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A VIRTUAL WATERSHED APPROACH 

FOR SNOW MODELING 

Thesis Abstract – Idaho State University (2015) 

 

 Understanding snowpack is a critical component to estimating fresh water 

supplies in the western United States. The iSNOBAL model is effective at characterizing 

the development and melting of a snowpack. As an initial step towards implementing 

the model within a virtual watershed platform, methods for simplifying and automating 

the creation of model inputs are described. First, parameter distribution methods were 

improved by using empirical Bayesian kriging (EBK), elevation gradients, and advanced 

simulations for several of the model input grids. Second, the process for creating the 

input grids was automated using the Python scripting language. Automation was also 

enhanced through the creation of a structured query language (SQL) database 

containing historical weather station data. Third, the gridding tools resulting from this 

work were published as web processing services. Cross-validation results show that EBK 

performs similarly to original detrended kriging methods, with EBK having the added 

benefit of being automated. Web processing services allow for the widespread use of 

these tools in desktop-based GIS software environments, web mapping applications, 

and virtual watershed platforms. 
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Chapter 1: Introduction 

 

1.1 Background 

 

 Water, as a natural resource, has many significant roles throughout the world. It 

generates electricity, grows crops, aids in extracting other natural resources, and is a 

major component in several forms of recreation. In the United States in 2010, it was 

estimated that total fresh water extractions exceeded 300 trillion gallons per day, with 

90% of that number going towards thermoelectric power, irrigation, and municipal use 

(Hutson et al., 2004). 

Today, the availability—or lack thereof—of fresh water largely determines the 

development and expansion of an area. In the drier regions of the western United 

States, human settlements were established on condition of available irrigation water, 

as the success of agriculture indicated a sustainable future (Hansen et al., 2014). The 

U.S. Department of Agriculture reported that in 2007, nearly 57 million acres of the 

country’s cropland and pastureland were irrigated, with three-quarters of that land in 

the western states. They also reported that over four-fifths of the 91.2 million acre-feet 

of applied irrigation water in 2008 occurred in the same region (Schaible and Aillery, 

2012). 

Given this dependence on water for irrigation in the West, managing demands 

are difficult when considering the substantial variability in supply (Hansen et al., 2014). 

Though Averyt et al. (2013) reported an ongoing stabilization in water demands, they 



2 
 

also noted an uncertain future as those demands will most likely evolve. Contributing to 

this uncertainty is the question of how a changing climate will impact fresh water 

supplies. Water yield in the semi-arid West is projected to decrease due to rising 

temperatures and declining precipitation (Brown et al., 2013). This leads to concerns 

over several matters, including plant communities (Mathys et al., 2014), wildfire 

frequencies (Chikamoto et al., 2015), and severe droughts (Svoboda et al., 2002; 

Schubert et al., 2007). 

 Concerns can be mitigated, however, with a better understanding of the 

hydrologic cycle, especially as it applies to the montane watersheds that cover most of 

the western U.S. Given the fact that approximately 23% of annual freshwater demands 

are met by groundwater (Averyt et al., 2013), and not ignoring the contributions of 

above-ground streamflow, one is led to examine the influence of seasonal snowpack on 

the overall hydrological process in a mountain watershed. Several studies have been 

conducted which explore the effects of a warming climate on snow and watershed 

dynamics, focusing on the western U.S. (Hamlet et al., 2005; Mote et al., 2005; Safeeq et 

al., 2013; Godsey et al., 2013; Lute et al., 2015). In the most recent study listed, Lute and 

co-authors summarized that changes in snow metrics, including less precipitation falling 

as snow, earlier snowmelt, decreased late-season snow-water equivalent (SWE), and 

decreased late-season snow cover extent have “serious implications for water 

resources, agriculture, and ecosystems” (pg. 2). As the strain on freshwater supplies 

continues to grow, a more thorough understanding of mountain watershed resources is 

necessary (Tidwell et al., 2014). 
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 To assist watershed scientists in the region, three states have established the 

Western Consortium for Watershed Analysis, Visualization, and Exploration (WC-WAVE) 

(“Western Tri-State Consortium [Online],” 2015). As part of the group of researchers 

and students in Idaho, Nevada, and New Mexico, we are working in a highly 

collaborative environment to develop tools for the purpose of studying localized 

impacts of climate change on high-mountain watersheds. The consortium is comprised 

of three components: Watershed Science, Visualization and Data Cyberinfrastructure, 

and Workforce Development. These three groups are working together to explain the 

interactions between precipitation, snowpack, groundwater flow, and other properties 

within mountain catchments. To do this, we are building a Virtual Watershed Platform 

(VWP) to promote data exploration and analysis. The VWP will enable researchers to 

easily access and visualize several forms of data, including hydrologic model input and 

output. This visualization can take place in multiple settings, such as individual 

workstations (desktops), web-based environments, and advanced interactive 3D 

environments such as stereo projection, immersive CAVEs, and virtual reality. 

 Given the importance of snowpack, researchers in the WC-WAVE project chose 

to include the image snow cover energy- and mass-balance (iSNOBAL) model (Marks, 

Domingo, and Susong, 1999) within the VWP. The iSNOBAL model is included as part of 

the Image Processing Workbench (IPW) suite of software tools (Marks, Domingo, and 

Frew, 1999). The model is effective at predicting snowmelt and runoff and can be 

applied to a wide range of watershed sizes (1 to 2500 km2). A single model run can 

encompass a week or an entire season. iSNOBAL has been used to study wind effects on 
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snow redistribution (Winstral and Marks, 2002), soil infiltration at the rain-snow 

transition zone (Kormos et al., 2013), and soil evaporation trends with respect to 

precipitation (Wang et al., 2013). 

 This thesis focuses on methods for creating input grids from weather station 

data for the iSNOBAL model. When run as part of the IPW, the model requires three 

different forms of input: an initial conditions image, precipitation images, and input 

forcing data images. Each of these three types of input is comprised of multiple spatial 

data layers. The initial conditions image consists of elevation, roughness length, total 

snow cover depth, average snow cover density, active snow layer temperature, average 

snow cover temperature, and percentage of liquid H2O saturation of the snow cover. A 

single precipitation image is made up of total precipitation mass, percentage of 

precipitation as snow, density of the snow portion of precipitation, and average 

precipitation temperature (dew point temperature). Input forcing data images are 

composed of incoming thermal (long-wave) radiation, solar (short-wave) radiation, air 

temperature, vapor pressure, wind speed, and soil temperature. While the model 

requires a single initial conditions image, and precipitation images only for precipitation 

events (i.e. storms), it calls for separate input forcing data images for each individual 

time step. In the case of a model run over an entire year with one-hour time steps, this 

results in over 8500 images. 

 Following the generation of the above input data, iSNOBAL uses a two-layer 

snow model to create two output images. The first is a snow properties image, which 

contains layers for predicted depth of snow cover, snow density, and snow mass. The 
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second is an energy and mass flux image with layers for predicted evaporation, 

snowmelt, and runoff. 

 Coupling the capabilities of the iSNOBAL model with a virtual watershed 

framework will enhance the model’s usability. To understand how this coupling will 

enhance model usability it is useful to better understand the VWP concept itself. The 

proposal for the WC-WAVE project states, 

“[The virtual watershed] denotes a combination of data resources and 

computing activities and services that enable linking scientific 

modeling, visualization, and data management components for the 

purpose of enhanced analysis and exploration of real or hypothetical 

watersheds,” (Goodwin et al., 2013). 

 

 In a typical watershed study workflow, data is gathered from several sources, 

such as online repositories and personal databases. These data can consist of 

observational data from weather stations, digital elevation models, and GIS layers such 

as stream networks and watershed boundaries. Once the various forms of data are 

collected, preprocessing steps are performed to prepare the data for model ingestion. 

Preprocessing is usually required due to the fact that raw data is rarely in an appropriate 

format for a given model. These processes generally include some form of quality 

assessment and data reformatting. Following model runs, the output is visualized in one 

of several ways, usually depending on format. Formats can include geotiffs and Web 

Mapping Services which can be consumed for visualization in desktop GIS software and 

web applications or web maps. 
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 Rather than requiring separate software components for each of these steps, 

researchers can find necessary data, prepare required model input, run multiple models, 

and visualize the results, all under the unifying umbrella of the VWP. 

 

1.2 Statement of Purpose 

 

 Many hydrological modeling tools today do not take advantage of current 

computing and data resources (Humphrey et al., 2012), such as data access methods 

(Leonard and Duffy, 2013), data preprocessing methods (Ly et al., 2013), and easy-to-

use web applications (Swain et al., 2015). The iSNOBAL model is a prime example of this 

problem. The process for creating input grids for the model is time-consuming. In 

addition, several of the methods for creating the grids are outdated, as the underlying 

IPW software was initially developed in 1990 (Frew, 1990) and last revised in 2002. 

Furthermore, its accessibility is limited since the IPW software is only compatible with 

Linux operating systems. By using newer computing technologies, and drawing on the 

ability to process and visualize results through web accessible computing tools, the 

iSNOBAL model can be more readily accessible by researchers and therefore more 

widely used in watershed studies. 

 This thesis describes initial steps that were taken to implement the iSNOBAL 

model within the VWP. Specifically, this work addresses the issues associated with the 

creation of input grids for the model. It is hypothesized that using the novel approach of 

empirical Bayesian kriging will improve input grids of air temperature, average 
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precipitation temperature, vapor pressure, precipitation mass, and initial snow depth. In 

addition, solar radiation and wind speed grids take advantage of modern software tools, 

and improvements are also made to soil temperature estimates. 

 Related to these improvements in methods are improvements in efficiency. The 

Marks et al. (1999) methods use a detrended kriging algorithm for several of the input 

grids, which requires a user to visually inspect and manually adjust semivariogram 

parameters for each time step. This time-consuming task can be automated using 

empirical Bayesian kriging methods. Further automation is achieved by using structured 

query language databases (SQL) and the Python scripting language. An SQL database 

allows for simple and efficient storage and retrieval of the source climate station data; 

and the Python scripting language automates data retrieval and the execution of 

gridding functions. By combining these two resources, the repetitive task of creating 

input grids for each time step can be made more efficient. 

 Finally, to address the issue of accessibility, the tools resulting from this work are 

made available in several formats. Using the Open Geospatial Consortium’s (OGC) web 

processing service (WPS) standard (Michaelis and Ames, 2008), they can be published as 

a geoprocessing service. This enables their use in web mapping applications through 

RESTful uniform resource locators (URLs), and also in desktop-based GIS environments. 

The source code for the tools is also made available on a public repository, allowing 

researchers to modify and implement the tools according to their needs. 

 As additional steps are taken to fully implement the iSNOBAL model within the 

VWP, researchers will have a set of tools to assist them in the study of snowpack and 
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watershed dynamics. These tools can be useful in model sensitivity studies, exploring 

future scenarios, and a myriad of other applications. 

 

1.3 Thesis Organization 

 

 The remainder of this thesis describes the work that was completed in two parts. 

Chapter 2 explains the initial development of the gridding tools using the Python 

scripting language and Esri’s ArcServer geoprocessing services. The work reported in this 

chapter follows and improves upon the methods of Susong et al. (1999). Since the focus 

was primarily software development, these initial tools used pre-built data tables 

comprised of one hour’s worth of weather station data, and included parameters such 

as air temperature, vapor pressure, solar radiation, precipitation depth, etc. 

 Chapter 3 presents the process of extending the functionality of the tools 

presented in Chapter 2 by using an SQL database of historical data. This chapter also 

presents an explanation of how the tools were published as geoprocessing services and 

how they are used in a web interface. In addition, Chapter 3 describes a process for 

validating the use of EBK methods, and the associated results of that validation process. 

 Chapter 4 presents the uses and advantages of the newly developed gridding 

tools, together with their integration into the VWP. Appendix A contains a table 

describing the data that was used in this work, Appendix B explains how to access the 

Python code through a public repository, Appendix C provides supplemental material 
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associated with the wind gridding tool, and Appendix D lists the steps necessary for 

building a custom SQL database compatible with the gridding tools. 
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Chapter 2: Initial development of gridding tools for creating iSNOBAL input 

 

2.1 Introduction 

 

 Water resources were just as critical for civilizations historically—as evidenced 

by the discovery of early irrigation practices—as they are today. Water’s significance can 

especially be seen in regions where it is more limited, such as the western United States. 

Here, the availability of irrigation water determined the success or failure of early 

settlements (Hansen et al., 2014). Today, the sustainability and expansion of 

populations in the West rely heavily on successfully managing water as a resource 

(Pagano et al., 2004). Successful management, however, first requires an understanding 

of the hydrological processes that govern fresh water supplies. 

 Mountain watersheds cover most of the western U.S. Within these high 

elevation catchments, snowpack plays a pivotal role in the year-round fresh water 

supply (Wood and Lettenmaier, 2008). It does this in two ways: first, through infiltration 

and groundwater recharge (Winograd et al., 1998; Drexler et al., 2013; Godsey et al., 

2013), and second, through above-ground surface flow (Mahanama et al., 2012), both of 

which are related to the timing and magnitude of snowmelt. These three dynamics—

groundwater recharge, surface flow, and snowmelt—are governed by several factors, 

including terrain, air temperature, soil moisture content and temperature, solar and 

thermal radiation, vegetation, and wind (see Schelker et al., 2013; Kumar et al., 2013; 
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Harpold et al., 2014; Hinckley et al., 2014). Recognizing that the above list is non-

exhaustive, one gains an appreciation for the difficulty of predicting, and subsequently 

managing, water supplies in mountainous watersheds. 

 Several models have been developed for the purpose of predicting snowpack 

properties over the course of a season. SNOW17 (Anderson, 1973) was designed as part 

of the National Weather Service’s River Forecasting System, and is still in use today 

(Franz et al., 2008). The SNTHERM (Jordan, 1991) and SHAW (Flerchinger and Saxton, 

1989) models accurately simulate snow properties at a point, while the Utah Energy 

Balance (UEB) model (Tarboton et al., 1995) and the United States Geological Survey’s 

Precipitation-Runoff Modeling System (PRMS; Leavesley et al., 1983) can be applied as 

distributed simulations over small areas. 

 This chapter focuses on the image snow cover mass- and energy-balance model 

(iSNOBAL). iSNOBAL was developed by Marks et al. (1999) to address the limitations of 

existing models, which included complex, and in some cases, computationally expensive 

calculations, inabilities to be explicitly distributed over grids, and difficulties in obtaining 

adequate and necessary input data. iSNOBAL can accurately characterize the 

development and melting of a snowpack in various settings by representing the snow 

cover as a two-layer system. It can be spatially distributed over digital elevation model 

(DEM) grids ranging from 1 to 10,000 km2 and can also be applied to various temporal 

ranges, such as a single week, or an entire season/year. 

 One of the advantages of iSNOBAL is its relatively simple list of input data. The 

model is initiated by an initial conditions image consisting of seven spatial data layers: 
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elevation, roughness length, total snow cover depth, average snow cover density, active 

snow layer temperature, average snow cover temperature, and percentage of liquid 

H2O saturation of the snow cover. It is then driven by an input forcing data image for 

each time step comprised of six spatial data layers: incoming thermal (long-wave) 

radiation, air temperature, vapor pressure, wind speed, soil temperature, and net solar 

(short-wave) radiation. The model is updated during the run for each precipitation event 

(i.e. storm) with images that consist of four spatial data layers: total precipitation mass, 

percentage of precipitation mass that was snow, density of snow portion of the 

precipitation, and average precipitation temperature (dew point temperature). Most of 

these parameters can be acquired from weather stations found throughout a given 

basin. 

 Marks et al. (1999) introduced the iSNOBAL model, and followed the methods 

detailed by Susong et al. (1999) in creating the necessary input grids. Air temperature, 

precipitation mass, and initial snow mass grids were created using a detrended kriging 

algorithm which consisted of three general steps: first, subtracting linear parameter-

elevation trends from observed values; second, performing ordinary kriging on the 

resulting residuals; and third, adding back to the residual grid the linear trend calculated 

in the first step. Since the input spatial data grids generally exhibit a changing mean 

from elevation effects—for example, higher temperatures at lower elevations and lower 

temperatures at higher elevations—and kriging assumes that the data is stationary, this 

process of detrending was necessary. 
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 Since the introduction of the iSNOBAL model, interpolation methods have 

advanced and a more robust approach is now available, namely, empirical Bayesian 

kriging (EBK; Krivoruchko, 2012). While ordinary kriging methods require a user to 

visually inspect and adjust the estimated semivariogram parameters, EBK automates 

this procedure through Monte-Carlo-Markov-Chain techniques (Pilz and Spöck, 2008). 

When compared to other kriging methods, EBK is able to interpolate weakly 

nonstationary data over larger areas, at the same time requiring fewer data points 

(Krivoruchko, 2012; Deng et al., 2013). 

 In a comparison of several interpolation methods, Cooper et al. (2015) found 

that EBK ranked among the highest in generating accurate water table elevation models. 

Mulcan et al. (2015) used EBK to identify acceptable locations for anchoring ocean 

current energy turbines by interpolating seafloor core samples. Other examples of its 

use include interpolating air pollution sources (Laurent et al., 2014), soil organic content 

for validating spectroscopy studies (Deng et al., 2013), and climate grids for mapping 

suitable snail habitats (Pedersen et al., 2014). 

 iSNOBAL has limitations. As part of the IPW suite of software tools (Marks, 

Domingo, and Frew, 1999), the model only works on Linux operating systems, thus 

restricting its overall accessibility. In light of modern capabilities, researchers could 

profit from a simplified approach to the model by using the Open Geospatial 

Consortium’s (OGC) web processing services (WPS) (Michaelis and Ames, 2008), such as 

those provided through Esri’s geoprocessing services. Both services can be implemented 

in a desktop-based geographic information system (GIS) environment, or accessed 
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through simple web interfaces and RESTful uniform resource locators (URLs), allowing 

for more widespread accessibility and ease of use on current computing platforms. 

 Another limitation of iSNOBAL is the model’s lack of efficiency regarding the 

creation of the required input grids. This is a manual, time-consuming process. For a 

model run over an entire year at one-hour time steps, a user would be required to 

visually inspect and adjust semivariograms for nearly 9,000 input images. Considering 

the advantages of EBK mentioned above (automation of estimating semivariogram 

parameters), the process of grid creation can potentially become more systematic. 

Furthermore, the repetitive nature of grid creation in general can be addressed by using 

the Python scripting language. 

 This research addresses the issues noted above through the creation of a set of 

gridding tools and geo- and web-processing services using the Python scripting language 

and Esri’s ArcPy library. This allows for the implementation of more advanced methods, 

including EBK, to improve upon the Marks et al. (1999) and Susong et al. (1999) 

techniques. The developed tools can be implemented within an automated process to 

make the creation of input grids much less time consuming. 

 The remainder of the chapter is organized as follows: the methods section 

includes descriptions for the study area and the data tables used in testing and 

developing the gridding tools, as well as detailed explanations of the methods employed 

by each gridding tool; the results section describes the output grids created from 

running the tools on historical data from the Reynolds Creek Experimental Watershed. 

The section also outlines the advantages of employing the gridding tools. Finally, the 
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discussion section summarizes the findings of this paper and addresses specific needs 

that arose during the course of the study. 

 

2.2 Methods 

 

2.2.1 Study Area 

 

 The data used in this study came from the numerous weather stations within the 

Reynolds Creek Experimental Watershed (RCEW) in southwest Idaho. The RCEW is a 

mountainous rangeland catchment approximately 50 miles (80 km) southwest of Boise, 

Idaho. It covers nearly 239 km2, with elevations ranging from 1100 m mean sea level 

(msl) to 2240 m msl. Dominant vegetation types include sagebrush and grasses at lower 

elevations, and aspen and fir in the higher elevations. 

 The RCEW was originally established back in the early 1960’s, when authorities 

recognized a growing need for long term data sets related to fresh water supplies 

(National Research Council, 1999). Since that time, several weather and hydrologic 

recording stations have been collecting data on a continuous basis. Error! Reference 

ource not found. shows the locations of the various recording stations throughout the 

watershed, along with the watershed boundary, and a shaded relief map. 
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Figure 1. Diagram depicting the Reynolds Creek Experimental Watershed, including a shaded relief map, 
the watershed boundary, and locations of recording stations throughout the watershed. 

 

2.2.2 Gridding Scripts 

 

 Table 1 lists 16 grids that are required for an iSNOBAL model run, subdivided into 

three different input types: initial conditions, precipitation, and input forcing data. The 

table also shows the Marks et al. 1999 methods, and the modified methods employed 

by the Python gridding scripts described in this chapter, with improved methodologies 

highlighted. The script names correspond to the different Python files that were written 

(see Appendix B). 
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 The model requires 17 grids in all, as an elevation model is counted as part of the 

initial conditions image. A 10 m resolution DEM was created by blending a LiDAR 

derived model for the watershed with a National Elevation Dataset (NED) for the 

surrounding areas. This resulted in an elevation grid that was 190 km2 in size and 

consisted of 1,119 rows and 1,688 columns, which was used as an input parameter for 

each of the gridding scripts. 
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Table 1. This table lists the 16 input grids for the iSNOBAL model, grouped by input type. The table also lists the Marks et al. (1999) methods and the modified 

methods for creating the grids, along with the associated gridding tool script name (note: Improved methedologies have been bolded). 

Parameter Marks et al., 1999 Methods Modified Methods Script Name 

Initial Conditions 
     roughness length constant 

 
constant 

 
Create Constant Grids 

     total snow cover depth detrended kriging empirical Bayesian kriging Create Initial Snow Depth Grid 

     average snow cover density elevation gradient elevation gradient Create Snow Properties Grids 

     active snow layer temperature elevation gradient elevation gradient Create Snow Properties Grids 

     average snow cover temperature elevation gradient elevation gradient Create Snow Properties Grids 

     % of liquid H2O saturation constant constant Create Constant Grids 

Precipitation    

     total precipitation mass detrended kriging empirical Bayesian kriging Create Precipitation Mass Grid 

     percentage of precipitation mass that was snow lookup table lookup table Create Dew Point Temperature Grid 

     density of snow portion of the precipitation lookup table lookup table Create Dew Point Temperature Grid 

     average precipitation temperature lookup table empirical Bayesian kriging Create Dew Point Temperature Grid 

Input Forcing Data    

     incoming thermal (long-wave) radiation simulated simulated Create Thermal Radiation Grid 

     air temperature detrended kriging empirical Bayesian kriging Create Air Temperature Grid 

     vapor pressure elevation gradient empirical Bayesian kriging Create Vapor Pressure Grid 

     wind speed elevation gradient simulated Create Wind Speed Grid 

     soil temperature constant elevation gradient Create Soil Temperature Grid 

     net solar radiation simulated simulated Create Solar Radiation Grid 
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 In addition to the DEM, most of the tools also required one of four types of data 

tables: climate, precipitation, snow depth, and soil temperature. These four tables were 

built using historical data (see Appendix A) from March 1st, 2008, as shown in Tables 2 – 

5. The process to build them consisted of downloading weather station data files from 

the FTP site and compiling all of the observed data for the given time step into a single 

table. 

Table 2. Climate data table from 20 weather stations (designated by "Site Key") in the RCEW for the time 

step of March 1st, 2008 at 12:00 PM. Abbreviations denote: Ta = air temperature; H = humidity; ρv = vapor 

pressure; Tdp = dew point temperature; Rs = solar radiation; u = wind speed; udir = wind direction. “No-

data” values are represented by “-999”. 

Site Key Ta (°C) H (%) ρv (Pa) Tdp (°C) Rs (W/m2) u (mph) udir (from north) 

012 -0.5 0.88 514 -2.1 624 4.6 302 

031 -2.6 0.81 400 -5 563 8.8 304 

076 4.6 0.55 468 -3.2 600 7.2 282 

095b 0.3 0.64 402 -5 705 7 276 

124 -2.5 0.75 375 -5.8 704 12 288 

124b -0.8 0.83 475 -3 736 3 297 

125 1.6 0.65 448 -3.7 253 3.6 266 

127 -0.5 0.74 437 -4 605 9.7 282 

128 -5.2 0.95 376 -5.8 -999 20.9 284 

138d03 -3.4 0.81 373 -5.9 666 12.1 -999 

138j10 -3.9 0.89 392 -5.3 679 8.8 -999 

138L21 -4.5 0.82 344 -6.8 779 19 281 

144 -1.3 0.72 397 -5.2 640 7.5 291 

145 0.2 0.63 391 -5.3 628 4.2 261 

163 -5.9 0.97 359 -6.3 471 8.6 302 

166b -5.2 0.84 331 -7.2 669 10 292 

167 -3.6 0.93 418 -4.5 605 5.2 286 

174 -3.8 0.95 424 -4.3 529 3.2 224 

176 -4.6 0.86 359 -6.3 634 8.5 270 

rmsp3 -4.8 0.99 404 -4.9 604 3.1 211 

 

Table 3. Soil temperature data table from 5 stations (designated by "Site Key") in the RCEW for the time 

step of March 1st, 2008 at 12:00 PM. The parameter "st005" represents soil temperature at 5 cm below 

the ground surface. Elevations at each station were included in the table for linear regression purposes. 

Site Key st005 Elevation (m) 

57 3.71 1186 

76 2.9 1202 
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98 0.58 1410 

127 0.11 1652 

176 0.12 2095 

 

Table 4. Snow depth data table from 28 weather stations (designated by "Site Key") in the RCEW for the 

time step of March 1st, 2008 at 12:00 PM. 

Site Key Snow Depth (cm) Site Key Snow Depth (cm) 

012 44.1 166b 1.1 

076 0.5 167 129.3 

095b 0.7 167b 128.7 

098c 0.2 174 98.9 

124 1.5 176 70.2 

124b 47.6 176b 146.8 

125 18.3 bst 131.0 

127 0.1 jdt1 58.9 

138d03 1.4 jdt2 15.7 

138j10 26.9 jdt3 67.7 

138L21 0.0 jdt4 73.2 

144 51.4 jdt5 23.7 

145 40.3 rmsp3 151.7 

163 116.2 spt 146.8 
 

Table 5. Precipitation data table from 25 weather stations (designated by "Site Key") in the RCEW for the 

time step of March 1st, 2008 at 8:00 AM. Abbreviations denote: ppts = shielded; pptu = unshielded; ppta 

= dual gage wind corrected. All measurements are in mm and “no-data” values are represented by “-999”. 

Site Key ppts pptu ppta Site Key ppts pptu ppta 

012 4.1 2.7 4.7 138L21 0 0 0 

031 2.6 1.4 4.5 144 1.5 1.1 2.3 

049 0.4 0.5 0.7 145 0.9 0.7 1.4 

057 0.4 0.4 0.6 147 0.4 0.2 1.1 

076 0.3 0.2 0.4 155 1.6 1.4 1.7 

095b 1 0.6 1.6 163 1.4 0.4 2.2 

098c 0.2 0.2 0.9 166b 0.5 0.2 0.7 

116c 0.9 0.5 0.7 167 0.8 0.6 1.4 

124 0.6 0.5 1.6 174 1.7 1.2 2.8 

124b 2.6 -999 -999 176 0.8 0.6 2.3 

125 1.5 1.5 1.9 138d03 0.4 0.1 0.3 

127 0.6 0.3 0.8 rmsp3 1.3 0.7 2 

138j10 0.1 0.1 0.2     
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 The sections below group the gridding tools into five categories based on their 

modified methods of creation. Total snow cover depth, total precipitation mass, average 

precipitation temperature (dew point temperature), air temperature, and vapor 

pressure all used empirical Bayesian kriging (EBK) methods to interpolate weather 

station data into the necessary grids. Average snow cover density, active snow layer 

temperature, average snow cover temperature, and soil temperature grids were created 

using an elevation gradient. Grids for thermal radiation, solar radiation, and wind speed 

were simulated over a DEM. Lookup tables were used to determine the percentage of 

precipitation mass that was snow, and the density of the snow portion of the 

precipitation based on dew point temperatures. And roughness length and percentage 

of liquid H2O saturation grids were specified as constants. 

 

2.2.2.1 Empirical Bayesian Kriging 

 For the grids that employ EBK, the first step is to extract elevations from the 

DEM for each of the weather stations. Next, the script is designed to average parameter 

values if the data tables contain multiple rows for each weather station (i.e. if a model is 

set to run on three-hour time steps). If any “no-data” values exist in the data table (see 

Table 5, for example), they are removed prior to averaging. Next, any row in the data 

table associated with a weather station that exists outside the domain of the DEM is 

removed. This makes it possible to perform ordinary least squares (OLS) regression 

using the parameter as the dependent variable, and elevation as the explanatory 

variable. The slope and intercept from the OLS regression are then used to predict 
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parameter values at weather stations that do not have observed values. Finally, EBK is 

performed on the combined predicted and observed parameter values to create 

distributed parameter grids with the same domain and spatial resolution as the DEM. 

The EBK function uses 100 simulated semivariograms, a smooth-circular search 

neighborhood with a 10,000 m radius, and a detrended-Whittle semivariogram model 

type. 

 Modifications were made to the Create Initial Snow Depth and Create 

Precipitation Mass gridding scripts, as it is possible for the interpolation to predict 

negative values. A conditional statement is used, and any predicted grid-cell values less 

than zero are set equal to zero. 

 

2.2.2.2 Elevation Gradients 

 The Create Snow Properties script uses linear regression to predict values based 

on elevation. Linear regression equations are obtained from one of two sources- users 

can either specify their own interpolation points, or, default values will be used, as 

specified by Susong et al. (1999). Figure 2 shows an example dialog box where a user 

can input specific interpolation points as parameter-elevation pairs. Using the values for 

Lower Layer Snow Temperature from Figure 2 as an illustration, the linear regression 

equation takes the form of 

 �̂� = −0.002(ℎ) + 4.0 [1] 

where �̂� is the predicted lower layer snow temperature value, and ℎ is elevation. This 

equation is then applied to the DEM to produce the lower layer snow temperature grid. 
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Figure 2. Dialog box showing user specified interpolation values for use in creating snow properties grids. 

 

 If the user chooses not to provide interpolation points, the script uses default 

values as follows: for snow density- 350 kg/m3 at 1500 m, 300 kg/m3 at 2500 m, and 250 

kg/m3 at 4000 m; for active snow layer temperature- −1.0 °C at 1500 m, −2.0 °C at 

2500m, and −3.0 °C at 4000 m; for lower layer snow temperature- 0.0 °C at 1700 m, −1.0 

°C at 2500 m, and −2.0 °C at 4000 m. 
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 Once the active (upper) and lower layer snow temperature grids are created, 

they are averaged together to generate the average snow cover temperature grid. 

 The same general idea described above is used in the Create Soil Temperature 

script. Rather than creating a constant grid of 0˚ C, as was the convention, and since soil 

temperature data is available (see Table 3), the script uses ordinary least squares 

regression to calculate an equation for the best fit line, and uses the slope and y-

intercept of that line to predict soil temperature values based on elevation. 

 

2.2.2.3 Simulated Parameters 

2.2.2.3.1 Solar Radiation 

 The ArcPy library contains functionality for simulating solar radiation values over 

a DEM. These services are used in the Create Solar Radiation gridding tool. Values are 

estimated using a 200 cell “sky size” (resolution for the viewshed, sky map, and sun map 

grids) for a single-hour time step. Simulated values are then corrected for cloud 

conditions in the following manner: first, simulated values are extracted to a table that 

contains observed values from weather stations (see Rs in Table 2), then stations 

containing “no-data” for observed values are removed from the table and, finally, ratios 

are calculated at each weather station by dividing simulated values by observed values. 

These ratios are then averaged across all weather stations and the entire simulated grid 

is multiplied by this averaged ratio. 

 



25 
 

2.2.2.3.2 Thermal Radiation 

 The approach used to create thermal radiation grids follows the methods of 

Marks and Dozier (1979). This requires the Create Thermal Radiation script to collect 

user input reference values for air pressure, air temperature, elevation, and surface air 

temperature. It also takes inputs of air temperature and vapor pressure grids that are 

created using the EBK methods detailed above. In addition, the script requires a view 

factor grid that is created following the instructions of Dozier and Outcalt (1979). The 

initial step in this process uses the open source Whitebox software (Lindsay, 2014) to 

calculate horizon angle grids at 10° increments. These grids are then divided by 36 to 

obtain an average horizon angle grid (𝐻), which grid is used in equation 2 to compute a 

thermal view factor grid (𝑉𝑓). 

 𝑉𝑓 = 𝑐𝑜𝑠2(𝐻) [2] 

 After all of the necessary input is created or specified, the script begins by 

converting any temperature parameters from Celsius to Kelvin. It then corrects the air 

temperature and vapor pressure grids from near surface to sea level equivalents, which 

corrected grids are used, along with the air pressure at a given elevation, to calculate 

effective atmospheric emissivity. Finally, equation 3 is used to calculate incoming long-

wave radiation (𝐼𝑖) for each grid cell of the DEM 

 𝐼𝑖 = (𝜖𝑎𝜎𝑇𝑎
4)𝑉𝑓 + (𝜖𝑠𝜎𝑇𝑠

4)(1 − 𝑉𝑓) [3] 

where 𝜖𝑎 is effective atmospheric emissivity, 𝜎 is the Stefan-Boltzman constant, 𝑇𝑎 is 

near-surface air temperature, 𝜖𝑠 is surface emissivity, and 𝑇𝑠 is surface temperature. 



26 
 

 The methods above simulate thermal radiation for clear-sky conditions. The 

same approach used to correct solar radiation simulations for cloud conditions can be 

used in this instance. However, thermal radiation was not part of the observed values 

from weather station data. 

 

2.2.2.3.3 Wind Speed 

 The Create Wind Speed script uses the open source WindNinja software to 

simulate measured wind speeds over the DEM (Forthofer et al., 2009). WindNinja was 

developed to assist fire managers in predicting spatially varying wind fields in complex 

terrains. It takes as input a DEM, a date and time, the dominant vegetation type of the 

area, a comma separated values file of measured wind speeds, and a configuration file. 

Examples of the latter two files that were used in developing the script can be seen in 

Appendix C. 

 After specifying the above input, the Python script uses the WindNinja command 

line interface (CLI) to run the simulation. The final output is an ASCII type grid of 

simulated wind speeds. 

 

2.2.2.4 Lookup Tables 

 The same script that is used to create the dew point temperature grid is used to 

create the precipitation properties grids. This is due to the fact that precipitation 

properties (percentage of precipitation as snow, density of snow portion of 
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precipitation) are dependent on dew point temperature. This relationship is shown in 

Table 6. 

 

Table 6. Lookup table used in the creation of snow properties grids. Precipitation temperature can also be 

referred to as dew point temperature. Table from Marks et al., 1999. 

Precipitation Temperature (°C) Percent Snow Snow Density (kg/m3) 

            𝑇 < −5 100 75 

−5 ≤ 𝑇 < −3 100 100 

   −3 ≤ 𝑇 < −1.5 100 150 

−1.5 ≤ 𝑇 < −0.5 100 175 

−0.5 ≤ 𝑇 < 0        75 200 

   0 ≤ 𝑇 < 0.5 25 250 

0.5 ≤ 𝑇             0 0 

 

 Following the creation and output of the dew point temperature grid, the Create 

Dew Point Temperature script uses two conditional statements, based on the values in 

Table 6, to create the grids for precipitation properties. 

 

2.2.2.5 Constants 

 The Create Constant Grids script was designed with the same functionality as the 

Create Snow Properties script. That is, users can specify their own values for the 

roughness length and liquid H2O saturation constants, or, if no values are specified, 

default values are used as recommended by Marks et al. (1999): 0.005 and 0.2, 

respectively. 
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2.3 Results 

 

 The Python scripts described above were tested using historical data from the 

RCEW, the source of which can be found in Appendix A. The data consisted of a single 

one-hour time step from March 1st, 2008 (see Tables 2 – 5). 

 Figure 3 shows the results of running the Python gridding scripts to create grids 

for the initial conditions image. The non-constant grids displayed variability that was 

anticipated. Snow temperatures were lower in the higher elevations than in the lower 

elevations; snow densities were also lower where the temperatures were cooler; and 

snow depths were greater in the higher elevations. 

 

Initial snow depth (cm) Roughness length 
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Figure 3. Initial conditions grids created using Python gridding scripts. 

 

 Precipitation grids also showed expected variability, as shown in Figure 4. Note 

how EBK predicted higher precipitation mass values in the west compared to the east. 

This was in accordance with local weather patterns, as most of the winter and early 

spring storms move over the RCEW from west to east (Hanson et al., 2001). Thus, more 

precipitation was deposited on the western leeward slopes of the watershed, with less 

precipitation being available for the eastern slopes. Dew point temperatures also 

increased in the northern, lower elevations. Finally, the lack of variability in the Portion 

Average snow cover density (kg/m
3
) Active (upper) snow layer temperature (°C) 

Average snow cover temperature (°C) Liquid H2O saturation (%) 
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of precipitation as snow and Snow precipitation density grids can be explained by the 

low precipitation temperatures associated with the time step (see Table 6). 

 

 

Figure 4. Precipitation grids created using the Python gridding scripts. 

 

 The input forcing data grids depicted in Figure 5 followed the pattern of 

expected variability as well. Air and soil temperatures were higher in the lower 

elevations, as were vapor pressures. Since the sources for thermal radiation include the 

atmosphere and surrounding terrain (Marks and Dozier, 1979), values were higher in 

the warmer valleys of the south when compared to the cooler ridges at higher 

Precipitation mass (mm) Portion of precipitation as snow (%) 

Snow precipitation density (kg/m3) Dew point temperature (°C) 
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elevations. WindNinja accurately predicted higher wind speeds along ridges and lower 

wind speeds in valleys. Lastly, solar radiation values were higher for the south facing 

slopes than the north facing slopes, which agreed with early spring conditions in the 

northern hemisphere. 

 

 

Thermal radiation (W/m
2
) Air temperature (°C) 

Vapor pressure (Pa) Wind speed (m/s) 
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Figure 5. Input forcing data grids creating using the Python gridding tools. 

 

 The grids above were created by running the associated tools as a geoprocessing 

services from Esri’s desktop software. The tools were published to a virtual machine 

containing 48 GB of RAM and 6 processing cores. In total, the 16 grids took 

approximately 1.5 hours to process, with the majority of the time being spent on grids 

that used EBK methods. 

 

2.4 Discussion 

 

 The Python scripts developed in conjunction with this paper were created for the 

purpose of improving the iSNOBAL model, thus providing watershed scientists and 

researchers with an advanced set of tools. In creating these tools, the iSNOBAL model 

benefited in several ways. First, interpolation and parameter distribution methods were 

improved as several grids now use the more robust process of EBK. In addition, soil 

Soil temperature (°C) Solar radiation (W/m2) 
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temperature is no longer specified as a constant, but uses observed values to assist in 

predicting temperatures based on elevation. Other grids (snow properties and 

constants) allow for user input, which is valuable for two reasons: one, grids can now be 

created that are specific to location, researcher (study), or time-period and two, model 

sensitivity analyses can be performed with greater ease. 

 A second benefit of the tools is their widespread availability. The tools can be 

imported into Esri’s ArcGIS desktop application or accessed as geoprocessing services 

using the same software. Furthermore, the tools can be executed as web processing 

services (WPS) via RESTful uniform resource locators (URLs). This means that anyone 

with an internet connection, regardless of operating system, can take advantage of the 

tools by incorporating them into web mapping applications and desktop GIS software. 

 The last objective of this work was to make the practice of input grid creation for 

the iSNOBAL model less hands-on and time-consuming. By using the more robust EBK 

methods, which automates the otherwise manual process of estimating semivariogram 

parameters, several of the grids can now be created in a much more efficient manner. 

Moreover, by using the Python scripting language, in conjunction with geoprocessing 

services, these tools can be implemented in an automated process.  

 As the tools take approximately 1.5 hours to create 16 input grids, it is important 

to note that not all 16 grids will be created for every time step. The 6 initial conditions 

image grids are created once per model run, and the 4 precipitation grids are created 

only during storm events. Of the 3 types of input grids, only the forcing data grids are 

created for every time step. This means that 5 to 6 grids will generally be created for 
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each time step since solar radiation grids are only created during daylight hours. This 

reduces the amount of computing time from 1.5 hours for all 16 grids to around 45 

minutes for sunlight hours and 35 minutes for nighttime hours. Computing time can also 

be shortened by reducing the number of simulated semivariograms in the EBK function. 

By dropping the number from 100 to 50, grids that use EBK methods take roughly half as 

long to be created. 

 The following chapter describes improvements for implementing the scripts 

described above within the VWP. These improvements include building an SQL database 

to connect the tools with the full temporal range of available data, rather than the static 

one-hour data tables used above. Chapter 3 also discusses the development and use of 

a web interface to access and run the tools. Finally, cross-validation is performed to 

explore whether or not EBK methods are acceptable. 
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Chapter 3: Extending the functionality of the gridding tools with an SQL 

database and web interface 

 

3.1 Introduction 

 

 The work described in this chapter builds upon the preceding work (described in 

Chapter 2) in three important ways. First, the tool’s functionality is extended to the full 

temporal range of historical data available in the Reynolds Creek Experimental 

Watershed (RCEW) by using a structured query language (SQL) database. Second, to 

further address the concept of accessibility, a simple web interface is described for 

running the tools. This is done as a primary step towards implementing the tools within 

a virtual watershed platform (VWP). And third, cross-validation is performed to validate 

the use of the more robust empirical Bayesian kriging (EBK) methods. These additions to 

the work done in Chapter 2 are performed in order to provide a more complete set of 

tools for the virtual watershed platform (VWP) introduced in Chapter 1. Researchers 

studying watershed hydrological processes will benefit from these tools by having a 

simplified, automated, and improved means of running the iSNOBAL model. 

 In mentioning the improvements above, it is important to understand why they 

are needed. This in turn requires a discussion on two central aspects in most research 

workflows: data management and data integration within models. First consider the 

estimation that more scientific data will be generated in the next decade than has been 
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produced in all of human history (Horsburgh et al., 2009). Furthermore, the data that 

has been collected, and that which will be collected, are heterogeneous in almost every 

characteristic, from the organization doing the collecting, to how it is described, 

organized, stored, and accessed (see Peckham and Goodall, 2013). From that list, the 

two elements relevant to this discussion are how data are stored and how it is accessed. 

The observation data from RCEW are stored as comma-separated-values files and are 

accessed through an anonymous file transfer protocol (FTP) network. While these 

methods of storage and access might be simple, they are somewhat outdated and 

limiting by nature. SQL databases address these issues by providing a simple interface 

for storing and retrieving data in an efficient manner (Jolly et al., 2005). This efficiency is 

crucial when considering extremely large datasets, such as the RCEW, which collects 

several observational variables on an hourly basis. Similar studies have used SQL 

databases to store climate data for the purpose of monitoring micro-climates with 

agriculture applications (Ghobakhlou et al., 2009). 

 The second aspect of a research workflow requiring discussion is that of data 

integration within models. Models have proven useful in nearly every field imaginable 

(Peckham et al., 2012). This has certainly been the case with hydrological processes (Ly 

et al., 2013). Unfortunately, the models themselves have not kept pace with advances in 

computer and data resources (Humphrey et al., 2012; Leonard and Duffy, 2013). One 

resource that is being underutilized is geoprocessing services offered through the web. 

  The remainder of this chapter describes the creation of an SQL database from 

historical observation data from the RCEW to improve data integration associated with 
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the gridding tools. It also details how the tools are made more widely accessible by 

implementing them in a web interface. Finally EBK methods are explored as an 

acceptable interpolation means through a relative comparison to detrended kriging 

methods using leave-one-out cross-validation. 

 

3.2 Methods 

 

3.2.1 SQL Database 

 

 The initial step in building the SQL database consisted of downloading the data 

files from the anonymous FTP site (see Appendix A) and storing them on a local hard 

drive. The downloaded files were divided into four directories based on type: climate, 

precipitation, snow depth, and soil temperature. Next, four empty tables were initiated 

within the SQL database consistent with the four different types just mentioned. Tables 

7 – 10 show how these four database tables were set up prior to transferring 

observational data, and Figure 6 shows the corresponding database diagram. 

Table 7. Specifications of the climate table initiated in the SQL database. 

Parameter Column Name Data Type 

Station name Site_Key varchar 

Date and time of observation date_time datetime 

Water year wy smallint 

Water day wd smallint 

Year year smallint 

Month month smallint 

Day day smallint 
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Hour hour smallint 

Minute minute smallint 

Air temperature tmp3 double 

Relative humidity hum3 double 

Vapor pressure vap3 double 

Dew point temperature dpt3 double 

Wind speed wnd3sa double 

Wind direction wnd3d double 

 

Table 8. Specifications of the precipitation table initiated in the SQL database. 

Parameter Column Name Data Type 

Station name Site_Key varchar 

Date and time of observation date_time datetime 

Shielded precipitation ppts double 

Unshielded precipitation pptu double 

Dual gage average precipitation ppta double 

 

Table 9. Specifications of the snow depth table initiated in the SQL database. 

Parameter Column Name Data Type 

Station name Site_Key varchar 

Date and time of observation date_time datetime 

Water year wy smallint 

Water day wd smallint 

Year year smallint 

Month month smallint 

Day day smallint 

Hour hour smallint 

Minute minute smallint 

Snow depth snowdepth double 

 

Table 10. Specifications of the soil temperature table initiated in the SQL database. 

Parameter Column Name Data Type 

Station name Site_Key varchar 

Date and time of observation date_time datetime 

Soil temperature at 2.5 cm stm002_5 double 

Soil temperature at 5 cm stm005 double 
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Soil temperature at 10 cm stm010 double 

Soil temperature at 15 cm stm015 double 

Soil temperature at 20 cm stm020 double 

Soil temperature at 30 cm stm030 double 

Soil temperature at 40 cm stm040 double 

Soil temperature at 50 cm stm050 double 

Soil temperature at 55 cm stm055 double 

Soil temperature at 60 cm stm060 double 

Soil temperature at 70 cm stm070 double 

Soil temperature at 90 cm stm090 double 

Soil temperature at 120 cm stm120 double 

Soil temperature at 180 cm stm180 double 

 

 

Figure 6. Database diagram showing the four tables within the SQL database and their associated 
columns. 

 Four corresponding Python scripts (see Appendix B) were written to transfer the 

data from the files to the database tables. As an example, the Create Climate Table 

script would start by listing the climate data files within the respective directory. Then, 
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after establishing a connection with the SQL database, the script would iterate over one 

data file at a time. Once the file was opened for reading, the script would iterate over 

the entire file one line at a time. This was done so that information could be extracted 

from the header of each data file, including the name of the weather station the file 

represented, and the list of parameters that the data file contained. Once these were 

obtained, the script continued by executing INSERT statements on each line of 

observation data. To make the process more efficient, rather than committing these 

INSERT statements to the database one line at a time, the commit was executed at the 

end of each data file. After the last data file was committed to the database, the 

connection to the database was closed, and the process was repeated for the remaining 

tables. 

  

3.2.2 Geoprocessing Service and Web Interface 

 

 The Python scripts described in Chapter 2 were designed to create one grid per 

script (or, in some cases, multiple grids if they were related, such as initial snow 

properties). The approach taken in this chapter was to combine the functionality of all 

the previous gridding scripts into one master script. This master script was intended to 

simplify the publication of geoprocessing services by consolidating all of the 

functionality into one service, rather than having to publish and maintain multiple tools. 
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 Input for this new tool included values for start and end date/time, a one or 

three hour time step, the type of kriging method, and which grids were to be created. 

An example of the tool dialog from the ArcMap desktop software is shown in Figure 7. 

 

Figure 7. Example dialog box from running the master gridding tool in the ArcMap desktop software. 
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 Given the above input, the tool was able to connect to the SQL database and 

create the desired grids by looping over the time range specified. Each iteration of the 

loop consisted of three general steps. First, the SQL database was queried using a 

SELECT statement, and observational values were selected based on the current time 

step. Next, results from the SELECT query were appended to parameter lists, which lists 

were then used in building data tables specific to each time step. Finally, these data 

tables were used as input for individual gridding functions within the script. 

 Once inside the separate gridding functions, grids were created according to the 

methods described in Chapter 2. However, one change is important to note. In the 

methods detailed in Chapter 2, for grids that used empirical Bayesian kriging, linear 

regression was used to predict parameters at stations that did not have observed 

values. This was done prior to the kriging interpolation. This method was removed from 

the current version of the tool, as it was believed to add unnecessary bias and error. 

 The completed script was published as a geoprocessing service on Esri’s 

ArcServer on a server machine containing 48 GB of RAM and 6 processing cores. In 

publishing the service, the tool was made available through web processing services 

(WPS), and as a RESTful service. These can in turn be ingested into any platform, 

including web interfaces and web maps, desktop GIS software, and virtual watershed 

platforms. 
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3.2.3 Cross-Validation 

 

 To assess whether EBK methods produced acceptable interpolated grids, a 

simple leave-one-out cross-validation process was employed. First, multiple subsets of 

data were created by removing a single weather station and its associated observed 

parameter value. These subsets were then used in the gridding tool to generate 

predicted grids. Next, predicted values were extracted from the grids in the location of 

each missing weather station, and errors were calculated by subtracting observed 

values from predicted values.  

 This cross-validation process was performed for all 5 iSNOBAL input grids that 

used the EBK methods. Errors were calculated for air temperature, dew point 

temperature, and vapor pressure for four time steps across an entire year, once each in 

January, April, July, and October. Precipitation errors were calculated for two time 

steps- once for a winter storm in December, and again for a summer storm in July. Snow 

depth errors were also calculated for two time steps- once in December, and once in 

March. 

 To determine if EBK produced satisfactory results, the same cross-validation 

process was repeated on grids that were created using detrended kriging algorithms 

(see Susong et al., 1999), and the two sets of errors were compared. 
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3.3 Results 

 

 The process described above for creating the SQL database resulted in a 

comprehensive dataset for the RCEW. Table 11 shows specific details related to each of 

the 4 tables within the SQL database, including the number of data files associated with 

each data type, the size of the SQL table (number of observations), and the date and 

time of the first and last observations. 

Table 11. Description of RCEW historical data and the resulting SQL tables. 

Data type # of data files Size of SQL table First observation Last observation 

Climate 21 2,360,982 1981-06-18 11:00:00 2009-09-30 23:00:00 

Precipitation 25 9,120,000 1962-01-01 01:00:00 2014-12-31 23:00:00 

Snow Depth 29 3,568,752 1996-10-11 10:00:00 2008-10-01 00:00:00 

Soil Temperature 5 1,154,088 1977-12-22 16:00:00 2014-10-01 00:00:00 

 

 Once the SQL database was created locally, it was exported to the same server 

machine that housed the geoprocessing service for running the gridding tool. This was 

done in order to connect the two resources in an efficient and reliable manner. Upon 

running the tool, the process of retrieving the necessary data for a single time step takes 

a matter of seconds. 

 To make the execution of the tool as simple as possible, a web interface was 

designed to collect user input, run the geoprocessing service, and return the resulting 

grids. A screenshot of that interface is shown in Figure 8. After specifying a beginning 

and ending date/time, and selecting a time step and the grids to be created, a user can 

run the process, and the subsequent grids are returned as downloadable .tif files. The 
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execution is carried out using the RESTful URL associated with the geoprocessing 

service. When run in this manner, a test case took approximately 1.5 hours to create 6 

initial conditions grids, 4 precipitation grids, and 6 input forcing data grids. 
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Figure 8. Screenshot of the web interface for running the geoprocessing service for creating iSNOBAL input grids. 
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 The majority of processing time required to create the 16 input grids for a single 

time step was in association with the 5 grids that used EBK methods. To determine 

whether EBK produced appropriate results, leave-one-out cross-validation was 

performed on grids of air temperature, dew point temperature, vapor pressure, 

precipitation mass, and snow depth for multiple time steps. RMSE values were 

calculated between observed and predicted grids that were created using both 

empirical Bayesian kriging (EBK) methods, and detrended kriging algorithm (DKA) 

methods.  

 Table 12 shows the RMSE values for the three climate variables (air temperature, 

dew point temperature, and vapor pressure). In general, DKA methods performed 

slightly better than EBK methods, with EBK equaling or outperforming DKA in 3 of the 12 

cases.  

Table 12. Cross-validation results for air temperature, dew point temperature, and vapor pressure from 4 

time steps. Numbers represent RMSE between observed and predicted values, with side-by-side 

comparison of empirical Bayesian kriging (EBK) and detrended kriging algorithm (DKA) methods. 

 Air Temperature (°C) 
Dew Point 
Temperature (°C) Vapor Pressure (Pa) 

 EBK DKA EBK DKA EBK DKA 
January 1.8 1.9 2.5 2.1 36.3 37.5 
April 1.9 0.9 0.7 0.6 11.5 10.6 
July 1.3 0.6 0.8 0.8 52.8 50.4 
October 1.0 0.4 0.9 0.4 36.2 19.9 

 

 EBK methods performed very well in predicting precipitation mass, as seen by 

the similar RMSE values in Table 13. For both the winter and summer storms, there was 

only a 0.1 mm difference between the EBK and DKA RMSE values. 
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Table 13. Cross-validation results for precipitation mass for a winter and summer storm. Numbers 

represent RMSE between observed and predicted values, with side-by-side comparison of empirical 

Bayesian kriging (EBK) and detrended kriging algorithm (DKA) methods. 

 Precipitation Mass (mm) 

 EBK DKA 
Winter 1.6 1.7 
Summer 1.0 0.9 

 

 Finally, even though Table 14 shows EBK once again equaling or outperforming 

DKA methods in estimating snow depth, the errors indicated by the results for both 

methods were unusually high. This was most likely due to the fact that neither method 

took into account aspect. 

Table 14. Cross-validation results for snow depth for winter and early-spring time steps. Numbers 

represent RMSE between observed and predicted values, with side-by-side comparison of empirical 

Bayesian kriging (EBK) and detrended kriging algorithm (DKA) methods. 

 Snow Depth (cm) 

 EBK DKA 

December 16.2 16.7 

March 42.5 42.5 

 

3.4 Discussion 

 

            The improvements discussed in this chapter build upon the tools described in 

Chapter 2. The first improvement involved building an SQL database to automate the 

process of data retrieval. Where the initial development of the tools dealt with static, 

single time step tables built by hand, the SQL database allows for efficient querying of 

the full temporal range of historical data from the RCEW. In addition, the SQL database 

can be used independent of the geoprocessing tool to identify data gaps, summarize 



49 
 

specific periods of data, etc. And while the database described herein contains only that 

data which was available at the time of creation, the process for adding more data as it 

is made available is simple and straightforward. Along these same lines, the tools can 

easily be modified to query custom databases, or databases from watersheds other than 

RCEW, to extend their functionality further. 

            The second improvement introduced in this chapter was the development of a 

web interface for the purpose of running the gridding tools. This was done using a 

Javascript API for ArcGIS Server. The simple interface collects user input, executes the 

gridding functions through a REST service, and returns the resulting grids as .tif files that 

can be downloaded for further use. This was done to not only extend the accessibility of 

the tool, but to make its execution more simple and direct. 

            With these two developments in mind, especially the ability to execute the tools 

from a web interface, it is important to remember that these are the initial steps 

towards implementing the iSNOBAL model in its entirety within the VWP. Further steps 

will be required to automate the process of uploading the created grids to the VWP so 

that they can be accessed by a model run from the platform itself. 

            This chapter also included a process for judging the relative accuracy of EBK 

interpolation methods when compared to DKA methods. The general finding was that 

EBK produced similar cross-validation results to DKA, especially for predicted 

precipitation mass and snow depth grids. However, cross-validation results for 

interpolated snow depth grids showed unusually high RMSE values for both empirical 
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Bayesian and detrended kriging methods. This was most likely due to the fact that 

neither of the two methods took into account aspect. In their study, Susong et al. (1999) 

created initial snow depth grids in a 3-step process. First, the same DKA methods were 

applied to snow-water-equivalent (SWE) observations to create a snow mass grid. 

Second, to account for differences in solar radiation between the two aspects, grid cells 

that fell on north facing slopes were multiplied by 1.2 and grid cells that fell on south 

facing slopes were multiplied by 0.8. And third, this modified snow mass grid was 

divided by a snow density grid to obtain a grid representing initial snow depths. Rather 

than interpolating SWE values and dividing by density, the current practice of the 

gridding tool interpolates observed snow depth values directly. 

 The results of the cross-validation process established EBK as an acceptable 

means for creating several of the input grids for iSNOBAL. An added benefit of EBK over 

DKA methods is the aspect of automation. Where DKA requires a user to estimate 

semivariogram parameters for each grid that employs the method, and then to repeat 

the process for every single time step, EBK eliminates this need by finding the best fit 

values systematically. 
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Chapter 4: Conclusion 

 

 The iSNOBAL model is an effective means of characterizing the development and 

melting of a snowpack in mountainous watersheds. However, several limitations exist in 

association with the model. This thesis describes work that was done to address these 

limitations. The product of this work is a unique set of tools which automate and 

simplify the creation of input grids for iSNOBAL by using the Python scripting language, 

an SQL database, and geoprocessing services. 

 The original methods of Marks et al. (1999) used a detrending kriging algorithm 

to produce several of the input grids for iSNOBAL. It was hypothesized that by using a 

novel approach in the form of empirical Bayesian kriging (EBK), the process for creating 

these grids could be made more efficient, and the accuracy of the grids themselves 

would improve. Initial cross-validation results showed that there was little improvement 

in accuracy between detrended kriging and EBK methods. However, cross-validation 

results were similar between the two methods, with EBK having the advantage of 

automating the estimation of semivariogram parameters using a Monte-Carlo 

methodology, whereas the detrended kriging approach requires a time-consuming 

process of adjusting the parameters for each grid. In order to take full advantage of both 

approaches, future work will adapt these two methods to work in tandem. This will be 

done by using the original detrending methods to produce a set of stationary residuals, 

using EBK to distribute the residuals, and then adding back the elevation trend. 
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 Improvements were made to other parameter distribution methods as well. 

Marks et al. suggested using a constant 0 °C grid for soil temperature. The methods 

described in this thesis use elevation gradients calculated from observed soil 

temperature values to provide more realistic estimations. In addition, thermal radiation 

and wind speed grids are created using advanced simulations. Cross-validation will be 

performed in a future work to determine if these methods provide improved accuracy. 

 In an effort to more fully automate the process of grid creation, an SQL database 

was created containing historical data from the Reynolds Creek Experimental 

Watershed. The use of an SQL database is an improvement over current practices—

which include storing the data as comma-separated-values files on an FTP network—by 

providing a simple and efficient technique for data storage and retrieval. The value of 

building an SQL database does not end with its integration in the gridding tools, 

however, as the database can be used as an independent resource for effective data 

analysis, including the identification of data gaps. Furthermore, the procedures for 

updating the database and creating additional databases are simplified through the use 

of SQL (see Appendix D), thus making it easy to run the gridding tools on current data 

and data from other watersheds. 

 A main objective of the work presented in this thesis was to make the process of 

creating input grids for the iSNOBAL model more efficient. The gridding tools described 

herein are an improvement to the IPW’s command line interface methods, and provide 

a simple means for automating grid creation. However, work still needs to be done to 

improve computing efficiencies. The largest amount of computing time is spent on 
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parameters that use EBK, as well as solar radiation and wind speed simulations. 

Computing time can be reduced by specifying fewer simulated semivariograms in the 

EBK function, as well as running the WindNinja command line interface with more 

processors. 

 The final improvement made to the iSNOBAL model relates to its accessibility. 

Currently, the model and the associated gridding functionalities are confined to the IPW 

software and the Linux operating system. Once it is fully integrated within the VWP, 

iSNOBAL will be accessible to any researcher with an internet connection, regardless of 

operating system. This is made possible by using geoprocessing services and RESTful 

URLs. The gridding tools—in the form of geoprocessing services—along with the 

associated SQL database, can be consumed by platforms such as HydroShare (Tarboton 

et al., 2014) and the WC-WAVE VWP, desktop GIS software such as ArcGIS, and web 

mapping applications. 

 In an effort to make the iSNOBAL model easier to run, all of these improvements 

were made by using computing and data resources commonly accessible by researchers 

through online tools or through GIS desktop software. The resulting gridding tools can 

assist researchers in exploring the effects of a changing climate on snowpack and other 

watershed dynamics by enhancing data sharing, modeling, and analysis. This in turn will 

lead to improved management practices in a future where the supply and demand of 

water resources are uncertain. 
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Appendix A: Data Description and Source 

The following table lists the climate station data that were used in this thesis. 

 

Data Type Parameter Units # of 
Stations 

Temporal 
Resolution 

Years of 
Record 

Climate air temperature °C 21 hourly 1981—2009 
 vapor pressure Pa    
 dew point 

temperature 
°C 
°C 

   

 solar radiation W/m2    
 wind speed m/s    
 wind direction ° from N    

Precipitation shielded mm 25 hourly 1962—2014 
 unshielded mm    

 averaged mm    

Snow snow depth cm 29 quarter-
hourly 

1996—2008 

Soil 
Temperature 

soil temperature at 
5 cm depth 

°C 5 hourly 1977—2014 

 

Northwest Watershed Research Center, Reynolds Creek Experimental Watershed, 
 Public-use Datafiles and Documentation, 
 ftp://ftp.nwrc.ars.usda.gov/publicdatabase/, accessed Nov. 2014. 

 

  

ftp://ftp.nwrc.ars.usda.gov/publicdatabase/
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Appendix B: Python Code Repository 

The gridding tools mentioned throughout this thesis that convert weather station data 

to distributed grids are derived from several Python scripts. These scripts are made 

publicly available under the MIT free software license, and can be found at: 

https://github.com/delparte/WCWAVE 

  

https://github.com/delparte/WCWAVE
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Appendix C: WindNinja Supplemental Files 

The tables in this appendix represent supplemental files that are used by the WindNinja 

software to create estimated wind speed grids. The first table represents an example 

weather station CSV containing observed wind speeds and other parameters, along with 

station information. This CSV is used for initialization in the WindNinja simulations. The 

second table represents how a WindNinja configuration file is formatted and lists 

several variables pertaining to a WindNinja simulation run. 
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Example WindNinja weather station CSV file for a one-hour time step from March 1st, 2008 at 12:00 PM. 

Station_Name 
Coord_Sys 
(PROJCS,GEOGCS) 

Datum 
(WGS84,NAD83,NAD27) Lat/YCoord Lon/XCoord Height 

Height_Units 
(meters,feet) Speed 

Speed_Units 
(mph,kph,mps) 

012 PROJCS NAD83 4793787.279 513952.8347 3 meters 4.025 mps 

031 PROJCS NAD83 4790459.234 512180.8464 3 meters 7.55 mps 

076 PROJCS NAD83 4783622.941 520288.0621 3 meters 6.35 mps 

095b PROJCS NAD83 4780655.111 516986.352 3 meters 6.425 mps 

124 PROJCS NAD83 4775179.724 516317.994 3 meters 12 mps 

124b PROJCS NAD83 4775115.638 516544.4316 3 meters 3 mps 

125 PROJCS NAD83 4774528.367 518189.0407 3 meters 3.6 mps 

127 PROJCS NAD83 4776395.437 521668.1306 3 meters 8.525 mps 

128 PROJCS NAD83 4775272.174 523390.85 3 meters 18.325 mps 

138d03 PROJCS NAD83 4774415.125 522515.3166 3 meters 12.1 mps 

138j10 PROJCS NAD83 4774199.4 522563.7815 3 meters 8.8 mps 

138L21 PROJCS NAD83 4773910.564 522800.5003 3 meters 19 mps 

144 PROJCS NAD83 4772188.618 515872.1455 3 meters 7.5 mps 

145 PROJCS NAD83 4772697.028 518399.46 3 meters 4.2 mps 

163 PROJCS NAD83 4769628.697 514056.6037 3 meters 8.6 mps 

166b PROJCS NAD83 4768561.291 520063.2138 3 meters 10 mps 

167 PROJCS NAD83 4769981.191 521523.3537 3 meters 5.2 mps 

174 PROJCS NAD83 4768221.621 516735.8817 3 meters 3.2 mps 

176 PROJCS NAD83 4768127.662 519612.6749 3 meters 8.5 mps 

rmsp3 PROJCS NAD83 4768321.947 519977.3673 3 meters 2.9 mps 
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Direction 
(degrees) Temperature 

Temperature_Units 
(F,C) 

Cloud_Cover 
(%) Radius_of_Influence 

Radius_of_Influence_Units 
(miles,feet,meters,km) 

304 0.25 C 0 15 miles 

306.75 -2.075 C 0 15 miles 

287.5 5.175 C 0 15 miles 

281.25 0.6 C 0 15 miles 

288 -2.5 C 0 15 miles 

297 -0.8 C 0 15 miles 

266 1.6 C 0 15 miles 

285.25 0.175 C 0 15 miles 

286.25 -4.75 C 0 15 miles 

275 -3.4 C 0 15 miles 

275 -3.9 C 0 15 miles 

281 -4.5 C 0 15 miles 

291 -1.3 C 0 15 miles 

261 0.2 C 0 15 miles 

302 -5.9 C 0 15 miles 

292 -5.2 C 0 15 miles 

286 -3.6 C 0 15 miles 

224 -3.8 C 0 15 miles 

270 -4.6 C 0 15 miles 

231.5 -4.85 C 0 -1 miles 
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initialization_method = pointInitialization 

num_threads = 4 

elevation_file = elevation_raster 

match_points = true 

year = strYear, 

month = strMonth, 

day = strDay, 

hour = strHour, 

minute = strMinute, 

mesh_resolution = output_cell_size 

vegetation = brush 

time_zone = America/Boise 

diurnal_winds = true 

write_goog_output = false 

write_shapefile_output = false 

write_farsite_atm = false 

write_ascii_output = true 

units_mesh_resolution = m 

units_output_wind_height = m 

output_speed_units = mph 

output_wind_height = 3 

wx_station_filename = station_file 
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Appendix D: Considerations for applying methods to additional databases 

The SQL database that was built in conjunction with this thesis, which contains historical 

weather station data from the Reynolds Creek FTP, was created using the MySQL 

database platform. In order to apply the gridding tools described in this thesis to new or 

custom databases, the following conventions must be strictly adhered to: 

 Observational data must be separated into comma-separated values (CSV) files 

based on recording (climate, soil, etc.) station (one file per station) 

 CSV files must be named with the following convention: 

[data type]_[station name].csv 

Example- “precipitation_124.csv” 

 Each CSV file must contain an appropriate header in the first row 

For climate/weather (depending on parameters observed at each station): 

“date_time, ta, rh, ea, td, si, ws, wd” 

For precipitation: 

“date_time, ppts, pptu, ppta” 

For snow depth: 

“date_time, zs” 

For soil temperature (depending on measurement depths at each station): 

“date_time, st005, st010, st020,…” 

 The “date_time” column must be in the following format: 

YYYY-MM-DD HH:MM 

 “No-data” must be specified by “-999” 


