to the beginning of a repeated block

information is available be parsed by the analysis framework in addition to the

Waveform Data file.

If the optional Burn-in procedure was selected then a Burn-in section is included

in the output. The Burn-in section contains a list of all the spurious waveforms

detected during the Burn-in for each channel.

A Waveforms block follows, with sections for each of the selected test procedures.

This block contains tabulated data of the average waveform amplitude in each

subphase for each channel. The total number of waveforms collected is then
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reported. Lastly, the configuration details of each subphase are reported, as well as

the EtherDAQ temperature at the beginning of that subphase.

3.5.4.3 Single Channel
Naming: *.csv
Purpose: Reports the statistics for the channel over all the voltage phases

The Single Channel file is designed to provide more in-depth analysis information

than the Analysis Information file, but is generated only by the Single Channel test

procedure. Further, it’s structure is somewhat different from the other two files.

It is written as a csv
34 file, which eases importing the data into a spreadsheet

application when quick-turnaround analysis is required—most spreadsheet appli-

cations have the functionality for quickly importing and plotting csv-formatted

data. An additional advantage is that no further development was required, in

either the analysis framework or in creating a new program, to work with this new

data type.

The main focus of the file is tabulated analysis data for each of the pulses in

each subphase. The gains are reported, as well as the pedestal and plateau values

and uncertainties.

34comma separated value
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Analysis Framework

An analysis framework is needed to perform the data analyses required for the

routine calibration of the E/P card pairs. The primary requirement is a flexible

design that allows for a variety of analysis methods and tools, adaptable for future

needs and developments. The framework must also be able to load data generated

by the test stand and provide powerful tools for visualization and interrogation.

Finally, it must be capable of generating the calibration constants for use in the

niffte reconstruction software.

The name of the analysis framework is Preana, for preamp analysis. Preana

is an extensible, intuitive platform for interfacing with the test stand data to

perform calibration analysis. Preana loads the Waveform Data files generated by

EtherDaqGUI, which data are then fully available to the user for plotting and

analysis. The Minuit2 minimization library is built into Preana, and provides an

extensive suite of tools for for fitting the test stand generated waveforms, extracting

fitted parameters, and performing statistical analyses. The framework provides

users with an initial example set of fit functions that can be easily modified or
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replaced for more exacting analyses. These analyses are required to obtain the

parameters used for the calibration measurements.

Preana also contains a dynamic and resizable interface. The capability for a

larger window size is especially useful when dealing large analyses or multiple

data sets. Another feature is that Preana is task-specific, which allows for opti-

mization of the analysis speed and efficiency. The code framework is designed to

enable development of the required tasks while allowing for flexibility in future

developments.

4.1 Design

Preana is written in C++, compiled using Microsoft Visual Studio against the

Windows native api
1, and contains extensive application of oop

2 concepts and

meta-programming techniques.

The gui is designed to be clean and intuitive. A main menu provides access

to all the functionality. A group of panes across the top, collectively known as

the <Data Browser>, is used to navigate the data sets currently loaded into memory.

<Progress Manager> windows display the progress to completion for all running jobs,

and automatically hide themselves when no jobs are left. The remaining space is

reserved for the <Analysis Display>, which is used to display the <Waveform Display>

and <Histogram Display> windows. The <Analysis Display> always contains a <Preview

Pane> window, which is identified by the light gray ‘WAVEFORM PREVIEW’ text.

It is used to quickly preview a waveform selected in the <Waveforms> pane.

1application programming interface
2object-oriented programming
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Internally, the test data are stored hierarchically. This provides intuitive access

for the user and simpler storage controls for the programmer. This also reduces the

amount of redundant information involved in uniquely identifying or categorizing

a waveform during analysis.

A few external packages are incorporated into Preana to support its work.

The primary external package is Minuit2, a package for performing minimization.

Minuit2 is used to fit representative functions to the waveform data and extract the

best-fit function parameters and fit uncertainties. Preana also has the ability to

export the results and statistics of these fitting analyses for external validation and

verification by the ROOT Data Analysis Framework.3 The other packages, libpng and

libjpeg,4 provide the ability to save any visualizations as images.

Preana also contains a detailed job-scheduling system—many of the analysis

tasks can be run in parallel. Modern computing systems often contain multiple

processing units, whether logical or physical. Scheduling multiple jobs harnesses

this available computing power to speed up the analysis process. Included with

the job scheduling system is an event-based signaling interface.

4.1.1 GUI Framework

Although the extensively documented Windows api is modernized for use with

C++, its design is not inherently oop-friendly. The Windows api is based on a

message-passing system to function. These messages are used to control and

interact with the gui elements. gui elements are entities such as windows, dialog

boxes, menus, and buttons.

3More information on ROOT can be found at the project website: https://root.cern.ch/
4libpng depends on the package zlib, which is also included but not used directly by Preana.
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A specialized function, called a message handler, is used to process the mes-

sages and perform the required action.5 All of these message handlers must

exist as static functions. Otherwise, the compiler is unable to match the function

signature to the form required by the Windows api. This process is fairly simple

as long as there is only one window per message handler. The process becomes

more complicated if multiple elements based on the same message handler are

required. The process becomes even more complicated when developing in a pure

oop fashion.

4.1.1.1 Base Window Class

The template WinProcClass6 leverages crtp
7 capabilities to overcome the difficulty

of meshing the Windows api requirements with oop design ideals. It is used to

pair a window to a controlling singleton class. An example is the AboutWindow8 class.

WinProcClass contains the necessary static function, WinProcClassStatic(),9 to be

compiled properly against the Windows api. The crtp is what allows a unique

static function to be created for each derived class. There are also two pure virtual

function that must be implemented by any derived class: MessageHandler()10 and

OpenWindowSpecific().11 These two functions are declared as protected so that only a

derived class has access.

5Behaviors are usually well-defined and understood for elements such as buttons. A defined
message handler is not required—the Windows api uses an internally-defined message handler to
provide the default behavior.

6WinProc Class.h
7curiously recurring template pattern
8About Window.(h/cpp)
9WinProc Class.h:28–31

10WinProc Class.h:49–52
11WinProc Class.h:53
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MessageHandler() is a non-static member function that processes the messages

as desired. One of three values must be returned back to WinProcClass, de-

pending on the result of the processing. These are: 1) WINPROC_MESSAGE_COMPLETED,

2) WINPROC_MESSAGE_NEEDS_MORE, or 3) WINPROC_MESSAGE_NOT_PROCESSED.

OpenWindowSpecific() must actually create the window. This is typically performed

with the Windows api CreateWindowEx() function. The derived class can perform

any necessary initializations for its child windows in this step. The handle to the

newly created window much be returned.

Three other virtual functions are optional and needed only if the window

processes commands in a non-default manner: CommandAccelerator(),12 CommandCon-

trol(),13 and CommandMenu().14 Any implementation of these functions must also re-

turn one of three values back to WinProcClass. These are: 1) WINPROC_COMMAND_PROCESSED,

2) WINPROC_COMMAND_TERMINATE, or 3) WINPROC_COMMAND_NOT_PROCESSED.

4.1.1.2 Dynamic Sizing

WinProcClassDynamicSizing15 builds on the foundation of WinProcClass to add dynamic

resizing capabilities. It is itself another crtp. A class derived from WinProcClassDy-

namicSizing automatically contains built-in functionality to react to size changes in

the parent window. Additionally, it contains itself to a designated area within the

parent window. Examples of derived classes are DataBrowser16 and ProgressManager-

CRTP.1718

12WinProc Class.h:42
13WinProc Class.h:44–46
14WinProc Class.h:47–48
15WinProc Class Dynamic Sizing.h
16Data Browser.(h/cpp)
17Progress Manager CRTP.h
18The ProgressManagerCRTP class is discussed further in section 4.1.4.
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This capability requires the use of the CM_WINDOW_PARENT_RESIZED notification mes-

sage. A dynamic resizing window will only query the status of its parent win-

dow, and resize if needed, upon receipt of this message. A window containing

dynamically-sizing child windows must send this message only after it has com-

pleted resizing. Otherwise the information a child window retrieves about its

parent window may be outdated and incorrect. The result of a mistimed notifica-

tion will cause undefined behavior.

The MessageHandler() interface is changed by WinProcClassDynamicSizing—it is re-

placed with DynamicWindowMessageHandler(),19 another pure virtual function. The

expected return values are identical.

Finally, an additional virtual function ResizeAndRelocateWindow()20 is available. It

provides default behavior for resizing upon receipt of the CM_WINDOW_PARENT_RESIZED

message. It can be overridden if further actions are required. In some situations

it is desirable to both maintain default behaviors as well as provide specific

functionality; the preferred solution is to use scoping21 instead of copying and

pasting code.

4.1.1.3 Managing Multiple Windows

Support for multiple windows is implemented with two layers of abstraction. The

first, DisplayBase,22 is a standard C++ abstract class. The second, DisplayCRTP,23 is

essentially a crtp wrapper around DisplayBase. The crtp usage causes the compiler

19WinProc Class Dynamic Sizing.h:42–45
20WinProc Class Dynamic Sizing.h:39-41
21For an example of usage, see the overriding function ResizeAndRelocateWindow(), Analysis Display

Organizer.cpp:468-504
22Display Base.(h/cpp)
23Display CRTP.h
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to create a unique static message handler for each derived class. Thus, classes that

are designed to support multiple windows must inherit directly from DisplayCRTP.

Multiple windows are managed by storing each class instance pointer as a

value in the user data24 of the associated window. The static message handler

retrieves the user data using the window handle accompanying a message. The

result is cast to a DisplayBase25 pointer, which is then used to call the class-specific

message handler. DisplayProc()26 provides the required static message handler, and

MessageHandler()27 is the pure virtual message handler that must be implemented

in the derived classes.

All derived classes are responsible for painting both the background and

foreground of the window. This mandate is enforced by the pure virtual function

PaintForeground()28 and PaintBackground().29 An additional pure virtual function,

PostPaint(),30 provides a hook for performing operations after the painting process

is completed.

4.1.1.4 Main Window

The MainWindow31 class is the core of Preana. It inherits directly from WinProcClass,

contains Preana’s main message handler, controls the gui, and is responsible for

the management of the top-level data. It also is responsible for controlling data

access permissions between other objects.

24The user data can be retrieved and set using GetWindowLongPtr() and SetWindowLongPtr(), with
GWLP_USERDATA as the parameter name.

25Display Base.cpp:123
26Display Base.h:48–51
27Display Base.h:53–56
28Display Base.h:62–63
29Display Base.h:57–58
30Display Base.h:69–70
31Main Window.(h/cpp)
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The main window, operated by MainWindow, contains a number of child windows.

These are the <Data Browser>, the <Analysis Display>, and a few progress managers.

Each of the child windows are based on WinProcClassDynamicSizing so that they can

react to resizing events.

MainWindow also manages the data analysis. Analyses are requested by the user

through either the main menu or the <Data Browser>. A message with the necessary

information is dispatched to MainWindow, which then creates the operation and

queues it with the appropriate progress manager.

4.1.2 Data Storage

Tests are loaded into Preana using the main menu, and are expected to include

data from all 32 channels. The menu navigation for loading test data is: <File>

. Load Preamp Card . (Select test type). A <File Preview> pane is displayed at the

bottom of the dialog box when selecting files. This makes it easy to visually verify

the file contents that are being loaded.

The internal data are frozen once they have been imported by declaring them

as const data types, i.e. the values cannot be changed. The test data are organized

in a hierarchical tree-like structure. Each instance of a data storage class uses a

vector to stores instances of the next-level-down data class.

4.1.2.1 Loading Data Sets

A cross talk procedure data set is assumed to have a complete set contained in one

file, while a single channel test is inherently split up over 32 files. Loading data

from a single channel procedure requires the selection of the corresponding file

for each channel. Two methods, manual or automatic (see fig. 4.1a), are available
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for the single channel file selection. The automatic mode allows the user to select a

directory (see fig. 4.1b) to scan for matching files.32 The directory scan results are

transferred into the file selection dialog (see fig. 4.1c). The user can then add or

correct the results of the scan.

The file selection dialog is also used for the manual mode. However, it is not

pre-filled with any file names. It is highly recommended that the single channel

test files be appropriately named and grouped in directories sorted by E/P pairing

to take advantage of the time-saving automatic mode. Manually selecting all 32

files should be done only in dire circumstances.

4.1.2.2 Classes

Test

The test type is based on the origin of the data. Three test types are currently

implemented, and are listed in table 4.1. All test types derive from the TestBase33

class, which contains the top-level functions for loading data sets, analysis, and

exporting results. It also declares three pure virtual methods, which must be

implemented by derived classes. These are Analyze(),34 CalculateDiagonal(),35 and

FillExportData().36

Test Base contains LoadFile(),37 a universal function for opening data files. A

derived class is responsible for calling LoadFile() for each file that needs processed.

LoadFile() first prepares the class instance for receiving the data and then queues

32The directory scan examines the file names for a pattern matching ‘Ch〈XX〉’
33Test Base.(h/cpp)
34Test Base.h:58
35Test Base.h:59
36Test Base.h:63–64
37Test Base.h:66–67

50



4. Analysis Framework

(a) Selection Mode (b) Folder Browser

(c) File Selection

Figure 4.2 – Single Channel File Selection
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Table 4.1 – Test Types

Name Contents

Distribution Cross talk test data, performed using the breakout board to
simultaneously pulse all 32 channels.

Single Channel Single channel test data, performed using the single channel
approach to individually test each channel.

Comparison Results of an analytical comparison results between two or
more tests of any test type.

the process with FileLoadingProgressManager.38 Another function, QueueAnalysis(),39

queues the analysis for a channel with AnalysisProgressManager.40 Derived classes

use this function to perform the actual analyses when implementing Analyze().

Both ...ProgressManager classes are job schedulers, and described in further

detail in section 4.1.4.

Card Pair

CardPair41 exists primarily because of the data set segmentation—splitting over

multiple files—of the single channel test type. An instance of CardPair stores the

extracted data from just one file. Thus, a distribution-type test will store only one

CardPair instance, while a single channel-type test will store thirty-two.

Although TestBase is responsible for adding tasks to the queue, CardPair is

the class that actually contains the functions for performing the data parsing

and analysis tasks. These are, respectively, LoadData()42 and RunAnalysis().43 Both

38File Loading Progress Manager.h
39Test Base.h:70-72
40Analysis Progress Manager.h
41CardPair.(h/cpp)
42Card Pair.h:44
43Card Pair.h:53
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functions are written for use in a threading context, which is the core of the

parallelization capabilities of Preana.

Thread-contextual functions must be static and can have only one argument

to match the required function signature. CardPair is equipped to work with this

restriction. Two functions, MakeLoadingProgressBarParameters()44 and MakeAnalysis-

ProgressBarParameters(),45 each create a structure that contains all the necessary

parameters. The pointer to a structure is passed in as the single argument. The

function is then able to extract the information inside the structure and perform

the job correctly.

Channel

The Channel46 class is very simple. It exists primarily to provide a logical

structure to the data.

Phase Set

Much like Channel, the PhaseSet47 class is primarily an organizational entity.

However, it does have a unique identifying function: IsPulsedPhase().48 This func-

tion returns true if its class’s data correspond to a primary pulse generated during

a test procedure.

44Card Pair.h:48–50
45Card Pair.h:45–47
46Channel.(h/cpp)
47Phase Set.(h/cpp)
48Phase Set.h:38
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Voltage Set

The data stored by the VoltageSet49 class maps to the data collected during a

subphase. A subphase is identified by the voltage of the driving pulses, hence the

class name.

VoltageSet, in additional to its organizational role in the data hierarchy, is

responsible for aggregating the analysis results from the waveforms it contains.

Waveform

Waveform50 is the foundation of the data storage and analysis for Preana. Each

instance holds the data values and analysis results for a single waveform.

The waveform values are stored in a const vector. The dynamic array capabilities

of the vector avoids restrictions or requirements on the length of the waveform,

i.e. how many data values is contains. The const qualifier prevents any future

modification of the values. This allows a reference or pointer to the vector to be

passed around without fear of accidental or intentional modification.

4.1.3 Data Exploration and Interrogation

The <Data Browser> is designed to provide intuitive access to the data, from picking

a test for analysis to selecting a waveform to view. The <Data Browser> contains

five panes for browsing the data. The order of the panes is nearly identical to the

internal data hierarchy (see section 4.1.2.2).

The <Data Browser> is linked closely to the <Analysis Display> area, where all the

display windows are shown. Together, the two provide the primary interface of

Preana (shown in fig. 4.3).

49Voltage Set(.h/cpp)
50Waveform.(h/cpp)
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Figure 4.3 – Data Browser and Analysis Display

4.1.3.1 Data Browser

Tests

First, the <Tests> pane lists the loaded test data sets. Only Distribution and

Single Channel tests (see section 4.1.2.2) are listed. Left-clicking on a test will

highlight it and permit the selection of an item in the <Channels> pane. A right-click

displays a pop-up menu with analysis options. The pop-up menu also contains

a <Delete test> item, the only current mechanism for deleting a loaded test from

memory.

Text and highlighting colors are used to represent the current status of a test.

A selected test will be highlighted using the system-defined color, typically blue.

A test with an error will be highlighted with orange.51 Normal text is displayed

51RGB value of 0xFF9900
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using the system-defined color, typically black. Gray text indicates that the test is

currently being loaded from data files. Blue text means the test is currently being

analyzed. Green text means that the analysis results are being exported. Red text

means the test is being deleted from memory.

Channels

Next is the <Channels> pane, which always displays items for all 32 channels.

However, the list items are displayed in black and selectable only when a valid

test is selected. Otherwise, the items are displayed in a gray text and cannot be

selected.

Phases

The third pane, <Phases>, lists all the recorded phases for the selected channel.

In the event of a single channel test only one phase is listed. A cross talk test

will have four, with the primary phase in black and the three secondary phases in

gray—all the phases are selectable, the coloration is provided only for identification

purposes. A right-click on an item displays a pop-up menu with analysis and

plotting options.

Voltages

Fourth, the <Voltages> pane list the subphases. A right-click on an item displays

a menu with analysis and plotting options.

Waveforms

Fifth, the <Waveforms> lists all the waveforms in the selected subphase. Special

mouse actions are available in this pane. A single left-click displays the waveform
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Figure 4.4 – Preview Pane

automatically in the <Preview Pane>, shown in fig. 4.4. A double left-click opens

the waveform up in a new <Waveform Display> window. A Ctrl+left-click adds the

waveform to the top-most <Waveform Display> window. A right-click displays a

pop-up menu with extended options for analysis or plotting.

4.1.3.2 Analysis Display

The <Analysis Display> window is managed by the AnalysisDisplayOrganizer52 class,

and covers roughly 80% of the main window. Initially <Analysis Display> contains

only an empty <Preview Pane>. It can support child windows that inherit from Dis-

playCRTP (see section 4.1.1.3); currently only WaveformDisplay53 and HistogramDisplay54

are implemented.

All classes that inherit from DisplayBase have a built-in pop-up window. The

option to export the contents of the window to an image file is usually available.

52Analysis Display Organizer.(h/cpp)
53Waveform Display.(h/cpp)
54Histogram Display.(h/cpp)
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A derived class can add more options by overriding ProcessContextMenu().55 An

example is shown in WaveformDisplay::ProcessContextMenu().56

AnalysisDisplayOrganizer is derived from WinProcClassDynamicSizing, although the

child windows it contains do not. As such, AnalysisDisplayOrganizer dynamically

resizes any child windows as its size changes. This prevents a child window

from becoming lost in the virtual coordinate space that exists beyond the window

viewport.57

Waveform Display

WaveformDisplay is designed around the need to display one or more waveforms

in an accessible manner. Each waveform is drawn as a line with a unique color

and pattern. Eight colors and four patterns are available, which allows up to

32 waveforms to be simultaneously and uniquely displayed. Figure 4.5 shows a

WaveformDisplay plotting together one waveform from each subphase of a phase. Note

that the window title includes the number of waveforms it contains.

A number of navigation controls assist in inspecting the waveforms, and are

summarized in table 4.2.

The Preview Pane is a specialized application of WaveformDisplay. It has a perma-

nent watermark in the background and can only display one waveform at a time. If

a fit has been performed on the displayed waveform then residual bars are drawn,

showing the difference between the fit and the actual values at three times the

waveform scale. Blue bars are normal, while red bars indicate that the scaled value

55Display Base.h:64–65
56Waveform Display.cpp:786–815
57The Windows api uses the top-left had corner the origin, with positive directions being down

and left. However, nothing prevents any part or all of a child window from moving outside of
the edges that define the parent window’s borders. As such, anything that causes a child window
to exist beyond these edges would effectively hide it from the user—it would become lost and
unusable—all the while continuing to exist in memory and consuming processing resources.
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Figure 4.5 – Display of Multiple Waveforms

Table 4.2 – Waveform Display Controls

Mouse Event Action

Double Left-click Zooms in on the location of the cursor using the current
aspect ratio

Left-click + Drag Moves the view with the mouse cursor
Right-click Opens a pop-up menu with options for saving the current

view as an image or changing the zoom level
Right-click + Drag Draws a zoom box, which becomes the new view when the

button is released
Scroll Wheel Zooms in or out using predefined increments centered on

the mouse cursor; resets the aspect ratio
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exceeds the view. Finally, the right-click pop-up menu contains only an option for

exporting the contents to an image file.

Histogram Display

HistogramDisplay is a custom-built 1D histogram viewer. It behavior is customiz-

able, and can include any of the following items:

• displaying different data sources

– dynamically generated bin edges and values from a vector of data

– pre-calculated bin edges and values

• auto-sizing text labels based on window size (title, axes, bins)

• error bins on either side for out-of-range values

• support for programmer-defined bin colors

An example is shown in fig. 4.6, which exhibits the text auto-sizing and bin

color features. Both subplots display the same histogram. Only the window size is

different. Figure 4.6a is maximized to fill the entire <Analysis Display>, and fig. 4.6b

is 75% smaller. The relative sizes of the text are essentially equivalent, while the

number of axis tick marks are different. Differences are also seen in the size of the

windows’ title bars. The colors correspond to the bank colors established within

the niffte collaboration (see fig. 2.3).

Typically the histograms are used to plot aggregated results from analyses.

However, the HistogramDisplay is also used to display the results of a comparison

test.
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(a) Full Window Size

(b) 25% Full Window Size

Figure 4.6 – Text Auto-sizing
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4.1.4 Job Scheduling

Threading and job scheduling are necessary components of any heavy-duty analysis

system. Any long or resource-intensive tasks should be performed on a thread

separate from the message queue, especially because of the way Windows interacts

with programs—performing a long operation within the message queue causes

the application to appear unresponsive or frozen.

Threading is a powerful tool for performing parallelizable tasks. In Preana, the

tasks for the loading and the analysis of tests are both extremely parallelizable.

These characteristics harness the available system resources and reduce the overall

duration of an analysis.

4.1.4.1 Thread Management

The core of Preana’s thread scheduling and management is the crtp ThreadMan-

ager.58 A thread manager is necessary to prevent a large number of simultaneous

threads from monopolizing resources and choking system-wide responsiveness.

For example, the analysis of a test spawns 32 threads, one for each channel. An

average workstation would bog down the intensive workload if all 32 threads were

running simultaneously. Instead, ThreadManager queues all the threads, then runs a

limited number of threads concurrently. The next thread in the queue is started

once a running thread ends, until the queue is emptied.

A instantiating class of ThreadManager provides two arguments to the constructor.

The first, the refresh rate interval, specifies the frequency at which the managed

threads statuses are polled. The second, the maximum number of concurrent

threads, limits the number of threads the manager can have executing simultane-

58Thread Manager.h
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ously. The implementing class is permitted to provide the limit, which should be

based on an understanding of the underlying resource loads and system hardware

capabilities. For example, three derived classes use the number of cpus
59 available

to determine this limit.60

ThreadManager uses a template class ThreadTable61 to store the information about

queued and running threads. All threads require the creation of dynamically allo-

cated data structures to store the execution information and parameters. ThreadTable

assumes ownership of these dynamically allocated data, and deletes them when

the associated thread is removed.

The thread management involves transitioning threads between events based

on the thread status. For example, a thread process must have ended before its asso-

ciated data can be deleted. Premature deletion of data will cause a program error

and possible termination. The AdvanceFromThreadEvents()62 is primarily responsible

for managing changes in thread statuses.

4.1.4.2 Progress Visualization

Most tasks that are parallelizable are lengthy process. Also, they are intrinsically

capable of reporting progress to completion. Finally, the user experience is greatly

enhanced by a visualization that implies work is being done.

This functionality is implemented by ProgressManagerCRTP, which extends both

ThreadManager and WinProcDynamicSizing, in order to manage jobs and display progress.

The crtp form allows for specialization based on the task. Currently, three

classes that provide concrete implementation: FileLoadingProgressManager, Analysis-

59central processing units
60The three classes that used knowledge of the system hardware are: Analysis Progress Man-

ager.cpp:32, File Loading Progress Manager.cpp:28, and Simple Function Thread Controller.cpp:17
61Thread Table.h
62Thread Manager:135–208
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Figure 4.7 – Progress Manager

ProgressManager, and ChainedProgressThreadManager.63 Figure 4.7 shows an example of

a progress window displaying the progress of three analysis threads.

ProgressManagerCRTP is designed such that any derived class needs only to define

a four static variables. Two variables control the appearance of the progress bars

by specifying the color and text descriptors, and the other two work with the

Windows api to generate a unique window instance.

4.1.4.3 Thread Parameters

Preana includes a suit of crtp modules that simplify the creation and organization

of the thread parameter structures. Each module is created for a specific task and

stores the required data. There are modules currently for animation, sequence

locked execution, progress reporting, self identification, and window support.

A base class, BasicThreadParameters,64 provides the common data that all threads

require. This, combined with the aforementioned modules, create the thread param-

eter classes: AnimateWindowThreadParameters,65 ChainedProgressThreadParameters,66 Man-

agerThreadParameters,67 ProgressBarThreadParameters,68 and SimpleThreadParameters.69

63Chained Progress Thread Manager.h
64Basic Thread Parameters.(h/cpp)
65Animate Window Thread Parameters.(h/cpp)
66Chained Progress Thread Parameters.(h/cpp)
67Manager Thread Parameters.(h/cpp)
68Progress Bar Thread Parameters.(h/cpp)
69Simple Thread Parameters.(h/cpp)
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One of the required template parameters for ProgressManagerCRTP and Thread-

Manager is the thread parameters class type. As a result, a thread manager class

implementation is usually created for each of the thread types. This is by design

so that each manager can perform specialized tasks as needed.

4.1.5 Data Fitting

The Minuit2 minimization library is the core of Preana’s analysis capabilities. Minuit2

provides the extensive suite of tools for fitting the waveforms contained in the test

stand data. These fit parameters are used to generate the calibration measurements

required to provide precise tpc nuclear data measurements.

Minuit2 is a C++ adaptation of the Fortran-based Minuit minimization routines.

It is not a program or application unto itself, but rather source code that can be

downloaded and integrated directly into a program.70

4.1.5.1 Fitting

Minuit2 minimization requires, at a minimum, the implementation of two classes:

FCNBase71 and MnUserParameters.72 Each has its own unique requirements and pure

virtual methods. A single class in Preana, Fitting, uses multiple inheritance to

implement both classes. FCNBase is inherited as public, while MnUserParameters is

inherited as protected. This is because of the methods in the former require

external visibility, while it is safer to hide the data and a most methods of the

latter.

70The source is available from the project website: http://seal.web.cern.ch/seal/snapshot/
work-packages/mathlibs/minuit/

71FCNBase.h
72MnUserParameters.(h/cxx)
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Fitting is designed to be applicable to all current and any future fitting needs

in Preana. Although the current application fits only waveforms, other applications

are possible. For example, it could be used to fit a cumulative distribution of

fitting results. The only requirements are that it be provided with a handle to the

function for fitting (refer to section 4.1.5.2), a vector of data to fit, and parameter

seeds.73 A companion vector of data uncertainties may also be provided, but is not

required.

Methods for controlling the minimization process are also provided. These

include limit setting of valid parameter ranges, fixing a parameter, and providing

parameter uncertainties. The operator()74 function provides the χ2 value calcula-

tion.

The actual fitting is started by calling Fit().75 The fitting uses the MnMigrad76

minimizer by default. During the fitting Minuit2 performs a search to find the

parameter values that minimize the χ2 value provided by the Fitting class instance.

Minuit2 also inherently performs its own error calculations on the parameter values

as it converges on a solution.

When the fitting is completed all unnecessary data are erased to preserve

memory.77 The resulting fit parameters and calculated errors are stored locally and

accessible via the getter functions. Finally, a χ2 value without parameter weighting

is calculated and stored.

73Fitting.h:26–29
74Fitting.cpp:225–231
75Fitting.h:32–34, Fitting.cpp:77–120
76MnMigrad.h
77The FunctionMinimum class, which stores the minimization results, is very large. Each Waveform

contains an instance of Fitting, which contains an instance of FunctionMinimum. These quickly add up
and consume system memory during an analysis.
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4.1.5.2 Base Function Class

The base function class is AbstractFunction.78 The number of parameters is fixed

upon initialization, so a derived class must provide the information either as

an integer or a vector of initial parameter values. The Fitting class depends on

concrete implementations of AbstractFunction to perform the fitting.

The core of AbstractFunction are the pure virtual functions SetParameters()79

and operator().80 SetParameters() sets the function parameters. These are used in

operator(), along with a position argument, to compute and return the evaluated

function value.

Two more pure virtual function must be implemented by derived classes: GetPa-

rameterName()81 and IsValueImportant().82 The implementation of GetParameterName()

takes a parameter number argument and returns the parameter name as a string.

IsValueImportant() is used to determine whether a particular location or value is

important to the physical representation of the function.

4.1.5.3 Fitting Selection

The fitting is controlled by a variable of enumeration type FittingMethod.83 These

values correspond to combinations of the fitting functions and minimization

approaches. Table 4.3 contains the current list of options. The qualifiers, if more

than one are used, are delimited by a ‘_’ character. The values are additive,

e.g. EXP_FUNCTIONFIT_FIX contains the EXP, FUNCTIONFIT, and FIX qualifiers for a total

value of 31.

78Abstract Function.(h/cpp)
79Abstract Function.h:34
80Abstract Function.h:33
81Abstract Function.h:27
82Abstract Function.h:31–32
83Fundamentals.h:188–207
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Table 4.3 – Fitting Methods

Qualifier Value Meaning

ESTIMATED?,† 1 Use the first and mid-plateau datum to estimate the wave-
form properties

COARSE† 2 Scan the data for the transition, then average the data before
and after to calculate the pedestal and plateau, respectively

EXP 20 Use an exponential function to fit the rc decay
LINEAR 40 Fit the rc decay with a simple linear function

ADAPTEDFIT‡ 0 Fit each waveform with parameters seeded by the previ-
ously fitted waveform

FUNCTIONFIT 10 Independently fit each waveform
FIX 1 Fix the rc time constant so that it is not included in the

minimization
?Cannot be requested by the user; calculated only when first loading the data
†A test fit with this method cannot be used for generating a comparison test
‡Result of an attempt to optimize the minimization, no quantifiable effect has been found (see
section 4.2.3)

The FittingMethod values are used internally by the data storage classes (see

section 4.1.2) to determine which analysis approach to use. Specifically, the Waveform

class requires a FittingMethod-type argument for its Fit()84 function. Waveform then

uses this value set up the fit configuration before using its instance of Fitting to

perform the fitting.

4.1.5.4 Implementation Example: Fermi Function Fit

Waveforms are best represented by a Fermi function with an added rc
85 decay

component. This function fit implemented in the class WaveformFunction,86 which

inherits from AbstractFunction. The Fermi function is used in the form shown by

eq. (4.1). Parameter A represents the pedestal height, B is the charge, C is the onset

84Waveform.h:43
85resistor-capacitor
86Waveform Function.(h/cpp)
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of the transition point, D is the rise curvature, and g(t) is the rc decay applied after

the rise.

f (t) =


A +

B

exp
(

C−t
D

)
+ 1

when C < t

A +
B× g(t)

exp
(

C−t
D

)
+ 1

when C ≥ t

(4.1)

The rc decay is applied via the pure virtual function GetDecayMultiplier().87

Two forms are provided for the rc decay: the exact exponential form and an ap-

proximate linear form. Equation (4.2) is the form of exponential decay, and eq. (4.3)

the form of linear decay. These are implemented in WaveformFunctionExponential88

and WaveformFunctionLinear,89 respectively. Parameter C is the onset of the transition

point as before, and E is the decay constant.

g(t) = exp
(

C− t
E

)
(4.2)

g(t) = 1− E× (C− t) (4.3)

WaveformFunction uses the IsValueImportant()90 to indicate that the values sur-

rounding the transition point are less significant. This is because of the presence

of overshoot immediately after the transition, which otherwise will incorrectly

increase the charge parameter.

4.1.6 Statistics Template Class

An important part of the analysis process is calculating the statistical properties

of distributions, such as a collection of channel gains. The preferred solution is a

87Waveform Function.h:53
88Waveform Function - Exponential.(h/cpp)
89Waveform Function - Linear.(h/cpp)
90Waveform Function.cpp:140–178
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generalized statistics class that can be used for all numeric types. Statistics,91 a

template class, was developed and included in Preana to satisfy this need.

Frequently, calculating the width of a distribution requires two passes over the

data. The first pass calculates the mean of the distribution, and the second pass

uses the mean to calculate the standard deviation or rms.92 Statistics includes

an algorithm for calculating both the mean and standard deviation in real time,

i.e. while data are being added. No second pass is needed.

The algorithm requires calculating three parameters after each added value,

using the formulas shown in eq. (4.4). n represents the total number of values, x is

the new value, and x is the running mean. These formulas have been thoroughly

analyzed and found to be very robust, even when considering the effects of

floating-point round-off errors. The zeroth values are all 0, and it is not necessary

to preserve the old values.

∆n = x− xn−1

xn = xn−1 +
∆n

n

Mn = Mn−1 + ∆n × (x− xn)

(4.4)

The standard deviation σ2 can be extracted at any time using the formula in

eq. (4.5). At least two values are required for valid calculations, otherwise a NaN

will be generated.

σ2
n =

Mn

n− 1
(4.5)

Even though it is not necessary to preserve old values for calculating the distri-

bution properties, Statistics is able to store the values for later recall. The default

action is to store the values. This behavior is set when constructing an instance

91Statistics.h
92residual mean square
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of Statistics and toggled by calling the SetStoreData()93 function. All previously

recorded data are immediately discarded if the storage action is disabled.

An extension class, StatisticsWithExternalUncertainty,94 provides for propagat-

ing uncertainty [6] when evaluating distributions composed of quantities with

inherent uncertainties. A basic assumption of uncertainty propagation is that

the measurement equation, which accounts for all sources of variability in the

measurement, is of the form shown in eq. (4.6). Parameter Y is the measurand, f is

the relational function, N is the number of measurement quantities, and the Xi are

the variability-corrected measurement quantities. The uncorrected output estimate

is shown in eq. (4.7). Parameter y is the output estimate, and the xi are the directly

measured quantities.

Y = f (X1, X2, . . . , XN) (4.6)

y = f (x1, x2, . . . , xN) (4.7)

Uncertainty propagation is evaluated using the law of propagation of uncertainty,

shown in eq. (4.8). Parameter u2 is the standard uncertainty, the subscript t denotes

a total value, and all other parameters are as defined previously.

u2
t (y) =

N

∑
i=1

(
∂ f
∂xi

)2

u2(xi) + 2
N−1

∑
i=1

N

∑
j=i+1

∂ f
∂xi

∂ f
∂xj

u(xi, xj) (4.8)

The simplified combined standard uncertainty form, as shown in eq. (4.9), can be

used if the input estimates xi are uncorrelated.

u2
t (y) =

N

∑
i=1

u2(xi) (4.9)

StatisticsWithExternalUncertainty is a generalized implementation—the origina-

tion of the uncertainties and correlation between quantities are unknown—thus

93Statistics.h:39–40
94Statistics With External Uncertainty.h
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it is assumed that the input estimates xi are uncorrelated and eq. (4.9) is used

to propagate uncertainties. The standard deviation σ2 is used for the standard

uncertainty u2 value.

Individual value uncertainties are retained if data storage is enabled. Further,

templated functions are provided that allow for the bulk addition of data and

uncertainties from another Statistics-based class. This provides a quick and useful

mechanism for aggregating data, e.g. the analysis results from multiple waveforms,

subphases, phases, and/or channels.

4.2 Examples of Fitting Capabilities

Preana has the ability to export the results and statistics of a fitting analysis

for external validation and verification, which allows for the results of multiple

analyses to be aggregated together and interpreted in a global manner.

An external package that is used and trusted by physicists world-wide, ROOT

contains a powerful toolset for quickly performing operations on data. ROOT is

used not for plotting results or calibration analysis, but rather as a validation tool

for Preana’s analysis capabilities. Internal validation tools could conceivably be

built into Preana; however, this is not considered a necessary component of the

framework’s final design requirements for performing calibration measurements.

The functionality for collecting all the data for export is built into the data

storage classes (see section 4.1.2). The export process appends everything if the

file already exists, otherwise it creates the file. This allowed the data from multiple

minimizations to be combined into one file for easier comparison.

The file is generated as a csv with one line for each waveform’s analysis results.

Aggregate results for each subphase, phase, and channel are also included. The
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file is saved with .prf as the extension. The first line of the file contains the item

headers, providing information about the order in which the values are presented.

The names and interpretations are documented in Variable Documentation.txt, and

the less-intuitive values are summarized in table 4.4.

The .prf file is converted into a ROOT-formatted TTree and saved into a .root file

using the PRF_to_TTree.C script. The documentation file Instructions.txt describes

how to perform the conversion operation. Information is also given on working

with ROOT’s TTree to generate plot data. Finally, PlotGenerator.C and PlotsVsVoltage.C

are provided for generating a set of standard plots from the .root file.

Initially, the option of adding the ROOT api to Preana was considered. This would

have provided the possibility of internally performing the validations described

previously. However, to do so would typically require ROOT to be compiled on each

computer running Preana. ROOT is a very large package. Experience shows that

the pre-build configuration is not trivial, particularly on a Windows system. The

two-step file output and conversion approach is the preferred method instead—

especially since the use of ROOT is limited to the Preana validation scenarios, not

the core components.

The exporting is queued using the ChainedProgressThreadManager. One thread is

created for each channel, and execution occurs in sequential order. This is done

to prevent a collision from multiple simultaneous write operations on the same

file; the export format does not require that the data be ordered by increasing

channel number. Also, the threading allows the gui to remain responsive while the

exporting is occurring.
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Table 4.4 – Data Export Item Specifications

Item # Name Definition in Code
Value Interpretation

1 Category Export Operations.h:19–26 (Categories)
0 waveform
1 subphase
2 phase
3 channel

2 Source Type Fundamentals.h:389–399 (TestTypes)
0 single channel test
1 distribution test

5 Phase? Fundamentals.h:284–324 (PhaseTypes)
0 UNKNOWN or undefined
1 to 32 channel number
256 bank AB
512 bank CD
1024 bank EF
2048 bank GH

6 Preamp Proximity† Fundamentals.cpp:250–322
255‡ same side, channel # - 2
0 pulsed channel
1 same side, channel # + 2
2 opposite
3 kiddy-corner (edge case)
4 UNKNOWN or undefined

7 Distribution Board Proximity§ Fundamentals.cpp:173–248
0 pulsed bank
-3 to 3 location offset of pulsed bank

8 Fitting Method see table 4.3
?Provides the source of the primary pulse for the entity
†Represents the relative location of the nearest pulsed channel on the preamp card
‡Hexadecimal value of 0xFF, which is interpreted as -1 in a signed context
§Represents the relative location of the nearest pulsed bank on the distribution board
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4.2.1 χ
2 Distribution

χ
2 distributions are used to understand the goodness of fit and are fundamental to

anyone developing a specific calibration procedure. The χ2 data from all fits are

properly stored, and the resulting distributions can be compared.

Two distributions from different fitting methods are shown in fig. 4.8. Fig-

ure 4.8b is the FIX equivalent of fig. 4.8a, although the FIX distribution has both

a higher mean value and uncertainty. The reason for fixing the decay constant

is shown fig. 4.9, where it is demonstrated that the minimization procedure

infrequently discovers a local minimum that does not accurately describe the

waveform.95

Fixing the rc constant forces the fit of the plateau to more closely match the

data, providing a much better parametrization of the gain. The trade-off is that

there are slight differences between the rc decay values, and the fixed value is only

an estimate of the actual channels-specific values. However, the rc errors due to

these differences is much less than the error contributed by the false minima, and

the result is an overall improvement in the fit accuracy. This is a simple example

of what a physicist might do in developing the correct calibration procedure.

4.2.2 Gain Distribution

Gain distributions can be used to understand the accuracy of a fitting a specific

function to a set waveforms. The linear performance of a channel can also appear

in the width and/or skewdness of the gain distribution. The gain distributions

shown herein contain aggregated subphase gain analysis data taken from one

95Differences between the fit and data are most easily identified in the <Preview Pane>, which
plots the relative difference using colored bars extending from the center of the graph. See fig. 4.9
for an example.
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Figure 4.8 – Minimization χ2 Distributions
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Figure 4.9 – Local Minima Example

single channel test. Distributions for different fitting methods on the same data

are shown.

The improved minimization effect of fixing the rc time constant is further

demonstrated by investigating the gains directly. Figure 4.10 shows the results of

different fitting methods on the same data set. The mean and sigma values are the

parameters of a normal distribution fitted to the data.

The mean values of each distribution are within 0.2% of each other. These

distributions globally verify the performance of the E/P card pairs; the cards are

shown to have a very linear response over the tested dynamic range, based on the

tightness and shape of the distributions. More in-depth analysis on the results of

each subphase could be used if more detail on the actual performance is needed.

A marked improvement in the distribution is seen after fixing the rc time

constant. This is contrasted most dynamically by EXP_FUNCTIONFIT (fig. 4.10a) with

the highest uncertainty, while its fixed counterpart EXP_FUNCTIONFIT_FIX (fig. 4.10b)

has the lowest uncertainty.
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Figure 4.10 – Gain Distribution Comparison of Different Fitting Methods

This improvement is expected since the exponential decay component increases

the complexity of the system—thus the possibilities for locating local minima—

with a resulting higher uncertainty. However, once the rc time constant is fixed

then the exponential form most accurately represents the physical behavior of the

test system.

This demonstrates that Preana is capable of performing robust analyses on

data, which can be verified externally. Again, this is just an example of what might
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be done in determining the correct calibration procedure to be implemented in

Preana for production-level analysis.

4.2.3 Optimization Attempts

The duration of a full-test analysis ranges, on average, from 30 s to 3 min. Although

Preana’s performance is sufficient, it is always desirable to improve the overall

performance as much as possible. Two approaches are implemented in pursuit of

this goal: LINEAR- and ADAPTEDFIT-type fitting methods.

The performance gains from each approach are negligible. As such, only

anecdotal information is provided. However, this information is useful when

implementing the Preana analysis framework for production-level calibration

analyses—the actual form of the fitting function in an AbstractFunction-based class

has very minor impact on the overall speed of the Minuit2 fitting routines. Thus,

developmental resources should ideally be spent on determining the correct cali-

bration procedure rather than trying to improve efficiency.

4.2.3.1 Linear-type Fitting Methods

The WaveformFunctionLinear class exists due to an attempt to decrease the minimiza-

tion duration. This corresponds to the LINEAR-type fitting methods. Computa-

tionally, exponential functions are more complex to evaluate than addition and

multiplication. In theory, replacing an exponential function with a linear function

would leverage this computational characteristic to boost the speed.

No differences are currently observable between the LINEAR- and EXPONENTIAL-

type fitting methods. It is assumed that this is due to significant improvements

in modern computing, a marginal amount of time spent actually computing the

79



4. Analysis Framework

function during the minimization, and a decrease in the physical accuracy of a

linear decay function in the plateau region.

4.2.3.2 AdaptedFit-type Fitting Methods

The ADAPTEDFIT exists due to an attempt to improve the performance of each individ-

ual minimization. The underlying concept is based on the assumption that all the

waveforms in a subphase are identical. If so, the fitted parameters for each should

likewise be identical. Thus, each minimization would be assisted by seeding the fit

parameters with the results of the previous successful minimization.

Again, the performance improvements are negligible. For a typical FUNCTIONFIT

analysis lasting a few minutes, the corresponding ADAPTEDFIT offers no improvement.

A comparison of the gain distributions and uncertainties associated with each

method reveal that the accuracies are likewise comparable.

4.3 Cross Talk Module

Initial hardware design considerations attempted to minimize crosstalk between

channels. Unfortunately, the distribution board itself introduces cross talk into the

pulse distribution system. Thus, all distribution-type tests are subject to cross talk

interference.

4.3.1 Identification of Cross Talk Origination

The pattern of cross talk from the distribution board is irregular, and doesn’t

exhibit an immediately apparent relationship between channels. For example, a

primary pulse on channel 6 produces a strong response on both channels 4 and 5;

however, only a primary pulse on channel 4 elicits a strong response on channel 6—
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Figure 4.11 – Correlation of Wiring Proximity to Cross Talk

no pulse from channel 5 has a significant effecton channel 6. Further, the cross talk

does not follow any discernible pattern related to the position of the banks relative

to each other on the distribution board. Data documenting this behavior, using ten

preamp and two EtherDAQ cards to demonstrate repeatability, are collected into

tables E.1 to E.9 of appendix E.

The actual cause of the cross talk is due to charge sharing that originates from

the unshielded wiring on the bottom of the distribution board. The charge sharing

occurs primarily where a wire carrying the primary pulse passes near another

channel. The proximity of the wire to another channel has a direct correlation to

the amount of charge measured by that channel. Figure 4.11, a modified version of

fig. 2.5a, illustrates this correlation. The image enhancement represents a primary

pulse sent to bank AB, highlighted by the blue bar. The colors of the charge sharing

locations represent the magnitude of the resulting cross talk: red is large, and

green is small. Charge sharing locations with negligible results are left unmarked.

This theory of the charge sharing locations was confirmed by modification of

the distribution board. The shielding on the two bank bar feeds that extend over

the jumper connections was extended, and the wiring was pulled back from the

board as much as possible (see fig. 4.12). Data was recorded using the modified
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Figure 4.12 – Modification of the Distribution Board

distribution board and is compiled into table E.10. The modifications caused a

reduction of cross talk adc value, slashed by as much as 90%, in the channels that

exhibited significant cross talk.

4.3.2 Deconvolution

Cross talk deconvolution allows the distribution test data, which is significantly

simpler and faster to collect, to be used for the calibration measurements. Devel-

opment of a deconvolution matrix requires at least one data set each from the

distribution and single channel test types. More than one of each type can be used,

and is actually recommended since it will improve the statistical validity of the

measurement. Additionally, not all E/P pairs have 100% of their channels operation,

so more than one test of each from different E/P pairs helps to ensure a complete

deconvolution matrix for all 32 channel.
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Figure 4.13 – Test Comparison Selection

Validation of a deconvolution matrix requires two separate groups of data. The

two groups must not share data from E/P pairs, i.e. no test data from an E/P may be

used in both. The first group is used the generate the response matrices, and the

second to verify the deconvolution. This ensures that the results are unbiased.

The menu command <Analysis> . Compare Test Types... is used to generate a

response matrix for a single E/P pair. A selection dialog, shown in fig. 4.13,

displays the tests that can be used. Only E/P pairs that have both distribution and

single channel test data loaded are displayed. Multiple tests can be selected for

simultaneous analysis by pressing CTRL while clicking.

A deconvolution matrix can be generated, as soon as one or more response

matrices are available, using the menu command <Breakout Board Response> . Gener-

ate.... The menu command <Breakout Board Response> . Apply & Predict... is then
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used to apply the deconvolution matrix to a test and predict the outcome of the

resulting test type, whether distribution or single channel.

This method of deconvolution is limited by one important assumption: the cross

talk and charge sharing must be linear. The accuracy is limited by the accuracy of

the data. The deconvolution matrix itself is a simple channel-by-channel ratio of

the gain between the distribution and the single channel test results. Conversion

between forms is simple linear scaling operation.

The results of an example deconvolution are contained in appendix F. The

deconvolution matrix, shown in fig. F.1, is generated from four response matrices.

It is then applied to the results of distribution test analysis, shown in fig. F.2. The

predicted response results are compared against the actual single channels test

data, respectively figs. F.3 and F.4.

Ratios of the differences between the predicted and actual values to the actual

values are shown in fig. 4.14a. The ratios of the significantly different channels are

removed in fig. 4.14b, in which the remaining ratios are less than 0.2%.

Something as simple as an accidental nudging of the wires with a finger alters

the distribution board responses; the ratios corresponding to channels 3, 11, 29,

and 31 are characteristic of changes in the wiring configuration. These results

further establish that 1) the wiring on the distribution board as the source of cross

talk in the distribution tests, and 2) that the cross talk levels are extremely sensitive

to the wire proximities to the connectors for the breakout board.
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4. Analysis Framework

(a) All Channels

(b) Channels 3, 11, 29, and 31 Removed

Figure 4.14 – Ratios of Deconvolution Result Differences
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Chapter 5

Conclusions

The framework is developed to support automated E/P card testing and routine

calibration measurements.

A test stand is used to emulate the connections and charge signals an E/P pair

would receive on the niffte tpc, a fundamental aspect of performing calibration

measurements. The pulse generating equipment exhibits extraordinary perfor-

mance, which ensures the quality of the charge signals. A distribution board

provides a method for simultaneously testing all 32 channels on a E/P pair.

EtherDaqGUI interfaces with the test stand hardware to interrogate E/P pairs

and collect test data. It has been enhanced to be more user-friendly and operate

pulse generation equipment to provide automated testing capabilities. The testing

parameters are fully customizable by the user; default parameters comprehensively

test an E/P pair in under 5 min, and the resulting data can be used to evaluate

channel linearity, check for cross talk, and perform calibration measurements.

An initial health evaluation is also performed, which reports channels behaving

outside acceptable tolerances. All collected data is saved for later detailed analysis

and calibration measurements in the analysis framework.
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5. Conclusions

Preana, the analysis framework, is capable of performing complex and detailed

analysis using the embedded Minuit2 library. The Minuit2 minimization routines

are used to fit representative functions to the waveform data and extract the

characteristic parameters, primarily the gain. Preana is designed to be extremely

functional, as demonstrated by the example analyses performed for establishing

its capabilities. A flexible design provides for future development as needs arise,

and functionality for exporting analysis results enables external validation and

verification using ROOT. Finally, Preana boasts a clean and intuitive user interface

with functionality for browsing imported data, displaying waveforms with fit

residuals, and plotting distributions of analysis result.

5.1 Summary

Calibration measurements of the E/P card pairs are central to attaining the sub-1%

measurement uncertainty using the tpc (chapter 1). The E/P pairs are tested using

the test stand hardware (chapter 2). The test stand equipment is controlled by

EtherDaqGUI, which performs and initial health check on the E/P pairs and also

records the test results for subsequent detailed analysis (chapter 3). Preana, a

user-friendly and flexible analysis framework, is designed to support the detailed

analysis requirements for generating calibration measurements (chapter 4).

5.2 Future Work

The following items are needed to satisfy the global objective of performing

calibration measurements, which is beyond the scope of this work.
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5. Conclusions

5.2.1 Distribution Board Resolution

In its current state the distribution board is still changeable, i.e. a accidental or

intentional alteration of the wiring will change the cross talk behavior. The test

stand will be incapable of performing any meaningful calibration measurements

as long as this is the case. Two solutions are proposed to eliminate this Achilles

heel:

1. replace the distribution board by another containing no movable/alterable

components

2. stabilize the wiring configuration on the back

(a) hot glue: provide for future alterations

(b) epoxy: inhibit any future alterations

Developing a new distribution board will likely eliminate all sources of mea-

surable cross talk in the system. Conversely, the cross talk deconvolution module

in Preana has been shown to be perfectly capable of removing the effects of the

distribution board. Both solutions are equally valid; however, any changes or

modifications will need to be thoroughly checked. The level of cross talk present

in the system will need to be re-evaluated against the pure single channel tests.

5.2.2 Baseline Response Matrix

Once the distribution board issue is resolved, it well necessary to generate the

response matrix correlating the distribution board to the single channel board. It

will be necessary to save this master response matrix to a file, which can then be

quickly loaded when starting a new analysis session. The menu commands to

export and import a response matrix are already available in anticipation of this

need, but the functionality must still be implemented in the code.
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5. Conclusions

5.2.3 Database Integration

The final step is to make the calibration measurements available through niffte’s

central sql
1 reconstruction database. Preana must be expanded to include sql

database communications. The calibration constant can then be properly formatted

and uploaded as analyses are performed.

The niffte fission tpc project will best accomplish its goal—generating nuclear

data measurements with sub-1% uncertainties—through the application of these

calibration measurements in data reconstruction efforts.

1structured query language
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Appendix A

Formatting
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A few different typefaces and formats are used throughout this thesis, each
with a unique meaning.

This thesis contains hyperlinks; clicking on a hyperlink will navigate to, or open
up, the linked resource when this document is viewed with a supporting document
reader. Most document viewers indicate when the mouse is over a hyperlink by
changing the cursor. If any hyperlink-type items are used in a special section, such
as a title or caption, they will be typeset uniformly with the surrounding type.
Nevertheless, the hyperlinks will still be active.

Table A.1 – Formatting

Typeface Format Example Meaning

serif normal Lorem ipsum The normal text throughout the
document

serif small caps Lorem ipsum An acronym, the first occurrence will
include a definition in the footnotes;
hyperlink

sans serif normal Lorem ipsum A term found in the main glossary;
hyperlink

monospace normal Lorem ipsum A computer-related item, may be one
of the following:

1. Name of a file, class, or
function

2. A software library
3. An ip or mac address
4. An internet url (e.g.

www.isu.edu); hyperlink

monospace <text> <Lorem ipsum> Name of an interactive item within a
program’s gui

monospace small caps LOREM IPSUM A macro, parameter, or enumerated
value in the code
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It can be easier to represent some concept using substitutions. Any occurrence
of substitution uses the conventions below.

Table A.2 – Substitution Conventions

Appearance Meaning

〈 〉 contains an element that requires substitution

| | used inside 〈 〉, contains information about that substitution
... a repeating pattern
F a base-10 floating point decimal
H a base-16 (hexadecimal) integer
N a single numeral in the range 0–9
S a string of one or more characters
X a base-10 integer
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Equipment Spec Sheets
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Table B.1 – Spec Sheet: Agilent E3620A and E3630A [7]

(a) 1 of 2

3

Specifications

E3620A E3630A

Features Isolated dual 

outputs, 10 turn pots CV, CL

Tracking, CV, CL (±20 V)

CV, CF (+6 V)

Number of outputs 2 3

Number of Output 

Ranges

1 1

DC Output Rating 25 V, 1 A

25 V, 1 A

+6 V, 2.5 A

+20 V, 0.5 A

%20 V, 0.5 A

Load and Line 

Regulation
< 0.01% + 2 mV

Ripple and Noise (20 Hz to 20 MHz)

  Normal mode voltage < 350 µVrms, < 1.5 mVpp

  Normal mode current –

Common mode current < 1 µArms

Transient Response 

Time

< 50 µsec following a change in output current from full load to half load for output to recover within:

15 mV

Meter Accuracy ±0.5% + 2 counts at 25 ºC ±5 ºC

Meter Resolution

  Voltage 10 mV (0–20 V), 100 mV (>20 V) 10 mV

  Current 1 mA 10 mA

Isolation 240 Vdc
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(b) 2 of 2

4

Ordering information

E3620A Dual-output Power Supply

E3630A Triple-output Power Supply

Standard shipped accessories

Product Reference CD, power cord  

Power options

Opt. 0E3 230 Vac ± 10%

Opt. 0EM 115 Vac ± 10%

Opt. 0E9 100 Vac ± 10%

Other options

Opt. 1CM or 34190A rackmount kit* 

(Only applicable for E3620A)

Opt. UK6 Commercial calibration 

certificate with test result data

E3600A-100 Test lead kit

Manual sets

Please visit

www.agilent.com/find/manuals 

for the latest revisions of manuals. 

Rackmount kits*

E3620A

To rackmount two instruments 

side-by-side

• Lock-link Kit (P/N 5061-9694)

• Flange Kit (P/N 5063-9212)  

 or 34191A

To rackmount one or two instruments in 

a sliding support shelf

• Support Shelf (P/N 5063-9255)

• Slide Kit (P/N 1494-0015)

 required for support shelf

For a single instrument, also order filler 

panel (P/N 5002-3999)

* Rackmounting with 1CM or lock-link/

flange kit requires

• Agilent or customer support rails

• Agilent Support Rails-E3663AC.

Supplemental characteristics

E3620A E3630A

Control Mode CV/CL CV/CL (±20 V)

CV/CF (+6 V)

Temperature Coefficient per ºC

   Voltage < 0.02% + 1 mV

   Current –

Output Drift

   Voltage Less than 0.1% + 5 mV total drift for 8 hours after initial warm-up of 30 minutes

   Current N/A

Temperature Range

Derate output current 50% between 40 ºC to 55 ºC

Cooling Convection cooling

Isolation ±240 Vdc

AC Input 100 Vac ±10%, 47–63 Hz (opt. 0E9)

115 Vac ±10%, 47–63 Hz (std)

230 Vac ±10%, 47–63 Hz (0E3)

Weight 5.0 kg (11.0 lbs) net, 6.25 kg (13.8 lbs) shipping 3.8 kg (8.4 lbs) net, 5.1 kg (11.3 lbs) shipping

Size 88.1 mm H x 212.3 mm W x 392.4 mm D

3.5” H x 8.4” W x 15.4” D

88.1 mm H x 212.3 mm W x 318.4 mm D

3.5” H x 8.4” W x 12.5” D

Warranty Three year for E3600 Series power supplies

Three months for standard shipped accessories

Product Regulation Certified to CSA 22.2 No. 231; conforms to IEC 1010-1; carries CE mark; complies with CISPR-11, Group 1, Class A, 

KC South Korean EMC Mark, Canadian ICES/NMB-001, Australian C Tick Mark
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Table B.2 – Spec Sheet: Arbstudio Waveform Generator [8]

(a) 1 of 4

4

ArbStudio 1102 ArbStudio 1102D Arb Studio 1104 ArbStudio 1104D
Channels 2 2 4 4

Digital Pattern Generator NA 18 Channels NA 36 Channels

Waveforms Sine, Cosine, Triangle, Rectangle, Sawtooth, Ramp, Pulse, Sinc, Exponential, 
Sweep, DC, Noise, From File, Arbitrary

Waveform Characteristics
Sine

Frequency Range (Arbitrary) 2 µHz to 125 MHz
Frequency Range  
@ Max Sample Rate (DDS) 3.7 mHz to 110 MHz

Amplitude Flatness (1 Vp-p, Typical)

DC to 110 MHz (DDS) < ±0.1 dB

DC to 125 MHz (Arbitrary) < ±0.1 dB
Harmonics Distortion  
(1 Vp-p, Typical)

≤ 1 MHz < -66 dBc

1 MHz to 5 MHz < -63 dBc

5 MHz to 10 MHz < -59 dBc

10 MHz to 25 MHz < -53 dBc

25 MHz to 75 MHz < -38 dBc

75 MHz to 110 MHz (DDS) < -31 dBc

75 MHz to 125 MHz (Arbitrary) < -28 dBc
Non Harmonic Distortion  
(1 Vp-p, Typical)

≤ 1 MHz to 10 MHz < -71 dBc

10 MHz to 25 MHz < -66 dBc

25 MHz to 75 MHz < -53 dBc

75 MHz to 125 MHz (Arbitrary) < -47 dBc

75 MHz to 100 MHz (DDS) < -61 dBc
100 MHz to 110MHz (DDS) < -30 dBc

THD 

(100 kHz, 1 Vp-p, Typical) < 0.15%
Phase Noise  
(20 MHz, 1 Vp-p, Typical)

10 kHz Offset -106 dBc / Hz

100 kHz Offset -113 dBc / Hz

1 MHz Offset -128 dBc / Hz

Analog Bandwidth

Arbitrary / DDS 125 MHz / 110 MHz

Square Wave, Pulse (1 Vp-p)

Frequency Range 2 µHz to 62.5 MHz

Duty Cycle Range 1% to 99%

Rise / Fall Time (Typical) < 3.5 ns

Overshoot (Typical) < 5.5%

Random Jitter (rms, Typical) < 20 ps

Triangle / Ramp

Frequency Range 2 µHz to 31.25 MHz

Start Phase Range 0 to 360°

Sinc (Sin(x)/x)

Frequency Range 2 µHz to 15.5 MHz

Minimum Lobe Width 8 ns

SPECIFICAtIOnS
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(b) 2 of 4

5

ArbStudio 1102 ArbStudio 1102D Arb Studio 1104 ArbStudio 1104D

Waveform Characteristics (cont’d)
Waveform Sequencing

Waveforms All, From File, Arbitrary

Waveform Repetitions 1 to (2^33 – 1)

Start Source Software, Internal, External

No. of Waveforms 1 to 511

Common Characteristics
Arbitrary

Sample Rate Real Time 4 S/s to 250 MS/s

Vertical Resolution 16-bit

Waveform Memory 2 Mpts / Ch

Minimum Waveform Length 8 points

Waveform Resolution 2 points
Noise Bandwidth  
(-3 dB Gaussian Noise), Typical 100 MHz

Run Modes Single, Continuous, Stepped, Burst

Direct Digital Synthesis (DDS)

Sample Rate Real Time 125 MS/s to 250 MS/s

Run Modes Single, Continuous, Burst

Carrier Waveform Memory 2048 Samples / Ch

Amplitude, 50 Ω Load (1 kHz) 0 V to +12 Vp-p
Amplitude, Open Circuit 0 V to +24 Vp-p
Amplitude Resolution < 1 mV
DC Accuracy, Open Circuit  
(±12 V Range)

±0.25% of amplitude range (within ±10 °C of calibration temperature T=25 °C, Humidity ≤ 80%)
±0.3% of amplitude range (0 to 50 °C)

DC Accuracy, 50 Ω Load  
(±6 V Range)

±0.25% of amplitude range (within ±10 °C of calibration temperature T=25 °C, Humidity ≤ 80%)
±0.3% of amplitude range (0 to 50 °C)

AC Accuracy, Open circuit  
(0 Vp-p to +24 Vp-p range,  
1 kHz Sine Wave)

±0.25% of amplitude range (within ±10 °C of calibration temperature T=25 °C, Humidity ≤ 80%)
±0.3% of amplitude range (0 to 50 °C)

AC Accuracy, 50 Ω Load  
(0 Vp-p to +12 Vp-p range,  
1 kHz Sine Wave)

±0.25% of amplitude range (within ±10 °C of calibration temperature T=25 °C, Humidity ≤ 80%)
±0.3% of amplitude range (0 to 50 °C)

Output Impedance Selectable: 50 Ω, Low or High Impedance

Short Circuit Protection Signal outputs are robust against permanent shorts against floating ground

Frequency accuracy

Stability < ±5 ppm

Aging < ± 2 ppm / year

Max Interpolated Sample Rate 1 GS/s (4x interpolation)

Interpolation Factors 1x, 2x, 4x

Sampling Frequency Resolution 15 digits limited by 1 nHz 

Multi Channel Specifications

Sampling Rate Tuning Programmable per channel couple (Ch 1-2) Programmable per channel couple (Ch 1-2, Ch 3-4)

Skew Between Channels (at Common Sample Rate)

Average (Typical) < 300 ps 

Standard Deviation (Typical) < 35 ps 

Math Sum, Difference, Multiply between the two channels (Ch 1-2)

SPECIFICAtIOnS
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(c) 3 of 4

6

SPECIFICAtIOnS

ArbStudio 1102 ArbStudio 1102D Arb Studio 1104 ArbStudio 1104D
Modulation
Amplitude Modulation

Modulation Type Arbitrary AM, ASK

Carrier Waveform All, From File, Arbitrary

Modulating Waveforms All, From File, Arbitrary

Modulating Source Internal
Modulating Waveform Sample 
Clock at Max. Sampling Rate 0.46 S/s to 125 MS/s

Memory Size 2047 entries

Phase / Frequency Modulation

Modulation Type Arbitrary FM/PM, FSK, PSK

Carrier Waveform All, From File, Arbitrary

Modulating Waveforms All, From File, Arbitrary

Modulating Source Internal

Carrier Frequency at Max. Sample Rate

Sine Wave 3.7mHz to 110 MHz

Square 3.7mHz to 62.5 MHz

Triangle / Ramp 3.7mHz to 31.25 MHz
Modulating Waveform Sample 
Clock at Max. Sample Rate From 119.2S/s to 125 MS/s (per sample programmable)

Memory Size 511 entries
Frequency Resolution at 125 MS/s 
Sample Rate

0.0019 Hz (FSK)
2.15E-5° (PSK)

Frequency Resolution at 250 MS/s 
Sample Rate

0.0037 Hz (FSK)
4.30E-5° (PSK)

Pulse Width Modulation

Carrier Waveform Pulse

Carrier Frequency 100 mHz to 20 MHz

Duty Cycle Modulating Waveform Sine, Triangle, Ramp, Noise, Manual 

Duty Cycle Modulating Frequency 10 µHz to 6.67 MHz

Source Internal

Duty Cycle Deviation 0 % to 100 % of pulse period

Frequency Sweep

Carrier Waveform All, From File, Arbitrary

Sweep Type All waveforms

Sweep Direction Up or Down

Sweep Range at Max. Sample Rate

Sine Wave 3.7 mHz to 110 MHz

Square 3.7 mHz to 62.5 MHz

Triangle / Ramp 3.7 mHz to 31.25 MHz

Sweep Time at Max. Sample Rate 100 ns to  4.2 s

Pattern Generator Characteristics
Number of Channels N/A 18 N/A 18 / 36

Vector Memory Depth N/A 1 Mpts / Ch (per Ch  
programmable direction) N/A 1 Mpts / Ch (per Ch  

programmable direction)
Acquisition Memory Depth N/A 2 Mpts / Ch N/A 2 Mpts / Ch

Update Frequency N/A 125 MS/s (per Ch  
programmable direction) N/A 125 MS/s (per Ch  

programmable direction)
Sampling Frequency N/A 250 MS/s N/A 250 MS/s

Direction Control N/A Per Ch programmable N/A Per Ch programmable

Output Voltage Level N/A 1.2 V to 3.6 V N/A 1.2 V to 3.6 V

Trigger Levels N/A 31 N/A 31

Operating Modes N/A 18 Ch Digital or  
2 Ch Analog N/A

36 Ch Digital or  
4 Ch Analog  

or 18 Ch Digital  
plus 2 Ch Analog
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(d) 4 of 4
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SPECIFICAtIOnS

ArbStudio 1102 ArbStudio 1102D Arb Studio 1104 ArbStudio 1104D
Multi-Instrument Synchronization
Max Number of Instruments N/A N/A Up to 8 units with AS-SYNC Cable

Synchronization Accuracy N/A N/A < 300 ps

Auxiliary Inputs/Outputs
Analog Outputs

Output Connector Front panel BNC

Output Impedance 50 Ω, Low or High Impedance

External Trigger Output

Output Connector Front panel BNC

Output Level TTL compatible into > 1 KΩ

Output Impedance 50 Ω nominal

External Trigger Input

Input Connector Front panel BNC

Frequency Range DC to 125 MHz

Threshold Level VILmax = 0.8 V, VIHmin = 2 V

Voltage Range -0.5 V to 4 V

Damage Level VINmax < 6 V, VINmin > -2 V

Slope Rising Edge or Falling

External Clock

Input Connector Front panel BNC

Frequency Range 0 MHz to 125 MHz

Min. Input Voltage Swing ΔVINmin > 2 V

Damage Level VINmax < 5 V, VINmin > -5 V

Digital I/O

Connector 50 pin high density (1.27 mm) SCSI connector

Connector count 1 2

General Characteristics
Power Supply Voltage Range 100 ±10% to 240 ±10% VAC

Power Consumption 35 W max.

Power Frequency Range 50 / 60 Hz ± 5%

PC Interface USB 2.0

Physical Characteristics
External Dimensions (HWD) 2.4" x 12.8" x 7.2" (62 x 326 x 182 mm)

Weight 2.8 lbs (1.3 kg)

Environmental Characteristics
Temperature (Operating) Main equipment: 0 to 50 °C, Power adapter: 0 to 40 °C 

Temperature (Non-Operating) Main equipment: -40 to 71°C, Power adapter: -25 to 71°C

Humidity (Operating) 5% to 80% RH (non-condensing) at ≤ 30 °C, 50% max RH (non-condensing) at 40 °C

Humidity (Non-Operating) 5% to 95% max RH (non-condensing)

Altitude (Operating) Up to 3,048 m (10,000 ft) at ≤ 30°C

Altitude (Non-Operating) Up to 12,192 m (40,000 ft)

Minimum PC requirements
Operative System Microsoft Windows® 2000 / XP SP2 / Vista / 7 32-bit Editions

Processor Intel® Pentium® III processor, or better

Memory 512 MB RAM

Hard Disk 150 MB available free space

Display Resolution 800 x 600 or better

Connectivity USB 2.0 or 1.1
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Table B.3 – Spec Sheet: SRS CG635 Clock Generator [9]

phone: (408)744-9040
www.thinkSRS.com

Stanford Research Systems     
                           

CG635 Specifications

Frequency

Range DC, 1 µHz to 2.05 GHz
Resolution 16 digits (f ≥ 10 kHz), 1 pHz (f < 10 kHz) 
Accuracy  ∆f < ±(2 × 10–19 + timebase error) × f
Settling time <30 ms
 
Timebase (+20 °C to +30 °C ambient)

Stability  <5 ppm (std. timebase)
  <0.01 ppm (Opt. 02 OCXO)
  <0.0001 ppm (Opt. 03 Rb timebase) 
Aging  <5 ppm/yr. (std. timebase) 
  <0.2 ppm/yr. (Opt. 02 OCXO)
  <0.0005 ppm/yr. (Opt. 03 Rb timebase)  
External input 10 MHz ± 10 ppm, sine >0.5 Vpp, 1 kΩ
Output 10 MHz, 1.41 Vpp sine into 50 Ω
 
Phase Noise    (at 622.08 MHz) 

 100 Hz offset <–90 dBc/Hz
 1 kHz offset <–100 dBc/Hz
 10 kHz offset <–100 dBc/Hz
 100 kHz offset <–110 dBc/Hz
 
Jitter and Wander

Jitter (rms) <1 ps (1 kHz to 5 MHz bandwidth)
Wander (p-p) <20 ps (10 s persistence)
  
Time Modulation   (rear-panel input, 1 kΩ) 

Sensitivity  1 ns/V, ±5 %
Range ±5 ns
Bandwidth DC to greater than 10 kHz 
 
Phase Setting 

Range ±720° (max. step size ±360°)
Resolution <14 ps
Slew time <300 ms
 
Q and Q Outputs  

Outputs Front-panel BNC connectors
Frequency range DC to 2.05 GHz
High level  –2.00 V ≤ VHIGH ≤ +5.00 V
Amplitude  200 mV ≤ VAMPL ≤ 1.00 V
  (VAMPL ≡ VHIGH – VLOW)
Level resolution 10 mV
Level error <1 % + 10 mV
Transition time  <100 ps (20 % to 80 %)
Symmetry  <100 ps departure from nominal 50 %
Source impedance 50 Ω (±1 %)
Load impedance 50 Ω to ground on both outputs
Pre-programmed levels PECL, LVDS, +7 dBm, ECL
 

CMOS Output 

Output Front-panel BNC
Frequency range DC to 250 MHz
Low level  –1.00 V ≤ VLOW ≤ +1.00 V
Amplitude 500 mV ≤ VAMPL ≤ 6.00 V
  (VAMPL ≡ VHIGH – VLOW)
Level resolution 10 mV
Level error <2 % of VAMPL + 20 mV
Transition time  <1 ns (20 % to 80 %)  
Symmetry  <500 ps departure from nominal 50 %
Source impedance 50 Ω (reverse terminates cable reflection)
Load impedance Unterminated 50 Ω cable of any length
Attenuation (50 Ω load) Output levels are divided by 2
Pre-programmed levels 1.2 V, 1.8 V, 2.5 V, 3.3 V or 5.0 V
 
RS-485 Output 

Output Rear-panel RJ-45 
Frequency range  DC to 105 MHz
Transition time  <800 ps (20 % to 80 %)
Clock output  Pin 7 and pin 8 drive twisted pair
Source impedance 100 Ω between pin 7 and pin 8 
Load impedance 100 Ω between pin 7 and pin 8
Logic levels  VLOW = +0.8 V, VHIGH = +2.5 V
Recommended cable Straight-through Category-6

LVDS Output  (EIA/TIA-644) 

Output Rear-panel RJ-45 
Frequency range  DC to 2.05 GHz 
Transition time  <100 ps (20 % to 80 %)
Clock output Pin 1 and pin 2 to drive twisted pair
Source impedance 100 Ω between pin 1 and pin 2
Load impedance 100 Ω between pin 1 and pin 2
Logic levels VLOW = +0.96 V, VHIGH = +1.34 V
Recommended cable Straight-through Category-6 

PRBS (Opt. 01)  (EIA/TIA-644) 

Outputs PRBS, –PRBS, CLK and –CLK
Frequency range DC to 1.55 GHz
Level LVDS on rear-panel SMA jacks
PRBS generator x7 + x6 + 1 for a length of 27 – 1 bits
Transition time  <100 ps (20 % to 80 %)
Load impedance 50 Ω to ground on all outputs 

General

Computer interfaces GPIB and RS-232 std. All functions can  
  be controlled through either interface. 
Non-volatile memory Ten sets of instrument configurations  
  can be stored and recalled. 
Power 90 to 264 VAC, 47 to 63 Hz, 50 W
Dimensions, weight 8.5" × 3.5" × 13" (WHD), 9 lbs.
Warranty One year parts and labor on defects  
  in materials and workmanship
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Table B.4 – Spec Sheet: SRS DG645 Pulse Generator [10]

Stanford Research Systems phone: (408)744-9040
www.thinkSRS.com

Delays

Channels 4 independent pulses controlled   
  in position and width. 8 delay
  channels available as an option 
  (see Output Options).
Range 0 to 2000 s
Resolution 5 ps
Accuracy 1 ns + (timebase error × delay)
Jitter (rms)  
   Ext. trig. to any output 25 ps + (timebase jitter × delay)
   T0 to any output 15 ps + (timebase jitter × delay)
Trigger delay 85 ns (ext. trig. to T0 output)

Timebases

External input 10 MHz ± 10 ppm, sine >0.5 Vpp,   
  1 kΩ impedance
Output 10 MHz, 2 Vpp sine into 50 Ω 

External Trigger

Rate  DC to 1/(100 ns + longest delay)  
  (maximum of 10 MHz)
Threshold ±3.50 VDC
Slope Trigger on rising or falling edge
Impedance 1 MΩ + 15 pF

Internal Rate Generator

Trigger modes Continuous, line or single shot
Rate  100 µHz to 10 MHz
Resolution 1 µHz
Accuracy Same as timebase
Jitter (rms) <25 ps (10 MHz/N trigger rate)
  <100 ps (other trigger rates)

Burst Generator

Trigger to first T0 
     Range 0 to 2000 s
     Resolution 5 ps
Period between pulses 
     Range 100 ns to 42.9 s
     Resolution 10 ns
Delay cycles per burst 1 to 232 – 1

Outputs (T0 , AB, CD,  EF, and GH) 

Source impedance 50 Ω
Transition time <2 ns
Overshoot <100 mV + 10 % of pulse amplitude
Offset ±2 V
Amplitude 0.5 to 5.0 V (level + offset <6.0 V)
Accuracy 100 mV + 5 % of pulse amplitude

General

Computer interfaces GPIB (IEEE-488.2), RS-232, and   
  Ethernet. All instrument functions   
  can be controlled through the interfaces.
Non-volatile memory Nine sets of instrument configurations  
  can be stored and recalled.
Power <100 W, 90 to 264 VAC, 47 Hz to 63 Hz
Dimensions 8.5" × 3.5" × 13" (WHD)  
Weight 9 lbs.
Warranty One year parts and labor on defects  
  in materials & workmanship

Output Options

Option 01 (8 Delay Outputs on Rear Panel)

Outputs (BNC) T0, A, B, C, D, E, F, G and H 
Source impedance 50 Ω 
Transition time <1 ns
Overshoot <100 mV
Level +5 V CMOS logic
Pulse characteristics 
     Rising edge At programmed delay
     Falling edge 25 ns after longest delay

Option 02 (8 High-Voltage Delay Outputs on Rear Panel)

Outputs (BNC) T0, A, B, C, D, E, F, G and H 
Source impedance 50 Ω
Transition time <5 ns
Levels 0 to 30 V into high impedance
  0 to 15 V into 50 Ω
  (amplitude decreases by 1 %/kHz)
Pulse Characteristics 
     Rising Edge At programmed delay
     Falling Edge 100 ns after the rising edge

Option 03 (Combinatorial Outputs on Rear Panel)

Outputs (BNC) T0, AB, CD, EF, GH, (AB + CD), 
  (EF + GH), (AB + CD + EF), 
  (AB + CD + EF + GH) 
Source impedance 50 Ω
Transition time <1 ns
Overshoot <100 mV + 10 % of pulse amplitude
Pulse characteristics 
   T0, AB, CD, EF, GH Logic high for time between delays
   (AB + CD), (EF + GH) Two pulses created by the logic OR 
  of the given channels
   (AB + CD + EF) Three pulses created by the logic OR
  of the given channels
   (AB + CD + EF + GH) Four pulses created by the logic OR
  of the given channels

Option SRD1 (Fast Rise Time Module)

Rise time <100 ps
Fall time <3 ns
Offset 0.8 V to 1.1 V
Amplitude 0.5 V to 5.0 V
Load 50 Ω

Model # Type Jitter Stability  Aging
  (s/s) (20 to 30 °C) (ppm/yr)
Std. crystal 10–8 2 × 10–6  5
Opt. 4 OCXO 10–11 1 × 10–9  0.2
Opt. 5 Rb 10–11 1 × 10–10  0.0005

DG645 Specifications
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Appendix C

Manual Analysis Mode Options
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Table C.1 – Manual Analysis Mode Options

Mode Display Type Description

Waveform Comparison Plot Allows for the direct visual comparison of any waveforms generated from
the same pulse set

Waveform Statistics Report A summary of the waveform analysis results including data uncertainties
Linearity Plot Shows the gain as a function of the pulse voltage, overlays the best-fit simple

linear regression line, and prints the function and R value generated from
the fitting

Gain Histogram Histogram Displays the average gain for each selected channel
Y-Intercept Histogram Histogram Displays the y-intercept value from the simple linear regression analysis

(can be used to check for correlations between groupings)
Cross Talk Higher Plot Shows the cross talk between a channel and the higher-numbered neighbor

channel on the same side of the preamp
Cross Talk Lower Plot Shows the cross talk between a channel and the lower-numbered neighbor

channel on the same side of the preamp
Cross Talk Over Plot Shows the cross talk between a channel and the channel physically located

on the opposite side of the preamp card
Cross Talk on a Channel Plot Shows the cross talk the selected channel exhibits by pulses on another bank
Saturation Points? Histogram Shows the saturation point, if any, based on the detection algorithm of the

simple linear regression analysis
Timestamp Consistency by
Single Pulse

Report Prints the consistency of the timestamps collected from a single pulse set

Timestamp Consistency by
Phase

Report Prints the average consistency of all timestamps collected from all the pulse
sets during a complete phase

Pedestals Histogram Displays the average pedestal values
Pedestal Widths Histogram Displays the uncertainty associated with the average pedestal values

continued . . .
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. . . continued

Mode Display Type Description

Calculated Pedestal Widths Histogram Displays the corrected pedestal uncertainties based on system characteriza-
tion

Pedestals vs. Test Plot Shows the trend of the pedestal values as a function of the test and phases
Slope Comparison Histogram Displays the slope values from the simple linear regression analysis

?Not implemented, i.e. doesn’t display anything, due to a decision to keep the pulse voltages within the preamp and adc dynamic range
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Appendix D

Source Code Information

This document references the source in committed revision 3721 of the svn reposi-
tory located at nuclear.calpoly.edu/home/niffte/SVN/trunk
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Table D.1 – Notable EtherDaqGUI Revisions

Revision Significance

1575 First commit
1622 Software-based waveform simulation
1674 Waveform viewer
1721 Image saving
1781 Major bug fixes
2013 Ability to disconnect Ethernet interface
2252 ArbStudio interface
2262 Waveform customizer
3721 Current version

Table D.2 – Notable Preana Revisions

Revision Significance

2166 First commit
2176 Interface windows singleton for Windows api

2210 Minuit2 and waveform fitting
2578 Thread manager template
2614 Data browser toolbar
2681 Event-based threaded framework
2930 Histogram class
2975 Test and analysis multiselect capability
3098 Dynamic font sizing
3163 Image saving
3721 Current version
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Appendix E

Cross Talk Data

The data contained herein is extracted from the .ana files generated by EtherDaq-
GUI. Thus, the parameter uncertainties are inherently much larger than those
produced by a more robust analysis in Preana.
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Table E.1 – Cross Talk Data: Bank AB, EtherDAQ ID BEAC02

Preamp ID

Channel 0100-0034 0110-0006 0110-0030 0110-0042 0110-0049 0400-0009 0400-0017 0400-0021 0400-0036 0400-0047

1 2 634.615 3 246.779 3 167.003 3 180.517 3 202.968 3 504.023 159.942 3 359.884 3 577.953 3 313.133
2 10.093 10.876 9.164 10.360 9.716 9.640 16.998 10.044 10.140 9.642
3 8.220 8.379 7.910 7.713 8.572 7.819 35.258 8.219 7.272 7.436
4 102.974 102.141 99.579 103.590 99.339 102.115 103.424 101.760 102.672 100.105
5 166.475 167.573 164.524 167.531 162.440 162.924 165.625 165.995 160.857 163.788
6 3 205.246 100.092 3 165.172 3 177.021 3 250.730 3 259.573 3 153.961 3 127.715 3 161.655 3 176.045
7 10.303 10.507 9.232 9.641 9.723 10.764 4.309 9.602 9.373 10.504
8 11.835 12.276 11.025 12.197 12.331 12.838 12.575 12.198 12.387 11.102
9 3 162.830 3 191.463 3 371.791 3 170.876 3 183.353 3 105.175 3 214.566 3 050.363 3 150.405 3 231.862

10 10.398 9.989 10.631 10.163 10.311 10.538 10.348 9.891 11.625 10.055
11 13.068 12.581 12.267 12.557 11.657 12.989 11.918 12.625 0.000 11.823
12 44.246 44.552 49.402 45.774 43.600 44.197 44.798 46.056 44.555 44.485
13 105.440 109.404 110.138 106.940 116.185 93.856 116.195 109.503 103.650 105.038
14 3 268.438 3 317.357 3 194.293 3 300.715 3 166.217 3 454.954 3 572.378 3 482.743 3 236.183 3 171.912
15 15.258 15.942 14.744 19.607 16.017 5.982 15.666 15.945 16.774 16.535
16 9.739 9.229 9.253 8.727 9.249 10.354 8.622 8.896 10.603 8.970
17 3 257.520 3 221.677 3 129.174 0.077 3 156.860 3 250.374 3 271.430 3 221.458 3 030.602 3 169.709
18 7.111 6.963 6.826 6.797 6.881 7.236 6.845 6.791 6.830 6.573
19 2.617 2.023 2.825 5.975 2.433 2.258 1.853 2.524 2.385 1.372
20 8.867 8.684 7.886 7.816 8.404 13.429 7.870 8.477 8.441 8.529
21 0.191 2.964 5.298 3.675 3.375 0.748 0.105 2.947 2.928 2.830
22 3 417.741 3 220.346 3 213.666 3 175.147 3 062.709 2 478.502 3 159.598 3 259.005 3 185.102 3 211.566
23 3.481 40.233 84.011 45.585 40.539 3.581 41.026 39.747 40.242 39.727
24 25.079 24.394 30.654 1.386 24.489 31.833 23.852 24.933 24.625 24.535
25 3 175.019 3 086.971 0.019 3 115.183 3 363.304 3 178.590 3 223.833 3 151.377 3 192.682 3 111.058
26 9.250 9.104 19.404 9.508 9.720 9.418 10.148 9.864 10.297 9.023
27 9.083 8.940 58.572 9.052 9.190 9.241 9.760 9.111 9.396 9.804
28 135.446 135.862 138.723 135.105 0.228 139.492 135.268 134.168 140.122 136.908
29 39.639 39.706 −0.141 37.235 39.102 37.644 11.102 39.436 39.680 39.622
30 3 157.945 2 941.908 2 862.659 2 938.223 2 936.102 2 977.334 2 977.802 2 970.923 2 937.256 2 872.906
31 3.046 2.794 4.582 3.011 3.352 −0.022 0.017 2.972 3.016 2.667
32 8.275 8.713 7.867 1.721 8.283 8.771 9.502 9.279 8.620 9.129
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Table E.2 – Cross Talk Data: Bank AB, EtherDAQ ID 1242LC82

Preamp ID

Channel 0100-0034 0110-0006 0110-0030 0110-0042 0110-0049 0400-0009 0400-0017 0400-0021 0400-0036 0400-0047

1 2 657.898 3 253.502 3 172.892 3 185.829 3 210.834 3 510.929 152.885 3 366.517 3 584.643 3 319.244
2 9.805 11.252 9.415 10.486 10.139 9.611 17.212 10.437 10.167 9.944
3 8.351 8.509 8.171 7.519 8.984 7.813 35.500 8.167 7.323 7.380
4 103.588 102.039 99.645 102.980 99.410 102.453 103.917 101.863 102.977 100.295
5 166.644 167.611 163.712 166.424 162.621 163.013 165.868 166.248 160.893 163.767
6 3 208.442 838.754 3 169.975 3 181.391 3 256.024 3 263.936 3 157.643 3 130.917 3 165.484 3 179.529
7 10.488 10.657 9.671 9.641 10.046 10.747 4.266 10.005 9.396 10.499
8 11.956 12.775 11.264 12.276 12.573 12.878 12.653 12.654 12.537 11.254
9 3 145.300 3 174.934 3 354.272 3 153.561 3 166.883 3 088.080 3 196.655 3 033.658 3 132.781 3 213.587

10 9.834 9.757 10.610 10.193 10.451 10.550 10.073 9.805 10.945 9.925
11 13.111 12.214 12.000 12.237 11.488 13.216 11.654 12.691 0.000 11.591
12 43.625 44.076 48.348 44.433 43.049 44.226 44.410 45.455 43.502 43.586
13 106.358 108.707 105.647 104.493 115.629 96.232 114.980 108.466 103.016 103.638
14 3 241.341 3 290.872 3 168.857 3 273.550 3 141.227 3 426.619 3 542.499 3 454.331 3 209.495 3 145.463
15 14.909 15.626 14.668 19.399 15.937 6.570 15.751 15.669 16.058 16.180
16 9.523 8.918 9.099 8.366 9.323 10.208 8.456 8.846 10.093 8.884
17 3 286.107 3 251.267 3 157.076 −0.025 3 186.149 3 281.104 3 300.818 3 250.481 3 057.617 3 198.044
18 6.969 6.821 7.012 6.577 6.788 7.713 7.143 7.101 6.995 7.141
19 2.778 1.721 3.107 6.118 2.568 2.977 2.048 2.511 2.514 1.835
20 8.851 8.472 8.295 7.687 8.276 13.436 8.350 8.698 8.552 9.004
21 0.060 2.829 5.416 3.588 3.218 0.909 0.005 2.852 3.000 3.158
22 3 449.612 3 252.626 3 245.874 3 206.596 3 093.677 2 547.770 3 190.468 3 290.467 3 215.822 3 242.390
23 3.524 40.255 83.658 44.617 40.618 3.828 41.666 40.361 40.569 39.843
24 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
25 3 170.607 3 084.613 0.002 3 111.693 3 360.142 3 175.267 3 218.368 3 148.517 3 188.600 3 106.831
26 9.189 9.259 19.509 9.402 9.672 9.624 9.646 9.492 10.306 9.075
27 9.212 8.640 58.563 9.065 9.264 9.227 9.391 9.029 9.511 9.750
28 135.455 135.502 138.672 134.455 0.380 138.490 135.636 134.048 139.788 136.627
29 38.820 39.735 −0.129 37.309 39.091 38.531 12.165 39.113 39.576 39.451
30 3 153.123 2 938.660 2 860.240 2 935.470 2 933.068 2 973.706 2 974.055 2 967.886 2 933.126 2 868.412
31 3.164 2.977 4.631 2.975 3.307 −0.051 0.111 3.115 3.112 2.984
32 8.268 8.336 8.599 1.706 8.474 8.853 8.814 8.673 9.287 8.294
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Table E.3 – Cross Talk Data: Bank CD, EtherDAQ ID BEAC02

Preamp ID

Channel 0100-0034 0110-0006 0110-0030 0110-0042 0110-0049 0400-0009 0400-0017 0400-0021 0400-0036 0400-0047

1 0.000 180.745 172.981 173.723 177.941 194.795 22.113 186.697 199.091 184.050
2 3 103.648 3 218.613 3 053.520 3 271.354 3 178.635 3 063.400 3 077.155 3 191.162 3 254.966 3 100.046
3 14.718 14.158 15.008 14.221 16.363 16.051 15.335 14.565 14.521 14.540
4 6.253 5.774 6.185 5.784 5.601 5.809 6.201 6.538 6.295 6.128
5 3 180.004 3 177.820 3 128.640 3 184.923 3 104.012 3 117.490 3 132.954 3 177.858 3 075.423 3 130.841
6 4.807 2.128 4.519 4.648 4.742 4.440 4.328 4.363 4.515 4.496
7 13.845 13.549 13.171 13.575 13.561 13.792 5.224 12.634 13.145 13.765
8 69.325 64.715 66.361 66.611 67.432 68.361 67.561 66.624 66.495 64.907
9 87.914 88.001 93.540 87.755 87.961 85.684 88.864 84.350 87.177 89.472

10 3 107.507 3 100.293 3 368.680 3 161.494 3 232.110 3 183.998 3 257.353 3 111.767 3 402.300 3 188.978
11 11.931 11.802 10.853 11.821 10.415 11.245 10.508 10.487 0.000 11.570
12 6.142 5.651 6.487 5.559 4.982 5.472 5.626 6.399 5.238 5.630
13 3 193.159 3 299.381 3 195.607 3 151.250 3 502.268 3 232.617 3 505.778 3 298.458 3 125.986 3 172.843
14 3.430 3.484 3.177 3.354 3.005 3.403 3.406 3.576 3.301 3.005
15 10.219 10.366 10.351 10.672 9.741 3.733 11.096 9.685 10.989 11.089
16 4.385 4.106 4.300 3.904 4.323 4.936 3.091 3.693 3.965 4.166
17 122.193 120.294 116.848 0.228 117.398 113.718 122.585 120.154 113.048 118.409
18 3 166.521 3 261.697 3 282.400 3 246.543 3 238.038 3 345.598 3 242.810 3 322.873 3 256.501 3 229.639
19 19.595 15.966 15.100 15.137 14.820 22.596 32.515 15.673 15.761 14.731
20 21.278 20.870 22.371 21.212 20.060 24.601 27.286 20.867 20.516 21.055
21 0.118 3 223.755 3 246.605 3 218.083 3 584.481 2 162.775 4.756 3 140.701 3 207.929 3 280.294
22 84.809 79.664 81.894 80.635 76.450 10.542 87.764 81.363 78.933 80.245
23 1.154 10.109 12.249 11.113 10.735 1.929 37.875 10.064 10.165 10.575
24 8.408 7.831 8.793 0.351 8.838 8.658 8.433 9.079 8.346 8.750
25 19.205 17.794 −0.114 18.034 19.314 19.233 17.907 18.632 18.283 17.937
26 3 360.736 3 380.259 3 423.895 3 370.154 3 382.651 3 428.027 3 478.645 3 427.509 3 682.412 3 311.663
27 188.073 182.877 257.082 186.910 194.121 185.847 227.829 189.856 179.797 201.756
28 5.542 5.203 13.497 5.164 1.654 4.444 11.474 5.011 4.979 4.739
29 2 872.377 2 952.004 −0.957 3 159.496 3 086.466 3 222.277 202.515 2 971.752 3 060.761 2 877.592
30 3.499 2.970 14.202 2.857 2.975 2.788 12.848 3.227 2.702 2.876
31 6.577 6.308 77.730 6.503 7.420 0.147 0.123 6.353 6.128 6.445
32 1.708 1.770 1.334 −0.161 1.667 1.910 2.381 1.987 1.935 1.340
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Table E.4 – Cross Talk Data: Bank CD, EtherDAQ ID 1242LC82

Preamp ID

Channel 0100-0034 0110-0006 0110-0030 0110-0042 0110-0049 0400-0009 0400-0017 0400-0021 0400-0036 0400-0047

1 0.000 180.728 176.427 177.040 178.462 195.076 8.799 187.276 199.133 184.592
2 3 108.339 3 224.319 3 058.221 3 276.969 3 185.125 3 068.312 3 082.901 3 196.697 3 260.456 3 104.605
3 14.583 14.432 15.117 14.342 16.767 16.253 15.592 15.003 14.417 14.397
4 6.300 5.632 5.906 6.027 5.985 5.851 6.430 6.503 6.684 6.115
5 3 179.756 3 178.674 3 128.238 3 185.200 3 105.252 3 117.425 3 133.507 3 178.445 3 075.499 3 130.287
6 4.526 1.978 4.297 4.648 4.641 4.576 4.569 4.595 4.301 4.349
7 13.901 13.791 13.075 13.773 13.940 14.002 4.980 13.055 13.117 13.490
8 69.114 64.930 66.015 66.701 67.468 68.834 68.034 66.972 66.747 64.904
9 86.975 88.089 92.938 87.418 87.542 85.649 88.885 83.615 86.743 89.247

10 3 085.711 3 080.427 3 345.647 3 139.976 3 210.865 3 162.009 3 235.724 3 091.505 3 378.445 3 166.542
11 11.846 11.680 10.768 11.711 10.035 11.294 10.348 10.702 0.000 11.675
12 5.911 5.696 6.240 5.414 5.296 5.915 5.498 6.798 5.024 5.382
13 3 166.209 3 272.960 3 168.581 3 124.987 3 473.516 3 207.767 3 476.662 3 271.706 3 099.124 3 145.579
14 3.106 3.338 2.922 2.937 2.932 3.548 3.599 3.414 3.054 3.273
15 10.001 10.103 9.858 10.581 9.638 4.048 11.034 9.763 10.317 10.861
16 4.197 4.405 4.114 3.828 4.206 4.890 2.981 3.524 3.629 4.457
17 123.334 121.302 117.948 0.060 118.371 116.662 123.793 121.080 114.026 119.503
18 3 193.358 3 291.077 3 310.053 3 274.407 3 266.568 3 373.402 3 270.600 3 351.587 3 283.434 3 256.570
19 19.684 16.209 15.593 14.998 14.973 23.210 33.337 15.970 15.920 15.454
20 21.470 20.782 22.160 20.633 20.139 25.418 27.953 21.242 20.568 22.133
21 −0.005 3 260.290 3 276.155 3 248.509 3 624.277 2 232.914 4.725 3 175.311 3 242.405 3 315.263
22 86.610 80.079 81.235 80.300 76.210 10.892 89.104 81.829 80.056 81.180
23 1.129 10.282 12.420 11.333 10.774 1.930 38.145 10.011 10.212 10.827
24 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
25 19.004 17.851 −0.189 17.666 19.374 19.731 17.145 18.263 18.895 17.942
26 3 353.317 3 374.226 3 416.427 3 363.130 3 376.252 3 420.865 3 471.861 3 421.922 3 675.134 3 304.491
27 186.847 182.196 255.375 185.311 194.046 186.016 226.918 189.743 179.402 201.332
28 5.450 4.859 12.987 5.036 1.528 4.423 11.170 5.137 5.006 4.848
29 3 307.070 2 890.376 −0.883 3 164.376 2 843.901 2 787.415 196.754 2 816.492 2 866.261 2 880.093
30 3.079 2.891 14.006 2.677 3.055 3.273 12.861 3.159 3.175 2.858
31 6.292 6.592 77.485 6.278 7.986 0.125 −0.059 6.601 6.558 6.234
32 2.054 2.142 2.084 −0.069 1.768 1.970 1.742 0.980 2.014 1.559
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Table E.5 – Cross Talk Data: Bank EF, EtherDAQ ID BEAC02

Preamp ID

Channel 0100-0034 0110-0006 0110-0030 0110-0042 0110-0049 0400-0009 0400-0017 0400-0021 0400-0036 0400-0047

1 0.000 58.552 56.252 56.314 57.059 63.033 17.050 60.074 64.635 59.657
2 97.926 101.356 96.362 103.123 99.907 96.204 96.664 100.046 102.294 97.621
3 3 153.411 3 138.816 3 231.913 3 193.183 3 476.727 3 419.910 3 209.635 3 183.472 3 219.505 3 147.812
4 12.433 12.225 12.229 12.215 12.182 12.058 11.949 11.946 12.574 11.774
5 1.874 2.272 1.822 2.031 2.017 1.385 2.342 1.809 2.323 2.104
6 11.553 5.345 11.426 10.943 11.459 10.967 10.431 10.527 10.623 11.878
7 4.441 4.545 4.326 4.420 4.511 4.390 1.526 4.133 4.561 4.455
8 3 131.703 2 968.779 3 043.358 3 018.694 3 065.174 3 108.578 3 096.832 3 037.638 3 046.132 2 943.185
9 32.114 31.045 33.027 31.617 32.345 30.493 32.404 29.562 32.397 32.344

10 83.954 84.633 91.550 85.436 87.407 86.009 88.451 84.295 92.566 86.368
11 3 555.554 3 300.247 3 263.524 3 342.051 3 196.664 3 333.519 3 231.828 3 269.903 2 893.253 3 331.480
12 12.599 12.481 13.783 12.311 12.364 12.712 12.666 12.751 12.755 12.343
13 1.384 1.320 1.356 0.789 2.178 0.935 1.871 1.802 1.907 1.200
14 8.469 8.307 7.982 8.407 7.872 8.334 9.091 8.451 7.850 8.159
15 2.735 2.546 2.415 2.549 2.744 0.944 2.616 2.557 2.642 2.534
16 3 168.389 3 088.866 3 122.298 3 084.578 3 124.214 3 358.862 3 012.014 3 106.557 3 211.309 3 060.236
17 3.724 4.362 3.465 0.210 3.872 2.567 4.191 2.990 3.097 4.321
18 87.544 90.501 90.623 90.196 89.496 92.104 90.543 92.126 90.220 88.981
19 3 270.949 3 359.944 3 259.608 3 307.781 3 360.349 3 307.304 3 338.179 3 355.597 3 375.639 3 312.886
20 15.479 14.778 15.350 15.871 14.749 15.217 15.522 14.843 14.964 15.391
21 0.133 2.012 2.354 2.828 3.364 0.260 0.025 2.402 2.235 2.888
22 6.343 5.601 5.943 9.729 6.093 0.718 6.253 6.168 5.635 5.810
23 0.110 0.727 0.691 0.573 0.909 0.130 0.897 0.513 0.870 0.561
24 2 975.379 2 988.703 2 991.649 0.089 3 047.316 3 090.320 2 933.833 3 127.500 3 027.176 3 026.991
25 5.667 5.638 −0.017 5.368 6.439 5.821 3.955 5.949 4.893 5.536
26 15.735 16.133 15.453 18.557 15.464 15.806 16.480 15.692 16.867 15.010
27 3 080.799 2 993.742 3 084.583 3 059.856 3 190.969 3 048.956 2 924.649 3 106.334 2 961.304 3 302.555
28 68.251 68.134 69.641 71.212 −0.019 69.699 67.972 67.257 69.957 69.252
29 5.747 5.239 0.119 5.257 5.705 5.136 2.134 4.957 6.018 4.985
30 6.650 5.164 5.226 35.137 6.125 5.546 5.158 5.412 5.529 5.403
31 1.099 1.105 0.915 9.792 1.334 0.036 0.084 1.246 1.096 1.203
32 3 336.889 3 449.384 3 640.165 −11.625 3 406.865 3 390.829 3 468.277 3 473.185 3 481.640 3 365.268
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Table E.6 – Cross Talk Data: Bank EF, EtherDAQ ID 1242LC82

Preamp ID

Channel 0100-0034 0110-0006 0110-0030 0110-0042 0110-0049 0400-0009 0400-0017 0400-0021 0400-0036 0400-0047

1 0.000 58.742 56.168 57.293 57.522 62.496 12.339 59.936 64.855 59.819
2 97.648 101.418 95.942 102.952 100.027 95.906 96.833 100.100 102.250 97.567
3 3 158.847 3 145.769 3 238.596 3 199.589 3 484.872 3 426.374 3 216.642 3 189.822 3 226.123 3 153.037
4 12.096 12.303 12.143 12.189 12.123 12.222 12.303 12.797 12.248 12.196
5 1.856 2.668 1.726 2.260 1.871 1.128 2.306 2.105 2.481 2.166
6 11.285 5.566 11.599 11.235 11.233 10.765 10.745 11.061 10.767 11.941
7 4.232 4.589 4.528 4.414 4.384 4.431 1.501 4.544 4.461 4.464
8 3 132.372 2 970.878 3 045.113 3 020.147 3 067.981 3 109.982 3 098.996 3 039.328 3 047.992 2 944.086
9 31.046 31.233 32.619 31.494 32.155 30.927 32.241 29.257 31.733 32.199

10 82.894 83.990 90.801 84.643 86.635 85.546 87.739 83.684 91.704 85.509
11 3 535.896 3 282.932 3 245.380 3 323.354 3 179.648 3 314.883 3 214.372 3 252.190 2 879.609 3 311.838
12 12.490 12.426 14.175 12.378 11.952 12.328 12.586 12.845 12.407 12.578
13 1.130 1.269 1.379 0.789 2.147 1.164 1.698 2.063 1.711 1.063
14 7.798 8.237 7.523 8.316 7.477 8.433 8.963 8.436 7.483 7.897
15 2.402 2.456 2.512 2.440 2.513 1.052 2.549 2.459 2.523 2.590
16 3 141.027 3 063.226 3 095.488 3 057.895 3 098.004 3 329.721 2 986.516 3 080.229 3 183.025 3 032.785
17 2.870 3.643 3.044 0.151 2.844 1.855 3.758 2.075 2.396 3.682
18 87.171 90.218 90.368 90.945 89.335 91.998 90.290 91.690 89.966 88.807
19 3 303.397 3 394.666 3 291.332 3 340.524 3 394.951 3 339.825 3 371.567 3 389.717 3 408.727 3 344.798
20 14.629 14.049 15.265 15.359 13.680 14.502 15.016 14.261 14.246 14.886
21 −0.626 1.165 1.828 2.730 2.299 −0.543 −0.627 1.650 1.689 2.235
22 5.487 5.006 5.395 9.763 5.171 −0.034 5.956 5.374 5.072 5.465
23 −0.737 −0.201 0.297 0.694 0.140 −0.693 0.247 −0.372 −0.245 −0.152
24 716.115 932.619 894.099 0.000 650.261 939.640 927.040 929.755 926.425 917.488
25 5.886 5.551 0.074 5.465 6.113 5.878 3.619 5.810 5.202 5.298
26 16.006 15.839 15.540 18.687 14.975 15.826 16.082 15.535 17.163 15.025
27 3 073.528 2 988.044 3 077.457 3 052.666 3 184.479 3 041.623 2 918.746 3 100.406 2 954.117 3 294.408
28 68.038 67.993 69.794 70.581 −0.057 68.973 67.799 67.080 69.027 68.401
29 5.634 5.203 −0.055 5.570 5.499 5.243 2.003 5.102 5.957 4.886
30 6.648 5.165 5.454 35.729 5.659 5.435 5.298 5.259 5.686 5.134
31 1.172 1.165 1.446 9.940 1.086 −0.046 0.012 1.223 1.336 1.009
32 3 337.035 3 448.145 3 645.171 −12.636 3 407.028 3 390.014 3 468.777 3 474.155 3 480.624 3 363.837
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Table E.7 – Cross Talk Data: Bank GH, EtherDAQ ID BEAC02

Preamp ID

Channel 0100-0034 0110-0006 0110-0030 0110-0042 0110-0049 0400-0009 0400-0017 0400-0021 0400-0036 0400-0047

1 0.000 1.586 1.464 1.814 1.411 1.325 0.167 1.289 1.820 1.423
2 4.424 5.341 5.151 5.283 5.411 5.085 4.243 4.502 4.198 5.110
3 3.669 3.826 3.708 3.834 3.874 4.024 3.750 3.577 3.757 3.640
4 3 400.705 3 327.704 3 330.393 3 406.499 3 302.385 3 387.980 3 414.609 3 359.718 3 413.578 3 329.436
5 66.594 67.403 66.829 67.664 66.257 66.593 66.702 68.195 65.853 66.704
6 129.014 58.240 128.533 128.260 131.035 131.649 127.143 125.939 127.967 128.584
7 3 041.517 3 006.487 3 123.777 3 056.989 3 082.647 3 167.436 2 927.577 2 988.902 3 045.731 3 086.588
8 6.056 6.009 5.807 5.964 6.026 6.247 6.129 5.823 5.930 5.919
9 1.354 2.059 1.874 1.634 2.136 1.363 1.693 1.792 2.119 1.089

10 3.737 4.305 3.375 4.151 4.502 4.254 4.046 2.934 4.596 4.218
11 2.971 2.842 2.753 3.112 2.637 2.945 2.693 2.817 0.000 2.689
12 3 094.367 3 112.275 3 418.962 3 121.906 3 060.953 3 088.658 3 131.082 3 203.343 3 078.660 3 116.489
13 1.718 1.241 1.151 0.598 2.406 1.304 1.085 1.829 1.287 0.769
14 7.811 7.360 7.072 7.195 7.697 7.944 7.905 7.414 7.794 7.559
15 3 075.739 3 121.313 3 035.152 3 120.498 3 092.918 3 017.490 3 306.349 3 114.619 3 115.412 3 179.517
16 53.165 51.625 52.161 51.530 52.363 56.250 50.271 51.752 53.520 51.036
17 23.544 22.143 21.932 0.087 21.270 18.399 22.063 21.637 20.237 21.157
18 2.556 2.739 2.238 3.128 2.508 3.144 3.316 2.351 3.026 2.059
19 4.185 3.032 2.860 2.872 2.753 4.312 3.180 2.797 3.173 2.788
20 3 307.210 3 248.179 3 392.913 3 252.500 3 188.857 3 369.358 3 332.626 3 297.829 3 306.636 3 352.454
21 0.084 3.589 2.296 2.640 3.015 2.787 0.187 2.868 2.293 2.487
22 21.140 13.562 15.190 15.440 13.346 3.724 14.071 13.640 13.804 13.510
23 1 352.548 3 345.885 3 463.426 3 689.899 3 391.925 1 486.883 3 433.506 3 361.115 3 356.580 3 344.047
24 22.139 14.023 13.587 0.136 14.751 21.602 13.670 14.444 13.908 14.029
25 32.687 2.620 −0.129 2.447 3.341 31.647 3.365 3.243 2.191 3.498
26 2.755 2.323 2.648 2.769 5.939 3.397 3.509 2.648 2.452 2.484
27 3.035 0.764 1.417 0.893 0.728 7.826 7.437 1.261 0.839 0.850
28 3 234.303 3 228.420 3 296.862 3 205.800 −0.091 3 290.918 3 220.864 3 194.189 3 316.964 3 260.367
29 18.883 18.050 0.237 16.695 17.301 91.425 27.250 17.940 18.118 18.289
30 134.533 126.266 122.216 124.234 130.300 135.644 136.492 127.570 125.997 123.839
31 3 350.700 3 227.125 3 231.852 3 210.598 3 582.724 −1.175 −1.064 3 253.597 3 278.060 3 270.952
32 2.632 2.684 1.769 0.036 3.354 14.261 14.604 2.755 2.683 2.530
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Table E.8 – Cross Talk Data: Bank GH, EtherDAQ ID 1242LC82

Preamp ID

Channel 0100-0034 0110-0006 0110-0030 0110-0042 0110-0049 0400-0009 0400-0017 0400-0021 0400-0036 0400-0047

1 0.000 1.613 1.706 1.415 1.582 0.832 0.293 1.685 1.754 1.452
2 4.218 5.515 5.017 5.569 5.725 4.978 4.163 5.012 4.497 5.113
3 3.573 3.660 3.941 3.831 4.311 3.695 3.796 3.859 3.688 3.473
4 3 405.654 3 333.088 3 334.350 3 412.983 3 307.260 3 393.255 3 419.795 3 364.517 3 418.093 3 333.304
5 67.057 67.273 67.250 67.330 66.675 66.496 66.994 67.984 65.729 66.662
6 129.338 59.278 128.541 128.226 131.744 132.016 127.612 126.001 127.916 128.720
7 3 046.007 3 011.798 3 128.276 3 062.925 3 087.768 3 172.524 2 929.195 2 993.393 3 050.591 3 090.844
8 5.995 6.038 5.809 5.988 6.228 5.994 6.073 6.124 5.979 5.665
9 1.467 2.073 1.870 1.828 2.231 1.564 1.839 1.738 1.905 1.194

10 3.600 3.947 3.028 4.101 4.510 4.484 3.804 2.876 4.551 4.140
11 3.105 2.770 2.620 2.919 2.924 3.147 2.646 2.730 0.000 2.723
12 3 071.256 3 090.223 3 393.973 3 100.040 3 038.871 3 066.206 3 108.119 3 180.302 3 054.795 3 091.982
13 2.017 1.151 1.262 0.982 2.400 1.342 0.963 1.868 1.084 0.722
14 7.780 7.307 7.018 7.081 7.626 8.203 7.816 7.020 7.486 7.658
15 3 057.189 3 103.699 3 016.915 3 102.801 3 074.725 3 006.548 3 286.888 3 096.484 3 096.088 3 159.296
16 52.711 51.127 51.667 50.909 52.036 55.604 49.945 51.389 53.088 50.501
17 23.800 22.064 22.350 0.045 21.168 19.681 23.015 22.061 20.679 21.667
18 2.661 2.530 2.256 2.919 2.587 3.874 3.665 2.607 3.125 2.618
19 4.441 2.914 2.935 2.839 2.591 4.665 3.626 2.762 2.911 3.054
20 3 333.649 3 274.698 3 419.838 3 278.892 3 214.172 3 395.932 3 360.197 3 324.267 3 331.898 3 377.891
21 0.025 3.187 2.066 2.919 2.696 2.645 0.153 3.018 2.404 2.334
22 21.216 13.614 14.468 14.471 13.411 4.094 14.891 13.903 13.873 14.021
23 1 464.651 3 377.717 3 492.956 3 721.758 3 422.436 1 577.323 3 466.196 3 392.559 3 386.430 3 373.558
24 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
25 31.250 2.444 0.002 2.365 3.149 30.672 3.179 2.634 2.411 3.235
26 2.560 2.411 2.564 2.824 6.231 3.114 3.151 2.224 2.449 2.522
27 2.878 0.851 1.151 0.877 0.857 7.710 6.938 0.839 0.801 0.986
28 3 226.153 3 221.532 3 288.515 3 198.706 0.070 3 282.325 3 213.398 3 187.117 3 308.305 3 251.509
29 18.616 17.826 0.264 16.824 17.584 91.416 28.069 17.621 18.347 18.200
30 134.620 126.141 123.501 125.040 130.592 135.476 136.247 127.338 125.716 123.241
31 3 344.929 3 222.880 3 226.365 3 206.577 3 575.997 −1.076 −1.200 3 249.211 3 272.002 3 264.636
32 2.906 2.693 2.886 0.091 3.617 14.607 14.499 3.023 3.152 2.642
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Table E.9 – Cross Talk Data: Aggregate Statistics

Bank AB Bank CD Bank EF Bank GH

Channel Mean Std. Dev. Relative Mean Std. Dev. Relative Mean Std. Dev. Relative Mean Std. Dev. Relative

1 3 325.550 153.250 5.000% 184.300 8.700 5.000% 59.530 2.890 5.000% 1.510 0.250 16.000%
2 10.140 0.550 5.000% 3 153.920 79.500 3.000% 99.110 2.510 3.000% 4.930 0.500 10.000%
3 8.020 0.560 7.000% 15.020 0.790 5.000% 3 240.700 113.330 3.000% 3.770 0.180 5.000%
4 101.920 1.610 2.000% 6.100 0.310 5.000% 12.210 0.220 2.000% 3 369.770 41.400 1.000%
5 164.680 2.170 1.000% 3 141.110 36.590 1.000% 2.030 0.360 18.000% 66.910 0.630 1.000%
6 3 190.370 44.560 1.000% 4.520 0.150 3.000% 11.140 0.450 4.000% 128.790 1.800 1.000%
7 10.130 0.490 5.000% 13.510 0.390 3.000% 4.430 0.120 3.000% 3 055.050 67.100 2.000%
8 12.280 0.600 5.000% 66.910 1.400 2.000% 3 046.850 57.650 2.000% 5.990 0.140 2.000%
9 3 165.970 84.330 3.000% 87.890 2.380 3.000% 31.610 1.000 3.000% 1.740 0.320 18.000%

10 10.210 0.410 4.000% 3 200.570 103.000 3.000% 86.690 2.920 3.000% 3.960 0.540 14.000%
11 12.240 0.640 5.000% 11.150 0.630 6.000% 3 304.740 100.080 3.000% 2.840 0.170 6.000%
12 44.470 1.520 3.000% 5.720 0.490 9.000% 12.650 0.500 4.000% 3 131.120 102.060 3.000%
13 106.720 5.720 5.000% 3 254.220 133.400 4.000% 1.460 0.440 30.000% 1.360 0.520 38.000%
14 3 289.430 139.940 4.000% 3.260 0.230 7.000% 8.170 0.440 5.000% 7.540 0.340 5.000%
15 16.020 1.360 9.000% 10.350 0.510 5.000% 2.540 0.100 4.000% 3 108.980 78.430 3.000%
16 9.170 0.620 7.000% 4.060 0.500 12.000% 3 120.260 94.300 3.000% 52.130 1.610 3.000%
17 3 218.740 77.850 2.000% 118.930 3.260 3.000% 3.260 0.750 23.000% 21.600 1.310 6.000%
18 7.030 0.300 4.000% 3 273.180 50.800 2.000% 90.160 1.350 1.000% 2.800 0.470 17.000%
19 2.820 1.250 44.000% 16.740 2.650 16.000% 3 341.390 42.490 1.000% 3.230 0.640 20.000%
20 8.960 1.610 18.000% 22.130 2.320 10.000% 14.900 0.560 4.000% 3 318.000 61.820 2.000%
21 3.440 0.910 26.000% 3 288.860 140.840 4.000% 2.260 0.580 26.000% 2.700 0.390 15.000%
22 3 243.060 94.980 3.000% 81.580 3.480 4.000% 6.130 1.380 22.000% 14.870 2.370 16.000%
23 41.130 1.630 4.000% 10.780 0.780 7.000% 0.530 0.290 56.000% 3 438.750 113.480 3.000%
24 — — — — 0.360 4.000% 3 023.210 59.640 2.000% 15.790 3.470 22.000%
25 3 173.850 82.060 3.000% 18.460 0.730 4.000% 5.450 0.700 13.000% 2.870 0.460 16.000%
26 9.520 0.360 4.000% 3 421.180 98.930 3.000% 16.090 1.030 6.000% 2.710 0.360 13.000%
27 9.230 0.310 3.000% 199.070 23.650 12.000% 3 071.960 107.160 3.000% 1.190 0.720 60.000%
28 136.520 2.020 1.000% 4.990 0.320 6.000% 68.840 1.140 2.000% 3 245.900 42.020 1.000%
29 38.950 0.770 2.000% 2 984.920 160.330 5.000% 5.380 0.360 7.000% 19.100 3.400 18.000%
30 2 953.770 80.420 3.000% 3.000 0.220 7.000% 5.550 0.470 8.000% 128.750 5.000 4.000%
31 3.280 0.560 17.000% 6.590 0.510 8.000% 1.170 0.140 12.000% 3 298.010 117.410 4.000%
32 8.620 0.330 4.000% 1.850 0.280 15.000% 3 445.960 87.000 3.000% 2.810 0.430 15.000%
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Table E.10 – Cross Talk Data: Modified Board Results

Channel Bank AB Bank CD Bank EF Bank GH

1 3 241.826 40.201 7.845 1.000
2 9.625 3 214.404 18.705 3.552
3 5.331 19.042 3 493.259 2.090
4 13.185 7.540 24.160 3 310.190
5 15.777 3 134.993 8.294 6.556
6 3 280.738 3.159 10.955 15.331
7 14.676 7.768 1.517 3 095.440
8 15.941 6.096 3 065.624 21.328
9 3 202.793 17.761 5.619 9.554

10 9.847 3 265.013 18.734 5.331
11 4.446 20.237 3 203.013 1.174
12 16.568 7.984 32.645 3 063.196
13 49.316 3 516.598 6.722 4.744
14 3 161.708 2.520 8.872 14.219
15 10.796 7.715 2.010 3 104.320
16 9.734 1.348 3 136.324 16.591
17 3 179.260 17.079 4.164 8.314
18 7.795 3 256.037 13.742 3.150
19 1.738 23.824 3 352.600 0.841
20 9.596 7.447 21.840 3 188.090
21 9.415 3 476.768 4.522 5.369
22 3 072.912 2.370 7.403 22.507
23 10.765 7.010 0.935 3 370.507
24 15.379 7.999 3 052.505 17.382
25 3 360.186 25.524 6.969 4.670
26 8.142 3 342.201 18.971 6.531
27 5.215 27.440 3 212.986 0.804
28 0.083 1.740 −0.363 −0.119
29 26.099 3 295.390 6.568 9.184
30 2 968.426 2.725 7.283 29.576
31 5.334 5.782 0.883 3 589.614
32 10.674 2.009 3 414.933 7.278
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Appendix F

Cross Talk Deconvolution
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Figure F.1 – Generated Deconvolution Matrix
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Figure F.2 – Distribution Test Results
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Figure F.3 – Predicted Single Channel Test Results
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Figure F.4 – Actual Single Channel Test Results
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