
Photocopy and Use Authorization

In presenting this thesis in partial fulfillment of the requirements for an advanced degree at Idaho

State University, I agree that the library shall make it freely available for inspection. I further state

that permission for extensive copying of my thesis for scholarly purposes may be granted by the

Dean of the Graduate School, Dean of my academic division, or by the University Librarian. It is

understood that any copying or publication of this thesis for financial gain shall not be allowed

without my written permission.

Signature ___

Date ___

Object Detection, Localization and Navigation Strategy for Obstacle Avoidance Applied

to Autonomous Wheelchair Driving

by

Nusrat Farheen

A thesis

submitted in partial fulfillment

of the requirements for the degree of

Master of Science in the Department of Mechanical Engineering

Idaho State University

Spring 2022

ii

To the Graduate Faculty:

The members of the committee appointed to examine the thesis of Nusrat Farheen find it

satisfactory and recommend that it be accepted.

Dr. Marco P. Schoen, Major Advisor

Dr. Kenneth Bosworth, Committee Member

Dr. Nancy Devine, Graduate Faculty Representative

iii

Acknowledgements

First and foremost, I want to express my gratitude to Dr. Marco Schoen, my primary advisor, for

his aid and direction in finishing my thesis. I would like to express my gratitude for his patience

and kindness. This research would not have been attainable without his expertise, enthusiasm, and

assistance. I appreciate the Career Path Internships and Graduate Teaching Assistantships provided

by Dr. Bosworth and Dr. Alba Perez. Thank you for being an amazing mentor and believing in

me. I want to thank Dr. Bosworth for taking the time to teach me math and for his willingness to

give me time for any sort of discussions, also for supporting me every time with his

recommendations associated with scholarships applications. Thank you, Dr. Nancy Devine, for

agreeing to be in my committee, and giving your valuable time. I want to express my appreciation

to Ellen and Laura for their help along the way. Thank you to everyone at MCERC for all of your

support; it has been a pleasure sharing the lab with you. I appreciate my friends and family's

patience and support during my studies. My spouse Golam deserves special thanks for assisting

me, for his continuous support, and for his presence in the ERC lab. Thank you very much!

iv

Object Detection, Localization and Navigation Strategy for Obstacle Avoidance Applied to

Autonomous Wheelchair Driving

Thesis Abstract – Idaho State University (2022)

The primary aim of this study was to develop machine learning or deep-learning aided

procedures along with scientific investigations that enhances the capability of a commercial non-

autonomous wheelchair towards autonomy. The thesis addresses the computer vision work

for obstacle detection and localization applied to an autonomous wheelchair operation. The

computer vision tasks including the depth image classification are accommodated in a small

form factored and resource constraint computers such as Raspberry Pie and Google Coral. The

tasks and strategies also include classifying the images using a pretrained model (TensorFlow

lite), detecting and measure the degree of obstacle avoidance by pairing color (RGB) image

classification with depth images. The thesis also offers approaches for indoor localization

applicable for the autonomous wheelchair development. The objective has been further extended

to develop a simulation platform for autonomous wheelchair driving where navigation and path

mapping construction algorithm evaluations are visually offered using MATLAB®. In addition,

the thesis includes research and project contributions prior to the change of thesis subject to

autonomous wheelchair development. These contributions are addressed as the additional works

which includes (1) the initial work on error determination in motion capture process using

VICON and (2) a wafer alignment fault detection process using image processing.

Keywords: machine learning, computer vision, autonomous wheel-chair, navigation, mobile robot,

depth image, obstacle avoidance.

v

TABLE OF CONTENTS

1. Introduction 01

1.1 Literature Review 01

1.2 Autonomous wheelchair (AWC) as a special purpose mobile robot 03

1.3 Key areas of AWC addressed by researchers 04

2. Critical Tasks and Strategies 05

2.1 Localization and Orientation 05

2.2 Environment (work-space/task-space) Measurements and Observations 05

2.3 Autonomous Path Determination and Strategies 06

2.4 Control Unit 07

3. Localization and Orientation 08

3.1 Experiment Setup 08

3.2 Odometry Navigation and Mapping 10

3.3 Array of Beacons 12

3.4 Computer Vision Based Positioning 17

3.5 Localization Performance Analysis 21

4. Environment Measurements and Observations 24

4.1 Hardware and Software Configuration 25

4.2 Computer Vision for Obstacle Avoidance 27

4.3 Navigation Strategies and Simulation 30

4.4 Conclusion 33

5. Additional Studies 34

5.1 Vicon – Motion Capture 34

5.1.1 Experiment Setup and Procedure 34

5.2 ONSEMI 36

vi

5.2.1 Problem Statement 36

5.2.2 The Proposed Work 36

5.2.3 Technical Description 37

6. References 39

7. Appendix 43

7.1 Localization using Computer Vision (.m files) 43

7.2 Depth Image + Raspberry Pi Setup Resources 45

7.3 RGB+ Depth Classification Routine 50

7.4 Edge Detection Methods 56

7.5 Vicon - .m files 56

vii

LIST OF FIGURES

Figure 2.1: Sensor coverage for obstacle assessment with or without fusion 06

Figure 3.1: (a) Mobile robot in body frame; (b) Mobile robot in fixed frame 11

Figure 3.2: Assembled Arduino Zumo shield 11

Figure 3.3: (a) Radar based localization; (b) Grid from sensor array 15

Figure 3.4: Positioning using computer vision algorithm flowchart 18

Figure 3.5: Image process for position determination 19

Figure 3.6: 2D workspace mapping on single mobile robot 20

Figure 3.7: Snapshots of real-time visual position feed 20

Figure 4.1: Workflow of feedback system proposed in this thesis 26

Figure 4.2: RGB image captured from the Kinect before

feeding to the object detection process 29

Figure 4.3: Depth image captured from the Kinect 29

Figure 4.4: Depth image to mono channel followed by detected object’s boundary mapping for

proximity calculation 29

Figure 4.5: Simulation grid showing the AWC tile as blue, destination tile as red, obstacle tiles as

black along with a trace of AWC journey using blue line. 32

Figure 4.6: The overall route determination processes applied in the simulation 32

Figure 5.1: Trace of motion from five markers attached to calibration wand 34

viii

Figure 5.2: Plot of individual marker correspond to each axis 35

Figure 5.3: Euclidean distances between the markers during motion capture 35

Figure 5.4: Prototype of wafer carrying unit with placing a camera 37

Figure 5.5: Set of images to determine any misalignment between reference and test image 38

x

LIST OF TABLES

Table 2.1: Sensor coverage for obstacle assessment 05

Table 3.1: Comparison among indoor localization approaches offered in this thesis 22

1

1. Introduction

1.1 Literature Review

A Powered wheelchair has been a crucial tool to help regain lost mobility applied. The sole purpose

of a powered wheelchair is to provide mobility assistance without needing an additional human

interface [1]. Removal of dependency on others is tied to mental health and speedy recovery [2].

Hence, for more than a hundred years, powered wheelchairs received innovative attention from

scientific and engineering communities. The evolution of the powered wheelchair aligned to the

objective of making the power wheelchairs as intuitive to operate as possible while keeping the

cost minimum. The cost includes energy consumption, satisfactory performance metrics, and of

course financial components. During the evolution of wheelchairs, there were several phases of

development. Most of those developments involve minimizing power consumption, generating

comfort, simpler operation procedures and making the wheelchairs affordable through new

technologies [3]. In recent decades a paradigm shift is observed by the tremendous inclusion of

data and machine learning techniques. As the semiconductor industries push low cost, low power

and smaller but powerful computers, more and more data driven portable system are gaining

attention [4]. One of the key research questions included in the data driven solution to powered

wheelchairs is how the safety features can be enhanced. There is a need to discover how far an

existing powered wheelchair can be stretched from manual operation to assistive technologies to

full autonomy.

The benefits of full autonomy in powered wheelchair starts with including wider range of users

who seek independence from external physical assistance [5]. Moreover, autonomous wheelchairs

2

add layers of security and safety in operation by managing the data it collects from the runtime. In

search of full autonomy, research effort has been put to strengthen the feedback process for

accurate assessment of obstacle detection, identification of hazardous route along with indoor

localization and path planning. In Gao, Sands & Speltzer (2010) [6], discussed use of LiDAR to

generate a map of the autonomous wheelchair operation environment. LiDAR is proven to be an

effective tool in autonomous vehicle due to features providing multiple obstacle information in

real-time. Also, LiDAR can operate in the dark. However, it lacks understanding of the objects

around it due to incapability of differentiating colors and low resolution. Concerns indicated with

the LiDAR technology in autonomous wheelchairs can be overcome by fusing with the other

sensors such as RGB cameras. However, that does not remove the fact that LiDAR is relatively a

large and heavy sensor that consumes relatively more power and is expensive [7]. RGB cameras

on the other hand, provide information for object identification and can be implemented by fusing

other proximity sensors such as ultrasonic sensors, IR, etc. As the number of sensors grows, latency

adds up to overall in situ monitoring and management of cross data.

Another critical aspect of research in autonomous wheelchairs is accurate assessment of location

of the wheelchair. Indoor localization is particularly challenging due to elevated obstacle counts

and dedicated system requirement to obtain accurate coordinates [8]. There are solutions proposed

in Lankenau, Röfer, Krieg-Brückner, (2003) [9], such as a network of IR beams to obtain the

positions of autonomous mobile robots. However, the system with an IR network often creates

large error which is infeasible in sensitive cases such as the autonomy of wheelchairs. However,

all of these aforementioned research efforts indicate the current research state for autonomous

wheelchairs is analogous to autonomy of mobile robots. Therefore, autonomous powered

wheelchairs can be treated as a branch of autonomous mobile robots [10].

3

1.2 Autonomous wheelchair (AWC) as a special purpose mobile robot

Robotics have greatly shaped many tasks around us that once needed human interference explicitly

[11]. Autonomous robots bring significant improvement in daily activities, production capabilities

and services by having an increased accuracy and pace over nonautomated methods [12]. Most of

these autonomous actions are witnessed in chain productions, warehouse management, and

packaging. However, the class of robots found in research is spread across a wide range of

applications from humanoid to surgical robots. Mobile robots have been a popular study for a long

time. Research in mobile robots has grown to an extent that this field offers an umbrella of

subfields. Mobile robots are found in applications requiring some amount of artificial intelligence

such as collaborative robots, swarm intelligence-based robots, autonomous aerial vehicles,

autonomous ground vehicles, autonomous cleaning products, autonomous wheelchairs, etc., [13].

The thesis addresses a specific task associated with an autonomous wheelchair (AWC). Just as any

other autonomous mobile robot, an AWC is composed of actuation, feedback from the

environment, and a processing facility. The actuation in the thesis points to motor action

corresponding to locomotion. The feedback includes all forms of sensors and communication

either direct or derived from the environment and finally, the processing indicates computations

involved in decision making and control instructions.

1.3 Key areas of AWC addressed by researchers

The application of an AWC is a sensitive implementation whether in the medical care facility or

in a home. The use of AWC equipment often involves people with physical disabilities. Hence,

safety and comfort carry higher priority over speed and accuracy. Therefore, the development of

4

an autonomous wheelchair involves four streams of research which are as follows: (1)

Development of appropriate localization system depending on the site where the system is going

to be running, [14]; (2) A feedback system that gathers data from the environment to enhance safe

and secure operation, [15]; (3) Navigation strategies to perform locomotion without compromising

safety and comfort including mapping, monitoring, and simulation for the performance analysis

and future improvements, [16]; and (4) a control system and an associated mechanism involving

manipulation of the velocity and the direction of the AWC, [17].

5

2. Critical Tasks and Strategies

2.1 Localization and Orientation

Localization and orientation tasks of an AWC compiles indoor/outdoor location and orientation of

the vehicle. An AWC sensitivity to the wheelchair’s location and orientation is significant in terms

of safety. The process is responsible for critical feedback to the control unit to dictate kinetic

profile. In this thesis, various choices of indoor location determination methods are explored.

2.2 Environment (work-space/task-space) Measurements and Observations

In order to strengthen safety measures to an AWC, accurate assessment of the environment is

another critical task. This can be achieved with the fusion of various sensors. There are sensors

which can distinguish color and have high resolution but take large computing resources and lack

proximity. On the other hand, sensors such as ultrasonic sensors and IR sensors provide accurate

and fast proximity calculation but lack resolution and color distinction. This study proposes a

method captures proximity and resolution without requiring large computational resources.

However, safety can be further enhanced by fusing other sensors.

Table 2.1: Sensor coverage for obstacle assessment

Sensor Proximity Resolution Bandwidth Color Object Identification

Depth Camera Average good poor good good

RGB Camera Poor good average good good

IR Sensor Good average good poor poor

6

Figure 2.1: Sensor coverage for obstacle assessment with or without fusion

2.3 Autonomous Path Determination and Strategies

There are various levels of autonomy but in this research, the development work is done towards

the highest level of autonomy that includes adaptive path planning. In particular, the proposed

work developed a simulation tool using MATLAB® to test various path planning algorithms under

some key list of assumptions.

Proximity

Resolution

BandwidthColor

Object
Identification

RGB

RGB

Proximity

Resolution

BandwidthColor

Object
Identification

IR

IR

Proximity

Resolution

BandwidthColor

Object
Identification

Depth

Depth

Proximity

Resolution

BandwidthColor

Object
Identification

Fusion

RGB IR

7

2.4 Control Unit

This is the central processing or decision-making mechanism where all the feedback and actuating

instructions to control motors for locomotion and orientation take place. The control unit is beyond

the scope of this thesis but that does not reflect the crucial role it has in order to achieve an AWC.

8

3. Localization and Orientation

Testing any localization and orientation methods on actual powered wheelchairs requires large

resources including but not limited to:

(1) Test environment

(2) Functioning feedback and control system and

(3) Safety measures for the safe operations of the actual wheelchair under testing conditions.

The tests practiced for the development work proposed in this thesis obtained on a small-scale

mobile robot that removed any dependency on wait period for the actual powered wheelchair to

function at its full capacity. This study presents a typical inexpensive academic robotic competition

environment setup with cost effective navigation and mapping solutions for robots in a micro-

environment. The outline of the indoor localization study is as follows: At first, a suitable mobile

robot hardware is selected with a specific configuration in order to conduct an experimental task.

This is followed by presenting three different navigation and mapping techniques. In particular,

(1) Odometry, (2) Array of beacons and (3) Computer vision, which are tested, evaluated, and

discussed in this thesis. A cost comparison is presented with commercially available alternative

solutions.

3.1 Experiment Setup

In this thesis, a mobile robot with fixed wheels is used as the general robotic platform to present

and discuss mobile robot localization and mapping techniques. These techniques are tested with a

simple experimental task, which combines wireless communication, navigation, and mapping

tasks. The zumo robot as shown in Figure 3.2, used as the generic mobile robot platform is powered

9

by battery at the bottom of the robot's chassis. An Arduino Uno micro-controller module is used

to run the respective logic and processing commands. In addition, a Zumo Arduino shield is

utilized with the objective to reduce the number of jump wires. This shield has an integrated

DRV8835 DC motor driver along with an integrated LSM303D 3-axis accelerometer with a 3-axis

magnetometer and an integrated L3DG20H 3-axis gyroscope, that can be used to track

acceleration, orientation, and rotation of the robot. The robot is assembled with a 75:1 micro metal

geared motor (HP). The robot body frame of reference and fixed world frame of reference is shown

in Figure 3.1. The parameter r from Figure 3.1. (a) represents the radius of each wheel and the

parameter 2d is the shortest distance apart between two rear wheels. The assembled robot with the

Arduino Zumo shield (without Arduino) is shown in Figure 3.2, contains convenient spots for the

placement of infra-red sensor array, indicated as “general purpose I/O for sensor modules” in the

figure, in order to detect any marked boundaries of the work space. A square plain with a flat

surface serves as the main platform with dimensions of 2 meters by 2 meters that includes dark

boundary markers for the onboard infra-red sensor arrays to detect the borders of the workspace.

The robot task is to move in a straight line until it reaches the border followed by a random amount

of rotation in order to pick a random direction. This is repeated after orienting in the new direction

until the robot hits the next border marker. The process repeated until some termination event

occurs. The robot is equipped with photosensitive resistors to detect any distinct source of light.

Once the robot reaches a spot within the platform with greater amount of light projected, the robot

task is terminated. A computer is located outside of the workspace with the task to communicate

with the robot using xbee modules. The communication entails any local computations needed to

be shared. The computer maps the movements of the robot as the robot performs its task. In this

work, MATLAB® tools are used to develop any mapping program.

10

3.2 Odometry Navigation and Mapping

A theoretical model for standard fixed wheel rear drive mobile robot kinematics is needed to

develop the relative position measurement or dead reckoning for localization and mapping suitable

for a small workspace, [18]. The robot wheels are assumed to have no slippage between the drive

surface and the wheel itself. Equations (3.1) and (3.2) describe the Jacobian matrix associated with

the wheel speed vector and the inverse Jacobian matrix with the robot’s twist vector to produce

𝑊⃑⃑⃑ & 𝜃 ̇ respectively. Where 𝜃̇1 and 𝜃̇2 are angular velocities as indicated in Figure 3.1(a). The

position of the robot with respect to the world frame are presented using x and y coordinates. The

orientation or rotation angle with respect to the horizontal axis of the world frame is indicated in

Figure 3.1(b) using 𝜙.

𝑊⃑⃑⃑ = {
𝜙̇
𝑥̇
𝑦̇
} =

[

𝑟

2𝑑
−

𝑟

2𝑑
𝑟

2
cos (𝜙)

𝑟

2
cos (𝜙)

𝑟

2
sin(𝜙)

𝑟

2
sin(𝜙)]

{
𝜃̇1

𝜃̇2

} (3.1)

𝜃 ̇ = {
𝜃̇1

𝜃̇2

} = [

𝑑

𝑟
cos (𝜙)

1

𝑟
cos (𝜙)

1

𝑟
sin (𝜙)

−
𝑑

𝑟
cos (𝜙)

1

𝑟
cos (𝜙)

1

𝑟
sin (𝜙)

] {
𝜙̇
𝑥̇
𝑦̇
} (3.2)

11

Figure 3.1: (a) Mobile robot in body frame; (b) Mobile robot in fixed frame

Figure 3.2: Assembled Arduino Zumo shield

Therefore, straight line motion of the robot platform is generated when 𝜃̇1 = 𝜃̇2 while the rotation

of the robot about the center point of the axis that connects two rear wheels as shown in Figure

3.1(a) occurs when 𝜃̇1 = −𝜃̇2 . These – straight line and rotation – are the only motions required

for the robot task.

12

The first navigation method for the specified mobile robot platform is based on the integration of

small steps of the robot’s movement in a 2D workspace. Each step is defined by the wheel speed

and step duration. The wheel speed is controlled by a pulse width modulated signal from the micro-

controller module that is sent to the motor driver. The parameterization of the navigation process

is given as follows: Suppose the time duration of each step is denoted by ∆𝑡. The angular velocities

of the right and the left wheels are 𝜃̇1 and 𝜃̇2, respectively. At any given 𝜙, the discrete steps in

both coordinates are computed as ∆𝑥 = 𝜃̇𝑟𝑐𝑜𝑠(𝜙)∆𝑡 and ∆𝑦 = 𝜃̇𝑟𝑠𝑖𝑛(𝜙)∆𝑡, where 𝜃̇ = 𝜃̇1 =

𝜃̇2 is used for straight line motion of the robot. Also, the rotational step ∆𝜙 is extracted from 𝜙 ̇ ∆𝑡,

where 𝜙̇ =
𝑟

𝑑
𝜃̇ and 𝜃̇ = 𝜃̇1 = −𝜃̇2 for clockwise/counter-clockwise rotations. For the

aforementioned test robot, an assumption can be made that the wheel speed remains constant

throughout the runtime of the robot tasks, and hence, the speed is assumed to be K. This constant

is incorporated in the Arduino program for the purpose to test the proposed concept. Given the

reference coordinate (x0,y0) and control input to alter 𝜙 and 𝜃̇, the local position can be evaluated

using simple iterations:

𝑥𝑛+1 = 𝑥𝑛 + 𝜃̇𝑟𝑐𝑜𝑠(𝜙)∆𝑡 (3.3)

𝑦𝑛+1 = 𝑦𝑛 + 𝜃̇𝑟𝑠𝑖𝑛(𝜙)∆𝑡 (3.4)

𝜙𝑛+1 = 𝜙𝑛 +
𝑟

𝑑
𝜃̇∆𝑡 (3.5)

This odometry technique comes with the cost of error development due to the integration of small

errors over the duration of the robot operation. This error development is due to both systematic

and non-systematic errors. Systematic errors generally refer to an error due to inaccurate

calculation of the wheel rotation, incorrect readings from the inertial measurement unit

13

components and other erroneous measurements from on board sensors, all contributing to

navigation errors. In order to develop accuracy in localization, odometry is often used along with

other proven methods of navigation and mapping, [19]. However, the cost of implementation for

this method is significantly lower relative to some of the commercially available solutions. These

commercial solutions may cost approximately ten times more than in a class solution, [20].

Commercial solutions often use expensive but highly accurate and self-calibrating sensors along

with hardware that may not serve an academic purpose. Mapping software comes with some of

the available indoor positioning systems and are often proprietary, expensive and provide little

room for alteration and improvements. The above-mentioned techniques and setup use a Zigbee

personal area network for transmitting local calculation results for further work in the base system

to generate 2D mapping work. Therefore, selecting odometry techniques depends on the level of

accuracy required and the allowable tolerance given to the robotic system while meeting robot

task/mission assignment objectives.

3.3 Array of Beacons

In the previous section, the local position of a mobile robot is measured using an open-loop

scheme. Any amount of slippage or change in the motor speed beyond measurements will generate

inaccurate coordinate calculation. Such changes could be a result of decaying batteries, changes in

surface conditions, etc., [21]. Another approach to determine the location of a mobile robot in a

2D workspace is to add an external system that is sensitive to the robot motion. In this thesis, only

the coordinates of a single mobile robot on a planar platform is considered. The following sections

detail two such methods for localization of a mobile robot using an external setup that is sensitive

14

to the robot’s displacement. One approach is to design a radar like system, where a spatial signal

(ultrasonic or laser) is transmitted from a reference point to the robot workspace while sweeping

across the span of the platform. Orientation of the transmitter and the characteristics of the reflected

signal at the receiver from the robot, determines the location of the mobile robot as shown in Figure

3.3(a) where, coordinates are measured in terms of r and 𝜙. The limitation to the radar-based

localization method using inexpensive “of the shelf” sensors is given by the dispersion of the

received signal during rotation of the transceiver. This inaccurately alters time of arrival of the

signal received. Hence, there will be an accumulation of errors in the calculation of r. The second

approach is to use an array of sensors, where each sensor is a transceiver that determines the

distance from the reflected object (robot) on a given workspace. Each sensors are arranged such

that collectively all the sensors address discrete points of a vertical axis in a cartesian plane. The

position of the respective sensor and the corresponding signal reflected from the tracked robot

provide sufficient information about the target robot location. Some major limitations in the array

of beacon approach are due to the resolution of the grid points and choice of sensor. The resolution

of the inferred localization information can be easily improved by increasing the density of the

number of sensors within the array direction. As the number of sensors increases, the cost of the

setup increases as well. As this study addresses a workspace that is no more than two meter in

dimensions, it is possible to keep the number of sensors at some minimum while achieving a

certain level of accuracy.

15

Figure 3.3: (a) Radar based localization; (b) Grid from sensor array

Figure 3.3 shows both configurations discussed in this section. Two types of sensors are used to

test these two methods: Ultrasonic sensors are the simplest to implement but produce poor

performance in terms of localization accuracy when the resolution of the grid is increased and the

robot is the furthest from the sensor array. This is due to the wide arrival angle of the signal. On

the other hand, a laser transceiver has a sharp angle of arrival and hence produces an accurate

localization. However, the option of an array of lidar increases the cost of implementation. In the

following a detail discussion is provided about the choice of inexpensive sensors. For the described

experimental robot task, there are several distance measuring sensors available. The choice of the

specific sensor for mapping robot locations depends on the desired or required accuracy of the

inferred localization. An ideal sensor will transmit the corresponding wave with an associated

angle of arrival and departure, as narrow as possible. Otherwise, the sensors will receive reflected

signals from a position different from the line of sight set by the sensor orientation. In addition,

the measure of the distance can be done in two ways for most distance sensors: the time of flight

method is used when the speed of propagation of the transmitted signal is known. The recorded

16

time lapse for the reflected signal times the speed yields twice the distance travelled by the signal.

The second method is to use the signal strength from the reflected signal to calculate the

corresponding distance. However, the signal strength has generally a non-linear relationship with

the distance and requires some complicated computation in order to extract an accurate result. In

this section, two choices of localization processes are discussed. Initially, a radar method is

attempted with a laser transceiver. The corresponding sensor for this setup is a VL53L0X. This

particular sensor has a sharp beam and a multipath error coming from the received signal when the

robot is in movement. The sensor is placed on top of a servo motor that allows for a sweeping

motion. The corresponding results are inconsistent and produce dispersions due to the sweeping

motion. The sensor grid approach is tested as well using the same laser transceiver as described

above. The VL53L0X sensor communicates through an I2C protocol and has the same address

value as any other VL53L0X unit. Hence, a laser sensor array – employing a number of these

sensors - can only be used if the I2C mux is installed in the system in order to read and distinguish

each sensor. Adding I2C mux or an array of ultrasonic sensors will introduce additional challenges

as time sharing schemes are required to read from all the sensors. The ultrasonic sensor array is

tested with equal distances between each sensor. The distances between each sensor have to be

selected carefully with respect to the overall distances. This is because the overlap in angle of

arrival/departure cone of signals from different sensors increases with the larger range. Once the

localization information is generated by the external setup, the position information is passed to

the base system for mapping and visualization using tools from MATLAB®. Considering all the

limitations addressed in this section, the following section provides another approach that yields

greater accuracy and lesser hardware setup with a cost of more computation effort by the base

system.

17

3.4 Computer Vision Based Positioning

In general, the number of computations per seconds among workstations has been growing rapidly

for last few decades. This means that more computationally rich tasks are possible without an

additional cost. MATLAB®'s image processing toolbox comprises a large set of post image

processing tools.

Fundamental computer vision algorithms along with the image processing toolbox added new

solutions to the search for cost-effective mobile robot localization problem for small-scale

platforms. Figure 3.4 shows a generic approach for identifying a target object location from an

image. At first, a few assumptions need to be made prior to the discussion regarding the experiment

conducted. The position and projection of the camera is kept at the center of the platform with

fixed height and a vertically downward direction, respectively. Given the dimension of the

platform, and assuming shape and size of the target mobile robot remains unchanged, the following

steps are applied to track the mobile robot. The entire process can be divided into two major

sessions. The first session is composed of the initialization step followed by an iteration step. In

the initialization step, the camera object is initiated to begin the recording process and an image

with the target robot is captured. The dimensions of the captured image is shrunk from a 3D to 2D

version by converting the acquired RGB image to grayscale. The process of edge profile using

‘Sobel’ method is generated next. In the proposed process, the user is asked to crop manually a

tight segment of the edge profile from the image that covers the target robot. The cropped segment

is used as a convolution filter image to the future stream of images once the address map system

starts running. Once the system run status is enabled, the iteration step process starts. A portion of

the iteration step process is identical to the initialization process. A loop of jobs is considered that

includes image capture, RGB to grayscale conversion, derived edge profile processing, followed

18

by the convolution filter processing using the cropped reference from the initialization step. A map

of matching indexes is generated where the maximum indices indicates the greatest probability of

having the tracked robot being in the corresponding position. The iteration step is repeated as long

as the tracking status is enabled.

Figure 3.4: Positioning using computer vision algorithm flowchart

Figure 3.5(a) shows pre-reference RGB image prior to any post processing. Figure 3.5(b) shows

the cropped reference image with edge profile process after the RGB to gray conversion is

performed. Once the tracking process is initiated, a stream of plots produced from the

instantaneous localization is created in order to generate a real-time visual feed of the robot's

19

position. Figure 3.7(a) shows the localization as a surface map after each convolution step is

performed. Following Figure 3.7(b) shows a contour map corresponding to the surface plot.

Figure 3.5: Image process for position determination

20

Figure 3.6: 2D workspace mapping on single mobile robot

Figure 3.7: Snapshots of real-time visual position feed

21

The output of the computer vision approach shows perfect accuracy for the experimental task

described and corresponding mobile robot hardware used. There is some amount of lagging due to

the visual feed from the base computer. However, the key advantage here is that the mobile robot

is free from doing any position calculations and computations. Instead, the robot communicates

with the base system with a predefined sampling rate to receive its current location. The computer

vision setup is relatively more expensive than other solutions discussed in this thesis. Two key

components of the expenses are the quality of the camera used and the capacity of the base system.

However, the camera and the workstation both have a wide range of costs associated and often

academic laboratories stock such components. Some of the commercially available

software/hardware pair choices for computer vision-based positioning system require a high

premium for the use of proprietary software along with corresponding hardware. MATLAB® is

also a cost factor but often available under college site-licenses. However, software tools used for

the computer vision-based positioning solutions can be easily achieved using open-source tools

like Python and Octave.

3.5 Localization Performance Analysis

The three approaches discussed in this thesis are summarized in Table 3.1 with respect to

components and technique used, as well as their disadvantages and advantages. Odometry has

gained tremendous popularity in position determination of a mobile robot for academic

assignments. This technique works even better when the operation time and dimension of the robot

workspace is small. This is mainly due to fewer opportunities for accumulation of the error.

Additionally, it is also independent of the number of robots present in the workspace. However,

22

as the operation time increases or the robot receives any unexpected impact or event that triggers

a large error, there must exist an alternative method to reset the position information through the

help of an external system. An array of beacons could represent such a solution. In this research,

a simple experiment is used as a setup for a single mobile robot in a predefined workspace. If a

high resolution of the robot’s position is not required, an array of beacons approach could be a fast

solution to position determination. If one is looking for a localization solution that has great

accuracy (10 mm or less) along with independence from the number of mobile robots participating

in the task space, the computer vision-based (CV) solution would be an appropriate choice. The

CV approach expenses may vary based on choice of hardware. However, for the experiment

performed in this thesis a low-resolution web camera is sufficient.

Table 3.1: Comparison among indoor localization approaches offered in this thesis

Approach Odometry Array of beacons Computer Vision

Technique

Local positioning

computation by tracking

micro-movements

Rotating

transceiver

(rotating

radar)

Linearly

arranged

array of

transceiver

Capture image of

target object to

generate edge profile

followed by cross

matching with

reference.

Sensor(s)

Accelerometer, gyro,

magnetometer, motor

rotation decoder

Ultrasonic sensor or LIDAR RGB Camera

Advantage
Relatively inexpensive

and simple to implement.

Relatively simple to

implement and faster to

calculate position

coordinates.

Highly accurate for

small platform

addressed in this

thesis.

Disadvantage

Prone to systematic and

non-systematic error (e.g.

slippage, surface).

Multipath error, resolution of

position grid proportional to

number of sensors used.

Computationally

rich and choice of

hardware may be

expensive.

23

In this chapter, regardless of the approach taken, there is an additional mapping task performed in

the base system using tools from MATLAB®. Similar mapping tasks can also be achieved using

opensource tools such as Python or Octave, as mentioned earlier. Figure 3.6 shows the mapping

results of a single robot on the 2D platform. There are exciting open-source tools available such

as ORB-SLAM or ROS navigation to compute simultaneous localization and mapping (SLAM).

However, this thesis is tailored towards educational needs for students from a wide range of

backgrounds and not limited to robotics stream. The thesis further emphasizes the use of

inexpensive hardware with minimal software complexity. The objective in this work aligned with

addressing the localization issues associated with the autonomous wheelchair development.

However, the goal is also to include an inexpensive solution so the research can be conducted

using common resources available in most institutions. Most institutions apply MATLAB® in

various other fields due to its rich set of tools that allow students to explore and mesh concepts in

an interdisciplinary fashion, without having additional complexity to implement. MATLAB® tools

and hardware used in this study are aimed for a known small-scale environment and single robot

with opportunity to include machine learning and deep learning processes with ease. The problem

can be extended to multi-robot and unknown environments where relevance of using tools such as

ORB-SLAM or ROS navigation is more significant, [22].

24

4. Environment Measurements and Observations

This chapter discusses two of the four streams associated with the development of the AWC. (1)

The feedback system and (2) the navigation strategy including mapping and simulation. The work

emphasized minimizing computational load by selecting resource constraint hardware such as

single-board computers and other low-power co-processors to achieve a critical aspect of the

feedback system. The feedback system proposed in this chapter utilizes a pretrained convolutional

neural network to process captured images from the environment. The object detection process

using cameras has been around for awhile, [23]. However, in this work we propose the use of depth

image merged with convolutional neural network-based object detection transfer learning to

identify obstacle classes and their proximity. Moreover, the tools and the development work

associated with the proposed feedback system are open source. Furthermore, the work proposes

low-cost navigation, mapping, and simulation processes suitable for extending AWC

development. The navigation, mapping, and simulation tasks are developed using a low-cost

research software tool such as MATLAB® and Simulink.

The following items are included in the Appendix for detail setup resources:

o Platform configuration

o RGB + Depth Image processing using tools

o Co-processor: Google Coral

25

4.1 Hardware and Software Configuration

The feedback system is comprised of multiple types of sensors. In this work, the focus is partly on

computer vision (CV) applied to the AWC. The CV pipeline’s hardware and software tools are

discussed in the following section.

The CV setup is constructed using a depth camera stemming from the Microsoft XBOX 360 Kinect

setup, a single board computer or Raspberry Pi 4 Model B, and an edge TPU co-processor from

Google Coral. The depth camera is used to read both the RGB and the depth images from the

environment. The images are processed and hosted in the Raspberry Pi (single board computer or

SBC) and further relayed to the co-processor for machine learning inference computations. The

Kinect camera can capture images using two cameras fixed in positions to enable the trilateration

method [24] for deriving depth information. The Kinect has a viewing angle of 430 vertical and

570 horizontal and allows tilting that ranges ±270. The maximum frame rate offered by the camera

is 30 frames per second which is sufficient for the work presented in this thesis. The Raspberry Pi

used in this study uses Raspbian OS, 64-bit architecture, 1.5 GHz quad-core processor with 4GB

RAM. In addition, the edge TPU from Google Coral is added to focus on machine learning

routines, and can perform four trillion operations (tera-operations) per second (TOPS), using 0.5

watts for each TOPS (2 TOPS per watt). The utilized wheelchair is a power chair (PermobilTM

M300 Corpus HD) with joystick navigation control, providing power with the use of two 12V

batteries. Note, none of the OEM control systems were altered for the proposed work. Instead, a

mechanical connection to the joystick is envisioned to connect the control commands from the

proposed control system to the wheelchair. In this fashion, the type and manufacture of the

wheelchair is irrelevant as any such device can easily be modified.

26

Specific software tools are selected to enable the streaming process from the camera to the

Raspberry Pi. The freenect tool is used to verify the functions of the depth camera. Additional

dependency files such as libgl-mesa-swx11 and equivalent are required for OpenGL utilization.

The RGB image/object classification routine with the pre-trained model is used for object

detection. The routine is written in Python and requires OpenCV along with the libraries from

python-freenect supporting the depth camera. Moreover, TensorFlow lite is applied to

accommodate computationally minimized versions of the object detection processes. The

processes are executed at the co-processor hardware. Additional tools are used to support the co-

processor hardware such as libedgetpu1-std. Figure 4.1 shows the hardware in sequence to support

the workflow proposed in this thesis.

Figure 4.1: Workflow of feedback system proposed in this thesis

27

4.2 Computer Vision for Obstacle Avoidance

The computer vision process starts with capturing images using both cameras available in the

Kinect. The depth images are constructed using the RGB images from the two cameras separated

by a fixed distance using the trilateration method. A routine is developed to read both the RGB

images and constructed depth images but feeds only the RGB images to a pre-trained convolutional

neural network (CNN). The network is TensorFlow Lite-supported object detection routine in real-

time. The network or the object classifier outputs the detected object label, the probability of the

detected object, and the detected object’s boundary. The depth image color scheme is changed to

a single channel with values ranging from 0 to 255 where 0 (light pixels) indicates furthest or

undetermined objects and 255 (dark pixels) indicates the nearest object. The object boundaries

from the object classifier are mapped on the depth image. The pixels from the mapped area of the

depth image are used to calculate the mean/max channel values. The mean/max channel values

within the detected object’s boundary of the depth image addressed by the RGB object detection

network are strongly correlated with the object’s proximity. Hence, from the process described

above, there are two quantifiable outputs generated at every frame: (1) The probability of the

detected object (p) and (2) the mean/max channel values from the depth image correspond to the

detected object location (d). In addition, the quantity x can be derived from p and d by using a

linear combination as shown in Equation 4.1, where a and b are constant coefficients used to scale

the detected obstacle’s probability and the obstacle’s proximity respectively. The x term can be

used towards the obstacle avoidance process to determine the obstacle’s proximity and severity.

Optimization of Equation 4.1’s coefficients are beyond the scope of this work. Also, the

arrangements of p and d to form Equation 1 are not explored in this study for best results.

28

𝑥 = 𝑎𝑝 + 𝑏𝑑 (4.1)

The objective of the CV process is to detect obstacles by the AWC and make autonomous decisions

to avoid any harmful contacts. Therefore, the process needs to be executed in real-time with

minimum delay. The process is achieved at about 12 frames per second - at most - after including

a co-processor, specifically the Google Coral (edge TPU). The inference steps are computed at the

co-processor with enhanced performance relative to the Raspberry Pi. The identical routine for

object detection runs at 1-3 frames per second without the edge TPU (also called accelerator). The

CV process discussed in this section is neither the complete feedback system for the AWC nor is

it mounted on the chair in full operation mode. To enhance the safety features of the AWC, there

should be additional proximity sensors and methods in place such as ultrasonic, infrared, or laser-

based obstacle and edge detection methods. Figure 4.2 – 4.4 show forms of images applied in the

obstacle avoidance process. Figure 4.2 shows the RGB image for the object detection process that

eventually merged with the mono channel depth image shown in Figure 4.4. The detected object

label with the probability in black text and area in the green rectangle indicating pixels for

proximity calculation is shown in Figure 4.4.

29

Figure 4.2: RGB image captured from the Kinect before feeding to the object detection process

Figure 4.3: Depth image captured from the Kinect

Figure 4.4: Depth image to mono channel followed by detected object’s boundary mapping for

proximity calculation

30

4.3 Navigation Strategies and Simulation

There are four key areas of research that guide AWC development as mentioned in the

introduction. In general, it is challenging to conduct a study on navigation and mapping strategies

with the physical system during the development phase of the other key areas. Hence, the

simulation path is considered to remove dependencies on the control system, the

localization/positioning, and the feedback system. There are key assumptions considered during

the simulation and mapping computations which are listed in the followings:

• Localization or position of the AWC is known and accurate.

• Obstacle detection processes are fully functioning and accurate.

• The AWC is running on a flat surface.

• Direction and velocity control are functioning and accurate.

The simulation is designed using MATLAB® basic toolkit. The aim of the simulation is to keep

the navigation algorithm expandable with minimal effort. The resources used in the simulation

design are found with low cost to no cost depending on the purpose of the use. Hence, the simulator

is suitable for academic use. Based on the assumptions made above, the simulation is based

visually on a grid covering the entire workspace of the AWC, which is shown in Figure 4.5. Each

of the tiles represents possible coordinates that the AWC is capable of reaching. However, some

tiles are marked with filled colors to indicate obstacles, the AWC current position, and destination.

Figure 4.5 also shows the trace of the journey made by the AWC during the simulation. As the

AWC travels through each block, an iteration count is placed to observe the overall cost of the

journey. The navigation procedure considered and as indicated in the pseudo-code and the

flowchart shown in Figure 4.6, minimizes the iteration cost in most scenarios. Each scenario is

31

created with randomly placed obstacles, a random starting point, and random destination

coordinates. Once the simulation starts to iterate, each incoming step for the AWC is calculated.

The next step of the AWC is calculated based on the current position and surrounding obstacles.

The priorities considered for the future step calculations are addressed in the next step process

described in the pseudo-code below. The flowchart in Figure 4.6 shows the overall route

determination processes applied in the simulation.

Pseudo-Code

Motion list: {right, left, forward, and backward}

While all the neighbor tiles are not evaluated

Pick a tile from the possible motions list that

has not been picked in the current loop

If the tile picked has an obstacle

 Discard the motion choice

 Else

 Store the motion choice

to the next step vector.

 End If

End While

If the next step vector is empty

The next step is the previous position.

Else

Euclidean distance calculated between

each of the elements available in the

next step vector and the destination.

The next step vector is sorted from

the least to the greatest distance.

Each coordinate found in the next step

choices are re-arranged based on past visits.

The next step is the least Euclidean distance

coordinate among the least visited options.

End If

32

Figure 4.5: Simulation grid showing the AWC tile as blue, destination tile as red, obstacle tiles

as black along with a trace of AWC journey using blue line.

Figure 4.6: The overall route determination processes applied in the simulation

33

4.4 Conclusion

Navigation of AWC’s may fill a need in hospital logistics, aging in place, as well as in support and

enhancement for individuals living with a disability. The proposed autonomous functionality

employs an existing power wheelchair, with an add-on that connects to the existing wheelchair

control joystick, using mechanical means. In addition, readily available off-the shelf components

are proposed and tested for constructing the vision-based navigation system, such as the Kinect

camera system, a single board computer such as the Raspberry Pi 4, and the Edge TPU co-processor

along with freely available software such as OpenCV, python-freenect, and TensorFlow, etc. This

proposed hardware concept is engaged by a pre-trained CNN, allowing for obstacle recognition and

hence avoidance during autonomous driving of the AWC. In addition, we also propose a novel

integration of the two camera feeds for discriminating against obstacles of less importance due to

lack of proximity. A proposed navigation algorithm is tested using simulations, with the objective

to test if the overall concept is feasible for sensing, controlling, and making decisions during the

autonomous driving portion of an AWC. The proposed concept and algorithms as well as hardware

and software implementations are currently not optimized, which is part of the future work on this

project. The presented simulation work and testing of the proposed obstacle recognition system

indicate the proposed hardware and software concepts are feasible for further development and

integration into a power wheelchair, provided additional sensors are embedded to provide for safe

operation of the AWC.

34

5. Additional Studies

5.1 Vicon – Motion Capture

5.1.1 Experiment Setup and Procedure

In order to address quality of the motion captured data, a simple experiment is performed. The

Vicon system is prepared by making appropriate calibration, masking and capturing a test motion

using the calibration wand as a subject. The calibration wand contains five markers where

Euclidean distance between the markers remains constant as the subject is just a T-Shaped metal

body with fixed marker position. After capture is completed, data are exported to csv format for

further studies under the rich tools of MATLAB®. Once the data are imported to MATLAB®, each

marker is plotted in multiple way to aid understanding of the motion capture performance. The

followings are the observations considered:

Figure 5.1: Trace of motion from five markers attached to the calibration wand

35

The purpose of this Figure 5.1 is to observe any ghost behavior during the animation of the

captured data. Any sudden jump in data location indicates corrupted data region and hence, should

be avoided during performance analysis.

Figure 5.2: Plot of individual marker correspond to each axis

Purpose of this Figure 5.2 is to further identify any corrupt zones where data is missing and observe

each marker transition during the capture. Unlike placing the markers on a human subject, this

experiment does not contain any human error. Therefore, all error sourced is from either calibration

or post process of raw data.

Figure 5.3: Euclidean distances between the markers during motion capture

M
ar

ke
r

La
b

el

36

Ideally the Euclidean distance is supposed to be constant over the capturing period as the

calibration wand remained unaltered during the experiment. However, the absolute distance of all

markers relative to a single marker (marker 1 in above plot) shows a distortion noisy feature. A

broken plot indicates missing data zones. However, the rest of the plot is seemingly a straight line

which is expected but unlike an ideal case; some deviation in absolute distance has been observed.

The standard deviation and error readings are considered. Refer to the MATLAB® file for the

Vicon for greater details (appendix 7.5).

5.2 ONSEMI

5.2.1 Problem Statement

The assigned problem is associated with wafers that get damaged during the handling process. The

misalignment issue appears if the wafers are not correctly placed into the carrying unit. The

misalignment issue causes damage or breaks to the wafer plates.

5.2.2 The Proposed Work

To mitigate the mishandling of the wafer by the particular automation, the first step is to notify the

robot that the wafers are in a misaligned position. Hence, it is important to monitor and watch the

positions carefully before the entire process. The proposed solution for this malfunction is, instead

of using human eyes use the computer vision and a more specifically an image processing system.

To work with the solution, a prototype is taken, where there is a tray which can carry wafers and a

camera is mounted in front of the tray which can extract images of the boundary of the wafers, by

capturing the front view. To implement this system, MATLAB® is used with an edge detection

algorithm from its image processing toolbox. This procedure evaluates the position or alignment

of the wafers and generates a flag before any malfunction takes place. The setup is shown in Figure

5.4.

37

Figure 5.4: Prototype of wafer carrying unit with placing a camera

5.2.3 Technical Description

The following steps have been applied to implement the prototype method: -

o Edge detection algorithm applied to distinct boundaries of the target object. Two images

are captured to test the procedure. The first image represents a reference image and is

considered to be the ideal orientation of the target object. The image is further processed

including conversion to gray scale followed by an edge detection profile generated using

the ‘Sobel’ or ‘Canny’ algorithm.

o BW = edge detect edges using the Sobel method. This method finds edges using the Sobel

approximation to the derivative. It returns edges at those points where the gradient of I

(image) is maximum.

38

o Scalar value that specifies the standard deviation (σ) of the Gaussian filter. The default is

sqrt (2). Edge chooses the size of the filter automatically, based on σ.

o Evaluation of images are done using a correlation coefficient matrix between the reference

and test image. Also squared error sum is applied to aid further distinguish the two images.

o Performance can be enhanced by applying a high resolution camera and mounting the

camera on the optimal position (optimal angle of view). For this prototype testing, a

“Logitech” webcam camera was used, which is MATLAB® supported and its resolution is

about 720 pixels. The higher the resolution, the greater details can be extracted from

images. Future research can be aimed at arranging a consistent setup with a more

complicated scenario to the tailor image processing further to generate more accurate

results.

Reference image (RGB) Edge detection profile (Reference)

Test image (RGB) Edge detection profile (Test)

Figure 5.5: Set of images to determine any misalignment between reference and test image.

39

6. References

[1]. H. Grewal, A. Matthews, R. Tea and K. George, "LIDAR-based autonomous

wheelchair," 2017 IEEE Sensors Applications Symposium (SAS), 2017, pp. 1-6, doi:

10.1109/SAS.2017.7894082.

[2]. J. S. Nguyen, S. W. Su and H. T. Nguyen, "Experimental Study on a Smart Wheelchair

System Using a Combination of Stereoscopic and Spherical Vision", 35th Annual

InternationalConference of the IEEE EMBS, 3–7 July, 2013.

[3]. R. Alkhatib, A. Swaidan, J. Marzouk, M. Sabbah, S. Berjaoui and M. O.Diab, "Smart

Autonomous Wheelchair," 2019 3rd International Conference on Bio-engineering for

Smart Technologies (BioSMART), 2019, pp. 1-5, doi:

10.1109/BIOSMART.2019.8734264.

[4]. Branco, S.; Ferreira, A.G.; Cabral, J. Machine Learning in Resource-Scarce Embedded

Systems, FPGAs, and End-Devices: A Survey. Electronics 2019, 8, 1289.

https://doi.org/10.3390/electronics8111289

[5]. Ryu, H.-Y.; Kwon, J.-S.; Lim, J.-H.; Kim, A.-H.; Baek, S.-J.; Kim, J.-W. Development

of an Autonomous Driving Smart Wheelchair for the Physically Weak. Appl.

Sci. 2022, 12, 377. https://doi.org/10.3390/app12010377

[6]. Gao, C., Sands, M., Spletzer, J.R. (2010). Towards Autonomous Wheelchair Systems

in Urban Environments. In: Howard, A., Iagnemma, K., Kelly, A. (eds) Field and

Service Robotics. Springer Tracts in Advanced Robotics, vol 62. Springer, Berlin,

Heidelberg. https://doi.org/10.1007/978-3-642-13408-1_2

[7]. Royo, S.; Ballesta-Garcia, M. An Overview of Lidar Imaging Systems for Autonomous

Vehicles. Appl. Sci. 2019, 9, 4093. https://doi.org/10.3390/app9194093

https://doi.org/10.3390/electronics8111289
https://doi.org/10.3390/app12010377
https://doi.org/10.1007/978-3-642-13408-1_2
https://doi.org/10.3390/app9194093

40

[8]. Beattie, P.D., Bishop, J.M. Self-Localisation in the ‘Senario’ Autonomous

Wheelchair. Journal of Intelligent and Robotic Systems 22, 255–267 (1998).

https://doi.org/10.1023/A:1008033229660

[9]. Lankenau, A., Röfer, T., Krieg-Brückner, B. (2003). Self-localization in Large-Scale

Environments for the Bremen Autonomous Wheelchair. In: Freksa, C., Brauer, W.,

Habel, C., Wender, K.F. (eds) Spatial Cognition III. Spatial Cognition 2002. Lecture

Notes in Computer Science, vol 2685. Springer, Berlin, Heidelberg.

https://doi.org/10.1007/3-540-45004-1_3

[10]. C. Wang et al., "Autonomous mobile robot navigation in uneven and unstructured

indoor environments," 2017 IEEE/RSJ International Conference on Intelligent Robots

and Systems (IROS), 2017, pp. 109-116, doi: 10.1109/IROS.2017.8202145.

[11]. Smids, J., Nyholm, S. & Berkers, H. Robots in the Workplace: a Threat to—or

Opportunity for—Meaningful Work?. Philos. Technol. 33, 503–522 (2020).

https://doi.org/10.1007/s13347-019-00377-4

[12]. Hvilshøj, M., Bøgh, S., Skov Nielsen, O. and Madsen, O. (2012), "Autonomous

industrial mobile manipulation (AIMM): past, present and future", Industrial Robot,

Vol. 39 No. 2, pp. 120-135. https://doi.org/10.1108/01439911211201582

[13]. G. G. Jaman and S. C. Chiu, "A Mobile Wireless Sensor Network Emphasizing Region

of Interest via a More Effective Swarm Intelligence Method," 2014 National Wireless

Research Collaboration Symposium, 2014, pp. 74-78, doi: 10.1109/NWRCS.2014.18.

[14]. G. G. Jaman, N. Farheen and M. P. Schoen, "Cost Effective Mobile Robots Navigation

and Mapping System for Education," 2020 Intermountain Engineering, Technology

and Computing (IETC), 2020, pp. 1-6, doi: 10.1109/IETC47856.2020.9249154.

https://doi.org/10.1023/A:1008033229660
https://doi.org/10.1007/3-540-45004-1_3
about:blank
about:blank
about:blank
about:blank
about:blank
about:blank
about:blank

41

[15]. Watanabe, K., Shiraishi, Y., Tzafestas, S. G., Tang, J., & Fukuda, T. (1998). Feedback

control of an omnidirectional autonomous platform for mobile service robots. Journal

of Intelligent and Robotic Systems, 22(3), 315-330.

[16]. Iqbal, J., Xu, R., Sun, S., & Li, C. (2020). Simulation of an autonomous mobile robot

for LiDAR-based in-field phenotyping and Navigation. Robotics, 9(2), 46.

[17]. Seredyński, D., Stefańczyk, M., Banachowicz, K., Świstak, B., Kutia, V., & Winiarski,

T. (2016, August). Control system design procedure of a mobile robot with various

modes of locomotion. In 2016 21st International Conference on Methods and Models

in Automation and Robotics (MMAR) (pp. 490-495). IEEE.

[18]. Joong Hyup Ko, Seung Do Kim and Myung Jin Chung, "A method of indoor mobile

robot navigation using acoustic landmarks," Proceedings of IEEE International

Conference on Robotics and Automation, Minneapolis, MN, USA, 1996, pp. 1726-

1731 vol.2.

[19]. S. Ma, Y. Zhang, Y. Xu, B. Wang, J. Cheng and Q. Zhao, "Indoor robot navigation by

coupling IMU, UWB, and encode," 2016 10th International Conference on Software,

Knowledge, Information Management & Applications (SKIMA), Chengdu, 2016, pp.

429-432.

[20]. J. Černohorský and M. Novák, "Mobile robot indoor navigation," 2016 17th

International Carpathian Control Conference (ICCC), Tatranska Lomnica, 2016, pp.

151-155.

[21]. L. Delahoche, C. Pegard, E. M. Mouaddib and P. Vasseur, "Incremental map building

for mobile robot navigation in an indoor environment," Proceedings. 1998 IEEE

42

International Conference on Robotics and Automation (Cat. No.98CH36146), Leuven,

Belgium, 1998, pp. 2560-2565 vol.3.

[22]. H. Durrant-Whyte and T. Bailey, "Simultaneous localization and mapping: part I,"

in IEEE Robotics & Automation Magazine, vol. 13, no. 2, pp. 99-110, June 2006.

[23]. Malagon-Borja, L., & Fuentes, O. (2009). Object detection using image reconstruction

with PCA. Image and Vision Computing, 27(1-2), 2-9.

[24]. Vinh, T. Q., & Tri, N. T. (2015, September). Hand gesture recognition based on depth

image using kinect sensor. In 2015 2nd National Foundation for Science and

Technology Development Conference on Information and Computer Science

(NICS) (pp. 34-39). IEEE.

43

7. Appendix

7.1 Localization using Computer Vision (.m files)

44

45

7.2 Depth Image + Raspberry Pi Setup Resources

46

47

48

49

Python Code:

To install pytorch follow: https://medium.com/secure-and-private-ai-writing-challenge/astep-

by-step-guide-to-installing-pytorch-in-raspberry-pi-a1491bb80531

More help on freenect: https://naman5.wordpress.com/2014/06/24/experimenting-withkinect-

using-opencv-python-and-open-kinect-libfreenect/

50

7.3 RGB+ Depth Classification Routine

Import packages

import os

import argparse

import cv2

import numpy as np

import sys

import time

from threading import Thread

import importlib.util

import freenect

import frame_convert2

cv2.namedWindow('Depth')

cv2.namedWindow('RGB')

keep_running = True

rgb = []

depth = []

def display_depth(dev, data, timestamp):

 global keep_running

 global depth

 depth=frame_convert2.pretty_depth_cv(data)

 print(depth.shape)

 cv2.imshow('Depth', depth)

 if cv2.waitKey(10) == 27:

 keep_running = False

def display_rgb(dev, data, timestamp):

 global keep_running

 global rgb

 rgb=frame_convert2.video_cv(data)

 print(rgb.shape)

 cv2.imshow('RGB', rgb)

 if cv2.waitKey(10) == 27:

 keep_running = False

def body(*args):

 if not keep_running:

 raise freenect.Kill

print('Press ESC in window to stop')

freenect.runloop(depth=display_depth,

 video=display_rgb,

 body=body)

cv2.destroyAllWindows()

lut = np.zeros((256, 1, 3), dtype=np.uint8)

51

lut[:, 0, 2] = list(range(0,256))

"""

for i in range(5,-1,-1):

 print("Count down: {}".format(i))

 time.sleep(1)

"""

time.sleep(1)

#function to get RGB image from kinect

def get_video():

 array = freenect.sync_get_video()[0]

 array = cv2.cvtColor(array,cv2.COLOR_RGB2BGR)

 return array

#function to get depth image from kinect

def get_depth():

 array=frame_convert2.pretty_depth_cv(freenect.sync_get_depth()[0])

 #array = freenect.sync_get_depth()[0]

 array = array.astype(np.uint8)

 array=cv2.cvtColor(array, cv2.COLOR_GRAY2BGR)

 array=cv2.LUT(array, lut)

 #array=cv2.applyColorMap(array, cv2.COLORMAP_HOT)

 #array=cv2.cvtColor(array, cv2.COLOR_GRAY2BGR)

 return array

Define and parse input arguments

parser = argparse.ArgumentParser()

parser.add_argument('--modeldir', help='Folder the .tflite file is located

in',

 required=True)

parser.add_argument('--graph', help='Name of the .tflite file, if different

than detect.tflite',

 default='detect.tflite')

parser.add_argument('--labels', help='Name of the labelmap file, if different

than labelmap.txt',

 default='labelmap.txt')

parser.add_argument('--threshold', help='Minimum confidence threshold for

displaying detected objects',

 default=0.5)

parser.add_argument('--resolution', help='Desired webcam resolution in WxH.

If the webcam does not support the resolution entered, errors may occur.',

 default='640x480')

parser.add_argument('--edgetpu', help='Use Coral Edge TPU Accelerator to

speed up detection',

 action='store_true')

args = parser.parse_args()

MODEL_NAME = args.modeldir

GRAPH_NAME = args.graph

LABELMAP_NAME = args.labels

min_conf_threshold = float(args.threshold)

resW, resH = args.resolution.split('x')

imW, imH = int(resW), int(resH)

use_TPU = args.edgetpu

52

Import TensorFlow libraries

If tflite_runtime is installed, import interpreter from tflite_runtime,

else import from regular tensorflow

If using Coral Edge TPU, import the load_delegate library

pkg = importlib.util.find_spec('tflite_runtime')

if pkg:

 from tflite_runtime.interpreter import Interpreter

 if use_TPU:

 from tflite_runtime.interpreter import load_delegate

else:

 from tensorflow.lite.python.interpreter import Interpreter

 if use_TPU:

 from tensorflow.lite.python.interpreter import load_delegate

If using Edge TPU, assign filename for Edge TPU model

if use_TPU:

 # If user has specified the name of the .tflite file, use that name,

otherwise use default 'edgetpu.tflite'

 if (GRAPH_NAME == 'detect.tflite'):

 GRAPH_NAME = 'edgetpu.tflite'

Get path to current working directory

CWD_PATH = os.getcwd()

Path to .tflite file, which contains the model that is used for object

detection

PATH_TO_CKPT = os.path.join(CWD_PATH,MODEL_NAME,GRAPH_NAME)

Path to label map file

PATH_TO_LABELS = os.path.join(CWD_PATH,MODEL_NAME,LABELMAP_NAME)

Load the label map

with open(PATH_TO_LABELS, 'r') as f:

 labels = [line.strip() for line in f.readlines()]

Have to do a weird fix for label map if using the COCO "starter model" from

https://www.tensorflow.org/lite/models/object_detection/overview

First label is '???', which has to be removed.

if labels[0] == '???':

 del(labels[0])

Load the Tensorflow Lite model.

If using Edge TPU, use special load_delegate argument

if use_TPU:

 interpreter = Interpreter(model_path=PATH_TO_CKPT,

experimental_delegates=[load_delegate('libedgetpu.so.1.0')])

 print(PATH_TO_CKPT)

else:

 interpreter = Interpreter(model_path=PATH_TO_CKPT)

interpreter.allocate_tensors()

Get model details

input_details = interpreter.get_input_details()

output_details = interpreter.get_output_details()

height = input_details[0]['shape'][1]

53

width = input_details[0]['shape'][2]

floating_model = (input_details[0]['dtype'] == np.float32)

input_mean = 127.5

input_std = 127.5

Initialize frame rate calculation

frame_rate_calc = 1

freq = cv2.getTickFrequency()

time.sleep(1)

#for frame1 in camera.capture_continuous(rawCapture,

format="bgr",use_video_port=True):

while True:

 # Start timer (for calculating frame rate)

 t1 = cv2.getTickCount()

 # Grab frame from video stream

 #frameD=frame_convert2.pretty_depth_cv(freenect.sync_get_depth()[0])

 #frame=frame_convert2.video_cv(freenect.sync_get_video()[0])

 frame = get_video()

 time.sleep(0.02)

 frameD = get_depth()

 time.sleep(0.02)

 #frameD=frame ###

 #frame=frameD

 # Acquire frame and resize to expected shape [1xHxWx3]

 frame_rgb = frame.copy()

 frame_resized = cv2.resize(frame_rgb, (width, height))

 input_data = np.expand_dims(frame_resized, axis=0)

 # Normalize pixel values if using a floating model (i.e. if model is non-

quantized)

 if floating_model:

 input_data = (np.float32(input_data) - input_mean) / input_std

 # Perform the actual detection by running the model with the image as

input

 interpreter.set_tensor(input_details[0]['index'],input_data)

 interpreter.invoke()

 # Retrieve detection results

 boxes = interpreter.get_tensor(output_details[0]['index'])[0] # Bounding

box coordinates of detected objects

 classes = interpreter.get_tensor(output_details[1]['index'])[0] # Class

index of detected objects

 scores = interpreter.get_tensor(output_details[2]['index'])[0] #

Confidence of detected objects

 #num = interpreter.get_tensor(output_details[3]['index'])[0] # Total

number of detected objects (inaccurate and not needed)

 # Loop over all detections and draw detection box if confidence is above

minimum threshold

 for i in range(len(scores)):

54

 if ((scores[i] > min_conf_threshold) and (scores[i] <= 1.0)):

 # Get bounding box coordinates and draw box

 # Interpreter can return coordinates that are outside of image

dimensions, need to force them to be within image using max() and min()

 ymin = int(max(1,(boxes[i][0] * imH)))

 xmin = int(max(1,(boxes[i][1] * imW)))

 ymax = int(min(imH,(boxes[i][2] * imH)))

 xmax = int(min(imW,(boxes[i][3] * imW)))

 cv2.rectangle(frameD, (xmin,ymin), (xmax,ymax), (10, 255, 0), 2)

################################

 #Add depth information display

 mask = np.zeros((frameD.shape), dtype=np.uint8)

 # define points

 pts = np.array(

[[[xmin,ymin],[xmax,ymin],[xmax,ymax],[xmin,ymax]]], dtype=np.int32)

 cv2.fillPoly(mask, pts, (255,255,255))

 # get color values

 values = frameD[np.where((mask == (255,255,255)).all(axis=2))]

 values = np.array(values)

 values = values.reshape(-1)

 print('RGB mean: %d' % int(np.mean(values)))

 # Draw label ########################

 object_name = labels[int(classes[i])] # Look up object name from

"labels" array using class index

 label = '%s: %d%%' % (object_name, int(scores[i]*100)) # Example:

'person: 72%'

 labelSize, baseLine = cv2.getTextSize(label,

cv2.FONT_HERSHEY_SIMPLEX, 0.7, 2) # Get font size

 label_ymin = max(ymin, labelSize[1] + 10) # Make sure not to draw

label too close to top of window

 cv2.rectangle(frameD, (xmin, label_ymin-labelSize[1]-10),

(xmin+labelSize[0], label_ymin+baseLine-10), (255, 255, 255), cv2.FILLED) #

Draw white box to put label text in

 cv2.putText(frameD, label, (xmin, label_ymin-7),

cv2.FONT_HERSHEY_SIMPLEX, 0.7, (0, 0, 0), 2) # Draw label text

 # Draw framerate in corner of frame ##########################

 cv2.putText(frameD,'FPS:

{0:.2f}'.format(frame_rate_calc),(30,50),cv2.FONT_HERSHEY_SIMPLEX,1,(255,255,

0),2,cv2.LINE_AA)

 # All the results have been drawn on the frame, so it's time to display

it.

 cv2.imshow('Object detector', frameD) ########################

 # Calculate framerate

 t2 = cv2.getTickCount()

 time1 = (t2-t1)/freq

 frame_rate_calc= 1/time1

55

 # Press 'q' to quit

 if cv2.waitKey(1) == ord('q'):

 break

Clean up

cv2.destroyAllWindows()

56

7.4 Edge Detection Methods

Sobel

BW = edge(I,'Sobel') detect edges using the Sobel method. This method finds edges using the

Sobel approximation to the derivative. It returns edges at those points where the gradient of I is

maximum.

7.5 Vicon - .m files

file:///C:/Program%20Files/MATLAB/R2017b/help/images/ref/edge.html%23outputarg_BW
file:///C:/Program%20Files/MATLAB/R2017b/help/images/ref/edge.html%23inputarg_I

57

58

59

