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Phrasal Category Tagging for Improved Semantic Coherence in
Constrained Hidden Markov Processes

Thesis Abstract – Idaho State University (20222022)

State of the art machine learning models that focus on natural language processing

are powerful, but also complex and expensive, both computationally and financially. Some

generative tasks may require substantially large language models. Larger models are also

not often accessible as access is sold as a service or requires advanced technical knowledge.

Some natural language processing tasks however, such as short sequenced natural language

generation may not require the use of these complex and expensive models. Hidden Markov

models are a historically well known model that are observable, interpretable, and better

suited for small scale generative sequence tasks. To further improve the generative capabilities,

the constrained hidden Markov process (CHiMP) model was introduced in previous work to

allow control over generated sequences by focusing on lexical categories and constraints on

those lexical categories. This work improves upon the CHiMP model to an increased cohesive

level by adding phrasal categories to the hidden state space, and by using floating constraints

on the phrasal categories.

Keywords: natural language processing, markov model, constrained sequence generation,
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Chapter 1

Introduction

Natural Language Processing (NLP) is the area of computer science research focused on

spoken and text languages. This includes understanding, creating, and manipulating language

through computer-based methods [43]. This is an active research area that has produced

automatic language translation [48], social media screening [21], and personal voice assistants

[67]. These tools have been improved by understanding how language is used to express

thoughts, emotions, and ideas [18].

NLP has advanced in three stages. The first stage is the symbolic approach which

started in the 1950s and ended in the early 1990s [23]. This stage was characterized by

computer-emulated natural language tasks given a set of rules. It was during this stage that

language grammar was hand coded. The challenge was that language grammar exceptions

exist. With the large list of rules for each language, this hand coded list of language rules

was inefficient to maintain.

The second stage is statistical NLP which was driven by advancing computer hardware

and machine learning algorithms [46]. Early statistical NLP tasks such as lexical categories

(part-of-speech) tagging used Markov and hidden Markov models and semantic information

to decipher parts of the English language [80]. Continuing work has led researchers to other

statistical models such as the “Maximum Entropy Model” which also used context clues for

lexical categories tagging [68], and n-gram models. Researchers have approached the problem

from a linguistics background, arguing that at the time, many models had little room to

improve, so tasks such as lexical category tagging needed to be reevaluated [47].
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Starting in approximately 2010, a third stage began, which consists of neural network

natural language processing [31]. Neural networks have rapidly advanced and become the

standard machine learning method with common frameworks such as Tensorflow [4], Pytorch

[60], and Keras [17]. The more notable natural language processing models that have come

from these frameworks include: Generative Pre-Training Transformer (GPT) 1 [65], 2 [66], 3

[14] from OpenAI; BERT [26] from Google; RoBERTa [44] from Facebook; and Megatron-

Turing Natural Language Generation model (MT-NLG) from Microsoft and Nvidia [38]. Each

of these models use various machine learning techniques such as long short-term memory

(LSTM) [34], recurrent neural networks [73], and transformers [81]. These models create

NLP content such news articles [2], computer code [50], and some have been suggested to be

capable of imitating humans [27]. However downsides exist; such as being expensive to create,

and not interpretable. A byproduct of this lack of interpretability is that neural network

models have not been specifically constrainable; that is they cannot be made to generate

artifacts that strictly adhere to prescribed constraints. If constrained results were required,

additional complexity would be added to filter results until a correct solution was found.

Although these neural network models have impressive performance, these improve-

ments come at a significant cost. Each of the examples of notable neural network natural

language processing models are trained on graphics processing units (GPUs). Some models

are sufficiently large enough that they required thousands of very expensive GPUs. For

example, attempting to train GPT-3 without GPUs would be near impossible as it would

take hundreds to thousands of years to train on CPUs. Even using 8 Nvidia Volta-100 GPUs

would take 37 human years [36]. One cloud provider, Xestop, allows researchers to rent 8

V100 GPUs for $8/hr [3]. Using Xestop, an estimated cost to train GPT-3 would cost around

$2.6 million without additional overhead fees. Another cost estimate was $12 million [78] on

more GPUs. The size of these models only continues to grow as a model 3 times the size of

GPT-3 was also recently released [38].
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Aside from the high costs of training these models, another frequently referenced

disadvantage is their lack of interpretability and transparency [83]. In statistical NLP

researchers can see the probabilistic reasoning that leads to a model’s generated results. In

neural networks, they are often referred to as black boxes, which means it’s not clear as

to how results are generated. While many modern day transformer networks are proficient

at language generation, there also exists a problem with concise language generation. If

a novel and targeted sequence was desired, transformer networks would need to generate

sequences until one met the defined requirements. This process would require additional

work and unnecessary computation time as many sequences would be generated and thrown

away before a proper solution was discovered. This problem only grows as more computation

time is required as the number of constraints increase.

Whereas neural network models are expensive and lack interpretability, statistical

NLP models are highly efficient and are much easier to manipulate to desired effect. For this

reason, there continues to be research done in the area of statistical NLP [15]. Focusing on

statistical probabilities of word occurrences, or lexical category occurrences has been studied

for some time. Labeled data is usually required meaning that the lexical categories of words

must be tagged for the probabilities to be calculated.

Constraining generated sequences is not a new task. Constraining a sequence is a

constraint satisfaction problem (CSP) [41]. In text sequence generation, constraining a

sequence may be defined as requiring that a sentence starts with a specific word or letter, a

sequence having an exact length, or having a combination of additional constraints. Some

newer research attempts to use the strengths of neural networks models by apply differentiable

constraints [40]. Other research attempts to use Monte Carlo Markov chains to generate

sequences that are likely to meet all of the constraints using tree search algorithms on

pre-trained language models [82]. Markov models with constraints are also not new, as text,

rhyme, and subject noun matching constraints have been applied to finite length Markov

models while being treated as a CSP [56].
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In summary, sequences generated by neural networks excel in terms of cohesion and

fluency, however they are costly and ineffective when generating sequences under specific

constraints. In comparison, statistical models excel in transparency and constrainability, but

generally lag in the quality and cohesion of generated results. Therein lies our challenge: can

a model be designed that excels both at interpretability as well as cohesion? This thesis looks

at a solution to this problem. In Chapter 2, definitions of Markov models, hidden Markov

models, constrained Markov models, and constrained hidden Markov models are outlined.

In Chapter 3 a constrained hidden Markov process, referred to as “CHiMP” is presented

in the paper “Probabilistic Generation of Sequences Under Constraints” as published in

the 2020 Intermountain Engineering, Technology and Computing (IETC) conference [30].

Chapter 4 looks at an early application of a constrained Markov process, referred to as CoMP

in “She Offered No Argument”: Constrained Probabilistic Modeling for Mnemonic Device

Generation” published in proceedings of the tenth International Conference on Computational

Creativity [11]. Chapter 5 continues the applications with “A Leap of Creativity: From

Systems that Generalize to Systems that Filter” as published in the proceedings of the

eleventh International Conference on Computational Creativity [29]. Chapter 6 expands on

the CHiMP model, presenting new work by focusing on phrasal category tagging for improved

semantic coherence. Lastly, Chapter 7 provides a short summary and conclusion.

Much of the foundational development of the model presented in this thesis was done

in collaboration with the Idaho State University computer science student Porter Glines with

whom the accepted publications representing Chapters 3, 4, and 5 were co-authored. Whereas

Porter’s subsequent research and thesis investigated the relative impact of the CHiMP model

on the expressivity and cohesion of sequences in music versus natural language, the unique

contribution in this thesis is an adaptation of the CHiMP model designed specifically to

further improve the cohesion and ability using phrasal categories and applying floating

constraints in natural language generation.
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Chapter 2

Definitions

This thesis depends on understanding 4 statistical NLP models that build on one

another. Although these models are included in the following chapters that represent published

manuscripts, page limits for those publications necessitated brevity in the presentation of the

model definitions. We include this chapter in the interest of providing an accessible format

with visualized examples for the benefit of the reader. More formal definitions may be found

in Chapter 3, Chapter 4, and Chapter 5.

2.1 Markov Models

A Markov model M can be defined mathematically by the triple:

M = {Q, δ, π}

where Q is a set of states, π is a set of initial probabilities, and δ is the set of transition

probabilities. In the context of English sentences, initial probabilities would be the first word

of a sentence, while the transition probabilities are the probability that one word transitions

to another.

A Markov model, M trained on two sentences is demonstrated in Figure 2.1. The

transition probabilities, δ, of M are represented in Table 2.1. The two sentences:

1. John likes the blue house at the end of the street.

2. Mary lives by the blue house in the green house.
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Q = {John, likes, the, blue, house, at, end, of, street,Mary, lives, by, in, green}

π = {John : 0.5,Mary : 0.5}

Figure 2.1: Markov model trained the sentences “John likes the blue house at the end of the
street. Mary lives by the blue house in the green house.”

2.2 Hidden Markov Models

One extension of Markov models are hidden Markov models. These extended models include

an abstract layer of information about the state space. One such example that we focus on

throughout the rest of this thesis is the transitions between the lexical categories (also known as

parts-of-speech) of words rather than the transitions between the words themselves. Including

this additional layer of abstraction allows the model to better mimic the understanding of

language.

The hidden Markov model adds upon Markov models with two additional pieces of

information, a set of hidden states and emission probabilities. A hidden Markov model can

be mathematically defined by the quintuple
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John likes the blue house at end of street Mary lives by in green
John 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
likes 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
the 0.0 0.0 0.0 0.4 0.0 0.0 0.2 0.0 0.2 0.0 0.0 0.0 0.0 0.2
blue 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
house 0.0 0.0 0.0 0.0 0.0 0.5 0.0 0.0 0.0 0.0 0.0 0.0 0.5 0.0
at 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
end 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0
of 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
street 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Mary 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0
lives 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0
by 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
in 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
green 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Table 2.1: Transition probabilities (δ) for M

H = {Q, V, ϵ, δ, π}

where ϵ is the set of emission probabilities. Q becomes the hidden state space and V is the

observable state space. The hidden states are pieces of information that are not immediately

apparent in the training data, such as the lexical or phrasal categories. The emission

probabilities are the calculated odds of each hidden state outputting a select observable state.

Transition properties become the probabilities between the hidden states in state space rather

than the observed states.

Figure 2.2 demonstrates a hidden Markov model H trained on the same two sentences

1. John likes the blue house at the end of the street.

2. Mary lives by the blue house in the green house.

where the abstracted hidden layer of information is the lexical category of each word in the

training sentences. Table 2.3 demonstrates the transition values δ, Table 2.4 demonstrates
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Acronym Lexical Category
NNP proper noun
VBZ verb
DT determiner
JJ adjective
NN singular noun
IN preposition

Table 2.2: Lexical categories used in the model and their acronym.

the emission probabilities, and Table 2.2 explains each lexical category acronym.

Q = {NNP, VBZ, DT, JJ, NN, IN}

V = {John, likes, the, blue, house, at, end, of, street,Mary, lives, by, in, green}

Figure 2.2: Hidden Markov model trained on the sentences “John likes the blue house at the
end of the street. Mary lives by the blue house and in the green house.” where the hidden
state space is the lexical category of each word in the training set.
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NNP VBZ DT JJ NN IN
NNP 0 1.0 0 0 0 0
VBZ 0 0 1.0 0 0 0
DT 0 0 0.2 0.4 0.4 0
JJ 0 0 0 0 1.0 0
NN 0 0 0 0 0 1.0
IN 0 0 1.0 0 0 0

Table 2.3: Transition probabilities (δ) for the hidden Markov process where hidden states are
the lexical categories.

John likes the blue house at end of street Mary lives by in green
NNP 0.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.5 0.0 0.0 0.0 0.0
VBZ 0.0 0.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.5 0.0 0.0 0.0
DT 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
JJ 0.0 0.0 0.0 0.66 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.33
NN 0.0 0.0 0.0 0.0 0.6 0.0 0.2 0.0 0.2 0.0 0.0 0.0 0.0 0.0
IN 0.0 0.0 0.0 0.0 0.0 0.25 0.0 0.25 0.0 0.0 0.0 0.25 0.25 0.0

Table 2.4: Emission probabilities (ϵ) for the hidden Markov process where hidden states are
parts of speech. These are the probabilities of the hidden state (part of speech) producing
the observable state (word).

2.3 Constrained Markov Process

Constrained Markov processes, and one of the primary inspirations of this thesis, come from

a paper by François Pachet titled “Finite-Length Markov Processes with Constraints” [56].

In their paper, the authors outline a method for applying constraints to each position of the

Markov model and updating the corresponding transition matrix. Using the same sentences

1. John likes the blue house at the end of the street.

2. Mary lives by the blue house in the green house.

constraints can be applied. As an example, let the first constraint be that the generated

sequence has to start with the word “the” and let the second constraint be that the word

“green” is not allowed in a generated sequence. Figure 2.3 provides an example of the updated

constrained model.

9



Q = {the, blue, house, at, end, of, street, in}

π = {the : 1.0}

Figure 2.3: Example of a constrained Markov model where the first word must be “the” and
the word “green” is not allowed in the generated sequence

the blue house at end of street in
the 0.0 0.5 0.0 0.0 0.25 0.0 0.25 0.0
blue 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0
house 0.0 0.0 0.0 0.5 0.0 0.0 0.0 0.5
at 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
end 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0
of 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
street 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
in 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Table 2.5: Updated transition probabilities (δ) for the constrained Markov process where 2
constraints have been applied: the word “green” is not allowed and the generated sequence
must start with the word “the”.
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2.4 Constrained Hidden Markov Process

Constrained hidden Markov processes combine constrained Markov processes and hidden

Markov models to allow constraints to be applied to either the observable states or the hidden

states. Using the same training sentences

1. John likes the blue house at the end of the street.

2. Mary lives by the blue house in the green house.

and lexical categories for the hidden states, we can create Figure 2.2. Figure 2.4 shows

the same hidden Markov model after applying a constraint that does not allow the “JJ”

(adjective) lexical category in the model. Table 2.6 shows the transition probabilities δ and

Table 2.7 demonstrates the updated emission probabilities ϵ when the constraint is applied.

Figure 2.4: Hidden Markov model trained the sentences “John likes the blue house at the
end of the street. Mary lives by the blue house in the green house.” where the hidden states
are the parts of speech and a constraint has been applied that removes the hidden part of
speech “JJ” (adjective).
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NNP VBZ DT NN IN
NNP 0 1.0 0 0 0
VBZ 0 0 1.0 0 0
DT 0 0 0.33 0.66 0
NN 0 0 0 0 1.0
IN 0 0 1.0 0 0

Table 2.6: Transition probabilities (δ) for the constrained hidden Markov process where
hidden states are parts of speech and a constraint is applied to remove the JJ part of speech
(adjective).

John likes the house at end of street Mary lives by in
NNP 0.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.5 0.0 0.0 0.0
VBZ 0.0 0.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.5 0.0 0.0
DT 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
NN 0.0 0.0 0.0 0.6 0.0 0.2 0.0 0.2 0.0 0.0 0.0 0.0
IN 0.0 0.0 0.0 0.0 0.25 0.0 0.25 0.0 0.0 0.0 0.25 0.25

Table 2.7: Emission probabilities (ϵ) for the constrained hidden Markov process where
hidden states are parts of speech. These are the probabilities of the hidden state (part of
speech) producing the observable state (word) and the constraint is that there cannot be any
adjectives.
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Chapter 3

Probabilistic Generation of Sequences Under Constraints

This chapter was published in the 2020 Intermountain Engineering, Technology and

Computing (IETC) conference [30]. I was directly involved in the development of the CHiMP

model, the training process, the statistical evaluation of the model, and the normalization

of constrained probabilities. This novel model is the base model used in the experiments

conducted for my thesis.

Throughout the next 3 chapters, lexical categories will be referred to as “parts of

speech”. They can be used interchangeably and we just recently started using lexical categories

as a replacement.

3.1 Abstract

There is growing interest in the ability to generate natural and meaningful sequences (e.g., in

domains such as language or music). Many existing sequence generation models, including

Markov and neural algorithms, capture local coherence, but have no mechanism for applying

the structural constraints that are so often essential for the development of meaning. We

describe a novel solution to this problem which combines hidden Markov models with

constraints, allowing sequences which obey user-defined constraints to be generated according

to data-driven probability distributions. Compared to other constrained probabilistic solutions,

our Constrained Hidden Markov Process (CHiMP) has significantly greater expressivity,

allowing the user to generate constrained sequences that are longer and which have more

numerous structural constraints.
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3.2 Introduction

Sequence generation is a common task in the field of artificial intelligence, particularly for

domains such as music, procedural content generation, natural language generation, etc.

Models used to generate sequences are trained on a corpus and are then iteratively sampled

using some probabilistic distribution to generate a sequence of words. Many generative

models (such as n-gram, Markov, and recurrent neural models) use previously generated

tokens in the sequence to influence which future tokens are generated; however, they make

no guarantee as to what a particular token will be [33, 64]. The stochastic nature of these

models is desirable for many types of problems where generalization beyond the training

corpus is essential to the generation of novel and yet coherent sequences.

Stochasticity becomes problematic, however, when needing to generate sequences

whose meaning relies on structure. Music, for example, progresses sequentially; notes are

followed by more notes. However, to elevate a musical phrase to be something interesting,

higher features such as motifs need to be present in the sequence [5, 53]. Purely stochastic

models have no way of ensuring that a motif or repeated pattern is generated in a longer

musical phrase. Likewise coherent English sentences require proper subject-verb and noun-

pronoun agreements, possibly between distant sequence positions. Quality generation of

English sentences are important to any natural language application, but are increasingly in

demand for applications such as virtual assistants or procedural content generation [42].

A common solution to the lack of structure in sequential data models is to combine

these models with constraints. Constrained Markov processes in particular have been very

successful at imposing structure when combined with constraints [7]. These models are

capable of imposing structure in the form of unary constraints. For example, rhymes can

be created by constraining words at different positions to belong to the same rhyme group.

They have also been used in music generation [57] and to constrain against plagiarism [58].

A significant and well-known drawback of constrained Markov models (and constrained

models in general) is the inability to find satisfying solutions when constraints become
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numerous. This is due largely to the high coupling between states in a Markov process which

causes changes in the state space at one position to directly and significantly affect the state

space at neighboring positions. As more constraints are added, the diminishing state space

problem is compounded to the point where the model is not able to find sequences that

satisfy both the Markov constraints (i.e., state sequences allowed by the Markov transitions)

and the unary constraints.

To address these shortcomings, we propose a novel solution to the constrained sequence

generation problem that uses a constrained hidden Markov process (CHiMP) model. We

demonstrate how the increased expressivity that emerges from hidden Markov processes with

respect to non-hidden Markov processes can be similarly applied to a constrained Markov

model in order to vastly increase the solution space for any constrained sequence generation

problem. Lastly we provide a comparative analysis of these two models on a real-world

sequence generation problem as a demonstration of the improved expressivity of the CHiMP

model over other constrained Markov processes.

3.3 Related Work

Markov models (which are also very similar to n-gram models) are ideal for sequence

generation; however, other types of models are commonly used for sequence generation.

Neural networks in the form of recurrent neural networks (RNNs) can be used to repeatedly

predict (i.e., generate) words in a sequence. RNNs differ from Markov models in that they are

“fuzzy”, meaning they perform higher-dimensional interpolation between training instances for

their predictions [33]. This allows RNNs to synthesize and use their training data in a more

complex way compared to Markov models. However, the fuzzy aspect of RNNs means that

the model makes no guarantees about a generated sequence. For a generated English sentence,

an RNN may exhibit a comprehension of a complex interaction present in the training data,

but the longer sequence generated fails to satisfy subject-verb agreement. Combining RNNs

with constraints is thus an area of ongoing research [35].
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Long Short-term Memory (LSTM) are a variant of RNNs designed specificially to

maintain a longer term memory about tokens that the model has previously generated [33].

LSTMs use multiple neural networks and memory cells to achieve this increased ability to

remember inputs over longer periods in a sequence. This allows LSTMs to display a better

understanding of lasting structure and patterns in a sequence over RNNs. An LSTM will

have an easier time replicating a desired larger structure such as subject-verb agreement,

however the model does not guarantee such structures will emerge.

Markov processes generate sequences by looking at the previous state (or previous

n states for an n-order Markov model) and randomly sampling according to trained transi-

tion/emission probabilities to generate a new token. The process is iterated to generate a

full sequence of tokens. The simplicity of these models lends to them being easy to imple-

ment and efficient to run [57]. Examples of Markov implementations include systems that

react interactively to music input [55] and text-to-speech synthesis where speech waveform

generation is generated via a hidden Markov model [75].

When generating sequences, Markov processes produce sequences that share a common

style with the data the model was trained on. In the context of natural language synthesis,

the style sharing properties of Markov processes can be exploited to change speaker identities,

emotion of the speech, and the cadence of the speaker [75].

The defining feature of a Markov process is that it adheres to the Markov property

which is that the next state in the sequence is determined only by the previous state to it,

i.e.,

p(si|s1, . . . , si−1) = p(si|si−1).

In the context of sequence generation, the Markov property is well-suited to domains such as

music where, aside from higher features, the next note relies on the previous note (i.e., music

exhibits Markovian aspects) [12].

Previous efforts have been made to combine probabilistic models with constraint

satisfaction. Pachet et al. introduce constrained Markov process (which we will refer to as
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CoMP) as a method for applying user-defined constraints to a non-hidden Markov model

[57]. Likewise, factor graphs combine a non-hidden Markov process with an automaton

to create a system functionally equivalent to the one introduced by Pachet et al. [59]. A

weakness in these models is that their ability to find satisfying solutions diminishes quickly

as constraints are added or made more stringent. We quantitatively analyze this limitation

in the applications section of this paper.

The CHiMP model maintains the strengths of the CoMP and Factor graph models, in

guaranteeing the generation of constraint-satisfying solutions, while significantly expanding

the solution space to mitigate the limitations posed in these latter models by adding numerous

or strict constraints.

3.4 Methods

The primary difference between the CoMP model and the CHiMP model is that the former

derives from a Markov model whereas the latter derives from a hidden Markov model. As

such, we will review these two models first and then look at how constraints are added to

these models to form the CoMP and CHiMP models

As a running example we will consider the problem of generating a sequence with the

following set of constraints (hereafter referred to as the set C):

1. The sequence must be four words in length

2. The first word rhymes with red

3. The last word is red

Furthermore the sequence of words must be generated according to probabilities derived from

the following training corpus (note that for the sake of simplicity, and because it is irrelevant

in the context of the constrained models, we purposely ignore end-of-sentence tags):
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NNP RB VBZ NN

Ted now likes green

NNP VBZ NN

Mary likes red

NNP RB VBZ NN

Mary now loves red

NNP VBZ NNP RB

Fred sees Mary sometimes

The tokens NN, RB, VBZ, and NNP represent part-of-speech (POS) tags equating respectively

to a noun, an adverb, a verb in 3rd-person singular present, and a proper noun singular. For

purposes of equal comparison all models are required to incorporate both POS and words

into their state spaces. Markov models do this by combining both POS and words into a

single state space; hidden Markov models explicitly separate POS and words into hidden and

observed state spaces respectively.

3.4.1 Markov Processes

A Markov model is defined as a triple M = (SM , πM , TM) where SM defines a finite set of

observed states or symbols; πM : SM −→ [0, 1] represents the initial probabilities for states;

and TM : SM × SM −→ [0, 1] represents the transition probabilities between states. Each of

πM and TM represent a distribution and should thus sum to 1.0.
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For the training corpus above, M = (SM , πM , TM) where SM = {(NNP, Ted), (RB,

now), (VBZ, likes), (NN, green), (NNP, Mary), (NN, red), (VBZ, loves), (NNP, Fred),

(VBZ, sees), (RB, sometimes)}, and πM and TM are defined as follows:

πM

(NNP,Ted) 1/4
(NNP,Mary) 2/4
(NNP,Fred) 1/4

else 0
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(NNP, Ted) 0 1 0 0 0 0 0 0 0 0
(RB, now) 0 0 1

2
0 0 0 1

2
0 0 0

(VBZ, likes) 0 0 0 1
2

0 1
2

0 0 0 0
(NN, green) 0 0 0 0 0 0 0 0 0 0
(NNP, Mary) 0 1

3
1
3

0 0 0 0 0 0 1
3

(NN, red) 0 0 0 0 0 0 0 0 0 0
(VBZ, loves) 0 0 0 0 0 1 0 0 0 0
(NNP, Fred) 0 0 0 0 0 0 0 0 1 0
(VBZ, sees) 0 0 0 0 1 0 0 0 0 0
(RB, sometimes) 0 0 0 0 0 0 0 0 0 0

We generate a sequence s = {s1, . . . , sn} using M as follows:

1. Sample an initial state s1 ∈ SM according to πM

2. While sequence not finished,

(a) Sample the next state si ∈ SM given si−1 according to TM

The sequence finishes either when an end-of-sequence token is sampled or when the sequence

has reached some pre-determined length (as is the case in the CoMP and CHiMP models).

19



A Markov model M generates a sequence s = {s1, . . . , sn} of states from SM with

probability

PM(s) = πM(s1)
n∏

i=1

TM(si−1, si).

Trained on the example corpus, M generates the following sequences with the proba-

bilities shown:

NNP VBZ NN

Mary likes green

1/2 ×1/3 ×1/2 = 1/12

NNP VBZ NNP RB

Fred sees Mary now

1/4 ×1 ×1 ×1/3 = 1/12

Note that although the Markov process generates sequences according to probabilities

derived from the training corpus, it generates sequences that fail to meet constraints as

defined by C. The probability mass devoted to sequences which obey constraints in C is

relatively small.

3.4.2 Hidden Markov Processes

A hidden Markov model is defined a five-tuple H = (SH , VH , πH , TH , EH) where SH defines a

finite set of (hidden) states; VH is a finite set of observed states or symbols; πH : SH −→ [0, 1]

represents the initial probabilities for hidden states; TH : SH × SH −→ [0, 1] represents

the transition probabilities between hidden states; and E : SH × VH −→ [0, 1] defines the

probability of emitting a symbol given a particular hidden state. Each of πH , TH , and

EH represent a distribution and should thus sum to 1.0. For the training corpus above,
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SH = {NN,RB, V BZ,NNP}, VH = {Ted, now, likes, green, Mary, red, loves, Fred, sees,

sometimes}, and πH , TH , and EH defined as follows:

πH

NN 0
VBZ 0
RB 0
NNP 1

TH NN VBZ RB NNP
NN 0 0 0 0
VBZ 3/4 0 0 1/4
RB 0 1 0 0
NNP 0 2/5 3/5 0

EH T
ed

n
ow
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s

gr
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NNP 1/5 0 0 0 3/5 0 0 1/5 0 0
RB 0 2/3 0 0 0 0 0 0 0 1/3
VBZ 0 0 1/2 0 0 0 1/4 0 1/4 0
NN 0 0 0 1/3 0 2/3 0 0 0 0

O(Ln)

O(Ln2)

B(0), . . . , B(L−1)

Emission matrix T
ed
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w
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es

gr
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NNP 0 0 0 0 0 0 0 0 0 0
RB 0 0 0 0 0 0 0 0 0 0
VBZ 0 0 0 0 0 0 0 0 0 0
NN 0 0 0 0 0 2/3 0 0 0 0

To generate a sequence s = {(s1, v1), . . . , (sn, vn)}, H follows the procedure:
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1. Sample an initial hidden state s1 ∈ SH according to πH

2. Given s1, sample a symbol v1 ∈ VH according to EH

3. While sequence not finished,

(a) Sample the next hidden state si ∈ SH given si−1 according to TH

(b) Sample the next symbol vi ∈ VH given si according to EH

The sequence finishes either when an end-of-sequence token is sampled or when the sequence

has reached some pre-determined length.

Using H, a sequence s = {(s1, v1), . . . , (sn, vn)} is generated with probability

PH(s) = πH(s1)EH(s1, v1)
n∏

i=2

TH(si−1, si)EH(si, vi)

Trained on the example corpus, H generates the following sequences with the probabilities

shown:

1 ×2/5 ×3/4

NNP VBZ NN

Ted likes green

×1/5 ×1/2 ×1/3 = 1/100

1 ×3/5 ×1 ×1/4

NNP RB VBZ NNP

Mary sometimes loves Fred

×3/5 ×1/3 ×1/4 ×1/5 = 3/2000
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Note again that although this model will generate sequences according to the correct prob-

ability distribution, the probability mass devoted to sequences which match our desired

constraints is relatively small.

It is important to note that, trained on the same corpus, the solution space of H

is a superset of the solution space for M (e.g., the example solutions shown for M can be

generated by H, but the reverse is not true). This increased expressivity comes purely as a

result of adding the hidden layer in H. In broad terms, the solution space of M is O(|SM |n)

(where n is the length of the sequence) whereas the solution space of H is O(|SH |n × |VH |n).

Shifting from a Markov to a hidden Markov model increases the size of the solution space

by an exponential factor, |VH |n. This enhanced expressivity of hidden Markov models with

respect to non-hidden models is one of the keys that makes the CHiMP model more robust

when adding constraints: an exponentially larger solution space significantly increases the

chances of maintaining satisfying solutions when pruned by constraints.

3.4.3 Constrained Markov Processes

At a high-level, a CoMP model M̃ , derived from a Markov model M and a set of constraints

C, can be thought of as a Markov model that creates a copy Ti,j of T for each pair of sequence

positions (i, j) in the sequence to be generated and then modifies each Ti,j to ensure that

constraints in C applying to positions i and/or j are met (e.g., zero out probabilities in T3,4

transitioning to any state s4 ̸=red). This is demonstrated in Fig. 3.1. The CoMP model

M̃ applies arc-consistency and re-normalization to sample constraint-satisfying solutions s

with probability PM̃(s) that differs from PM(s) by a constant factor. Because this model is

a form of tree-structured CSP, arc-consistency can be enforced in a single pass to ensure

probabilities sum to 1.0 and that relative probabilities for constraint-satisfying solutions are

maintained (for the details on this algorithm and the algorithm for re-normalization see [57]).

Because the transition probabilities can vary by position, the CoMP model is sometimes

referred to as a non-homogeneous Markov model.
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Figure 3.1: A constrained Markov process (CoMP) with constraints requiring the first token
rhyme with red and the last token be red. Pruned states and updated transitions are the
result of applying constraints and then enforcing arc-consistency.
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Given the training corpus and constraint set C, a trained CoMP model (as shown in

Fig. 3.1) is able to generate only two solutions:

Sequence s PM(s) PM̃(s)

Ted now likes red. 1/16 1/3

Ted now loves red. 2/16 2/3

Note that M̃ only generates constrain-satisfying solutions and that these solutions are

generated according to probabilities derived from our training corpus. The challenge, however,

is that these are the only two solutions. In general, the number of satisfying solutions for M̃

is very few compared to what will be shown next for the CHiMP model.

3.4.4 Constrained Hidden Markov Processes

The CHiMP model follows a pattern similar to that of the CoMP model except that instead of

combining a non-hidden Markov model with a set of constraints C, the CHiMP model combines

a hidden Markov model with C. Given a hidden Markov model H = (SH , VH , πH , TH , EH) and

a set of constraints C, a constrained hidden Markov process H̃ generates sequences of hidden

and/or observed states that obey the constraints in C. H̃, like M̃ , allows for probabilities to

vary by position. The difference is that CHiMP replicates and modifies both TH and EH

probabilities for each position (see Fig. 5.2). After applying constraints, arc-consistency is

enforced to remove nodes that do not lead to a solution. As in M̃ , arc-consistency measures

can be enforced in H̃ in a single pass. All matrices are re-normalized to ensure that the

distributions PH̃ and PH differ by only a constant factor for satisfying solutions.

Given the training corpus and our rhyming constraints, the CHiMP model is able to

generate the following 12 solutions, each with their respective probabilities.
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Figure 3.2: A high-level schematic of a constrained hidden Markov process (CHiMP) of
length 4 constrained so that the last word is “red” and the first word rhymes with “red”.
Each column represents a position in the sequence to be generated. Each node represents
a hidden state (i.e., part-of-speech) and a probability distribution for the observed states
(i.e., words) that can be generated from that hidden state. By pruning observed states that
are disallowed by constraints and then adjusting probabilities to maintain arc-consistency,
the resulting model generates constraint-satisfying solutions with probability relative to the
original probability distribution. Hidden states pruned directly from applying constraints are
indicated by dark grey nodes and states pruned during arc-consistency are indicated by light
grey nodes.
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Solutions Probabilities

Ted now likes red. (4/200)

Ted now loves red. (2/200)

Ted now sees red. (2/200)

Ted sometimes likes red. (2/200)

Ted sometimes loves red. (1/200)

Ted sometimes sees red. (1/200)

Fred now likes red. (4/200)

Fred now loves red. (2/200)

Fred now sees red. (2/200)

Fred sometimes likes red. (2/200)

Fred sometimes loves red. (1/200)

Fred sometimes sees red. (1/200)

By including hidden states in the constrained model H̃, the increased solution space

results in the model being able to generate significantly more satisfying solutions than M̃ . A

second added benefit is afforded by the addition of hidden states: because constraints are

applied on observed states and because there is no direct influence between observed states

in H, there is an increased degree of separation between constraints. This helps to avoid the

compounding effect of diminished state spaces resulting from individual constraints.

3.5 Applications

To demonstrate the improvements of the CHiMP model over the CoMP model, we compared

the results of each model trained on the Corpus of Contemporary American English (COCA)

[24] and provided the same set of constraints. In particular, we selected training sets from

the 2012 fiction portion of COCA and constrained each model to only output sequences in
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which the first letter of each word began with the same letter (e.g., a tongue-twister). We

chose this problem because it represents a fairly general example of constrained sequence

generation that is easily adapted to sequences of varying lengths. Results are averaged over

26 instances of the problem with each instance having constraints defined with a different

letter of the English alphabet.

Our experiments were two-fold. First, we examined the number of sequences generated

by each model as a function of sequence length. Since each word is constrained to start

with a specified letter, as the sentence length increases, so does the number of constraints.

This experiment compares how the models are affected by increasingly stringent constraints.

Second, we examined the number of sequences generated by each model as a function of the

size of the training corpus. Our motivation here is to compare how the models are affected

by an increasingly restricted data set. In all cases, both models were trained on the same

subset of data.

In Fig. 3.3, we see that as the sentence length increases and, by consequence of our

problem, the constraints become more numerous, the CoMP model generate less and less

unique sentences – even unable to generate sentences past a sentence length of 6 (for a fixed

corpus size of 100 sentences). Each constraint added further tightens the restrictions put on

possible solutions that CoMP can find. In contrast, CHiMP maintains expressivity (i.e., the

ability to generate unique sentences) as sentence length grows and constraints are added.

In Fig. 3.4, CHiMP remains expressive even when trained on a very small training

corpus (25 sentences). The trend of unique sentence averages increases as the training set

increases until reaching the maximum number of sampled solutions (100K). CoMP’s ability

to generate novel and unique sentences is severely limited according to the size of its training

set.
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Figure 3.3: The effects of sequence length (and consequently number of constraints) on
generalizability (i.e., number of unique sequences out of 10k sampled solutions) for a fixed
random training set of 100 sentences. Each model is constrained such that words start with
the same letter, and counts are averaged over 26 runs (a different letter constraint for each
run). The added constraints from increasing sequence length have a compounding limiting
effect in the CoMP model, whereas the abstraction of the CHiMP model serves to decouple
constraints to avoid bottlenecks.
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Figure 3.4: The effects of training corpus size on generalizability of the CHiMP (blue) and
CoMP (orange) models. Generalizability is measured as number of unique sequences out of
100k sampled solutions. Each model is constrained such that words start with the same letter,
and counts are averaged over 26 runs (a different letter constraint for each run). Shades show
the effects of varying the sequence length (and consequently the number of constraints) on
generalizability. The CHiMP model consistently generates more unique satisfying solutions
than the CoMP model and is relatively immune to the effects of training set size or number
of constraints.
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3.6 Conclusion

We have demonstrated through quantitative analysis that under increasingly stringent con-

straints and increasingly limited training data, constrained hidden Markov processes are

an ideal solution for maintaining reasonable solution spaces. It remains to be seen what

qualitative affect the CHiMP model has compared to the CoMP model in terms of the

coherence of generated sequences. Regardless, insofar as quality is reflected in the ability of

the model to add and respect more constraints, CHiMP maintains a significant advantage.

The diminished fear of adding constraints afforded by the CHiMP model is a significant

asset that opens many new and exciting avenues for research in sequence generation. Where

many problems are easily defined using constraints, the difficulty of generating structured

sequences shifts from the inability of the model to find solutions to challenging the system

designer to think of new and creative ways to derive and define constraints.
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Chapter 4

“She Offered No Argument”: Constrained Probabilistic Modeling for Mnemonic

Device Generation

The paper provided in this chapter provides an introduction to constrained models

and how they might be used in computational creativity. This paper was published at the

International Conference on Computational Creativity (ICCC) in 2019 [11]. I was involved

with the creation of the constrained models, writing and presenting the published work at the

ICCC conference, and with creating interactive tools that were used to create the mnemonics

presented in the paper.

4.1 Abstract

A common aspect to creativity as described by creative theorists is the juxtaposition and

balance of two opposing qualities, namely novelty and typicality. Practical models of computa-

tional creativity are needed that effectively leverage the contributions of each of these qualities

in a synchronous manner. We discuss the effectiveness of constrained probabilistic models in

representing this duality in generative models of creativity. We illustrate constrained Markov

models as an example of a constrained probabilistic model and demonstrate its application

to computational creativity in the elaboration of a system called NhMMonic for generating

mnemonic devices. We demonstrate the effectiveness of the system1 using a qualitative survey.

Our findings suggest that the constrained Markov model is particularly effective at generating

mnemonics that exhibit novelty and typicality in grammatical and semantic flow with the

1An interactive demo can be viewed at https://ccil.cs.isu.edu/projects/mnemonic/
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overall result of more effective mnemonics for the purpose of memorization. Source code as

well as our mnemonic device generator are both freely accessible online.

4.2 Introduction

Computational creativity (CC) has been defined as “the philosophy, science and engineering of

computational systems which, by taking on particular responsibilities, exhibit behaviours that

unbiased observers would deem to be creative” [20]. The plural focus on the philosophy, science

and engineering of computational systems has yielded valuable theoretical contributions as well

as a number of functional creative systems. Emergent from this plural focus is the challenge

of maintaining harmony between theory and practice. To be sure the abstract philosophy

and concrete engineering can and should work to challenge one another in their mutual

growth and evolution; however, the goal ultimately is to develop systems that accurately

reflect the philosophical moorings and to advance theories whose tenets agree with what is

observed about creativity in practice. Thus the role of practical models of creativity becomes

significant—models that, by virtue of their ability to implement principles deriving from the

philosophy, can be generalized beyond any single creative system with great effect, while

maintaining ready applicability and implementability. As described by [37], these models

define the creative process of a system, namely “what the creative individual does to be

creative.”

Several examples of practical models of creativity have been demonstrated. Evolution-

ary models represent a practical implementation of the widely-accepted theory that creativity

is a self-evaluative, iterative process as discussed by [22] (e.g., see [49]. Related is the model of

a dynamic knowledge base [63] in which novel artefacts that have been evaluated as belonging

to the domain are added to a system’s set of exemplars, possibly altering the definition of

the domain itself (e.g., as discussed by [8]). Generate-and-check is another model that has

been suggested as being representative of the creative process [61].
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In considering the modeling of theoretical aspects of creativity, one particularly

intriguing aspect that is often discussed is the tenuous balance that a creative system must

maintain between novelty and typicality—the adherence to structural domain-defining rules

combined with an exploratory discovery of new, valuable artefacts. These two characteristics

can sometimes seem at odds with one another; a creative system must both obey norms at

some level and break them entirely at other levels. It is the juxtaposition of these qualities

that evokes the perception of creativity: the observer recognizes and appreciates an artefact

relative to its contextual domain while at the same time being challenged and surprised as a

result of the artefact’s unique traits and value. [22] emphasizes that creativity stems from a

person learning the rules of and basic procedures of a domain and then channeling thinking

based on those rules in new directions. [72] puts novelty and typicality on a spectrum called

the Wundt curve or “hedonic function” and frames successful creativity in terms of finding

the correct balance of typicality and novelty (see Figure 4.1). Margaret Boden [8], in her

seminal work The Creative Mind: Myths and Mechanisms, compares (exploratory) creativity

to navigating a “structured conceptual space” to find “things you’d never noticed before.”

[79] elaborates a formal mechanism of Boden’s concept of creativity by defining two rule

sets, R and T . Of these two sets R is a set of rules which “constrain the space” to a

representation of “the agreed nature of what the artefact is, in the abstract”; T , by contrast,

is a set of traversal rules which, when constructed effectively, is designed to find concepts

that have not been previously discovered. [69], in defining empirical criteria for attributing

creativity to a computer program, defines three essential properties, two of which are novelty

and typicality (the third is quality, which Boden also emphasizes and which we will discuss

below).

Many existing abstract frameworks for building creative systems have been described,

several of which explicitly model the components of novelty and typicality (e.g., [77]). Our

purpose is not to present a new framework or pattern for creative systems; rather our purpose

is to discuss from an implementation standpoint how typicality and novelty can be modeled
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Figure 4.1: The Wundt curve models value as the sum of two nonlinear functions: Hx which
rewards novelty, and Nx which punishes novelty beyond some threshold of typicality, from
[72].
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so as to explicitly leverage their unique contributions and simultaneously ensure that both

are effectively achieved. In what follows we examine the suitability of a previously unexplored

model in CC—a constrained probabilistic model—for this purpose. We describe how the

dual nature of this model mirrors the dual properties of typicality and novelty and how the

model strikes an appropriate balance between them. As a concrete example of the effective

application of these models to generate novelty and typicality, we describe an implementation

of a constrained Markov model, NhMMonic, for generating mnemonic devices. We show using

evaluative surveys that the system generates mnemonics that demonstrate typicality, novelty,

and value (as measured by how well the mnemonic facilitates memorization and learning).

4.3 Parallels Between Computational Creativity and Constrained Probabilistic

Modeling

Computational creativity can be thought of as a generative act in which, for some particular

domain, the set of possible artefacts D = {x1, . . . , xn} is represented as a random variable

X that with probability P (xi) takes on the value xi. The primary strength of probabilistic

models is that they generalize well from a set of training examples to be able to generate

novel artefacts. Inasmuch as this generalization is accomplished independent of the biases of

the system designer, it lends strength to the argument that probabilistic systems possess some

degree of autonomy beyond manually-crafted rule-based systems. In practice, implementing

a creative system in this manner presents two challenges.

One challenge is determining the probability distribution P (X): with what probability

should the model generate a particular xi? This challenge can be solved explicitly—as in the

case of systems that manually encode a generative process—or implicitly—as in the case of

systems that attempt to learn abstract statistical properties from a set of training examples.

Prior to or in the course of resolving the first challenge, we face a second, more

formidable challenge: defining the domain D itself. Decisions about whether a particular

artefact xj belongs or does not belong to D can vary from one individual to the next [39].

36



For now let us assume that D exists as a “fuzzy” subset of some larger domain, which we

shall call UD and which represents the universal set of all artefacts that can be represented

using the same language with which artefacts in D are represented. For example, the domain

of haiku exists as a subdomain of natural language generally. The domain of musical chorales

exists as a subdomain of musical compositions generally. The fuzziness of the set D can

derive from a variety of issues such as the difficulty in precisely defining D or the willingness

of domain experts to accept artefacts that (to varying extents) break the rules typical of an

artefact in D.

Any particular creative system defines a set that more or less approximates D and

possibly includes some artefacts that are less commonly agreed upon as belonging to D (see

Figure 4.2). How this set is implemented is important in designing creative systems that

efficiently generate artefacts in D. For rule-based systems, the rules by which an artefact

belongs within the set are hard-coded; logic is designed to prevent consideration of artefacts

that break rules of the domain beyond some threshold. For evolutionary models, this set can

be defined by designing a fitness function that penalizes artefacts outside of this domain.

The set can also be defined as a set of constraints given as input to a constraint satisfaction

solver, but with limited sense of how good one solution is with respect to another [54].

In the process of generalization, probabilistic models trained with artefacts from D

are typically capable of generating artefacts that do not belong in D. Increased expressive

power in these models (i.e., the ability to generalize novel solutions) derives from maximizing

independence relationships between elements of an artefact (e.g., being able to model rhythm

and pitch separately in a music composition). This process can, however, lead to the

generation of artefacts whose combined elements produce artefacts that most would agree do

not belong in D.

Suboptimal solutions exist to ensure that a probabilistic model generates artefacts

within the domain D of interest. Probabilistic models could ensure their output by minimizing

independence assumptions (i.e., forcing the model to generate solutions more similar to the
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Figure 4.2: In many forms of creativity, the set of domain artefacts D exists as a structured
subset of a larger domain UD of all artefacts that can be represented using the same language
as is used to describe artefacts in D. Due to the inherent difficulty of defining belonging to
a particular domain for a general audience, the set of artefacts included in D is in reality
somewhat vague. In practice creative systems define a set that approximates D which defines
the expressive range of the model. The extent to which this set includes or excludes artefacts
that are commonly accepted as belonging to D controls how conservative or liberal the model
will be in judging whether or not an artefact is representative of the domain.
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training data). This solution significantly decreases the model’s ability to discover novelty

from the training data. This solution also requires training on data that is more precisely

representative of D. A second suboptimal solution is the generate-and-check or rejection

sampling model: probabilistically generate artefacts using the over-generalized model and

then filter results to those within the D [61]. This solution not only creates inefficiencies,

but often assigns low probability to artefacts belonging to D [77]. In such cases it becomes

improbable that the system generates valid artefacts in reasonable time [57].

A better solution to the problem of enforcing the model’s domain of artefacts is

the incorporation of constraints into a model that maintains probabilistic reasoning. The

“fundamental entwinement of constraints and creativity” has been noted as an area of recent

interest for creativity research, “with skillful and innovative handling of constraints seen as a

prerequisite for apt creative performance” [54].

A constrained probabilistic model defines a set of rules for belonging in D as a set of

constraints C. Given C and a probability distribution PUD(xj) for all artefacts in xj ∈ UD, a

constrained probabilistic model defines the probability of generating an artefact xi as

P (xi) ∝


PUD(xi) if xi satisfies C

0 otherwise

By defining constraints explicitly, the model can be trained on artefacts from UD generally,

maintain independence assumptions that maximize expressivity, and ensure probability within

the generative model is only assigned to artefacts which belong to D.

There are several types of constrained probabilistic models including multi-valued

decision diagrams (MDDs) for sequential domains [62]; MDDs that enforce constraints on

non-discretized temporal sequences [71]; factor graphs for imposing constraints represented as

regular languages [59]; and non-homogeneous Markov models [57]. Each model incorporates

a probabilistic element designed to imitate statistical properties of a corpus—with model

parameters (e.g., Markov order or context length) that control the degree of similarity to the
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corpus—and constraints to guarantee specifiable characteristics of the application domain.

Previous work has also shown how constraints can be used avoid plagiarism (i.e., limit the

model’s output domain to D less the artefacts used for training) [58]. It is of interest to

note that much of the language used to describe the implementation of these models mirrors

closely the language used to by creative theorists to describe the relationship between novelty

and typicality. For example, [62] describe the process by which the model generates new

phrases as a “sampling of the solution set while respecting probabilities,” specifying that the

solution set “incorporate[s] some side constraints defining the type of phrases we would like

to obtain.”

4.3.1 Quality Assurance

We have discussed how constrained probabilistic models are well-suited for explicitly modeling

typicality and novelty, but what about quality? As [8] puts it, “a computer could merrily

produce novel combinations till kingdom come. But would they be of any interest?” How

well are constrained probabilistic models able to produce or evaluate quality?

To the extent that quality can be represented in either the system’s probabilistic

model and/or the system’s constraint set, a constrained probabilistic model is naturally

endowed with a function for evaluating the quality of the artefacts. By structuring the

system’s probabilistic model such that high quality artefacts (by some definition of quality)

are assigned higher probability, the system will naturally gravitate towards stochastically

generating artefacts of value (as will be shown in our demonstrative example). In cases

where quality is a function of the presence or absence of certain characteristics (consider,

for example, assessing quality based on the presence of satisfactory rhymes), the system’s

constraints can ensure that only artefacts of some minimum quality threshold are generated.

A constrained probabilistic model thus does not define its own function for evaluating

quality, but does inherently encode one in the forms of probabilistic models and sets of
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constraints (both of which could be explicitly defined or themselves learned from some

training data, as demonstrated in [9]).

4.4 Non-Homogeneous Markov Models

We describe a computational creative system for generating mnemonic devices using a non-

homogeneous Markov model (NHMM), a constrained probabilistic model that is also called a

constrained Markov model [57].

A Markov model M is a stochastic, probabilistic model defined over a finite state

space that strictly adheres to the Markov property, meaning M is memory-less beyond a finite

window. The set of all sequences s = s1, . . . , sn of length n generated by M is represented

by S (in our current example this can be thought of as being equivalent to UD from above).

Every sequence s ∈ S has a non-zero probability equivalent to

PM(s) = PM(s1) · PM(s2|s1) · · ·PM(sl|sn−1)

M is constructed by computing the probability matrix PM from training examples.

A non-homogeneous Markov model N is constructed from a Markov model M, a

sequence length l, and a finite sequence of unary constraints {C1, . . . , Cl}. The set of solutions

for N is represented by SC (equivalent to bounded D from above). With the constraints

applied to N , the probabilities of sequences generated by N must equal the probability of

the same sequence generated by M:

PN (s) =


PM(s) if s ∈ SC

0 otherwise

N initially constructs l− 1 probability matrices identical to PM in M, one for each transition

in the sequence to be generated. States or transitions that violate a constraint are removed.

Arc consistency is then enforced on the probability matrices, meaning that states or transitions

41



that do not lead to a solution s ∈ SC are removed (see Figure 4.3b). Because the probability

matrices in the NHMM are arc consistent and therefore non-zero probabilities are guaranteed

to lead to a solution s ∈ SC . This guarantee of solutions avoids the inefficiency generate-

and-check where nearly all samples are rejected when the probability of a solution is small.

Finally, the model is re-normalized such that probabilities PN (s) = PM(s|s ∈ SC) [57].

NHMMs have been applied to model music generation, generating melodies constrained

to begin and end on the same note [57]. [7] apply NHMMs to generate lyrics matching rhyme,

syllable stress, part-of-speech, and semantic constraints.

4.5 NhMMonic

Here we demonstrate the application of constrained probabilistic modeling to computational

creativity through non-homogeneous Markov modeling of mnemonics (abbreviated as NhM-

Monic). We define a mnemonic task as a sequence of words s = s1, . . . , sl to be memorized.

A mnemonic device then is a sequence of words m = m1, . . . ,ml of the same length generated

such that for all 1 ≤ i ≤ l the first letters in the words si and mi are constrained to be the

same (see Figure 4.3). The primary purpose of a mnemonic device is to aid in memorization

of the order and/or identity of a s by finding a more memorable sequence m that through

its constrained similarity to s can serve as a reminder of s. The value of an artefact in this

domain is heavily predicated on its effectiveness in facilitating memory.

To our knowledge no mnemonic device generation models have been formally presented.

We find that most available Mnemonic generation tools online use what we will call a template

method. The template method for mnemonic generation first determines a sequence of part

of speech constraints as a function of the length l of the sequence to be generated. Words

matching these constraints and the aforementioned first-letter constraints are randomly

selected from a word bank to fit into the specific sentence structure. The shortcoming to

most template-based methods is that they do not model transitions between words, resulting

in phrases that exhibit grammatical cohesion, but not semantic cohesion.
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Because NHMMs explicitly model transitions between words while allowing for con-

straints, we consider this model a good candidate for the mnemonic problem. Although

NHMMs can and have been used to impose part-of-speech constraints or templates, we chose

not to include these constraints in our NHMM implementations preferring to demonstrate

that even a relatively simple NHMM can provide good results. While we expect both models

to be capable of generating novelty (or uniqueness as it is labeled in our survey), we expect

NHMMs to outperform other mnemonic device models when it comes to the aspects of

typicality relating to grammatical/semantic cohesion and ease of memorization.

4.6 Methods

In assessing the NhMMonic system we applied two variants of NHMMs. NHMM-1 has a

Markov order of 1 and NHMM-2 has a Markov order of 2 (essentially treating each pair of

words as a single state token). A higher Markov order allows the mnemonic output to more

closely resemble the sample text, increasing the model’s cohesion and typicality. A drawback

of having a higher Markov order is that fewer solutions s ∈ SC are found and in some cases

no solutions are found given finite training sentences. NHMM-1, with its lower Markov order,

allows our system to find solutions when NHMM-2 does not.

For a mnemonic task s = s1, . . . , sl, we derive a unary constraint oat position i to

ensure that the first character of the sequence variable mi matches the first given letter of si.

For the purposes of improved readability of generated mnemonics we impose a few additional

constraints. For NHMM-1, we constrain each sequence variables mi to be at least 4 letters

long and the last variable ml to have ended a sentence in the training set. For NHMM-2 the

only added constraint is to ensure that the last variable ml is not a pronoun, preposition,

conjunction, or determiner.

The code for the NHMMs used by the NhMMonic system are available in both a C++

implementation2 (used for NHMM-1) and a Java implementation3 (used for NHMM-2) online

2https://github.com/po-gl/ConstrainedMarkovModel
3https://github.com/norkish/downbythebay/tree/master/DownByTheBay/src/dbtb/markov
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4.7 Results

To evaluate the use of constrained Markov models for generating mnemonic devices, we

devised an online survey to compare four different mnemonic device generation models:

• Template—a third-party model4 that selects a part-of-speech template to match the

desired sequence length and then randomly selects words matching part of speech and

initial letter constraints from a hand-crafted word bank.

• NHMM-0—a model which randomly selects words matching initial letter constraints

with probability derived from word frequencies in the training corpus.

• NHMM-1—a first-order NHMM as described above.

• NHMM-2—a second-order NHMM as described above.

The latter three models were trained on the COCA dataset [24]. NHMM-0 and

NHMM-1 were trained on 6.8 million sentences from fictional works written between the

years 1995 and 2015 while NHMM-2 trained on 3 million sentences from the same works.

Each model was used to generate 4 mnemonic devices for each of 19 different memoriza-

tion tasks5 (Figure 4.6 shows some examples of tasks included in the experiment). NHMM-2

was able to find satisfying solutions to 12 of the tasks.

To evaluate the generated mnemonics, we designed a survey in which each evaluation

consisted of four parts:

1. The respondent was shown one of the 19 memorization tasks for 10 seconds.

2. The respondent was then shown a mnemonic device for the memorization task for 10

seconds (selected randomly from those generated by the four models).

3. The respondent was then given the (unordered) words from the original memorization

task and asked to put them in the correct order based on his/her memory of the task

and the mnemonic.
4Available via https://spacefem.com/mnemonics
5Mnemonics for all models can be seen at https://tinyurl.com/yxczxjh7
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4. Lastly the respondent was asked to evaluate the mnemonic device (using Likert scales

from 1 to 5) for

(a) memory—ease of memorization

(b) flow—grammatical/semantic coherence

(c) creativity—overall creative value

(d) uniqueness—degree of novelty

Each respondent completed four evaluations in this manner.

A total of 80 individuals completed the survey for a total of 320 mnemonic device

evaluations. The survey was distributed to different social media websites, such as Reddit,

Facebook, and Twitter. No personal information was gathered before or after the survey was

taken. Figure 4.4 shows average scores for the four evaluated characteristics by model. The

NHMM-2 model made notable improvements over other models in the categories of ease of

memorization (memory) and grammatical/semantic cohesion (flow). Although the NHMM-0

model performed relatively poorly on memory, flow, and creativity, this model was considered

equally capable of generating novelty (i.e., uniqueness).

Figure 4.5 shows the impact of task length on ease of memorization, showing generally

that the longer a mnemonic task is, the more difficult mnemonics generated for the task are

to remember. The graph also shows, however, that the NHMMs and NHMM-2 in particular,

is able to generate mnemonics that maintain ease of memorization even for longer tasks.

Figure 4.6 shows seven mnemonic device tasks together with the highest-rated

mnemonic devices (as per average memory score) generated by NhMMonic for the task.

4.8 Discussion

Survey results demonstrate that increased grammatical/semantic cohesion afforded by prob-

abilistic Markov models are associated with gains in ease of memorization. The fact that

increasing the Markov order leads to further gains in both flow and memory is further
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evidence of this correlation. These gains from increasing the Markov order were also mirrored

in increased creativity scores, suggesting that in the domain of mnemonic device generation,

there is an association between the creative success of a mnemonic device and how easily it

can be remembered.

This association between the success or popularity of an artefact and the ease with

which the brain is able to process and remember it has been observed in creative domains

that do not deal directly with memorization tasks. A notable example is the study by

[53] that demonstrates an association between the popularity of music and the degree of

repetition in the song. Researchers observed that increased repetitiveness contributed to

higher “processing fluency”, meaning the ease with which the brain is able to grasp a new

concept or artefact. A constrained Markov model, through its probabilistic transition model,

naturally assigns higher probability to frequent word transitions (which we might assume

have higher processing fluency) while using constraints to ensure that generated mnemonics

also satisfy the basic requirements of a mnemonic device.

As is typical of Markov-based models, increasing the Markov order can also have

negative consequences. The higher the order the more similarity exists between generated

artefacts and the training data. Increasing the order also increases the likelihood of the

model not being able to find a solution that satisfies both the (now more stringent) Markov

constraints and non-Markovian constraints. Both of these problems can be overcome by

training on more training data, but the amount of training data needed to sufficiently eradicate

the problem increases exponentially with the Markov order.

Independent of the model training, some mnemonic tasks are inherently more difficult

owing to the low frequency of words and word beginning with certain letters (this is, of course,

language-specific). Consider for example trying to devise a mnemonic device in the English

language for the first five dynasties of China, “Neolithic, Xia, Shang, Zhou, Qin”. Solutions

certainly exist, but unless the model sees examples in training of word pairs that would be

suitable for each word pair in the task (less likely for infrequent collocates), the model will
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not be able to find them. On these types of tasks we might expect the non-Markovian models

to perform better.

We considered other variations of constraints that might have further improved the

results of our model. One improvement considered was to constrain more than just the first

letter of each word in the mnemonic to match the task. We thought this might further

increase the ease of memorization. However, it is generally the case that as constraints

become more strict, the model is able to find fewer solutions, often leading to the model

being unable to find satisfying solutions. Another improvement we considered was combining

the Template and NHMM approaches through part of speech constraints in the NHMM

model. We also considered ways to impose semantic themes within mnemonic devices either

through unary semantic constraints or through varying the training data. We leave these as

exploratory ideas for future work.

Many forms of creativity have relational structure (e.g., rhyme schemes, repeated motifs,

etc.). Unlike the example we have shown here which uses solely unary constraints, relational

structure is most effectively realized using binary constraints. Sampling from constrained

Markov models with binary constraints is known to be a much harder problem (see [70]),

however recent work has been done towards providing reasonable solutions [59, 71]. This has

relevance for imposing semantic constraints in models of mnemonic device generation because

binary constraints can effectively be used to impose floating constraints (i.e., constraints that

can be satisfied at variable positions) rather than specifying a specific word position where

semantic constraints must be satisfied.

NHMM doesn’t directly model all aspects of creativity. For example intention, explicit

self-evaluation, others? Constraints themselves can be learned or imitated. One ramification

of learned constraints is that in addition to whatever constraints are required to define

typicality, additional constraints could themselves be probabilistically applied in generating

artefacts. This would allow constraints to be “broken” (or rather never applied) with some

degree of probability, demonstrating a method by which rules can be “intelligently” broken.
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In this work we have discussed aspects of constrained probabilistic modeling that

are well-suited for consistently generating novelty and typicality in computational creative

artefacts. As an example, we have demonstrated the application of non-homogeneous Markov

models to the problem of mnemonic device generation. Our results suggest that the constrained

Markov model approach is able to effectively generate mnemonic devices that satisfy basic

requirements of mnemonic devices while exhibiting elevated levels of grammatical/semantic

flow, ease of memorization, and creative value.
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Stream-enterer, Once-returner, Non-returner, Arahant

(a) A Mnemonic Task

(b) Constrained Probabilistic Model (NHMM)

“She offered no argument”

(c) Mnemonic Device Generation

Figure 4.3: The NhMMonic model. (a) A mnemonic task (i.e., the four stages of enlightenment)
to be memorized. (b) A non-homogeneous Markov model built to solve the mnemonic task.
M1, M2, and M3 represent Markov constraints; C1, C2, C3, and C4 denote unary constraints
derived from the task. Nodes marked with white X’s are removed due to violation of unary
constraints while the node marked with a grey X is removed to keep the model arc consistent.
Edge labels indicate transition probabilities. (c) A possible mnemonic generated by the
model.
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Figure 4.4: Survey Results. Average ratings from 320 evaluations across four metrics for four
different mnemonic device generation algorithms. Error bars are standard deviation. The
ease of memorization of mnemonics from the NHMM-2 model appears to be associated with
improved flow with respect to other models.
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Figure 4.5: Impact of Task Length. As the length of the memorization task increases, the
effectiveness of mnemonic devices decreases across all models, but at a much lesser rate for
the NHMM-1 and NHMM-2 models. We hypothesize that this is owing to the sustained
grammatical and semantic flow that these models achieve from the constrained Markov model.
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Four Stages of Enlightenment: Stream-enterer, Once-returner, Non-returner, Arahant

“She offered no argument” (NHMM-2, 5.0)

Dante’s 9 Circles of Hell: Limbo, Lust, Gluttony, Greed, Anger, Heresy, Violence, Fraud, Treachery

“Lovely little girl giggles as his voice for them” (NHMM-1, 5.0)

Last 10 Winners of the FIFA World Cup: France, Germany, Spain, Italy, Brazil, France, Brazil, West Germany, Argentina, Italy

“Four-year-old grandson she is bumped from behind with an inflection” (NHMM-2, 4.0)

First 9 ICCC Locations: Lisbon, Mexico City, Dublin, Sydney, Ljubljana, Park City, Paris, Atlanta, Salamanca

“Like most days she looked pretty puny and sickly” (NHMM-2, 4.5)

Stages of Grief: Denial, Anger, Bargaining, Depression, Acceptance

“Dreams about being dragged against” (NHMM-1, 5.0)

Levels of Biological Organization: Biosphere, Ecosystem, Community, Population, Organism, Organ System, Organ, Tissue, Cell, Molecule

“Blue eyes could pick out one of those clownish men” (NHMM-2, 4.5)

Cell Mitosis Cycle: Interphase, Prophase, Prometaphase, Metaphase, Anaphase, Telophase, Cytokinesis

“I pushed past me and the career” (NHMM-2, 5.0)

Figure 4.6: Top-rated mnemonics generated by NhMMonic. Seven mnemonic device tasks
are shown. Each task consists of a description (bold and underlined) followed by a list of
words requiring a mnemonic device. Below each task is the NhMMonic-generated mnemonic
device that received the highest memorization score (with the exact model and score given in
parentheses).
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Chapter 5

A Leap of Creativity: From Systems that Generalize to Systems that Filter

In this chapter, the provided published paper provides an insight on how the CHiMP

model provides a larger solution space than previous models, such as CoMP. This work was

published at the International Conference on Computational Creativity (ICCC) in 2020 [29].

I contributed to this work by creating an accessible framework for applying constraints to the

constrained hidden Markov process (CHiMP) as well as formalizing the model in such a way

that it was accessible to other collaborators.

5.1 Abstract

In his work “Mere Generation: Essential Barometer or Dated Concept?”, Ventura [76]

categorizes creative processes along a spectrum of increasing creativity. While the spectrum

provides insight into the dimensions through which creativity can be augmented, it does not

of itself provide insights into how to advance a system through these dimensions. In this

paper, we present some theoretical and practical insights on advancing along one commonly

problematic rung of this ladder, namely from a system that exhibits generalization (i.e., the

ability to generalize beyond an inspiring set) to a system that exhibits filtration (i.e., the

ability to self-evaluate and filter results). One potential challenge in this transition is that

filtration requires having a sufficiently large number of solutions to filter from the generalizing

model. We propose that one solution to this problem is achieved not through increasing

the size of the inspiring set (an obvious solution that brings additional problems), but

rather through amplifying the generalization of the system to produce a greater set of novel
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Figure 5.1: Ventura’s [76] spectrum of creative systems provides a means by which to measure
the progress of a system towards becoming creative. Characterizing challenges and solutions
that are specific to each level in the spectrum helps to actualize the spectrum into becoming
a guide for building more creative systems.

artefacts to filter. We compare a new version of a system, NhMMonic, for generating creative

mnemonic devices with a new conceptualization model that allows greater generalization. We

demonstrate how filtration, which was not possible in the early version of NhMMonic, only

becomes feasible with the more generalizable model.

5.2 Introduction

The field of Computational Creativity (CC) has been supported in its quest by several

significant contributions in the domain of CC theory. One such contribution exists in

Ventura’s spectrum of creative systems [76]. This spectrum suggests that there exist at

least seven different levels along the path towards computational creativity including levels

such as randomness, memorization, generalization, and filtration (see Figure 5.1). Ventura

asserts that along this spectrum, real computational creativity starts at least as early as

generalization with filtration representing perhaps a conservative threshold.

While this spectrum is useful for measuring the progress of applied CC systems, it

leaves two important questions unanswered:

1. For each level of the spectrum, what challenges are CC systems likely to encounter?

2. What suggestions can be made to overcome those challenges?
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Answers to these questions would provide a way to actualize the spectrum into a guide for

augmenting the creativity of computational systems.

Our motivation in considering these issues came about in the context of our previous

work using constrained Markov models to generate mnemonic devices [10]. Markov models

are an example of a generalizing model. The application of constraints to Markov models

represents the act of filtration. In applying constraints to generate mnemonic devices, it

frequently occurred that no satisfying solutions could be found.

The purpose of this paper is to provide answers to two questions stated above with

specific regard to systems that have achieved the level of generalization and are attempting

to make the “leap” to the level of filtration. This step is of interest as it marks the transition

from a budding creative system to an intentionally creative system. This leap is significant in

light of the fact that of the last four levels of the spectrum—where true creativity is said to

emerge—this is the first step.

Generalization systems produce artefacts using an internal conceptualization—a model

which embodies an understanding of a domain and allows for the creation of artefacts that

belong to the domain [77]. Examples of conceptualizations include using long short-term

memory models for music generation [51], neural networks for visual art [52], and Markov

processes for music and text generation [7, 57].

One particular challenge we have repeatedly observed in the development of CC

systems at this level is the challenge of dealing with diminishing solution spaces. This

problem arises commonly when attempts are first made to add filtration to a generalization

system because filtration by definition implies the reduction of a system’s solution space.

The purpose of the filtration step is to equip the system with self-evaluative capabilities for

restricting the artefacts it generates based on measurements of fitness. However, a well-known

trade-off arises: stricter filtering leads to better, but fewer results. In some cases the results

are so few that it becomes difficult to justify that the system is capable of generating anything,

let alone artefacts that are novel. How can systems overcome this challenge?
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A simple solution for increasing the solution space is to simply increase the size of

the inspiring set. For many conceptualizations of CC systems this alone will increase the

overall throughput of the system, and often increases the generalizability of the system as

well. However, for most domains, finding a larger inspiring set ranges from being impractical

to an impossibility. What more practical solutions exist?

We propose and illustrate through example how increasing the generalizability of a

generalization system through abstraction and regularization can increase the solution space

without requiring a larger inspiring set. Well-known methods exist for generalization of

most conceptualization models used for CC systems, including L1 and L2 regularization for

neural networks, shortening the Markov window length in Markov processes, generalizing the

fitness function for genetic algorithms, and abstracting rules in rule-based systems. Through

regularization and abstraction, a system is able to better leverage the knowledge in an

inspiring set in order to increase the solution space.

In demonstrating the impacts of abstraction and generalization, we comparatively

consider the performance of two models: a less abstract model (CoMP) and a more abstract

model (CHiMP). We assess the ability of each model to intentionally produce novel artefacts.

We choose to focus explicitly on the creative attribute of novelty—setting aside the attributes

of value and intentionality—inasmuch as it is the attribute of creativity most directly relevant

to our discussion [69, 76]. We discuss the impacts of generalization on value in the discussion

section below.

5.3 Methods

NhMMonic [10], is a CC system designed to generate mnemonic devices. At its heart,

NhMMonic uses a constrained Markov process (CoMP) for its conceptualization model. This

constrained Markov process allows for the combination of a (non-hidden) Markov process

(e.g., trained on words) and a set of unary constraints (e.g., word-starts-with constraints) such

that the model is able to generate constraint-satisfying sequences according to Markovian
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Figure 5.2: A high-level schematic of a constrained hidden Markov process (CHiMP) of
length 4 constrained so that the last word is “red” and the first word rhymes with “red”.
Each column represents a position in the sequence to be generated. Each node represents
a hidden state (i.e., part-of-speech) and a probability distribution for the observed states
(i.e., words) that can be generated from that hidden state. By pruning observed states that
are disallowed by constraints and then adjusting probabilities to maintain arc-consistency,
the resulting model generates constraint-satisfying solutions with probability relative to the
original probability distribution [30]. Hidden states pruned directly from applying constraints
are indicated by dark grey nodes and states pruned during arc-consistency are indicated by
light grey nodes.
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probabilities [57]. In previous work we demonstrated through qualitative surveys the strength

of this model (particularly at higher Markov orders) for generating effective mnemonic devices.

A byproduct of our analysis revealed that for many mnemonic device problems, the addition

of constraints (i.e., filtering) resulted in NhMMonic being incapable of finding satisfying

solutions despite being trained from relatively large inspiring sets.

A known method for increasing the generalization of Markov models is through the

introducing of an abstract hidden layer resulting in a model known as a hidden Markov

process. Direct dependencies between adjacent observed sequence elements are dissolved in

the hidden Markov process, allowing for greater decoupling between sequence elements. This

generally results in hidden Markov processes having significantly higher expressivity with

respect to their non-hidden counterparts.

To combat the challenges facing NhMMonic with respect to a diminishing solution

space, we designed a new conceptualization model for the system that combines hidden

Markov processes with constraints in much the same way that constrained Markov processes

combined non-hidden Markov processes with constraints [30]. The resulting model is called a

constrained Hidden Markov process (CHiMP) which is visualized in Figure 5.2. The CHiMP

model was chosen under the hypothesis that increased abstraction, resulting in increased

generalization, would lead to a significantly larger solution space.

In implementing a filtration system, it is apparent that a large solution space is needed.

Using two hypothetical models A and B (seen in Figure 5.3) we illustrate the restriction

that solution space imposes on a system’s ability to step from a generalization system to

a filtration system. Model A fails to have a solution space after filtering and thus remains

a conceptualization for a generalization system. Model B, however, has a larger beginning

solution space β due to an increase in the model’s ability to generalize the inspiring set. Thus

model B has a usable solution space β′ after filtering and can be categorized as a filtration

system.
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Figure 5.3: The application of filters on two hypothetical models (A and B) demonstrates the
requirement for larger solution spaces (increased generalization) in order to endure filtering
with a usable solution space. Model B has a usable solution space after filtering; thus the
model has moved further along in the spectrum from generalization to filtration.

5.4 Results

In demonstrating the increased generalization (and hence increased solution space) of CHiMP

over CoMP, we compared the results of each model trained on the Corpus of Contemporary

American English (COCA) [24] and provided the same set of constraints. In particular, we

selected training sets from the 2012 fiction portion of COCA and constrained each model

to only output sequences in which the first letter of each word began with the same letter

(e.g., a tongue-twister). We chose this problem because it represents a fairly general example

of constrained sequence generation that is easily adapted to sequences of varying lengths.

Results are averaged over 26 instances of the problem with each instance having constraints

defined with a different letter of the English alphabet.

Some qualitative results are shown in Figure 5.4. It should be noted that within the

subset of 40 sequences generated by CHiMP, no duplicate or similar solutions where present;

whereas 6 sequences were duplicates (or very similar) in the subset generated by CoMP.

We examined the effect of changing the sentence/model length on the novelty of the

system in terms of the total number of unique solutions capable of being generated by each

model (see Figure 5.5). As the sentence length increases, so too do the number of constraints
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on the sequence to be generated. In the abstracted CHiMP model, this is inconsequential;

the model can afford to make restrictions at the observed node that do not affect transitions

between sequence positions (which are isolated in the hidden layer). Only occasionally do a

sufficient number of pruned states combine to require the pruning of a hidden state node,

but such is a relatively rare occurrence.

By contrast, the effects of increased sentence length on the CoMP model are severely

limiting. Each added position would typically add a number of novel unique solutions if it

did not come with the addition of a new constraint. The newly constrained position has direct

influence on previous observed sequence states and thus pruning values from the domain

of these variables directly results in the removal of transitions between adjacent sequence

positions. This results in a relatively slow growth in the solution space as sentence length

grows.

The increase in the CHiMP model appears to be exponential owing to the multiplicative

effect achieved by maintaining large domains for adjacent variables in the hidden layer.

Similar trends in the impact on novelty are manifest when we vary the training set

size, keeping sentence length constant (see Figure 5.6). We see that the size of the solution

space for the CHiMP model increases exponentially. The CoMP model also appears to have

some slightly exponential growth, but at a significantly lower rate. This is again what we

would expect to see. Increasing the training set size (when such is a possibility) still has a

more significant impact on CHiMP than on CoMP model.

The results shown in Figures 5.5 and 5.6 suggest that CHiMP, with respect to CoMP,

facilitates exponentially more novelty. The solution space of the CoMP model is by definition

a subset of the solution space of the CHiMP model, and for most training and constraint sets

will be a substantially smaller subset. It is expected that of the novel results produced by

CHiMP, some will have higher value than the solutions shared by both models. Because the

CHiMP model abstracts to a more significant degree from the training set than the CoMP

model, we might expect a greater portion of the novel solutions to be of lower value. The
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CoMP Tongue Twisters:
late last light levels like lady
Diaz did dinosaurs died dell drove
max mowed my mother made my
language lessons last look little lamb

CHiMP Tongue Twisters:
queen Quanhe quite quiet queasy qualified
flower facing forward for from forester
free feeling facing followed free fate
every educated Elizabeth expected Erika enchanting

Figure 5.4: Example results from generating 6-length tongue twisters (i.e., alliterative
constraints) from both the CoMP and CHiMP models. Both models were trained on 10K
sentences. Results are chosen from a randomly selected subset of 40 sequences from each
model. The quality of tongue twisters is roughly equivalent between both models (both
poor), but the CHiMP model is capable of generating exponentially more solutions. This
suggests that increasing the Markov order in the CHiMP model (as an example of more
stringent constraints) will have far less deleterious affects on the solution space as compared
to a similar increase in the CoMP model.

suggestion from qualitative results shown in Figure 5.4 is that there is no obvious degradation

of value. However, we do not currently have results to fully assess the extent to which value

degrades (or doesn’t). In any case the expressivity of the CHiMP model enables a simple

solution: introduce new or stricter filtering by increasing the number and stringency of

constraints.

5.5 Discussion and Conclusion

In progressing from a generalizing system to a filtration system, our results provide meaningful

insight into two important questions relating to Ventura’s spectrum of creative systems:

1. For the filtration level of the spectrum, what challenges are CC systems likely to

encounter?

2. What suggestions can be made to overcome these challenges?
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Figure 5.5: The effects of sequence length on the number of total solutions generated by each
model with a fixed training set size of 300 sentences. Both models are constrained such that
each word in a sequence starts with the same letter; counts of total solutions are averaged
over 26 runs (each run using a different letter from the English alphabet). We see that as
the sequence length increases, total solutions for the CHiMP model increases exponentially
(given the logarithmic scale) whereas the CoMP model stagnates.
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Figure 5.6: The effects of training corpus size (number of training sentences) on the number
of total solutions generated by each model with a fixed sequence length of 3. Both models
are constrained such that each word in a sequence starts with the same letter; counts of
total solutions are averaged over 26 runs (each run using a different letter from the English
alphabet). The total solutions of both models increase in an almost parallel way; however, at
10K training sentences, CHiMP well exceeds 100M total solutions which contrasts CoMP at
1000 total solutions.
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A significant challenge for CC systems attempting to transition to a filtration system is as

more constraints (or filters) are put on the system, the solution space diminishes to the point

of being too small to filter. As demonstrated in the CoMP model (Figure 5.5), the insufficient

solution space prevents being able to apply more constraints and filters to produce higher

quality artefacts.

The problem is not specific to our results or to Markov models. Filtering, by nature,

reduces the solution space. As shown in Figure 5.3, any CC system with low generalization

may fail to have a usable solution space after filtering.

Greater generalization can address the aforementioned problem. We see from our

results that our model with greater generalization, CHiMP, excels in solution space size even

as constraints are added (see Figure 5.5). The primary difference between CoMP and CHiMP

is an added layer of abstraction in CHiMP that affords greater generalization. The solution

to a diminished solution space is to increase the level of abstraction in the model. This

increases the generalization ability of the model and results in a solution space substantial

enough to “survive” filtering.

Increased constraints allow for greater creativity and quality because the system can

use constraints to explicitly articulate and enforce the system’s goals and intentions. For

example, in Markov models, increasing the Markov order (a form of adding more constraints)

significantly improves the coherency of natural language, but the solution space is heavily

diminished. With the CHiMP model, the solution space is sufficiently enlarged to avoid these

devastating consequences to the solution space. Besides changes to the Markov order, other

possibilities open up for using constraints to filter results to further improve quality, including

semantic constraints, structural constraints, and even more complex n− ary constraints. It is

also often the case that constraints can be easily described in human-interpretable language,

enabling the system to provide framing for its creative behavior, contributing to an increased

perception of creativity in CC systems [19].
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It is important to acknowledge the negative consequences of increasing the general-

ization in a learning model. In particular, generalization decouples dependencies between

variables which can result in a loss of information during variable assignment. For example,

generalizing to a hidden Markov model takes a significant toll on language coherence. In

short, the novelty achieved by generalization comes with a trade-off in value. We hypothesize

that this deterioration can be offset in the application of filters to preserve the information

lost. We plan to examine this issue in future work.

Through developing a system (CHiMP) that more effectively achieves filtration, we

have discovered insights into the challenges present in the leap from generalization to filtration

and how to overcome them. The challenge of diminishing solution spaces can be overcome by

amplifying the generalizing ability of the system through abstraction. Having realized the

leap from generalization to filtration, the community is now poised to address the challenge

of making the subsequent leaps along Ventura’s spectrum of creative systems, advancing past

filtration into inception and ultimately creation.
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Chapter 6

Phrasal Category Tagging

This chapter constitutes the majority of the work that is unique to this thesis. We plan

to submit a modified version of this chapter for publication and presentation in proceedings of

AAAI 2023.

6.1 Introduction

The work presented in Chapter 3 and Chapter 4 demonstrated the CHiMP model being

used with words as observed states and parts of speech as hidden states. They used the

CHiMP model to generate sequences based on lexical categories as the hidden states and

words as the observed states. As discussed in Chapter 5, the abstraction of the CHiMP model

has the adverse side effect of diminishing the coherence of the model with respect to the

non-hidden CoMP model. Thus the problem is presented: How can we mitigate the negative

impact of diminished coherence while maintaining the expressive capabilities? In this chapter

we will explore expanding the hidden state space to phrasal categories as a substitute to

lexical categories. Phrasal categories consist of sentences phrases such as a noun phrases

(NP) or verb phrases (VP) [28]. If the CHiMP model is used to generate sequences of phrasal

categories (rather than simply words) from a set of hidden state space, can we increase the

coherence while maintaining the expressive capabilities?

In the context of the English language, a phrasal category is one or more words that

form a grammatical unit [28] [13]. There are 5 primary phrases: noun phrase, verb phrase,

adjective phrase, adverb phrase, and prepositional phrase [1]. By using phrasal categories
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as the hidden state space rather than the lexical categories, we can apply constraints to

a specific word in the phrase or we can use a floating constraint where the constraint is

applied to any word in the phrase. For example, when looking at the phrasal categories of

the sentence “John likes the blue house at the end of the street.” there are several phrases

that could be selected for the phrasal categories. The possible noun phrases are “John”, “the

blue house”, “the end”, “the street”, “the end of the street”. Floating constraints present the

possibility for the phrase to contain specific words in any position, a certain number of words,

a certain number of syllables, etc. If we were to continue to use just the lexical categories,

very explicit constraints would have to be applied to each position to ensure the a phrase

that meets the constraints is generated. Additionally, phrasal categories maintain some level

of cohesion as we are often evaluating multiple words together. This allows for the model to

use data that is seen as more natural rather than each word being pieced together based on

the statistical probability of them occurring in the training data.

Figure 6.1 shows the parse tree of the sentence “John likes the blue house at the end

of the street”. This parse tree parses the sentence into each individual phrasal category, then

into each lexical category that makes up the phrasal category, and then shows each word

that makes up the lexical category. All English sentences can be parsed like this, and this is

how we evaluate each sentence for our model. It’s important to note that a phrasal category

can be comprised of other phrasal categories. Figure 6.1 also shows this hierarchy as some

phrasal categories branch out into other phrasal categories.

6.2 Methods

To train the extended CHiMP model on phrasal categories, a parse tree of each sentence is

created. Figure 6.1 shows an example parse tree on the sentence “John likes the blue house

at the end of the street”. Table 6.1 shows what each phrasal category acronym represents.

Each phrasal category transition was counted and added to the δ transition matrix and the

corresponding output of words was added to the emission probability ϵ matrices. As Figure
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Figure 6.1: Parse tree of the sentence “John likes the blue house at the end of the street”.
The root tree node is an ‘S’ which represents the sentence as a whole. This is then broken
into each phrasal and lexical category, each of which is color coded.

6.1 demonstrates, some phrasal categories consist of other phrasal categories. To properly

map the transition probabilities for each phrasal category to the next, each level of the tree

was considered independently of other levels. Figure 6.2 shows each level of the parse tree

labeled.

With the exception of using phrasal categories instead of lexical categories, the model

is trained exactly as it would be if it was using just lexical categories. Each sentence is split

up into the specific hidden and observable nodes, and an emission, transition, and initial

probabilities are created. Once the model is trained on sentences constraints could be applied

to any position, and a sequence can be generated. In the previous example of “John likes the

blue house at the end of the street”, 3 phrasal categories can be parsed and each include one
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Figure 6.2: Parse tree of the sentence “John likes the blue house at the end of the street”.
The root tree node is an ‘S’ which represents the sentence as a whole. This is then broken
into each phrasal and lexical category, each of which is color coded. This has the addition of
each level of the parse tree being contained for the purposes of showing how the transition
matrix is formed.

or more phrases.

NP = {John, the blue house, the end, the street}

VP = {likes the blue house at the end of the street}

PP = {at the end of the street, of the street}

Careful consideration and an adequately sized dataset must be used to ensure sentences

aren’t repeated due to the overlapping nature of the phrases. If only this sentence was used

to train the model, and a 3 phrase sequence was requested, sentence such as: “the street likes

the blue house at the end of the street” or “John at the end of the street” would be possible.
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Acronym Lexical Category
NP noun phrase
VP verb phrase
PP prepositional phrase

Table 6.1: Phrasal categories used in the examples and their respective acronyms.

Because this adapted model focuses on phrases in the observable states, an opportunity

is presented to use floating constraints. A floating constraint is a constraint that can be

applied to any position of the phrase. If a noun phrase, such as “the blue house” is evaluated,

any word in the phrase could be considered to meet a constraint, unless the position of the

constraint was explicitly specified. The original CHiMP model required carefully constructed

constraints in which the position of the constraint had to be specified. For instance, if the

constraint had a specific wording requirement many possible sentences would have been

removed from the model before the original CHiMP model could find an appropriate solution.

6.3 Evaluation

To evaluate the phrasal category based CHiMP model in an attempt to answer our research

question “How can we mitigate the negative impact of diminished coherence while maintaining

the expressive capabilities?”, we trained 3 models. The first and second models were the

default CoMP and CHiMP models outlined in Chapter 3. The third model was the new

phrasal category CHiMP model. To train each model, 100 thousand sentences were picked

randomly from the 2012 fiction section of the Corpus of Contemporary American English

(COCA) data set [25]. After the sentences were randomly selected, each sentence was parsed

and used to create the probability matrices for the models. The lexical and phrasal categories

were derived from the training sentences using the Charniak-Johnson parser (bllip-parser)

[16] and the Natural Language Tool Kit [45].

To create a model capable of generating sequences we believed capable of answering

our research question, each model was used to generate a limerick task. Generally a limerick

is a short five line poem where the first two lines and the fifth line are slightly longer and
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have a different rhyme scheme than the third and fourth lines. In order to generate these

limericks, we had to explicitly define what a limerick is, allowing sequences fitting the general

definition of a limerick to be created. In our first and second models, because these were

focusing on specific words and not phrases, we had to define each position of the sequence

explicitly. We defined a limerick as a 25 word phrase with each observed state having a

certain amount of syllables. We did this with the intention of creating sequences with the

precise amount of syllables in each line. In this case, we were looking for lines 1,2,5 to each

have 8 syllables, while lines 3,4 had 5 syllables. We also had to ensure that the last words of

each phrase rhymed. In total, the base CHiMP and CoMP models had approximately 30

constraints each to properly define each part of the sequence for it to be close to what might

be considered a proper limerick.

The phrasal category CHiMP model was similar, however, because phrases were in

the observable states instead of just single words, the length of the generated sequences could

be set to 5 instead of 25 like with the previous models. This significantly reduced the total

number of constraints that had to be applied. It also slightly changed each constraint in that

the entire phrase had to be considered, thus floating constraints were used instead of explicit

single word constraints.

An additional step was taken for some limericks and that was to add a theme to

the limericks in an attempt to further constrain the generated sequences. These themes

were randomly chosen “nature” based themes such as “mountain” or “lake”. The sequences

with the theme constraints were evaluated based on a similarity threshold calculated on the

Word2vec word embeddings [32]. The Word2vec similarity score would compare each word

provided with the theme. If these words were within a similarity value of eachother, the word

was deemed “similar enough” and was not removed from the matrices. There were some

challenges with this when it came to applying the constraints. Where should the constraints

be applied? Should each line of the limerick have the same constraint? What threshold should

be used when specifying that a given word or line meets the theme? These were all questions
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that presented themselves that are topics for future work, however we still continued with a

basic set of themes and a low threshold when applying constraints to the phrasal and lexical

CHiMP models.

To verify the outcome of this new CHiMP model, a survey was created that asked

random participants to rank these generated limericks. With the constraints in place, to

gather limericks for the survey, each of the models were used to generate 10 limericks based

on randomly selected rhyme schemes. Of these limericks, we removed limericks that had

repeating rhyming words, as that occasionally occurred when narrowing down our solution

space based on all of the constraints. We also removed limericks that were explicit in nature

as to not offend any of the random participants who may be taking the survey. There were

also human generated limericks that were used as a control for each task. These human

generated limericks were created by friends of the author with the only guidance being the

rhyme scheme that needed to be used.

Besides comparing each of the models, another goal was to reduce the opaqueness of

natural language processing models. Even if the model does not create equally good or better

solutions to other state of the art models, showing how the model works, and ensuring it can

be used without “guessing” how it might work, has value.

There were two sections in the survey. The first section looked at the lexical coherence

(i.e., the arrangement of words and phrases to create well-formed sentences). These were

rated on a Likert scale of 1-5.

1. Very poor - Completely incohesive;

2. Poor - Mostly incohesive;

3. Fair - Equally cohesive and incohesive;

4. Good - Mostly cohesive;

5. Excellent - Completely cohesive;
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The second section of the survey ranked how well the limericks fit a specific theme.

The purpose of this section was to see how well floating constraints could be applied to a

generated sequence. These were also on a Likert scale from 1-5.

1. Very poor - No relation to the theme;

2. Poor - Very little relation;

3. Fair - Some relation;

4. Good - The theme is clear;

5. Excellent - The theme is clear and the limerick fits the theme;

Once the survey was created, it was distributed via a social media website called

Reddit. More specifically, the survey and a short description of the tasks being asked of each

participant. The survey was posted on the r/samplesize reddit forum. This reddit forum,

also called a subreddit, is intended for surveys of many different backgrounds and is not

specifically aimed at any demographic. Less than 10% of the survey takers were colleagues of

the authors.

6.3.1 Results

In the first section of the survey where participants were asked to rank the overall cohesion

of the generated limericks, the control limericks scored the highest. It was expected that

the human generated limericks would have the highest score. The goal was for the phrasal

category CHiMP model to score higher than the original CHiMP and CoMP models, and

using the average, this was accomplished.

In considering the results of the 3 models that generated limericks, we found that the

overall coherency score for the phrasal category based CHiMP, referred to as “CHiMP 2.0”,

was 2.50. The CHiMP model based on lexical categories, referred to as “CHiMP 1.0”, was

given an average coherency score of 1.42, and the CoMP model has a score of 1.86. The

control limericks had an average score of 4.2. Figure 6.3 provides the summary of the results.
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Figure 6.3: Semantic Survey results

For the second half of the survey, only the phrasal and semantic category CHiMP

models were used. 6.4 provides the summary of the results. It’s apparent that these results

were not good. There are may suspected reasons for this. First, the dataset may not have

been large enough. Since words and phrases not seen in the dataset cannot be used in the

generated sequences, increasing the dataset size would open up the solution space allowing

for potentially better themed phrases. Second, the constraints could have been too restrictive.

When applying theme constraints, a threshold score had to be used. Lowering this score

may have helped more sequences be generated, however it would also lower the scores of

how well the limerick fit the specific theme. Third, more theme constraints could be applied

to the limericks. For this section of the survey, only the first line of each limerick had this

constraint applied. Applying the constraint to each line may change the perception of it

fitting a specific theme. All of these issues are potential topics for future research.
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Figure 6.4: Theme Survey results

6.4 Discussion

In the introduction, we asked the question: How can we mitigate the negative impact of

diminished coherence while maintaining the expressive capabilities? After exploring phrasal

and lexical categories more in depth, we believe including a combination of phrasal and

lexical categories is the best way to achieve the improved coherence while maintaining the

expressive capabilities. The lexical phrases open the door to an increasing level of options

when explicit constraints are required. If each part of the requested sequence needs to have

specific constraints, such as with mnemonic devices as we wrote about in Chapter 4, then a

hidden Markov model just based on lexical categories is probably sufficient. However, for less

specific generative tasks, such as limerick or haiku generation or other short sequences, the

phrasal category hidden states will provide a better method of maintaining natural language

coherence while maintaining most of the expressive capabilities of previous models.

As desired, the phrasal category based CHiMP model performed better than both of

the other two computer models. Based on the constraints though, the outcome for both parts
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of the survey could have been different. Looking first at the outcome of the cohesion semantic

portion of the survey, it makes intuitive sense that a model that uses phrases instead of just

the words from the training set would be more cohesive. This really holds true when longer

phrases are requested, as we did when generating the limericks in the survey. Instead of

generating five words that either were seen at some point in the training data for the CoMP

model, or their corresponding semantic categories for the CHiMP model, we can generate

just one sequence that was seen verbatim somewhere in the training data. However if we had

decided to apply more constraints to the phrasal category model, this may not have been the

case. Since a phrasal category can contain just a single semantic category, then we could

effectively generate the same sequences.

In addition to the increased cohesion of the generated sequences, the phrasal category

based model also allows for floating constraints which add another level to the expressive

capabilities, especially when one wants to look at the computationally creative power of these

models. It may be hypothesised that when a large amount of constraints is applied to the

model, the model is not actually being that expressive and is only providing the small amount

of possible solutions that come from the constraints. Floating constraints help with this

problem by opening up where constraints are applied and reducing the need to be so explicit.

This is seen in the second half of the survey when theme based limericks were generated. If

we had applied the theme constraints in a different order, different position, higher threshold,

or applied more of them, the results may also have been different. The models may not have

been able to generate solutions as well though. This was a problem for the original CoMP

model and that is why it was not in the survey.

6.4.1 Ethical Concerns

Because this model was trained using human generated data, there is a need to look at the

possible ethical implications that could be generated from using this data source. Because

this data primarily comes from the public and is pulled through news articles, social media
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posts or other publicly available outlets, much of the data could be biased. Researchers

working with this type of data need to be aware that results generated by the model may not

be suitable for all ages or might have racist, sexist, transphobic, or other issues. It is not the

intention of the authors to promote any of this type of language in the generated results. All

of the sequences that were presented in the survey were approved by the Internal Review

Board at Idaho State University.

While a survey was conducted to judge the generated results, care was taken to remove

potentially offensive words from the limericks that were put into the survey. Common words

that are may be considered “swear” words were removed.

Another ethical concern is plagiarism. It’s not unheard of for NLP AI, even those

trained on substantially more data, to plagiarise [74]. For example, the GPT3 trained AI

meant for generating computer code would plagiarise a famous algorithm used in the video

game Quake 3 [6]. The model created and trained in this work is no different and is even

more likely to plagiarize. Because we are focusing on phrases, there is a chance phrases can

appear in a similar or exact order that they appear in the training data. This is a statistical

model looking at the probabilities of phrases appearing, so small phrases are used directly,

however it is not intentional to plagiarize the authors of the original work from phrase to

phrase.

6.5 Conclusion

Continued development on the CHiMP model to include phrasal categories led to the discovery

of challenges and many additional research questions that will need further exploration.

The challenge of increasing the cohesion of generated sequences has been improved by

using these phrasal categories, however more work is necessary. Additional research on the

question of constraints is also needed as a base set of constraints was used for each of the

generated sequences in this chapter, however they may not have been the optimal constraints.

Nevertheless, the survey performed in this chapter, albeit with a small sample size, does
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show that we can increase the coherence of generated sequences by focusing on the phrasal

categories in the hidden states instead of the lexical categories.
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Chapter 7

Summary

In Chapter 1, a natural language processing was briefly introduced and statistical NLP

was discussed. Chapter 2 provided an introduction to Markov Models and Hidden Markov and

use mathematical definitions to define them as well as demonstrative figures. In Chapter 3,

a previous published work at the Intermountain Engineering, Technology and Computing

conference was included to show how generation of sequences with constraints applied can

be used in conjunction with Markov Models. Chapter 4 continues with a computational

creativity based application on constrained Hidden Markov Models with mnemonic device

generation. This paper was published at the International Conference on Computational

Creativity. Chapter 5 continues with an analysis of the solution spaces that are generated

with constrained hidden Markov models. This paper was also published at the International

Conference on Computational Creativity a year after the paper in Chapter 4. Chapter 6

provides new methods and applications of the CHiMP model by focusing on phrasal categories

rather than just the parts of speech or the lexical categories. The phrasal categories add the

additional capabilities of being able to use floating constraints instead of individual position

constraints.
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Monga, Sherry Moore, Derek Murray, Chris Olah, Mike Schuster, Jonathon Shlens,

Benoit Steiner, Ilya Sutskever, Kunal Talwar, Paul Tucker, Vincent Vanhoucke, Vijay

Vasudevan, Fernanda Viégas, Oriol Vinyals, Pete Warden, Martin Wattenberg, Martin

Wicke, Yuan Yu, and Xiaoqiang Zheng. TensorFlow: Large-scale machine learning on

heterogeneous systems, 2015. URL https://www.tensorflow.org/. Software available

from tensorflow.org.

[5] Hussain-Abdulah Arjmand, Jesper Hohagen, Bryan Paton, and Nikki S. Rickard.

Emotional Responses to Music: Shifts in Frontal Brain Asymmetry Mark Periods

of Musical Change. Frontiers in Psychology, 8(DEC):2044, dec 2017. ISSN 1664-1078.

doi: 10.3389/fpsyg.2017.02044. URL http://journal.frontiersin.org/article/10.

3389/fpsyg.2017.02044/full.

[6] Gregory Barber. Github’s commercial ai tool was built from

open source code, Jul 2021. URL https://www.wired.com/story/

github-commercial-ai-tool-built-open-source-code/.

[7] Gabriele Barbieri, François Pachet, Pierre Roy, and Mirko Degli Esposti. Markov

constraints for generating lyrics with style. In Proceedings of the Twentieth European

80

https://www.englishclub.com/grammar/sentence/phrases.htm
https://www.theguardian.com/commentisfree/2020/sep/08/robot-wrote-this-article-gpt-3
https://www.theguardian.com/commentisfree/2020/sep/08/robot-wrote-this-article-gpt-3
https://xesktop.com/price/
https://xesktop.com/price/
https://www.tensorflow.org/
http://journal.frontiersin.org/article/10.3389/fpsyg.2017.02044/full
http://journal.frontiersin.org/article/10.3389/fpsyg.2017.02044/full
https://www.wired.com/story/github-commercial-ai-tool-built-open-source-code/
https://www.wired.com/story/github-commercial-ai-tool-built-open-source-code/


Conference on Artificial Intelligence, pages 115–120, 2012. ISBN 9781614990970. doi:

10.3233/978-1-61499-098-7-115.

[8] Margaret A. Boden. The Creative Mind: Myths and Mechanisms, Second Edition.

Routledge, 2003. ISBN 0203508521. doi: 10.4324/9780203508527.

[9] Paul Bodily, Benjamin Bay, and Dan Ventura. Computational creativity via human-level

concept learning. In Proceedings of the Eighth International Conference on Computational

Creativity, pages 57–64, 2017.

[10] Paul M. Bodily, Porter Glines, and Brandon Biggs. “She Offered No Argument”:

Constrained Probabilistic Modeling for Mnemonic Device Generation. In Kazjon Grace,

Michael Cook, Dan Ventura, and Mary Lou Maher, editors, Proceedings of the 10th

International Conference on Computational Creativity, pages 81–88, Charlotte, North

Carolina, 2019. Association for Computational Creativity.

[11] Paul M Bodily, Porter Glines, and Brandon Biggs. ” she offered no argument”: Con-

strained probabilistic modeling for mnemonic device generation. In ICCC, pages 81–88,

2019.

[12] F. P. Brooks, A. L. Hopkins, P. G. Neumann, and W. V. Wright. An Experiment in

Musical Composition. IRE Transactions on Electronic Computers, EC-6(3):175–182,

1957. ISSN 03679950. doi: 10.1109/TEC.1957.5222016.

[13] Keith Brown and Jim Miller. Syntax: A linguistic introduction to sentence structure.

Routledge, 2020.

[14] Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla

Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini

Agarwal, Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya

Ramesh, Daniel M. Ziegler, Jeffrey Wu, Clemens Winter, Christopher Hesse, Mark

Chen, Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess, Jack Clark, Christopher

Berner, Sam McCandlish, Alec Radford, Ilya Sutskever, and Dario Amodei. Language

models are few-shot learners. CoRR, abs/2005.14165, 2020. URL https://arxiv.org/

abs/2005.14165.

[15] Jason Brownlee. Gentle introduction to statistical language modeling and neu-

ral language models, Aug 2019. URL https://machinelearningmastery.com/

statistical-language-modeling-and-neural-language-models/.

81

https://arxiv.org/abs/2005.14165
https://arxiv.org/abs/2005.14165
https://machinelearningmastery.com/statistical-language-modeling-and-neural-language-models/
https://machinelearningmastery.com/statistical-language-modeling-and-neural-language-models/


[16] Eugene Charniak and Mark Johnson. Coarse-to-fine n-best parsing and maxent discrim-

inative reranking. In Proceedings of the 43rd Annual Meeting of the Association for

Computational Linguistics (ACL’05), pages 173–180, 2005.

[17] François Chollet et al. Keras. https://keras.io, 2015.

[18] Gobinda G Chowdhury. Natural language processing. Annual review of information

science and technology, 37(1):51–89, 2003.

[19] Simon Colton. Creativity Versus the Perception of Creativity in Computational Systems.

Proceedings of the AAAI Spring Symposium on Creative Systems, 2008.

[20] Simon Colton and Geraint A. Wiggins. Computational creativity: The final frontier?

In Proceedings of the Twentieth European Conference on Artificial Intelligence, pages

21–26. IOS Press, 2012. ISBN 9781614990970. doi: 10.3233/978-1-61499-098-7-21. URL

http://www.idi.ntnu.no/~agnar/Documents/Colton_Wiggins12.pdf.

[21] Glen Coppersmith, Ryan Leary, Patrick Crutchley, and Alex Fine. Natural language

processing of social media as screening for suicide risk. Biomedical informatics insights,

10:1178222618792860, 2018.
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