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Object Detection, Localization and Navigation Strategy for  Obstacle Avoidance Applied to 

Autonomous Wheelchair Driving 

Thesis Abstract – Idaho State University (2022) 

The primary aim of this study was to develop machine learning or deep-learning aided 

procedures along with scientific investigations that enhances the capability of a commercial non-

autonomous wheelchair towards autonomy. The thesis addresses the computer vision work 

for obstacle detection and localization applied to an autonomous wheelchair operation. The 

computer vision tasks including the depth image classification are accommodated in a small 

form factored and resource constraint computers such as Raspberry Pie and Google Coral. The 

tasks and strategies also include classifying the images using a pretrained model (TensorFlow 

lite), detecting and measure the degree of obstacle avoidance by pairing color (RGB) image 

classification with depth images. The thesis also offers approaches for indoor localization 

applicable for the autonomous wheelchair development. The objective has been further extended 

to develop a simulation platform for autonomous wheelchair driving where navigation and path 

mapping construction algorithm evaluations are visually offered using MATLAB®. In addition, 

the thesis includes research and project contributions prior to the change of thesis subject to 

autonomous wheelchair development. These contributions are addressed as the additional works 

which includes (1) the initial work on error determination in motion capture process using 

VICON and (2) a wafer alignment fault detection process using image processing. 

Keywords: machine learning, computer vision, autonomous wheel-chair, navigation, mobile robot, 

depth image, obstacle avoidance.     
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1. Introduction

1.1 Literature Review 

A Powered wheelchair has been a crucial tool to help regain lost mobility applied. The sole purpose 

of a powered wheelchair is to provide mobility assistance without needing an additional human 

interface [1]. Removal of dependency on others is tied to mental health and speedy recovery [2]. 

Hence, for more than a hundred years, powered wheelchairs received innovative attention from 

scientific and engineering communities. The evolution of the powered wheelchair aligned to the 

objective of making the power wheelchairs as intuitive to operate as possible while keeping the 

cost minimum. The cost includes energy consumption, satisfactory performance metrics, and of 

course financial components. During the evolution of wheelchairs, there were several phases of 

development. Most of those developments involve minimizing power consumption, generating 

comfort, simpler operation procedures and making the wheelchairs affordable through new 

technologies [3]. In recent decades a paradigm shift is observed by the tremendous inclusion of 

data and machine learning techniques. As the semiconductor industries push low cost, low power 

and smaller but powerful computers, more and more data driven portable system are gaining 

attention [4]. One of the key research questions included in the data driven solution to powered 

wheelchairs is how the safety features can be enhanced. There is a need to discover how far an 

existing powered wheelchair can be stretched from manual operation to assistive technologies to 

full autonomy.  

The benefits of full autonomy in powered wheelchair starts with including wider range of users 

who seek independence from external physical assistance [5]. Moreover, autonomous wheelchairs 
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add layers of security and safety in operation by managing the data it collects from the runtime. In 

search of full autonomy, research effort has been put to strengthen the feedback process for 

accurate assessment of obstacle detection, identification of hazardous route along with indoor 

localization and path planning. In Gao, Sands & Speltzer (2010) [6], discussed use of LiDAR to 

generate a map of the autonomous wheelchair operation environment. LiDAR is proven to be an 

effective tool in autonomous vehicle due to features providing multiple obstacle information in 

real-time. Also, LiDAR can operate in the dark. However, it lacks understanding of the objects 

around it due to incapability of differentiating colors and low resolution. Concerns indicated with 

the LiDAR technology in autonomous wheelchairs can be overcome by fusing with the other 

sensors such as RGB cameras. However, that does not remove the fact that LiDAR is relatively a 

large and heavy sensor that consumes relatively more power and is expensive [7]. RGB cameras 

on the other hand, provide information for object identification and can be implemented by fusing 

other proximity sensors such as ultrasonic sensors, IR, etc. As the number of sensors grows, latency 

adds up to overall in situ monitoring and management of cross data.  

Another critical aspect of research in autonomous wheelchairs is accurate assessment of location 

of the wheelchair. Indoor localization is particularly challenging due to elevated obstacle counts 

and dedicated system requirement to obtain accurate coordinates [8]. There are solutions proposed 

in Lankenau, Röfer, Krieg-Brückner, (2003) [9], such as a network of IR beams to obtain the 

positions of autonomous mobile robots. However, the system with an IR network often creates 

large error which is infeasible in sensitive cases such as the autonomy of wheelchairs. However, 

all of these aforementioned research efforts indicate the current research state for autonomous 

wheelchairs is analogous to autonomy of mobile robots. Therefore, autonomous powered 

wheelchairs can be treated as a branch of autonomous mobile robots [10]. 
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1.2 Autonomous wheelchair (AWC) as a special purpose mobile robot 

Robotics have greatly shaped many tasks around us that once needed human interference explicitly 

[11]. Autonomous robots bring significant improvement in daily activities, production capabilities 

and services by having an increased accuracy and pace over nonautomated methods [12]. Most of 

these autonomous actions are witnessed in chain productions, warehouse management, and 

packaging. However, the class of robots found in research is spread across a wide range of 

applications from humanoid to surgical robots. Mobile robots have been a popular study for a long 

time. Research in mobile robots has grown to an extent that this field offers an umbrella of 

subfields. Mobile robots are found in applications requiring some amount of artificial intelligence 

such as collaborative robots, swarm intelligence-based robots, autonomous aerial vehicles, 

autonomous ground vehicles, autonomous cleaning products, autonomous wheelchairs, etc., [13]. 

The thesis addresses a specific task associated with an autonomous wheelchair (AWC). Just as any 

other autonomous mobile robot, an AWC is composed of actuation, feedback from the 

environment, and a processing facility. The actuation in the thesis points to motor action 

corresponding to locomotion. The feedback includes all forms of sensors and communication 

either direct or derived from the environment and finally, the processing indicates computations 

involved in decision making and control instructions. 

 

1.3 Key areas of AWC addressed by researchers 

The application of an AWC is a sensitive implementation whether in the medical care facility or 

in a home. The use of AWC equipment often involves people with physical disabilities. Hence, 

safety and comfort carry higher priority over speed and accuracy. Therefore, the development of 
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an autonomous wheelchair involves four streams of research which are as follows: (1) 

Development of appropriate localization system depending on the site where the system is going 

to be running, [14]; (2) A feedback system that gathers data from the environment to enhance safe 

and secure operation, [15]; (3) Navigation strategies to perform locomotion without compromising 

safety and comfort including mapping, monitoring, and simulation for the performance analysis 

and future improvements, [16]; and (4) a control system and an associated mechanism involving 

manipulation of the velocity and the direction of the AWC, [17]. 
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2. Critical Tasks and Strategies 

 

2.1 Localization and Orientation 

Localization and orientation tasks of an AWC compiles indoor/outdoor location and orientation of 

the vehicle. An AWC sensitivity to the wheelchair’s location and orientation is significant in terms 

of safety. The process is responsible for critical feedback to the control unit to dictate kinetic 

profile. In this thesis, various choices of indoor location determination methods are explored.   

 

2.2 Environment (work-space/task-space) Measurements and Observations 

In order to strengthen safety measures to an AWC, accurate assessment of the environment is 

another critical task. This can be achieved with the fusion of various sensors. There are sensors 

which can distinguish color and have high resolution but take large computing resources and lack 

proximity. On the other hand, sensors such as ultrasonic sensors and IR sensors provide accurate 

and fast proximity calculation but lack resolution and color distinction. This study proposes a 

method captures proximity and resolution without requiring large computational resources. 

However, safety can be further enhanced by fusing other sensors. 

Table 2.1: Sensor coverage for obstacle assessment 

Sensor Proximity Resolution Bandwidth Color Object Identification 

Depth Camera Average good poor good good 

RGB Camera Poor good average good good 

IR Sensor Good average good poor poor 
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Figure 2.1: Sensor coverage for obstacle assessment with or without fusion 

2.3 Autonomous Path Determination and Strategies 

There are various levels of autonomy but in this research, the development work is done towards 

the highest level of autonomy that includes adaptive path planning. In particular, the proposed 

work developed a simulation tool using MATLAB® to test various path planning algorithms under 

some key list of assumptions. 
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2.4 Control Unit 

This is the central processing or decision-making mechanism where all the feedback and actuating 

instructions to control motors for locomotion and orientation take place. The control unit is beyond 

the scope of this thesis but that does not reflect the crucial role it has in order to achieve an AWC.    
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3. Localization and Orientation 

Testing any localization and orientation methods on actual powered wheelchairs requires large 

resources including but not limited to:  

(1) Test environment  

(2) Functioning feedback and control system and  

(3) Safety measures for the safe operations of the actual wheelchair under testing conditions.  

The tests practiced for the development work proposed in this thesis obtained on a small-scale 

mobile robot that removed any dependency on wait period for the actual powered wheelchair to 

function at its full capacity. This study presents a typical inexpensive academic robotic competition 

environment setup with cost effective navigation and mapping solutions for robots in a micro-

environment. The outline of the indoor localization study is as follows: At first, a suitable mobile 

robot hardware is selected with a specific configuration in order to conduct an experimental task. 

This is followed by presenting three different navigation and mapping techniques. In particular, 

(1) Odometry, (2) Array of beacons and (3) Computer vision, which are tested, evaluated, and 

discussed in this thesis. A cost comparison is presented with commercially available alternative 

solutions. 

  

3.1 Experiment Setup 

In this thesis, a mobile robot with fixed wheels is used as the general robotic platform to present 

and discuss mobile robot localization and mapping techniques. These techniques are tested with a 

simple experimental task, which combines wireless communication, navigation, and mapping 

tasks. The zumo robot as shown in Figure 3.2, used as the generic mobile robot platform is powered 
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by battery at the bottom of the robot's chassis. An Arduino Uno micro-controller module is used 

to run the respective logic and processing commands. In addition, a Zumo Arduino shield is 

utilized with the objective to reduce the number of jump wires. This shield has an integrated 

DRV8835 DC motor driver along with an integrated LSM303D 3-axis accelerometer with a 3-axis 

magnetometer and an integrated L3DG20H 3-axis gyroscope, that can be used to track 

acceleration, orientation, and rotation of the robot. The robot is assembled with a 75:1 micro metal 

geared motor (HP). The robot body frame of reference and fixed world frame of reference is shown 

in Figure 3.1. The parameter r from Figure 3.1. (a) represents the radius of each wheel and the 

parameter 2d is the shortest distance apart between two rear wheels. The assembled robot with the 

Arduino Zumo shield (without Arduino) is shown in Figure 3.2, contains convenient spots for the 

placement of infra-red sensor array, indicated as “general purpose I/O for sensor modules” in the 

figure, in order to detect any marked boundaries of the work space. A square plain with a flat 

surface serves as the main platform with dimensions of 2 meters by 2 meters that includes dark 

boundary markers for the onboard infra-red sensor arrays to detect the borders of the workspace. 

The robot task is to move in a straight line until it reaches the border followed by a random amount 

of rotation in order to pick a random direction. This is repeated after orienting in the new direction 

until the robot hits the next border marker. The process repeated until some termination event 

occurs. The robot is equipped with photosensitive resistors to detect any distinct source of light. 

Once the robot reaches a spot within the platform with greater amount of light projected, the robot 

task is terminated. A computer is located outside of the workspace with the task to communicate 

with the robot using xbee modules. The communication entails any local computations needed to 

be shared. The computer maps the movements of the robot as the robot performs its task. In this 

work, MATLAB® tools are used to develop any mapping program. 
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3.2 Odometry Navigation and Mapping 

A theoretical model for standard fixed wheel rear drive mobile robot kinematics is needed to 

develop the relative position measurement or dead reckoning for localization and mapping suitable 

for a small workspace, [18]. The robot wheels are assumed to have no slippage between the drive 

surface and the wheel itself. Equations (3.1) and (3.2) describe the Jacobian matrix associated with 

the wheel speed vector and the inverse Jacobian matrix with the robot’s twist vector to produce 

�⃑⃑⃑�  & 𝜃 ̇ respectively. Where �̇�1 and �̇�2 are angular velocities as indicated in Figure 3.1(a). The 

position of the robot with respect to the world frame are presented using x and y coordinates. The 

orientation or rotation angle with respect to the horizontal axis of the world frame is indicated in 

Figure 3.1(b) using 𝜙.  
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Figure 3.1: (a) Mobile robot in body frame; (b) Mobile robot in fixed frame 

 

Figure 3.2: Assembled Arduino Zumo shield 

 

Therefore, straight line motion of the robot platform is generated when �̇�1 = �̇�2 while the rotation 

of the robot about the center point of the axis that connects two rear wheels as shown in Figure 

3.1(a) occurs when �̇�1 = −�̇�2 . These – straight line and rotation – are the only motions required 

for the robot task.  
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The first navigation method for the specified mobile robot platform is based on the integration of 

small steps of the robot’s movement in a 2D workspace. Each step is defined by the wheel speed 

and step duration. The wheel speed is controlled by a pulse width modulated signal from the micro-

controller module that is sent to the motor driver. The parameterization of the navigation process 

is given as follows: Suppose the time duration of each step is denoted by ∆𝑡. The angular velocities 

of the right and the left wheels are �̇�1 and �̇�2, respectively. At any given 𝜙, the discrete steps in 

both coordinates are computed as ∆𝑥 = �̇�𝑟𝑐𝑜𝑠(𝜙)∆𝑡 and ∆𝑦 = �̇�𝑟𝑠𝑖𝑛(𝜙)∆𝑡, where �̇� =  �̇�1 =

�̇�2 is used for straight line motion of the robot. Also, the rotational step ∆𝜙 is extracted from 𝜙 ̇ ∆𝑡, 

where �̇� =  
𝑟

𝑑
�̇� and  �̇� =  �̇�1 = −�̇�2 for clockwise/counter-clockwise rotations. For the 

aforementioned test robot, an assumption can be made that the wheel speed remains constant 

throughout the runtime of the robot tasks, and hence, the speed is assumed to be K. This constant 

is incorporated in the Arduino program for the purpose to test the proposed concept. Given the 

reference coordinate (x0,y0) and control input to alter 𝜙 and �̇�, the local position can be evaluated 

using simple iterations: 

𝑥𝑛+1 = 𝑥𝑛 + �̇�𝑟𝑐𝑜𝑠(𝜙)∆𝑡       (3.3) 

𝑦𝑛+1 = 𝑦𝑛 + �̇�𝑟𝑠𝑖𝑛(𝜙)∆𝑡        (3.4) 

𝜙𝑛+1 = 𝜙𝑛 +
𝑟

𝑑
�̇�∆𝑡                  (3.5) 

This odometry technique comes with the cost of error development due to the integration of small 

errors over the duration of the robot operation. This error development is due to both systematic 

and non-systematic errors. Systematic errors generally refer to an error due to inaccurate 

calculation of the wheel rotation, incorrect readings from the inertial measurement unit 
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components and other erroneous measurements from on board sensors, all contributing to 

navigation errors. In order to develop accuracy in localization, odometry is often used along with 

other proven methods of navigation and mapping, [19]. However, the cost of implementation for 

this method is significantly lower relative to some of the commercially available solutions. These 

commercial solutions may cost approximately ten times more than in a class solution, [20]. 

Commercial solutions often use expensive but highly accurate and self-calibrating sensors along 

with hardware that may not serve an academic purpose. Mapping software comes with some of 

the available indoor positioning systems and are often proprietary, expensive and provide little 

room for alteration and improvements. The above-mentioned techniques and setup use a Zigbee 

personal area network for transmitting local calculation results for further work in the base system 

to generate 2D mapping work. Therefore, selecting odometry techniques depends on the level of 

accuracy required and the allowable tolerance given to the robotic system while meeting robot 

task/mission assignment objectives.  

 

3.3 Array of Beacons 

In the previous section, the local position of a mobile robot is measured using an open-loop 

scheme. Any amount of slippage or change in the motor speed beyond measurements will generate 

inaccurate coordinate calculation. Such changes could be a result of decaying batteries, changes in 

surface conditions, etc., [21]. Another approach to determine the location of a mobile robot in a 

2D workspace is to add an external system that is sensitive to the robot motion. In this thesis, only 

the coordinates of a single mobile robot on a planar platform is considered. The following sections 

detail two such methods for localization of a mobile robot using an external setup that is sensitive 
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to the robot’s displacement. One approach is to design a radar like system, where a spatial signal 

(ultrasonic or laser) is transmitted from a reference point to the robot workspace while sweeping 

across the span of the platform. Orientation of the transmitter and the characteristics of the reflected 

signal at the receiver from the robot, determines the location of the mobile robot as shown in Figure 

3.3(a) where, coordinates are measured in terms of r and 𝜙. The limitation to the radar-based 

localization method using inexpensive “of the shelf” sensors is given by the dispersion of the 

received signal during rotation of the transceiver. This inaccurately alters time of arrival of the 

signal received. Hence, there will be an accumulation of errors in the calculation of r. The second 

approach is to use an array of sensors, where each sensor is a transceiver that determines the 

distance from the reflected object (robot) on a given workspace. Each sensors are arranged such 

that collectively all the sensors address discrete points of a vertical axis in a cartesian plane. The 

position of the respective sensor and the corresponding signal reflected from the tracked robot 

provide sufficient information about the target robot location. Some major limitations in the array 

of beacon approach are due to the resolution of the grid points and choice of sensor. The resolution 

of the inferred localization information can be easily improved by increasing the density of the 

number of sensors within the array direction. As the number of sensors increases, the cost of the 

setup increases as well. As this study addresses a workspace that is no more than two meter in 

dimensions, it is possible to keep the number of sensors at some minimum while achieving a 

certain level of accuracy.  
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Figure 3.3: (a) Radar based localization; (b) Grid from sensor array 

Figure 3.3 shows both configurations discussed in this section. Two types of sensors are used to 

test these two methods: Ultrasonic sensors are the simplest to implement but produce poor 

performance in terms of localization accuracy when the resolution of the grid is increased and the 

robot is the furthest from the sensor array. This is due to the wide arrival angle of the signal. On 

the other hand, a laser transceiver has a sharp angle of arrival and hence produces an accurate 

localization. However, the option of an array of lidar increases the cost of implementation. In the 

following a detail discussion is provided about the choice of inexpensive sensors. For the described 

experimental robot task, there are several distance measuring sensors available. The choice of the 

specific sensor for mapping robot locations depends on the desired or required accuracy of the 

inferred localization. An ideal sensor will transmit the corresponding wave with an associated 

angle of arrival and departure, as narrow as possible. Otherwise, the sensors will receive reflected 

signals from a position different from the line of sight set by the sensor orientation. In addition, 

the measure of the distance can be done in two ways for most distance sensors: the time of flight 

method is used when the speed of propagation of the transmitted signal is known. The recorded 
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time lapse for the reflected signal times the speed yields twice the distance travelled by the signal. 

The second method is to use the signal strength from the reflected signal to calculate the 

corresponding distance. However, the signal strength has generally a non-linear relationship with 

the distance and requires some complicated computation in order to extract an accurate result. In 

this section, two choices of localization processes are discussed. Initially, a radar method is 

attempted with a laser transceiver. The corresponding sensor for this setup is a VL53L0X. This 

particular sensor has a sharp beam and a multipath error coming from the received signal when the 

robot is in movement. The sensor is placed on top of a servo motor that allows for a sweeping 

motion. The corresponding results are inconsistent and produce dispersions due to the sweeping 

motion. The sensor grid approach is tested as well using the same laser transceiver as described 

above. The VL53L0X sensor communicates through an I2C protocol and has the same address 

value as any other VL53L0X unit. Hence, a laser sensor array – employing a number of these 

sensors - can only be used if the I2C mux is installed in the system in order to read and distinguish 

each sensor. Adding I2C mux or an array of ultrasonic sensors will introduce additional challenges 

as time sharing schemes are required to read from all the sensors. The ultrasonic sensor array is 

tested with equal distances between each sensor. The distances between each sensor have to be 

selected carefully with respect to the overall distances. This is because the overlap in angle of 

arrival/departure cone of signals from different sensors increases with the larger range. Once the 

localization information is generated by the external setup, the position information is passed to 

the base system for mapping and visualization using tools from MATLAB®. Considering all the 

limitations addressed in this section, the following section provides another approach that yields 

greater accuracy and lesser hardware setup with a cost of more computation effort by the base 

system. 
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3.4 Computer Vision Based Positioning 

In general, the number of computations per seconds among workstations has been growing rapidly 

for last few decades. This means that more computationally rich tasks are possible without an 

additional cost. MATLAB®'s image processing toolbox comprises a large set of post image 

processing tools. 

Fundamental computer vision algorithms along with the image processing toolbox added new 

solutions to the search for cost-effective mobile robot localization problem for small-scale 

platforms. Figure 3.4 shows a generic approach for identifying a target object location from an 

image. At first, a few assumptions need to be made prior to the discussion regarding the experiment 

conducted. The position and projection of the camera is kept at the center of the platform with 

fixed height and a vertically downward direction, respectively. Given the dimension of the 

platform, and assuming shape and size of the target mobile robot remains unchanged, the following 

steps are applied to track the mobile robot. The entire process can be divided into two major 

sessions. The first session is composed of the initialization step followed by an iteration step. In 

the initialization step, the camera object is initiated to begin the recording process and an image 

with the target robot is captured. The dimensions of the captured image is shrunk from a 3D to 2D 

version by converting the acquired RGB image to grayscale. The process of edge profile using 

‘Sobel’ method is generated next. In the proposed process, the user is asked to crop manually a 

tight segment of the edge profile from the image that covers the target robot. The cropped segment 

is used as a convolution filter image to the future stream of images once the address map system 

starts running. Once the system run status is enabled, the iteration step process starts. A portion of 

the iteration step process is identical to the initialization process. A loop of jobs is considered that 

includes image capture, RGB to grayscale conversion, derived edge profile processing, followed 
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by the convolution filter processing using the cropped reference from the initialization step. A map 

of matching indexes is generated where the maximum indices indicates the greatest probability of 

having the tracked robot being in the corresponding position. The iteration step is repeated as long 

as the tracking status is enabled. 

 

 

 
 

Figure 3.4: Positioning using computer vision algorithm flowchart 

 

Figure 3.5(a) shows pre-reference RGB image prior to any post processing. Figure 3.5(b) shows 

the cropped reference image with edge profile process after the RGB to gray conversion is 

performed. Once the tracking process is initiated, a stream of plots produced from the 

instantaneous localization is created in order to generate a real-time visual feed of the robot's 



19 
 

position. Figure 3.7(a) shows the localization as a surface map after each convolution step is 

performed. Following Figure 3.7(b) shows a contour map corresponding to the surface plot. 

 

 
 

Figure 3.5: Image process for position determination 



20 
 

 
Figure 3.6: 2D workspace mapping on single mobile robot 

 

 
Figure 3.7: Snapshots of real-time visual position feed 
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The output of the computer vision approach shows perfect accuracy for the experimental task 

described and corresponding mobile robot hardware used. There is some amount of lagging due to 

the visual feed from the base computer. However, the key advantage here is that the mobile robot 

is free from doing any position calculations and computations. Instead, the robot communicates 

with the base system with a predefined sampling rate to receive its current location. The computer 

vision setup is relatively more expensive than other solutions discussed in this thesis. Two key 

components of the expenses are the quality of the camera used and the capacity of the base system. 

However, the camera and the workstation both have a wide range of costs associated and often 

academic laboratories stock such components. Some of the commercially available 

software/hardware pair choices for computer vision-based positioning system require a high 

premium for the use of proprietary software along with corresponding hardware. MATLAB® is 

also a cost factor but often available under college site-licenses. However, software tools used for 

the computer vision-based positioning solutions can be easily achieved using open-source tools 

like Python and Octave. 

 

3.5 Localization Performance Analysis 

The three approaches discussed in this thesis are summarized in Table 3.1 with respect to 

components and technique used, as well as their disadvantages and advantages. Odometry has 

gained tremendous popularity in position determination of a mobile robot for academic 

assignments. This technique works even better when the operation time and dimension of the robot 

workspace is small. This is mainly due to fewer opportunities for accumulation of the error. 

Additionally, it is also independent of the number of robots present in the workspace. However, 
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as the operation time increases or the robot receives any unexpected impact or event that triggers 

a large error, there must exist an alternative method to reset the position information through the 

help of an external system. An array of beacons could represent such a solution. In this research, 

a simple experiment is used as a setup for a single mobile robot in a predefined workspace. If a 

high resolution of the robot’s position is not required, an array of beacons approach could be a fast 

solution to position determination. If one is looking for a localization solution that has great 

accuracy (10 mm or less) along with independence from the number of mobile robots participating 

in the task space, the computer vision-based (CV) solution would be an appropriate choice. The 

CV approach expenses may vary based on choice of hardware. However, for the experiment  

performed in this thesis a low-resolution web camera is sufficient. 

 

Table 3.1: Comparison among indoor localization approaches offered in this thesis 

Approach Odometry Array of beacons Computer Vision 

Technique 

Local positioning 

computation by tracking 

micro-movements 

Rotating 

transceiver 

(rotating 

radar) 

Linearly 

arranged 

array of 

transceiver  

Capture image of 

target object to 

generate edge profile 

followed by cross 

matching with 

reference. 

Sensor(s) 

Accelerometer, gyro, 

magnetometer, motor 

rotation decoder 

Ultrasonic sensor or LIDAR RGB Camera 

Advantage 
Relatively inexpensive 

and simple to implement.  

Relatively simple to 

implement and faster to 

calculate position 

coordinates. 

Highly accurate for 

small platform 

addressed in this 

thesis. 

Disadvantage 

Prone to systematic and 

non-systematic error (e.g. 

slippage, surface). 

Multipath error, resolution of 

position grid proportional to 

number of sensors used. 

Computationally 

rich and choice of 

hardware may be 

expensive. 
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In this chapter, regardless of the approach taken, there is an additional mapping task performed in 

the base system using tools from MATLAB®. Similar mapping tasks can also be achieved using 

opensource tools such as Python or Octave, as mentioned earlier. Figure 3.6 shows the mapping 

results of a single robot on the 2D platform. There are exciting open-source tools available such 

as ORB-SLAM or ROS navigation to compute simultaneous localization and mapping (SLAM). 

However, this thesis is tailored towards educational needs for students from a wide range of 

backgrounds and not limited to robotics stream. The thesis further emphasizes the use of 

inexpensive hardware with minimal software complexity. The objective in this work aligned with 

addressing the localization issues associated with the autonomous wheelchair development. 

However, the goal is also to include an inexpensive solution so the research can be conducted 

using common resources available in most institutions. Most institutions apply MATLAB® in 

various other fields due to its rich set of tools that allow students to explore and mesh concepts in 

an interdisciplinary fashion, without having additional complexity to implement. MATLAB® tools 

and hardware used in this study are aimed for a known small-scale environment and single robot 

with opportunity to include machine learning and deep learning processes with ease. The problem 

can be extended to multi-robot and unknown environments where relevance of using tools such as 

ORB-SLAM or ROS navigation is more significant, [22]. 
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4. Environment Measurements and Observations 

 

This chapter discusses two of the four streams associated with the development of the AWC. (1) 

The feedback system and (2) the navigation strategy including mapping and simulation. The work 

emphasized minimizing computational load by selecting resource constraint hardware such as 

single-board computers and other low-power co-processors to achieve a critical aspect of the 

feedback system. The feedback system proposed in this chapter utilizes a pretrained convolutional 

neural network to process captured images from the environment. The object detection process 

using cameras has been around for awhile, [23]. However, in this work we propose the use of depth 

image merged with convolutional neural network-based object detection transfer learning to 

identify obstacle classes and their proximity. Moreover, the tools and the development work 

associated with the proposed feedback system are open source. Furthermore, the work proposes 

low-cost navigation, mapping, and simulation processes suitable for extending AWC 

development. The navigation, mapping, and simulation tasks are developed using a low-cost 

research software tool such as MATLAB® and Simulink.  

The following items are included in the Appendix for detail setup resources: 

o Platform configuration 

o RGB + Depth Image processing using tools 

o Co-processor: Google Coral 
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4.1 Hardware and Software Configuration 

The feedback system is comprised of multiple types of sensors. In this work, the focus is partly on 

computer vision (CV) applied to the AWC. The CV pipeline’s hardware and software tools are 

discussed in the following section.  

The CV setup is constructed using a depth camera stemming from the Microsoft XBOX 360 Kinect 

setup, a single board computer or Raspberry Pi 4 Model B, and an edge TPU co-processor from 

Google Coral. The depth camera is used to read both the RGB and the depth images from the 

environment. The images are processed and hosted in the Raspberry Pi (single board computer or 

SBC) and further relayed to the co-processor for machine learning inference computations. The 

Kinect camera can capture images using two cameras fixed in positions to enable the trilateration 

method [24] for deriving depth information. The Kinect has a viewing angle of 430 vertical and 

570 horizontal and allows tilting that ranges ±270. The maximum frame rate offered by the camera 

is 30 frames per second which is sufficient for the work presented in this thesis. The Raspberry Pi 

used in this study uses Raspbian OS, 64-bit architecture, 1.5 GHz quad-core processor with 4GB 

RAM. In addition, the edge TPU from Google Coral is added to focus on machine learning 

routines, and can perform four trillion operations (tera-operations) per second (TOPS), using 0.5 

watts for each TOPS (2 TOPS per watt). The utilized wheelchair is a power chair (PermobilTM 

M300 Corpus HD) with joystick navigation control, providing power with the use of two 12V 

batteries. Note, none of the OEM control systems were altered for the proposed work. Instead, a 

mechanical connection to the joystick is envisioned to connect the control commands from the 

proposed control system to the wheelchair. In this fashion, the type and manufacture of the 

wheelchair is irrelevant as any such device can easily be modified. 
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Specific software tools are selected to enable the streaming process from the camera to the 

Raspberry Pi. The freenect tool is used to verify the functions of the depth camera. Additional 

dependency files such as libgl-mesa-swx11 and equivalent are required for OpenGL utilization. 

The RGB image/object classification routine with the pre-trained model is used for object 

detection. The routine is written in Python and requires OpenCV along with the libraries from 

python-freenect supporting the depth camera. Moreover, TensorFlow lite is applied to 

accommodate computationally minimized versions of the object detection processes. The 

processes are executed at the co-processor hardware. Additional tools are used to support the co-

processor hardware such as libedgetpu1-std. Figure 4.1 shows the hardware in sequence to support 

the workflow proposed in this thesis. 

 

 

 

Figure 4.1: Workflow of feedback system proposed in this thesis 
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4.2 Computer Vision for Obstacle Avoidance 

The computer vision process starts with capturing images using both cameras available in the 

Kinect. The depth images are constructed using the RGB images from the two cameras separated 

by a fixed distance using the trilateration method. A routine is developed to read both the RGB 

images and constructed depth images but feeds only the RGB images to a pre-trained convolutional 

neural network (CNN). The network is TensorFlow Lite-supported object detection routine in real-

time. The network or the object classifier outputs the detected object label, the probability of the 

detected object, and the detected object’s boundary. The depth image color scheme is changed to 

a single channel with values ranging from 0 to 255 where 0 (light pixels) indicates furthest or 

undetermined objects and 255 (dark pixels) indicates the nearest object. The object boundaries 

from the object classifier are mapped on the depth image. The pixels from the mapped area of the 

depth image are used to calculate the mean/max channel values. The mean/max channel values 

within the detected object’s boundary of the depth image addressed by the RGB object detection 

network are strongly correlated with the object’s proximity. Hence, from the process described 

above, there are two quantifiable outputs generated at every frame: (1) The probability of the 

detected object (p) and (2) the mean/max channel values from the depth image correspond to the 

detected object location (d). In addition, the quantity x can be derived from p and d by using a 

linear combination as shown in Equation 4.1, where a and b are constant coefficients used to scale 

the detected obstacle’s probability and the obstacle’s proximity respectively. The x term can be 

used towards the obstacle avoidance process to determine the obstacle’s proximity and severity. 

Optimization of Equation 4.1’s coefficients are beyond the scope of this work. Also, the 

arrangements of p and d to form Equation 1 are not explored in this study for best results. 
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𝑥 = 𝑎𝑝 + 𝑏𝑑   (4.1) 

The objective of the CV process is to detect obstacles by the AWC and make autonomous decisions 

to avoid any harmful contacts. Therefore, the process needs to be executed in real-time with 

minimum delay. The process is achieved at about 12 frames per second - at most - after including 

a co-processor, specifically the Google Coral (edge TPU). The inference steps are computed at the 

co-processor with enhanced performance relative to the Raspberry Pi. The identical routine for 

object detection runs at 1-3 frames per second without the edge TPU (also called accelerator). The 

CV process discussed in this section is neither the complete feedback system for the AWC nor is 

it mounted on the chair in full operation mode. To enhance the safety features of the AWC, there 

should be additional proximity sensors and methods in place such as ultrasonic, infrared, or laser-

based obstacle and edge detection methods. Figure 4.2 – 4.4 show forms of images applied in the 

obstacle avoidance process. Figure 4.2 shows the RGB image for the object detection process that 

eventually merged with the mono channel depth image shown in Figure 4.4. The detected object 

label with the probability in black text and area in the green rectangle indicating pixels for 

proximity calculation is shown in Figure 4.4. 
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Figure 4.2: RGB image captured from the Kinect before feeding to the object detection process 

 

Figure 4.3: Depth image captured from the Kinect 

 

Figure 4.4: Depth image to mono channel followed by detected object’s boundary mapping for 

proximity calculation 
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4.3 Navigation Strategies and Simulation 

There are four key areas of research that guide AWC development as mentioned in the 

introduction. In general, it is challenging to conduct a study on navigation and mapping strategies 

with the physical system during the development phase of the other key areas. Hence, the 

simulation path is considered to remove dependencies on the control system, the 

localization/positioning, and the feedback system. There are key assumptions considered during 

the simulation and mapping computations which are listed in the followings: 

• Localization or position of the AWC is known and accurate. 

• Obstacle detection processes are fully functioning and accurate. 

• The AWC is running on a flat surface. 

• Direction and velocity control are functioning and accurate. 

The simulation is designed using MATLAB® basic toolkit. The aim of the simulation is to keep 

the navigation algorithm expandable with minimal effort. The resources used in the simulation 

design are found with low cost to no cost depending on the purpose of the use. Hence, the simulator 

is suitable for academic use. Based on the assumptions made above, the simulation is based 

visually on a grid covering the entire workspace of the AWC, which is shown in Figure 4.5. Each 

of the tiles represents possible coordinates that the AWC is capable of reaching. However, some 

tiles are marked with filled colors to indicate obstacles, the AWC current position, and destination. 

Figure 4.5 also shows the trace of the journey made by the AWC during the simulation. As the 

AWC travels through each block, an iteration count is placed to observe the overall cost of the 

journey. The navigation procedure considered and as indicated in the pseudo-code and the 

flowchart shown in Figure 4.6, minimizes the iteration cost in most scenarios. Each scenario is 
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created with randomly placed obstacles, a random starting point, and random destination 

coordinates. Once the simulation starts to iterate, each incoming step for the AWC is calculated. 

The next step of the AWC is calculated based on the current position and surrounding obstacles. 

The priorities considered for the future step calculations are addressed in the next step process 

described in the pseudo-code below. The flowchart in Figure 4.6 shows the overall route 

determination processes applied in the simulation. 

Pseudo-Code 

Motion list: {right, left, forward, and backward} 

While all the neighbor tiles are not evaluated 

  

Pick a tile from the possible motions list that  

has not been picked in the current loop 

 

If the tile picked has an obstacle 

          Discard the motion choice 

     Else 

          Store the motion choice  

to the next step vector. 

     End If 

End While 

 

If the next step vector is empty 

The next step is the previous position. 

Else 

Euclidean distance calculated between  

each of the elements available in the  

next step vector and the destination. 

 

The next step vector is sorted from  

the least to the greatest distance. 

 

Each coordinate found in the next step  

choices are re-arranged based on past visits. 

 

The next step is the least Euclidean distance  

coordinate among the least visited options. 

End If 
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Figure 4.5: Simulation grid showing the AWC tile as blue, destination tile as red, obstacle tiles 

as black along with a trace of AWC journey using blue line. 

 

Figure 4.6: The overall route determination processes applied in the simulation 
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4.4 Conclusion 

Navigation of AWC’s may fill a need in hospital logistics, aging in place, as well as in support and 

enhancement for individuals living with a disability. The proposed autonomous functionality 

employs an existing power wheelchair, with an add-on that connects to the existing wheelchair 

control joystick, using mechanical means. In addition, readily available off-the shelf components 

are proposed and tested for constructing the vision-based navigation system, such as the Kinect 

camera system, a single board computer such as the Raspberry Pi 4, and the Edge TPU co-processor 

along with freely available software such as OpenCV, python-freenect, and TensorFlow, etc. This 

proposed hardware concept is engaged by a pre-trained CNN, allowing for obstacle recognition and 

hence avoidance during autonomous driving of the AWC. In addition, we also propose a novel 

integration of the two camera feeds for discriminating against obstacles of less importance due to 

lack of proximity. A proposed navigation algorithm is tested using simulations, with the objective 

to test if the overall concept is feasible for sensing, controlling, and making decisions during the 

autonomous driving portion of an AWC. The proposed concept and algorithms as well as hardware 

and software implementations are currently not optimized, which is part of the future work on this 

project. The presented simulation work and testing of the proposed obstacle recognition system 

indicate the proposed hardware and software concepts are feasible for further development and 

integration into a power wheelchair, provided additional sensors are embedded to provide for safe 

operation of the AWC.    
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5. Additional Studies 

 

5.1 Vicon – Motion Capture 

5.1.1 Experiment Setup and Procedure 

In order to address quality of the motion captured data, a simple experiment is performed. The 

Vicon system is prepared by making appropriate calibration, masking and capturing a test motion 

using the calibration wand as a subject. The calibration wand contains five markers where 

Euclidean distance between the markers remains constant as the subject is just a T-Shaped metal 

body with fixed marker position. After capture is completed, data are exported to csv format for 

further studies under the rich tools of MATLAB®. Once the data are imported to MATLAB®, each 

marker is plotted in multiple way to aid understanding of the motion capture performance. The 

followings are the observations considered: 

 

Figure 5.1: Trace of motion from five markers attached to the calibration wand 
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The purpose of this Figure 5.1 is to observe any ghost behavior during the animation of the 

captured data. Any sudden jump in data location indicates corrupted data region and hence, should 

be avoided during performance analysis. 

 

 

Figure 5.2: Plot of individual marker correspond to each axis 

Purpose of this Figure 5.2 is to further identify any corrupt zones where data is missing and observe 

each marker transition during the capture. Unlike placing the markers on a human subject, this 

experiment does not contain any human error. Therefore, all error sourced is from either calibration 

or post process of raw data.  

                           

Figure 5.3: Euclidean distances between the markers during motion capture 
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Ideally the Euclidean distance is supposed to be constant over the capturing period as the 

calibration wand remained unaltered during the experiment. However, the absolute distance of all 

markers relative to a single marker (marker 1 in above plot) shows a distortion noisy feature. A 

broken plot indicates missing data zones. However, the rest of the plot is seemingly a straight line 

which is expected but unlike an ideal case; some deviation in absolute distance has been observed. 

The standard deviation and error readings are considered. Refer to the MATLAB® file for the 

Vicon for greater details (appendix 7.5). 

5.2 ONSEMI 

5.2.1 Problem Statement 

The assigned problem is associated with wafers that get damaged during the handling process. The 

misalignment issue appears if the wafers are not correctly placed into the carrying unit. The 

misalignment issue causes damage or breaks to the wafer plates. 

5.2.2 The Proposed Work 

To mitigate the mishandling of the wafer by the particular automation, the first step is to notify the 

robot that the wafers are in a misaligned position. Hence, it is important to monitor and watch the 

positions carefully before the entire process. The proposed solution for this malfunction is, instead 

of using human eyes use the computer vision and a more specifically an image processing system. 

To work with the solution, a prototype is taken, where there is a tray which can carry wafers and a 

camera is mounted in front of the tray which can extract images of the boundary of the wafers, by 

capturing the front view. To implement this system, MATLAB® is used with an edge detection 

algorithm from its image processing toolbox. This procedure evaluates the position or alignment 

of the wafers and generates a flag before any malfunction takes place. The setup is shown in Figure 

5.4. 
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Figure 5.4: Prototype of wafer carrying unit with placing a camera 

  

5.2.3 Technical Description 

The following steps have been applied to implement the prototype method: -  

o Edge detection algorithm applied to distinct boundaries of the target object. Two images 

are captured to test the procedure. The first image represents a reference image and is 

considered to be the ideal orientation of the target object. The image is further processed 

including conversion to gray scale followed by an edge detection profile generated using 

the ‘Sobel’ or ‘Canny’ algorithm.  

 

o BW = edge detect edges using the Sobel method. This method finds edges using the Sobel 

approximation to the derivative. It returns edges at those points where the gradient of I 

(image) is maximum.  
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o Scalar value that specifies the standard deviation (σ) of the Gaussian filter. The default is 

sqrt (2). Edge chooses the size of the filter automatically, based on σ.  

 

o Evaluation of images are done using a correlation coefficient matrix between the reference 

and test image. Also squared error sum is applied to aid further distinguish the two images.  

 

o Performance can be enhanced by applying a high resolution camera and mounting the 

camera on the optimal position (optimal angle of view). For this prototype testing, a 

“Logitech” webcam camera was used, which is MATLAB® supported and its resolution is 

about 720 pixels. The higher the resolution, the greater details can be extracted from 

images. Future research can be aimed at arranging a consistent setup with a more 

complicated scenario to the tailor image processing further to generate more accurate 

results.  

 

Reference image (RGB) Edge detection profile (Reference) 

 

Test image (RGB)  Edge detection profile (Test) 

Figure 5.5: Set of images to determine any misalignment between reference and test image. 
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7. Appendix 

7.1 Localization using Computer Vision (.m files) 
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7.2 Depth Image + Raspberry Pi Setup Resources 
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Python Code: 

 

To install pytorch follow: https://medium.com/secure-and-private-ai-writing-challenge/astep- 

by-step-guide-to-installing-pytorch-in-raspberry-pi-a1491bb80531 

More help on freenect: https://naman5.wordpress.com/2014/06/24/experimenting-withkinect- 

using-opencv-python-and-open-kinect-libfreenect/ 
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7.3 RGB+ Depth Classification Routine 

# Import packages 

import os 

import argparse 

import cv2 

import numpy as np 

import sys 

import time 

from threading import Thread 

import importlib.util 

import freenect 

import frame_convert2 

 

########################################################## 

 

cv2.namedWindow('Depth') 

cv2.namedWindow('RGB') 

keep_running = True 

rgb = [] 

depth = [] 

 

def display_depth(dev, data, timestamp): 

    global keep_running 

    global depth 

    depth=frame_convert2.pretty_depth_cv(data) 

    print(depth.shape) 

    cv2.imshow('Depth', depth) 

    if cv2.waitKey(10) == 27: 

        keep_running = False 

 

 

def display_rgb(dev, data, timestamp): 

    global keep_running 

    global rgb 

    rgb=frame_convert2.video_cv(data) 

    print(rgb.shape) 

    cv2.imshow('RGB', rgb) 

    if cv2.waitKey(10) == 27: 

        keep_running = False 

 

 

def body(*args): 

 

    if not keep_running: 

        raise freenect.Kill  

 

print('Press ESC in window to stop') 

 

freenect.runloop(depth=display_depth, 

                 video=display_rgb, 

                 body=body) 

 

cv2.destroyAllWindows() 

 

lut = np.zeros((256, 1, 3), dtype=np.uint8) 
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lut[:, 0, 2] = list(range(0,256)) 

 

########################################################## 

""" 

for i in range(5,-1,-1): 

    print("Count down: {}".format(i)) 

    time.sleep(1) 

""" 

time.sleep(1) 

#function to get RGB image from kinect 

def get_video(): 

    array = freenect.sync_get_video()[0] 

    array = cv2.cvtColor(array,cv2.COLOR_RGB2BGR) 

    return array 

  

#function to get depth image from kinect 

def get_depth(): 

    array=frame_convert2.pretty_depth_cv(freenect.sync_get_depth()[0]) 

    #array = freenect.sync_get_depth()[0] 

    array = array.astype(np.uint8) 

    array=cv2.cvtColor(array, cv2.COLOR_GRAY2BGR) 

    array=cv2.LUT(array, lut) 

    #array=cv2.applyColorMap(array, cv2.COLORMAP_HOT) 

    #array=cv2.cvtColor(array, cv2.COLOR_GRAY2BGR) 

    return array 

 

# Define and parse input arguments 

parser = argparse.ArgumentParser() 

parser.add_argument('--modeldir', help='Folder the .tflite file is located 

in', 

                    required=True) 

parser.add_argument('--graph', help='Name of the .tflite file, if different 

than detect.tflite', 

                    default='detect.tflite') 

parser.add_argument('--labels', help='Name of the labelmap file, if different 

than labelmap.txt', 

                    default='labelmap.txt') 

parser.add_argument('--threshold', help='Minimum confidence threshold for 

displaying detected objects', 

                    default=0.5) 

parser.add_argument('--resolution', help='Desired webcam resolution in WxH. 

If the webcam does not support the resolution entered, errors may occur.', 

                    default='640x480') 

parser.add_argument('--edgetpu', help='Use Coral Edge TPU Accelerator to 

speed up detection', 

                    action='store_true') 

 

args = parser.parse_args() 

 

MODEL_NAME = args.modeldir 

GRAPH_NAME = args.graph 

LABELMAP_NAME = args.labels 

min_conf_threshold = float(args.threshold) 

resW, resH = args.resolution.split('x') 

imW, imH = int(resW), int(resH) 

use_TPU = args.edgetpu 
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# Import TensorFlow libraries 

# If tflite_runtime is installed, import interpreter from tflite_runtime, 

else import from regular tensorflow 

# If using Coral Edge TPU, import the load_delegate library 

pkg = importlib.util.find_spec('tflite_runtime') 

if pkg: 

    from tflite_runtime.interpreter import Interpreter 

    if use_TPU: 

        from tflite_runtime.interpreter import load_delegate 

else: 

    from tensorflow.lite.python.interpreter import Interpreter 

    if use_TPU: 

        from tensorflow.lite.python.interpreter import load_delegate 

 

# If using Edge TPU, assign filename for Edge TPU model 

if use_TPU: 

    # If user has specified the name of the .tflite file, use that name, 

otherwise use default 'edgetpu.tflite' 

    if (GRAPH_NAME == 'detect.tflite'): 

        GRAPH_NAME = 'edgetpu.tflite'        

 

# Get path to current working directory 

CWD_PATH = os.getcwd() 

 

# Path to .tflite file, which contains the model that is used for object 

detection 

PATH_TO_CKPT = os.path.join(CWD_PATH,MODEL_NAME,GRAPH_NAME) 

 

# Path to label map file 

PATH_TO_LABELS = os.path.join(CWD_PATH,MODEL_NAME,LABELMAP_NAME) 

 

# Load the label map 

with open(PATH_TO_LABELS, 'r') as f: 

    labels = [line.strip() for line in f.readlines()] 

 

# Have to do a weird fix for label map if using the COCO "starter model" from 

# https://www.tensorflow.org/lite/models/object_detection/overview 

# First label is '???', which has to be removed. 

if labels[0] == '???': 

    del(labels[0]) 

 

# Load the Tensorflow Lite model. 

# If using Edge TPU, use special load_delegate argument 

if use_TPU: 

    interpreter = Interpreter(model_path=PATH_TO_CKPT, 

                              

experimental_delegates=[load_delegate('libedgetpu.so.1.0')]) 

    print(PATH_TO_CKPT) 

else: 

    interpreter = Interpreter(model_path=PATH_TO_CKPT) 

 

interpreter.allocate_tensors() 

 

# Get model details 

input_details = interpreter.get_input_details() 

output_details = interpreter.get_output_details() 

height = input_details[0]['shape'][1] 
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width = input_details[0]['shape'][2] 

 

floating_model = (input_details[0]['dtype'] == np.float32) 

 

input_mean = 127.5 

input_std = 127.5 

 

# Initialize frame rate calculation 

frame_rate_calc = 1 

freq = cv2.getTickFrequency() 

 

time.sleep(1) 

 

#for frame1 in camera.capture_continuous(rawCapture, 

format="bgr",use_video_port=True): 

while True: 

 

    # Start timer (for calculating frame rate) 

    t1 = cv2.getTickCount() 

 

    # Grab frame from video stream 

    #frameD=frame_convert2.pretty_depth_cv(freenect.sync_get_depth()[0]) 

    #frame=frame_convert2.video_cv(freenect.sync_get_video()[0]) 

    frame = get_video() 

    time.sleep(0.02) 

    frameD = get_depth() 

    time.sleep(0.02) 

    #frameD=frame ####################################################### 

    #frame=frameD 

    # Acquire frame and resize to expected shape [1xHxWx3] 

    frame_rgb = frame.copy() 

    frame_resized = cv2.resize(frame_rgb, (width, height)) 

    input_data = np.expand_dims(frame_resized, axis=0) 

 

    # Normalize pixel values if using a floating model (i.e. if model is non-

quantized) 

    if floating_model: 

        input_data = (np.float32(input_data) - input_mean) / input_std 

 

    # Perform the actual detection by running the model with the image as 

input 

    interpreter.set_tensor(input_details[0]['index'],input_data) 

    interpreter.invoke() 

 

    # Retrieve detection results 

    boxes = interpreter.get_tensor(output_details[0]['index'])[0] # Bounding 

box coordinates of detected objects 

    classes = interpreter.get_tensor(output_details[1]['index'])[0] # Class 

index of detected objects 

    scores = interpreter.get_tensor(output_details[2]['index'])[0] # 

Confidence of detected objects 

    #num = interpreter.get_tensor(output_details[3]['index'])[0]  # Total 

number of detected objects (inaccurate and not needed) 

 

    # Loop over all detections and draw detection box if confidence is above 

minimum threshold 

    for i in range(len(scores)): 
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        if ((scores[i] > min_conf_threshold) and (scores[i] <= 1.0)): 

 

            # Get bounding box coordinates and draw box 

            # Interpreter can return coordinates that are outside of image 

dimensions, need to force them to be within image using max() and min() 

            ymin = int(max(1,(boxes[i][0] * imH))) 

            xmin = int(max(1,(boxes[i][1] * imW))) 

            ymax = int(min(imH,(boxes[i][2] * imH))) 

            xmax = int(min(imW,(boxes[i][3] * imW))) 

             

            cv2.rectangle(frameD, (xmin,ymin), (xmax,ymax), (10, 255, 0), 2) 

################################ 

 

        #Add depth information display 

            mask = np.zeros((frameD.shape), dtype=np.uint8) 

 

            # define points 

            pts = np.array( 

[[[xmin,ymin],[xmax,ymin],[xmax,ymax],[xmin,ymax]]], dtype=np.int32 ) 

            cv2.fillPoly(mask, pts, (255,255,255) ) 

 

            # get color values 

            values = frameD[np.where((mask == (255,255,255)).all(axis=2))] 

            values = np.array(values) 

            values = values.reshape(-1) 

            print('RGB mean: %d' % int(np.mean(values))) 

 

 

            # Draw label ######################## 

            object_name = labels[int(classes[i])] # Look up object name from 

"labels" array using class index 

            label = '%s: %d%%' % (object_name, int(scores[i]*100)) # Example: 

'person: 72%' 

            labelSize, baseLine = cv2.getTextSize(label, 

cv2.FONT_HERSHEY_SIMPLEX, 0.7, 2) # Get font size 

            label_ymin = max(ymin, labelSize[1] + 10) # Make sure not to draw 

label too close to top of window 

            cv2.rectangle(frameD, (xmin, label_ymin-labelSize[1]-10), 

(xmin+labelSize[0], label_ymin+baseLine-10), (255, 255, 255), cv2.FILLED) # 

Draw white box to put label text in 

            cv2.putText(frameD, label, (xmin, label_ymin-7), 

cv2.FONT_HERSHEY_SIMPLEX, 0.7, (0, 0, 0), 2) # Draw label text 

 

    # Draw framerate in corner of frame ########################## 

    cv2.putText(frameD,'FPS: 

{0:.2f}'.format(frame_rate_calc),(30,50),cv2.FONT_HERSHEY_SIMPLEX,1,(255,255,

0),2,cv2.LINE_AA) 

 

    # All the results have been drawn on the frame, so it's time to display 

it. 

    cv2.imshow('Object detector', frameD) ######################## 

 

    # Calculate framerate 

    t2 = cv2.getTickCount() 

    time1 = (t2-t1)/freq 

    frame_rate_calc= 1/time1 
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    # Press 'q' to quit 

    if cv2.waitKey(1) == ord('q'): 

        break 

 

# Clean up 

cv2.destroyAllWindows() 
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7.4 Edge Detection Methods 

Sobel 

BW =  edge(I,'Sobel') detect edges using the Sobel method. This method finds edges using the 

Sobel approximation to the derivative. It returns edges at those points where the gradient of I is 

maximum. 

7.5 Vicon - .m files 

 

 

 

 

file:///C:/Program%20Files/MATLAB/R2017b/help/images/ref/edge.html%23outputarg_BW
file:///C:/Program%20Files/MATLAB/R2017b/help/images/ref/edge.html%23inputarg_I
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