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Abstract 

Synovial sarcoma is a soft tissue malignancy of the muscle that primarily affects adolescents 

and young adults. Due to its low incidence, little advancement has been made in the treatment of 

this cancer. With an overall survival rate of roughly 40%, the need for new treatments for 

synovial sarcoma is evident. Further complicating the development of new therapies for this 

disease is its low mutational burden. With a median of 1.7 mutations/Mb, there are few 

phenotypical differences between tumor tissue and normal tissue which can be targeted. 

However, I have identified the cell surface receptor Oncostatin M Receptor (OSMR) as being 

overexpressed in synovial sarcoma tissue with low expression in non-malignant tissues, making 

it an ideal target for therapy. Due to the potential for off-target effects and resistance 

development with small molecule inhibitors, I elected to develop an anti-OSMR radioimmune 

therapy (RIT). Here, I describe the investigation of OSMR in SS as a viable therapeutic target, 

and the synthesis and characterization of a novel anti-OSMR RIT for use in the treatment of 

synovial sarcoma. I also show that this novel therapeutic agent has potential as an imaging tool, 

making it a potential theranostic drug in a cancer which currently has no FDA approved targeted 

therapies.  

 

 

Key words:  Cancer, Sarcoma, Synovial Sarcoma, Targeted Therapy, Immune Therapy, 

Radiation Therapy, Radioimmune Therapy, Oncostatin M Receptor, Translocation Mutation, 

Fusion Protein, Oncoprotein, Metastasis, Mutational Burden, SS18-SSX, t(X;18) 
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1. Background 

1.1 History of the Treatment of Synovial Sarcoma  

Synovial sarcoma is a pediatric muscle cancer which primarily affects adolescents and young 

adults. With 800 new cases a year in the US (1), it is a less prevalent malignancy resulting in few 

advancements in the treatment of this disease. While soft tissue sarcomas represent less than 1% 

of all cancers (2), and synovial sarcoma (SS) represents 5-10% of all soft tissue sarcomas (3), 

those affected by this disease have few options for treatment. 

In 1959, Crocker and Stout published the first comprehensive study on synovial sarcoma in 

children (4). Due to the rarity of SS, this study examined 43 reports from multiple institutions 

over a long period of time. They noted that SS most often occurred in the extremities and that 

when metastasis occurred, it was most likely to be in the lungs. Prior to this study, the standard 

treatment for SS had been amputation, however Crocker and Stout concluded that a wide local 

excision was just as effective.  

This remained the standard of care for synovial sarcoma until 1993 when Landenstein et al. 

published a study of the results of the CWS-81 study performed in Germany between 1981 and 

1985 (5). This study included 31 children diagnosed with SS during the time of the study, which 

received combination chemotherapy with radiation therapy after a wide local excision. 

Landenstein et al. concluded that irradiation of the surgery site and adjuvant chemotherapy 

served to increase the rate of event-free survival of patients and recommended this treatment as 

the standard of care for SS patients.  

Unfortunately, little advancements have been made in the field of SS treatment, and the 

standard of care set by Landenstein et al. remains today despite the passing of three decades 

(Figure 1.1). The advancements made in other fields of cancer research have shown us what 
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progress there is to be made in this field. Targeted therapy created to target certain proteins 

expressed in cancer cells unique to the disease has been extremely successful in directing therapy 

to the diseased cells, which both improves its effectiveness and reduces the potential for off 

target effects. And 2018 Nobel prize winners James P Allison and Tasuku Honjo have been 

recognized for their major contribution of immune checkpoint blockade therapy, which has 

revolutionized the treatment of cancer directing us to look more at how the immune system can 

be utilized to treat cancer. Unfortunately, SS patients have demonstrated little benefit from any 

of these discoveries and are limited to traditional treatments.  

 

1.2 The t(X:18) Translocation Mutation and its Impact on Sarcomagenesis 

1.2.1 The Genetics of Synovial Sarcoma and the SS18-SSX Fusion Protein 

Synovial sarcoma is part of a group of cancers which are driven by fusion proteins. Fusion 

proteins, sometimes referred to as fusion oncoproteins, are a form of mutated proteins which are 

composed of the parts of two fused proteins. These oncoproteins form as a result of 

chromosomal translocation, where a double strand break occurs in the DNA and is repaired 

incorrectly, stitching one part of a chromosome with that of another. This chromosomal 

translocation can result in the transcription and translation of fusion proteins.  

In the case of SS, the chromosomal translocation t(X;18) is exhibited in 90% of synovial 

sarcomas and is sufficient to drive sarcomagenesis (6). This translocation, which occurs between 

the X chromosome and chromosome 18, results in SS18-SSX fusion proteins (7). The wild-type 

SS18 protein is known to be a subunit of the BAF complexes, also termed the SWI/SNF 

complexes (8)(9). These chromatin remodeling complexes, first discovered in yeast (10), are 
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integral in controlling transcription, and therefore any mutations in the complex have potential to 

be amplified through altered gene expression throughout the genome.  

In 2013, Kadoch and Crabtree proposed a mechanism for how the SS18-SSX fusion protein 

retargets the BAF complex, suggesting that the presence of the SS18-SSX fusion protein in SS 

competes with the wild type SS18 protein for the binding site on the BAF complex. When SS18-

SSX is bound, it displaces BAF47, a subunit of the BAF complex known to have tumor 

suppressing characteristics (8). This displacement was proposed to retarget the BAF complex to 

Polycomb Repressive Complex 2 (PRC2) repressed domains in the genome and activates them 

(Figure 1.2)(12). McBride et al. further elucidated the mechanism by which the altered BAF 

complex causes these epigenetic changes and sought to uncouple the effects of BAF47 loss from 

the effects of fusion protein inclusion into the complex. They determined that loss of BAF47 is a 

loss of function mutation causing BAF complex targeted genes to no longer be activated. 

However, the inclusion of the fusion protein creates a gain of function mutation, retargeting the 

complex to activate genes that it would not before. McBride et al. conclude that synovial 

sarcoma is unique in this way, having both a gain and loss of function within the complex (12). 

These theories were largely accepted by the scientific community and believed to be the 

mechanism by which the fusion protein drives SS. 

However, in 2021, Li et al. published data which directly opposed this theory, showing that 

BAF47 is not displaced by SS18-SSX (11). Instead, they show that the inclusion of the SS18-

SSX fusion protein into the canonical BAF complex (cBAF) resulted in degradation of cBAF, 

rather than retargeting. They instead propose that the decrease in cBAF levels is what results in 

the altered gene expression characteristic of SS (Figure 1.3). 
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Despite the consequences of the SS18-SSX fusion protein formation being well understood, 

this mutation does not result in a protein which could be considered a druggable target. 

Furthermore, interfering with epigenetic mechanisms with far reaching consequences could 

cause more harm than good. This, along with the characteristically low Tumor Mutation Burden 

(TMB) of synovial sarcoma, has made the development of targeted therapies, especially 

immunotherapies, for synovial sarcoma challenging (13).  

The TMB is a measurement which reflects the frequency of mutations within a tumor’s 

genome. This number is an important factor used to predict the response of a malignancy to 

immunotherapy.  Cancers use many mechanisms to avoid the hosts immune system, however 

when an accumulation of mutations is present, the likelihood of one of those mutations resulting 

in a cell surface protein which could be recognized as foreign by the immune system increases. 

For this reason, cancers with a high TMB are considered good candidates for immune therapy 

treatment, while those with low TMB’s likely will not respond. A TMB of at least 10 mutations 

per megabase (MB) is considered a high-TMB and indicates a high likelihood that the tumor will 

respond well to immune therapy (14). Unfortunately, synovial sarcomas are among the cancers 

with the lowest TMB, averaging 1.7 mutations/MB (13). Because of this, SS has historically 

responded poorly to immune therapy, and this treatment is not clinically approved for SS.  

The combination of a low TMB, as well as the few mutations present being non-druggable 

targets, has served to make the development of new and advanced therapies for SS extremely 

challenging. However, there are multiple ongoing pre-clinical studies which are targeting the 

downstream effects of the SS18-SSX fusion protein which aid malignancies in proliferation and 

metastasis (15)(16)(17). While the chromosomal translocation mutation cannot be targeted 

directly, there remain other options for the treatment of SS which need to be explored.  
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1.2.2 The Effects of the SS18-SSX Fusion Protein and the Epigenetics of Synovial Sarcoma 

 While most targeted therapies focus on unique protein expression or pathway activation 

as a result of genetic mutations, there is also the possibility of using targeted therapies that target 

the epigenetic changes that can occur in cancer. Because the SS18-SSX fusion protein is a 

member of the SWI/SNF complex and results in widespread changes to the epigenetic profile of 

SS cells, this strategy warrants significant attention. Not only can epigenetic strategies lead us to 

more options for therapy, but they are also useful in the diagnosis of SS and can serve as 

prognostic markers predicting patient outcomes. This information can be integral in selecting the 

most beneficial treatment plan for a patient.  

 Because many sarcomas arise in overlapping anatomical locations, it is difficult to 

differentiate sarcomas for an accurate diagnosis based on location. However, an accurate 

diagnosis is vital for effective treatment and ensuring the patient has the best possible outcome. 

In an effort to improve the ability to more accurately diagnose and differentiate between synovial 

sarcoma, Ewing sarcoma, and OS, Wu et al. established a methylation profile unique to each 

sarcoma which can be referenced to aid in diagnosis. They discovered that each sarcoma had a 

distinct gene enrichment pattern, and they were able to correctly diagnose 36 clinical samples of 

sarcomas based only on their methylation profiles. While Wu et al. only documented enrichment 

patterns for these three sarcomas, they hypothesize that many more sarcomas have unique 

methylation patterns that could be used to aid in diagnosis and differentiation from other sarcoma 

types (18).  

 Epigenetic markers have also been shown to be a useful tool for prognosis. The 

enzymatically active subunit of PRC2, EZH2, has been implicated in cancer development and 
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metastasis (19). Its role is to methylate lysine 27 of histone 3 (H3K27) and thus repress gene 

expression. In an analysis of 55 clinical cases of synovial sarcoma, Changchien et al. concluded 

that cases with high EZH2 expression were more likely to have larger tumor size, along with 

metastasis and an overall poor prognosis (20). Changchien et al. also suggested that EZH2 levels 

could be useful in identifying subtypes of synovial sarcoma, with the poorly differentiated 

subtype having higher levels of EZH2 than monophasic or biphasic subtypes. A meta-analysis 

performed by Jiang et al. not only found that EZH2 plays an important role in many types of 

cancer, but also helped to elucidate the mechanism by which this subunit of PRC2 propagates 

malignancies. They suggest that PRC2 has a role in inhibiting cell cycle suppressor proteins, and 

aberrant or overactive EZH2 can cause uncontrolled cell growth in this manner. Jiang et al. also 

present evidence that EZH2 can facilitate epithelial-mesenchymal transition (EMT), thus 

promoting cancer metastasis (21). 

 In addition to its potential as a prognostic marker, EZH2 has potential as a therapeutic 

target. In January of 2020, the FDA approved the first EZH2 small molecule inhibitor, 

tazemetostat, for the treatment of epithelioid sarcoma (22). Many other clinical trials are 

ongoing, evaluating the efficacy of tazemetostat in many other malignancies including synovial 

sarcoma. A study performed by Kawano et al. tested tazemetostat in vivo with synovial sarcoma 

xenografted mice and found that the drug was able to suppress tumor growth (23). Further 

evidence of the effect of EZH2 inhibition in synovial sarcoma is presented by Shen et al. Using 

shRNA and siRNA, they were able to suppress cell growth and migration in vitro. Furthermore, 

they showed the same effect as a result of using an EZH2 inhibitor which has yet to be FDA 

approved (24). While there may be no FDA approved EZH2 inhibitors for synovial sarcoma 
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currently, pre-clinical experiments would suggest that the results in epithelioid sarcoma will be 

translated into synovial sarcoma as well. 

 Similar to many other sarcomas, HDAC (Histone Deacetylase) inhibition is a therapeutic 

strategy being investigated in synovial sarcoma. Having a single translocation mutation which 

largely drives synovial sarcoma leaves the malignancy vulnerable to epigenetic silencing. Pre-

clinical trials have shown that HDAC inhibitors are effective at inducing apoptosis in synovial 

sarcoma cells by decreasing the expression of the SS18-SSX fusion protein. Ito et al. first 

discovered in their study that the HDAC inhibitor depsipeptide (Romidepsin) was highly 

effective at suppressing tumor growth in synovial sarcoma cell lines. They also found that 

Romidepsin was able to inhibit tumor growth and reduce rates of metastasis with in vivo mouse 

models (25). Since that time, clinical trials investigating the effects of depsipeptide on multiple 

sarcomas have begun (26). To investigate the mechanism by which HDAC inhibitors are able to 

induce apoptosis in synovial sarcoma, Laporte et al. analyzed RNA-seq gene expression data and 

determined that treatment with Quisinostat induced expression changes in pathways related to 

apoptosis and antigen presentation as well as other pathways important to tumorigenesis. They 

showed that HDAC inhibition was able to activate CDKN2A, a known tumor suppressor gene, 

allowing proapoptotic pathways to be activated. Furthermore, they show that gene expression 

related to antigen presentation was increased by treatment with an HDAC inhibitor and suggest 

that this may indicate potential for increased antigenicity of synovial sarcoma allowing for 

treatment with immunotherapy (27). 

 The histone demethylase, KDM2B, has been identified as another potential target of 

treatment in synovial sarcoma. This subunit of Polycomb Repressive Complex 1 (PRC1) is 

responsible for histone demethylation and has been implicated in multiple types of malignancies. 
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Banito et al. discovered that, not only was KDM2B expressed at high levels in synovial sarcoma 

cells, but that KDM2B knockdown was able to inhibit cell growth and induce cell differentiation 

almost as well as SS18-SSX knock-down (28). While Banito et al. was able to inhibit KDM2B 

through use of shRNAs, there are currently no small molecule inhibitors targeting this enzyme. 

1.3 Current Clinical trials and Pre-Clinical Strategies in the Treatment of Synovial 
Sarcoma 

 The combination of synovial sarcoma being a rare malignancy along with having an 

extremely low number of mutations which drive the cancer has led to stagnation in the field of 

novel SS treatments. However, there are a number of strategies currently being researched in this 

field, as well as multiple clinical trials currently underway.   

 A phase III trial is exploring the potential of the drug Anlotinib in the treatment of SS 

(29). Anlotinib is an orally administered Receptor Tyrosine Kinase (RTK) inhibitor which 

inhibits PDGFR, FGFR and VEGFR (30). While the role of Receptor Tyrosine Kinases is well 

known in cancer, and inhibition of this class of receptors has proven effective in other cancer 

types, attempts to treat sarcomas with this class of pharmaceuticals has proven ineffective in the 

past (31)(32). One hypothesis for why this may be, is that sarcomas use many RTK’s to support 

proliferation and growth, causing them to be drug resistant to a single RTK inhibitor. However, 

by using an RTK inhibitor which can inhibit RTK’s across three axes, the possibility of the 

malignancy becoming resistant to treatment is reduced. Preliminary reports of the study results 

show that patients responded well to treatment initially, however only 26% of patients remained 

progression free after a year (33). Anlotinib shows promise as a potential therapy for SS patients, 

but also highlights the difficulty of overcoming drug resistance in cancer treatment. While, in the 

case of RTK’s, there may be pharmaceutical agents which can target multiple pathways at once, 
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this is rarely the case, and preventing malignancies from developing resistance and growing 

through other means is one of the greatest challenges to the field.  

 Patwardhan et al. have found that a drug similar to Anlotinib, Nintedanib, is showing 

potential in the treatment of SS (34). Nintedanib is an orally administered tri-RTK inhibitor 

which is FDA approved for the treatment of idiopathic pulmonary fibrosis (IPF) (35) and has 

also shown efficacy in the treatment of non-small-cell lung cancer when given in combination 

with docetaxel (36). Patwardhan et al. propose the use of Nintedanib which inhibits the same 

three RTK receptors as Anlotinib for use in SS treatment. In their study, they show that SS cell 

lines express the target receptors of this drug, and that the drug effectively suppresses tumor 

growth. Nintedanib shows promise as a potential therapy for SS patients but is likely to share the 

same struggles as Anlotinib with development of drug resistance.  

 Another attempt to treat SS through RTK inhibition is the CAMPFIRE clinical trial, 

which is exploring the treatment of SS in both children and adults with Ramucirumab in 

combination with gemcitabine and docetaxel (37). Ramucirumab is a monoclonal antibody 

which blocks the VEGFR2 receptor and prevents signaling. While this study is still underway 

and no results are available as of yet, there are some preclinical studies of Ramucirumab in the 

treatment of SS which have been published. Lowery et al. studied the effects of Ramucirumab in 

multiple pediatric solid tumor models and found that Ramucirumab alone was not able to 

suppress tumor growth, but showed benefit when administered in combination with a cytotoxic 

chemotherapy (38). While the FDA approval of Ramucirumab would greatly benefit many 

patients, this treatment strategy does not serve to reduce the need for cytotoxic chemotherapy 

treatment and, in fact, highlights the fact that the field of SS treatment is dependent on them. 

Cytotoxic chemotherapies such as vincristine, gemcitabine and cisplatin are known to be poorly 
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tolerated in the clinic, causing hair loss, nausea, vomiting, diarrhea, weight loss and failure to 

thrive. The complications these drugs can cause can lead to a disruption or premature halt to 

therapy, resulting in poor outcomes for patients. Furthermore, cancer is often able to become 

resistant to these therapies and monotherapy is often insufficient to achieve complete remission 

(39). Another undesirable effect these therapies have is that of decreasing the patient’s quality of 

life. In a disease such as SS, where up to 20% of patients present with metastasis at their 

diagnosis and are considered incurable (40), a large consideration of treatment should be the 

effect on a patients quality of life. Because they do not have what is currently considered a 

curable disease, the aim becomes to improve and lengthen their life, rather to irradicate their 

disease. Cytotoxic chemotherapies are not the tool of choice for this goal, highlighting the need 

for the development of targeted therapy for this disease.  

 The SPEARHEAD-1 phase II trial (41) is taking another approach for the treatment of 

synovial sarcoma. Using CAR-T therapy, an innovative technique which has rapidly gained 

attention in the field of oncology, the group hopes to treat SS through genetically altered T-cells 

which are obtained from the patient and engineered to express a receptor which binds to the testis 

antigen MAGE-A4, which is often overexpressed in cancers. Research has shown MAGE-A4 to 

be overexpressed in up to 82% of synovial sarcomas (42), making it an ideal target for therapy. 

While this clinical trial is ongoing and no articles have been published, the results were presented 

at the American Society of Clinical Oncology’s (ASCO) 2021 annual meeting and showed 

promising results (43). They state that out of 25 SS patients, 2 achieved a complete response to 

therapy, 8 patients experienced a partial response, and 11 patients achieved lasting stable disease. 

These results are extremely promising and the addition of CAR-T therapy to the field of SS 

treatment would greatly improve our ability to treat this disease.  
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 Yet another strategy for the treatment of SS currently in clinical trials is the use of the 

drug FHD-609 (44). FHD-609 is a bromodomain-containing protein 9 (BRD9) degrader and has 

high specificity for its target, inhibiting BRG1 and BRM (45). These proteins are essential 

components to the SWI/SNF complex, which is affected by the SS18-SSX fusion protein (46). 

By inhibiting this complex, the effects of the malfunctioning SWI/SNF complex can be mitigated 

and SS growth and progression slowed. This Phase I trial is in its early phases, and while there 

are no results to comment on at this time, this innovative treatment technique has promise in the 

treatment of SS. However, the SWI/SNF complex has many roles outside of those which lead to 

SS and the inhibition of this complex could prove to have high toxicities.  

 

Table 1.1 Summary of Current Pharmaceutical Research in SS 

 

 

1.4 Receptor Tyrosine Kinases and Their Role in Cancer Development 

 As discussed in chapter 1.3, RTK’s have been implicated in many cancers, and their 

inhibition has been a strategy for treatment of many malignancies, including SS (29)(34)(37). 
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Both RTK’s and Jak proteins belong to the class of tyrosine kinases, however, whereas Jaks are 

Non-Receptor Tyrosine Kinases (NRTK’s) and must be associated with a receptor to aid in 

signaling, RTK’s are a receptor themselves and are able to function as kinases intrinsically and 

without the need for extra proteins such as Jaks. There are 58 known RTK’s (47) which can be 

divided into 20 sub-families (48) and serve a wide range of functions in the body (Figure 1.4). 

While each subfamily has an essential function in the human body, each subfamily has been 

associated with at least one type of cancer (48) highlighting the potential for this family of 

receptors to contribute to development of malignancy.  

 A number of these subfamilies have been implicated in synovial sarcoma genesis, 

including the VEGFR (49), PDGFR (50) and FGFR (51) subfamilies, each of which act as a 

signaling pathway for different growth factors. There are multiple ways in which these pathways 

can become overactive, such as increased receptor concentration, constitutive receptor activation, 

or overexpression of ligands.  

 Vascular Endothelial Growth Factor Receptor (VEGFR) is responsible for development 

of vascular structures and angiogenesis (52). In many malignancies, VEGF becomes upregulated 

through the activation of other oncogenes, resulting in increased vascularization of the tumor 

tissues and allowing them to have increased access to blood flow (53). This can occur in SS as 

well, and increased VEGF expression has been associated with a poor prognosis in SS patients 

(49). Another RTK implicated in synovial sarcoma is Platelet Derived Growth Factor Receptor 

(PDGFR). This receptor and its corresponding growth factor are important for development, 

vasculature formation and wound healing, but when acting aberrantly can lead to increased 

tumorigenesis (54). Fibroblast Growth Factor Receptor (FGFR) is another RTK associated with 

synovial sarcoma progression, and has a wide range of roles ranging from development to 
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metabolism to homeostasis (55). Multiple attempts have been made to inhibit these RTK’s in 

synovial sarcoma as described in chapter 1.3. While some of them have met with success, an 

overarching problem to the field of RTK inhibition has been the development of resistance. 

Because there are multiple subfamilies of RTK’s, cancers can quickly adapt to the loss of 

function of one subfamily and continue to grow through the use of another. This has spurred 

efforts to develop treatments which can target multiple RTK receptor subfamilies at once, such 

as Anlotinib (33), so that this development of resistance may be avoided.    

 

1.5 The Interleukin-6 Cytokine Receptor Family 

1.5.1 The JAK/STAT Pathway and its Role in Cancer Development 

 The Janus Kinase (JAK) – signal transducer and activator of transcription (STAT) 

pathway is an important signaling cascade in cytokine and growth factor signaling and has been 

implicated in many cancers (56)(57)(58). When functioning normally, the pathway plays an 

integral role in processes such as immune cell signaling (59), cell proliferation, differentiation, 

apoptosis and migration (60). This pathway is responsible for relaying signals from cytokines, 

growth factors and interleukins outside of the cell to elicit a response inside the nucleus (58). 

Understanding this signaling cascade and how it can contribute to cancer progression has 

potential for leading to new therapeutic strategies in SS. 

 The JAK’s were discovered after sequence comparisons were performed on tyrosine 

kinases, and were noted to have both a catalytic and regulatory domain (60). These kinases are 

associated with members of the gp130 receptor family and upon ligand binding to the receptor, a 

conformational change in the intracellular region of the receptor allows phosphorylation of 

inactive JAK’s causing it to become active (61). Once active, the JAK’s use their kinase activity 
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to create binding sites which recruit STAT’s (58). The JAK’s are in the non-receptor tyrosine 

kinase (NRTK) family and are fairly conserved across species. Humans contain four members of 

this family, Jak1, Jak2, Jak3 and Tyrosine Kinase 2 (Tyk2) (62). While Jak1, Jak2 and Tyk2 are 

found throughout the human body, Jak3 is far more specific and found most commonly in blood 

cells (63).  

Jak1 is an integral member of the signaling pathway involved in interleukin signaling and 

is associated with a family of cytokine receptors characterized by the presence of the common 𝛾 

chain (𝛾c) subunit. Jak1 is also used in signaling of the IL-6 receptor family which includes 

receptors such as IL-6 (the families namesake), IL-11, LIF and OSMR (62). These receptors are 

characterized by the presence of the gp130 subunit. In addition to these receptors, Jak1 is the 

mechanism of signaling for all type II cytokine receptors, and Jak1 knockout mice have been 

shown to have perinatal mortality, immune deficiencies and neurological deficits (64).  

Jak2 has been shown to be essential for proper hematopoiesis, and is the main Jak 

involved in erythropoietin (EPO) signaling (65). Because of this, Jak2 knockout mice have 

embryonic lethality due to a failure to respond to erythropoietin (66). Jak2, along with being an 

integral component of EPO signaling, is also associated with other Interferon-𝛾 hormone-like 

cytokines, such as Growth Hormone (GH) (67), thrombopoietin (TPO) (68) and prolactin 

(PRL)(69). IL-3 is also dependent on Jak2 for signal transduction (70). Jak2 overlaps with Jak1 

in function as it is involved in gp130 subunit signaling as well (71).  

An important player for immune system development and signaling is Jak3. This 

NRTK’s only role is to bind to 𝛾c subunit containing receptors (72), and while this role is also 

carried out by Jak1, Jak3 is unique in that it is localized to hematopoietic cells (63). Interestingly. 

Jak3 loss or reduction was first observed in humans rather than in mice knockout studies and has 
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been linked to the development of Severe Combined Immune Deficiency (SCID) (73)(74). 

Subsequent knock-out studies have shown that mice will also develop SCID as a result of Jak3 

loss, however few other symptoms are noted as a result of Jak3 loss (75)(76)(77).  

While Tyk2 does not carry the same naming as the other Jak proteins, it is still considered 

to be in the same family as the other Janus kinases. Tyk2 was the first of the Jak proteins to be 

fully sequenced and cloned, and the protein carries the same name as the gene which codes for it 

(78). Of all the Jak proteins, Tyk2 was the first to be associated with interferon (IFN) signaling 

and signaling in the IL-6 class of receptors, however later this was proven to be untrue, and Tyk2 

has now been shown to be associated only with IL-12 and LPS signaling (79)(80). Because of 

Tyk2’s role in LPS signaling, Tyk2 knockout mice have been shown to be more susceptible to 

infection (62). 

Jaks are activated after ligands bind to their associated receptor, which induces 

dimerization of the receptors (81). This binding brings two Jak proteins into close proximity to 

each other, allowing them to trans-phosphorylate each other into their active form. They are also 

able to phosphorylate tyrosine residues within the cytoplasmic domain of the receptor, which 

serve as binding sites for STAT proteins (82).  Once a STAT protein binds to the C-terminus of 

the receptor, it too is phosphorylated by the Jak proteins, and becomes active. These active 

STAT proteins dimerize with each other and are shuttled into the nucleus where they act as 

transcription factors (81). 

 While the STATs are downstream of the JAKs, they were discovered prior to JAKs in 

1988, although they had not yet received the name they bear today (83). The STAT family 

includes 7 proteins which act as transcription factors, regulating processes relating to cell 

proliferation and differentiation (84). The members of the STAT family are STAT1, STAT2, 
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STAT3, STAT4, STAT5a, STAT5b and STAT6, and each member shares a conserved structure 

(85). Each STAT protein plays a different role in transcription regulation of processes that are 

important in the normal function of cells, however when these processes become disrupted it can 

lead to disease. STATs, which are arguably oncogenes themselves, are also downstream of many 

oncogenic proteins and receptors which, when aberrantly active, can lead to cancer. This highly 

compounds the potential for STATs to lead to cancer, and two of the major players in cancer 

progression secondary to STAT activation are STAT3 and 5.  

 When functioning normally, STAT3 and 5 operate as regulators of pathways which 

control many growth factors including epidermal growth factor and platelet derived growth 

factor (86). While STAT3 knockout mice show embryonic lethality (87), using a tissue specific 

knock out system with Cre-Lox mechanisms has shown STAT3 to be involved in cell motility, 

wound healing, and apoptosis (88)(89). STAT5 plays an essential role in the development of 

immune cells (90), including Tregs, which serve to suppress and regulate the immune system 

(91). Given the roles of these STAT proteins, improper regulation of them can lead to increased 

cell proliferation, motility, failure to respond to apoptotic signals, and evasion of the immune 

system due to upregulation of Tregs. And, in fact, these transcription factors have been linked to 

a number of different cancers driven by these events, including hematopoietic cancers (92), lung 

cancer(93), colon cancer (94) and breast cancer (95). 

 While the JAK/STAT pathway is a well-known player in other malignancies, there is less 

known about the role of this pathway in synovial sarcoma. However, some research has shown 

that a subset of synovial sarcomas have increased levels and activity of STAT3 (96), and 

currently a clinical trial assessing the efficacy of the JAK1 inhibitor Itacitinib in many types of 

solid sarcomas is underway (97). While there is a small amount of research being done in this 
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area, there is unexplored potential for the targeting of this pathway in synovial sarcoma. In our 

studies, we have found an upregulation of the Oncostatin M Receptor, which is a member of the 

IL-6 family and known to use the JAK/STAT pathway for signaling, indicating that this pathway 

may play an important role in cancer progression.  

 

1.5.2 The Members of the IL-6 Receptor Family 

 The Interleukin-6 (IL-6) family of receptors is a family of cytokine receptors which 

signal through the JAK/STAT pathway (98). This family is sometimes referred to as the gp130 

family of cytokine receptors due to the presence of the gp130 subunit in nearly all of the 

receptors (99) (Figure 1.5). IL-6R was the first receptor in this family to be characterized and 

was cloned in 1988 by Yamasaki et al. (100). This family of receptors has been shown to play a 

role in the development and progression of cancer and are thus an important topic of research.  

 IL-6R is known to activate the STAT3 transcription factor (101) which leads to an 

inflammatory phenotype in cancer (102). IL-6 has been identified as a poor prognostic marker in 

breast cancer (103) and has been found to upregulate the expression of VEGF and NF-𝛋B, both 

of which are associated with a more aggressive and metastatic tumor (104). The cytokine 

receptor has also been implicated in colorectal cancer (105), pancreatic cancer (106) and renal 

cell carcinoma (107).  

 Because of its strong implications in cancer, many attempts to inhibit IL-6 and its 

receptor have been made. However, the ubiquitous role of IL-6 in many inflammatory processes 

have made the target less than ideal (108). The inhibition of IL-6 has long been a technique in 

treatment of multiple autoimmune diseases (109)(110)(111), resulting in multiple 

pharmaceuticals which could be tested in the treatment of cancer. However, there is only 1 FDA 
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approved IL-6 inhibitor which is approved for the treatment of cancer (112). The IL-11 and IL-

27 receptors are similarly associated with cancer (113)(114)(115), however no current inhibitors 

for these receptors exist. LIFR has been shown to contribute to cancer progression (116)(117), 

and both LIFR and OSMR are important growth factors in Ewing sarcoma, a cancer similar to 

SS in that it is caused by a translocation mutation and arises in the mesenchymal tissue (118). 

There are currently two FDA approved drugs to inhibit LIFR, and pre-clinical studies of a drug 

currently termed EC359 have shown promise in this regard (119). The OSMR receptor has a 

strong connection to multiple types of cancer which is discussed further in chapter 1.6. Currently 

there is no research being performed on small molecule inhibitors of OSMR in cancer, however 

there are multiple studies utilizing antagonistic antibodies to inhibit OSMR (120) (121). IL-31 is 

known to play a role in cancer suppression (122)(123), and currently in clinical trials for the 

treatment of atopic dermatitis is the anti-IL-31 antibody Nemolizumab (124). However, there is 

no research investigating is receptor in the treatment of cancer. The last member of the IL-6 

family, CNTFR, has had, perhaps, the least amount of research performed on its association with 

cancer, however one group has found that CNTFR inhibition can have a tumor suppressing effect 

in lung adenocarcinoma (125).  

 Despite the number of potential protein targets listed here, a combination of the rarity of 

SS leading to the disease being under researched, and the difficulties of treating a low mutational 

burden cancer result in there being little breakthroughs in the field of IL-6 receptor family 

inhibition.   
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1.6 Oncostatin M Receptor and its Implications in Cancer Development 

 Oncostatin M Receptor (OSMR) is a protein which has been implicated in many different 

cancer types (126)(127)(128). OSMR is a member of the IL-6 cytokine receptor family which is 

classified based on the presence of the gp130 sub-receptor. The IL-6 receptor family signals 

through the JAK/STAT pathway (129), activating JAK1, JAK2 or TYK2 (130), and regulates a 

number of biological functions including inflammation, hematopoiesis, and immune response 

(131)(Figure 1.6) . This transmembrane receptor receives the ligand oncostatin M (OSM) and is 

composed of the subunits gp130, which characterizes the IL-6 receptor family, and OSMR𝛽	

(132). 

While the ligand was previously known, the receptor was first discovered in 1996 by 

Mosley et al. who were the first to characterize OSMR (133). This ligand-receptor pair earned its 

name when it was discovered to inhibit tumor growth in melanoma cells but to promote the 

growth of fibroblast cells (134). Since then, multiple reports of the dual nature of OSMR have 

been reported. OSMR has been found to suppress metastasis of lung adenocarcinoma through 

activation of the STAT1 pathway (135). Conversely, OSMR has also been linked to growth of 

malignancies. Research in gastric cancer found that OSMR was often overexpressed and was 

found to be an indicator of poor prognosis. It was determined that the OSMR receptor activates 

the STAT3 pathway leading to increased rates of proliferation and adhesion (127). Astroglioma 

has also been found to have increased proliferation rates and metastasis as a result of OSMR 

activation secondary to upregulation of adrenomedullin, another activator of the STAT3 pathway 

(136). There is also evidence of OSMR playing a role in the increase of Vascular Endothelial 

Growth Factor (VEGF) production in astroglioma, which leads to increased vascularity and 

growth promotion of tumors (137). OSMR expression in cervical cancer has been linked to a 
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poor prognosis, and was found to induce endothelial-mesenchymal transitions along with 

increased rates of metastasis (138) (139). Interestingly, research shows that OSMR activation can 

have both suppressing and promoting effects in breast cancer. Multiple groups have found that 

OSMR activation leads to growth suppression through activation of the STAT3 pathway and 

encourages cell differentiation which leads to better patient outcomes (140)(141)(142). However, 

other groups have found that OSMR activation can lead to increased metastasis in Estrogen 

Receptor (ER)+ cell lines through CD44 upregulation (143). 

Due to the complex nature of the JAK/STAT pathway, it is evident that OSMR activation 

has multiple and widespread ramifications. Whether OSMR activation or inhibition is called for 

in the treatment of cancer must be evaluated on a case-by-case basis, as it could have both 

beneficial and detrimental effects. In order to help illuminate this controversy Chen et al. 

performed a pan-cancer analysis of the effects of OSM in various cancers utilizing data from The 

Cancer Genome Atlas (TCGA) and the Genotype-Tissue Expression (GTEx) databases (144). 

They show that OSM plays an integral role in inflammation as well as the tumor 

microenvironment, both of which are important factors in the progression of cancer. And while 

there is currently no published data on the role of OSM/OSMR in SS, this data suggests that this 

inflammation pathway can play an important role in the development of SS.  

While the role of OSMR in SS remains unexplored, OSM has been identified as an 

integral growth factor in Kaposi’s Sarcoma, a malignancy which almost always develops 

secondary to HIV infection (145). While it has been long known that OSM contributed to the 

progression of Kaposi’s Sarcoma (146)(147), the mechanism by which this occurs was not 

explored until later, when it was found that OSM increased the presence of IL-6 and COX-2, 

both of which are associated with an inflammatory response (148).  
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The mounting evidence of the role of OSM/OSMR in cancer development highlights this 

receptor as an ideal target for therapy. However, due to the ligand/receptor binding mechanism, 

this approach has a high likelihood of failing due to off-target effects and refractory disease. 

OSM is known to interact directly with the gp130 subunit of the OSMR receptor with a low 

affinity. After this association occurs, the OSMR𝛽 subunit enters and associates more strongly 

with the OSM-gp130 complex (133). Due to this mechanism, it is possible for OSM, or any 

OSM-like small molecule inhibitors, to bind with low affinity to any of the gp130 cytokine 

receptors and induce off-target effects resulting in toxicities. With the exception of the IL-31 

receptor, all of the members of the IL-6 receptor family contain the gp130 subunit (Figure 1.5). 

Therefor the strategy of using an OSM mimicking small molecule inhibitor could potentially 

have off target effects on any member of the receptor family causing significant toxicities. 

Furthermore, as highlighted in section 1.3, inhibiting a single growth factor receptor in the 

JAK/STAT pathway has proven unsuccessful, and time after time has resulted in disease 

resistance due to the numerous other receptors which may activate this pathway. In order to 

overcome these challenges, a strategy must be developed which is able to target the OSMR𝛽 

subunit with high specificity and is also able to overcome disease resistance. We elected to 

develop a radioimmune therapy which targets OSMR to overcome these difficulties.  

1.7 A Metastatic SS Mouse Model 

 The mouse model used in these experiments is one previously described by Barrott et al. 

(149). Prior to the development of this model, no mouse model had sufficiently exemplified the 

metastasis patterns seen in human SS, in which metastasis occurs frequently and most often to 

the lungs (150). This genetically modified mouse model provides a way to accurately model SS 

in an organism with a functioning immune system, unlike xenografted models of SS. Inserted 
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into the genome of these mice is the SS18-SSX2 translocation mutation which is responsible for 

driving SS (8)(11). Along with the translocation mutation fusion gene, a Green Fluorescence 

Protein (GFP) gene is inserted to allow for easy identification of tumor tissue from healthy 

tissue. This genetic mouse model serves as our non-metastatic model, as these mice form 

primary SS tumors but do not undergo metastasis. To model metastasis in these mice, an 

additional genetic modification has been made. By inducing a loss of PTEN, these tumors 

develop the characteristic metastasis of SS which is most often seen in the lungs (Figure 1.7).  

 This mouse model provides a number of benefits over other model types. Because these 

mice are genetically modified, they develop SS tumors de novo and in anatomically expected 

locations when compared to human SS. This can provide more accurate modeling of drug 

delivery than a xenografted model, which can only develop tumors in surgically accessible 

locations. Furthermore, these mice are not immunocompromised, allowing for investigation of 

impacts on the immune system and what role the immune system might play in both drug 

reactivity and tumor sensitization to immune response.  

 While this model carries many benefits, it also has its limitations. Because these mice are 

genetically modified to develop SS tumors, they do not provide data on human tumor protein 

expression. As will be discussed in Chapter 2, protein expression can vary from sample to 

sample, and could pose challenges in targeted therapy. This model cannot help us to investigate 

these expression variations in human tissues.  

1.8 Radioimmune Therapeutic Strategies 

1.8.1 Overview of RIT Clinical Trials and Outcomes 

 Radioimmune Therapy (RIT) is a type of systemic therapy which combines components 

of immune therapy with radiation therapy (151). This model of drug utilizes monoclonal 
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antibodies which serve as the targeting system for the drug and are highly specific for malignant 

tissue. Tethered to these cancer specific antibodies is a radioactive isotope which will deliver its 

radioactive payload to the cancerous cells once directed there by the antibody (Figure 1.8). As 

the field of oncology shifts to favor a more personalized treatment focus of therapy, RIT has 

become of higher interest as it can be tailored to the specific markers of a patients tumor (152).  

While the idea of RIT might be gaining interest in the field of oncology, RIT has been an 

FDA approved treatment for cancer for 20 years.  Ibritumomab tiuxetan (Zevalin) was the first 

RIT approved by the FDA in 2002 for the treatment of non-Hodgkin’s lymphoma (153). This 

RIT utilizes an anti-CD20 monoclonal antibody to target cancerous cells, making it specific to B 

cells, the most common cells for lymphoma to arise from (154). Patients first receive this 

antibody tethered to the radioisotope indium-111 which releases gamma radiation and can be 

seen using imaging tools but does not have any tissue damaging properties. If this radioimmune 

therapy shows efficient localization to the target tissues, the patients then receive the antibody 

chelated to a yttrium-90 ion, which releases beta radiation and can damage the cancerous tissue 

(153).   

Tositumomab (Bexxar) is a similar drug which was approved in 2003 for the treatment of 

relapsed or refractory non-Hodgkin’s lymphoma (155), and was momentarily approved as a first-

line treatment for the disease, although this approval has since been rescinded (156). Similar to 

Ibritumomab, Tositumomab is directed to diseased cells through us of an anti-CD20 monoclonal 

antibody. However this RIT chelates an Iodine-131 isotope to deliver its radioactive effects 

(155).  

While non-Hodgkin’s lymphoma is the only FDA approved indication for the use of RIT, 

there have been multiple clinical trials exploring the use of RIT in solid tumors in the past 
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decade.  Currently, there is an ongoing Phase II trial exploring the use of 131I-omburtamab in 

the treatment of desmoplastic small round cell tumors as well as other cancers which can affect 

the peritoneum (157). This drug is composed of an anti-B7H3 antibody which is conjugated to an 

Iodine-131 radioisotope and is being administered in combination with external beam radiation 

therapy (158). While this trial is ongoing and therefor has no results as of yet, the phase I trial of 

this drug showed good tolerance by patients with little side effects and the antibody was shown 

to be highly selective for malignant tissues (159). While tumor growth suppression was not 

measured in the phase I trial, the phase II trial shows promise in this regard based on their prior 

results. This study also included patients with Ewing sarcoma, which is similar in many ways to 

SS. Currently there is also an ongoing clinical trial which is investigating the inhibition of this 

protein through an antagonistic antibody in multiple types of sarcoma including Ewing sarcoma, 

osteosarcoma, Rhabdomyosarcoma, highlighting the relevance to the field (160).   

Another phase II trial utilizing I-131 in RIT is targeting medulloblastoma, a pediatric brain 

cancer, through the use of GD2 antibodies (161). While this study focuses on central nervous 

system cancers, patients with leptomeningeal cancers and high GD2 expressing cancers were 

also looked at in this study. Due to the locality of medulloblastoma, the trial saw slightly more 

severe side effects than are usually seen in RIT clinical trials, however these were not considered 

overly severe and the therapy seems beneficial as a salvage therapy for patients with GD2+ 

tumors (162). This research may also be translated into the treatment of SS as SS has also been 

shown to have an overexpression of GD2 (163). 

A pilot study was performed looking at the use of the anti-HER2 antibody trastuzumab, 

which is FDA approved for the treatment of HER-2 positive breast cancer and goes by the name 

Herceptin (164), tethered to a Lutetium-177 isotope in the treatment of HER-2 positive breast 
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cancer (165). They found that the RIT was able to localize itself with high specificity to both 

primary and metastatic sites of disease, however despite these promising results no clinical trial 

has been initiated.  

RIT is also being explored as an adjuvant therapy in the treatment of colorectal carcinoma, 

specifically that which has metastasized to the liver (166). A phase I study showed that an anti-

CEA targeting RIT using I-131 was effective at suppressing relapse once patients were 

considered disease free. However, in the subsequent phase II study, while the treatment was 

successful in suppressing tumor growth, it resulted in hematotoxicity making it an unlikely 

treatment.  

 Perhaps one of the most aggressive and metastasis prone cancers is pancreatic cancer. 

This disease has proved extremely difficult to treat and has one of the lowest 5-year survival 

rates out of all cancers, at just 5-10% (167). In an attempt to increase the treatment options for 

these patients, an anti-Muc1 RIT using Yttrium-90 initiated clinical trials and proceeded into 

Phase III trials (168). While the therapy was well tolerated and saw tumor growth suppression in 

patients who were able to receive multiple doses of the RIT, in most cases, the disease 

progressed far too quickly for patients to be able to receive multiple doses and the drug never 

received FDA approval. This highlights the limits of RIT as a therapy which may take time to 

take effect, which is less than ideal for aggressive, fast-moving cancers. Because of this, RIT 

may have a role in combination or maintenance therapy rather than a first line treatment in some 

cancers.  

 While the number of clinical trials using RIT are numerous, only two therapies are FDA 

approved for the treatment of cancer. The field of RIT shows incredible promise to provide more 

treatment options for patients with few choices, however it is evident that more research is called 
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for in this field. SS lends itself as an ideal target for RIT therapy, as it does not progress at an 

accelerated rate like pancreatic cancer does, and patients are not likely to progress so quickly that 

they are unable to receive more than one dose. SS also has the benefit of typically being 

localized to places which can tolerate radiation therapy well, unlike metastatic colorectal 

carcinoma, which is most commonly found in the liver which is sensitive to radiation. Because 

of these advantages, we are confident that an RIT model of therapy will be well tolerated and 

have great benefit to SS patients. 

1.8.2 Current Pre-Clinical Use of RIT in Cancer Treatment  

 In addition to the multiple ongoing clinical trials using RIT to treat various cancers, there 

are also a handful of pre-clinical studies attempting to develop new RIT’s. One such study is 

using a Lead-212 isotope conjugated to an antibody which recognizes B7-H3 to treat ovarian 

cancer (169). This study has been able to efficiently synthesize this RIT and found that the drug 

was able to inhibit ovarian cell growth in vitro. They have also performed in vivo studies and 

found that the antibody sufficiently targeted the disease, and that mouse survival was extended 

with treatment. While further research is warranted to determine dosage and tolerability, this 

project shows promise as being a viable therapy after debulking surgery in ovarian cancer 

patients. 

Ovarian cancer is not the only malignancy in which Lead-212 is being used in RIT.  

By using a different antibody which targets CD38, a transmembrane receptor which is often 

overexpressed in multiple myeloma cells, an RIT is being developed which can target multiple 

myeloma and deliver radiotherapy via the attached Lead-212 isotope (170). This drug has shown 

the ability to suppress tumor growth in both in vitro and in vivo studies and showed good 

distribution to sites of disease. These results paired with the fact that the only current FDA 



 28 
 

approved RITs are for the treatment of hematological malignancies suggest that this RIT will 

find success in the treatment of multiple myeloma.   

 Isotopes besides Lead are being investigated for their potential use in RIT as well. Recent 

research has shown that an RIT model using Copper67 attached to an anti-HER2 antibody can be 

used as a theranostic agent in breast cancer (171). Not only did this research show that this RIT 

was able to treat mice xenografted with breast cancer, but it was also shown to be an efficient 

imaging tool, highlighting the potential of RITs to have multiple uses in the clinic. This is also an 

example of an RIT effectively treating a solid tumor, something which has been a challenge in 

the field previously.  

While there is an abundance of research on the chemistry and components of RIT, there 

is very little research exploring the use of RIT drugs in the treatment of solid tumors. The field of 

RIT in oncology is rich with foundational research and in need of translational, pre-clinical 

studies to further this drug model into the clinic.  

1.8.3 The Components and Versatility of RIT 

RIT is emerging as an effective way to treat solid tumors with both clinical and pre-clinical 

studies underway. Typically, there are three major components to RIT’s: the antibody, which 

serves as a targeting system, a chelator which can be conjugated to the antibody and which can 

hold a radioisotope, and finally the radioisotope itself, which serves to deliver radiation to the 

cancer cells once brought into proximity to them by the antibody. The relative simplicity and 

interchangeability of RITs is a great boon to the drug model, as each component can be 

exchanged for something similar until success is found.   

 Perhaps the most easily exchanged component is that of the antibody due to the constant 

region being similar between antibodies but the variable region having vastly different targets 
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based on what antibody is used. This results in the easy exchange of antibodies if one protein 

target does not result in sufficient cancer specificity. Because of the need for high specificity, 

monoclonal antibodies are typically selected rather than polyclonal antibodies (172). This helps 

to eliminate off-target effects and binding. While whole antibodies are frequently used, it is also 

possible to use antibody fragments in RIT (173). One reason to consider the use of antibody 

fragments rather than full length antibodies is that the decreased size can result in improved 

pharmacokinetics and tumor permeability of the RIT (174). The selection of which targeting 

antibody or antibody fragment is a critical one in the realm of RIT, as it can greatly determine 

the specificity of the treatment, as well as the retention time and possibility for off target effects.  

 In order to attach radiometals to these antibodies or antibody fragments, the use of a 

bifunctional chelator is needed. These are molecules which have both the ability to chelate a 

metal, as well as a functional group which allows them to be conjugated to other molecules such 

as proteins (175). While there are numerous bifunctional chelators which could be selected for 

use in RIT (Table 1.2), they typically fall into two categories: linear or macrocyclic (176). Both 

categories are good options each with their own benefits and pitfalls. Linear bifunctional 

chelators tend to have faster and more efficient radiolabeling of metals, however macrocyclic 

bifunctional chelators are more stable (177).    
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Table 1.2 Examples of Various Bifunctional Chelators and Their Structures 

 

DTPA 
 

 

DOTA 

 

 

TCMC 

 

 

NOTA 

 

 

NETA 
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 While bifunctional chelators can be attached directly to the antibody with a stable 

covalent interaction, there are some situations in which a linker is preferred. The use of PEG 

linkers of different lengths has been investigated and found to alter the tumor uptake and 

metabolism of RIT’s (178), which would allow researchers to further fine-tune RIT 

pharmacokinetics according to their needs. Other linkers such as arylsulfate are cleavable once 

administered, and release the attached moiety from the antibody (179). While most applications 

being explored pertain to antibody-drug conjugates (ADC’s), they could also be applied to 

RIT’s.  

 The selection of which radioisotope to use is an extremely important decision which can 

affect the behavior of the RIT. Many parameters must be considered including the chelation 

stability, the half-life, the metabolism, potential toxicities, the cost, and the availability of the 

isotope (180). Another key consideration when selecting an isotope is what type of radioactive 

decay is called for. The three most commonly used emissions used in RIT are gamma rays, beta 

particles and alpha particles (181)(182), and each has its own unique properties. 

 Gamma rays have been very popular in the rising field of theranostics, in which a drug 

has both therapeutic and diagnostic potential. Gamma emitting particles can be detected using 

Single Photon Emission Computed Tomography (SPECT) and used as an imaging tool. By 

selecting a gamma emitter as the radioisotope, the RIT is repurposed from a treatment to an 

imaging tool, and once administered can be used to detect and monitor sites of disease (183). 

Another type of radiation which can be used for monitoring and diagnostics is positron emission. 
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Positrons emitted by radioisotopes can be detected using Positron Emission Tomography (PET) 

to monitor and image a disease (184).   

 While gamma ray and positron emitting isotopes do little damage to tissues while acting 

as imaging tools, beta and alpha particle emitters are able to deliver tissue damaging radiation 

which is useful in the treatment of cancer. Beta particle emissions are short range and only travel 

short distances in tissues. Compared to alpha particles, beta particles do much less tissue damage 

which makes them ideal for RIT, where the cell death is intended to be extremely precise and not 

extending into potentially healthy tissues (185). Alpha particle emitters can also be used in RIT 

and have the advantage of having a longer range and affecting more tissue at a time, which can 

be advantageous in certain circumstances (186).  

 Even after the desired type of radiation has been selected, there are still many parameters 

to consider. An important factor which can greatly impact how an RIT behaves in the human 

body is that of the isotope half-life. This will determine how long the radioactive isotope remains 

in the body and could determine whether the therapy is effective, as well as how toxic it is. The 

half-lives of the radiometals currently being researched in RIT vary greatly based on the needs of 

the therapy (180)(Table 1.3), however in general, it is ideal to have a half-life of no more than a 

few days while still having an acceptable amount of time to produce the drug and administer it.  
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Table 1.3 Commonly Used Radioisotopes 

Isotope Radiation Type Half-Life (Hrs) 

Ga67 Gamma 78.3 

Tc99 Gamma 6.01 

In111m Gamma 67.4 

Sc44 Positron 3.9 

Mn52g Positron 132 

Cu64 Positron 12.7 

Ga68 Positron 1.13 

Y86 Positron 14.7 

Zr89 Positron 79.2 

Y90 Beta, Gamma 64.8 

Cu67 Beta, Gamma 62.4 

I131 Beta, Gamma 192.5 

Pb212 Beta 10.6 

At211 Alpha 7.2 

 

 The RIT model of therapy offers many benefits over other treatment options in oncology. 

Because it is a systemic radiation therapy the drug can treat sites of disease directly without 

irradiating healthy tissues which often happens with direct beam radiation therapy. Furthermore, 

its systemic nature means that all sites of disease can be treated at once, regardless of whether the 

sites of disease have been identified or not (187). RIT also has the potential to overcome the 

development of refractory disease due to inducing cell death through a non-specific mechanism 
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of proximity to radiation rather than inhibiting a specific metabolic pathway (181). It is well 

known that most tumors have a heterogenous microenvironment, and therefore, even a tumor 

with high expression of the RIT’s protein target is likely to have a few malignant cells which do 

not express the protein (188). These cells are still susceptible to death through RIT, as they only 

need to be in proximity to the therapy, rather than directly bound to it. In this way, the risk of 

refractory disease development as a result of treatment is expected to be decreased when 

compared to conventional therapies.   

 Another potential benefit of RIT is its potential to increase the antigenicity of tumor cells. 

The effects of radiation on peripheral cells which survive the radiation but experience enough 

exposure to induce mutational effects could lead to increased antigenicity of the cells, causing an 

immune response against them and further aiding in the treatment of the disease. RIT also 

promotes itself over other therapies by being a theranostic therapy. Using a gamma ray or 

positron emitting isotope can transform RIT from a therapy to a diagnostic compound and used 

to diagnose and monitor a patient. Finally, a benefit to using an RIT model of therapy is that it is 

not specific for a type of disease but can be used to treat any disease which overexpresses the 

protein target. Because the antibody component of RIT only binds to a cell surface protein and is 

not designed to interfere with any pathways that protein might be involved in, it has a broader 

scope of what diseases it could treat. For instance, while OSMR has a dual nature in cancer 

discussed in section 1.6, sometimes promoting cell growth and sometimes suppressing growth, it 

is still a viable target as the effects of receptor activation are inconsequential in this therapy; it 

must only be expressed on the cancer cells. Due to the conserved basic structure of all antibodies, 

it is also a potential strategy to alter the target of the monoclonal antibody with which the RIT is 
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composed of. This would require little alteration to the methods and should not cause any large 

changes to the results of treatment.   

 While RIT offers a new approach in which many of the challenges of cytotoxic therapy 

are circumvented, it too has its downfalls. One difficulty of RIT, as with all targeted therapies, is 

ensuring that the target is specific enough for effective reduction in malignancy without off-

target effects. Because protein expression varies from tumor to tumor and patient to patient, there 

is always the chance that a targeted therapy performs poorly in a subset of the population (189). 

The use of gamma ray or positron emitting isotopes in RIT provides a safeguard against the 

treatment of this subset and should prevent excessive toxicities (190). By being able to visualize 

how the drug is distributed in a patient prior to the administration of tissue damaging isotopes, 

the administration of RIT to patients who will respond poorly can be avoided.  

 Another challenge to RIT is the short half-life as a result of the radioactive isotopes along 

with the protein structure. The time available between production and administration is limited 

making the logistics of production challenging. However, a few FDA radioactive drug 

compounds, such as Xofigo (Radium223 dichloride)(191), Bexxar (Tositumomab with 

Iodine131)(192), and Zevalin (Ibritumomab tiuxetan Yttrium90)(193) have made their way into 

clinics, showing that this challenge can be overcome. 

 The production of biologic drugs presents its own set of challenges, from which RIT is 

not exempt. Not only is the compound less stable than a small molecule inhibitor would be, but it 

has the potential to induce an allergic reaction in the patient as well (194). While these factors 

present challenges which need to be taken into consideration, there are numerous biologic drugs 

in the market highlighting that that these obstacles are not insurmountable.  
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1.9 Copper Isotopes and Oxidative States 

 Copper is a naturally occurring metal with an atomic number of 29. Not only is it useful 

in many industrial pursuits, but it is also an essential metal for living organisms (195). There are 

29 isotopes of copper, Cu63 and Cu65 which are stable, and 27 other isotopes which are 

radioactive and less stable (196). While both stable isotopes of copper are found in nature, Cu63 

is more abundant, accounting for approximately 69% of naturally occurring copper (197). Of all 

27 radioisotopes of copper, 67Cu is the most stable having the longest half-life of approximately 

2½ days (61.8 hours) (198). This radioisotope was first discovered in 1948 by Goeckermann et 

al. who identified a number of new isotopes as a product of bismuth fusion (199). 67Cu gives off 

short-range beta emissions which are capable of causing tissue damage, making it an ideal 

radioisotope for use in the field of medicine.  

 Elemental copper can form different oxidation states which can affect its properties. The 

most commonly found oxidation states of copper are Cu(I) and Cu(II) (200). Cu(I) is most often 

found in the form of cuprous oxide (Cu2O) and the copper has an oxidation state of +1 (201). 

Other Cu(I) compounds exist as well, such as cuprous chloride (Cu2Cl2) and cuprous sulfide 

(Cu2S) but cuprous oxide is the most common form found naturally (202).  Cu(I) is more stable 

in a solid state than an aqueous state and in its pure form is insoluble in water (202)(200). Cu(II) 

has an oxidation state of +2 and is most commonly found as cupric oxide (Cu2O), although, as 

with Cu(I), other forms exist. Cu(II) is more stable in aqueous solutions and is the favored 

oxidation state of this metal (200).   

 The oxidation state of copper can greatly affect the way in which it will interact with 

other compounds. For instance, in the case of copper capture in the NOTA chelator Cu(II) is 

selected as it is preferred by the chelator and more stable in an aqueous solution making capture 
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easier. The pentadentate structure of 67Cu (II) in the NOTA chelator provides a stable complex 

which is unlikely to release the isotope (Figure 1.9). NOTA also prefers copper to other metals it 

may encounter in the body, making it unlikely to be replaced (203). The stability of this chelator-

metal complex is necessary as free Cu(II) can result in DNA damage (204). Furthermore, the 

release of a radioactive isotope into the body could be detrimental. The 67Cu provided by the 

Idaho Accelerator Center is Cu(II) in HCl.   

1.10 Hypothesis and Research Objectives 

 Given the foundation laid by the afore mentioned research, I developed the hypothesis 

that: Oncostatin M Receptor is a viable therapeutic target for radioimmune therapy in the 

treatment of synovial sarcoma. The data presented here shows my investigation into this 

hypothesis and may be broken down into three goals and specific aims. Firstly, we will 

determine the expression patterns of OSMR in our models both at the RNA and protein levels. 

We also confirm that OSMR expression is largely limited to SS tissue. Secondly, we aimed to 

design and synthesize a novel anti-OSMR RIT which was able to bind to OSMR both in vitro 

and in vivo, as well as able to capture radioactive isotopes. Finally, we aimed to evaluate the 

pharmacokinetics of this novel RIT and investigate its residency time within the metabolic 

organs as well as how well it is targeted to sites of disease. We concur that these preliminary 

findings support our hypothesis, and that further research is indicated for this project. 

  

   

 

 



 38 
 

 

 

 
Figure 1.1 Timeline of Major Oncology Discoveries (Bottom) Alongside the Progression of 

SS Treatment (Top). Despite the major discoveries which occurred since 1959 in the field of 

oncology, including targeted therapy, whole genome sequencing (2003) and the advent of 

immunotherapy, no advancements have been made in the treatment of SS.  
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Figure 1.2 The Role of SS18 in the BAF Complex. Wild type SS18 associates with BAF47 and 

the BAF complex does not interfere with PRC2, allowing it to suppress gene expression. When 

the SS18-SSX fusion protein is present, it displaces BAF47 and retargets the BAF complex to 

disrupt PRC2 gene suppression, resulting in activated gene expression. 
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Figure 1.3 Mechanism of SS18-SSX Fusion Proposed by Li et al. Inclusion of  the SS18-SSX 

fusion protein results in degradation of the cBAF complex. This results in altered ratios of BAF 

complexes resulting in altered epigenetic regulation. Jinxiu Li, Timothy S. Mulvihill, Li Li, Jared J. 

Barrott, Mary L. Nelson, Lena Wagner, Ian C. Lock, Amir Pozner, Sydney Lynn Lambert, Benjamin B. Ozenberger, 

Michael B. Ward, Allie H. Grossmann, Ting Liu, Ana Banito, Bradley R. Cairns, Kevin B. Jones; A Role for 

SMARCB1 in Synovial Sarcomagenesis Reveals That SS18–SSX Induces Canonical BAF Destruction. Cancer 

Discov 1 October 2021; 11 (10): 2620–2637. https://doi.org/10.1158/2159-8290.CD-20-1219 
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Figure 1.4 Diagram of Members of the RTK Family and the Results of Signaling.  

Reactome | Signaling by Receptor Tyrosine Kinases [Internet]. [cited 2022 Feb 22]. Available 

from: https://reactome.org/content/detail/R-HSA-9006934 
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Figure 1.5 The IL-6 Receptor Family and Their Ligands. With the exception of IL-31, all of 

the receptor family members contain the gp130 subunit. Both OSMR and IL-31 contain the 

OSMRβ subunit. Image created with Biorender. 
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Figure 1.6 The OSMR Pathway Leading to Angiogenesis, Migration and Invasion. Caffarel 

MM, Coleman N. Oncostatin M receptor is a novel therapeutic target in cervical squamous cell 

carcinoma. The Journal of Pathology. 2014;232(4):386–90. 
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Figure 1.7 A Metestatic Mouse Model for Synovial Sarcoma. The SS18-SSX fusion gene is 

inserted into the genome, along with a GFP gene. pTEN is removed from the genome. Image 

created with Biorender. 
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Figure 1.8 Illustration of Radioimmune Therapy Mechanism. The antibody targets proteins 

specific to cancer cells. Once bound, the attached radioligand can deliver its radioactive payload 

to the cell, causing DNA damage and inducing cell death. Image created with Biorender. 
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Figure 1.9 The Pentadentate Structure of 67Cu(II) in the NOTA Chelator. (a) 2D chemical 

structure of Cu(II) bound to the NOTA chelator. Ab represents the antibody. (b) A 3D rendering 

of Cu(II) chelated by NOTA. Only the chelating structure of the bifunctional chelator is depicted. 

Copper is depicted as dark blue, Nitrogen is light blue, Oxygen is red and Carbon is black. 

Carbon-bound hydrogens have been omitted for clarity. Source: (a) Witney TH, Blower PJ. The chemical 

tool-kit for molecular imaging with radionuclides in the age of targeted and immune therapy. Cancer Imaging. 2021 

Jan 30;21(1):18. (b) Kubíček V, Böhmová Z, Ševčíková R, Vaněk J, Lubal P, Poláková Z, et al. NOTA Complexes 

with Copper(II) and Divalent Metal Ions: Kinetic and Thermodynamic Studies. Inorg Chem. 2018 Mar 

19;57(6):3061–72. 
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2.  Oncostatin M Receptor as a Viable Target for Therapy in Synovial Sarcoma 

2.1 Introduction 

 Synovial sarcoma has remained an extremely difficult disease to treat with limited 

therapy options. One factor which has contributed to this difficulty is the low tumor mutational 

burden of SS with a median TMB of 1.7 mutations/Mb (205). This low rate of genetic mutations 

leads to a lack of aberrant protein expression within the cell or on the cell surface. Because of 

this, there is little to differentiate between malignant and healthy host cells causing the 

development of targeted therapy to be difficult. Inflammatory pathways have been identified as 

being upregulated in some SS’s. In order to identify potential protein targets for therapy in SS 

tissue, RNAseq analysis was performed on the SS tissues from the mouse model previously 

discussed in Chapter 1.7. Particular attention was paid to the data of inflammatory pathways and 

OSMR was identified as a potential target for therapy. 

 

2.2 Methods 

2.2.1 RNAseq Analysis 

Data was acquired using accession number GSE81476. Methods used are previously 

described in Barrott el al., PMID: 27956588 (149). Statistical analysis was performed using a 

one-way ANOVA test followed by a 2-tailed T-test.  

 

2.2.2 Experimental Animals 

All procedures were approved by the Idaho State University Institutional Animal Care 

and Use Committee protocol 775. The mouse models used in these experiments were the 

Rosa26-LSL-SSM2/SSM2 (Previously described Halder el al., PMID: 17418413 (206), which 
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contains the SS18-SSX2 fusion oncogene and is termed non-metastatic, and the Rosa26-LSL-

SS18-SSX2/SS18-SSX2;Ptenlox5/lox5 (Previously described Barrott el al., PMID: 27956588 

(149)), which contains the SS18-SSX2 fusion oncogene as well as a TATcre mediated Pten 

removal mechanism and is termed the metastatic model. Mice were bred and weaned at 3 weeks 

of age. At one month, mice received a subcutaneous 10 uL injection of 50 uM TATcre protein 

(Excellgen Cat.# EG-1001) into the left hind limb to initiate sarcomagensis. The site of injection 

was sterilized topically with 70% ethanol prior to injection to reduce the risk of infection. Mice 

were monitored for tumor development and typically developed tumors between 3-4 months. 

Mice were monitored for signs of distress, ulceration or difficulty ambulating secondary to tumor 

growth and euthanasia was employed in these cases. Both male and female mice were used in all 

studies.  

 

2.2.3 RTqPCR 

 Reverse transcriptase quantitative Polymerase Chain Reaction (RTqPCR) was performed 

on samples obtained from both metastatic and non-metastatic models. RNA was extracted from 

samples using a Quick-RNATM MiniPrep Plus kit (Zymo Research Cat.# R1058) and cDNA 

was made using Qscript cDNA Supermix (Quantabio Cat.# 95048). cDNA was amplified and 

measured using the Eppendorf Mastercycler Realplex2. Data was normalized using a delta CT 

calculation and analyzed using a one-way ANOVA followed by a 2-tailed t-test. 

  

2.2.4 IHC 

 Immunohistochemistry (IHC) was performed using the metastatic mouse model 

(described above) Tissue was stained using a rabbit anti-mouse polyclonal antibody targeting 
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Oncostatin M Receptor (OSMR) (ABclonal Cat.# A6681). All other reagents were obtained from 

the Pierce Peroxidase Detection Kit (Thermofisher Cat.# 36000) and manufacturers protocol was 

followed. Briefly, a goat anti-rabbit secondary antibody was applied to the tissues, followed by 

an anti-goat strep-HRP tertiary antibody. Samples were counterstained with hematoxylin, 

dehydrated and mounted. Slides were analyzed through a Leica DM6B widefield microscope and 

imaged with the attached Leica DFC450-C digital camera. 

 

2.2.5 Western Blotting 

 Western blotting was performed using both the metastatic and non-metastatic mouse 

models (described above). Roughly 50 mg of tumor tissue was obtained from each mouse. 

Samples were digested enzymatically with RIPA buffer (0.15 M NaCl, 0.05 M tris-cl, 1 M NP-

40, 0.5 M Sodium Deoxycholate, 0.1 M SDS) and homogenized mechanically. Protein 

concentration of each sample was measured using the Qubit 3 Fluorometer (Thermofisher 

Invitrogen Cat.# Q3321) and samples were prepared by loading 430 ug of protein per sample. 

This high protein concentration was used due to the low concentration of OSMR per sample and 

430 ug was selected based on the sample with the lowest concentration. Samples were run on a 

Novex 4-12% Tris-glycine gel (Thermofisher Cat.# XP04120BOX) at 160 volts until proper 

separation of bands had been achieved. Next, the samples were transferred from the gel to an 

Immun-Blot® LF PVDF membrane (Bio-Rad Cat.# 162-0263) and processed for imaging using 

an anti-OSMR rabbit polyclonal antibody (ABclonal Cat.# A6681) as a primary antibody and 

fluorescently labelled using an anti-rabbit IgG-CFL 680 (Santa Cruz Biotechnology Cat.# sc-

516252) as a secondary antibody. Imaging was performed on an Azure c600 system and the 

OSMR fluorescent label was excited at 790 nM and was visible at 800 nM appearing red in the 
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image. The GAPDH fluorescent label was excited at 680 nM and was visible at 700 nM 

appearing green in the image.  

 

2.3 Results 

Because of previous evidence that SS exhibits an inflammatory profile (149), 

inflammatory pathways were examined for upregulated targets through RNAseq analysis. OSMR 

was identified as being overexpressed and was considered an ideal target due to it being a 

membrane bound, extracellular protein as well as its specificity to malignant tissue. It was 

observed that OSMR was expressed at high levels in metastatic SS tissue whereas there was no 

expression in the normal muscle tissue (Figure 2.1 a). Furthermore, the metastatic SS mouse 

model expressed OSMR at a 22.4-fold increase over the non-metastatic model with a P-value of 

0.005, suggesting that an OSMR targeted treatment might be more effective against aggressive 

tumor phenotypes. 

In order to confirm the aberrant expression of OSMR in tumor tissue, we first performed 

RTqPCR. Using both a metastatic and a non-metastatic mouse model, 3 mice from each group 

were selected at random and the RNA expression levels were measured. A sample of non-

malignant muscle tissue was used as a control. Interestingly, it was found that the expression of 

OSMR varied greatly between samples seemingly independent of metastatic status (Figure 2.1 

b). Further repetition of this experiment with other mice showed the same pattern of great 

variation in OSMR expression independent of metastatic status. We found no statistically 

significant difference in OSMR expression between the metastatic and non-metastatic groups. 

These data cause us to conclude that in our mouse model, OSMR expression is independent of 

metastatic status. Both male and female mice were used in these studies. 
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To evaluate the potential for off-target toxicities of an anti-OSMR treatment, we also 

measured the OSMR expression of various organs. While the brain, liver and kidneys had 

minimal OSMR expression, it was noted that there are low levels of OSMR expression in the 

heart (Figure 2.1 b). However, this expression is much lower than that of the OSMR-high tumors 

and, while the risks of cardiotoxicity induced by an anti-OSMR drug should be investigated, we 

believe that the risk is minimal to patients with a high OSMR expression tumor profile.  

To further explore these expression patterns, western blotting was performed to measure 

the presence of OSMR protein in these same samples (Figure 2.2 a). Three bands of the OSMR 

subunit were detected which correlate to the OSMR receptor at 135 kda which is composed of 

the OSMRβ subunit and a gp130 subunit, the IL-31 receptor at 100 kda which is composed of 

the OSMRβ subunit and the IL-31 RA subunit, and the OSMRβ subunit alone at 75 kDa. As with 

the RTqPCR data, the OSMR expression appeared to be independent of metastatic status as both 

sample groups had great variation in OSMR expression. Furthermore, the protein expression 

levels coincided with the RNA expression levels, further confirming the hypothesis that the 

RNAseq data on randomly selected mice which showed a correlation between OSMR expression 

and metastatic status. However, while the tumor samples had varying degrees of OSMR 

expression, the normal muscle tissue showed no expression indicating that OSMR is a viable 

target for therapy regardless of metastatic status. This data also highlights the difficulty in 

predicting which patients will respond well to an anti-OSMR therapy, as aggressive tumor type 

is not an indication of OSMR expression. 

Immunohistochemistry staining for OSMR protein was also performed in both primary tumor 

samples and lung metastatic samples (Figure 2.2 b). We found that OSMR is expressed in both 

primary and metastatic sites of disease and is found distributed throughout the malignancy. This 
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indicates that an anti-OSMR therapy would be effective at controlling tumor growth at both 

primary and metastatic sites.   

2.4 Discussion 

Synovial sarcoma remains a disease with few treatment options and even fewer aberrant 

proteins which a therapy could be developed to target. Previous research has shown that SS 

exhibits an inflammatory profile (149). Because inflammation is a hallmark of cancer (207) and 

has been associated with sarcomagensis (208), these pathways were investigated through 

RNAseq analysis. Of interest in this analysis was the overexpression of OSMR, a receptor of the 

IL-6 family which is associated with inflammation and cell growth (127). This RNAseq data 

showed a statistically significant correlation between OSMR expression and metastasis in SS 

(Figure 2.1 a), where metastatic samples showed high OSMR expression while non-metastatic 

samples and muscle tissue showed no OSMR expression. Interestingly, when OSMR expression 

was measured by RTqPCR, this relationship was not seen and no statistical significance was 

observed, and OSMR expression was found to be independent of metastatic status while still 

being unexpressed in the muscle tissue (Figure 2.1 b).  We hypothesize that this discrepancy is 

caused by a slight variation in the mouse models used. While the RNAseq analysis was 

performed on a mouse model which was heterozygous for the SS18-SSX2 mutation, the mouse 

model used in the RTqPCR data was homozygous for this mutation. It is possible that this 

difference causes an increase in the inflammatory profile of the cancer and results in OSMR 

overexpression in less aggressive tumors as well as the more aggressive tumors which 

metastasize. While the heterozygous model only exhibits OSMR expression in the most 

aggressive of tumors. Alternatively, we hypothesize that this is due to a sampling bias in which 
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mice with high OSMR expression were selected from the metastatic group and mice with low 

OSMR expression were selected from the non-metastatic group.  

To evaluate what off-target effects might be expected from targeting OSMR and which 

organs might be affected, we performed RTqPCR on the major organs of the mice (Figure 2.1 b). 

We found that the brain, liver, kidney, and spleen showed no OSMR expression suggesting that 

they would have good tolerance to an anti-OSMR treatment. While the heart showed low levels 

of OSMR expression (Figure 2.1 b), we feel that these levels are minimal compared to the levels 

seen expressed in the tumor. While the potential for cardiotoxicities should be explored further, 

we expect to find that an anti-OSMR therapy will have minimal effect on the heart. Furthermore, 

the current standard of care for synovial sarcoma is treatment with doxorubicin (209), which 

causes significant cardiotoxicities and the amount a patient can receive over their life time must 

be limited due to these toxicities (210). Because of this, a novel therapy which has the potential 

for cardiotoxicities may still be an advancement in this field.  

To confirm the presence of OSMR protein in tumor samples we employed the use of 

Western blotting. OSMR was found to be present in SS while absent in muscle tissue, further 

confirming that OSMR is an ideal target for therapy. OSMR was detected in 3 distinct bands by 

Western blot which correlated to 75 kda, 100 kda and 135 kda. The smallest band at 75 kda 

corresponds to the OSMRβ subunit alone, while the 100 kda and 135 kda bands correspond to 

the OSMRβ subunit as part of the IL-31 and OSMR receptors respectively. The presence of 

OSMRβ in IL-31 has the potential to lead to off-target effects as an anti-OSMR therapy could 

bind to IL-31 as well as OSMR. However, research has shown that OSMRβ knock-out mice, 

while having abnormal blood count values, are viable and without significant abnormalities (87). 
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Because of this we expect that, while an anti-OSMR therapy may affect the IL-31 receptor, the 

toxicities will be minimal and acceptable.  

Immunohistochemistry was performed on both primary and metastatic sites of disease 

and it was found that OSMR is expressed throughout the malignancy in both primary and 

secondary sites of disease. This combined with the overexpression of OSMR in tumor tissue 

compared to muscle tissue, and the low expression of OSMR in other major organs lead us to 

believe that OSMR is an ideal target for therapy. We also conclude that metastatic status is not 

an indicator of OSMR expression, as this receptor can be expressed in both metastatic and non-

metastatic SS.  
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Figure 2.1 OSMR Expression is Independent of Metastatic Status. (a) RNAseq data of 

metastatic and non-metastatic tumors as well as normal muscle tissue shows a correlation 

between metastatic status and OSMR expression. * P-value < 0.05. (b) RTqPCR shows no such 

correlation and that both states can have high or low OSMR expression with no statistical 

significance found when comparing the two. Low expression of OSMR was also noted in the 

heart. McCollum S, Kalivas A, Kirkham M, Kunz K, Okojie J, Pavek A, et al. Oncostatin M Receptor as a 

Therapeutic Target for Radioimmune Therapy in Synovial Sarcoma. Pharmaceuticals. 2022 Jun;15(6):650. 
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Figure 2.2 Protein expression of OSMR. (a) Western blot using immunofluorescent tags. 

OSMR is in red and control GAPDH is in green. Three bands were detected corresponding to the 

OSMR receptor (135 kda), IL-31 receptor (100 kda), and the OSMR subunit alone (75 kda). 

Samples 1 and 2 are metastatic tumor samples, sample 3 is normal muscle tissue. (b) 

Immunohistochemistry staining of lung metastasis (left) and primary tumor (right). OSMR 

expression stains brown in tissue samples. McCollum S, Kalivas A, Kirkham M, Kunz K, Okojie J, Pavek 

A, et al. Oncostatin M Receptor as a Therapeutic Target for Radioimmune Therapy in Synovial Sarcoma. 

Pharmaceuticals. 2022 Jun;15(6):650. 
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3. Synthesis of a Novel Radioimmune Therapy Targeting Oncostatin M Receptor 

3.1 Introduction 

 Oncostatin M Receptor (OSMR) has been identified as being overexpressed in some 

synovial sarcomas. This overexpression is unique as SS has very few cell surface proteins which 

differentiate it from normal tissue due to its low mutational burden (13). Having identified a 

unique protein target which could be targeted through therapy, we began the synthesis of a novel 

radioimmune therapy (RIT). This model of therapy was chosen due the reduced potential for 

refractory disease, as well as the drug models’ ability to act as a theranostic drug, having both 

therapeutic and diagnostic capabilities. The efficacy, stability, and binding ability of this novel 

drug were evaluated, along with the ability of this RIT to capture radioactive copper isotopes. 

Our results show that this drug model has potential to be an effective and novel theranostic 

pharmaceutical for use in OSMR expressing SS.  

3.2 Methods 

3.2.1 Antibody-Drug Conjugate and Antibody-Fluorescence Conjugate Synthesis 

 3.2.1.1 Antibody Purification 

The ADC was made using a monoclonal anti-OSMR antibody (Sino Biological Cat.# 

11226-R002). First, the antibodies were purified to eliminate the presence of any ions or 

contaminants. This was done using a Slide-A-LyzerTM dialysis cassette (ThermoFisher Cat.# 

66373). Briefly, EDTA was added to the antibody sample and placed in the cassette. The cassette 

was then incubated in Sodium Citrate buffer 0.1 M with a pH of 6.5. The sample was removed 
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and concentrated using a Vivaspin 500 protein concentrator (Sartorius Cat.# VS0191) and 

centrifuged at 10,000 g and 4°C for 1 hour. Once protein was concentrated the concentration was 

measured using the Qubit 3 Fluorometer (Thermofisher 380 Cat.# Q33216). 

 

3.2.1.2 Chelator Conjugation 

After the anti-OSMR monoclonal antibody had been purified, it was incubated at room 

temperature in the presence of a 40 molar excess of NOTA chelator (Macrocyclics Cat.# B-605) 

and the reaction allowed to proceed for 2 hours. Then the reaction was moved to 4° C and 

allowed to incubate overnight. Once the conjugation was complete, the excess chelator was 

removed using a Vivaspin 500 protein concentrator (Sartorius Cat.# VS0191). 

 

3.2.1.3 AFC Preparation 

The antibody was purified as described above. Antibody-Fluorescent Conjugate (AFC) 

was prepared using a Zip Alexa Fluor Rapid Antibody Labelling Kit (Invitrogen Cat. Z11235) 

and manufacturers protocol was followed. Briefly, a 1mg/mL solution of an anti-OSMR 

monoclonal antibody (Sino Biological Cat.# 11226-R002) was added to a 1 M solution of 

Sodium Bicarbonate containing the fluorescent dye and incubated at room temperature for 15 

minutes. 

 

3.2.2 Sandwich ELISA Binding Assay 

 A sandwich ELISA was performed using a Human OSMR beta ELISA kit (Novus 

Biologics Cat.# NBP2-68083). Plate was first treated with human OSMR beta protein by adding 

100 uL of 10ng/mL. Plate was incubated at 37° Celsius for 90 minutes. Liquid was aspirated 
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from plate and treated with AFC 0.15 μg /uL, pure OSMR antibody 0.15 μg /uL, or PBS as a 

control. Plate was incubated for 1 hour and liquid aspirated. Biotinylated antibody was applied to 

wells according to manufacturer’s protocol and incubated at 37° Celsius for 1 hour. Liquid was 

removed and plates were washed with wash buffer according to manufacturer’s protocol. HRP 

solution was applied to each well and incubated for 30 minutes at 37° Celsius. Plates were 

washed and substrate reagent was applied and incubated for 15 minutes at 37° Celsius and 

protected from light. Stop solution was added to each well prior to measurement on a Varioskan 

LUX multimode microplate reader (Thermofisher Cat.# VL0000D0). Statistical analysis was 

performed using a one-way ANOVA test. 

 

3.2.3 Thermal Shift Stability Assay 

 Unconjugated monoclonal antibody and the conjugated ADC were prepared in sodium 

citrate buffer at 25mM, 50mM, 75mM and 100mM. Each concentration of sodium citrate was 

brought to a pH of either 6.5, 7.0, 7.5 or 8.0. Each sample condition was run in triplicate in a 96 

well plate and included SYPRO Orange dye (Sigma-Aldrich Cat.# S5692) at a concentration of 

5x. Plate was analyzed using an Eppendorf Mastercycler Realplex2 where the temperature was 

steadily increased from 30°C to 95°C over the course of 20 minutes. Results were analyzed using 

a one-way ANOVA test.  

 

3.2.4 Copper67 Isotope Capture 

67Cu was provided by the Idaho Accelerator Center in HCl. The isotope was added to the 

immunoconjugate in sodium citrate buffer and incubated at room temperature for 20 minutes to 

allow for capture.  
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3.2.5 Thin Layer Chromatography 

 Thin layer chromatography was performed using instant thin layer chromatography plates 

(iTLC) to separate the compounds (Agilent Cat.# SGI0001) Briefly, the sample was placed at the 

origin and allowed to dry for roughly 5 minutes. Then the plate was placed in buffer and allowed 

to develop. Once finished, the plate was cut into sections and each section measured for 

radioactivity using a Ludlum 3030 sample counter. For definition experiments, the plate was cut 

into three pieces (top, middle and bottom) and the activity found on the middle section measured 

to determine the level of definition. For copper capture experiments, the plate was cut into two 

pieces and the ratio of activity on the bottom vs the top was compared. Background radiation 

measurements were performed approximately every 10 minutes. 

3.3 Results 

 In order to achieve high specificity for the treatment target and eliminate side effects 

caused by off-target effects, an anti-OSMR monoclonal antibody was selected as the main 

structure of this RIT therapy (Figure 3.1). Next, the literature regarding multiple chelators was 

analyzed to identify which would have the best stability, binding ability and copper capture rate. 

Based on research comparing bifunctional chelators performed by Cooper et al (177), we 

considered multiple chelators including p-SCN-Bn-DOTA, p-SCN-Bn-NOTA and sar-CO2H. 

However, we ultimately decided to move forward with the p-SCN-Bn-NOTA chelator, referred 

to hereafter as NOTA, due to its high serum stability, efficient radio-labeling and ideal 

metabolism (Figure 3.2 a). Due to the added challenge of performing pre-clinical studies with a 

radioactive agent, we also developed an Antibody-Fluorescent Conjugate (AFC), in which the 
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chelator was replaced with the fluorescent molecule, Alexa Fluor 647, which could be detected 

and used as a measurement of the presence of the conjugate in a safer manner (Figure 3.2 b). 

This fluorophore binds to the same residues as NOTA and should mimic the properties of the 

conjugate without being radioactive and is measurable through fluorescent excitation. 

 A sandwich ELISA binding assay was performed to assess the ability of the conjugate to 

bind to its target OSMR receptor post conjugation, and to ensure that the addition of a moiety to 

the lysine residues of the antibody did not interfere with binding. To do this, the AFC was 

applied to a sandwich ELISA containing OSMR protein and binding was measured through 

fluorescent excitation. We found that the AFC was capable of binding to the protein showing that 

the attachment of groups to the lysine residues of this antibody does not interfere with the 

binding capabilities of the drug (Figure 3.3). 

 Next the stability of the ADC was tested through a thermal-shift assay. This assay was 

performed in the absence of radioactive materials due to the 67Cu limited effects on the stability 

of the antibody. Samples of the ADC were placed in sodium citrate buffer at varying 

concentrations and pH’s to determine which conditions provide the most stable environment. 

The rate of denaturation of the proteins was measured through detection of Sypro Orange 

fluorescent dye. It was found that the ADC was most stable in sodium citrate at a concentration 

of 100 mM and a pH of 6.5; (Figure 3.4 a), however it was also found to be stable at a variety of 

different conditions. Results were analyzed using a one-way ANOVA test and no statistically 

significant difference was observed between the ADC and the mAb. We determined that the 

conjugation of the NOTA chelator did not greatly affect the stability of the antibody, with only a 

minimal decrease in the stability compared to that of the native antibody (Figure 3.4 b). 
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 To confirm the ability of the ADC to efficiently capture Copper67 ions, thin layer 

chromatography was utilized. After allowing the ADC to associate and capture copper isotopes, 

samples were placed on iTLC plates, a glass microfiber paper with silica gel. After elution of the 

samples, the plates were cut in half and the radioactivity of the free copper at the top of the plate 

was compared with the activity of the captured copper at the bottom of the plate (Figure 3.5 a). 

Because the literature is variable in which buffers would be best for such an experiment, multiple 

buffers were tested, and the definition achieved on the plate under different conditions was 

measured. We found that a Sodium Citrate buffer provided the best results (Figure 3.5 b).We 

found that the ADC was able to capture 67Cu somewhat efficiently, and that the capture rate was 

concentration dependent requiring an excess of 67Cu (Figure 3.6). 

3.4 Discussion 

 As described in section 2, the cell surface receptor protein OSMR has been identified as 

being overexpressed in some SS cases and has been shown to be an ideal target for therapy. We 

elected to target this protein with an RIT model of therapy. An emerging field in biological 

pharmaceuticals, RIT uses antibodies to direct radiation directly to the site of disease (211)(176). 

After systemic injection of an RIT, the drug then circulates throughout the body finding all sites 

where the antibody can bind. This means that the drug will not only have high specificity for its 

target but will also be able to find all sites of metastasis (187). Once bound to the malignant 

cells, the radiation can kill the bound cell as well as the surrounding cells, regardless of their 

epitope expression (212). Theoretically this will result in lower rates of drug resistance and 

refractory disease. Furthermore, the effects of radiation on peripheral cells which survive the 
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radiation but experience enough exposure to induce mutational effects could lead to increased 

antigenicity of the cells, causing an immune response against them (213).  

We have developed an RIT model therapy which targets OSMR using an anti-OSMR 

monoclonal antibody conjugated to the bifunctional chelator NOTA. This chelator was selected 

after extensive review of the literature, and was ultimately selected for its stability, ease of 

conjugation, and high isotope capture efficiency (177). NOTA has one of the highest serum 

stabilities of all the bifunctional chelators, and its radiolabeling efficiency has been found to be 

approximately 99%, which is typical of bifunctional chelators (177). NOTA conjugates to lysine 

residues on antibodies through a thiourea linkage, and no catalyst is needed to drive this reaction. 

Instead, only a molar excess of chelator to antibody is required, making this reaction simple and 

cost effective.  

Within the drug model, this chelator is used to capture the radioisotope Copper67, which 

is a beta radiation emitting isotope capable of damaging tissues which are in close proximity. 

Copper67 was chosen for many reasons; a beta emitter was desired for its short-range radiation 

effects, as the therapy should only affect the tissues it is in direct proximity to in order to avoid 

off-target effects. It also has an ideal half-life of approximately two and a half days. This allows 

sufficient time for the isotope to be manufactured, incorporated into the RIT drug model and 

administered to the patient, while still being short enough to not have to strong of an effect as to 

cause toxicities. Copper67, while being an ideal isotope for RIT, is not commonly produced or 

easily obtained. We have the unique opportunity and advantage of collaborating the Idaho 

Accelerator Center which is the only facility in the world to currently produce Copper67 isotopes. 

This collaboration provides us with advantageous access to resources many do not have, and we 

chose to take advantage of this opportunity to develop a novel therapy.   
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In addition to the RIT, we also elected to develop and antibody-fluorescence conjugate 

(AFC). This AFC uses a fluorescence moiety which also binds to the lysine residues of the 

antibody, and so has the same binding sites as the NOTA chelator. Thus, the AFC has similar 

properties to the RIT, however, does not contain any radioactive components. This improves the 

safety when studying this novel drug model where the radioactive components are not necessary. 

It also aids in the visualization of drug distribution as the fluorescence moiety is visible with nIR.  

Because additional moieties had been conjugated to the anti-OSMR monoclonal 

antibody, the binding ability of the ADC was tested through a sandwich ELISA binding assay to 

ensure that the additional groups were not interfering with the antibodies’ ability to bind to 

OSMR. Through use of the AFC, we were able to show that this drug is able to bind to OSMR 

with the additional moieties (Figure 3.3). A one-way ANOVA test was performed and a p-value 

of < 0.05 was observed. This suggests that the drug will be able to bind efficiently to its target in 

vivo and reduce the potential for off-target effects.  

The stability of the ADC was also evaluated and compared to the antibody through the 

use of a thermal shift assay. The drug was tested under multiple conditions, and it was 

determined that is was most stable in Sodium citrate buffer at a concentration of 100 mM at a pH 

of 6.5 (Figure 3.4 a). When compared to the stability of the naked antibody, no statistically 

significant difference was observed and the antibody-chelator conjugate was stable up to a 

temperature of 75° Celsius which is sufficient for therapeutic use (Figure 3.4 b). This data 

indicates that the RIT will be stable in vivo and that the chelator will not disassociate from the 

antibody after administration.   

Finally, we evaluated the ability of this novel RIT to capture isotopes efficiently. 

Through collaboration with the Idaho Accelerator Center, we first worked to develop an assay 
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which could test this quickly and cost-effectively. Thin layer chromatography (TLC) was 

selected as the RIT could be easily separated from the free, uncaptured Copper67 isotopes (Figure 

3.5 a). Because the RIT structure is so large, when placed at the origin on the TLC plate, it is 

unable to travel up the plate with the solvent front. Therefore, any radioactivity observed at the 

origin of the plate can be attributed to isotopes which are captured by the conjugated NOTA 

chelator, while the free and uncaptured copper isotopes are small enough to move with the 

solvent front and would be detected at the top of the plate.  

Because there is currently no literature which describe methods similar to these which we 

could reference, we tested multiple buffer types using this method (Figure 3.5 b). We aimed to 

determine which buffer would provide the best definition on the plate with little radioactive 

material being seen in the middle of the plate, between the origin and the solvent front. Of the 

buffers tested, we found that sodium citrate yielded the best plate definition and used this buffer 

moving forward.  

Using these methods, the percentage of Copper67 isotopes captured by the RIT was 

measured (Figure 3.6). Our data shows that the RIT did not have efficient copper capture until an 

excess of 15 times more copper as antibody. This data is not in line with what is seen in the 

literature with others reporting much higher rates of capture (177)(214). We plan to revisit this 

and hope to improve our capture rate in the future.  

One hypothesis for why our capture rate is decreased is that the RIT used in those 

experiments had degraded. Having a biologic protein component in the anti-OSMR antibody 

results in the possibility for the drug to degrade if not stored at optimal temperatures. Further 

supporting this hypothesis is LC-MS data of the RIT run by the University of Arizona, which 

indicated that the antibody had denatured into smaller fragments (data not shown). To combat 
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this in the future, thermal shift assays will be performed on each batch of new RIT synthesized to 

ensure that the drug is intact.  

 These results suggest that an anti-OSMR RIT can not only be successfully synthesized, 

being both stable and capable of Copper67 capture, but will be able to treat SS as a systemic 

therapy. We feel that this model of therapy is beneficial for those with few treatment options and 

is ideal for treating tumors with heterogenous mutations as RIT can induce cell death in cells 

through a mechanism of proximity rather than altering a metabolic pathway. Further research is 

required to optimize the synthesis of this therapy; however, the promise of these results indicate 

the need to continue this research.  
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Figure 3.1 Illustration of Radioimmune Therapy Drug Model. An anti-OSMR monoclonal 

antibody conjugated to Copper67 captured by the NOTA chelator is shown bound to the OSMR 

protein allowing radiation from Copper67 to kill the sarcoma cells. Image created with Biorender 
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Figure 3.2 Schematic of Radioimmune Therapy. (a) Chemical structure of p-SCN-Bn-NOTA. 

(b) Illustration of the Radioimmune Therapy (RIT) and Antibody-Fluorescent Conjugate (AFC). 

Images created with Biorender. 
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Figure 3.3 Sandwich ELISA Binding Assay. Relative fluorescence of the AFC, monoclonal 

antibody and chelator measured by sandwich ELISA. * P-Value < 0.05. McCollum S, Kalivas A, 

Kirkham M, Kunz K, Okojie J, Pavek A, et al. Oncostatin M Receptor as a Therapeutic Target for Radioimmune 

Therapy in Synovial Sarcoma. Pharmaceuticals. 2022 Jun;15(6):650. 
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Figure 3.4 Stability of ADC Under Different Conditions. (a) Raw data from thermal shift 

assay graphing the denaturation of the antibodies as temperature increases. (b) Melting 

temperature of the RIT in various conditions, the conjugate was found to be stable under various 

conditions with no statistical significance noted between buffer concentrations or pH. (c) Change 

in melting temperature of the RIT as compared to the unconjugated monoclonal antibody no 

statistical significance was observed when comparing the unconjugated antibody to the ADC. 

McCollum S, Kalivas A, Kirkham M, Kunz K, Okojie J, Pavek A, et al. Oncostatin M Receptor as a Therapeutic 

Target for Radioimmune Therapy in Synovial Sarcoma. Pharmaceuticals. 2022 Jun;15(6):650. 
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Figure 3.5 Copper Capture Measurement Experimental Design Using Thin Layer 

Chromatography. (a) Illustration of how TLC tests were performed. (b) Results of testing 

multiple buffer types for best definition achieved on TLC plate. Best definition was measured as 

the conditions with the least amount of radioactivity in the middle of the TLC plate. McCollum S, 

Kalivas A, Kirkham M, Kunz K, Okojie J, Pavek A, et al. Oncostatin M Receptor as a Therapeutic Target for 

Radioimmune Therapy in Synovial Sarcoma. Pharmaceuticals. 2022 Jun;15(6):650. 
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Figure 3.6 Copper Capture Results. Graph showing percentage of total copper captured as 

ratio of Copper67 to monoclonal antibody increases. McCollum S, Kalivas A, Kirkham M, Kunz K, 

Okojie J, Pavek A, et al. Oncostatin M Receptor as a Therapeutic Target for Radioimmune Therapy in Synovial 

Sarcoma. Pharmaceuticals. 2022 Jun;15(6):650. 
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4. Evaluation of the Pharmacokinetics and Pharmacodynamics of the Novel RIT  

4.1 Introduction 

 Radioimmune therapy is a form of systemic radiation therapy which has been gaining 

interest in recent years. In the previous chapter, we established that an anti-OSMR RIT can be 

synthesized effectively and is stable and capable of isotope capture. Having successfully 

constructed this therapy, we evaluated the ability of this drug to bind to OSMR in vitro as well as 

the pharmacokinetics of this RIT in vivo using SS mouse models. To reduce the risk of radiation 

exposure, some experiments were carried out with the AFC described in section 3. We found that 

this drug is well targeted to sites of disease, even being observed in previously unknown sites of 

metastasis. We believe that this form of therapy has great potential for treating SS and may 

provide another option of therapy for patients with recurrent disease.  

4.2 Methods 

4.2.1 Cell Cultures 

Cell cultures were maintained using an ThermoFisher Forma™Series II Water-Jacketed 

CO2 Incubator (ThermoFisher Cat.# 3130). Cultures were monitored daily and passaged when 

cells reached 80% confluency. Passaging was performed using a Labconco Purifer Class II 

Safety Cabinet (Labconco Cat.# 36209-04) and 1-2 million cells were transferred to a new 

culture dish to maintain the cell line. DMEM media with 10% Fetal Bovine Serum and 1% 

Penecillin-Streptomycin was used.  
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4.2.2 In Vitro AFC Assay 

 Cells were plated in a 96-well plate at a concentration of 10,000 cells per well and 

allowed to incubate at 37° C for 24 hours. The cell line used was Yamato synovial sarcoma. 

After the 24 hour incubation, the AFC was applied to the cells and incubated at 37° C for 30 

minutes at a concentration of 1ug/uL in media. The media containing AFC was then removed 

and replaced with fresh media. The plates were placed in an ImageXpress® Pico (Molecular 

Devices Cat.# 1XPICO) at 37° C and monitored with photos taken every 30 minutes for a 24-

hour period. Images were analyzed using ImageJ.   

 

4.2.3 Mouse Models 

Using the metastatic synovial sarcoma mouse model; Rosa26-LSL-SS18-SSX2/SS18- 

311 SSX2;Ptenlox5/lox5 (149), mice were selected at 4 weeks of age and injected 

subcutaneously with TATCre protein (Excellgen Cat.# EG-1001) in their left hind limb. Both 

male and female mice were used. Mice were monitored for signs of tumor development. All 

protocols were approved by the Idaho State University’s institutional animal care and use 

committee protocol 775. 

 

4.2.4 Murine 48 Hour Tumor AFC Accumulation Study 

 Mice from the metastatic model previously described were selected 10-14 weeks after 

receiving a TAT-Cre injection to their left hind limb. Mice were treated via a tail vein injection 

of AFC at 0.4 mg/kg or received a saline control. Mice were harvested 48 hours later and tissues 

imaged for AFC retention using the Azure C600 imager with nIR imaging properties. The AFC 

was excited at 650 nm and emission was detected at 665 nm. GFP was excited at 450 nm and 
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emission was detected at 510 nm. Fluorescence levels were quantified using ImageJ software and 

normalized to the control values.  

 

4.2.5 Murine 6 Hour Pharmacokinetics and Blood AFC Level Study 

4.2.5.1 Mouse Treatment and Sample Collection 

 Mice from the models previously described were selected which either had not received a 

TATcre injection or had not developed tumors after injection. Mice were treated via a tail vein 

injection of AFC at 0.4 mg/kg or received a saline control. Mice were monitored and euthanized 

at various time points. 7 mice were treated, 6 of which received AFC and 1 received saline 

control. Euthanization times were at 10 minutes, 30 minutes, 1 hour, 2 hours, 4 hours and 6 

hours. One mouse was sacrificed at each time point, with the saline control mouse also being 

euthanized at 10 minutes. Blood draws were performed immediately through the vena cava and 

further dissection followed.    

 

4.2.5.2 Whole Organ Imaging 

 Mice were dissected immediately after euthanization. Whole organs and tissues were 

imaged for AFC retention using the Azure C600 imager with nIR imaging properties. The AFC 

was excited at 650 nm and emission was detected at 665 nm.   

 

4.2.5.3 Quantification of Organ AFC Retention 

 After imaging, 50 mg of each organ were digested with mild cell lysis buffer and 

homogenized mechanically. Samples were centrifuged and100 uL of the supernatant was placed 

in a black 96-well plate. Samples were read with a Varioskan Lux Multimode Microplate Reader 
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(ThermoFisher Cat.# VL0000D0). The AFC was excited at 648 nm and emission was detected at 

666 nm.   

 

 

4.2.5.4 AFC Blood Concentration Levels 

 Blood was drawn from the vena cava and placed into Greiner Bio-One MiniCollect 

Capillary Blood Collection System Tubes (Fisher Scientific Cat.# 22-030-402). The blood was 

centrifuged, and the supernatant removed and placed in a black 96-well plate and samples were 

read with a Varioskan Lux Multimode Microplate Reader (ThermoFisher Cat.# VL0000D0). The 

AFC was excited at 648 nm and emission was detected at 666 nm.   

 

4.3 Results 

 To assess the ability of this novel RIT to bind to OSMR in vitro, the AFC was applied to 

SS cell cultures and monitored using an automated cell imaging system with confocal 

microscopy. The AFC was applied to the cells for 30 minutes and the cells washed to remove 

any unbound drug. The cultures were then imaged over a period of 24 hours. The AFC was 

observed to bind to the cells at a low concentration of 6.7 pM (1ug/uL). While cell binding was 

observed, it was only observed bound to a few cells per well. This is likely due to the low 

concentration at which these cells were dosed, and future studies at higher concentrations are 

planned. It is also possible that the low number of cells observed bound to the AFC is due to 

heterogeneity within the cell culture resulting in only some of the cells expressing OSMR.  

Further studies will be required to determine the proper dosing for this AFC in cell cultures. The 
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drug was able to be observed bound to the cells immediately after the 30-minute incubation and 

wash and was observed up to 22 hours.   

Next, the pharmacokinetics of the RIT were assessed using a metastatic mouse model for 

SS. Four mice were selected which had received a previous TATCre injection and had developed 

tumors of sufficient size. The AFC was injected intravenously through the tail vein and mice 

harvested 48 hours later. The mice were dissected and the tumors along with kidneys, liver, 

spleen, lungs and heart were harvested and imaged through nIR fluorescence. Because the mouse 

model has a genetic modification which induces the expression of Green Fluorescence Protein 

(GFP) in SS cells, the malignancies could be easily observed, and some areas of metastasis were 

noted in the spleen of the AFC-3 mouse (Figure 4.2 a). Next, imaging of the AFC was 

performed, and it was noted that there was exceptional targeting of the drug to sites of disease, 

with no drug seen accumulating in significant quantities in any other areas. It was also noted that 

the drug not only localized to the primary tumor site but was also present in the sites of 

metastasis. Outside of the sites of disease, no accumulation of the AFC was seen in any other 

organs (Figure 4.2 a). The fluorescence of the organs was quantified using image J software and 

the value for each organ was normalized to its corresponding control tissue (Figure 4.2 b). It was 

confirmed that little AFC was seen accumulating outside of tumor tissue. These results indicate 

that an anti-OSMR antibody is an effective targeting strategy for therapy in SS. This study used 

both male (n=3) and female (n=1) mice and no differences were observed between the two. The 

control mouse was male. 

Having seen AFC accumulation in the spleen of one mouse, we next confirmed that these 

nodules were in fact SS metastasis. Using immunohistochemistry, we stained the tissue for the 

presence of GFP, an indicator of the presence of the t(X:18) translocation mutation which causes 
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SS. We found that GFP was present (Figure 4.3 a) indicating that these nodules were sites of SS 

disease, and that the AFC was efficiently being directed to both the primary and metastatic sites 

of disease.  

Because varying levels of AFC uptake were noted in the murine pharmacokinetic study, 

we next evaluated the correlation between OSMR expression and AFC uptake. Using Reverse 

Transcriptase Quantitative Polymerase Chain Reaction (RTqPCR), the RNA levels of OSMR 

expression were measured of each of the four tumors. We found that the OSMR expression 

correlated to the uptake of AFC noted in the pharmacokinetic study, indicating that the AFC was 

directed to sites of disease via the anti-OSMR antibody rather than another mechanism (Figure 

4.3 b). It was also noted that despite some of the tumors having low levels of OSMR expression, 

the AFC was still capable of targeting the disease with high specificity suggesting that even 

tumors with low levels of OSMR expression would be a candidate for this therapy.  

Finally, the blood and tissue concentration of the AFC was measured in mice over time. 

The AFC was injected, and mice harvested at time points ranging from 10 minutes to 6 hours. 

Both male and female mice were used and no differences were observed between the two. 

Through fluorescent imaging of whole organs, it was observed that the AFC began accumulating 

in the kidneys after 10 minutes, and was cleared from the kidneys after approximately 4 hours 

(Figure 4.4). We also saw that the AFC began to accumulate in the liver at 1 hour and was fully 

cleared by hour 6 (Figure 4.4). To quantify these results, the organ tissue was homogenized and 

the fluorescence measured with a Varioskan Lux plate reader. This data confirmed that the 

highest AFC concentration was found in the kidney at approximately 1 hour, and that this 

accumulation dissipated by hour 4. Similarly, the accumulation in the liver peaked at hour 4 but 

dissipated by hour 6 (Figure 4.5 a). The AFC concentration of the blood was also measured, with 
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a high concentration seen early on at time points 10 and 30 minutes, however this decreased 

greatly by 1 hour and continued to decrease being nearly undetectable by hour 6 (Figure 4.5 b). 

This, paired with our data which shows that the AFC showed a high accumulation in sites of 

disease even 48 hours after administration, shows that this drug is metabolized well by the body 

and quickly directed to the tumor where it remains for a sufficient amount of time.  

 

4.4 Discussion 

 SS is a deadly disease which currently has few FDA approved therapeutic options. Here 

we show that our novel RIT which targets OSMR has potential as a therapy for SS. Through in 

vitro studies, we have shown that the AFC is capable of binding to cells for up to 22 hours at 

extremely low concentrations (Figure 4.1). This indicates that’s the RIT will be able to bind to 

SS cells for a sufficient time to deliver its radioactive payload and induce cell death.  

 Through in vivo studies using a murine model, the AFC was visualized through NIR 

imaging. It was found that the AFC had excellent targeting to sites of disease, being found in 

both the primary tumor as well as metastasis which was found in the spleen (Figure 4.2 a). 

Furthermore, no accumulation was seen in other organs suggesting that the RIT will have 

sufficient targeting to sites of disease and will limit off-target effects which could induce 

toxicities (Figure 4.2 b). Varying degrees of AFC accumulation were noted in the tumor samples 

of this study. To further explore this accumulation, the OSMR expression levels of the tumors 

were evaluated, and it was found that the tumors with a higher OSMR expression level had a 

higher amount of AFC accumulation (Figure 4.3 b). This data suggests that the anti-OSMR 

monoclonal antibody is an effective targeting system for this therapy, and will direct the 
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radioisotopes to only sites of disease. Because of this, this therapy is unlikely to have off-target 

effects which may result in toxicities.   

 Finally, the tissue and blood accumulation of the AFC was evaluated. By measuring the 

AFC concentration in various organs and the blood at different time points after treatment, we 

were able to show that the AFC passes through both the kidneys and liver in under 6 hours. We 

also found that the blood concentration of the AFC steadily decreases after injection reaching a 

nearly undetectable level by hour 6. Because of this, we believe that the RIT will be adequately 

metabolized and directed to sites of disease quickly, limiting the time for the radioisotope to 

affect non-diseased tissues.  
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Figure 4.1 In Vitro AFC Binding Assay. The AFC was applied, and cells imaged every 30 
minutes. The AFC appears red and is bound to the outer membrane of the cell.  
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Figure 4.2 Visualization of Pharmacokinetics of the AFC in Mice. (a) Fluorescent imaging of 
mouse organs after treatment with either AFC or control. Samples 1-3 received AFC treatment 
and sample 4 received saline control. AFC appears red (Left) and SS tissue appears green due to 
GFP (Right). McCollum S, Kalivas A, Kirkham M, Kunz K, Okojie J, Pavek A, et al. Oncostatin M Receptor as a 
Therapeutic Target for Radioimmune Therapy in Synovial Sarcoma. Pharmaceuticals. 2022 Jun;15(6):650. (b) 
Quantification of fluorescence from figure 4.2 a. Each tissue type is normalized to the 
corresponding control.  
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Figure 4.3 Evaluation of OSMR Expression as Compared to AFC Accumulation. (a) 
Immunohistochemistry of spleen metastasis for GFP from AFC- 3 sample. GFP presence 
indicates sites of disease and appears brown. (b) RTqPCR data showing expression levels of 
OSMR. AFC and Control samples correlate to Figure 4.2. McCollum S, Kalivas A, Kirkham M, Kunz 
K, Okojie J, Pavek A, et al. Oncostatin M Receptor as a Therapeutic Target for Radioimmune Therapy in Synovial 
Sarcoma. Pharmaceuticals. 2022 Jun;15(6):650. 
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Figure 4.4 Visualization of Renal and Hepatic AFC Accumulation Over Time. Fluorescent 
imaging of mouse organs after treatment with AFC. Mice were euthanized and organs harvested 
at various timepoints and imaged. AFC appears as red fluorescence.  
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Figure 4.5 Quantification of AFC Accumulation in the Tissues and Blood. (a) AFC 
accumulation seen in the kidney and liver over time. (b) AFC accumulation seen in the blood 
over time.  
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5. Conclusions 

5.1 The Present State of Synovial Sarcoma Treatment 

 Synovial sarcoma is a rare pediatric cancer which has affected many adolescents and 

young adults. While the current standard of care for this disease, doxorubicin in combination 

with an ifosphamide based therapy, gives patients a 5-year survival rate of 60%, this statistic 

drops dramatically if the disease metastasizes (215). While this therapy regime has found success 

in the treatment of SS, there are many complications which can occur with treatment. As the only 

option for systemic treatment for SS, if a patient does not respond or develops refractory disease, 

they are left with no other options for systemic treatment, highlighting the need for advancement 

in this field. Furthermore, doxorubicin has a lifetime cumulative dose limit due to 

cardiotoxicities, which limits the amount of treatment a patient can receive (216). These 

complications could be circumvented by the addition of another systemic treatment option to the 

field of synovial sarcoma.  

 One challenge in developing novel therapies for SS treatment is the low mutational 

burden of SS. With a median TMB of 1.7 mutations per Mb, there are very few aberrantly 

expressed proteins unique to the diseases tissue which could be targeted (205). This is one 

contributing factor for why only generally cytotoxic agents are currently used to treat SS. 

However, if a novel protein target could be identified which is specific to SS tissue, it could be 

targeted with therapy. This would not only provide patients with another treatment option, but 

would likely have fewer side effects due to its specificity, increasing the likelihood that a patient 

would be able to continue the therapy for longer.  
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 SS is a unique cancer in that it is driven by a single translocation mutation t(X:18) which 

does not result in any targetable mutated proteins (217). Affecting only the SS18 protein in the 

SWI/SNF complex, this mutation causes redirection of the complex resulting in far reaching and 

convoluted epigenetic changes(8)(11). These changes are not easily reversed making the most 

common driving mutation of SS unavailable for targeting.  

 Despite the challenges in developing novel therapies for SS, there are many ongoing 

clinical and pre-clinical trials investigating new strategies to treat SS. As discussed in chapter 

1.3, there are multiple pre-clinical studies investigating the use of RTK inhibitors in the 

treatment of SS. While these studies show promise, preliminary results have shown that many of 

these drugs may have difficulty with refractory disease development, as there are multiple RTK 

pathways which a malignancy can use to proliferate. Some drugs, such as anlotinib, try to 

combat this by actin across multiple RTK receptors to prevent refractory disease and have found 

more success (33). Perhaps with more data, these types of therapies will make their way into the 

clinic.  

 Another approach currently being undertaken to treat SS is that of the SPEARHEAD-1 

phase II trial which is investigating the use of CAR-T therapy in the treatment of synovial 

sarcoma (43). This trial is using T cells which are genetically altered to target the testis antigen 

MAGE-A4 which has been found to be upregulated in some SS’s. CAR-T therapy has been an 

very promising strategy in the field of oncology, and has the potential to change the way we treat 

solid tumors. While these strategies show great promise for improving the chances of survival 

for synovial sarcoma patients, the lack of protein targets which can be targeted by therapy 

continues to be a problem in this field. However, in my research, I have identified the cell 

surface receptor OSMR as being overexpressed in SS making it a viable target for therapy.  
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5.2 The Identification of OSMR as a Viable Target for Therapy 

Oncostatin M Receptor is a member of the IL-6 family of receptors and is known to 

activate the JAK/STAT pathway (98) (129), which has been identified as a driving pathway for 

cancer (56)(57)(58). OSMR was identified as being overexpressed in SS through RNAseq 

analysis focusing on inflammatory pathways to identify new protein targets which might be 

targeted by therapy (149). Interestingly, while the RNAseq data suggested that OSMR was only 

expressed in metastatic tumors, further investigation into this expression pattern through 

RTqPCR and western blot indicated that both metastatic and non-metastatic tumors can express 

high levels of OSMR, however this expression can vary widely between samples. (Figure 2.1 

and 2.2) While the metastatic status of the SS may not indicate OSMR expression, our data 

suggests that there is sufficient evidence that OSMR is highly expressed in a subset of SS and is 

a viable target for therapy.  

While small molecule inhibitors have been a great benefit to the field of targeted therapy 

in oncology, the binding mechanism of OSM to its receptor suggests that this may not be an ideal 

model of therapy for this receptor. OSM first interacts with the gp130 subunit of the receptor, a 

subunit which is characteristic of all IL-6 receptors (133)(99). Because of this, an OSM-like 

small molecule inhibitor could potentially interfere with the action of any IL-6 receptor, causing 

excessive toxicities. Due to this binding mechanism we elected to target this receptor through 

RIT. 

5.3 Development of a Novel RIT Targeting SS 

 RIT is an up-and-coming therapy model in the field of oncology. While not a new idea, it 

has long laid dormant as the only FDA approved RIT’s are for hematological cancers (153)(155). 

However, recently it has seen more attention as many pre-clinical studies are investigating its use 
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in various cancers, including solid tumors (see Chapter 1.7.2). The versatility of this drug model 

certainly accounts for some of this increased interest, as many of the components may be altered 

or switched out to suit the needs of researchers and patients.  

 We elected to use this model of therapy to target OSMR in SS due to the specificity of 

the main structural antibody for its target, which will likely reduce toxicities. Using a 

monoclonal anti-OSMR antibody as the main structure of this drug, we then conjugated the 

chelator NOTA, selected for its stability, capture efficiency and conjugation rates (177), to this 

antibody in order to be able to capture radioisotopes. Given our access to the Idaho Accelerator 

Center and our collaboration with them providing us unique access to 67Cu isotopes, we chose to 

incorporate this isotope into our RIT. 67Cu is an ideal isotope for use in RIT given its half-life 

and beta emitting qualities.  

 We have synthesized and evaluated this novel RIT and have shown that it is capable of 

binding to OSMR (Figure 3.3). We have also shown that this drug is stable under various 

conditions (Figure 3.4) and is capable of 67Cu isotope capture (Figure 3.5 a). Because of variable 

literature on the subject, we have tested multiple methodologies in TLC to determine the best 

way to measure the isotope capture (Figure 3.5 b), however more research is needed in order to 

determine how to improve the capture rates and increase the rates to what is seen in the literature 

(Figure 3.6). Despite this setback, we feel that this data indicates that an anti-OSMR RIT is 

capable of being synthesized, and is a viable therapy for the treatment of SS.  
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5.4 Preclinical Studies of a Novel Anti-OSMR RIT 

 Having determined that OSMR is overexpressed in some synovial sarcomas, and that an 

RIT model of therapy can be synthesized without the antibody losing its binding ability or 

stability, we began evaluating the pharmacokinetics of this drug in both in vitro and in vivo 

studies. We have shown that the AFC is capable of binding to SS cells within 30 minutes of 

exposure and stays bound to the cell for 22 hours (Figure 4.1). We have also shown that the AFC 

is well targeted to sites of disease within our SS mouse models, binding to both the primary 

tumor and sites of metastasis, and being observed there 48 hours after administration. 

Furthermore, we did not see any drug accumulation outside of the tumors, indicating that the 

anti-OSMR antibody is a sufficient targeting system for this drug model (Figure 4.2). We were 

able to show that the AFC accumulation and binding to sites of disease is OSMR-expression 

level dependent, with higher OSMR expressing tumors binding more of the AFC (Figure 4.3). 

Finally, we have shown that the AFC does not have a prolonged accumulation in the kidneys or 

liver of our mouse models, with levels being nearly undetectable by hour 6. This indicates that 

the RIT can be sufficiently metabolized and will not linger in the kidneys or liver, reducing the 

possibility for toxicities in these organs. We also show that the blood concentration of the AFC is 

greatly reduced 6 hours after treatment, suggesting that the RIT will be quickly directed to sites 

of disease. Given this data, we feel confident that this RIT is a viable therapeutic option for the 

treatment of SS, and that future research is indicated. 
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5.5 Challenges and Criticisms 

This dissertation presents research investigating the use of an anti-OSMR RIT in the 

treatment of SS. While this model of therapy shows much potential, there are many challenges 

and potential pitfalls of this new therapy. One of the biggest challenges for an OSMR targeted 

therapy is the variability in OSMR expression between samples. Figure 2.1 b exemplifies the 

variation seen within our own model, with some mice from both metastatic and non-metastatic 

groups showing high levels of OSMR expression, while others from both groups show little to no 

OSMR expression. It is likely that this pattern will be observed in humans as well, with some SS 

patients having high levels of OSMR expression and others having low expression. This suggests 

that this RIT therapy will not be approved for treatment of all SS tumors, but rather would be 

indicated only for patients with tumors exhibiting a high level of OSMR expression. It is also 

possible that only the smallest subset of human SS patients will show OSMR expression, and 

that OSMR ultimately is not an ideal target for therapy in humans. In this case, it would become 

necessary to select another protein target which is more abundant in human samples. RIT models 

of therapy possess the benefit of containing interchangeable components, and a different 

monoclonal antibody can become the backbone of the therapy with minor adjustments. An 

example of an alternate protein target is that of NY-ESO 1, which is commonly overexpressed in 

human synovial sarcoma patients (218). However, mice do not carry the gene for this protein 

(219), making it difficult to study in animal models. 

 During our investigation into the elimination of this RIT through the kidneys and liver, 

we find that the RIT has a residency time of approximately 4 hours in the kidneys and 3 hours in 

the liver (Figures 4.4 and 4.5). While this residency time is not exceptionally long, it is possible 

that the RIT begins to exert its tissue damaging effects in these organs, resulting in kidney and 
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liver toxicities. Further studies are indicated to evaluate the effect that the RIT will have on these 

organs in which the RIT is given to mice over a longer period of time, and they are evaluated for 

liver and kidney toxicities. An effective way to evaluate the mice for drug induced liver and 

kidney damages would be the methods proposed by Vasquez and Peterson, in which they use 

NIR fluorescent probes which bind to various markers for cell death and damage (220). While 

this research group accessed IVIS SpectrumCT imaging for visualization of the anesthetized 

mice prior to euthanization and imaging of whole organs, these protocols could be effectively 

adapted to the equipment currently available in the Barrott lab. After an intraperitoneal injection 

of the NIR probes, mice may be euthanized, and their liver and kidneys removed for NIR 

imaging in the Azure c600 system. Should toxicities be seen, adjustments may be required to the 

components of the RIT to remedy this. If these adjustments do not rectify the toxicities, another 

model of therapy may be called for.  

 The RTqPCR data presented in figure 2.1 suggests the heart as another possible organ to 

experience toxicities. Low levels of OSMR expression in the heart could results in this RIT 

binding to heart tissue as well as tumor tissue, resulting in irradiation of the heart. This type of 

toxicity would be concerning, especially to patients who have received a doxorubicin-based 

treatment in the past, as doxorubicin is also known to cause cardiotoxicities (221). Further 

research is indicated to evaluate the potential for cardiotoxicities with this novel RIT. One way to 

test this would be through the use of PET scanning with the 64Cu variant of RIT, and visualizing 

how much, if any, RIT accumulates in the cardiac tissues. Should significant RIT accumulation 

in the heart be observed, it will likely be necessary to select an alternate protein target. 

 While there are currently FDA approved radiopharmaceuticals with similar or shorter 

half-lives of this proposed RIT (222)(223)(224) it is possible that the limiting half-life of 
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approximately 62 hours will prove a logistical challenge for the location and accessible recourses 

of ISU.  While it is evident that these challenges are not insurmountable and have been overcome 

by others, should this prove challenging, another isotope with a longer half-life could be 

selected.  

 Currently the methods for conjugating this RIT rely on non-specific, stochastic, binding 

of the chelator to available lysine residues. This provides the benefit of easy and simple binding 

methods; however, the conjugation is far from regulated resulting in variation in the drug-

antibody ratio (DAR) from antibody to antibody. While this variation is present in many other 

antibody-drug conjugates and can be accounted for, there would be benefits in altering the 

conjugation methods to a site-specific binding method. This can be done in a number of ways, 

and while these methods would be more time consuming and less cost effective, they would 

provide us with precisely bound chelator and known and predictable locations. One such way to 

initiate site-specific conjugation is with unnatural amino acids. By genetically modifying 

antibody-producing organisms to produce the desired antibody with the inclusion of unnatural 

amino acids, a conjugation method selective for these unnatural amino acids can be used (225). 

In this way, the location of conjugation of the chelator could be highly controlled, and the DAR 

regulated. This could help to overcome potential challenges with dosing, as well as variability in 

RIT development. 

 During our evaluation of this RIT, Liquid Chromatography-Mass Spectrometry (LC-MS) 

data provided to us by the University of Arizona indicated that our antibody-chelator conjugate 

had undergone degradation (data not shown). After receiving this data, we have begun to monitor 

our conjugate for degradation through thermal shift assays and have found that only 

approximately 1 in 4 conjugation reactions result in degradation. This is likely why our capture 
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efficiency results are decreased when compared to what is seen in the literature, and it is 

anticipated that once this degradation is eliminated, our capture efficiency will improve. A 

thorough investigation of our methods is indicated to determine which step is causing this 

degradation. It is possible that contamination with proteases is occurring which is resulting in 

enzymatic degradation. This could be avoided with the use of protease inhibitors in the 

conjugation reaction, and should these be found to not interfere with the conjugation, should 

perhaps be added moving forward. Another possibility is that the centrifugation-filtration step is 

too vigorous for these proteins to withstand. As of yet, degradation has not been observed in 

conjugation reactions which do not undergo this step, although further investigation is required 

to sufficiently identify this step as the culprit. Finally, as the conjugation reaction occurs at room 

temperature (approximately 27 °C), performing this reaction at cooler temperatures such as 4 °C 

may help.  

 

5.6 Summary 

   
 Here we detail the study and development of a novel RIT. The data presented here 

indicates the promise of this project and the necessity for future research. In order for this project 

to continue, data such as the effect of the RIT on mouse tumor size and toxicity studies would 

need to be obtained. There is also the exciting avenue of research regarding the use of 64Cu, 

which can be used in PET imaging.  

 While this RIT shows promise as a targeted therapy for SS, there will be challenges in the 

development and clinical translation of this drug model, which currently is not seen outside of 

hematological malignancies. One potential challenge is that of predicting which patients will 

have sufficient OSMR expression for the therapy to direct itself to sites of disease. One solution 
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to this would be to test the expression levels from biopsy samples, however these are not always 

available. This therapy model offers an elegant solution to this problem in that it is a theranostic 

agent. By replacing the Beta emitting 67Cu with the positron emitting form of the isotope, 64Cu, 

the RIT becomes a diagnostic agent capable of being seen on PET scans without causing tissue 

damage (171). By using this scanning method prior to the administration of the tissue damaging 

67Cu variant, patients who will experience poor targeting of the drug to their disease can be 

identified prior to the drug being administered. This will greatly reduce the number of patients 

who experience toxicities and little benefit from the drug, due to being a poor candidate for the 

therapy.  

 Another possible challenge for this therapy is the relatively short half-life of 67Cu. With 

approximately 2.5 days to not only synthesize the drug, but also administer it into a patient with 

sufficient time for it to act, the logistics and development of the therapy will have to be fine-

tuned for this drug to translate into the clinic. While this will be challenging, the current use and 

FDA approval of other RIT’s and radioactive drugs shows that this challenge can be overcome 

(see Chapter 1.7.1).  

 Despite these challenges, this model of therapy has great potential in the field of 

oncology. Furthermore, our data show that an anti-OSMR RIT can be synthesized effectively, 

and that this drug shows adequate pharmacokinetics to be well tolerated and specific to SS which 

overexpresses OSMR. We conclude that OSMR is a viable target for radioimmune therapy in the 

treatment of synovial sarcoma.  
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