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Partial FFT Direct Parallel Algorithms for

Subsurface Scattering Problems

Dissertation Abstract - - Idaho State University (2022)

The present research introduces a direct parallel partial fast Fourier transform (FFT) algo-

rithm for the numerical solutions of the two- and three-dimensional Helmholtz equations.

The governing equations are discretized by high-order compact finite difference methods. The

resulting discretized system is indefinite, making the convergence of most iterative methods

deteriorate as frequency increases. For indefinite systems parallel direct approaches are a

better alternative, especially for systems with discontinuous and singular right-hand sides.

The research focuses on the efficient parallel implementation of the proposed algorithm in

both shared (OpenMP) and distributed (MPI) memory environments. The complexity and

speed-up of the direct parallel methods are investigated on scattering problems with realistic

ranges of parameters in air, soil and mine-like targets.

Key Words: Parallel algorithm, direct solver, FFT, subsurface scattering, mine-like inclu-

sions, OpenMP, MPI, high-order, Sommerfeld-like boundary conditions.
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1 Introduction

Increasing the resolution of existing numerical solvers is the focus of research in many areas

of science and engineering. The need for improved accuracy, or resolution, increases the

time and memory requirements of existing sequential methods rendering them unacceptable

in many applications. Performance enhancement of a single processing unit has plateaued

in recent decades. Implementation of multiple-core processors began in 2005 [1]. Today the

trend of computing performance improvement primarily through the addition of processing

units continues. Therefore, the development of parallel algorithms is necessary for high-

resolution simulation of many natural phenomena and engineering applications.

The purpose of the research study is to present a novel direct parallel partial FFT solver.

This is accomplished by introducing a direct FFT solver followed by a novel generalized

eigenvalue solver. Slightly modified versions of these solvers combined produce the partial

FFT solver. The basic premise of each solver is the same: transform the right-hand side

(RHS), solve the system and transform the solution back to the solution space.

The discretized schemes for the two- and three-dimensional Helmholtz equations are the

target systems for the solvers. The equations and boundary conditions are discretized using

second-, fourth- and sixth-order compact finite difference schemes. Nabavi presented the

two-dimensional case scheme with constant-coefficient [2], which Sutmann extended to the

three-dimensional case [3]. The fourth-order approximation is an extension of the work done

by Lele [4]. Turkel presented a sixth-order scheme with variable-coefficient in [5] and Gryazin

provided this scheme with Sommerfeld-like boundary conditions in [6]. The work focuses on

demonstrating the efficient parallel implementations of these direct numerical methods in
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shared and distributed memory environments.

The target problems considered in the research are the two- and three-dimensional Helm-

holtz equations on rectangular domains with Dirichlet or Sommerfeld-like boundary condi-

tions. That is

∆u(x) + k2(x)u(x) = f(x) in Ω (1.1)

Γu(x) = g(x) for x ∈ ∂Ω (1.2)

where Γ is the differential operator corresponding to either Dirichlet or Sommerfeld-like

conditions [7]. The three-dimensional domain is defined as

Ω =
{
x = (x, y, z) ∈ R3 | xl ≤ x ≤ xu, yl ≤ y ≤ yu, zl ≤ z ≤ zu

}

where xl < xu, yl < yu and zl < zu. The two-dimensional domain is defined by simply

omitting the z direction from Ω. The function k is complex valued. The stability, existence

and uniqueness analysis of the problem can be found in [8, 9].

In the case of Sommerfeld-like conditions, Γ from (1.2) is an approximation for Sommer-

feld radiation conditions given by

lim
r→∞

r(d−1)/2
(

∂

∂r
u(x) − ik(x)u(x)

)
= 0 (1.3)

where r = ||x||2 with d = 2 or d = 3 for two- and three-dimensions respectively [7]. Truncat-

ing the unbounded domain to a finite domain at the boundary under consideration provides

the approximation [10]. That is

∇u(x) · n − ik(x)u(x) = 0

2



for x ∈ ∂Ω where n is the outward normal vector of the boundary. This approximation

presents a case of absorbing boundary conditions (ABCs) that reduce reflections caused by

the boundary, which are considered first-order ABCs [10]. Higher-order ABCs are viable,

but are not considered here as they do not have a dramatic influence on the accuracy of the

solvers under consideration [11].

The immediate application of the problem given by (1.1,1.2) with k varying in all spatial

directions is the forward solution of high-frequency electromagnetic wave propagation, a vital

piece in imaging subsurface mine-like targets. Mine-like objects are modeled by k(x) as small

inclusions within a medium containing both air and soil. The inclusions are defined by the

electrical conductivity and permittivity that differ from the surrounding soil [12]. Solving

the forward scattering problem presents a challenge because of the high-frequency required

[13], forcing the use of finer computational grids and thus necessitating a highly parallel

solver. The numerical results generated here examine applications with realistic ranges of

parameters in air, soil and mine-like targets [13]. High-resolution is key in imaging subsurface

mine-like targets and is enabled by two contributing factors. These factors include a) the

application of fourth- and sixth-order schemes and b) the utilization of finer computational

grids through increased computational power via parallel computing.

Robey and Zamora define parallel computing as “the practice of identifying and expos-

ing parallelism in algorithms, expressing this in our software, and understanding the costs,

benefits, and limitations of the chosen implementation [1].” One such benefit of running

computations in parallel is decreased computation time. Wall-time and central processing

unit (CPU) time are two common measures for computation time. CPU-time measures the

length of time the CPU was used, but it does not capture the speed-up advantages of com-
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putations run in parallel. For computations in parallel, CPU-time reflects the sum of time

per processing unit. Thus, CPU-time does not decrease because computations in parallel

utilize multiple processing units simultaneously. Wall-time, utilized here, can capture the

parallel computing speed-up advantages because it measures the length of time to complete

a task.

The goal of implementing parallel algorithms is to observe a reduction in computation

time with the addition of processing units, or processes. A process is “an independent unit

of computation that has ownership of a portion of memory and control over resources in user

space [1].” Ideally, a doubling of the number of processes would reduce the wall-time by half,

or linear speed-up. Perfect linear speed-up in computation time is typically not observed in

practice as the increase in number of processors also increases the overhead and the number

of communications between these processes. Thus, there is a limit to the speed-up as the

latency, delay due to communication, can outweigh the benefit of reducing the number of

computations done by a process.

To achieve reduction in wall-time the computations must be divided as evenly as possible

among the available processes. Consider a for-loop with n iterations and let p be the number

of processes. Assume n > p as in practice n will be very large and p is limited by the

hardware. If p divides n, the number of iterations performed by each process is simply p/k.

On the other hand, if n mod p = r ̸= 0 then one of the remaining iterations is given to r

process, preventing one process from doing significantly more work than the others.

The simultaneous operations required to reduce wall-time are enabled by hardware such

as multi-core processors and graphics processing units (GPUs), now standard in personal

computers. Both contain multiple processing units with the ability to performer opera-
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tions independently. However, personal computers are often unable to run full-scale high-

resolution simulations for scientific application due to lack of memory and processing power.

A computer cluster is a collection of computers wired together giving access to significantly

more CPUs, GPUs and memory. An individual computer within a cluster is called a node

and possesses several processors, often 32, and one or more GPUs.

Two parallel technologies utilized, OpenMP and MPI, are tools that provide the pro-

grammer access to multiple processing units. OpenMP and MPI are utilized separately and

together in a hybrid implementation. The first parallel tool, OpenMP, is an application

programming interface (API) for shared memory architectures. Utilizing OpenMP delivers a

relatively simple implementation and excellent reduction in wall-time, but is also restricted.

The requirement of shared memory limits a program using strictly OpenMP to a single com-

puter or node, limiting the number of processes that can be utilized and, more importantly,

the availability of random access memory (RAM). Some tests require vast amounts of RAM

that cannot be provided on a single node. OpenMP now has the ability to access the power

of GPUs, but is only considered here for use on CPUs. The provided FFT solver was tested

on GPUs via CUDA, a parallel tool for NVIDIA GPUs. The resulting implementations saw

a reduction in wall-time, but the performance was underwhelming compared to the Message

Passing Interface (MPI) implementation due to the bottleneck created by the data transfer

to and from the GPU’s memory.

The ability to run large-scale computational grids requires the RAM from multiple nodes,

which calls for the use of MPI, today’s standard for communication between processes in

a distributed memory environment [14]. MPI implementations only allocate the minimum

required memory on each process’s available memory by dividing the computational domain
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as evenly as possible among the processes. In turn, this distribution allows for much larger

computational grids as the program is no longer limited by the memory of a single node.

Each process independently runs its own copy of the program on its assigned portion of the

computational domain. The process passes messages, or transfers data, when necessary.

If k is constant or assumed to only vary in the vertical direction then the resulting stencil

pattern formed by the discretization leads to a system that can be solved directly with an

FFT solver. This restricting pattern is found when working with strictly Dirichlet conditions

or Sommerfeld-like conditions on only the top and bottom boundaries with respect to the

vertical direction and Dirichlet on the others. In this case, the FFT solver utilizes the

discrete sine transform (DST) to transform the right-hand side, then LU decomposition is

used to solve the system and then DST is used to transform the solution. The discrete

Fourier transform (DFT) is used to compute the necessary DSTs. Massachusetts Institute

of Technology (MIT) supports a widely used library, Fastest Fourier Transform in the West

(FFTW), that is implemented for the DFT calculations via FFT [15]. Let Nx, Ny and Nz

be the number of grid points in the x, y and z directions respectively. Then, in the three-

dimensional case, the direct FFT solver requires O (Nx · Ny · Nz log(N)) operations where

N = max{Nx, Ny}. The major advantage of this approach is the natural parallelization in

the transformations via DST.

The pattern in the stencil is lost when utilizing k that varies in all spatial directions or

including Sommerfeld-like conditions on all boundaries. Hence, a more versatile approach

is required for the target application problems where k contains an inclusion. The novel

generalized eigenvalue and partial FFT solvers can overcome the loss of stencil pattern and

effectively approximate the solution to (1.1) with mine-like inclusions in k and Sommerfeld-
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like conditions on all boundaries. The partial FFT solver is a combination of the FFT solver

and generalized eigenvalue solver that takes advantage of the highly parallel nature of the

FFT solver and reduces the number of operations required by the generalized eigenvalue

solver to only O (Nx · Ny · Nz log(N)) [16]. A related solver has been developed for the case

of constant wave number, k, by Toivanen and Wolfmayr [10]. The lack of variable coefficient

k makes this method insufficient for some of the applications under consideration.

If k is assumed to contain an inclusion or the equation (1.1) is coupled with Sommer-

feld-like conditions on all boundaries, the resulting discretized system is neither positive

definite nor Hermitian [17]. This system causes the convergence of most iterative methods

to deteriorate as frequency increases [5, 18, 19]. Turkel approached a similar problem with an

iterative method and was limited to a computational grid of only 4032 and 4023 in the two-

and three-dimensional cases respectively [5]. In two-dimensions, this is immediately evident.

With a grid of only 1122 the iterations approached 3000 to reach the desired residual [5]. In

this situation, the parallel direct approach is a better alternative.

The developed algorithms present a stable alternative to highly-efficient Krylov-type

methods developed for subsurface scattering problems in the author’s previous publication

[12] and in [13]. However, if k is assumed to vary only in one spatial direction these direct

solvers can be utilized as efficient preconditioners in some general non-constant coefficient

problems as shown in [20, 20, 21]. Such an iterative solver in the second-order case for

both two- and three-dimensions is provided by Gryazin in [6, 20]. A second-order trilinear

finite element approximation for the case of constant k in three-dimensions was given by

Elman in [21]. The MPI extension for Fortran90 was used to parallelize this implementation

and demonstrated “a large amount of parallelism” [21]. This direct solver was utilized as a

7



preconditioner for the case with Sommerfeld-like boundary conditions with an average speed-

up ranging from 1.77 to 1.90 times when doubling the number of processes. The quality of

FFT preconditioners in scattering problems is presented in [22].

Although the focus is the solution of the Helmholtz equation, the numerical methods

given here have a variety of applications. The FFT solver is developed to be a generalized

solver for a wider class of linear systems. Systems obtained from approximations on three-

dimensional 27-point stencils with similar constraints on the stencil coefficients form this

class. As an example of the solver’s versatility, the direct parallel implementation of a

compact fourth-order scheme for a convection-diffusion equation is considered. Convection-

diffusion with dominant vertical convection can be considered a first step in the development

of a high-resolution parallel compact simulator for atmospheric flow [23]. General statements

provided throughout refer to the Helmholtz problem unless explicitly stated that it refers to

the convection-diffusion problem.

Numerical experiments with test problems demonstrate the high-efficiency of the parallel

solvers’ implementations. The second-, fourth- and sixth-order compact schemes are tested

for convergence accuracy in the case of constant coefficient k with analytic solutions. In the

case of variable k, the resulting residuals are presented to ensure solution accuracy. Parallel

performance of these solvers is investigated using decreases in wall-time to measure speed-up.

The performance of the FFT solver is compared to the results given by Turkel in [5] and the

partial FFT solver is compared to the solver provided by Toivanen in [10].

Chapters 2 and 3 give the second-, fourth- and sixth-order finite difference approximations

of the Helmholtz equations in two- and three-dimensions respectively. Chapter 3 considers

the fourth-order discretization for the convection-diffusion equation. Chapter 4 states the

8



Dirichlet and Sommerfeld-like boundary conditions along with a simple two-dimensional

example on their implementations. The FFT solver’s derivation and parallel implementation

is given in Chapter 5. Novel generalized eigenvalue and partial FFT solvers are provided in

Chapters 6 and 7 respectively. Chapter 8 presents numerical results that show the efficiency

of the solver’s parallel implementations.

9



2 Two-Dimensional Discretization

Chapter 2 develops second-, fourth- and sixth-order compact finite difference schemes for the

approximate solution of the two-dimensional Helmholtz equation on rectangular domains. To

approximate the solution of (1.1) with boundary conditions (1.2) consider the computational

grid

Ωh = {(xi, yj) ∈ R2 | xi = xl + ihx, yj = yl + jhy, i = 1, . . . , Nx, j = 1, . . . , Ny},

where hx = (xu − xl) / (Nx + 1) and hy = (yu − yl) / (Ny + 1) are the step sizes in the x and

y directions respectively for Dirichlet boundary conditions. If Sommerfeld-like boundary

conditions are considered, the step sizes are defined as hx = (xu − xl) / (Nx − 1) and hy =

(yu − yl) / (Ny − 1). In these cases the step sizes are defined differently, however the same

discretization applies. The following notation will be used for the first and second central

differences at the (i, j)-th grid point

δxui,j = ui+1,j − ui−1,j

2hx

, δ2
xui,j = ui−1,j − 2ui,j + ui+1,j

h2
x

where ui,j = u(xi, yj) and ui±1,j = u(xi ± hx, yj) [24].

2.1 Second-Order Accuracy

Taylor series expansion of u at each point (xi, yj) gives

ui±1,j = ui,j±hx
∂

∂x
ui,j+

h2
x

2
∂2

∂x2 ui,j±
h3

x

3!
∂3

∂x3 ui,j+
h4

x

4!
∂4

∂x4 ui,j±
h5

x

5!
∂5

∂x5 ui,j+
h6

x

6!
∂6

∂x6 ui,j . . . (2.1)
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for i = 1, . . . , Nx and j = 1, . . . , Ny [24]. The addition of ui−1,j and ui+1,j will cancel the odd

terms, that is

ui−1,j + ui+1,j = 2ui,j + h2
x

∂2

∂x2 ui,j + O
(
h4

x

)
.

Hence ∂2

∂x2 ui,j = δ2
xui,j + O (h2

x) . The same expansion can be done with respect to y. From

these expansions, the following second-order scheme for the approximation of (1.1) is ob-

tained,

fi,j = ∆ui,j + k2
i,jui,j

fi,j = δ2
xui,j + δ2

yui,j + k2
i,jui,j + O

(
max

{
h2

x, h2
y

})

fi,j = 1
h2

y

ui,j−1 + 1
h2

x

ui−1,j +
(

k2
i,j − 2

h2
x

− 2
h2

y

)
ui,j

+ 1
h2

x

ui+1,j + 1
h2

y

ui,j+1 + O
(
max

{
h2

x, h2
y

})

for i = 1, . . . , Nx and j = 1, . . . , Ny. This equation provides the following coefficients for a

9-point stencil

ui,j : k2
i,j − 2

h2
x

− 2
h2

y

, ui±1,j : 1
h2

x

, ui,j±1 : 1
h2

y

, ui±1,j±1 : 0.

2.2 Fourth-Order Accuracy

Here, the fourth-order term in the addition of ui−1,j and ui+1,j is included, that is

ui−1,j + ui+1,j = 2ui,j + h2
x

∂2

∂x2 ui,j + h4
x

12
∂4

∂x4 ui,j + O
(
h6

x

)

δ2
xui,j = ∂2

∂x2 ui,j + h2
x

12
∂4

∂x4 ui,j + O
(
h4

x

)

11



δ2
xui,j = ∂2

∂x2 ui,j + h2
x

12δ2
x

∂2

∂x2 ui,j + O
(
h4

x

)

δ2
xui,j =

(
1 + h2

x

12δ2
x

)
∂2

∂x2 ui,j + O
(
h4

x

)

∂2

∂x2 ui,j =
(

1 + h2
x

12δ2
x

)−1

δ2
xui,j + O

(
h4

x

)

∂2

∂x2 ui,j = α−1
x δ2

xui,j + O
(
h4

x

)
.

where αx = (1 + h2
xδ2

x/12). The same expansion can be done with respect to y. The operators

αx and αy are shown to commute by Lemma 2.1.

Lemma 2.1. The operators
(

1 + h2
x

12δ2
x

)
and

(
1 +

h2
y

12δ2
y

)
commute.

Proof. Let u be a function of x and y. First note that the operators δ2
x and δ2

y commute

since

δ2
xδ2

yui,j = δ2
x

(
ui,j−1 − 2ui,j + ui,j+1

h2
y

)

= 1
h2

y

1
h2

x

([ui−1,j−1 − 2ui,j−1 + ui+1,j−1]

−2 [ui−1,j − 2ui,j + ui+1,j] + [ui−1,j+1 − 2ui,j+1 + ui+1,j+1])

= 1
h2

x

1
h2

y

([ui−1,j−1 − 2ui−1,j + ui−1,j+1]

−2 [ui,j−1 − 2ui,j + ui,j+1] + [ui+1,j−1 − 2ui+1,j + ui+1,j+1])

= δ2
y

(
ui−1,j − 2ui,j + ui+1,j

h2
x

)
= δ2

yδ2
xui,j.
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Thus

(
1 + h2

x

12δ2
x

)(
1 +

h2
y

12δ2
y

)
ui,j = ui,j +

h2
y

12δ2
yui,j + h2

x

12δ2
xui,j + h2

x

12
h2

y

12δ2
xδ2

yui,j

= ui,j + h2
x

12δ2
xui,j +

h2
y

12δ2
yui,j +

h2
y

12
h2

x

12δ2
yδ2

xui,j

=
(

1 +
h2

y

12δ2
y

)(
1 + h2

x

12δ2
x

)
ui,j. ■

The following is obtained by multiplying αxαy to both sides of the equation:

∆ui,j + k2
i,jui,j = fi,j

α−1
x δ2

xui,j + α−1
y δ2

yui,j + k2
i,jui,j = fi,j + O

(
max

{
h4

x, h4
y

})

αyδ2
xui,j + αxδ2

yui,j + αxαyk2
j ui,j = αxαyfi,j + O

(
max

{
h4

x, h4
y

})
. (2.2)

The following fourth-order scheme for the approximation of (1.1) is obtained by multiplying

out (2.2) and dropping all terms with h2
xh2

y. This simplification is justified because the

fourth-order approximation scheme is considered and higher-order terms are not needed.

Then

δ2
x + δ2

y +

(
h2

x + h2
y

)
12 δ2

xδ2
y

ui,j +
(

1 + h2
x

12δ2
x +

h2
y

12δ2
y

)
k2

i,jui,j

=
(

1 + h2
x

12δ2
x +

h2
y

12δ2
y

)
fi,j + O

(
max

{
h4

x, h4
y

})

for i = 1, . . . , Nx and j = 1, . . . , Ny. This equation provides the following coefficients for a
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9-point stencil

ui,j : − 5
3h2

x

− 5
3h2

y

+
2k2

i,j

3 , ui±1,j±1 : 1
12h2

y

+ 1
12h2

x

,

ui±1,j : 5
6h2

x

− 1
6h2

y

+
k2

i±1,j

12 , ui,j±1 : 5
6h2

y

− 1
6h2

x

+
k2

i,j±1

12 .

2.3 Sixth-Order Accuracy

The following subsection gives the sixth-order approximation finite difference scheme, similar

to that presented in [5]. Specific notation needed in the calculations followed by necessary

lemmas with their proofs are given, concluding with the development of the approximation.

For this scheme a uniform grid step in both spatial directions is assumed, that is h = hx = hy.

Define the following notation

∇hui,j = (δx , δy) ui,j , ∇1/2
h ui,j =

(
δxδ2

y , δ2
xδy

)
ui,j , ∆hui,j =

(
δ2

x + δ2
y

)
ui,j,

Lu = ∆u + k2u, and Lhui,j = ∆hui,j + k2
i,jui,j

where u is a function of x and y. Note the sum of ui+1,j and ui−1,j from (2.1) gives the

following

ui−1,j + ui+1,j = 2ui,j + h2 ∂2

∂x2 ui,j + h4

12
∂4

∂x4 ui,j + h6

360
∂6

∂x6 ui,j + O
(
h8
)

δ2
xui,j = ∂2

∂x2 ui,j + h2

12
∂4

∂x4 ui,j + h4

360
∂6

∂x6 ui,j + O
(
h6
)

. (2.3)

Lemma 2.2.

∂

∂x
ui,j = δxui,j + h2

6

(
δxδ2

yui,j + δx

(
k2u

)
i,j

− ∂

∂x
fi,j

)
+ O

(
h4
)
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Proof. Differentiating (1.1) with respect to x gives

(
∂2

∂x2 + ∂2

∂y2

)
u + k2u = f

∂3

∂x3 u + ∂3

∂x∂y2 u + ∂

∂x

(
k2u

)
= ∂

∂x
f

∂

∂x
f − ∂3

∂x∂y2 u − ∂

∂x

(
k2u

)
= ∂3

∂x3 u.

The difference of ui+1,j and ui−1,j from (2.1) gives

δxui,j = ∂

∂x
ui,j + h2

6
∂3

∂x3 ui,j + O
(
h4
)

∂

∂x
ui,j = δxui,j − h2

6
∂3

∂x3 ui,j + O
(
h4
)

∂

∂x
ui,j = δxui,j − h2

6

(
∂

∂x
fi,j − ∂3

∂x∂y2 ui,j − ∂

∂x

(
k2u

)
i,j

)
+ O

(
h4
)

∂

∂x
ui,j = δxui,j − h2

6

(
∂

∂x
fi,j − δxδ2

yui,j − δx

(
k2u

)
i,j

)
+ O

(
h4
)

since δxδ2
yui,j and δx (k2u)i,j are second-order approximations. ■

The fourth-order approximation for ∂

∂y
ui,j is found similarly since the calculations in Lemma

2.2 are not dependent on the spatial direction.

Lemma 2.3.

δ2
xδ2

yui,j = ∂4

∂x2∂y2 ui,j + h2

12

(
∂6

∂x4∂y2 + ∂6

∂x2∂y4

)
ui,j + O

(
h4
)

Proof. The truncation of (2.3) to fourth-order gives

δ2
xui,j = ∂2

∂x2 ui,j + h2

12
∂4

∂x4 ui,j + O
(
h4
)

. (2.4)
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It follows

δ2
yδ2

xui,j = δ2
y

(
∂2

∂x2 ui,j + h2

12
∂4

∂x4 ui,j

)
+ O

(
h4
)

= ∂2

∂y2

(
∂2

∂x2 ui,j + h2

12
∂4

∂x4 ui,j

)
+ h2

12
∂4

∂y4

(
∂2

∂x2 ui,j + h2

12
∂4

∂x4 ui,j

)
+ O

(
h4
)

= ∂4

∂x2∂y2 ui,j + h2

12
∂6

∂x4∂y2 ui,j + h2

12
∂6

∂x2∂y4 ui,j + h4

144
∂8

∂x4∂y4 ui,j + O
(
h4
)

= ∂4

∂x2∂y2 ui,j + h2

12

(
∂6

∂x4∂y2 + ∂6

∂x2∂y4

)
ui,j + O

(
h4
)

. ■

Lemma 2.4.

(
∂4

∂x4 + ∂4

∂y4

)(
k2u

)
i,j

= 12
h2

(
∆h

(
k2u

)
i,j

− ∆(k2u)i,j

)
+ O

(
h2
)

Proof. Note that

δ2
x

(
k2u

)
i,j

= ∂2

∂x2

(
k2u

)
i,j

+ h2

12
∂4

∂x4

(
k2u

)
i,j

+ O
(
h4
)

∂4

∂x4

(
k2u

)
i,j

= 12
h2

(
δ2

x

(
k2u

)
i,j

− ∂2

∂x2

(
k2u

)
i,j

)
+ O

(
h2
)

by (2.4). Hence

(
∂4

∂x4 + ∂4

∂y4

)(
k2u

)
i,j

= 12
h2

(
δ2

x

(
k2u

)
i,j

− ∂2

∂x2

(
k2u

)
i,j

)

+ 12
h2

(
δ2

y

(
k2u

)
i,j

− ∂2

∂y2

(
k2u

)
i,j

)
+ O

(
h2
)

(
∂4

∂x4 + ∂4

∂y4

)(
k2u

)
i,j

= 12
h2

((
δ2

x + δ2
y

) (
k2u

)
i,j

−
(

∂2

∂x2 + ∂2

∂y2

)
(k2u)i,j

)
+ O

(
h2
)

. ■
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Lemma 2.5.

∆
(
k2u

)
i,j

=
(
∆k2

i,j − k4
i,j

)
ui,j + k2

i,jfi,j

+ 2∇k2
i,j ·

(
∇hui,j + h2

6

(
∇1/2

h ui,j + ∇h

(
k2u

)
i,j

− ∇fi,j

))
+ O

(
h4
)

Proof. First observe that

∆
(
k2u

)
= ∂2

∂x2

(
k2u

)
+ ∂2

∂y2

(
k2u

)

= u
∂2

∂x2 k2 + 2
(

∂

∂x
k2
)(

∂

∂x
u

)
+ k2 ∂2

∂x2 u

+ u
∂2

∂y2 k2 + 2
(

∂

∂y
k2
)(

∂

∂y
u

)
+ k2 ∂2

∂y2 u

= u∆k2 + 2∇k2 · ∇u + k2∆u

= u∆k2 + 2∇k2 · ∇u + k2
(
f − k2u

)

=
(
∆k2 − k4

)
u + 2∇k2 · ∇u + k2f.

It follows

∆
(
k2u

)
i,j

=
(
∆k2

i,j − k4
i,j

)
ui,j + 2∇k2

i,j · ∇ui,j + k2
i,jfi,j

=
(
∆k2

i,j − k4
i,j

)
ui,j + k2

i,jfi,j

+ 2∇k2
i,j ·

(
δxui,j + h2

6

(
δxδ2

yui,j + δx

(
k2u

)
i,j

− ∂

∂x
fi,j

)
,

δyui,j + h2

6

(
δyδ2

xui,j + δy

(
k2u

)
i,j

− ∂

∂y
fi,j

))
+ O

(
h4
)
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=
(
∆k2

i,j − k4
i,j

)
ui,j + k2

i,jfi,j

+ 2∇k2
i,j ·

(
∇hui,j + h2

6

(
∇1/2

h ui,j + ∇h

(
k2u

)
i,j

− ∇fi,j

))
+ O

(
h4
)

from Lemma 2.2. ■

Now, consider the sixth-order approximation to (1.1). The substitution of (2.3) and the

corresponding equation for y gives

Lhui,j = ∆hui,j + k2
i,jui,j

=
(

∂2

∂x2 + ∂2

∂y2

)
ui,j + h2

12

(
∂4

∂x4 + ∂4

∂y4

)
ui,j + h4

360

(
∂6

∂x6 + ∂6

∂y6

)
ui,j

+ k2
i,jui,j + O

(
h6
)

= Lui,j + h2

12

(
∂4

∂x4 + ∂4

∂y4

)
ui,j + h4

360

(
∂6

∂x6 + ∂6

∂y6

)
ui,j + O

(
h6
)

.

It follows

fi,j = Lui,j = Lhui,j − h2

12β4 − h4

360β6 + O
(
h6
)

(2.5)

where β4 =
(

∂4

∂x4 + ∂4

∂y4

)
ui,j and β6 =

(
∂6

∂x6 + ∂6

∂y6

)
ui,j. The coefficients of β4 and β6

show that their approximations must be fourth- and second-order, respectively.

2.3.1 Fourth-Order Approximation of β4

As defined in (2.5), β4 =
(

∂4

∂x4 + ∂4

∂y4

)
ui,j. To approximate β4 with fourth-order accuracy,

consider the second and fourth partial derivatives of the equation (1.1):

∂4

∂x4 u + ∂4

∂x2∂y2 u + ∂2

∂x2

(
k2u

)
= ∂2

∂x2 f
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∂4

∂x2∂y2 u + ∂4

∂y4 u + ∂2

∂y2

(
k2u

)
= ∂2

∂y2 f

∂6

∂x4∂y2 u + ∂6

∂x2∂y4 u + ∂4

∂x2∂y2

(
k2u

)
= ∂4

∂x2∂y2 f.

It follows

∂4

∂x4 u = ∂2

∂x2 f − ∂4

∂x2∂y2 u − ∂2

∂x2

(
k2u

)

∂4

∂y4 u = ∂2

∂y2 f − ∂4

∂x2∂y2 u − ∂2

∂y2

(
k2u

)

∂6

∂x4∂y2 u + ∂6

∂x2∂y4 u = ∂4

∂x2∂y2 f − ∂4

∂x2∂y2

(
k2u

)
(2.6)

Then

β4 =
(

∂4

∂x4 + ∂4

∂y4

)
ui,j

= ∂2

∂x2 fi,j − ∂4

∂x2∂y2 ui,j − ∂2

∂x2

(
k2u

)
i,j

+ ∂2

∂y2 fi,j − ∂4

∂x2∂y2 ui,j − ∂2

∂y2

(
k2u

)
i,j

= ∆fi,j − 2 ∂4

∂x2∂y2 ui,j − ∆
(
k2u

)
i,j

.

Lemma 2.3 and equation (2.6) give

δ2
xδ2

yui,j = ∂4

∂x2∂y2 ui,j + h2

12

(
∂6

∂x4∂y2 + ∂6

∂x2∂y4

)
ui,j + O

(
h4
)

= ∂4

∂x2∂y2 ui,j + h2

12

(
∂4

∂x2∂y2 fi,j − ∂4

∂x2∂y2

(
k2u

)
i,j

)
+ O

(
h4
)

∂4

∂x2∂y2 ui,j = δ2
xδ2

yui,j − h2

12

(
∂4

∂x2∂y2 fi,j − ∂4

∂x2∂y2

(
k2u

)
i,j

)
+ O

(
h4
)
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= δ2
xδ2

yui,j + h2

12

(
δ2

xδ2
y

(
k2u

)
i,j

− ∂4

∂x2∂y2 fi,j

)
+ O

(
h4
)

since δ2
xδ2

y (k2u) is a second-order approximation. Finally,

β4 = ∆fi,j − 2 ∂4

∂x2∂y2 ui,j − ∆
(
k2u

)
i,j

= ∆fi,j − 2δ2
xδ2

yui,j − h2

6

(
δ2

xδ2
y

(
k2u

)
i,j

− ∂4

∂x2∂y2 fi,j

)
− ∆

(
k2u

)
i,j

+ O
(
h4
)

.

2.3.2 Second-Order Approximation of β6

As defined in (2.5), β6 =
(

∂6

∂x6 + ∂6

∂y6

)
ui,j. To approximate β6 with second-order accuracy,

consider the fourth derivatives of the equation (1.1),

∂6

∂x6 u + ∂6

∂x4∂y2 u + ∂4

∂x4

(
k2u

)
= ∂4

∂x4 f

∂4

∂x4 f − ∂6

∂x4∂y2 u − ∂4

∂x4

(
k2u

)
= ∂6

∂x6 u

with ∂6

∂y6 u found similarly. It follows

β6 =
(

∂6

∂x6 + ∂6

∂y6

)
u

= ∂4

∂x4 f − ∂6

∂x4∂y2 u − ∂4

∂x4

(
k2u

)
+ ∂4

∂y4 f − ∂6

∂x2∂y4 u − ∂4

∂y4

(
k2u

)

= −
(

∂6

∂x4∂y2 u + ∂6

∂x2∂y4 u

)
−
(

∂4

∂x4 + ∂4

∂y4

)(
k2u

)
+
(

∂4

∂x4 + ∂4

∂y4

)
f

= ∂4

∂x2∂y2 k2u − ∂4

∂x2∂y2 f −
(

∂4

∂x4 + ∂4

∂y4

)(
k2u

)
+
(

∂4

∂x4 + ∂4

∂y4

)
f.

by (2.6). Lemma 2.4 gives the second-order approximation as follows
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β6 = δ2
xδ2

y

(
k2u

)
i,j

− 12
h2

(
∆h

(
k2u

)
i,j

− ∆
(
k2u

)
i,j

)

+
(

∂4

∂x4 + ∂4

∂y4 − ∂4

∂x2∂y2

)
fi,j + O

(
h2
)

.

The approximated β4 and β6 substituted into (2.5) along with Lemma 2.5 gives

Lhui,j − h2

12

[
∆fi,j − 2δ2

xδ2
yui,j − h2

6

(
δ2

xδ2
y

(
k2u

)
i,j

− ∂4

∂x2∂y2 fi,j

)
− ∆

(
k2u

)
i,j

+ O
(
h4
)]

− h4

360

[
δ2

xδ2
y

(
k2u

)
i,j

− 12
h2

(
∆h

(
k2u

)
i,j

− ∆
(
k2u

)
i,j

)

+
(

∂4

∂x4 + ∂4

∂y4 − ∂4

∂x2∂y2

)
fi,j + O

(
h2
)]

+ O
(
h6
)

= Lhui,j + h2

6 δ2
xδ2

yui,j + h4

90δ2
xδ2

y

(
k2u

)
i,j

+ h2

30∆h

(
k2u

)
i,j

+ h2

20
[(

∆k2
i,j − k4

i,j

)
ui,j + k2

i,jfi,j

+2∇k2
i,j ·

(
∇hui,j + h2

6

(
∇1/2

h ui,j + ∇h

(
k2u

)
i,j

− ∇fi,j

))
+ O

(
h4
)]

− h4

360

(
∂4

∂x4 + ∂4

∂y4 + 4 ∂4

∂x2∂y2

)
fi,j − h2

12∆fi,j + O
(
h6
)

= Lhui,j + h2

6 δ2
xδ2

yui,j + h4

90δ2
xδ2

y

(
k2u

)
i,j

+ h2

30∆h

(
k2u

)
i,j

+ h2

20
(
∆k2

i,j − k4
i,j

)
ui,j + h2

10∇k2
i,j ·

(
∇hui,j + h2

6

(
∇1/2

h ui,j + ∇h

(
k2u

)
i,j

))

− h4

360

(
∂4

∂x4 + ∂4

∂y4 + 4 ∂4

∂x2∂y2

)
fi,j − h2

12∆fi,j + h2

20k2
i,jfi,j − h4

60∇k2
i,j · ∇fi,j + O

(
h6
)

= fi,j.
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Thus the sixth-order compact approximation is given by

Lhui,j + h2

6 δ2
xδ2

yui,j + h4

90δ2
xδ2

y

(
k2u

)
i,j

+ h2

30∆h

(
k2u

)
i,j

+ h2

20
(
∆k2

i,j − k4
i,j

)
ui,j + h2

10∇k2
i,j ·

(
∇hui,j + h2

6

(
∇1/2

h ui,j + ∇h

(
k2u

)
i,j

))

with the right-hand side

(
1 − h2

20k2
i,j

)
fi,j + h4

360

(
∂4

∂x4 + ∂4

∂y4 + 4 ∂4

∂x2∂y2

)
fi,j + h2

12∆fi,j + h4

60∇k2
i,j · ∇fi,j.

for i = 1, . . . , Nx and j = 1, . . . , Ny. This scheme provides the following coefficients for a

9-point stencil

ui,j : − 10
3h2 +

41k2
i,j

45 + h2

20
(
∆k2

i,j − k4
i,j

)
,

ui±1,j : 2
3h2 +

k2
i±1,j

90 ±
(

h

30 +
h3k2

i±1,j

120

)
∂

∂x
k2

i,j ,

ui,j±1 : 2
3h2 +

k2
i,j±1

90 ±
(

h

30 +
h3k2

i,j±1

120

)
∂

∂y
k2

i,j ,

ui±1,j−1 : 1
6h2 +

k2
i±1,j−1

90 ± h

120
∂

∂x
k2

i,j − h

120
∂

∂y
k2

i,j ,

ui±1,j+1 : 1
6h2 +

k2
i±1,j+1

90 ± h

120
∂

∂x
k2

i,j + h

120
∂

∂y
k2

i,j.

2.4 Summary

Chapter 2 developed the second-, fourth- and sixth-order approximation schemes for the

numerical solution of the two-dimensional Helmholtz equation. In addition, the nine-point

stencil coefficients were presented. Chapter 3 develops approximation schemes for the three-

dimensional Helmholtz and convection-diffusion equations.
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3 Three-Dimensional Discretization

Chapter 3 develops second-, fourth- and sixth-order compact finite difference schemes for the

numerical solution of the three-dimensional Helmholtz equation on rectangular domains. To

approximate the solution of (1.1) with boundary conditions (1.2), consider the computational

grid

Ωh = {(xi, yj, zl) ∈ R3 | xi = xl + ihx, yj = yl + jhy, zl = zl + lhz,

i = 1, . . . , Nx, j = 1, . . . , Ny, l = 1, . . . , Nz}, (3.1)

where hx = (xu − xl) /(Nx + 1), hy = (yu − yl) /(Ny + 1) and hz = (zu − zl) /(Nz + 1) are

the step sizes in the x, y and z directions respectively for Dirichlet boundary conditions.

If Sommerfeld-like boundary conditions are considered, the step sizes are defined as hx =

(xu − xl) / (Nx − 1), hy = (yu − yl) / (Ny − 1) and hz = (zu − zl) /(Nz − 1). Regardless of

the step size definition, the same discretization applies. The following notation will be used

for the first and second central differences at the (i, j, l)-th grid point

δxui,j,l = ui+1,j,l − ui−1,j,l

2hx

, δ2
xui,j,l = ui−1,j,l − 2ui,j,l + ui+1,j,l

h2
x

where ui,j,l = u(xi, yj, zl) and ui±1,j,l = u(xi ± hx, yj, zl) [24]. The operators δy, δz, δ2
y and

δ2
z are defined similarly. In addition, the chapter introduces a fourth-order scheme for the

convection-diffusion equation with Dirichlet boundary conditions. Note that many of the

calculations needed for the development of these schemes are similar to those in the previous

chapter for the two-dimensional case and are therefore omitted.
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3.1 Second-Order Accuracy

Taylor series expansion of u at each point (xi, yj, zl) gives

ui±1,j,l = ui,j,l±hx
∂

∂x
ui,j,l+

h2
x

2
∂2

∂x2 ui,j,l±
h3

x

3!
∂3

∂x3 ui,j,l+
h4

x

4!
∂4

∂x4 ui,j,l±
h5

x

5!
∂5

∂x5 ui,j,l+
h6

x

6!
∂6

∂x6 ui,j,l . . .

(3.2)

for i = 1, . . . , Nx, j = 1, . . . , Ny and l = 1, . . . , Nz [24]. The addition of ui−1,j,l and ui+1,j,l

will cancel the odd terms, that is

ui−1,j,l + ui+1,j,l = 2ui,j,l + h2
x

∂2

∂x2 ui,j,l + O
(
h4

x

)
.

Hence ∂2

∂x2 ui,j,l = δ2
xui,j,l + O (h2

x) . The same expansion can be done with respect to y and

z. From these, the following second-order scheme for the approximation of (1.1) is obtained,

fi,j,l = 1
h2

x

ui−1,j,l + 1
h2

y

ui,j−1,l + 1
h2

z

ui,j,l−1 +
(

k2
i,j,l − 2

h2
x

− 2
h2

y

− 2
h2

z

)
ui,j,l

+ 1
h2

x

ui+1,j,l + 1
h2

y

ui,j+1,l + 1
h2

z

ui,j,l+1 + O
(
max

{
h2

x, h2
y, h2

z

})
(3.3)

for i = 1, . . . , Nx, j = 1, . . . , Ny and l = 1, . . . , Nz. This scheme provides the following

coefficients for a 27-point stencil

ui,j,l : k2
i,j,l − 2

h2
x

− 2
h2

y

− 2
h2

z

, ui±1,j,l : 1
h2

x

, ui,j±1,l : 1
h2

y

, ui,j,l±1 : 1
h2

z

,

ui±1,j±1,l±1 = ui,j±1,l±1 = ui±1,j,l±1 = ui±1,j±1,l : 0.
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3.2 Fourth-Order Accuracy

The fourth-order approximation given in Section 3.2 uses a strategy similar that of Lele [4].

Here, the fourth-order term in the addition of ui−1,j,l and ui+1,j,l is included, that is

ui−1,j,l + ui+1,j,l = 2ui,j,l + h2
x

∂2

∂x2 ui,j,l + h4
x

12
∂4

∂x4 ui,j,l + O
(
h6

x

)

δ2
xui,j,l = ∂2

∂x2 ui,j,l + h2
x

12
∂4

∂x4 ui,j,l + O
(
h4

x

)

∂2

∂x2 ui,j,l =
(

1 + h2
x

12δ2
x

)−1

δ2
xui,j,l + O

(
h4

x

)

∂2

∂x2 ui,j,l = α−1
x δ2

xui,j,l + O
(
h4

x

)
.

where αx = (1 + h2
xδ2

x/12). The same expansion can be done with respect to y and z. Note

that Lemma 2.1 had no dependency on the spatial direction or dimension, so the operators

αx, αy and αz commute. The following is obtained by multiplying αxαyαz to both sides of

(1.1)

αyαzδ2
xui,j,l + αxαzδ2

yui,j,l + αxαyδ2
zui,j,l + αxαyαzk2

i,j,lui,j,l = αxαyαzfi,j,l

+ O
(
max

{
h4

x, h4
y, h4

z

})
(3.4)

The following fourth-order scheme for the approximation of (1.1) is obtained by multiplying

out and dropping all terms with h2
xh2

y, h2
xh2

z, h2
yh2

z and h2
xh2

yh2
z. This is justified because the

fourth-order approximation scheme is considered and only the second-order terms need to

remain. Consider first

αyαzδ2
xui,j,l =

(
1 + h2

y

δ2
y

12

)(
1 + h2

z

δ2
z

12

)
δ2

xui,j,l
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=
(

δ2
x + h2

y

δ2
xδ2

y

12 + h2
z

δ2
xδ2

z

12

)
ui,j,l.

Also,

αxαyαzk2
i,j,lui,j,l =

(
1 + h2

x

δ2
x

12

)(
1 + h2

y

δ2
y

12

)(
1 + h2

z

δ2
z

12

)
k2

i,j,lui,j,l

=
(

1 + h2
x

δ2
x

12

)(
1 + h2

y

δ2
y

12 + h2
z

δ2
z

12

)
k2

i,j,lui,j,l

=
(

1 + h2
x

δ2
x

12 + h2
y

δ2
y

12 + h2
z

δ2
z

12 + h2
xh2

y

δ2
xδ2

y

144 + h2
xh2

z

δ2
xδ2

z

144

)
k2

i,j,lui,j,l

=
(

1 + h2
x

δ2
x

12 + h2
y

δ2
y

12 + h2
z

δ2
z

12

)
k2

i,j,lui,j,l.

Substituting these and the analogous terms into (3.4) gives

(
1 + h2

x

δ2
x

12 + h2
y

δ2
y

12 + h2
z

δ2
z

12

)
fi,j,l =

(
1 + h2

x

δ2
x

12 + h2
y

δ2
y

12 + h2
z

δ2
z

12

)
k2

i,j,lui,j,l

+
(

δ2
x + h2

y

δ2
xδ2

y

12 + h2
z

δ2
xδ2

z

12

)
ui,j,l +

(
δ2

y + h2
x

δ2
xδ2

y

12 + h2
z

δ2
yδ2

z

12

)
ui,j,l

+
(

δ2
z + h2

x

δ2
xδ2

z

12 + h2
y

δ2
yδ2

z

12

)
ui,j,l + O

(
max

{
h4

x, h4
y, h4

z

})

for i = 1, . . . , Nx, j = 1, . . . , Ny and l = 1, . . . , Nz. This scheme provides the following

coefficients for a 27-point stencil

ui,j,l :
k2

i,j,l

2 − 4
3

(
1
h2

x

+ 1
h2

y

+ 1
h2

z

)
, ui±1,j±1,l±1 : 0 ,

ui±1,j,l :
k2

i±1,j,l

12 + 2
3h2

x

− 1
6

(
1
h2

y

+ 1
h2

z

)
, ui,j±1,l :

k2
i,j±1,l

12 + 2
3h2

y

− 1
6

(
1
h2

x

+ 1
h2

z

)
,

ui,j,l±1 :
k2

i,j,l±1

12 + 2
3h2

z

− 1
6

(
1
h2

x

+ 1
h2

y

)
,
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ui,j±1,l±1 : 1
12

(
1
h2

y

+ 1
h2

z

)
, ui±1,j,l±1 : 1

12

(
1
h2

x

+ 1
h2

z

)
, ui±1,j±1,l : 1

12

(
1
h2

x

+ 1
h2

y

)
.

3.3 Sixth-Order Accuracy

Section 3.3 derives the sixth-order approximation finite difference scheme in the three-di-

mensional case. The work closely follows that presented in [5]. After establishing notation,

the necessary lemmas with their proofs are given, followed by the development of the approx-

imation schemes. For this scheme a uniform grid step in both spatial directions is assumed,

that is h = hx = hy = hz. Define the following notation,

∆hui,j,l =
(
δ2

x + δ2
y + δ2

z

)
ui,j,l , Lhui,j,l = (∆h + k2

i,j,l)ui,j,l ∇hui,j,l = (δx , δy , δz) ui,j,l ,

∇1/2
h ui,j,l =

(
δxδ2

y , δ2
xδy , δ2

xδz

)
ui,j,l +

(
δxδ2

z , δyδ2
z , δ2

yδz

)
ui,j,l ,

∇4u =
(

∂4

∂x4 + ∂4

∂y4 + ∂4

∂z4

)
u , ∇6u =

(
∂6

∂x6 + ∂6

∂y6 + ∂6

∂z6

)
u.

Note the sum of ui+1,j,l and ui−1,j,l from (3.2) gives the following

ui−1,j,l + ui+1,j,l = 2ui,j,l + h2 ∂2

∂x2 ui,j,l + h4

12
∂4

∂x4 ui,j,l + h6

360
∂6

∂x6 ui,j,l + O
(
h8
)

δ2
xui,j,l = ∂2

∂x2 ui,j,l + h2

12
∂4

∂x4 ui,j,l + h4

360
∂6

∂x6 ui,j,l + O
(
h6
)

. (3.5)

Lemma 3.1.

∂

∂x
ui,j,l = δxui,j,l + h2

6

(
δxδ2

yui,j,l + δxδ2
zui,j,l + δx

(
k2u

)
i,j,l

− ∂

∂x
fi,j,l

)
+ O

(
h4
)

Proof. Differentiating (1.1) with respect to x gives

∂

∂x
f − ∂3

∂x∂y2 u − ∂3

∂x∂z2 u − ∂

∂x

(
k2u

)
= ∂3

∂x3 u.
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The difference of ui+1,j,l and ui−1,j,l from (3.2) gives

δxui,j,l = ∂

∂x
ui,j,l + h2

6
∂3

∂x3 ui,j,l + O
(
h4
)

∂

∂x
ui,j,l = δxui,j,l − h2

6

(
∂

∂x
fi,j,l − ∂3

∂x∂y2 ui,j,l − ∂3

∂x∂z2 ui,j,l − ∂

∂x

(
k2u

)
i,j,l

)
+ O

(
h4
)

∂

∂x
ui,j,l = δxui,j,l − h2

6

(
∂

∂x
fi,j,l − δxδ2

yui,j,l − δxδ2
zui,j,l − δx

(
k2u

)
i,j,l

)
+ O

(
h4
)

since δxδ2
yui,j,l, δxδ2

zui,j,l and δx (k2u)i,j,l are second-order approximations. ■

The fourth-order approximations for ∂

∂y
ui,j,l and ∂

∂z
ui,j,l are found in the same way since

the calculations in Lemma 3.1 are not dependent on the spatial direction.

Lemma 3.2.

δ2
xδ2

yui,j,l = ∂4

∂x2∂y2 ui,j,l + h2

12

(
∂6

∂x4∂y2 + ∂6

∂x2∂y4

)
ui,j,l + O

(
h4
)

Proof. The truncation of (3.5) to fourth-order gives

δ2
xui,j,l = ∂2

∂x2 ui,j,l + h2

12
∂4

∂x4 ui,j,l + O
(
h4
)

. (3.6)

It follows

δ2
yδ2

xui,j,l = δ2
y

(
∂2

∂x2 ui,j,l + h2

12
∂4

∂x4 ui,j,l

)
+ O

(
h4
)

= ∂2

∂y2

(
∂2

∂x2 ui,j,l + h2

12
∂4

∂x4 ui,j,l

)
+ h2

12
∂4

∂y4

(
∂2

∂x2 ui,j,l + h2

12
∂4

∂x4 ui,j,l

)
+ O

(
h4
)

= ∂4

∂x2∂y2 ui,j,l + h2

12
∂6

∂x4∂y2 ui,j,l + h2

12
∂6

∂x2∂y4 ui,j,l + h4

144
∂8

∂x4∂y4 ui,j,l + O
(
h4
)

= ∂4

∂x2∂y2 ui,j,l + h2

12

(
∂6

∂x4∂y2 + ∂6

∂x2∂y4

)
ui,j,l + O

(
h4
)

. ■
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Lemma 3.3.

∇4
(
k2u

)
i,j,l

= 12
h2

(
∆h

(
k2u

)
i,j,l

− ∆(k2u)i,j,l

)
+ O

(
h2
)

Proof. Note that

δ2
x

(
k2u

)
i,j,l

= ∂2

∂x2

(
k2u

)
i,j,l

+ h2

12
∂4

∂x4

(
k2u

)
i,j,l

+ O
(
h4
)

∂4

∂x4

(
k2u

)
i,j,l

= 12
h2

(
δ2

x

(
k2u

)
i,j,l

− ∂2

∂x2

(
k2u

)
i,j,l

)
+ O

(
h2
)

by (3.6). Hence

(
∂4

∂x4 + ∂4

∂y4 + ∂4

∂z4

)(
k2u

)
i,j,l

= 12
h2

(
δ2

x

(
k2u

)
i,j,l

− ∂2

∂x2

(
k2u

)
i,j,l

)

+ 12
h2

(
δ2

y

(
k2u

)
i,j,l

− ∂2

∂y2

(
k2u

)
i,j,l

)

+ 12
h2

(
δ2

z

(
k2u

)
i,j,l

− ∂2

∂z2

(
k2u

)
i,j,l

)
+ O

(
h2
)

(
∂4

∂x4 + ∂4

∂y4 + ∂4

∂z4

)(
k2u

)
i,j

= 12
h2

((
δ2

x + δ2
y + δ2

z

) (
k2u

)
i,j

−
(

∂2

∂x2 + ∂2

∂y2 + ∂2

∂z2

)
(k2u)i,j

)
+ O

(
h2
)

. ■

Lemma 3.4.

∆
(
k2u

)
i,j,l

=
(
∆k2

i,j,l − k4
i,j,l

)
ui,j,l + k2

i,j,lfi,j,l

+ 2∇k2
i,j,l ·

(
∇hui,j,l + h2

6

(
∇1/2

h ui,j,l + ∇h

(
k2u

)
i,j,l

− ∇fi,j,l

))
+ O

(
h4
)
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Proof. First observe that

∆
(
k2u

)
= ∂2

∂x2

(
k2u

)
+ ∂2

∂y2

(
k2u

)
+ ∂2

∂z2

(
k2u

)

= u
∂2

∂x2 k2 + 2
(

∂

∂x
k2
)(

∂

∂x
u

)
+ k2 ∂2

∂x2 u

+ u
∂2

∂y2 k2 + 2
(

∂

∂y
k2
)(

∂

∂y
u

)
+ k2 ∂2

∂y2 u

+ u
∂2

∂z2 k2 + 2
(

∂

∂z
k2
)(

∂

∂z
u

)
+ k2 ∂2

∂z2 u

= u∆k2 + 2∇k2 · ∇u + k2∆u

=
(
∆k2 − k4

)
u + 2∇k2 · ∇u + k2f.

It follows

∆
(
k2u

)
i,j,l

=
(
∆k2

i,j,l − k4
i,j,l

)
ui,j,l + 2∇k2

i,j,l · ∇ui,j,l + k2
i,j,lfi,j,l

=
(
∆k2

i,j,l − k4
i,j,l

)
ui,j,l + k2

i,j,lfi,j,l

+ 2∇k2
i,j,l ·

(
δxui,j,l + h2

6

(
δxδ2

yui,j,l + δxδ2
zui,j,l + δx

(
k2u

)
i,j,l

− ∂

∂x
fi,j,l

)
,

δyui,j,l + h2

6

(
δyδ2

xui,j,l + δyδ2
zui,j,l + δy

(
k2u

)
i,j,l

− ∂

∂y
fi,j,l

)
,

δzui,j,l + h2

6

(
δzδ2

xui,j,l + δzδ2
yui,j,l + δz

(
k2u

)
i,j,l

− ∂

∂z
fi,j,l

))
+ O

(
h4
)

=
(
∆k2

i,j,l − k4
i,j,l

)
ui,j,l + k2

i,j,lfi,j,l
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+ 2∇k2
i,j ·

(
∇hui,j,l + h2

6

(
∇1/2

h ui,j,l + ∇h

(
k2u

)
i,j,l

− ∇fi,j,l

))
+ O

(
h4
)

from Lemma 3.1. ■

Now consider the sixth-order approximation to (1.1). The substitution of (3.5) and the

corresponding equations for y and z give

Lhui,j,l = ∆hui,j,l + k2
i,j,lui,j,l

=
(

∂2

∂x2 + ∂2

∂y2 + ∂2

∂z2

)
ui,j,l + h2

12

(
∂4

∂x4 + ∂4

∂y4 + ∂4

∂z4

)
ui,j,l

+ h4

360

(
∂6

∂x6 + ∂6

∂y6 + ∂6

∂z6

)
ui,j,l + k2

i,j,lui,j,l + O
(
h6
)

= Lui,j,l + h2

12∇4ui,j,l + h4

360∇6ui,j,l + O
(
h6
)

.

It follows

fi,j,l = Lui,j,l = Lhui,j,l − h2

12β4 − h4

360β6 + O
(
h6
)

(3.7)

where β4 = ∇4ui,j,l and β6 = ∇6ui,j,l. The coefficients of β4 and β6 show that their approxi-

mations must be fourth- and second-order, respectively.

3.3.1 Fourth-Order Approximation of β4

To approximate β4 with fourth-order accuracy, consider the second and fourth partial deriva-

tives of the equation (1.1):

∂4

∂x4 u = ∂2

∂x2 f − ∂4

∂x2∂y2 u − ∂4

∂x2∂z2 u − ∂2

∂x2

(
k2u

)
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∂4

∂y4 u = ∂2

∂y2 f − ∂4

∂x2∂y2 u − ∂4

∂y2∂z2 u − ∂2

∂y2

(
k2u

)

∂4

∂z4 u = ∂2

∂z2 f − ∂4

∂x2∂z2 u − ∂4

∂y2∂z2 u − ∂2

∂z2

(
k2u

)

∂6

∂x4∂y2 u + ∂6

∂x2∂y4 u = ∂4

∂x2∂y2 f − ∂6

∂x2∂y2∂z2 u − ∂4

∂x2∂y2

(
k2u

)
(3.8)

Then

β4 =
(

∂4

∂x4 + ∂4

∂y4 + ∂4

∂z4

)
ui,j,l

= ∂2

∂x2 fi,j,l − ∂4

∂x2∂y2 ui,j,l − ∂4

∂x2∂z2 ui,j,l − ∂2

∂x2

(
k2u

)
i,j,l

+ ∂2

∂y2 fi,j,l − ∂4

∂x2∂y2 ui,j,l − ∂4

∂y2∂z2 ui,j,l − ∂2

∂y2

(
k2u

)
i,j,l

+ ∂2

∂z2 fi,j,l − ∂4

∂x2∂z2 ui,j,l − ∂4

∂y2∂z2 ui,j,l − ∂2

∂z2

(
k2u

)
i,j,l

= ∆fi,j,l − 2
(

∂4

∂x2∂y2 + ∂4

∂x2∂z2 + ∂4

∂y2∂z2

)
ui,j,l − ∆

(
k2u

)
i,j,l

.

Lemma 3.2 and equation (3.8) give

δ2
xδ2

yui,j,l = ∂4

∂x2∂y2 ui,j,l + h2

12

(
∂6

∂x4∂y2 + ∂6

∂x2∂y4

)
ui,j,l + O

(
h4
)

= ∂4

∂x2∂y2 ui,j,l

+ h2

12

(
∂4

∂x2∂y2 fi,j,l − ∂6

∂x2∂y2∂z2 ui,j,l − ∂4

∂x2∂y2

(
k2u

)
i,j,l

)
+ O

(
h4
)

∂4

∂x2∂y2 ui,j,l = δ2
xδ2

yui,j,l − h2

12

(
∂4

∂x2∂y2 fi,j,l − ∂6

∂x2∂y2∂z2 ui,j,l − ∂4

∂x2∂y2

(
k2u

)
i,j,l

)
+ O

(
h4
)
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= δ2
xδ2

yui,j,l + h2

12

(
δ2

xδ2
yδ2

zui,j,l + δ2
xδ2

y

(
k2u

)
i,j,l

− ∂4

∂x2∂y2 fi,j,l

)
+ O

(
h4
)

since δ2
xδ2

yδ2
zui,j,l and δ2

xδ2
y (k2u) are second-order approximations. Finally,

β4 = ∆fi,j,l − 2
(

∂4

∂x2∂y2 + ∂4

∂x2∂z2 + ∂4

∂y2∂z2

)
ui,j,l − ∆

(
k2u

)
i,j,l

= ∆fi,j,l − 2δ2
xδ2

yui,j,l − h2

6

(
δ2

xδ2
yδ2

zui,j,l + δ2
xδ2

y

(
k2u

)
i,j,l

− ∂4

∂x2∂y2 fi,j,l

)

− 2δ2
xδ2

zui,j,l − h2

6

(
δ2

xδ2
yδ2

zui,j,l + δ2
xδ2

z

(
k2u

)
i,j,l

− ∂4

∂x2∂z2 fi,j,l

)

− 2δ2
yδ2

zui,j,l − h2

6

(
δ2

xδ2
yδ2

zui,j,l + δ2
yδ2

z

(
k2u

)
i,j,l

− ∂4

∂y2∂z2 fi,j,l

)

− ∆
(
k2u

)
i,j,l

+ O
(
h4
)

= ∆fi,j,l − 2
(
δ2

xδ2
y + δ2

xδ2
z + δ2

yδ2
z

)
ui,j,l − h2

2 δ2
xδ2

yδ2
zui,j,l − ∆

(
k2u

)
i,j,l

− h2

6

(
δ2

xδ2
y

(
k2u

)
i,j,l

− ∂4

∂x2∂y2 fi,j,l

)

− h2

6

(
δ2

xδ2
z

(
k2u

)
i,j,l

− ∂4

∂x2∂z2 fi,j,l

)

− h2

6

(
δ2

yδ2
z

(
k2u

)
i,j,l

− ∂4

∂y2∂z2 fi,j,l

)
+ O

(
h4
)

.

3.3.2 Second-Order Approximation of β6

As defined in (3.7), β6 = ∇6ui,j,l. To approximate β6 with second-order accuracy, consider

the fourth derivatives of the equation (1.1),

∂6

∂x6 u = ∂4

∂x4 f − ∂6

∂x4∂y2 u − ∂6

∂x4∂z2 u − ∂4

∂x4

(
k2u

)
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with ∂6

∂y6 u and ∂6

∂z6 u given similarly. It follows

β6 =
(

∂6

∂x6 + ∂6

∂y6 + ∂6

∂z6

)
u

=
(

∂4

∂x4 + ∂4

∂y4 + ∂4

∂z4

)
f −

(
∂4

∂x4 + ∂4

∂y4 + ∂4

∂z4

)(
k2u

)

+ ∂6

∂x2∂y2∂z2 u + ∂4

∂x2∂y2

(
k2u

)
− ∂4

∂x2∂y2 f

+ ∂6

∂x2∂y2∂z2 u + ∂4

∂x2∂z2

(
k2u

)
− ∂4

∂x2∂z2 f

+ ∂6

∂x2∂y2∂z2 u + ∂4

∂y2∂z2

(
k2u

)
− ∂4

∂y2∂z2 f

= ∇4f − ∇4
(
k2u

)
+ 3 ∂6

∂x2∂y2∂z2 u

+
(

∂4

∂x2∂y2 + ∂4

∂x2∂z2 + ∂4

∂y2∂z2

)(
k2u

)
−
(

∂4

∂x2∂y2 + ∂4

∂x2∂z2 + ∂4

∂y2∂z2

)
f

by (3.8). Lemma 3.3 give the second-order approximation as follows

β6 =
(
δ2

xδ2
y + δ2

xδ2
z + δ2

yδ2
z

) (
k2u

)
i,j,l

− 12
h2

(
∆h

(
k2u

)
i,j,l

− ∆
(
k2u

)
i,j,l

)
+ 3δ2

xδ2
yδ2

zui,j,l

−
(

∂4

∂x2∂y2 + ∂4

∂x2∂z2 + ∂4

∂y2∂z2

)
fi,j,l + ∇4fi,j,l + O

(
h2
)

.

The approximated β4 and β6 substituted into (3.7), along with Lemma 3.4, gives

Lhui,j,l − h2

12

[
∆fi,j,l − 2

(
δ2

xδ2
y + δ2

xδ2
z + δ2

yδ2
z

)
ui,j,l − h2

2 δ2
xδ2

yδ2
zui,j,l − ∆

(
k2u

)
i,j,l

− h2

6

(
δ2

xδ2
y

(
k2u

)
i,j,l

− ∂4

∂x2∂y2 fi,j,l

)
− h2

6

(
δ2

xδ2
z

(
k2u

)
i,j,l

− ∂4

∂x2∂z2 fi,j,l

)
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−h2

6

(
δ2

yδ2
z

(
k2u

)
i,j,l

− ∂4

∂y2∂z2 fi,j,l

)
+ O

(
h4
)]

− h4

360

[(
δ2

xδ2
y + δ2

xδ2
z + δ2

yδ2
z

) (
k2u

)
i,j,l

− 12
h2

(
∆h

(
k2u

)
i,j,l

− ∆
(
k2u

)
i,j,l

)
+ 3δ2

xδ2
yδ2

zui,j,l

−
(

∂4

∂x2∂y2 + ∂4

∂x2∂z2 + ∂4

∂y2∂z2

)
fi,j,l + ∇4fi,j,l + O

(
h2
)]

+ O
(
h6
)

= fi,j,l

= Lhui,j,l − h2

12∆fi,j,l + h2

6
(
δ2

xδ2
y + δ2

xδ2
z + δ2

yδ2
z

)
ui,j,l + h4

30δ2
xδ2

yδ2
zui,j,l + h2

30∆h

(
k2u

)
i,j,l

+ h2

10∇k2
i,j,l · ∇hui,j,l + h4

60∇k2
i,j,l ·

(
∇1/2

h ui,j,l + ∇h

(
k2u

)
i,j,l

− ∇fi,j,l

)

+ h4

90
(
δ2

xδ2
y + δ2

xδ2
z + δ2

yδ2
z

) (
k2u

)
i,j,l

− h4

90

(
∂4

∂x2∂y2 + ∂4

∂x2∂z2 + ∂4

∂y2∂z2

)
fi,j,l

+ h2

20
(
∆k2

i,j,l − k4
i,j,l

)
ui,j,l + h2

20k2
i,j,lfi,j,l − h4

360∇4fi,j,l + O
(
h6
)

= fi,j,l.

Thus the sixth-order compact approximation is given by

Lhui,j,l + h2

6
(
δ2

xδ2
y + δ2

xδ2
z + δ2

yδ2
z

)
ui,j,l + h2

20
(
∆k2

i,j,l − k4
i,j,l

)
ui,j,l

+ h2

10∇k2
i,j,l · ∇hui,j,l + h4

60∇k2
i,j,l ·

(
∇1/2

h ui,j,l + ∇h

(
k2u

)
i,j,l

)
+ h4

30δ2
xδ2

yδ2
zui,j,l

+ h2

30∆h

(
k2u

)
i,j,l

+ h4

90
(
δ2

xδ2
y + δ2

xδ2
z + δ2

yδ2
z

) (
k2u

)
i,j,l

with the right-hand side

(
1 − h2

20k2
i,j,l

)
fi,j,l + h2

12∆fi,j,l + h4

60∇k2
i,j,l · ∇fi,j,l + h4

360∇4fi,j,l

+ h4

90

(
∂4

∂x2∂y2 + ∂4

∂x2∂z2 + ∂4

∂y2∂z2

)
fi,j,l

35



for i = 1, . . . , Nx, j = 1, . . . , Ny and l = 1, . . . , Nz. This scheme provides the following

coefficients for a 27-point stencil

ui,j,l : − 64
15h2 +

14k2
i,j,l

15 + h2

20
(
∆k2

i,j,l − k4
i,j,l

)
, ui±1,j±1,l±1 : 1

30h2 ,

ui±1,j,l : 7
15h2 −

k2
i±1,j,l

90 ± h

60
∂

∂x
k2

i,j,l

(
1 + h2

2 k2
i±1,j,l

)
,

ui,j±1,l : 7
15h2 −

k2
i,j±1,l

90 ± h

60
∂

∂y
k2

i,j,l

(
1 + h2

2 k2
i,j±1,l

)
,

ui,j,l±1 : 7
15h2 −

k2
i,j,l±1

90 ± h

60
∂

∂z
k2

i,j,l

(
1 + h2

2 k2
i,j,l±1

)
,

ui,j+1,l±1 : 1
10h2 +

k2
i,j+1,l±1

90 + h

120

(
∂

∂y
± ∂

∂z

)
k2

i,j,l ,

ui,j−1,l±1 : 1
10h2 +

k2
i,j−1,l±1

90 − h

120

(
∂

∂y
∓ ∂

∂z

)
k2

i,j,l ,

ui+1,j,l±1 : 1
10h2 +

k2
i+1,j,l±1

90 + h

120

(
∂

∂x
± ∂

∂z

)
k2

i,j,l ,

ui−1,j,l±1 : 1
10h2 +

k2
i−1,j,l±1

90 − h

120

(
∂

∂x
∓ ∂

∂z

)
k2

i,j,l ,

ui+1,j±1,l : 1
10h2 +

k2
i+1,j±1,l

90 + h

120

(
∂

∂x
± ∂

∂y

)
k2

i,j,l ,

ui−1,j±1,l : 1
10h2 +

k2
i−1,j±1,l

90 − h

120

(
∂

∂x
∓ ∂

∂y

)
k2

i,j,l.
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3.4 Fourth-Order Accuracy for Convection-Diffusion

Although this research focuses on the Helmholtz equation, the presented numerical methods

have a wide range of applications. One such application is the convection-diffusion equation.

To demonstrate the FFT solver’s versatility, section 3.4 develops only the fourth-order finite

difference scheme. The scheme gives the approximate solution of the convection-diffusion

equation on rectangular domains with Dirichlet boundary conditions. That is

∆u(x) − a · ∇u(x) = f(x) in Ω (3.9)

with a = (a1, a2, a3) ∈ R3 where a1, a2 and a3 are the constant convection coefficients in

the x, y and z directions respectively. The domain is defined as before, that is (3.1), where

hx = (xu − xl) /(Nx + 1), hy = (yu − yl) /(Ny + 1) and hz = (zu − zl) /(Nz + 1).

Three-dimensional Taylor series expansion, (3.2), gives the fourth-order approximations

for the first and second derivatives as

∂

∂x
ui,j,l = δxui,j,l − hx

2

6
∂3

∂x3 ui,j,l + O
(
hx

4
)

(3.10)

∂2

∂x2 ui,j,l = δ2
xui,j,l − hx

2

12
∂4

∂x4 ui,j,l + O
(
hx

4
)

. (3.11)

Taking the partial derivative with respect to x the equation (3.9) can be written

∂2

∂x2 u = f − ∂2

∂y2 u − ∂2

∂z2 u + a1
∂

∂x
u + a2

∂

∂y
u + a3

∂

∂z
u

∂3

∂x3 u = ∂

∂x
f − ∂3

∂x∂y2 u − ∂3

∂x∂z2 u + a1
∂2

∂x2 u + a2
∂2

∂x∂y
u + a3

∂2

∂x∂z
u (3.12)

∂4

∂x4 u = ∂2

∂x2 f − ∂4

∂x2∂y2 u − ∂4

∂x2∂z2 u + a1
∂3

∂x3 u + a2
∂3

∂x2∂y
u + a3

∂3

∂x2∂z
u. (3.13)
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The second-order approximation of (3.12) is given as

∂3

∂x3 ui,j,l = ∂

∂x
fi,j,l +

(
a1δ

2
x + a2δxδy + a3δxδz − δxδ2

y − δxδ2
z

)
ui,j,l + O

(
hx

2
)

. (3.14)

The second-order approximation of (3.13) is found similarly, but it also requires substitution

of (3.14). That is

∂4

∂x4 ui,j,l = ∂2

∂x2 fi,j,l + a1
∂3

∂x3 ui,j,l +
(
a2δ

2
xδy + a3δ

2
xδz − δ2

xδ2
y − δ2

xδ2
z

)
ui,j,l + O

(
hx

2
)

= ∂2

∂x2 fi,j,l + a1

[
∂

∂x
fi,j,l +

(
a1δ

2
x + a2δxδy + a3δxδz − δxδ2

y − δxδ2
z

)
ui,j,l

]

+
(
a2δ

2
xδy + a3δ

2
xδz − δ2

xδ2
y − δ2

xδ2
z

)
ui,j,l + O

(
hx

2
)

= ∂2

∂x2 fi,j,l + a1
∂

∂x
fi,j,l + a1

(
a1δ

2
x + a2δxδy + a3δxδz − δxδ2

y − δxδ2
z

)
ui,j,l

+
(
a2δ

2
xδy + a3δ

2
xδz − δ2

xδ2
y − δ2

xδ2
z

)
ui,j,l + O

(
hx

2
)

. (3.15)

Substituting (3.14) into (3.10) gives the fourth-order approximation of the first derivative as

∂

∂x
ui,j,l = δxui,j,l − hx

2

6

[
∂

∂x
fi,j,l +

(
a1δ

2
x + a2δxδy + a3δxδz − δxδ2

y − δxδ2
z

)
ui,j,l

]
+ O

(
hx

4
)

.

(3.16)

Similarly, substituting (3.15) into (3.11) gives the fourth-order approximation of the second

derivative. That is

∂2

∂x2 ui,j,l = −hx
2

12

[
∂2

∂x2 fi,j,l + a1
∂

∂x
fi,j,l + a1

(
a1δ

2
x + a2δxδy + a3δxδz − δxδ2

y − δxδ2
z

)
ui,j,l

+
(
a2δ

2
xδy + a3δ

2
xδz − δ2

xδ2
y − δ2

xδ2
z

)
ui,j,l

]
+ δ2

xui,j,l + O
(
hx

4
)

. (3.17)

Equations (3.16) and (3.17) give the approximated partial derivatives with respect to x, but
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the derivatives for the y and z directions are found similarly. Using the same notation for

∆h and ∇h from Section 3.3 the fourth-order compact approximation for (3.9) is given by

∆hui,j,l − a · ∇hui,j,l + 1
12
(
a1hx

2δx + a2hy
2δy + a3hz

2δz

)
(a · ∇hui,j,l)

− 1
12
(
(a1 + 1)hx

2δx, (a2 + 1)hy
2δy, (a3 + 1)hz

2δz

)
·
(
δ2

y + δ2
z , δ2

x + δ2
z , δ2

x + δ2
y

)
ui,j,l

− 1
12
(
hx

2δ2
x, hy

2δ2
y , hz

2δ2
z

)
· (a2δy + a3δz, a1δx + a3δz, a1δx + a2δy) ui,j,l

with the right-hand side

fi,j,l + 1
12

(
hx

2 ∂2

∂x2 + hy
2 ∂2

∂y2 + hz
2 ∂2

∂z2

)
fi,j,l − 1

12
(
a1hx

2, a2hy
2, a3hz

2
)

· ∇fi,j,l

for i = 1, . . . , Nx, j = 1, . . . , Ny and l = 1, . . . , Nz. This provides the following 27-point

stencil coefficients

ui,j,l : − 4
3

(
1
h2

x

+ 1
h2

y

+ 1
h2

z

)
− 1

6
(
a2

1 + a2
2 + a2

3

)
, ui±1,j±1,l±1 : 0 ,

ui±1,j,l : 1
3

(
a2

1
4 ∓ a1

hx

+ 2
h2

x

)
− 1

6

(
1 ∓ a1hx

2

)(
1
h2

y

+ 1
h2

z

)
,

ui,j±1,l : 1
3

(
a2

2
4 ∓ a2

hy

+ 2
h2

y

)
− 1

6

(
1 ∓ a2hy

2

)(
1
h2

x

+ 1
h2

z

)
,

ui,j,l±1 : 2
3h2

z

+ a2
3

12 ∓ a3

3hz

− 1
6

(
1 ∓ a3hz

2

)(
1
h2

x

+ 1
h2

y

)
,

ui,j+1,l±1 : 1
12

(
1 ∓ a3hz

2

)(
1
h2

z

+ 1
h2

y

)
− a2

24

(
1 ∓ a3hz

2

)(
hy

h2
z

+ 1
hy

)
,

ui,j−1,l±1 : 1
12

(
1 ∓ a3hz

2

)(
1
h2

z

+ 1
h2

y

)
+ a2

24

(
1 ∓ a3hz

2

)(
hy

hz
2 + 1

hy

)
,

39



ui+1,j,l±1 : 1
12

(
1 ∓ a3hz

2

)(
1
h2

z

+ 1
h2

x

)
− a1

24

(
1 ∓ a3hz

2

)(
hx

hz
2 + 1

hx

)
,

ui−1,j,l±1 : 1
12

(
1 ∓ a3hz

2

)(
1
h2

z

+ 1
h2

x

)
+ a1

24

(
1 ∓ a3hz

2

)(
hx

h2
z

+ 1
hx

)
,

ui+1,j±1,l : 1
12

(
1
h2

y

+ 1
h2

x

)
± a1a2

48

(
hx

hy

+ hy

hx

)
− a1

24

(
hx

h2
y

+ 1
hx

)
∓ a2

24

(
hy

h2
x

+ 1
hy

)
,

ui−1,j±1,l : 1
12

(
1
h2

y

+ 1
h2

x

)
∓ a1a2

48

(
hx

hy

+ hy

hx

)
+ a1

24

(
hx

h2
y

+ 1
hx

)
∓ a2

24

(
hy

h2
x

+ 1
hy

)
.

3.5 Summary

Chapter 3 developed the second-, fourth- and sixth-order approximation schemes for the so-

lution of the three-dimensional Helmholtz equation. Additionally, the fourth-order approxi-

mation scheme was developed for the convection-diffusion equation. Chapter 4 will present

the definition and approximations of the boundary conditions considered in the research.
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4 Boundary Conditions

Chapter 4 presents the definitions and detailed applications of the Dirichlet and Sommerfeld-

like boundary conditions. In the case of Sommerfeld-like boundary conditions, the necessary

approximations are provided for the respective scheme’s order of approximation. Vector and

matrix notations are required. Let va:b,c:d ∈ C(b−a+1)·(d−c+1) be such that

va:b,c:d =
[
va,c va+1,c · · · vb,c va,c+1 · · · vb,c+1 · · · va,d · · · vb,d

]T

where a, b, c, d ∈ N with a < b and c < d. For matrices a similar notation is used. Let

M ∈ Cn×m where n, m ∈ N. If a, b, c, d ∈ N such that a < b ≤ n and c < d ≤ m then Ma:b,c:d

is the sub matrix of matrix M consisting of rows a through b and columns c through d. The

sub matrix Ma,1:m represents the a-th row of the matrix M and M1:n,c is the c-th column.

The vector and matrix notations are utilized throughout.

To illustrate how the boundary conditions are implemented, Chapter 4 works through a

simple, two-dimensional Helmholtz example where Nx = Ny = 3 and k is assumed constant.

Additionally, consider the general 9-point stencil in Figure 4.1. The stencil holds when

k is constant with no other assumptions. Figure 4.2 illustrates the domain with different

positions of the 9-point stencil corresponding to the first three rows of the matrix in Figure

4.3. The solution vector, u1:Nx,1:Ny , consists of the Nx ·Ny = 9 elements shown in the interior

colored white, while the boundary is shown in blue. This illustration demonstrates the

relationship a solution element shares with its neighbors. The only element in the example

without influence from the boundary is u2,2. An extension of u1:Nx,1:Ny to u0:Nx+1,0:Ny+1

includes the boundary values. Let B ∈ CNx·Ny×(Nx+2)(Ny+2) be the sparse block tridiagonal
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Figure 4.1: General 9-Point Stencil for Constant k

bp ap bp

b
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b
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Figure 4.2: 3 × 3 Computational Domain with 9-Point Stencil
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matrix shown in Figure 4.3. Then Bu0:Nx+1,0:Ny+1 represents all the possible positions of the

stencil in Figure 4.2. The matrix elements of B that are highlighted blue in Figure 4.3 will

be relocated or approximated appropriately dependent upon the boundary conditions under

consideration.

4.1 Dirichlet Conditions

In Dirichlet boundary conditions the solution to (1.1), u, is known on the boundary, that is

u(x) = g(x) for x ∈ ∂Ω. Since the function is known on the boundary no approximation is
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Figure 4.3: Coefficient Matrix B with Boundary Elements

bmambm b a b bp ap bp

bmambm b a b bp ap bp

bmambm b a b bp ap bp

bmambm b a b bp ap bp

bmambm b a b bp ap bp

bmambm b a b bp ap bp

bmambm b a b bp ap bp

bmambm b a b bp ap bp

bmambm b a b bp ap bp

required. The values of B corresponding to the boundary can be moved to the right-hand

side of the system, demonstrated in the two-dimensional example. Let f1:Nx,1:Ny ∈ CNx·Ny be

such that Bu0:Nx+1,0:Ny+1 = f1:Nx,1:Ny . This system is equivalent to Au1:Nx,1:Ny = f̃1:Nx,1:Ny ,

that is

a b ap bp

b a b bp ap bp

b a bp ap

am bm a b ap bp

bm am bm b a b bp ap bp

bm am b a bp ap

am bm a b
bm am bm b a b

bm am b a





u1,1
u2,1
u3,1
u1,2
u2,2
u3,2
u1,3
u2,3
u3,3



=



f1,1 − bmu0,0 − amu1,0 − bmu2,0 − bu0,1 − bpu0,2
f2,1 − bmu1,0 − amu2,0 − bmu3,0

f3,1 − bmu2,0 − amu3,0 − bmu4,0 − bu4,1 − bpu4,2
f1,2 − bmu0,1 − bu0,2 − bpu0,3

f2,2
f3,2 − bmu4,1 − bu4,2 − bpu4,3

f1,3 − bpu0,4 − apu1,4 − bpu2,4 − bu0,3 − bmu0,2
f2,3 − bpu1,4 − apu2,4 − bpu3,4

f3,3 − bpu2,4 − apu3,4 − bpu4,4 − bu4,3 − bmu4,2


where all the known boundary values and their respective stencil coefficient have been re-

located to the right-hand side. The solution of this system with k variable in the vertical

43



direction in both two- and three-dimensions is considered in Chapter 5.

4.2 Sommerfeld-Like Conditions

Section 4.2 describes an approximation for the Sommerfeld radiation conditions, namely

Sommerfeld-like boundary conditions. The Sommerfeld radiation condition is given by (1.3)

for both two- and three-dimensions. Truncating the unbounded domain to a finite domain at

the boundary under consideration provides the approximation, Sommerfeld-like conditions,

∇u(x) · n − ik(x)u(x) = 0 (4.1)

for x ∈ ∂Ω where n is the outward normal vector of the boundary. Equation (4.1) presents

the first-order absorbing boundary conditions [10]. Higher-order ABCs are viable, but not

considered here as they do not have a dramatic influence on the accuracy of the solvers [11].

The following subsections give the boundary approximations required for the second-,

fourth- and sixth-order schemes from Chapters 2 and 3. The approximations are strictly for

the Helmholtz applications and only those for the three-dimensional case are given, although

the two-dimensional case is similar. Consider i strictly as i =
√

−1 and not an index; ι is

used for indexing.

For the first term in the three-dimensional second-order scheme (3.3), uι−1,j,l/hx
2 for

ι = 1, . . . , Nx, j = 1, . . . , Ny, l = 1, . . . , Nz, if ι = 1, then the term is on the boundary.

With Sommerfeld-like conditions this value is unknown and must be approximated with

elements of the solution vector that are not on the boundary. To maintain the order of the

scheme these boundary elements require higher-order approximation by at least two due to

the division of hx
2. The need for higher-order approximation is true regardless of the order

44



of the scheme or direction of the boundary. Therefore, the approximations of the boundary

conditions given in the section are fourth-, seventh- and ninth-order accuracy for the second-,

fourth- and sixth-order schemes respectively.

4.2.1 Fourth-Order Accuracy

For the boundaries with respect to the x direction, the subtraction of uι+1,j,l and uι−1,j,l from

the three-dimensional Taylor series expansion (3.2) gives

uι+1,j,l − uι−1,j,l = 2hx
∂

∂x
uι,j,l + h3

x

3
∂3

∂x3 uι,j,l + O
(
h5

x

)

δxuι,j,l = ∂

∂x
uι,j,l + h2

x

6 δ2
x

∂

∂x
uι,j,l + O

(
h4

x

)

∂

∂x
uι,j,l =

(
1 + h2

x

6 δ2
x

)−1

δxuι,j,l + O
(
h4

x

)
. (4.2)

Written explicitly for the boundaries in the x direction, (4.1) is

∇u · (1, 0, 0) − iku = ∂

∂x
u − iku = 0 (4.3)

∇u · (−1, 0, 0) − iku = − ∂

∂x
u − iku = 0 = ∂

∂x
u + iku. (4.4)

On the lower and upper boundaries of the domain the Sommerfeld-like boundary condi-

tions differ only by the sign of iku, which is true for all spatial directions. Assume that

kι,j,l = kj,l near the boundaries in the x direction. The assumption is valid for the problems

under consideration as the inclusion will not be near the boundary. Substituting (4.2) into

the equations (4.3) and (4.4) gives the fourth-order approximations for the terms on the x
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boundaries as

0 = ∂

∂x
uι,j,l − ikι,j,luι,j,l

0 = δxuι,j,l − ikι,j,luι,j,l − ikι,j,l
h2

x

6 δ2
xuι,j,l + O

(
h4

x

)

0 = (3 ± ihxkj,l) uι+1,j,l − (3 ∓ ihxkj,l) uι−1,j,l ± 4ihxkj,luι,j,l + O
(
h4

x

)

uι±1,j,l = (3 + ihxkj,l)
(3 − ihxkj,l)

uι∓1,j,l + 4ihxkj,l

(3 − ihxkj,l)
uι,j,l + O

(
h4

x

)

uι±1,j,l = βx,j,luι∓1,j,l + αx,j,luι,j,l + O
(
h4

x

)
(4.5)

where βx,j,l = (3 + ihxkj,l)
(3 − ihxkj,l)

and αx,j,l = 4ihxkj,l

(3 − ihxkj,l)
. The coefficients βy,ι,l, αy,ι,l, βz,ι,j and

αz,ι,j are found in a similar way.

4.2.2 Seventh-Order Accuracy

The seventh-order approximation for the Sommerfeld-like boundary conditions require the

derivatives of (4.3) and (4.4). Maintaining the assumption that the function k is constant

with respect to x near these boundaries, the derivatives are

∂

∂x
u ± iku = 0

∂2

∂x2 u = ∓ik
∂

∂x
u

∂3

∂x3 u = ∓ik
∂2

∂x2 u = ∓ik

(
∓ik

∂

∂x
u

)
= −k2 ∂

∂x
u

∂4

∂x4 u = ∓ik
∂3

∂x3 u = ∓ik

(
−k2 ∂

∂x
u

)
= ±ik3 ∂

∂x
u
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∂5

∂x5 u = ∓ik
∂4

∂x4 u = ∓ik

(
±ik3 ∂

∂x
u

)
= k4 ∂

∂x
u. (4.6)

The seventh-order difference of uι+1,j,l and uι−1,j,l from (3.2) becomes

uι+1,j,l − uι−1,j,l = 2hx
∂

∂x
ui,j,l + 2h3

x

3!
∂3

∂x3 ui,j,l + 2h5
x

5!
∂5

∂x5 ui,j,l + O
(
hx

7
)

∂

∂x
uι,j,l =

(
1 −

h2
xk2

j,l

3! +
h4

xk4
j,l

5!

)−1

δxuι,j,l + O
(
hx

6
)

after the proper substitution. Subsequently,

0 =
(

1 −
h2

xk2
j,l

3! +
h4

xk4
j,l

5!

)−1

δxuι,j,l ± ikj,luι,j,l + O
(
hx

6
)

0 = uι+1,j,l − uι−1,j,l ± 2ihxkj,l

(
1 −

h2
xk2

j,l

3! +
h4

xk4
j,l

5!

)
uι,j,l + O

(
hx

7
)

.

Thus the seventh-order approximations for the terms on the x boundaries are

uι±1,j,l = uι∓1,j,l + 2ihxkj,l

(
1 −

h2
xk2

j,l

3! +
h4

xk4
j,l

5!

)
uι,j,l + O

(
hx

7
)

uι±1,j,l = βxuι∓1,j,l + αx,j,luι,j,l + O
(
h7

x

)
(4.7)

where βx = 1 and αx,j,l = 2ihxkj,l

(
1 − h2

xk2
j,l/3! + h4

xk4
j,l/5!

)
. The coefficients βy, αy,ι,l, βz

and αz,ι,j are found in the same way.

4.2.3 Ninth-Order Accuracy

The development of the ninth-order approximation builds upon seventh-order. Continuing

from equation (4.6), the sixth and seventh partial derivatives are

∂6

∂x6 u = ∓ik
∂5

∂x5 u = ∓ik

(
k4 ∂

∂x
u

)
= ∓ik5 ∂

∂x
u
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∂7

∂x7 u = ∓ik
∂6

∂x6 u = ∓ik

(
∓ik5 ∂

∂x
u

)
= −k6 ∂

∂x
u.

The ninth-order subtraction of uι+1,j,l and uι−1,j,l from (3.2) gives

uι+1,j,l − uι−1,j,l = 2hx
∂

∂x
uι,j,l + 2h3

x

3!
∂3

∂x3 uι,j,l + 2h5
x

5!
∂5

∂x5 uι,j,l + 2h7
x

7!
∂7

∂x7 uι,j,l + O
(
hx

9
)

∂

∂x
uι,j,l =

(
1 −

h2
xk2

j,l

3! +
h4

xk4
j,l

5! −
h6

xk6
j,l

7!

)−1

δx + O
(
hx

8
)

.

after the proper substitution. Then

0 =
(

1 −
h2

xk2
j,l

3! +
h4

xk4
j,l

5! −
h6

xk6
j,l

7!

)−1

δxuι,j,l ± ikj,luι,j,l + O
(
hx

8
)

0 = uι+1,j,l − uι−1,j,l ± 2ihxkj,l

(
1 −

h2
xk2

j,l

3! +
h4

xk4
j,l

5! −
h6

xk6
j,l

7!

)
uι,j,l + O

(
hx

9
)

. (4.8)

Thus the ninth-order approximations for the terms on the x boundaries are

uι±1,j,l = uι∓1,j,l + 2ihxkj,l

(
1 −

h2
xk2

j,l

3! +
h4

xk4
j,l

5! −
h6

xk6
j,l

7!

)
uι,j,l + O

(
hx

9
)

uι±1,j,l = βxuι∓1,j,l + αx,j,luι,j,l + O
(
h9

x

)

where βx = 1 and αx,j,l = 2ihxkj,l

(
1 − h2

xk2
j,l/3! + h4

xk4
j,l/5! − h6

xk6
j,l/7!

)
. The coefficients βy,

αy,ι,l, βz and αz,ι,j are found in the same way.

Return to the two-dimensional example and the matrix B given in Figure 4.3. The

linear system Bu0:Nx+1,0:Ny+1 = f1:Nx,1:Ny needs to be consolidated to Au1:Nx,1:Ny = f1:Nx,1:Ny

where A ∈ CNx·Ny×Nx·Ny and u1:Nx,1:Ny is the unknown solution vector without the boundary

elements. Consolidation is accomplished by using the approximations for the boundary

conditions. Define αx = αx,j,l since αx,j,l is constant in this example, and define αy, βx and
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βy similarly. Consider the first row of B times u0:Nx+1,0:Ny+1. That is

f1,1 = B1,1:(Nx+2)(Ny+2) · u0:Nx+1,0:Ny+1

= bmu0,0 + amu1,0 + bmu2,0 + bu0,1 + au1,1 + bu2,1 + bpu0,2 + apu1,2 + bpu2,2

= bm [βxβyu2,2 + αyβxu2,1 + αxβyu1,2 + αxαyu1,1] + am [βyu1,2 + αyu1,1]

+ bm [βyu2,2 + αyu2,1] + b [βxu2,1 + αxu1,1] + au1,1 + bu2,1

+ bp [βxu2,2 + αxu1,2] + apu1,2 + bpu2,2

= (a + bmαxαy + amαy + bαx) u1,1 + (ap + bmαxβy + amβy + bpαx) u1,2

+ (b + bmαyβx + bmαy + bβx) u2,1 + (bp + bmβy + bpβx + bmβxβy) u2,2

= a(x,y)u1,1 + a(x,y)
p u1,2 + b(x,y)u2,1 + b(x,y)

p u2,2 (4.9)

= A1,1:Nx·Ny · u1:Nx,1:Ny .

where a(x,y) = (a + bmαxαy + amαy + bαx), a(x,y)
p = (ap + bmαxβy + amβy + bpαx), b(x,y) =

(b + bmαyβx + bmαy + bβx) and b(x,y)
p = (bp + bmβy + bpβx + bmβxβy). The process is re-

peated with the remaining rows giving the consolidated system Au1:Nx,1:Ny = f1:Nx,1:Ny . That

is 

a(x,y) b(x,y) a(x,y)
p b(x,y)

p

b(y) a(y) b(y) b(y)
p a(y)

p b(y)
p

b(x,y) a(x,y) b(x,y)
p a(x,y)

p

a(x)
m b(x)

m a(x) b(x) a(x)
p b(x)

p

bm am bm b a b bp ap bp

b(x)
m a(x)

m b(x) a(x) b(x)
p a(x)

p

a(x,y)
m b(x,y)

m a(x,y) b(x,y)

b(y)
m a(y)

m b(y)
m b(y) a(y) b(y)

b(x,y)
m a(x,y)

m b(x,y) a(x,y)





u1,1
u2,1
u3,1
u1,2
u2,2
u3,2
u1,3
u2,3
u3,3


=



f1,1
f2,1
f3,1
f1,2
f2,2
f3,2
f1,3
f2,3
f3,3


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where the elements of A are defined like those in (4.9).

4.3 Summary

Chapter 4 presented the definitions of the Dirichlet and Sommerfeld-like boundary conditions

and developed the approximations for the Sommerfeld-like conditions. A two-dimensional

example demonstrated the boundary conditions’ implementations. Chapter 5 will present a

highly parallel algorithm for the solution of 9- and 27-diagonal linear systems satisfying a

set of required conditions.
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5 Direct FFT Solver

An efficient parallel direct solver is presented utilizing the second-, fourth- and sixth-order

compact schemes given in Chapters 2 and 3. The defining assumption is that the coefficient,

k, only varies in the vertical direction. That is k(x, y) = k(y) and k(x, y, z) = k(z) within

the domain in two- and three-dimensions, respectively. The solver can be used in the case

with Dirichlet conditions on all boundaries or Sommerfeld-like conditions on the top and

bottom boundaries with respect to the vertical direction and Dirichlet on the others. The

following vector notation is observed. The vector vl ∈ CNx·Ny is such that

vl =
[
v1,1,l v2,1,l · · · vNx,1,l v1,2,l v2,2,l · · · vNx,2,l · · · vNx,Ny ,l

]T
(5.1)

for l = 1, . . . , Nz. In the two-dimensional case vl ∈ CNx for l = 1, . . . , Ny.

5.1 Stencils

The second-, fourth- and sixth-order compact schemes in two-dimensions can be presented in

the stencil form shown below. Figure 5.1 graphically shows the 9-point stencil. Any compact

scheme with these stencil coefficient patterns can be expressed at every grid point (i, j) as

j+1∑
ν=j−1

(bν [ui−1,ν + ui+1,ν ] + aνui,ν) = fi,j.

The equation corresponds to the (i + (j − 1) · Nx) − th row in the resulting linear system

Au = f where the vectors u, f ∈ CNx·Ny are such that u =
[
ul · · · uNy

]T
is the solution

vector and f =
[
fl · · · fNy

]T
is the right-hand side of the numerical scheme.

Likewise, the compact schemes in the three-dimensional case can be expressed at every
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Figure 5.1: FFT Solver 9-Point Stencil

bj+1 aj+1 bj+1

bj

aj

bj

bj−1 aj−1 bj−1

grid point (i, j, l) as

l+1∑
ν=l−1

(dν [ui−1,j−1,ν + ui−1,j+1,ν + ui+1,j−1,ν + ui+1,j+1,ν ]

+ bν [ui−1,j,ν + ui+1,j,ν ] + cν [ui,j−1,ν + ui,j+1,ν ] + aνui,j,ν) = fi,j,l. (5.2)

This stencil expression is illustrated in Figure 5.2. Equations (5.2) corresponds to the

(i + (j − 1) · Nx + (l − 1) · Nx · Ny) − th row in the resulting linear system

Au = f (5.3)

where u, f ∈ CNx·Ny ·Nz such that u =
[
ul · · · uNz

]T
and f =

[
fl · · · fNz

]T
.

5.2 Coefficients

Section 5.2 explicitly defines the coefficients of the compact schemes from Chapters 2 and

3. The coefficients follow from multiplying both sides of the linear systems by h2
y in two-

dimensions and h2
z in three-dimensions. Recall that k varies only vertically in the domain,

thus ki,j = kj and ki,j,l = kl in two- and three-dimensions respectively. For the convection-
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Figure 5.2: FFT Solver 27-Point Stencil

dl−1
cl−1

dl−1bl−1

bl−1dl−1
cl−1

dl−1

al−1

dl
cl

dlbl

bldl
cl

dl

al

dl+1
cl+1

dl+1bl+1

bl+1dl+1
cl+1

dl+1

al+1

diffusion equation, assume that vertical convection is dominant. That is, a = (0, 0, a3). Let

Ryx = h2
y/h2

x, Rzx = h2
z/h2

x and Rzy = h2
z/h2

y.

5.2.1 Second-Order

Two-dimensions:

aj = h2
yk2

j − 2 (Ryx + 1) , bj = Ryx , aj±1 = 1 , bj±1 = 0

Three-dimensions:

bl = Rzx , cl = Rzy , al±1 = 1 , al = h2
zk2

l − 2 (Rzx + Rzy + 1)

dl = dl±1 = cl±1 = bl±1 = 0
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5.2.2 Fourth-Order

Two-dimensions:

aj = −5Ryx

3 − 5
3 +

2h2
yk2

j

3 bj = 5Ryx

6 − 1
6 +

h2
yk2

j

12

aj±1 = 5
6 − Ryx

6 +
h2

yk2
j±1

12 bj±1 = Ryx

12 + 1
12

Three-dimensions:

dl±1 = 0 , bl±1 = Rzx + 1
12 , cl±1 = Rzy + 1

12 , al±1 = h2
zk2

l±1
12 + 1

6 (4 − Rzx − Rzy)

dl = Rzx + Rzy

12 , bl = h2
zk2

l

12 + 1
6 (4Rzx − Rzy − 1) , cl = h2

zk2
l

12 + 1
6 (4Rzy − Rzx − 1)

al = h2
zk2

l

2 − 4
3 (Rzx + Rzy + 1)

Convection-Diffusion:

dl±1 = 0 , bl±1 = 1
12

(
1 ∓ a3hz

2

)
(1 + Rzx) , cl±1 = 1

12

(
1 ∓ a3hz

2

)
(1 + Rzy)

al±1 = 2
3 + a2

3h
2
z

12 ∓ a3hz

3 − 1
6

(
1 ∓ a3hz

2

)
(Rzx + Rzy)

dl = 1
12 (Rzx + Rzy) , bl = 2

3Rzx − 1
6 (Rzy + 1) , cl = 2

3Rzy − 1
6 (Rzx + 1)

al = −4
3 (Rzx + Rzy + 1) − h2

za2
3

6

5.2.3 Sixth-Order

Recall that in the sixth-order case h = hx = hy = hz.
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Two-dimensions:

aj = −10
3 +

41h2k2
j

45 + h4

20

(
∂2

∂y2 k2
j − k4

j

)
bj = 2

3 +
h2k2

j

90

aj±1 = 2
3 +

h2k2
j±1

90 ±
(

h3

30 +
h5k2

j±1

120

)
∂

∂y
k2

j bj±1 = 1
6 +

h2k2
j±1

90 ± h3

120
∂

∂y
k2

j

Three-dimensions:

dl±1 = 1
30 , bl±1 = cl±1 = 1

10 + h2k2
l±1

90 ± h3

120
∂

∂z
k2

l ,

al±1 = 7
15 −

h2k2
l±1

90 ± h3

60
∂

∂z
k2

l

(
1 + h2k2

l±1
2

)

dl = 1
10 + h2k2

l

90 , bl = cl = 7
15 − h2k2

l

90 , al = −64
15 + 14h2k2

l

15 + h4

20

(
∂2

∂z2 k2
l − k4

l

)

5.3 Solver

Section 5.3 describes a highly parallel direct solver that utilizes FFT. Only the three-

dimensional case is considered, as the two-dimensional solver can be derived through its

inferred similarities. The numerical scheme (5.2) can be presented in block tridiagonal form

written as

C1u1 + Cp,1u2 = f1

Cm,lul−1 + Clul + Cp,lul+1 = fl, for l = 2, . . . , Nz − 1

Cm,NzuNz−1 + CNzuNz = fNz

The nine-diagonal matrices Cm,l, Cl and Cp,l are determined by the coefficients in the pre-

ceding section, their definition follows. If n ∈ Z, let I be the mapping such that I(n) is the

n × n matrix with ones in the entries where the indices i and j differ by 1, that is |i − j| = 1.

55



For example:

I(4) =


0 1 0 0
1 0 1 0
0 1 0 1
0 0 1 0


Similarly, let I(n) be the n × n identity matrix. Then

Cm,l = I(Ny) ⊗ [bl−1I(Nx) + al−1I(Nx)] + I(Ny) ⊗ [cl−1I(Nx) + dl−1I(Nx)]

Cl = I(Ny) ⊗ [blI(Nx) + alI(Nx)] + I(Ny) ⊗ [clI(Nx) + dlI(Nx)]

Cp,l = I(Ny) ⊗ [bl+1I(Nx) + al+1I(Nx)] + I(Ny) ⊗ [cl+1I(Nx) + dl+1I(Nx)]

5.3.1 Eigenvalues

To develop the eigenvalues and eigenvectors (eigenpairs) of the matrices Cm,l, Cl and Cp,l,

consider the following lemmas and theorems.

Lemma 5.1. Let βi,j
r,s = sin (rπi/(Nx + 1)) sin (sπj/(Ny + 1)) where r, i ∈ {1, . . . , Nx} and

s, j ∈ {1, . . . , Ny}. Define vi,j =
[
βi,j

1,1 βi,j
2,1 · · · βi,j

Nx,1 βi,j
1,2 · · · βi,j

Nx,Ny

]T
. Then vi,j is an

eigenvector of B = I(Nx · Ny) with corresponding eigenvalue λi = 2 cos (πi/(Nx + 1)).

Proof. Recall the trigonometric identity 2 sin(α) cos(β) = sin(α−β)+sin(α+β) [25]. Then

λlβ
i,j
r,s = 2 cos

(
πi

Nx + 1

)
sin

(
rπi

Nx + 1

)
sin

(
sπj

Ny + 1

)

=
[
sin

(
(r − 1)πi

Nx + 1

)
+ sin

(
(r + 1)πl

Nx + 1

)]
sin

(
sπj

Ny + 1

)

= βi,j
r−1,s + βi,j

r+1,s.
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Note that βi,j
Nx+1,s = 0 = βi,j

0,s. Thus

Bvi,j =
[
βi,j

2,1 βi,j
1,1 + βi,j

3,1 · · · βi,j
Nx−1,1 + βi,j

1,1 βi,j
Nx,2 + βi,j

2,2 · · · βi,j
Nx−1,Ny

]T
= λivi,j. ■

Lemma 5.2. Let B = (bι,κ) ∈ RNx·Ny×Nx·Ny be such that bι,κ = 1 when |ι − κ| = Nx

and bι,κ = 0 otherwise. Then vi,j, as defined in Lemma 5.1, is an eigenvector of B with

corresponding eigenvalue λj = 2 cos (πj/(Ny + 1)).

Proof. First, observe that

λjβ
i,j
r,s = 2 cos

(
πj

Ny + 1

)
sin

(
rπi

Nx + 1

)
sin

(
sπj

Ny + 1

)

=
[
sin

(
(s − 1)πj

Ny + 1

)
+ sin

(
(s + 1)πj

Ny + 1

)]
sin

(
rπi

Nx + 1

)

= βi,j
r,s−1 + βi,j

r,s+1.

Note that βi,j
r,Ny+1 = 0 = βi,j

r,0. Thus

Bvi,j =
[
βi,j

1,2 βi,j
2,2 · · · βi,j

Nx,2 βi,j
1,1 + βi,j

1,3 · · · βi,j
Nx,Ny−1

]T
= λvi,j. ■

Theorem 5.1. Let v and λi be an eigenpair of the matrix Ai for i = 1, . . . , n where n ∈

N such that n > 1. Then
n∑

i=1
λi is an eigenvalue of the matrix

n∑
i=1

Ai with corresponding

eigenvector v.

Proof.
(

n∑
i=1

Ai

)
v =

n∑
i=1

Aiv =
n∑

i=1
λiv =

(
n∑

i=1
λi

)
v ■

Theorem 5.2. Let B1, B2 ∈ Rn×n for n ∈ N such that n > 1. If (λ1, v) and (λ2, v) are

eigenpairs of B1 and B2 respectively then (λ2λ1, v) is an eigenpair of B1B2.

Proof. B1B2v = B1(B2v) = B1(λ2v) = λ2B1v = λ2λ1v ■
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Therefore, by the preceding lemmas and theorems, the vectors vi,j as defined in Lemma 5.1

and

λi,j,ν = 4dν cos
(

iπ

Nx + 1

)
cos

(
jπ

Ny + 1

)
+ 2bν cos

(
iπ

Nx + 1

)
+ 2cν cos

(
jπ

Ny + 1

)
+ aν

where i = 1, . . . , Nx, j = 1, . . . , Ny and ν = l − 1, l, l + 1, form eigenpairs for the coefficient

matrices Cm,l, Cl and Cp,l. Note that any nonzero vector that is a scalar multiple of vi,j also

forms eigenpairs with the eigenvalues above.

5.3.2 Diagonalization

The direct FFT algorithm requires the diagonalization of the coefficient matrices via mul-

tiplication of an orthogonal matrix, specifically the matrix of eigenvectors vi,j after scaling.

The following lemmas show the necessary scaling of these vectors and the orthogonality of

this matrix.

Lemma 5.3. Let βι
r = sin (rπι/(Nx + 1)) where r, ι ∈ {1, . . . , Nx}. Define

vι =
[
βι

1 βι
2 · · · βι

Nx

]T
.

Then ||vι||22 = ⟨vι, vι⟩ = (Nx + 1)/2.

Proof. Recall the trigonometric identity sin2(β) = (1−cos(2β))/2 [25]. Note that exp{iα} =

cos α + i sin α where i =
√

−1. Also, consider the geometric series
n∑

k=1
zk = 1 − zn+1

1 − z
− 1 for

z ∈ C [26]. Then

⟨vι, vι⟩ =
Nx∑
r=1

sin2
(

rπι

Nx + 1

)

= Nx

2 − 1
2

Nx∑
r=1

cos
( 2rπι

Nx + 1

)
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= Nx

2 − 1
2

Nx∑
r=1

Re
[
exp

{ 2rιπi

Nx + 1

}]

= Nx + 1
2 − 1

2Re

 1 − exp {2ιπi}
1 − exp

{
2ιπi

Nx+1

}
 .

Now let ζ = 1 − exp {2ιπi} and η = 1 − exp
{ 2ιπi

Nx + 1

}
. Note that

ζ

η
= Re(ζ)Re(η) + Im(ζ)Im(η)

Re(η)2 + Im(η)2 + i
Im(ζ)Re(η) − Re(ζ)Im(η)

Re(η)2 + Im(η)2

by division of complex numbers. Then

Re

 1 − exp {2ιπi}
1 − exp

{
2ιπi

Nx+1

}
 = Re(ζ)Re(η) + Im(ζ)Im(η)

Re(η)2 + Im(η)2

= (1 − cos(2ιπ)) · Re(η) − (sin(2ιπ)) · Im(η)
Re(η)2 + Im(η)2 = 0

since ι ∈ Z. ■

Lemma 5.4. Let vi,j be as in Lemma 5.1. Then ||vi,j||22 = (Nx + 1)(Ny + 1)/4 for i =

1, . . . , Nx and j = 1, . . . , Ny.

Proof. Lemma 5.3 gives

||vi,j||22 =
Nx∑
r=1

Ny∑
s=1

[
sin

(
rπi

Nx + 1

)
sin

(
sπj

Ny + 1

)]2

=
Nx∑
r=1

sin2
(

rπi

Nx + 1

)Ny∑
s=1

sin2
(

sπj

Ny + 1

)

=
Nx∑

n=1
sin2

(
rπi

Nx + 1

) [
Ny + 1

2

]

= Ny + 1
2

Nx∑
r=1

sin2
(

rπi

Nx + 1

)
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=
(

Ny + 1
2

)(
Nx + 1

2

)
. ■

Lemma 5.5. Let vι be as in Lemma 5.3. If ι ̸= ι′ then vι and vι′ are orthogonal.

Proof. First, note the trigonometric identity 2 sin(α) sin(β) = cos(α − β) − cos(α + β) [25].

Then suppose ι ̸= ι′. It follows

⟨vι, vι′⟩ =
Nx∑

n=1
sin

(
ιnπ

Nx + 1

)
sin

(
ι′nπ

Nx + 1

)

= 1
2

Nx∑
n=1

[
cos

(
(ι − ι′)nπ

Nx + 1

)
− cos

(
(ι + ι′)nπ

Nx + 1

)]

= 1
2

Nx∑
n=1

[
Re

(
exp

{
i(ι − ι′)nπ

Nx + 1

})
− Re

(
exp

{
i(ι + ι′)nπ

Nx + 1

})]

= 1
2Re

(
Nx∑

n=1
exp

{
i(ι − ι′)nπ

Nx + 1

}
−

Nx∑
n=1

exp
{

i(ι + ι′)nπ

Nx + 1

})

= 1
2Re

1 − exp {i(ι − ι′)π}
1 − exp

{
i(ι−ι′)nπ

Nx+1

} − 1 − exp {i(ι + ι′)π}
1 − exp

{
i(ι+ι′)nπ

Nx+1

}
 .

Note that

σ := 1 − exp {i(ι − ι′)π} = 1 − cos((ι − ι′)π) − sin((ι − ι′)π) = 1 − cos((ι − ι′)π)

γ := 1 − exp {i(ι + ι′)π} = 1 − cos((ι + ι′)π) − sin((ι + ι′)π) = 1 − cos((ι + ι′)π).

and that ι − ι′ is even if and only if ι + ι′ is even. Therefore, if ι − ι′ is even then σ = γ = 0

and ⟨vι, vι′⟩ = 0. Similarly, if ι − ι′ is odd, then σ = γ = 2. Then, let ζ = iπ(ι − ι′)
2(Nx + 1) and

η = iπ(ι + ι′)
2(Nx + 1). It follows,

⟨vι, vι′⟩ = Re

 1
1 − exp

{
i(ι−ι′)nπ

Nx+1

} − 1
1 − exp

{
i(ι+ι′)nπ

Nx+1

}

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= Re

1 − exp
{

iπ(ι+ι′)
Nx+1

}
−
(
1 − exp

{
iπ(ι−ι′)
Nx+1

})
(
1 − exp

{
iπ(ι−ι′)
Nx+1

}) (
1 − exp

{
iπ(ι+ι′)
Nx+1

})


= Re

 exp
{

iπι
Nx+1

} (
exp

{
−iπι′

Nx+1

}
− exp

{
iπι′

Nx+1

})
exp {ζ} (exp {−ζ} − exp {ζ}) exp {η} (exp {−η} − exp {η})



= Re

 exp
{

−iπι′

Nx+1

}
− exp

{
iπι′

Nx+1

}
(exp {−ζ} − exp {ζ}) (exp {−η} − exp {η})



= Re

 −2i sin
(

πι′

Nx+1

)
2i sin

(
π(ι−ι′)

2(Nx+1)

)
· 2i sin

(
π(ι+ι′)

2(Nx+1)

)
 = 0

since 2i sin(θ) = exp{iθ} − exp{−iθ}. ■

Lemma 5.6. Let vi,j be defined as in Lemma 5.1. If i ̸= i′ or j ̸= j′ then vi,j and vi′,j′ are

orthogonal.

Proof. Let αl,l′
r = sin (irπ/(Nx + 1)) sin (i′rπ/(Nx + 1)) . Suppose j ̸= j′. Then

Ny∑
s=1

sin
(

jsπ

Ny + 1

)
sin

(
j′sπ

Ny + 1

)
= 0

by Lemma 5.5. It follows

⟨vi,j, vi′,j′⟩ =
Nx∑
r=1

Ny∑
s=1

αi,i′

r sin
(

jsπ

Ny + 1

)
sin

(
j′sπ

Ny + 1

)

=
Nx∑

n=1

αi,i′

r

Ny∑
s=1

sin
(

jsπ

Ny + 1

)
sin

(
j′sπ

Ny + 1

) = 0.

The same can be shown for l ̸= l′. ■

Lemma 5.7. Let vi,j be as in Lemma 5.1. Define wi,j = ||vi,j||−1vi,j. Let

V =
[
w1,1 w2,1 · · · wNx,1 w1,2 · · · wNx,Ny

]
∈ RNx·Ny×Nx·Ny .

Then V is an orthogonal matrix.
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Proof. Let V be as defined above. Then

V T V = V T
[
w1,1 w2,1 · · · wNx,1 w1,2 · · · wNx,Ny

]

=
[
V T w1,1 V T w2,1 · · · V T wNx,1 V T w1,2 · · · V T wNx,Ny

]

=


⟨w1,1, w1,1⟩ ⟨w1,1, w2,1⟩ · · · ⟨w1,1, wNx,Ny⟩
⟨w2,1, w1,1⟩ ⟨w2,1, w2,1⟩

... . . . ...
⟨wNx,Ny , w1,1⟩ ⟨wNx,Ny , w2,1⟩ · · · ⟨wNx,Ny , wNx,Ny⟩

 = I

by Lemmas 5.5 and 5.6. ■

Theorem 5.3. Let λi and vi for i = 1, . . . , n be eigenpairs of B ∈ Rn×n where n ∈ N. If

V =
[
v1 · · · vn

]
is orthogonal then V T BV = Λ is the diagonal matrix

[
λ1 · · · λn

]
I.

Proof. BV =
[
Bv1 · · · Bvn

]
=
[
λ1v1 · · · λnvn

]
= V Λ ■

Let V be the orthogonal matrix from in Lemma 5.7. Also, define wl = V T ul, Λm,l =

V T Cm,lV , Λl = V T ClV and Λp,l = V T Cp,lV . Then

Cm,lul−1 + Clul + Cp,lul+1 = fl,

V T Cm,lV V T ul−1 + V T ClV V T ul + V T Cp,lV V T ul+1 = V T fl,

Λm,lwl−1 + Λlwl + Λp,lwl+1 = f̂l (5.4)

where l = 2, . . . , Nz − 1 and f̂l = V T fl. The cases for l = 1 and l = Nz are very similar. Note

that Λm,l, Λl and Λp,l are diagonal matrices of eigenvalues by Theorem 5.3, which yields Nx·Ny

independent linear systems. The systems can be solved using the LU decomposition of the

generated tridiagonal matrix with O (Nz) computational complexity. The computations in

the solution are independent with respect to both the x and y directions of the computational
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domain. Therefore, the computations can be parallelized with respect to the either direction.

Prior to solving this system, f̂l = V T fl for l = 1, . . . , Nz must be found.

5.3.3 Finding the DST with FFT

Subsection 5.3.3 discusses the computation of the transformed right-hand side V T fl. Note

that V T ∈ RNx·Ny×Nx·Ny and fl ∈ RNx·Ny . Therefore, the computational complexity of the

matrix vector multiplication of V T fl is O
(
Nx

2 · Ny
2
)
. The calculation is required for each

fl where l = 1, . . . , Nz. Transforming the right-hand side in this manner is not ideal even

on modern computers. The following definitions provide tools to reduce the computational

complexity.

Definition 5.1. The discrete sine transform of the vector x =
[
x1 . . . xn

]T
∈ Cn is

given by DST(x) =
[
x̂1 . . . x̂n

]T
where

x̂k =
n∑

l=1
sin

(
klπ

n + 1

)
xl

for k ∈ {1, . . . , n} [27].

Thus f̂l = V T fl, is simply the DST of fl in both the x and y directions. The subsequent

definition utilizes i =
√

−1 and i is not an index.

Definition 5.2. The discrete Fourier transform of the vector y =
[
y1 . . . yn

]T
∈ Cn

is given by ŷ =
[
ŷ1 . . . ŷn

]T
where

ŷk =
n∑

l=1
exp

{
−2πi(l − 1)(k − 1)

n

}
yl

=
n∑

l=1

[
cos

(
2π(l − 1)(k − 1)

n

)
− i sin

(
2π(l − 1)(k − 1)

n

)]
yl
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for k ∈ {1, . . . , n} [27].

Lemma 5.8. Let x ∈ Cn and y ∈ C2n+2. If y =
[
0 xT 0 · · · 0

]T
then x̂ = −Im (ŷ2:n+1)

where x̂ is the DST of x, ŷ is the DFT of y and −Im (ŷ2:n+1) is the negative of the complex

part of the vector elements in ŷ from the second entry to the (n + 1)-st entry.

Proof. Let N = 2n+2, then 2/N = 1/(n+1). Define y1 = 0, yn+2 = yn+3 = · · · = y2n+2 = 0

and yl = xl−1 for l = 2, . . . , n + 1. Then for k = 1, . . . , n,

x̂k =
n∑

l=1
sin

(
klπ

n + 1

)
xl

=
n∑

l=1
sin

(
klπ

n + 1

)
yl+1

=
n+1∑
l=1

sin
(

k(l − 1)π
n + 1

)
yl

=
N∑

l=1
sin

(
2k(l − 1)π

N

)
yl

= −Im

(
N∑

l=1

[
cos

(
2π(l − 1)k

N

)
− i sin

(
2π(l − 1)k

N

)]
yl

)

= −Im(ŷk+1). ■

Lemma 5.8 shows that computing the DST of a vector is equivalent to computing the

DFT of a particular extension of that vector. The DFT can be computed using the FFT.

Let FFTx and FFTy be the FFTs in the x and y directions respectively. Then f̂l = V T fl =

FFTy

(
FFTx

(
f̃l

))
where f̃l is the appropriate extension of fl. The computational complexity

of finding f̂l is reduced to O (Nx · Ny log (N)) where N = max{Nx, Ny}.
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5.3.4 Block Tridiagonal Solver

To illustrate the process of the block tridiagonal solver, the LU decomposition of the diago-

nalized system is required. Let Λl, Λm,l, Λp,l ∈ CNx·Ny×Nx·Ny be the diagonal matrices of eigen-

values as in (5.4). The decomposed matrix is then of the form Λ = LU ∈ CNx·Ny ·Nz×Nx·Ny ·Nz ,

given explicitly as
Λ1 Λp,1

Λm,2 Λ2
. . .

. . . . . . Λp,Nz−1
Λm,Nz ΛNz

 =


1

L2 1
. . . . . .

LNz 1



U1 Λp,1

U2
. . .
. . . Λp,Nz−1

UNz


where U1 = Λ1, Ll+1 = Λm,l+1 · U−1

l and Ul+1 = Λl+1 − Ll+1Λp,l for l = 1, . . . , Nz − 1. As a

diagonal matrix with nonzero entries, U−1
l is easily found.

After transformation, the system (5.3) can be written f̂ = Λw = LUw where w is the

transformed solution vector u as in (5.4). The tridiagonal linear system can be solved by

first finding y in Ly = f̂ and then solving for w in Uw = y. The vector y =
[
y1 . . . yNz

]T
is such that y1 = f1 and yl = fl − Llyl−1 for l = 2, . . . , Nz. The computations are clearly

dependent in the z direction but there is no dependency in the x and y directions. The same is

true for computing w =
[
w1 . . . wNz

]T
were wNz = U−1

Nz
yNz and wl = U−1

l (yl − Λp,lwl+1)

for l = Nz − 1, . . . , 1. The method is therefore highly parallel.

The solution vector u is simply the reverse transform of w, that is ul = V wl for l =

1, . . . , Nz. As seen in the previous subsection, this matrix vector multiplication is equivalent

to calculating ul = V wl = FFTy (FFTx (w̃l)) where w̃l is the appropriate extension of

wl. The computational complexity of calculating ul from wl is O (Nx · Ny log (N)) where

N = max{Nx, Ny}.
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5.3.5 Sequential Algorithm

Subsection 5.3.5 gives the algorithm for approximating the solution to (1.1,1.2) under the

assumptions of Chapter 5. As shown in the preceding subsections, the process involves

transforming the right-hand side, solving the resulting block tridiagonal system, and then

reversing the transformation of the solution. Algorithm 1 details the solver.

Algorithm 1 FFT Solver
1: for l = 1, . . . , Nz do
2: 2D forward DST of the RHS in x and y directions
3: end for
4: for j = 1, . . . , Ny; i = 1, . . . , Nx do
5: Solve the tridiagonal system using LU decomposition
6: end for
7: for l = 1, . . . , Nz do
8: 2D inverse DST of the solution in x and y directions
9: end for

In the C implementation of this algorithm and all those that follow, MIT’s standard

open-source C library FFTW [15] is used to compute the required fast Fourier transforms.

The most computationally expensive sections in the FFT solver are these forward and re-

verse transformations with computational complexity O (Nx · Ny log (N)). Consequently,

the transforms are the primary concerns for reducing the solver’s wall-time in the parallel

implementations.

5.4 Parallel Implementations

Section 5.4 provides a detailed examination of the parallelization of the developed direct

FFT solver. The three-dimensional algorithm is provided and implies the necessary steps for

the two-dimensional case. As stated in the introduction, the objective of computations in

parallel is to reduce wall-time through evenly-distributed simultaneous processes. When im-
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plemented correctly, wall-time is inversely related to the number of processes. OpenMP and

MPI are the preferred libraries that facilitate computations in parallel and implementations

of each are described below.

5.4.1 OpenMP

OpenMP provides a relatively simple implementation and excellent reduction in computa-

tion time, although speed-up is limited by the restriction to a single computer, or node.

Algorithm 2 shows how OpenMP integrated into the direct FFT solver parallelizes the com-

putations. Recall that the required forward and reverse transforms are independent with

respect to z. OpenMP divides these DST computations as evenly as possible among the

available processes. The solution of the tridiagonal system is independent in both the x

and y directions and therefore the iterations of both loops are evenly distributed among

processes.

Algorithm 2 OpenMP Parallel FFT Solver
1: #pragma omp parallel for
2: for l = 1, . . . , Nz do
3: 2D forward DST of the RHS in x and y directions
4: end for
5: #pragma omp parallel for collapse(2)
6: for j = 1, . . . , Ny; i = 1, . . . , Nx do
7: Solve the tridiagonal system using LU decomposition
8: end for
9: #pragma omp parallel for

10: for l = 1, . . . , Nz do
11: 2D inverse DST of the solution in x and y directions
12: end for

A benefit of OpenMP is that it automatically distributes the work evenly among the

processes, although this default operation consumes additional time. Manual division of

iterations among processes is also an option. While desirable results were achieved with
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the automatic division, a manual division was tested to improve the speed-up. After several

experiments with various grid sizes and number of processes, no significant improvement was

achieved. Therefore, all the results provided utilize the default division.

Another strategy was considered to improve performance. As seen in Algorithm 2, paral-

lelization of the two-dimensional DST is possible. The transform is computed by finding the

DST of all rows in the x direction and then all rows in the y direction as illustrated in Sub-

section 5.3.3. This permits the computations to be divided in either direction. A function

in the FFTW library that accomplishes this with OpenMP is FFTW multi-threading [15].

The method was compared to the method of Algorithm 2, but no performance improvement

was found. FFTW multi-threading is used in the hybrid implementation.

Despite the lack of benefit through the manual division of process iterations or par-

allelizing the two-dimensional DST, the OpenMP implementation demonstrates excellent,

near-linear speed-up in wall-time. The speed-up was observed on both a multi-core personal

computer and the single node of a cluster [16]. The solver is the ideal parallel tool in cases

where the computational grid size does not overload the RAM of the machine.

5.4.2 MPI

MPI, the standard for communication between processes, has the capacity to utilize RAM

across multiple nodes required for large-scale computational grids. The MPI implementation

allocates the minimal memory required on each process’s available memory. This allocation

method enables the ability to run much larger computational grids as the program is no

longer limited by the memory of a single node. Each process independently runs its own

copy of the program on its assigned portion of the computations. The process passes mes-
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sages, or transfers data, when necessary. Algorithm 3 outlines this procedure. However,

communication time grows with the number of processes and can shrink the reduction in

wall-time gained by utilizing more nodes, preventing a linear speed-up.

Algorithm 3 MPI Parallel FFT Solver
1: Find starty, startz, endy and endz using the process rank
2: for l = startz, . . . , endz do
3: 2D forward DST of the RHS in x and y directions
4: end for
5: Transfer data via MPI to the appropriate processes
6: for j = starty, . . . , endy; i = 1, . . . , Nx do
7: Solve the tridiagonal system using LU decomposition
8: end for
9: Transfer data via MPI to the appropriate processes

10: for l = startz, . . . , endz do
11: 2D inverse DST of the solution in x and y directions
12: end for

A major difference from the OpenMP implementation is the entire MPI program must

be parallelized, including the LU decomposition. Parallelization is required as the L and U

arrays are the length Nx · Ny · Nz, which requires a large amount of memory for large grid

sizes. To successfully run on multiple nodes, each node needs only the necessary parts of the

arrays.

Figure 5.3 gives a graphical example of the transfer of data via MPI. For ease of illus-

tration, the figure assumes the use of three processes. The first step shows how the domain

is divided as evenly as possible among the three processes with respect to the vertical, z

direction. The forward transform is computed here since the calculations do not depend on

z. Once the DST of the right-hand side is computed, certain subsets of the domain need

to be sent to different processes as the tridiagonal solver is dependent with respect to the

z direction. The second step illustrates the subdomains that need to be sent and received
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among processes. Note that the subdomains along the diagonal will not be sent as they

currently reside on the appropriate process. The third step shows the sections of the domain

assembled on the appropriate process after receiving the messages sent in the second step.

Now the domain is divided as evenly as possible among the processes with respect to the y

direction so that the tridiagonal solver can be calculated in parallel. The fourth step is sim-

ply the reverse of step two. The fifth and final step has the domain divided with respect to

the z direction and can now calculate the reverse transform providing the numerical solution.

The MPI implementation demonstrates excellent, near linear wall-time speed-up on a

multi-core personal computer and across multiple nodes in a large cluster [16]. This imple-

mentation’s capabilities are immense, however it does have a limit. The number of MPI

processes can not exceed min{Nz, Ny}, otherwise there would be processes with no work to

do. This can be seen in the division of the for-loops in Algorithm 3. This bound on the

number of processes is increased with the method described in the following subsection.

5.4.3 Hybrid

Subsection 5.4.3 presents a hybrid implementation of both MPI and OpenMP. The hybrid

approach is not limited to a single node like the OpenMP implementation, nor is it limited to

min{Nz, Ny} processes as in the strictly MPI version. The hybrid method uses MPI to access

different nodes on a cluster, then OpenMP to utilize the processors on each node. Algorithm

4 outlines the implementation of this method. MPI is used in the same way as before, but

now an MPI process is considered as an entire node. On the forward and reverse transform

steps OpenMP is used by FFTW multi-threading as described earlier in this section. The

tridiagonal solver utilizes OpenMP by dividing the work in the x direction.
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Figure 5.3: 3D Transfer of Data Between MPI Processes
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Algorithm 4 Hybrid Parallel FFT Solver
1: Set up multi-threaded FFTW
2: Find starty, startz, endy and endz using the process rank
3: for l = startz, . . . , endz do
4: 2D forward DST of the RHS in x and y directions with multi-threading
5: end for
6: Transfer data via MPI to the appropriate processes
7: #pragma omp parallel for
8: for j = starty, . . . , endy; i = 1, . . . , Nx do
9: Solve the tridiagonal system using LU decomposition

10: end for
11: Transfer data via MPI to the appropriate processes
12: for l = startz, . . . , endz do
13: 2D inverse DST of the solution in x and y directions with multi-threading
14: end for
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The hybrid implementation demonstrates wall-time speed-up across multiple nodes in a

large cluster. Its reduction in computation time is further from linear than the strictly MPI

implementation. The lack of linear speed-up, however, is overshadowed by the ability of the

hybrid approach to scale much farther by use of significantly more processes and memory.

The largest successful test was run on an impressively large computational grid of 40963. The

hybrid implementation completed this in just 27.52 seconds while the strictly MPI version

required 445.80 seconds [16]. Further numerical tests with more detail are forthcoming.

5.5 Summary

Chapter 5 presented a highly parallel FFT solver and the required restrictions for such a

solver. Parallel implementations in OpenMP, MPI and a hybrid structure were described

in detail. Chapter 6 presents a novel generalized eigenvalue solver capable of solving the

Helmholtz equation with Sommerfeld-like conditions on all boundaries.
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6 Direct Generalized Eigenvalue Solver

To solve the inclusion problem with Sommerfeld-like conditions on all boundaries, a more

versatile solver is needed. Chapter 6 presents such a solver that is direct and parallel. The

boundary assumptions of the previous chapter are lifted, and Sommerfeld-like conditions are

now considered on all boundaries. Three cases are considered starting with constant k. The

cases where k varies only vertically and in all spatial directions will follow. Chapter 6 focuses

on the three-dimensional case, but the two-dimensional case is nearly identical.

6.1 Uniform Medium

Assume k is constant, then the discretized system can be written as

(Aa + αaBa) u1 + (1 + βa) Bau2 = f1

Baul−1 + Aaul + Baul+1 = fl for l = 2, . . . , Nz − 1

(1 + βa) BauNz−1 + (Aa + αaBa) uNz = fNz

where Aa, Ba ∈ CNx·Ny×Nx·Ny are generated from the 27-point stencil given in Chapter 3.

Also, αa and βa are the appropriate coefficients from (4.5), (4.7) or (4.8) depending on the

order of approximation. For the development of this algorithm and those that follow, the

matrix Ba is assumed nonsingular. Left multiplying by the inverse of Ba gives

(
B−1

a Aa + αaI
)

u1 + (1 + βa) u2 = B−1
a f1

ul−1 + B−1
a Aaul + ul+1 = B−1

a fl for l = 2, . . . , Nz − 1

(1 + βa) uNz−1 +
(
B−1

a Aa + αaI
)

uNz = B−1
a fNz .
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To diagonalize this system suppose AaS = BaSΛa where Λa ∈ CNx·Ny×Nx·Ny is the diagonal

matrix of eigenvalues of B−1
a Aa and S ∈ CNx·Ny×Nx·Ny is the matrix of eigenvectors. It

follows,

(Λa + αaI) w1 + (1 + βa) w2 = f̂1

wl−1 + Λawl + wl+1 = f̂l for l = 2, . . . , Nz − 1

(1 + βa) wNz−1 + (Λa + αaI) wNz = f̂Nz

where wl = S−1ul and f̂l = S−1B−1
a fl for l = 1, . . . , Nz. This diagonalization yields Nx · Ny

independent linear systems. These systems can be solved using the LU decomposition of

the generated tridiagonal matrix with O (Nz) computational complexity. Therefore, this

solver is structured similar to the FFT Solver. The calculations required for the forward

transform of the right-hand side, f for l = 1, . . . , Nz, are independent with respect to the z

direction and hence can be parallelized. The same is true for the reverse transform of wl.

The calculations required to find wl via LU decomposition are independent with respect to

the x and y directions and can be parallelized.

6.2 Air and Soil Medium

The previous section’s solver is highly parallel, but it is limited to constant k applications.

Section 6.2 loosens this assumption and considers the case of k varying in the vertical direc-

tion. In three-dimensions this gives k(x, y, z) = k(z). More specifically, k varies according

to a domain with air and soil. Let ka be the coefficient in the air and kg be the coefficient in

the soil, which are constant. Define Ns as the vertical index that is the last to contain the

air coefficient ka. Air and soil coefficients and the vertical index are illustrated in Figure 6.1.
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Figure 6.1: Vertical Cross-Section of Air and Soil Domain
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The resulting discretized system is written as

(Aa + αaBa) u1 + (1 + βa) Bau2 = f1

Baul−1 + Aaul + Bgul+1 = fl for l = 2, . . . , Ns

Baul−1 + Agul + Bgul+1 = fl for l = Ns + 1, . . . , Nz − 1

(1 + βg) BguNz−1 + (Ag + αgBg) uNz = fNz

where Aa, Ba, Ag, Bg ∈ CNx·Ny×Nx·Ny are generated from the 27-point stencil as before, but

differ by the coefficients ka and kg. Similarly, αa, βa, αg and βg are the appropriate coefficients

from the boundary conditions and only differ by ka and kg. Left multiplication of B−1
a for

l = 1, . . . , Ns and B−1
g for l = Ns + 1, . . . , Nz gives

(
B−1

a Aa + αaI
)

u1 + (1 + βa) u2 = B−1
a f1
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ul−1 + B−1
a Aaul + B−1

a Bgul+1 = B−1
a fl for l = 2, . . . , Ns

B−1
g Baul−1 + B−1

g Agul + ul+1 = B−1
g fl for l = Ns + 1, . . . , Nz − 1

(1 + βg) uNz−1 +
(
B−1

g Ag + αgI
)

uNz = B−1
g fNz .

Now suppose AaS = BaSΛa where Λa ∈ CNx·Ny×Nx·Ny is the diagonal matrix of eigenvalues

and S ∈ CNx·Ny×Nx·Ny is the matrix of eigenvectors. Similarly, suppose AgR = BgRΛg.

Then, define

wl = S−1ul for l = 1, . . . , Ns

wl = R−1ul for l = Ns + 1, . . . , Nz

f̂l = S−1B−1
a fl for l = 1, . . . , Ns

f̂l = R−1B−1
g fl for l = Ns + 1, . . . , Nz.

Left multiplication of S−1 for l = 1, . . . , Ns and R−1 for l = Ns + 1, . . . , Nz gives

(Λa + αaI) w1 + (1 + βa) w2 = f̂1

wl−1 + Λawl + wl+1 = f̂l for l = 2, . . . , Ns − 1

wNs−1 + ΛawNs + MwNs+1 = f̂Ns

M−1wNs + ΛgwNs+1 + wNs+2 = f̂Ns+1

wl−1 + Λgwl + wl+1 = f̂l for l = Ns + 2, . . . , Nz − 1

(1 + βg) wNz−1 + (Λg + αgI) wNz = f̂Nz

where M = S−1B−1
a BgR. To solve this transformed system, assume that

wl = Da,lwl+1 + Pa,l for l = 1, . . . , Ns − 1
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wl = Dg,lwl−1 + Pg,l for l = Nz, . . . , Ns + 2.

Consider first l = 1, . . . , Ns. When l = 1 the boundary conditions give the following

f̂1 = (Λa + αaI) w1 + (1 + βa) w2

w1 = − (Λa + αaI)−1 (1 + βa) w2 + (Λa + αaI)−1 f̂1

w1 = Da,1w2 + Pa,1

where Da,1 = − (1 + βa) (Λa + αaI)−1 and Pa,1 = (Λa + αaI)−1 f̂1. For the remaining layers

in the air, that is l = 2, . . . , Ns − 1, it follows

f̂l = wl−1 + Λawl + wl+1

f̂l = (Λa + Da,l−1) wl + Pa,l−1 + wl+1

wl = − (Λa + Da,l−1)−1 wl+1 + (Λa + Da,l−1)−1
(
f̂l − Pa,l−1

)
wl = Da,lwl+1 + Pa,l

where Da,l = − (Λa + Da,l−1)−1 and Pa,l = (Λa + Da,l−1)−1
(
f̂l − Pa,l−1

)
. Similarly, in the

opposite direction the lower boundary, l = Nz, gives

f̂Nz = (1 + βg) wNz−1 + (Λg + αgI) wNz

wNz = Dg,NzwNz−1 + Pg,Nz

where Dg,Nz = − (1 + βg) (Λg + αgI)−1 and Pg,Nz = (Λg + αgI)−1 f̂Nz . Finally, for the re-

maining layers in the soil, that is l = Nz − 1, . . . , Ns + 2,

f̂l = wl−1 + Λgwl + wl+1
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wl = Dg,lwl−1 + Pg,l

where Dg,l = − (Λg + Dg,l+1)−1 and Pg,l = (Λg + Dg,l+1)−1
(
f̂l − Pg,l+1

)
. The only two layers

remaining are

wNs−1 + ΛawNs + MwNs+1 = f̂Ns

M−1wNs + ΛgwNs+1 + wNs+2 = f̂Ns+1.

A similar substitution with these layers gives

Da,Ns−1wNs + Pa,Ns−1 + ΛawNs + MwNs+1 = f̂Ns

M−1wNs + ΛgwNs+1 + Da,Ns+2wNs+1 + Pa,Ns+2 = f̂Ns+1.

producing the following two by two block system

[
(Da,Ns−1 + Λa) M

M−1 (Dg,Ns+2 + Λg)

] [
wNs

wNs+1

]
=
[

f̂Ns − Pa,Ns−1

f̂Ns+1 − Pa,Ns+2

]

Asws = fs (6.1)

where As ∈ C2Nx·Ny×2Nx·Ny and ws, fs ∈ C2Nx·Ny . The system (6.1) can be solved with

LU decomposition giving wNs and wNs+1. Note this is not the block LU factorization de-

scribed for the FFT solver or the generalized eigenvalue solver for constant k. The remaining

transformed solution, wl for l = 1, . . . , Ns − 1 and l = Ns + 2, . . . , Nz, is found by computing

wl = Da,lwl+1 + Pa,l for l = Ns − 1, . . . , 1

wl = Dg,lwl−1 + Pg,l for l = Ns + 2, . . . , Nz.
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Figure 6.2: Generalized Eigenvalue Solver Design
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This process is illustrated in Figure 6.2. Note the necessary calculations are independent with

respect to the vertical direction and hence can be computed in parallel with the exception

of the solution of Asws = fs.

6.3 Air and Soil Medium with Subsurface Inclusion

In Section 6.3 the assumptions of Chapter 5 are completely lifted. That is, Sommerfeld-

like conditions are now considered on all sides, and k can vary in all spatial directions.

Specifically, k will vary as illustrated by Figure 6.3 with air, soil and a subsurface inclusion.

Again, Ns is the vertical index that is the last to contain the air coefficient. Define Nr as

the first vertical index after the inclusion. Then the system is written

(Aa + αaBa) u1 + (1 + βa) Bau2 = f1

Baul−1 + Aaul + Baul+1 = fl for l = 2, . . . , Ns − 1

BauNs−1 + AauNs + BNsuNs+1 = fNs

Clul−1 + Alul + Blul+1 = fl for l = Ns + 1, . . . , Nr − 1
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Figure 6.3: Vertical Cross-Section of Air and Soil Domain with Subsurface Inclusion
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CNruNr−1 + AguNr + BguNr+1 = fNr

Bgul−1 + Agul + Bgul+1 = fl for l = Nr + 1, . . . , Nz − 1

(1 + βg) BguNz−1 + (Ag + αgBg) uNz = fNz

where Aa, Ba, Ag and Bg are as defined in the previous section. The matrices Cl, Al, Bl ∈

CNx·Ny×Nx·Ny are generated from the general 27-point stencil. Suppose AaS = BaSΛa where

Λa ∈ CNx·Ny×Nx·Ny is the diagonal matrix of eigenvalues and S ∈ CNx·Ny×Nx·Ny is the matrix

of eigenvectors. Similarly, suppose AgR = BgRΛg. Define

wl = S−1ul for l = 1, . . . , Ns

wl = R−1ul for l = Nr, . . . , Nz

f̂l = S−1B−1
a fl for l = 1, . . . , Ns
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f̂l = R−1B−1
g fl for l = Nr, . . . , Nz.

The system above can now be partially diagonalized. Multiplying this system by B−1
a for

the air layers and B−1
g for the sub-inclusion layers gives

(Λa + αaI) w1 + (1 + βa) w2 = f̂1

wl−1 + Λawl + wl+1 = f̂l for l = 2, . . . , Ns − 1

wNs−1 + ΛawNs + MauNs+1 = f̂Ns

Clul−1 + Alul + Blul+1 = fl for l = Ns + 1, . . . , Nr − 1

MguNr−1 + ΛgwNr + wNr+1 = f̂Nr

wl−1 + Λgwl + wl+1 = f̂l for l = Nr + 1, . . . , Nz − 1

(1 + βg) wNz−1 + (Λg + αgI) wNz = f̂Nz

where Ma = S−1B−1
a BNs and Mg = R−1B−1

g CNr . All layers excluding those from l =

Ns, . . . , Nr are fully diagonalized. To solve this partially transformed system assume that

wl = Da,lwl+1 + Pa,l for l = 1, . . . , Ns − 1

wl = Dg,lwl−1 + Pg,l for l = Nz, . . . , Nr + 1.

Then the transformed solution is found the same way as in Section 6.2, but only for those

layers in the air and soil beneath the inclusion. The matrices Da,l and Pa,l are defined

identically to those in Section 6.2. The only layers remaining are

wNs−1 + ΛawNs + MauNs+1 = f̂Ns

Clul−1 + Alul + Blul+1 = fl for l = Ns + 1, . . . , Nr − 1
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MguNr−1 + ΛgwNr + wNr+1 = f̂Nr .

These layers form the block tridiagonal system Asws = fs, given explicitly by



Da,Ns−1 + Λa Ma

CNs+1S ANs+1 BNs+1
CNs+2 ANs+2 BNs+2

. . . . . . . . .
CNr−2 ANr−2 BNr−2

CNr−1 ANr−1 BNr−1R
Mg Dg,Nr+1 + Λg





wNs

uNs+1
uNs+2
uNs+3

...
uNr−3
uNr−2
uNr−1
wNr



=



f̂Ns − Pa,Ns−1
fNs+1
fNs+2

...
fNr−2
fNr−1

f̂Nr − Pg,Nr+1


(6.2)

where As ∈ CN ·Nx·Ny×N ·Nx·Ny and ws, fs ∈ CN ·Nx·Ny with N = Nr − Ns + 1. Once the

system (6.2) is solved via LU factorization, the remaining transformed solution, wl for l =

1, . . . , Ns − 1 and l = Nr + 1, . . . , Nz, is found by calculating

wl = Da,lwl+1 + Pa,l for l = Ns − 1, . . . , 1

wl = Dg,lwl−1 + Pg,l for l = Nr + 1, . . . , Nz.

This process is similar to that illustrated in Figure 6.2, except that As is larger, including

up to the first layer past the inclusion. The necessary calculations are independent with

respect to the vertical direction and can be computed in parallel except for the solution of

Asws = fs.
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6.4 Parallel Implementation

Section 6.4 provides the detailed parallelization of the developed direct generalized eigenvalue

solvers presented in Chapter 6. The focus is the three-dimensional algorithm, but bears

similarities to the two-dimensional algorithm. As in Section 5.4, the goal of implementing

parallel algorithms is to observe a reduction in wall-time by dividing the computations as

evenly as possible among the available processes.

First, consider the case given in Section 6.1, where k is constant and Sommerfeld-like

conditions are considered on all boundaries. The structure of this solver is nearly identical to

that of the FFT solver and hence can be parallelized in the same way with OpenMP and MPI

as described in Section 5.4. The OpenMP parallelization of the process is shown in Algorithm

5. The transforms of the right-hand side f and transformed solution w are independent with

respect to the vertical direction, the z direction in three-dimensions. Consequently, these

calculations are divided among the processes with respect to the vertical layers. The solution

of the tridiagonal system is dependent in the vertical direction and independent otherwise.

Therefore, the computations can be divided with respect to the x and y directions. In a

distributed memory environment, the appropriate data transfer needs to take place between

the transform steps and the tridiagonal solver, as described in Subsection 5.4.2.
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Algorithm 5 Parallel Generalized Eigenvalue Solver for Constant k

1: #pragma omp parallel for
2: for l = 1, . . . , Nz do
3: f̂l = S−1B−1

a fl

4: end for
5: #pragma omp parallel for collapse(2)
6: for j = 1, . . . , Ny; i = 1, . . . , Nx do
7: Solve the tridiagonal system using LU decomposition
8: end for
9: #pragma omp parallel for

10: for l = 1, . . . , Nz do
11: ul = Swl

12: end for

The algorithms presented in sections 6.2 and 6.3 are similar. The key difference is the

number of layers included in Asws = fs. As a result, only the parallelization for the solver

in the case with an inclusion is described here. The case for a strictly air and soil medium

is given by the Algorithm 6 by assuming Nr = Ns + 1.

The matrices Da,l and Dg,l for l ∈ {1, . . . , Ns − 1, Nr + 1, . . . , Nz} are computed as

preliminary steps to the direct solver. Their computations are parallelizable as there is no

dependency with respect to the vertical direction. Additionally, the matrices Ma, Mb and the

LU factorization of As are computed preliminarily. The sequential solver is shown in Algo-

rithm 6. However, it is easily parallelized with OpenMP by including the directive,“#pragma

omp parallel for” prior to each loop. This OpenMP implementation is highly parallel and

a powerful alternative to iterative methods. MPI can be used to parallelize the loops with

data transfers before and after the solution of Asws = f .
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Algorithm 6 Parallel Generalized Eigenvalue Solver for Air and Soil with Inclusion
1: for l = 1, . . . , Ns do
2: f̂l = S−1B−1

a fl

3: end for
4: for l = Nr, . . . , Nz do
5: f̂l = R−1B−1

g fl

6: end for
7: Pa,1 = (Λa + αaI)−1 f̂1 and Pg,Nz = (Λg + αgI)−1 f̂Nz

8: for l = 2, . . . , Ns − 1 do
9: Pa,l = (Λa + Da,l−1)−1

(
f̂l − Pa,l−1

)
10: end for
11: for l = Nz − 1, . . . , Nr + 1 do
12: Pg,l = (Λg + Dg,l−1)−1

(
f̂l − Pg,l+1

)
13: end for
14: Solve the Asws = fs with previously computed LU decomposition
15: for l = Ns − 1, . . . , 1 do
16: wl = Da,lwl+1 + Pa,l

17: end for
18: for l = Nr + 1, . . . , Nz do
19: wl = Dg,lwl−1 + Pg,l

20: end for
21: for l = 1, . . . , Ns do
22: ul = Swl

23: end for
24: for l = Nr, . . . , Nz do
25: ul = Rwl

26: end for

6.5 Summary

Chapter 6 provided a detailed explanation of the generalized eigenvalue solver. Parallel

algorithms for both constant and variable wave numbers were developed. Chapter 7 presents

a detailed explanation of the three steps of the partial FFT solver.

85



7 Direct Partial FFT Solver

Chapter 7 presents an approach that combines the high parallel efficiency of the FFT solver

and the versatility of the generalized eigenvalue solver. While both are independently im-

pressive, the combination of the two into a novel partial FFT solver provides even faster

solution time than the generalized eigenvalue solver. A similar partial FFT approach was in-

troduced for the simplified case of constant k by Toivanen and Wolfmayr [10]. As before, the

focus remains on the three-dimensional case, but the two-dimensional case can be inferred.

Consider the matrices A, B ∈ CNx·Ny ·Nz×Nx·Ny ·Nz . Let A be the matrix formed by the

discretization described in Chapter 3 with Sommerfeld-like conditions on all boundaries.

Also, let u, f ∈ CNx·Ny ·Nz be such that f is the right-hand side formed by the discretization

and u is the numerical solution. The problem at hand becomes Au = f . Let B be the matrix

formed by the same discretization but restrict k to exclude the inclusion and only included

Sommerfeld-like conditions on the top and bottom boundaries with respect to the vertical

direction.

To present these matrices explicitly assume k is constant. If n ∈ Z, let I(n) and I(n) be

defined as in Chapter 5. Then define T as the mapping such that T (n) is the n × n matrix

with ones at (1, 1) and (n, n) and zero otherwise. Similarly, let T (n) be the mapping such

that T (n) is the n × n matrix with ones at (1, 2) and (n, n − 1) zero otherwise. For example:

T (4) =


1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 1

 and T (4) =


0 1 0 0
0 0 0 0
0 0 0 0
0 0 1 0


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Consider the matrices Dx,a,b, Ex,a,b ∈ CNx×Nx such that

Dx,a,b = aI(Nx) + bI(Nx)

Ex,b = αxbT (Nx) + βxbT (Nx).

where a, b ∈ C and αx, βx ∈ C are the boundary coefficients from Section 4.2 in the x

direction. Then let Dy, Dy ∈ CNx·Ny×Nx·Ny be such that

Dy = I(Ny) ⊗ Dx,a1,b1 + I(Ny) ⊗ Dx,c1,d1

Dy = I(Ny) ⊗ Dx,a2,b2 + I(Ny) ⊗ Dx,c2,d2

where a1, b1, c1, d1, a2, b2, c2, d2 ∈ C are coefficients from Figure 5.2 at layer l = 1 and αy, βy ∈

C are the boundary coefficients from Section 4.2 in the y direction. To include the Sommer-

feld-like conditions in the x and y directions consider Dxy, Dxy ∈ CNx·Ny×Nx·Ny where

Dxy = I(Ny) ⊗ [Dx,a1,b1 + Ex,b1 ] + I(Ny) ⊗ [Dx,c1,d1 + Ex,d1 ]

+ αyT (Ny) ⊗ [Dx,c1,d1 + Ex,d1 ] + βyT (Ny) ⊗ [Dx,c1,d1 + Ex,d1 ]

Dxy = I(Ny) ⊗ [Dx,a2,b2 + Ex,b2 ] + I(Ny) ⊗ [Dx,c2,d2 + Ex,d2 ]

+ αyT (Ny) ⊗ [Dx,c2,d2 + Ex,d2 ] + βyT (Ny) ⊗ [Dx,c2,d2 + Ex,d2 ] .

Then the matrices A and B are given by

A = I(Nz) ⊗ Dxy + I(Nz) ⊗ Dxy + αzT (Nz) ⊗ Dxy + βzT (Nz) ⊗ Dxy

B = I(Nz) ⊗ Dy + I(Nz) ⊗ Dy + αzT (Nz) ⊗ Dy + βzT (Nz) ⊗ Dy

Therefore, in the case of constant k the matrix C = B − A ∈ CNx·Ny ·Nz×Nx·Ny ·Nz is vastly

sparse. Differing only at the positions necessary for the approximation of the Sommerfeld-like
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boundary conditions. This difference also exists in the case of k varying in only the vertical

direction. If k contains inclusions, C will also contain nonzero elements corresponding to the

location of the inclusion. The sparse nature of C is the defining characteristic that will be

taken advantage of in the partial FFT solver. Any matrix equation of the form Bx = y can

be solved utilizing the FFT solver given in Chapter 5, while Ax = y requires the generalized

eigenvalue solver from Chapter 6. Algorithm 7 outlines the general process of the direct

partial FFT solver.

Algorithm 7 Partial FFT Solver
1: Solve Bx = f via FFT solver for only the necessary components of x
2: Solve Ay = Cx via generalized eigenvalue solver for only the necessary components of

y, where y = u − x
3: Solve Bu = f + C(x + y) for the entire numerical solution u

The first step in Algorithm 7 could be solved with the FFT solver to find the full vector

x; however, only a small portion is needed as Cx is vastly sparse. Only the elements of

x that are necessary for the matrix vector multiplication, Cx, are transformed back using

the DST. Step two is similar; the number of calculations necessary for the transform of

the right-hand side, Cx, is drastically reduced, and only the necessary elements of y are

calculated. Additionally, the final step has a reduced number of computations. Since the

DST of f was already computed in step one, only the nonzero elements of C(x + y) need be

transformed. This procedure solves the entire system but can utilize the FFT solver making

it highly parallel. These steps are examined in detail in Section 7.1.

88



7.1 Computation Reduction

Section 7.1 provides detail in the reduction of computations achieved in the Partial FFT

Solver. Each step in Algorithm 7 will be examined illustrating how the use of the FFT

solver, in combination with, the generalized eigenvalue solver can reduce the total num-

ber of required computations after minor modification. The generalized eigenvalue solver

has a computational complexity of O
(
Nx

2 · Ny
2 · Nz

)
while this partial FFT solver is only

O (Nx · Ny · Nz log (N)) where N = max{Nx, Ny}. These operation counts are based on the

case for constant k.

The two solvers presented in Chapters 5 and 6 have a similar structure. The right-hand

side must first be transformed, but the FFT solver transformation is by a DST calculated

via FFT rather than multiplication by the matrices of eigenvectors as in the generalized

eigenvalue solver. In the remainder of Section 7.1 both these right-hand side transformations

will be referred to as the forward transform. After the forward transform, both the FFT

and generalized eigenvalue solvers compute the transformed solution. The solution is then

transformed back to the original space. This will be referred to as the reverse transform. The

algorithms provided in Section 7.1 are reductions of the algorithms given in Chapters 5 and

6. No calculation dependencies are introduced, and therefore, the parallel implementations

provided in Sections 5.4 and 6.4 still apply.

7.1.1 Step One

The first step in the partial FFT solver is to solve the auxiliary equation Bx = f . However,

looking ahead at step two shows that the entire vector x is not needed since x is multiplied

by the vastly sparse matrix C. Only the elements of x necessary to compute Cx are found.
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Figure 7.1: 2D Matrix Sparsity Example

=

To illustrate this concept, consider the simple case in two-dimensions where Nx = 5 and

Ny = 3. Then the matrix C ∈ C15×15 contains only 12Ny − 8 = 28 nonzero elements with

only four in the first and last rows of each Nx layer. Figure 7.1 illustrates this matrix and the

product Cx. The elements shown in red in the vector x are not utilized in the multiplication

and can be omitted. In application, Nx and Ny are significantly larger and the number of

omitted elements is given by (Nx − 4)Ny.

The three-dimensional case further benefits from the sparsity of C. The matrix C con-

tains only (12Ny − 8)Nz − 2(12Ny − 8) nonzero elements and x ∈ CNx·Ny ·Nz needs only

4Ny · Nz elements to conduct the multiplication Cx, that is (Nx − 4)Ny · Nz can be omitted.

Therefore, in step one the necessary computations can be reduced in the FFT Solver as

shown in Algorithm 8. Calculating the partial solution of Bx = f the entire transformed

right-hand side, f̂ , must be computed. The transformed solution is then computed, but only

the 4Ny · Nz elements necessary to compute Cx are transformed back via DST. This re-

duces the computational complexity of the reverse transform to only O (Ny · Nz log (N)) from
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O (Nx · Ny · Nz log (N)) where N = max{Nx, Ny} as the DST is calculated via FFT. These

calculations are still independent with respect to the vertical direction and can therefore be

parallelized.

Algorithm 8 FFT Solver Reverse Transform Reduced
1: for l = 1, . . . , Nz do
2: 2D forward DST of the RHS in x and y directions
3: end for
4: for j = 1, . . . , Ny; i = 1, . . . , Nx do
5: Solve the tridiagonal system using LU decomposition
6: end for
7: for l = 1, . . . , Nz do
8: 1D DST of the solution in the x direction, but only for the first and last two rows
9: 1D DST of the solution in the y direction

10: end for

7.1.2 Step Two

The second step in the Partial FFT Solver is to solve the equation Ay = Cx where y =

u − x. The solving is accomplished with a modified generalized eigenvalue solver that takes

advantage of the sparsity in the right-hand side, Cx. Due to sparsity fewer computations are

required to transform the right-hand side verses the original generalized eigenvalue solver.

Additionally, looking ahead at step three, the solution of step two, y, will be multiplied by

C. The resulting reverse transform has the same reduction as in step one.

Returning to the two-dimensional example with Nx = 5 and Ny = 3, consider the vector

Cx in Figure 7.1. Because the vector only contains nonzero elements at the first and last row

in each Nx block, the transform of the right-hand side in the generalized eigenvalue solver,

S−1B−1
a (Cx)j for j = 1, . . . , Ny, is reduced from Nx

2 · Ny multiplications to only 2Nx · Ny.

Similar to step one, the full solution, y, is not needed. Hence, the reverse transformation to

y is reduced by (Nx − 4)Ny elements.
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Algorithm 9 Reduced Generalized Eigenvalue Solver
1: for l = 1, . . . , Nz; j = 1, . . . , Ny; i = 1, . . . , Nx do
2: f̂i,j,l = (BaS)−1

i,1 (Cx)1,j,l + (BaS)−1
i,Nx

(Cx)Nx,j,l

3: end for
4: for j = 1, . . . , Ny; i = 1, . . . , Nx do
5: Solve the tridiagonal system using LU decomposition
6: end for
7: for l = 1, . . . , Nz; j = 1, . . . , Ny; do
8: y1,j,l = S1,1:Nx·Ny · wl

9: y2,j,l = S2,1:Nx·Ny · wl

10: yNx−1,j,l = SNx−1,1:Nx·Ny · wl

11: yNx,j,l = SNx,1:Nx·Ny · wl

12: end for

In the three-dimensional case the computational complexity of the forward transform

is reduced to O (Nx · Ny · Nz) from O
(
Nx

2 · Ny
2 · Nz

)
. The reverse transformation to y

is reduced as in step one. In the full generalized eigenvalue solver, the transforms are

computed by matrix vector multiplication for each vertical layer requiring Nx
2 · Ny

2 · Nz

scalar multiplications. However, in this case the work has been reduced to four dot-products

for each vertical layer requiring 4Nx · Ny · Nz scalar multiplications. Algorithm 9 shows the

reduced generalized eigenvalue solver for constant k. The algorithm uses vector notation,

wl, introduced in Chapter 5 by (5.1). The cases for k varying only vertically or with an

inclusion take advantage of the sparsity in the same manner.

7.1.3 Step Three

The third and final step of the partial solver is finding u in Bu = f +C(x+y) via FFT solver,

which modifies the FFT solver differently than step one. Here the reduction is achieved in

the forward transform. The two-dimensional DST required in the forward step is reduced

in the x directions. There are only two nonzero elements in each Nx block. Therefore,

the number of operations in the forward transform is reduced to O (Ny · Nz log(Ny)) from
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O (Nz · Nx · Ny log(N)). This reduction is shown in Algorithm 10. In the two-dimensional

example with Nx = 5 and Ny = 3, only the DST in the x direction is needed and hence the

multiplications required are only 2Ny = 6 for the forward transform.

Algorithm 10 FFT Solver Forward Transform Reduced
1: for l = 1, . . . , Nz do
2: r̂l = f̂l + DSTy(DSTx(C(x + y)l))
3: end for
4: for j = 1, . . . , Ny; i = 1, . . . , Nx do
5: Solve the tridiagonal system using LU decomposition with r̂ as the transformed RHS
6: end for
7: for l = 1, . . . , Nz do
8: 2D inverse DST of the solution in x and y directions
9: end for

7.2 Summary

Chapter 7 provided a detailed explanation of the three steps of the partial FFT solver. Steps

one, two and three demonstrated the reduction in computations gained by combining the

generalized eigenvalue and FFT solvers. Chapter 8 presents detailed examinations of the

accuracy and parallel performance of the implementations of all three solvers considered by

the research.
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8 Numerical Results

Chapter 8 presents the results of numerical experiments implemented in the programming

language C to demonstrate the power and versatility of the given parallel numerical methods.

Some results are from runs on Lawrence Berkeley National Laboratory’s Cori cluster. The

tests utilize Haswell nodes on Cori, which contain Intel Xeon 2.3 GHz processors with 32

physical cores and 128 GB 2133 MHz DDR4 memory. Additional numerical experiments

were conducted on an iMac desktop, MacBook Pro laptop or server with a Xeon X5690

3.47 GHz processor and 144 GB of memory. The MackBook Pro contains an Intel Quad-

Core i7 2.7 GHz processor and 16 GB 2133 MHz LPDDR3 memory. The iMac contains an

Intel Quad-Core i7 2.93 GHz processor and 16 GB 2133 MHz LPDDR3 memory. Results are

divided into two sections, one for the FFT solver and the other for the generalized eigenvalue

and partial FFT solvers. All times provided in Chapter 8 are wall-times measured in seconds.

8.1 FFT Solver

Building on Chapter 5’s presentation of three different parallelization strategies for the FFT

solver, Section 8.1 compares the performance of the three techniques for test problems with

Dirichlet boundary conditions. The Helmholtz and convection-diffusion equations are con-

sidered in three-dimensions. A more detailed examination of this solver is provided in the

author’s previous publication [16].

8.1.1 Helmholtz

OpenMP, MPI and hybrid implementations of the developed direct FFT solver were used to

obtain approximate solutions of the problem (1.1,1.2) with Dirichlet boundary conditions.
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In the following numerical experiments, the coefficient k is considered to be constant or vary

only in the vertical direction. For either case k is defined by

k(z) = a − b sin(cz) (8.1)

with a > b ≥ 0. Note that k is constant when b = 0. To test the accuracy, consider the

analytic solution

u(x) = sin (βx) sin (γy) e−k(z)/c

where β2 + γ2 = a2 + b2. This gives the right-hand side

f(x) = −b(2a + c) sin(cz)e−k(z)/c sin(βx) sin(γy).

The domain under consideration is Ω = [0, π] × [0, π] × [0, π]. Turkel considered this test

problem in [5], with results from runs on a Supermicro cluster consisting of 12 nodes. Each

node contained two Intel Xeon E5520 2.27 GHz quad processors that shared 8 GB of RAM.

Table 8.1 presents a comparison of two solvers on the problem above utilizing variable

k with a = 10, b = 9, c = 10, γ = 9 and β = 10. The first two rows of Table 8.1 show

results from the iterative solver used in [5], while the remaining results are from the second-,

fourth- and sixth-order implementations of the FFT solver provided in Chapter 5. Define

the relative L2 error as ||u − ua||2/||u||2 where u is the numerical solution and ua is the

analytic solution at the same grid points. The tolerance for the iterative method was set at

.001 for the L2 error. The grid sizes for the direct FFT solver runs were chosen to produce an

L2 error below this tolerance. The iterative solver was run on the Supermicro cluster while

the direct FFT solver was run on both the Xeon X5690 server and iMac described earlier.
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Table 8.1: Comparison of Direct and Iterative Solvers

Machine Scheme Type N Iterations Seconds

Supermicro 2nd iteration 333 1970 703

Supermicro 6th iteration 45 350 1.01

X5690 2nd direct 353 NA 15.18

X5690 4th direct 62 NA 0.078

X5690 6th direct 50 NA 0.055

iMac 2nd direct 353 NA 19.8

iMac 4th direct 62 NA 0.097

iMac 6th direct 50 NA 0.08
In this case N = Nx = Ny = Nz.

Table 8.1 shows the direct FFT solver on the X5690 and iMac i7 was approximately 46

and 36 times faster than the iterative solver respectively in the second-order case. With the

sixth-order scheme, the direct FFT solver was approximately 18 and 13 times faster on the

X5690 and iMac i7 than the iterative solver, respectively. The direct solver results are from

sequential runs where only one process was utilized. These results demonstrate the immense

advantage the direct FFT solver has in this problem even without parallel computations.

The same accuracy, or resolution, is achieved in a fraction of the time.

The sequential and parallel implementations of the FFT solver give consistent results on

all considered grids. Table 8.2 shows the convergence of the second-, fourth- and sixth-order

implementations, respectively. These tests utilize variable k with a = 10, b = 9, c = 10,

γ = 9 and β = 10. The table shows the maximum error between the numerical solution, u,

and the analytic solution ua. If the grid size is doubled in each direction the error decreases

by roughly four, 16 and 64 times for second-, fourth- and sixth-order, respectively. This

confirms the accuracy of the numerical methods. These values for the error are the same
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Table 8.2: FFT Solver Convergence

Second-Order Fourth-Order Sixth-Order

Grid ||u−ua||∞ ||Au − f ||2 ||u−ua||∞ ||Au − f ||2 ||u−ua||∞ ||Au − f ||2
1253 5.757e-03 4.727e-13 3.449e-05 3.630e-13 2.188e-06 3.158e-13

2503 1.485e-03 2.585e-12 2.178e-06 1.986e-12 3.494e-08 2.054e-12

5003 3.745e-04 6.588e-12 1.372e-07 5.083e-12 5.521e-10 5.215e-12
The numerical and analytic solutions are given by u and ua respectively.

regardless of the number of processes used. In addition, Table 8.2 shows that the residual

for each order’s implementation is approximately zero with respect to machine precision.

Next the parallel performance of the direct FFT solver is examined. Figures 8.1 and

8.2 show the scaled wall-times required to numerically solve the system when k is constant

and k(x) = k(z) respectively. In the case of constant k the values a = 20, b = 0, c = 10,

γ = 16 and β = 12 are chosen in (8.1). For variable k the same values are used as in

the previous experiment, that is a = 10, b = 9, c = 10, γ = 9 and β = 10. The results

given in these figures were recorded from runs on Cori. They show the comparison of the

strictly OpenMP implementation verses the strictly MPI implementation on a single node.

Near optimal speed-up is observed, that is the doubling of computational processes cuts the

solution time by nearly half.

Tables 8.3 and 8.4 show parallelization results of the FFT solver’s hybrid implementation.

These results require the use of a cluster and hence were recorded from runs on Cori. To

efficiently access as many computational processes as possible, the hybrid implementation

utilizes MPI to access different nodes in the cluster while OpenMP give access to each

processor on the node. The efficiency of this hybrid version is displayed in Table 8.3. The

number of processors utilized on each node by OpenMP is shown in the columns while the
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rows represent the number of nodes. With this implementation the solution time can be

reduced to just over half a second on a grid of 5123.

Figure 8.1: Constant k FFT Solver OpenMP vs MPI on 5123
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Figure 8.2: Variable k FFT Solver OpenMP vs MPI on 5123
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The true power of the hybrid implementation is shown in Table 8.4. Results of the tests

run with very large grid sizes, up to 40963, creating an extremely high-resolution solution

are presented. The numerical solution on this large grid was achieved in only 27.522 seconds.
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Table 8.3: FFT Solver Hybrid on 5123

Nodes 1 Thread 2 Threads 4 Threads 8 Threads 16 Threads 32 Threads

1 39.61 21.73 12.93 8.83 6.84 5.62

2 19.87 10.94 6.48 4.56 3.48 2.92

4 9.99 5.66 3.48 2.52 2.10 1.82

8 5.27 3.11 1.99 1.55 1.37 1.27

16 2.49 1.42 0.85 0.64 0.58 0.58

32 1.85 1.33 1.09 0.93 0.76 0.80

Table 8.4: FFT Solver Hybrid on Large Grids

Grid Nodes Processors Seconds

5123 1 32 7.794

10243 4 128 16.911

20483 32 1024 19.418

40963 256 8192 27.522

This reduction in wall-time was accomplished by utilizing a total of 8192 processors in a very

efficient manner. Finding such a high-resolution solution is only possible through parallel

computing.

8.1.2 Convection-Diffusion

To demonstrate the versatility of the FFT solver, an example using convection-diffusion is

presented. The discretization for the general convection-diffusion equation given in Section

3.4 does not fit the pattern necessary to be solved by the FFT solver, however it does in

the common case of dominate vertical convection. This allows the convection coefficients to

be defined as a1 = 0, a2 = 0 and a3 ∈ R, which reveals the necessary stencil pattern. Only

the fourth-order scheme and OpenMP are considered. The test problem under consideration
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Table 8.5: FFT Solver Convergence for Convection-Diffusion

Grid ||u − ua||∞ ||Au − f ||2
643 3.261e-03 1.544e-15

1283 2.058e-04 4.610e-15

2563 1.294e-05 9.900e-15

5123 8.198e-07 3.260e-14
The numerical and analytic solutions are given by u and ua respectively.

can be presented as

∆u − a3
∂

∂z
u = 0

with a3 = 100. The rectangular domain is defined by

Ω =
[
0,

√
2
]

×
[
0,

√
2
]

× [0, 1]

with Dirichlet boundary conditions

u(x, y, 0) = sin
(

πx√
2

)
sin

(
πy√

2

)

u(x, y, 1) = 2 sin
(

πx√
2

)
sin

(
πy√

2

)

u(0, y, z) = u
(√

2, y, z
)

= u (x, 0, z) = u
(
x,

√
2, z

)
= 0.

The analytic solution is given by

u(x) = ea3z/2 sin
(

πx√
2

)
sin

(
πy√

2

)
sinh(σ(1 − z)) + 2e−a3/2 sinh(σ)

sinh(σ)

where σ =
√

π2 + a2
3/4.

The fourth-order convergence of the numerical solution to the analytic solution on a
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sequence of grids is presented in Table 8.5. The table shows the maximum error between the

numerical solution, u, and the analytic solution ua. The error decreases by approximately

16 times as the number of grid points doubles in each spatial direction, and the consistency

is true regardless of the number of processes used. The convergence of the error confirms the

accuracy of the numerical method. In addition, Table 8.5 shows the residual is approximately

zero with respect to machine precision.

Table 8.6 provides the results of computation time in seconds on a single Cori node. The

number of OpenMP processes in the test varies from one to eight. The table shows the

wall-time of the direct solver for the grid sizes 2563 and 5123. The parallel algorithm gives

approximately a four times speed-up from one process, run sequentially, to eight processes.

Figure 8.3 shows the parallel computation times from Table 8.6 scaled by the sequential

time. The decrease in computation time is approximately the same of the FFT solver for

the Helmholtz tests provided in Table 8.5. Section 8.1 results have shown that not only is

the FFT solver highly parallel and efficient, but versatile in its application.

Table 8.6: FFT Solver OpenMP for Convection-Diffusion

Processes 2563 Grid 5123 Grid

1 7.859 s 40.088 s

2 4.558 s 24.553 s

4 2.666 s 15.110 s

8 1.829 s 10.878 s
The wall-times are given in seconds.
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Figure 8.3: Convection-Diffusion FFT Solver OpenMP
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8.2 Generalized Eigenvalue and Partial FFT Solvers

The tests presented in Section 8.2 find numerical solutions of the problem (1.1,1.2) with

Sommerfeld-like conditions on all boundaries. This problem requires the use of the gen-

eralized eigenvalue solver or the partial FFT solver. First, test problems with constant k

demonstrate the accuracy of the numerical schemes. The findings are compared to results

given by Toivanen and Wolfmayr in [10]. The tests are then expanded to include k varying

in the vertical direction as shown in Figure 6.1 with realistic values for air and soil [13].

Finally, the accuracy of the algorithms’ implementations are given on test problems with

subsurface inclusions.

8.2.1 Constant k

Subsection 8.2.1 provides the OpenMP implementations of the developed direct generalized

eigenvalue and partial FFT solvers are used to obtain approximate solutions of the problem

(1.1,1.2) with Sommerfeld-like boundary conditions. The wave number k is assumed to be
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Table 8.7: Generalized Eigenvalue Solver Convergence

Second-Order Fourth-Order Sixth-Order

Grid ||u−ua||∞ ||Au − f ||2 ||u−ua||∞ ||Au − f ||2 ||u−ua||∞ ||Au − f ||2
332 1.63e+01 3.07e-12 1.18e+00 7.17e-11 3.36e-02 6.88e-13

652 3.58e+00 3.37e-12 7.07e-02 1.18e-10 4.38e-04 1.41e-12

1292 8.47e-01 5.49e-12 4.41e-03 3.44e-10 6.57e-06 4.85e-12

2572 2.09e-01 2.79e-11 2.76e-04 6.87e-10 1.02e-07 1.69e-11

5132 5.22e-02 9.06e-11 1.72e-05 2.34e-09 1.63e-09 3.89e-11
The numerical and analytic solutions are given by u and ua respectively.

constant. The two-dimensional case is investigated.

The first test’s purpose is to examine the accuracy of the numerical schemes. Both

the generalized eigenvalue and partial FFT solvers are tested on the same problem. Let

k =
√

439.2. Consider the function

ϕ(x) = exp (ik(x + 1)) + exp (−ik(x − 1)) − 2.

In the two-dimensional case the analytic solution on the domain Ω = [−1, 1]× [−1, 1] is given

by u(x, y) = ϕ(x)ϕ(y). The right-hand side follows

f(x) = −k2 [ϕ(x)ϕ(y) − 2ϕ(x) − 2ϕ(y)] . (8.2)

Tables 8.7 and 8.8 show the maximum error between the numerical solution, u, and the

analytic solution ua in the generalized eigenvalue and the partial FFT solvers, respectively.

The error decreases by roughly four, 16 and 64 times for second-, fourth- and sixth-order,

respectively, confirming the accuracy of these solver’s implementations. The maximum errors

are the same regardless of the number of processes used. In addition, the tables show
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Table 8.8: Partial FFT Solver Convergence

Second-Order Fourth-Order Sixth-Order

Grid ||u−ua||∞ ||Au − f ||2 ||u−ua||∞ ||Au − f ||2 ||u−ua||∞ ||Au − f ||2
332 1.63e+01 7.29e-11 1.18e+00 4.11e-11 3.36e-02 2.77e-12

652 3.58e+00 9.87e-12 7.07e-02 1.41e-11 4.38e-04 6.75e-12

1292 8.47e-01 1.20e-11 4.41e-03 1.04e-09 6.57e-06 3.23e-11

2572 2.09e-01 4.24e-10 2.76e-04 1.53e-09 1.02e-07 5.98e-11

5132 5.22e-02 6.88e-10 1.72e-05 5.34e-09 1.63e-09 3.59e-09
The numerical and analytic solutions are given by u and ua respectively.

the residual for each order’s implementation is approximately zero with respect to machine

precision.

The next test assumes that k = 2π on the domain Ω = [0, 1] × [0, 1]. The parallel results

of this test are shown in Tables 8.9 and 8.10. The choice of the grid size in this case is to

compare the results provided by Toivanen and Wolfmayr in [10]. Toivanen and Wolfmayr’s

solver, namely fast solver, is implemented via Matlab utilizing a similar method to the partial

FFT solver described in Chapter 7. Unlike the partial FFT solver, the fast solver’s results

are restricted to constant k. Results for the fast solver were found by runs on a laptop with

an Intel(R) Core(TM) i5-6267U CPU 2.90 GHz processor and 16 GB 2133 MHz LPDDR3

memory. All other computation times were found by runs on the MackBook Pro described

in the beginning of Chapter 8 with four OpenMP processes.

104



Table 8.9: Solver Timing Comparison on Uniform Grids

Nx = Ny 65 129 257 513 1025 2049 4097

Matlab’s backslash 0.028 0.064 0.334 1.611 8.198 65.490 1421.4

Fast solver 0.01 0.02 0.06 0.23 1.05 4.58 -

Initialization 0.012 0.066 0.266 1.308 5.340 28.407 211.74

Generalize eigenvalue solver 0.001 0.003 0.014 0.080 0.315 1.850 13.749

Partial FFT solver 0.001 0.004 0.020 0.088 0.251 1.256 5.696
The wall-times are given in seconds.

Table 8.10: Solver Timing Comparison on Nonuniform Grids

Nx 65 65 2049 2049 2049 4097 4097

Ny 65 2049 65 2049 4097 2049 4097

Matlab’s backslash 0.028 0.655 0.640 65.490 506.62 436.67 1421.4

Fast solver 0.01 0.10 0.12 4.58 - - -

Initialization 0.012 0.017 28.899 28.407 28.962 215.57 211.74

Generalize eigenvalue solver 0.001 0.007 0.620 1.850 3.371 7.489 13.749

Partial FFT solver 0.001 0.015 0.571 1.256 2.446 3.780 5.697
The wall-times are given in seconds.

Table 8.9 provides a comparison with a uniform grid, while Table 8.10 shows experiments

with nonuniform grid. These comparisons are between the second-order partial FFT solver

in C and the second-order fast solver in Matlab. Toivanen and Wolfmayr state that a C

implementation of the fast solver would be more efficient with respect to solution time;

however, such an implementation’s results were not provided in [10]. The initialization rows

in Tables 8.9 and 8.10 represent the time required to calculate the eigenvalues, eigenvectors

and LU factorizations needed in the partial FFT solver. The partial FFT solver bears no

advantage over the generalized eigenvalue solver until relatively larger grid sizes, an expected
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Figure 8.4: Constant k Partial FFT Solver OpenMP on 10252
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trait as the partial FFT solver combines two versions of the FFT solver and the generalized

eigenvalue solver. Both the partial FFT and generalized eigenvalue solvers are quicker than

the fast solver. When comparing the solvers to Matlab’s backslash there is no contest. The

partial FFT solver is up to 20 times faster in wall-time than backslash in the case where

Nx = 65 and Ny = 2049, but only slightly faster when Nx = 2049 and Ny = 65. The

drastic difference of the wall-time in these two cases is expected because the eigenvalues

and eigenvectors are computed for an Nx × Nx matrix and the parallelism is based on the y

direction.

Figures 8.4 and 8.5 give the scaled wall-times of the second-, fourth- and sixth-order

implementations on two different grids. These times are found using one, two and four

OpenMP threads. Each order of approximation shows a reduction in time. The second-

order case performs the best. The better performance is due to the reduced number of

computations because the matrix Ba from Chapter 6 is simply the identity matrix.

The results in Subsection 8.2.1 demonstrate the efficiency of both the partial FFT and
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Figure 8.5: Constant k Partial FFT Solver OpenMP on 20492
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the generalized eigenvalue solvers. The comparison to the second-order solver developed

by Toivanen and Wolfmayr in [10] shows an increased ability to utilize larger grids with a

faster solution time. Both the solvers show an immense improvement from Matlab’s backlash

solver.

8.2.2 Air and Soil Medium

Subsection 8.2.1 focused on the case with constant k for a comparison with the fast solver

[10]. Subsection 8.2.2 examines the parallelization of the generalized eigenvalue and partial

FFT solvers implementations on test problems that push beyond the capabilities of the

fast solver given by Toivanen and Wolfmayr in [10]. All tests were run on the MacBook Pro

laptop. The domain considered is Ω = [−1, 1]× [−1, 1]. Here k varies in the vertical direction

representing an air and soil medium as shown in Figure 6.1. If y = 0 is the location of the
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Table 8.11: Partial FFT Solver Residuals for Air and Soil Problem

Grid Second-Order Fourth-Order

1292 9.57E-12 3.64E-12

2572 2.41E-11 1.07E-11

5132 4.82E-11 3.33E-11

interface between the air and soil, then

k(x) =


√

439.2 for y < 0

√
1273 + 31i for y ≥ 0

where x ∈ R2. The values in k are chosen for realistic representations of air and soil [13].

The right-hand side for this test is (8.2). Table 8.11 demonstrates the accuracy of the partial

FFT solver by showing that the residual is nearly zero in each case tested.

Tables 8.12 and 8.13 give the results for the second-order case with computational grids

Nx = Ny = 2049 and Nx = Ny = 4097 respectively. The generalized eigenvalue solver’s ini-

tialization includes the time required to find the eigenvalues and eigenvectors of the matrices

Ba and Bg. Additionally, the matrices Da, Dg and LU decomposition for the matrix As

are computed. The definitions of these matrices are given in Chapter 6. The initialization

required for the FFT solver is the LU decomposition of the diagonalized system described

in Chapter 5. When the grid size is 20492 it is seen that the partial FFT solver can find

the numerical solution in roughly half the time it takes the generalized eigenvalue solver.

The partial FFT solver becomes more advantageous with larger grid sizes as shown in Table

8.13 with a grid size of 40972 where the partial FFT solver reduces the wall-time of the

generalized eigenvalue solver by more than half.
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Table 8.12: Generalized Eigenvalue and Partial FFT Solvers OpenMP on 20492

1 Thread 2 Threads 4 Threads

Initialization FFT 0.39213 0.241561 0.204826

EIG 53.996724 40.764139 32.553124

Generalized Eigenvalue Solver 4.981626 3.131687 1.902369

Partial FFT Solver FFT 0.756528 0.442337 0.253204

EIG 1.12378 0.816346 0.775145

FFT 0.604237 0.384812 0.188181

Total 2.484601 1.643549 1.216581
EIG refers to the generalized eigenvalue solver.

Table 8.13: Generalized Eigenvalue and Partial FFT Solvers OpenMP on 40972

1 Thread 2 Threads 4 Threads

Initialization FFT 1.771211 1.12604 0.837973

EIG 389.701499 289.154195 242.122615

Generalized Eigenvalue Solver 34.754707 20.48377 13.261538

Partial FFT Solver FFT 3.215323 1.749894 1.09352

EIG 4.713536 3.52659 3.246609

FFT 2.691277 1.493174 0.833005

Total 10.620197 6.769714 5.173189
EIG refers to the generalized eigenvalue solver.

Figure 8.6 shows the wall-times for second- and fourth-order on a grid size of 20492.

The times shown are from running the partial FFT solver where favorable wall-time speed-

up is observed. The results shown in this subsection demonstrate the partial FFT solver’s

improvement in solution time over the generalized eigenvalue solver. Furthermore, strong

parallelism is shown by the reduction in wall-time with the addition of processes. The most

significant improvement the partial FFT solver has over the fast solver is the ability to solve
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Figure 8.6: Variable k Partial FFT Solver OpenMP on 20492
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problems with k varying in the vertical direction [10]. The highly parallel nature of the

partial FFT solver with k varying in the vertical direction shows that it can provide an

efficient preconditioner in an iterative solver for the inclusion problem.

8.2.3 Air and Soil Medium with Subsurface Inclusions

Subsection 8.2.3 considers the subsurface inclusion test problem. The following presents a

mathematical model for the propagation of an electromagnetic field. Let x = (x, y) ∈ R2

and the air-soil interface be at y = 0. Air is given by y < 0 and the soil by y ≥ 0 as shown in

Figure 6.3. Let E0 be an electrical field originated by a ground-penetrating radar. Consider

E0 to be a linearly polarized plane wave with the direction of propagation parallel to the

positive direction of the y axis: E0 = (0, eiωy), where ω is the angular frequency [13].

Maxwell’s system implies that E = (0, u(x)) where the function u(x) satisfies the follow-

ing Helmholtz equation

0 = ∆u(x) + k2(x)u(x) (8.3)
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k2(x) = ω2µε(x) + iωµσ(x). (8.4)

Consider the so called loss tangent tan(δ) = σ/(ωε). The substitution of (8.3) into (8.4)

gives k2 = ω2µε(1 + i tan(δ)). Assume that µ ≡ µ0 and ε ≡ ε0εr, where µ0 and ε0 are

the magnetic permeability and the dielectric permittivity of a vacuum and εr is the relative

dielectric constant. In addition, assume ε = ε1 and tan(δ) = 0 in air, when y < 0. In the

soil

εr = εr(x) = εr1 + ∆εr1(x) > 0,

tan (δ(x)) = tan(δ1) + ∆ tan (δ1(x))

where εr1 and tan(δ1) are positive constants and the perturbations ∆εr1(x) and ∆ tan (δ1(x))

are due to the presence of small mine-like inclusions. Assume that the perturbations ∆εr1(x)

and ∆ tan (δ1(x)) are only supported within these inclusions. The method under consider-

ation can be generalized to a layered medium. In this case εr1 and tan(δ1) are functions

depending on only the y direction. Let k0(x) be the function k(x) without inclusions present,

as

k2
0(x) =


ω2µ0ε0, if y < 0

ω2µ0ε0εr1 [1 + i tan(δ1)] , if y ≥ 0.

Therefore, the function k0(x) has constant values both in air and soil with a discontinuity at

the air-soil interface. Further, let u0(x) be the solution of equation (8.3) which corresponds

to the initializing plane wave eik0y where y < 0. Consider the function u(x) in the form

u(x) = u0(x) + v(x) where the function v(x) represents the wave scattered by the mine-like
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Table 8.14: Electrical Parameters

εr tan(δ) k2(ω = 1GHz)

Air 1 0 439.2

Soil 2.9 0.025 1273 + 31i

Inclusion 2.86 0.0018 1050 + 2.26i

inclusions. This function satisfies the radiation boundary conditions (1.3). Then

u0(x) =


eiyk0(x) + ae−iyk0(x), if y < 0

beiyk0(x), if y ≥ 0

where a and b are the reflection and transmission coefficients defined as

a = ka − kg

ka + kg

, b = 2ka

ka + kg

.

Here ka and kg are the values of k0(x) for y < 0 and y ≥ 0, respectively, as in Figure 6.1.

The presence of these coefficients ensures the continuity of the function u0(x) together with

its first derivatives at the air-soil interface. Substituting u(x) = u0(x)+v(x) into (8.3), gives

the equation in the form (1.1) with

f(x) =


0, outside inclusions,

(k2
g − k2(x))u0(x), inside inclusions.

The model described above is now implemented on a problem with a mine-like target

in wet soil [13]. The ranges of parameters k(x) are given in the Table 8.14. The domain
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Table 8.15: Partial FFT Solver Residuals for Inclusion Problem

Grid Second-Order Fourth-Order

1292 5.64e-14 2.47e-14

2572 1.63e-13 4.69e-14

5132 3.83e-13 1.19e-13

considered is Ω = [−1, 1] × [−1, 1]. The function k(x) is defined as

k(x) =



439.2 if y < 0

1273 + 31i if y ≥ 0 and y /∈ S

1050 + 2.26i if y ∈ S

where S = {x ∈ Ω | |x − .3| ≤ .15 and |y − .2| < .04} is the set of grid points within the

rectangular inclusion with width .15, height .04 and center (.03,.2).

The partial FFT solver was tested on the problem described above. Table 8.15 shows the

residual of multiple runs on the MacBook Pro. All residuals are approximately zero with

respect to machine error, an accuracy rarely produced by iterative methods [5, 12]. Figure

8.7 illustrates the domain with air, soil and a rectangular mine-like inclusion. Figure 8.8

shows the numerical solution from the second-order scheme on a grid size of 1292. Figure

8.9 shows the speed-up in wall-time from one to four OpenMP processes for the calculation

of the numerical solutions with grid sizes of 2572 and 5132. The wall-time is reduced by

approximately one half, from one to four process.

8.3 Summary

Results shown in Chapter 8 demonstrate the highly parallel FFT solver’s ability to reduce

wall-time with the addition of more processes. The FFT solver is versatile in its application as
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Figure 8.7: 2D Domain with Air, Soil and Rectangular Inclusion

Figure 8.8: Real Part of 2D Solution with Rectangular Inclusion
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Figure 8.9: Partial FFT Solver OpenMP with Rectangular Inclusion
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shown in the convection-diffusion example. The partial FFT solver demonstrated the ability

to directly solve the subsurface scattering problem with high-accuracy. This accuracy is

rarely produced by iterative methods. Furthermore, the partial FFT solver demonstrates a

significant level of parallelism by the reduction of wall-time with the addition of OpenMP

processes in the case of k varying vertically. Chapter 9 reviews the conclusions of the research

study and proposes directions for future work.
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9 Conclusion and Future Work

Increasing the resolution of existing numerical solvers is the focus of research in many ar-

eas of science and engineering. The research study added to this body of knowledge by

utilizing high-order approximations combined with highly parallel solvers and showing the

highly parallel solvers can provide high-resolution solutions for both the two- and three-

dimensional Helmholtz equations. The versatility of these numerical methods in a diversity

of applications was demonstrated. These methods provide an effective alternative approach

to iterative methods when solving discretized systems that are neither positive definite nor

Hermitian. The highly parallel nature of these methods provides the ability to produce

extremely high-resolution solutions on problems for which traditional sequential methods

fail. The parallel implementations reduce the computation time by taking advantage of both

shared and distributed memory environments by use of OpenMP and MPI respectively.

Chapters 2 and 3 provided the second-, fourth- and sixth-order finite difference approx-

imations of the Helmholtz equations in two- and three-dimensions respectively. These ap-

proximations were developed through closely following, and extending on previous work from

[2, 3, 4, 5, 6]. Chapter 3 developed the fourth-order discretization for the convection-diffusion

equation as an example of the versatility of the numerical methods. This discretization, under

specific restrictions, falls into the class of linear systems that are effectively handled by the

presented FFT solver. The Dirichlet and Sommerfeld-like boundary conditions were stated

in Chapter 4 with a simple two-dimensional example on their implementations. Additionally,

the Sommerfeld-like conditions and their approximates were described. The FFT solver’s

derivation and parallel implementation was provided in Chapter 5. Details on the solver’s
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parallelism along with the OpenMP, MPI and hybrid implementations were presented. The

novel generalized eigenvalue and partial FFT solvers were developed in Chapters 6 and 7

respectively. The generalized eigenvalue solver’s development is described in detail. An ex-

planation on the improvements provided by the partial FFT solver are shown along with a

description of the parallel implementation.

Chapter 8 presented numerical results of multiple test problems. The FFT solver’s par-

allel efficiency is tested and demonstrates the impressive capabilities. An example of the

diverse applicability of this solver is provided in the form of a generalization to the approx-

imated solution of the convection-diffusion equation. Thorough examples of all the solvers’

accuracy are shown. Results of tests were given that demonstrate the efficiency of the gen-

eralized eigenvalue and partial FFT solvers’ parallel implementations. Tests with subsurface

inclusions exemplify the accuracy of these numerical methods.

9.1 Future Work

The solvers presented in the research study are efficient and have a wide array of appli-

cations. The parallel implementations provide excellent speed-up in wall-time. However,

improvements can be made. The solutions of the transformed systems in the generalized

eigenvalue, and partial FFT solvers, use the Linear Algebra PACKage (LAPACK) for the

LU decomposition and solution [28]. There is potential for improvement in parallelization,

and therefore, computation time using a software package called SuperLU developed by in

part by Sherry Li of Lawrence Berkeley National Laboratory [29].

Memory utilization can be reduced. The implementations require several arrays, but

it may be possible for optimization by reusing allocated memory. Within the partial FFT
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solver only portions of the matrices R, S, Ba and Bg are needed; the memory storing these

matrices could be reduced to only the necessary portions.

Another potential improvement is in the calculation of the DST in the forward and

reverse transforms in the FFT solver. The FFTW libraries contain optimized functions for

computing the DST directly. It may be possible to reduce memory and computation time

by utilizing these functions rather than finding the DST via DFT of extended arrays.

The forward solution of high-frequency electromagnetic wave propagation presented in

the research provides a vital piece in the imaging of subsurface mine-like targets. The next

step is using the partial FFT solver to generate many solutions to the forward problem with

mine-like inclusions. Multiple variations on the inclusions would be considered, including

different locations, sizes, and shapes of the inclusion. These solutions can provide images at

the surface that may be used to train convolutional neural networks to give an estimated

location, size and shape of the inclusion. The estimate can be used as an initial estimate in

the reverse imaging algorithm.
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