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Modeling Seedling Germination Rate as an Indicator of Ecological Site 
Resilience 

Thesis Abstract – Idaho State University (2015) 
Rangeland vegetation in the Great Basin, U.S.A., is frequently disturbed by 

natural and human caused wildfire.  Many areas have been converted to near-

monocultures of introduced annual weeds such as cheatgrass (Bromus tectorum) and 

medusahead wildrye [Taeniatherum caput-medusae (L.) Nevski].  Resistance to 

disturbance and resilience of native and seeded-non-native plant communities follow 

topographic patterns associated with soils, slope, aspect and elevation.  We hypothesize 

that the pattern of post-disturbance vegetation in these landscapes is correlated to 

topographic effects on seedbed temperature and water relationships.  We further 

hypothesize that these microclimatic patterns across the landscape are consistent with 

NRCS Ecological Site Descriptions (ESDs), which integrate biotic and abiotic factors 

affecting current and potential vegetation distributions. This type of information can link 

microclimate to the landscape in a way that informs managers of potential species 

specific performance within an ESD.  This study focuses on developing soil microclimatic 

indices and correlating them with both observed plant communities and potential 

vegetation states as described by site-specific ESDs and their associated State and 

Transition Models (STMs).  We use long-term weather records from the region around 

Boise, Idaho, to estimate seedbed temperature and water relations using the 

Simultaneous Heat and Water (SHAW) model.  Seedbed temperature and water 

potential is then used to drive hydrothermal germination response models to generate 

indices of seedbed favorability for plant establishment. The seedbed favorability, 
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referred to here as a Rate Sum Index (RSI), represents a total number of potential 

progressions towards germination for a given grass species averaged over a monthly 

time step. In the first phase of the project we evaluate topographic effects on seedbed 

microclimate and develop methodology to distribute microclimatic and seedling 

establishment indices across example soils from the Boise Front Management Area 

(BFMA; 20,000 ha).  In the second phase we conduct vegetation surveys and use 

remotely sensed vegetation data to determine whether the current distribution of ESDs 

is correlated to potential seedbed microclimate for target species. We used a stepwise 

regression approach to determine if the vegetation distribution was related to modeled 

RSI values within the watershed. The overall correlation was highest for perennial cover 

estimates but tended to be low (R² = .31), likely as a result of insufficient validation 

points for the cover estimates. Seedbed modeling and assessment of relative site 

favorability for perennial plant establishment can be useful in designing weather and 

microclimatic supplements for ESDs, and quantifying transition probabilities between 

alternative vegetation states.  These tools support more effective restoration strategies 

for weed affected rangelands throughout the Intermountain region. 

 



 

Chapter 1: Introduction and Background 

Statement of Purpose 

Ecological Site Descriptions (ESD) are a primary tool for assessing ecological 

health as they describe both current site status, and site potential for a healthy and fully 

functional state.  ESD classification is primarily based on site-specific ground 

measurements of soil and vegetation status, knowledge of previous disturbance 

regimes, and understanding of the historical undisturbed site potential (Briske et. al., 

2005; Mosely et. al., 2010; Morris and Monaco, 2012).  Millions of hectares of Basin and 

Wyoming big Sagebrush (Artemisia tridentata tridentata and Artemisia tridentata 

wyomingensis) and bunchgrass communities in the western U.S. are currently in a 

degraded state due to the proliferation of introduced annual weeds and recurrent 

disturbance by wildfire.  The resistance and resilience of these communities to annual 

weed invasion is climate dependent and increases at higher elevations that are cooler 

and receive more precipitation.  Relative resistance and resilience at lower elevations is 

highly variable and appears to be correlated with local topographic and soil variability 

within the same general climatic regime.  We hypothesize that this variability in 

resistance and resilience is due to local variability in soil microclimate as a function of 

slope, aspect and soil type.  The purpose of this study is to quantify this microclimatic 

variability over space, and determine whether it can be correlated to existing plant 

community distribution and site resilience and resistance to weed invasion.  

Microclimatic characterization of this type could be used with ESDs to provide a more 
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mechanistic description of ecological resistance, resilience and site potential.  

Microclimatic ESD supplements could also be generated at a larger spatial scale using 

Geographic Information System (GIS), modeling, and spatial weather, topography and 

soils information. 

Background 

Millions of acres of western rangelands are now dominated by non-native 

invasive plants such as cheatgrass (Bromus tectorum L.), medusahead wildrye 

[Taeniatherum caput-medusae  (L.) Nevski], (Young 1992; Young and Longland 1996; 

Davies 2008; Davies and Svejcar 2008).  The expansion of these species has been in part 

a result of past management practices, land use patterns and global climate change 

(Mack 1986; D'Antonio and Vitousek 1992; Knapp 1996) and has resulted in significantly 

increased fire frequency and wildfire size (Pellant, 1996). The expansion of these weeds, 

due in part to the role they have in the fire cycle, have had negative impacts on 

ecosystem health, biodiversity, soil erosion, wildlife habitat and economic viability of 

rural communities (Sheley et al, 2006).  Land managers seek conservation methods and 

strategies that mitigate and reduce the negative effect of weed expansion (Vasquez et 

al, 2010) but the most consistently used practice is seeding of perennial grass and shrub 

species in the year immediately after vegetation removal by wildfire (BLM 2007).  A 

main constraint to rangeland plant establishment, however, is soil water availability for 

early plant establishment and subsequent plant survival (Call and Roundy 1991; 

Hardegree 2011; Hardegree et al. 2012a, b).   
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At a very broad scale, cheatgrass dominance and invasion trajectories have been 

linked to climatological factors that are related to site temperature and moisture 

variables (Bradley and Mustard 2006).  At a more local scale, cheatgrass dominance is 

not uniform over the landscape, and in the Boise Front Management Area (BFMA) and 

other areas of the Great Basin, cheatgrass and perennial grass distributions are strongly 

dependent upon topographic and soil characteristics (Boise Foothills East Vegetation 

Management Environmental Assessment 2009; Reisner et al. 2013; Arkle et al. 2014).  

As cheatgrass is an annual plant, and most rangeland restoration management occurs in 

the year after wildfire, we hypothesize that site conditions for early plant establishment 

play a critical role in determining successful establishment and dominance of weedy 

species over seeded perennial grasses.  Our strategy is to estimate topographic and soil 

effects on post-fire soil microclimate, to determine whether patterns of seedbed 

microclimate favor or disfavor annual weed species, and establish whether these 

patterns are correlated with post-fire disturbance patterns in the BFMA.   

Our current understanding of ecosystem resistance and resilience to weed 

invasion suggests that ecological thresholds exist below which weedy species can 

dominate, and above which more desirable perennial species dominate (Chambers et al. 

2014).  Mapping of seedbed microclimate and correlation to existing patterns of post-

disturbance vegetation would provide a mechanistic model in support of both resistance 

and resilience concepts, and quantitative information in support of the State and 

Transition Models that underlie current ESDs for Wyoming and Basin big 

sagebrush/bunchgrass plant communities in the northern Great Basin.   
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Ecological Site Descriptions, State and Transition Models, and Resistance and 

Resilience  

Rangeland restoration is generally implemented within a framework that 

addresses the causes of succession and the ecological processes that are feasible for 

managers to apply (Sheley et al., 2006). These ecological processes are reflected in NRCS 

ESDs and STMs that are often used as a resource for restoration planning (Bestelmeyer 

et al., 2003). Structure, composition and dynamics of plant communities described in 

site specific ESDs and associated STMs provide managers with a conceptual map of 

potential vegetation change after certain types of disturbance (Briske et al., 2005).  

Generally these can be evaluated using three methods: trend analysis, rangeland health 

assessment, and development of similarity indices (USDA-NRCS, 2015a).  Trend 

describes an ecosystem trajectory towards or away from a desired ecological state 

(Hernandez and Ramsey, 2013).  Indicators of rangeland health are qualitative 

interpretations performed by rangeland specialists who use the results to infer both the 

relative integrity and stability of rangeland systems as well as potential degradation 

(Pyke et al., 2002).  Similarity indices are used to compare an existing site to an 

undisturbed reference state described in an STM (Hernandez and Ramsey, 2013).  By 

interpreting rangeland sites with these methods, managers can make informed 

decisions about rangeland restoration that account for the current status of a given site 

relative to a more desirable and resilient goal state, and the management changes 

necessary to transition to that state (USDA-NRCS, 2006; Chambers et al., 2014).  
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Restoration methods that result in ecological resilience to disturbance and 

resistance to invasive species are central to achieving stability in a post-restoration 

environment (Chambers et al. 2014).  Chambers et al. (2014) described resilient 

ecosystems as being capable of regaining fundamental structure, processes, and 

function after system perturbation due to stress from drought, fire, over-grazing or 

other disturbance.  Chambers et al. (2014) also described ecosystem resistance being 

related to how well a system can retain its structure, processes and functioning despite 

disturbance or invasion from alien species. Resistance to invasion by non-native plants 

has been linked to both abiotic and biotic factors driving important ecological processes 

(D’Antonio and Thomsen, 2004).  These ecological processes are influenced by climate, 

weather, soils, topography and the floristic composition of a given plant community.  Of 

those attributes, weather is the most highly variable over the relatively short term and 

can have an over-riding influence on initial restoration success (Hardegree et al., 2012b).  

Climate is defined as the long term average of precipitation, solar radiation, wind 

speed, air temperature and humidity in a location or spatial domain (Hardegree, et al., 

2012a). Weather describes the same variables but for a much shorter period. Weather is 

the principle driver of seedbed microclimate and has primary effects on early 

establishment processes of seed germination, emergence, and seedling growth and 

development (Hardegree et al, 2012b).  Microclimatic patterns on the landscape reflect 

soil and plant community distributions and are correlated with a number of topographic 

variables such as slope, elevation and aspect (Jenny, 1941). 
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The Simultaneous Heat and Water (SHAW) model is a process-based model 

designed to estimate heat and water flux in the soil profile as a function of soil and 

surface properties, and surface weather inputs (Flerchinger, 2004).  SHAW has been 

used in several previous studies to characterize seedbed microclimate and subsequent 

seedling establishment response of sagebrush-steppe vegetation (Hardegree et al. 2003, 

2008, 2010, 2013; Flerchinger and Hardegree 2004; Flerchinger et al. 2012).  SHAW 

model inputs require site specific data such as soil type, slope, aspect, elevation and 

weather (Flerchinger and Saxton 1989a,b).  Weather is a critical driver of the model as it 

provides the temporal context for the simulation and is the source of the majority of 

microclimatic variability. Weather inputs for running the SHAW model include daily 

values for minimum and maximum air temperature, precipitation, solar radiation, dew-

point and average wind speed (Flerchinger, 2000). Model output includes soil moisture 

and temperature at seeding depth that can be used to drive hydrothermal models of 

seed-germination response (Hardegree et al., 2013). The magnitude of predicted 

germination response can be used to estimate general microclimatic site favorability for 

early establishment.  Species with high projected germination rates may be better 

suited to sites with short windows of seedbed favorability whereas species with lower 

rates may require more sustained levels of site favorability for establishment. 

Linking microclimate processes to weather and climate can significantly aid in 

understanding the ecological processes that determine successful establishment of 

desirable plant species after wildfire (Hardegree et al. 2012a). Restoration planners can 

use historical weather records to retrospectively assess the probability of success or 
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failure of a seeding project, and to better understand the restricted set of conditions 

necessary for successful plant establishment of desirable species (Hardegree et al., 

2012a).  A probabilistic description of the affects of climate on potential restoration 

success can then be used to design adaptive management strategies and contingency 

plans for longer-term restoration applications (Hardegree, 2012b).   

 

Study Area  

This study focuses on the 20,000 ha BFMA in the foothills north and east of 

Boise, Idaho.  This area extends from the City of Boise to the first major ridge north of 

the city, and from Bogus Basin road on the west to Lucky Peak reservoir on the east.  

This area is primarily Bureau of Land Management (BLM) land (4300 ha) but also 

includes land owned by the City of Boise (770 ha), the State of Idaho (4700 ha), and 

various private land owners (7450 ha).  This area has historically been used for grazing 

of sheep and cattle, but is currently primarily an open space recreational area for the 

City of Boise (Ada County, 2010).  The eastern portion of this area is a designated 

Wildlife Management Area and a principal migration corridor for native ungulate species 

(Ada County, 2010).  This area has burned multiple times in the last 150 years and is 

currently a patchwork of invasive annual weeds on more exposed southern slopes, and 

various native and non-native perennial plant communities on more protected northern 

slopes (Ada County, 2010).   A major concern in this area is the potential for catastrophic 

runoff and erosion events as in 1959 when major flooding and soil movement occurred 

after a large wildfire and subsequent thunderstorm events.  The most recent large scale 
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fire in the area was in 1996 when 5700 ha burned just north of Boise, followed by 

flooding and debris flows (City of Boise, 2015).  Multiple agencies spent $3.3 million 

focused on erosion and restoration of the burned area (City of Boise, 2015). As a result 

of large fires such as these, Boise City levied $10 million to fund land acquisition and 

invest in flood and erosion mitigation and rangeland restoration efforts in the year after 

the fire (City of Boise, 2015).      

 

    

Figure 1: Boise Front Management Area with Warm Springs Basin Highlighted 
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Thesis Organization   

 This research is described in four chapters.  The first chapter is the introductory 

material for the remaining thesis.  The second chapter focuses on developing a 

conceptual model to characterize environment variability in soil microclimate in an 

idealized topographic scenario that explicitly evaluates the effect of slope, aspect and 

soil type on seedbed temperature and water availability.  The potential effect of soil 

type and topographic position is evaluated using a bio-assay based on the predicted 

hydrothermal response of two native perennial grass species and cheatgrass.  This bio-

assay consists of calculated germination rate sums that provide a quantitative measure 

of seedbed microclimatic favorability for germination and early plant establishment 

(Hardegree et al., 2013).  Chapter 3 develops methodology to expand the topographic 

analysis to assign soil and topographic archetypes for classifying microclimatic and 

favorability indices for the BFMA spatial domain.  We also assess long-term local 

weather records and estimate hourly temperature and water potential at seeding depth 

for each soil/topographic category.  The model results are assessed for spatial and 

temporal variability in seedbed microclimate and for relative response of cheatgrass and 

native grass species to topography and soil type. In Chapter 3, we also classify soil 

polygons in a sample basin of the BFMA based on microclimatic rate sum indices using 

the processes described in Chapter 2.  We then use field data to classify current, post-

disturbance plant communities with regard to annual and perennial plant-community 

composition.  We use multi-temporal datasets derived from Landsat 8 Thematic Mapper 

(TM) imagery to map vegetation components and cover types for comparison with 
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calculated rate-sum indices for individual soil polygons.  We then use a random forests 

machine learning approach to assess the relationship between remotely sensed 

vegetation indices and hydrothermal indices for site favorability, and their relationship 

to currently mapped ESD distributions.  Chapter 4 assesses the limitations and 

assumptions in this analysis and proposes additional analyses, and potential applications 

of this modeling technology for rangeland restoration planning.    
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Chapter 2: Topographic and Soil Effects on Seasonal Distribution of 

Hydrothermal Conditions for Germination 

 

Abstract 

In this study we used seed germination rate as an index for assessing relative 

favorability of seedbed microclimate for cheatgrass (Bromus tectorum L.), bottlebrush 

squirreltail (Elymus elymoides [Raf] Swezey) and Idaho fescue (Festuca idahoensis Elmer) 

as a function of 25 topographic classes and four soil types (clay, sand, silt loam and 

loam).  We first parameterized the SHAW model with topographic, soil and weather-

input data to estimate soil temperature and water potential at seeding depth for a 30-

year historical simulation.  Hydrothermal germination rate models were then used to 

map relative favorability of seedbed microclimate as a function of soil type, topographic 

position, species and time of year.  Model results indicated a stronger topographic 

effect on seedbed favorability for cheatgrass than for the two native grasses. Results 

also indicated relative topographic and soil gradient favorability that are consistent with 

observed distributions of annual weed and perennial bunchgrass species in the BFMA.  

These relationships can be used in conjunction with ESDs to identify topographic and 

soil conditions that may be relatively more or less resilient to weed disturbance after 

wildfire.  
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Introduction 

Rangeland seeding guides typically acknowledge the importance of climate by 

listing species suitability for a given site as a function of mean annual precipitation 

(Jordan, 1981, Jensen et al., 2001; Ogle et al., 2008; Sheley et al., 2008).  These 

recommendations, however, are based on the climatic requirements for adult plant 

communities. The range of microclimate conditions necessary for seedling germination 

and early plant establishment are much more narrow (Call and Roundy, 1991; Peters, 

2000; Hardegree et al., 2003).  Topographic and edaphic complexity also impact 

hydrothermal conditions across rangeland landscapes (Seyfried, 2000a) and this 

complexity contributes to the discontinuous distribution of invasive species such as 

cheatgrass in areas of complex terrain (Bradley, 2009).  The patchy distribution of 

cheatgrass vs perennial plant communities is most likely a result of variability in 

available soil moisture as influenced by topography and soil texture (Geroy et al., 2011; 

Bullied et al., 2012; Moeslund et al., 2013; Smith et al., 2011).  Topography, specifically 

slope and aspect, influence the relative amount of solar input a given site receives under 

conditions that may otherwise have identical weather inputs (Flerchinger and Saxton, 

1989a), although different microclimatic conditions across the topographic landscape 

also impact soil development (Jenny 1941).  Relationships between soil type and 

topography have been previously correlated with the distribution of annual weeds and 

perennial bunchgrass communities in the western United States (Reisner et al., 2013).  

Chambers et al. (2014) attributed ecosystem resilience and resistance to weed invasion 

to rangeland systems with higher water availability and associated higher productivity.  
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Lower elevation areas with higher temperatures and lower precipitation may still have 

local microclimatic conditions that favor resistance and resilience due to the 

ameliorating effects of areas of local topographic convergence such as northern 

exposures on solar radiation input to the soil (Bullied et al 2012).   

Species and plant community distributions are highly correlated with average 

climate, but these relationships are primarily useful only at a very broad spatial scale 

(Shown et al. 1969; Shiflet 1994; Bradley and Mustard 2005; Vogel et al. 2005; Natural 

Resources Conservation Service 2006). Development of process-based models have 

helped significantly in understanding more local scale temporal and topographical 

variability in plant establishment rates  (Hardegree et al. 2013; Bullied et al. 2012).  A 

process for modeling near surface hydrothermal properties was outlined by Hardegree 

et al. (2003) using the SHAW model to provide input for estimating hydrothermal 

germination response. Bullied et al. (2012) also used the SHAW model to investigate 

germination and establishment response of crop species as a function of topographic 

position on the landscape.  Hardegree et al. (2013) suggested that germination rate 

sums could provide a quantitative bio-assay of general seedbed favorability for early 

plant establishment, but only evaluated temporal variability in seedbed microclimate.  

Hardegree et al., (2013) focused on assessing temporal variability in seedbed 

microclimate and germination response on only one soil type with no topographic 

considerations. In this study we extend the application of germination rate sums to 

quantify topographic variability in seedbed favorability as a potential index of site 

conditions that favor or disfavor dominance by annual weeds. 
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 The purpose of this study is to use a seedbed microclimatic model to assess 

topographic and soil variability in temperature and water potential as they might affect 

early establishment of perennial and invasive annual grass species.  We use the SHAW 

model which simulates soil temperature and water potential as a function of depth, soil 

and surface properties, as affected by the time-series of meteorological inputs 

(Flerchinger, 2012).  The SHAW model has been used extensively to characterize soil 

microclimate for multiple agricultural and natural resource applications including the 

interpretation of seedling establishment success in arid-land systems (Hardegree et al. 

2004, 2008, 2010, 2013) and to derive topographic effects on plant establishment in 

agricultural systems (Bullied et al. 2012). Along with topographic and soil texture data 

inputs for SHAW include precipitation, air temperature, humidity and wind speed 

(Figure 2). Soil microclimatic conditions are compared using a bio-assay based on 

hydrothermal germination response as described by Hardegree et al. (2013). Cheatgrass 

has been previously shown to germinate approximately twice as fast as the most rapidly 

germinating native perennial species (Hardegree et al. 2013).  The bottlebrush 

squirreltail accession used in this study represents the more rapidly germinating 

perennial species and Idaho fescue the more slowly germinating species evaluated 

previously by Hardegree et al. (2013). Four common soil types from the BFMA are 

evaluated for 25 topographic categories of slope and aspect relative to potential 

germination response of the two native perennial bunchgrasses and cheatgrass. In this 

study, we use germination rate sums (Hardegree et al. 2013) as an index for assessing 



15 
 

relative species performance as a function of topography and soil type for a 30 year 

weather record for the Boise location.  

 

Figure 2: Generalized Weather Interaction With The Landscape (Flerchinger, 2000). Output: T = Temperature, Ɵ = 

Water Content.  Input: T = Temperature, u = wind, h = Humidity, St = Solar Radiation, i = Precipitation.  

 

Methods 

The general methodology for the microclimatic simulation and estimation of 

germination rate sums is based on the procedure described by Hardegree et al. (2013) 

and Flerchinger and Hardegree (2004).  Modifications for this study include 4 soil types 

common to the BFMA, 8 aspect categories (in 45 degree increments) and 4 slope 

categories (0, 15, 30, 45%).  SHAW requires a number of parameter files to run including 

the initial conditions of soil temperature and  moisture as a function of depth, daily or 
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hourly weather inputs including air temperature, precipitation, wind speed, relative 

humidity or dew point, and solar radiation (Flerchinger and Saxton 1989a,b).  SHAW also 

requires knowledge of physical site characteristics including soil texture and bulk 

density, slope, aspect, and latitude (Flerchinger and Cooley, 2000).  Site effects on 

favorability for early plant establishment is determined by estimating hydrothermal 

germination response and calculating site-specific germination rate sums using the 

statistical-gridding hydrothermal model described by Hardegree et al. (2013). The 

specific species used to assess site favorability in this study are Idaho fescue, 

bottlebrush squirreltail and cheatgrass.   

We performed separate microclimatic simulations for each hydrologic year 

(October 1st to September 30th) of the 30 year study period.  Each simulation was 

initialized with primarily dry conditions starting on July 15th preceding the start of a 

given hydrologic year.  The initial starting date for each year was used to reduce 

variability caused by unknown initial soil conditions at the beginning of each annual 

simulation (Hardegree et al., 2013). Topographic simulations were based on weather 

records for the Boise Airport (43.5613 N, -116.2182 W) with an approximate elevation 

of 900m.  Average precipitation for this site is around 300 mm per year with annual 

temperature ranges of 17.2 to 4.3 C (WRCC, 2015).  Soil types were based on four 

common soils located in the BFMA (Table 1). Twenty-five slope and aspect categories 

were used to evaluate topographic effects on seedbed microclimate.  Slope categories 

were 0, 15, 30 and 45% which span the range of typical slopes in the BFMA.  Aspects 

were divided into 8 categories in 45 degree increments from north (0, 45, 90, 135, 180, 
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225, 270, 315), yielding 100 unique topographic and soil-type categories (Table 1 and 

Figure 4). Assumptions that were made were based on a generalized approach to the 

model. Since soil depth is highly variable and difficult to estimate surface textural 

profiles were assumed to be homogeneous with depth.  

 

Soil Bulk 

Density 

g/cm3 

% 

Sand 

% 

Silt 

% 

Clay 

Slope: 4 classes 

in percent 

Aspect: 8 Classes in degrees 

Clay 1.74 22 32 46 0, 15, 30, 45 0,45,90, 135, 180, 225, 270, 315 

Loam 1.18 35 45 20 0, 15, 30, 45 0,45,90, 135, 180, 225, 270, 315 

Silt Loam 1.51 26 55 19 0, 15, 30, 45 0,45,90, 135, 180, 225, 270, 315 

Sand 1.31 88 10 2 0, 15, 30, 45 0,45,90, 135, 180, 225, 270, 315 

Table 1: Soil bulk density, texture and topographic categories used for analysis. 
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Figure 3: Spatial Pattern Used To Map Model Output Distribution. Numbers represent Slope and Aspect. Flat slopes 

are in the center and steeper slopes are on the outer ring.  

Hydrothermal Germination Model 

The SHAW modeling procedure yielded soil temperature (ΕC) and water 

potential (MPa) estimates at seeding depth (2 cm) for every topographic and soil 

category for every hour of the 30-year simulation.  Hourly SHAW estimates of soil 

temperature and water potential were used as input to drive the hydrothermal 

germination response models described by Hardegree et al. (2013) for the three test 

species.  These hydrothermal germination models apply a statistical-gridding procedure 

to estimate germination rate of all of the seeds in the population as a function of water 
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potential and temperature conditions during a given hour of the simulation (Hardegree 

et al. 2013, 2015).  We selected the 25th percentile of seeds as representative of the 

most vigorous seeds within a given population.  We estimated hourly germination rate 

for each hour of the simulation for the 25% seed subpopulation, and also estimated 

aggregated germination rates at the daily, monthly, seasonal (winter, spring) and annual 

(hydrologic year) time step (Hardegree et al. 2013).  Aggregated rate sums of this type 

represent the overall seedbed favorability during a given time period and provide a 

quantitative index for comparison of years, seedlots, and relative germination response 

as a function of slope, aspect and soil type (Hardegree et al., 2013). 

 

 

Rate Sum Index and Interpretation 

Germination rate (25%) was estimated for each species and for each hour of the 

simulation for every topographic and soil category.  Hourly germination rates represent 

the fractional progress per hour towards germination for the specified subpopulation 

(Biedenbender and Roundy 1996; Hardegree and Van Vactor 2000). The Rate Sum Index 

(RSI) is the cumulative aggregate rate summation over a particular time period and also 

represents the estimated germination progress of a given subpopulation over a 

specified time period.  An RSI score of 1 represents full germination of a given 

subpopulation. The RSI value also represents the number of times a given subpopulation 

would be expected to germinate if the identical subpopulation were replanted 

immediately after seeds from the previous planting germinated.  RSI is, therefore, a bio-
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assay of relative site favorability for a given location and time period.  For example if a 

characterized topographic condition had an RSI of 1 then that microclimate was 

sufficiently favorable for that specified subpopulation to germinate once. Subsequently 

a rate sum of 2 or 3 would indicate there would be 2 or 3 opportunities to germinate in 

that time frame.  Conversely if a given site never achieves a rate sum of 1 than the RSI 

would indicate insufficient favorability for that species to germinate during that period 

of time. The RSI only reflects a probable favorability or lack thereof for a given species 

based on temperature and water potential and does not account for other factors that 

influence germination (Hardegree et al., 2013).  

 

Analysis of the Model 

Given the complexity of the model and potential range of outputs, a generalized 

regression approach was used to identify RSI patterns as a function of topographic and 

soil variability.  We focus on differences in model estimates of RSI as distributed 

throughout an averaged year and across individual months, topographic units, soil 

types, and species.  We evaluated differences in RSI as a function of 25 slope and aspect 

categories, four soil types and the three species.  A Generalized Linear Mixed Effects 

ANOVA was used to evaluate main factor effects and a Tukey’s Studentized Range Test 

was used to evaluate significant differences among factors.  Since we are investigating 

general patterns of species’ response we focus on the 25% subpopulation of each seed 

lot in these analyses.  To address the temporal context, we classified seasonal effects by 

dividing each year into 3-month periods and for purposes of this analysis’ defined winter 
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as December, January, and February; spring as March, April, and May; summer as June, 

July and August, and fall as September, October and November.  The distribution of rate 

sums throughout the year was predicted for each topographic category and each soil 

type.  The general work flow for modeling and analysis is represented in Figure 4.  

 

Figure 4: General flow of combined SHAW and Hydrothermal Germination Model (SHMODEL) 

 

 

 

 

Results 

There were four class variables used in the ANOVA; the 4 soil types, the 3 species, 25 

topographic categories and 12 months over 31.145 years of climate data.  Total number 

of RSI observations was 112,122.  The adjusted R2 was 0.61 with a RMSE of 0 .13. The 

degree of freedom was 95%, and each class was significantly different from each other. 

The Tukey’s Honest Significance Difference (HSD) test was used to identify the 

significance of individual class similarities and differences. 
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Soils 

Inter-soil comparisons indicated significant differences between clay and sand but 

not between loam and silt-loam (Table 3).  Figure 5 shows RSI values for each month to 

reflect overall average annual patterns throughout the 31 year simulation. The highest 

rate sums occurred in the spring with the fall period providing the next highest period of 

germination favorability (Figure 5).  Of the four soils clay had the highest RSI value for 

every month (Figure 5).  The loam had the second highest RSI values in the spring and 

had equal to slightly better RSI than silt loam in the fall.  Sand provided higher RSI values 

than both loam and silt loam in the fall but gradually fell below loam and silt-loam in the 

spring. 

 

 

Figure 5: Average Monthly RSI Values Of All Species By Soil Type With Standardized Error Bars. Winter = December 

to February, Spring = March to May, Summer = June to August, Fall = September to November.  

Tukey’s Studentized Range HSD Test For Soils     
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Error Degrees of Freedom 108522 

 

  

Error Mean Square   0.015855 

 

  

Critical Value of Studentized Range 3.6332     

Comparisons significant at the 0.05 level are indicated by ***   

  Difference 

  

  

Soil Between Simultaneous 95%   

Comparison Means 

Confidence Limits 

Upper and Lower   

clay-sand 0.029769 0.027028 0.03251 *** 

clay-silt-loam 0.036467 0.033743 0.039192 *** 

clay-loam 0.037255 0.03453 0.039979 *** 

sand-clay -0.029769 -0.03251 -0.02703 *** 

sand-silt-loam 0.006699 0.003958 0.00944 *** 

sand-loam 0.007486 0.004745 0.010227 *** 

silt-loam-clay -0.036467 -0.039192 -0.03374 *** 

silt-loam-sand -0.006699 -0.00944 -0.00396 *** 

silt-loam-loam 0.000787 -0.001937 0.003512   

loam-clay -0.037255 -0.039979 -0.03453 *** 

loam-sand -0.007486 -0.010227 -0.00475 *** 

loam-silt-loam -0.000787 -0.003512 0.001937   

Table 2: Differences in Soil Types as modeled by Tukey’s Studentized Test 
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Species 

RSI values for each species were relatively consistent between soil types and 

temporal periods.  The Tukey’s Studentized Range Test indicated no significant 

difference (F = 0.0022) between the three species tested (Appendix A, Table 4). In Figure 

7 each species is being used to represent patterns of peak germination for all soils 

throughout seasonal units. Cheatgrass had higher rates than both squirreltail and Idaho 

fescue.  Idaho fescue had the lowest rates of all the species.  The spring period was 

consistently more optimal for each species with fall having the second highest rates 

(Figure 7).  Both winter and summer had relatively low rates compared to the other 

seasons.  

 

Figure 6: Overall Specie Performance By Soil And Season.  
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Temporal Patterns 

 

 

Figure 7: Range Of Monthly Mean Differences Of RSI Values. Months Are Represented Numerically For A Calendar 

Year on the X-Axis. 

Temporal differences varied by month with some periods having similar RSI 

values to others. June typically had similar rates to October and November and 

December and January were similar to each other as a result of each species having 

lower germination rates.  Trends for these periods differed however for the spring and 

fall periods with October and April being the most different from each other (Figure 7).   

 

Topographic Patterns 

Spatial patterns of species distribution varied the most for cheatgrass and less so 

for the two perennial grasses (Figure 8). Figures 8 and 9 are representing Silt loam, 

which is being used to represent the four soils. Figures 8, 10, 12, and 14 reflect the fall 

and spring topographical distributions of RSI from a top down view. Figures 9, 11, 13, 

and 15 are representing RSI values for Fall and winter as they trend up and down slopes. 

Fall RSI values were typically higher in south west facing aspects while switching to 

having higher rates occurring mostly in the north east aspects in the spring (Figures 8, 

10, 12, 14).  Cheatgrass rates were typically twice as high as squirreltail and three times 
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as high as Idaho fescue (Figure 6).  Cheatgrass RSI values were highest on clay soils and 

lowest on sandy soils (Figure 6). Cheatgrass also had the highest variability for all soil 

types along topographic categories (Table 3 and Figure 8).  Squirreltail and Idaho fescue 

had lower variability than cheatgrass among all topographic categories (Figure 6).  In the 

spring period all three species had higher rates across topographic categories in clay, 

loam and silt loam and less so in the sand (Figures 9, 11, 13, 15).  In the fall period sand 

outperformed silt-loam and loam particularly in the south facing aspects (Figure 8).  

Squirreltail and Idaho fescue were less responsive to topography in the spring when soil 

moisture and temperature are less prone to rapid fluctuation in temperature and 

moisture (Figures 9, 11, 13, 15).  Idaho fescue was less responsive overall to topography 

and favored southwest clay soils in the fall only slightly more than the other soils. 

Overall, the variance in topographic effects for the perennial species was less important 

than it was for cheatgrass which had a stronger response to topography in all soils 

(Figures 9, 11, 13, 15).  
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Figure 8: Example Of Topographic Patterns For RSI Values of all 3 Species In Silt Loam. FEID = Idaho Fescue, ELEL = 

Squirrel Tail, BRTE = Cheatgrass. From center of the rings Slopes range from 0, 15, 30 and 45% 

 

Figure 9: Comparison Of Rate Sum Index (RSI) Between Spring And Fall Periods In Clay Soil. X-Axis Indicates Slope – 

Aspect Categories, I.E. 15% Slope – 315 Degree Aspect.  

Figure 8 and 9 provide examples of the topographical distribution observed for 

RSI across the 25 categories used in the study.  All soils responded similarly and in 

proportion to their soil type as observed in Figures 5 and 6.  Spring and fall were plotted 
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and summer.  Spring RSI had higher rates toward the northeast aspects along increasing 

slope angles (Figures 7, 9, 11, 13). The opposite pattern occurred during the fall when 

rates were lower but tended to be higher in southwest slopes (Figures 9, 11, 13, 15).  

Cheatgrass had the most distinctive response to topography with the highest variance 

relative to topography for all soil types. Squirreltail also responded more significantly 

than Idaho Fescue to topography but with proportionate RSI values.  Idaho fescue had 

the lowest response to topography relative to both cheatgrass and squirreltail.   

Discussion  

 The use of climate information in rangeland restoration planning has been 

primarily applied to the process of site-appropriate species selection.  Annual 

precipitation values generally guide managers in determining appropriate plant 

materials for a given location (Jensen et al., 2001; Ogle et al., 2008).  The timing of 

planting is also generally selected to occur prior to the principal season of precipitation 

with fall being the most common planting period in the Great Basin (Roundy and Call, 

1988).  Planting in the fall is primarily done for logistical reasons, but allows the seeds to 

take advantage of all potentially favorable periods of growth and establishment in the 

subsequent winter and spring (Monson and Stevens, 2004). 

Improving seedbed microclimate is the primary rationale for most site 

preparation treatments used in rangeland seeding (Hardegree et al., 2011).  Planting 

treatments are focused on optimizing seedbed temperature and moisture conditions 

and providing safe sites for germination and establishment (Call and Roundy, 1991; 

Krueger-Mangold et al. 2006).  Seeding strategies also emphasize reducing resource 
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competition with undesirable weed species that would otherwise inhibit successful 

establishment (Sheley et al. 2006).  Managers selecting among alternative site 

preparation and planting treatments, however, do not generally consider microclimate 

differences as a function of slope and aspect, although they do make decisions based on 

equipment access in areas of complex terrain.  Individual seedbed treatment 

effectiveness may not be as significant in periods when moisture is generally available, 

or conversely when climate conditions are so poor that all treatments are ineffective 

(Wood et al. 1982; Eckert et al. 1986; Roundy et al. 1992).  

This study highlights the spatial and temporal variability in seedbed microclimate 

and site favorability for plant establishment as a function of soil type, topography, and 

species.  Hardegree et al. (2013) also demonstrated high variability in precipitation 

among both individual seasons and years for similar field sites near the BFMA location.  

These data highlight the extreme spatial and temporal complexity in these systems and 

the degree to which generic management prescriptions may ignore important 

microclimatic differences over space and time. Whereas Hardegree et al. (2013) 

highlighted impacts of weather variability, this study extends that point by considering 

topography and soil type. By considering topographic effects on seedbed microclimate 

we can potentially quantify site characteristics that yield resistant and resilient plant 

communities and account for high local variability in plant community structure and 

restoration success in areas of complex terrain. 

Soil texture has a significant impact on germination rate and site favorability, but 

this impact varies throughout the year (Figure 6).  All soil performed similarly relative to 
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each other among topographic categories in terms of general seasonal pattern and 

seedlot response.  Clay soil provided better site favorability in general throughout the 

year.  Sandy-soil site favorability was more variable among different seasons than the 

other soils tested.  Sand favorability was relatively higher than for the loam and silt loam 

soils in the fall but relatively lower in the spring.  Though sand had relatively high 

seasonal RSI values in the fall, it generally generated lower cumulative RSI values overall 

when compared to the other soil types.  Loam and silt loam soil types performed 

similarly to clay throughout the year with higher rates in the spring and fall.  Coarse soils 

have a higher rate of thermal conductivity than fine grain soils, along with higher matric 

potential during wet periods (Abu-Hamdeh and Reeder, 2000).  Species such as 

cheatgrass with high germination rates are likely better suited to taking advantage of 

these conditions during favorable periods of soil water availability.  

Cheatgrass also exhibited higher RSI values in soils and topographic areas where 

it is not typically observed to dominate in the field (Zouhar, 2003; Reisner et al., 2013).  

This indicates that despite a high germination rate potential in north and north east 

aspects in the spring, there are other factors contributing to their observed lack of 

dominance in these topographic categories.  Regardless, cheatgrass seems to dominate 

in the most stressful topographic locations.  This may partially result from its ability to 

germinate rapidly in what are relatively short windows of opportunity on southern 

exposures, and by having relatively large seed numbers that can absorb the higher 

mortality rates in these areas.  Squirreltail and Idaho fescue produced much lower 

relative RSI values in sandy soils that tend to also dominate on southern exposures. 
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 In the BFMA as in other study areas, cheatgrass tends to dominate in south and 

south west aspects and on sandy soils (Zouhar, 2003; Reisner et al., 2013).  Higher 

germination rates in Clay and Loam soils may also be more favorable microclimates for 

subsequent growth and development, and yield more resilient and resistant plant 

communities in general. This pattern is similar to trends proposed for higher elevation 

and higher precipitation sites (Chambers et al., 2013).  This study presents idealized 

categories of topography and soils that may not realistically describe actual topographic 

and soil distributions across the landscape. For example the soil texture and depths are 

assumed to be consistent for each topographic category. Practical application of these 

results must take into account the actual distribution of soil types and slope and aspect 

categories in the BFMA.  In this study, RSI values were highest in north east aspects, but 

only a small percentage of the areas in the BFMA are in this topographic category.  The 

majority (67%) of the topographic categories in the BFMA occur on southern aspects 

within the study domain with aspects between 135 and 270 degrees (Figure 17).  

Northern aspects with higher RSI values occur on only a third of the region of interest.  

Cheatgrass had a higher sensitivity to topography than either squirreltail or Idaho 

fescue, therefore, germination rates for cheatgrass in these soils likely peak in the fall 

rather than the spring due to the predominance of southern aspects. Squirreltail and 

Idaho fescue might respond similarly but are more likely to germinate over a longer 

period and be less dependent upon topography and more so on soil type.   
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Figure 16: Aspect Distribution in the Boise Front Management Area. 

It should be noted that our model simulations ignore a number of biotic and 

abiotic factors that might also affect germination and emergence in the field (Egli and 

TeKrony, 1996; Beckstead et al., 2007).  We believe, however, that the simplified field 

status of post-fire seedbeds in this region are very similar to the type of conditions 

simulated in this study and that our simulations capture the major influences of 

seedbed temperature and moisture on seed germination, early establishment and 

growth.  The hydrothermal models for each species have been extensively tested in lab 

studies that simulate the range of potential thermal conditions that effect cumulative 

germination response in the field (Hardegree et al., 1999; Hardegree, 2006a,c).  It is 

more difficult, however, to simulate variable-water potential effects in the laboratory 

that adequately reflect field conditions (Hardegree, 2013).  Progress toward germination 

has been shown to largely occur during favorable periods of low water stress and 
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moderately suboptimal temperatures (Hardegree, 2003).  Roundy et al. (2007) and 

Rawlins et al. (2012) have used this observation to simplify the hydrothermal modeling 

approach and were able to obtain reasonable predictions for field germination 

responses considering only thermal response above a threshold value of water 

availability.  Roundy et al. (2007), James et al. (2011) and Boyd et al. (2013) noted that 

relatively complete germination generally occurs in most years for non-dormant species, 

and that the principle bottleneck for seedling establishment is post-germination 

mortality before emergence.  We believe that these studies validate the relationship 

between seedbed microclimate and germination response, however, and that predicted 

germination response and RSI values provide a valuable bioassay for characterizing the 

general favorability of seedbed microclimate for both germination and subsequent 

growth and establishment of rangeland plant species.  Separate analyses should be 

pursued, however, to identify the distribution of episodic periods of potential mortality 

from post-germination freezing and drought (James et al., 2011; Boyd and Lemos, 2013).     

Model results indicated a stronger topographic effect on seedbed favorability for 

cheatgrass than for the two native grasses. The relative topographic and soil gradients 

favorability are consistent with observed distributions of annual weed and perennial 

bunchgrass species in the BFMA. These relationships can be used in conjunction with 

ESDs to identify topographic and soil conditions that may be relatively more or less 

resilient to weed disturbance after wildfire. ESDs for soils in the BFMA could include RSI 

as supplemental information for quantifying the level of management required to 

facilitate restoration after a fire. A loamy or clay soil with a high RSI value for multiple 



34 
 

species would indicate a higher probability for seeding success. Whereas low RSI values 

for south facing sandy soils would indicate that state transitions between undesirable 

and desirable plant communities would be more difficult and seasonally dependant.   

Conclusion 

This modeling approach provides a method for understanding the distribution of 

seedbed favorability for plant growth and establishment in complex terrain.  We believe 

that these tools may provide a quantitative description of topographic effects that are 

similar to elevational and associated precipitation differences that have been shown to 

be correlated with ecological resilience and resistance to annual weed dominance 

(Chambers et al., 2013).  Precipitation variability is a primary driver for seedbed 

microclimate but characterization of precipitation alone does not describe the variability 

in plant community distribution generally seen in areas of complex terrain.  In this study, 

we used a hydrothermal based rate sum index as a quantitative value for assessing the 

relative distribution of favorable seedbed microclimate as a function of soil type, slope 

and aspect.  Rate sum values can be used to understand potential species performance 

in complex terrain, but also inform us about topographic patterns of potential resilience 

and resistance to weed invasion.  RSI indices can also be used to quantitatively evaluate 

historical establishment success and failure, and potential climate change effects on 

seedbed microclimate and potential restoration.  As a quantitative index, species-

specific rate sums may also provide a feasible means to determine potential pathways 

between ecological states, and to inform economic assessments of alternative 

restoration strategies.     
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Chapter 3: Application of RSI Model as an Assessment Tool for Resistance 

and Resilience 

Abstract 

We evaluated the relationship between the Rate Sum site favorability Index and 

vegetation state in the Boise Front Management Area as an index of site resilience and 

resistance to invasive weeds.  We used remotely sensed vegetation data and ground 

surveys to determine whether the current distribution of Ecological Site Descriptions is 

correlated to potential seedbed microclimates for perennial and annual plant species as 

a function of topography, elevation and soil type. We used a stepwise regression 

approach to determine if the vegetation distribution was related to modeled Rate Sum 

Index values within the watershed. The overall correlation was highest for perennial 

cover estimates but tended to be low (R2 = .31) likely as a result of insufficient validation 

points for the vegetation cover estimates. Seedbed modeling and assessment of relative 

site favorability for perennial plant establishment can be useful in designing weather 

and microclimatic supplements for ESDs, and quantifying transition probabilities 

between alternative vegetation states.  These tools will support more effective 

restoration strategies for weed affected rangelands throughout the Intermountain 

region. 

Introduction 

Ecological Site Descriptions (ESDs) and related State and Transition Models 

(STMs) are primary references for restoration management planning in the western 

United States (USDA-NRCS, 2015a; Westoby et al., 1989).  ESDs provide information 



36 
 

about the structure, composition, and dynamics of plant communities within mapping 

units consisting of a homogeneous soil type (Moseley et al., 2010).  ESDs represent 

distinctive land types with specific physical and biotic characteristics that differ from 

other kinds of land and that respond in their own distinct manner to natural or artificial 

disturbance (Bestelmeyer and Brown, 2010).  Corresponding State and Transition 

Models associated with a given ESD provide alternative vegetation scenarios that might 

occur at a given site based on disturbance history and/or management (Briske et al., 

2005).  

Ecological Site Descriptions provide critical information on the ecological 

processes underlying potential restoration strategies but landscape disturbances such as 

wildfire generally occur at multiple orders of magnitude greater scale than is typically 

described by a soil polygon or ESD boundary (USDA-NRCS, 2015b; Westoby et al., 1989).  

Remote sensing and the ability to classify ecological processes across the landscape are 

essential for development of cost effective rangeland restoration applications at the 

management scale (Willis, 2014; Hernandez and Ramsey, 2013).  Remote sensing of 

ecological indicators is relatively non-invasive, provides quantitative data, and is 

applicable over a large range of spatial and temporal scales (Wiens et al., 2009; Crabtree 

et al., 2009; Cook and Hockings, 2011).   

Remote sensing has been used previously to estimate the current vegetation 

state within a given ESD (Ramsey and Hernandez, 2013).  Ramsey and Hernandez (2013) 

also used a remotely sensed Soil Adjusted Vegetation Index (SAVI) as a way to perform 

trend analysis and to assess alternative state conditions among similar ESD boundary 
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locations.  Remote sensing has also been used in numerous studies to validate and 

improve environmental models (Maas, 1988; Knight et al., 2006).  Typically these 

approaches use various environmental indices and ground validation data to classify 

plant and soil conditions within a given area and compare the results to predictive 

model data (Maas, 1988).  Mitchell et al. (2015) combined multiple spectral indices 

derived from hyperspectral satellite observations and ground validation to yield 

estimates of ground cover using a machine learning methodology referred to as random 

forests (Breiman, 2001).  Random forests analyses have proven useful in other studies 

for determining optimal indices for comparison of alternative ecological models 

(Ramsey and Hernandez, 2013; Immitzer et al., 2012; Mellor et al., 2013).    

Existing ecological states can transition to other states either through naturally 

occurring successional processes, or more rapidly after disturbance (Briske et al., 2005).  

Trend analysis of alternative ecological states (Ramsey and Hernandez, 2013) can also 

provide information about relative ecological resilience and resistance to weed invasion 

in a given location (Chambers et al, 2014).  Chambers et al. (2014) defined ecological 

resilience relative to the amount of time it would take for an ecosystem to return to an 

initial condition after disturbance.  Chambers et al. (2014) indicated that in cold desert 

shrub plant communities, increased elevation and precipitation along with decreasing 

soil temperatures are correlated with improved ecosystem resilience and resistance to 

invasion by introduced annual grasses such as cheatgrass.  We propose that generalized 

soil temperature and precipitation gradients oversimplify spatial patterns of soil 

temperature and moisture and that microclimatic modeling at a finer spatial scale could 
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be used to account for topographic and soil variability as it might affect ecological 

resilience and resistance.   

 Successful restoration after wildfire disturbance is dependent on favorable soil 

temperature and water availability in the seedbed during critical periods of plant 

establishment (Hardegree et al., 2003).  Seedbed microclimate is affected by local 

weather and elevation gradients of precipitation and temperature, but also by 

topographic position on the landscape and soil type (Thornton et al., 1997; Bullied et al., 

2012; Hardegree et al., 2012).  Reisner et al. (2013) indicated that there are soil, 

topographic and climatic conditions that favor annual grass dominance and Chambers et 

al. (2014) linked general landscape gradients of precipitation and temperature to 

ecosystem resilience and resistance to weed invasion.   

 The purpose of this chapter is to evaluate both local topographic and soil effects 

on seedbed microclimate, as well as elevational effects on precipitation and 

temperature inputs within the Warm Springs Basin (WSB) test domain of the Boise Front 

Management Area (Figure, 17).  Given the long-term disturbance history of this area, we 

suggest that existing plant community distributions represent the current status of 

ecological resilience and resistance to weed invasion, and that these patterns are 

consistent with long-term patterns of variability in seedbed microclimate.   

In the previous chapter of this thesis, we explored topographic and soil effects 

on seedbed microclimate and how they might influence the relative establishment of 

two perennial bunchgrass species and cheatgrass.  The specific objectives in this chapter 

are to use remote sensing and ground measurements to characterize perennial and 
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annual plant distributions; estimate the actual distribution of topographic and soil 

variability at a landscape-management scale; evaluate the spatial distribution of 

seedbed microclimate and potential establishment response; and determine the extent 

to which microclimatic seedbed characteristics are linked to existing vegetation and 

ecological states in the Boise Front.  We use similar modeling techniques to those 

presented in the previous chapter to assess whether RSI can serve as an effective 

bioassay for classifying vegetation communities for potential resilience and resistance to 

weed invasion in landscapes that are frequently disturbed by wildfire.  We propose that 

this information could then be used to enhance ESD information for restoration 

management planning by quantifying microclimatic site characteristics that are 

correlated with ecological resilience and resistance.  

 

Figure 17: Warm Springs Basin within the BFMA. 
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Methods: 

Study Area 

The Warm Springs Basin (WSB) is a representative sub basin of the Boise Front 

Management Area (BFMA) north and east of Boise, Idaho (Figure 18). WSB is located at 

43.67 degrees and -116.15. The basin encompasses 1327 ha with an elevation range 

from 900m in the lower foothills to 1700m at Lucky Peak. WSB is predominantly a 

westerly facing basin with equal percentages of north and south facing slopes.  

Ecological Sites in WSB fall mainly within Natural Resources Conservation Service (NRCS) 

Major Land Resource Area (MLRA) 10 (NRCS, 2006).  The soils are clayey to fine loamy in 

lower elevations and fine loamy to coarse loamy as slope and elevation increase. Soils 

tend to fall between mesic and xeric moisture regimes with big sagebrush (Artemisia 

tridentata Nutt.) and antelope bitterbrush [Purshia tridentata (Pursh) DC.] shrub 

communities associated with bluebunch wheatgrass [Pseudoroegneria spicata (Pursh) ; 

Löve, Sandberg bluegrass (Poa secunda J. Presl) and Idaho fescue (Festuca idahoensis 

Elmer) in the understory (NRCS, 2006).  These native species are the principle vegetation 

components of State 1 or Reference State for the STMs in the BFMA (Figure 18).  The 

vegetation components of State 2 in the BFMA are primarily annual grasses with 

Sandberg bluegrass and root sprouting shrubs (Figure, 19; NRCS, 2006).  Soils are various 

combinations of sand to sandy loam, loamy, clay loam and clay with shallow skeletal 

soils dominating above 1300 m and deeper soils below 1200m (NRCS, 2015b).  
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Figure 18: Sample State and Transition Model for Loamy ESDs in MLRA 10. 

A process for determining land cover variability using remote sensing was 

applied with a focus on distinguishing perennial and annual dominated grass 

distributions by incorporating time series data, and multiple vegetation indices (Bradley 

and Mustard, 2005; Willis, 2015; Mitchell et al., 2015).  This effort used Landsat 8 

Thematic Mapper (TM) data to characterize vegetation patterns across the landscape as 

high resolution imagery tends to produce more accurate cover estimates (Willis, 2015).  

The Landsat 8 platform provided the most recent series of satellite imagery for the Boise 

Foothills with time series information extending from April 2013 to present (Glovis, 

2015).  Scene selection for this study focused on 2014 using Landsat 8 TM paths 41 and 

42 and Row 30.  Landsat 8 scenes were processed for the purpose of identifying relevant 

variables that relate to vegetation cover (Table 5).  Vegetation index selection was 

based on indicators that are able to address cover variables such as vegetation type, soil 

composition, soil moisture and soil temperature relationships.  

Preprocessing of each Landsat 8 scene is performed using Google Earth Engine. 

As part of the Landsat 8 preprocessing steps each image was calibrated for top-of-
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atmosphere reflectance. Target variables used in this study were categorized into cover 

types and species types. Predictor variables used in this study were extracted from 

Landsat 8 imagery using scenes from Rows 41, 42 and Path 30 with the GloVIS program 

(Glovis, 2015).  A total of 39 scenes were identified but 12 were of any used based on 

cloud cover.  Each photo point was used as a reference for selecting target pixels to be 

used in the classification.  A “Grab-All” script was used to select pixels from each 

Landsat 8 scene within 1m of each photo point. These points were extracted to a table 

from which band math was applied to produce a range of vegetation indices that are 

related to identifying vegetation cover (Appendix A, Table 7).  The final comparison 

incorporated 12 scenes with 15 reflectance bands and vegetation indices per pixel were 

associated with 190 points.  Target classes used as target variables were based on cover 

type: annual, perennial, bare ground, and shrub. Species specific categories were also 

considered as target variables. Remotely sensed values used in the analysis are listed in 

table 8and topographic variables were used as predictors. A default of 500 bootstrap 

iterations was used.  

Vegetation indices used in analysis 

Index Formulation (R = reflectance, wavelengths in nm) 

NDWI2 NDWI = (NIR - SWIR) / (NIR + SWIR) 

L8 Band 1 Deep Blue 

L8 Band 2 Blue 

L8 Band 3 Green 

L8 Band 4 Red 

L8 Band 5 Near Infrared (NIR) 

L8 Band 6 Mid Infrared (MIR) 

L8 Band 7 Shortwave Infrared (SWIR) 
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L8 Band 8 Panchromatic 

SAVI SAVI = ((NIR - Red) / (NIR + Red + L)) x (1 + L)       

NDVI NDVI = ((NIR - Red)/(NIR + Red)) 

MSI MSI = PMIR + PNIR 

GEMI GEMI=eta*(1-0.25*eta)-((Red-0.125)/(1-Red)) 

 

eta=(2*(NIR2-Red2)+1.5*NIR+0.5*Red)/(NIR+Red+0.5) 

GVI 

GVI=-0.2848*Band1-0.2435*Band2-

0.5436*Band3+0.7243*Band4+0.0840*Band5-1.1800*Band7 

MSAVI2 MSAVI2 = (1/2)*(2(NIR+1)-sqrt((2*NIR+1)2-8(NIR-Red))) 

PVI PVI=(NIR-a*Red-b)/(sqrt(1+a2))  

TSAVI TSAVI=(s(NIR-s*Red-a))/(a*NIR+Red-a*s+X*(1+s2)) 

Table 5: Indices Used in the Random Forests Cover Classification. L = 0.5, a = slope of the soil line, b =gradient of the 

soil line.  

Field Sampling 

Field sampling was conducted in late May and early June of 2014. Sample 

locations were determined using a stratified random sampling approach where 20 

points were created for each soil polygon in the study area. The objectives for the field 

sampling were to capture as much diversity within each polygon as possible.  Field 

samples consisted of photo points taken 2m above the surface as close to nadir as 

possible using a photo pole and a leveling bubble.  Each photo was taken using a Nikon 

Coolpix 16 megapixel GPS enabled camera.  Photos were processed using Sample Point 

software which was developed to classify vegetation based on a digital image (Crimmins 

and Crimmins, 2008).  Photo point analysis focused on identifying specific grass species 

along with describing significant forb and shrub components. Soil and rocks were 

lumped together as bare ground.  Plant litter was predominately from annual grass 

mortality and was composed principally of cheatgrass (Bromus tectorum L.), 
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medusahead wildrye [Taeniatherum caput-medusae  (L.) Nevski], 6-week fescue [Vulpia 

octoflora (Walter) Rydb.] and annual forbs.  The dominant perennial litter was either 

bulbous bluegrass (Poa bulbosa L.) or Sandberg bluegrass (Poa secunda J. Presl).  Each 

photo point was then classified based on dominant cover type.  

Random Forests 

The purpose of classifying the units into discrete Soil Mapping Units (SMUs) was 

to provide a structure in the data from which RSI could also be derived and also from 

which to compare to the current land cover. Vegetation cover classification was 

performed using random forests (Salford Predictive Modeler Software Suite version 7, 

Salford Systems, San Diego, CA) to determine which target variable derived from the 

field data best matched predictor variables produced from Landsat 8. We chose the 

random forests technique for its accuracy in ecological applications, automatic variable 

selection, and generation or an internal unbiased estimate of the generalization error 

(Breiman, 2001; Cutler et al., 2007).  Advantages with random forests are that it 

provides the ability to determine the over-all importance of each variable in the decision 

tree model. Random forests is well suited to this due to its production of variable 

importance plots. Random forests use bootstrap sampling of datasets to “fit” the 

classification tree. Observations not include in the bootstrap sample are called out-of-

bag observations. Each fitted classification tree is then used to predict the “out-of-bag” 

observations (OOB). Cross-validation is calculated using the out-of-bag observation to 

provide an R2 derived from the OOB accuracy. This process is repeated until a final 

classification with cross-validation accuracy is produced.  
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RSI Model Development 

ESD units are typically characterized in soil map units (SMUs) outlined by NRCS in 

the Soil Survey Geographic database (SSURGO) (USDA-NRCS, 2015b).  Site specific ESD 

information is linked to individual components within SMUs and can be extracted from 

the SSURGO database (USDA-NRCS, 2015b).  Each SMU can contain multiple 

components with associated ESDs. For subsequent modeling, only the largest of each 

component was used in the comparison.  Soil parameter values necessary for running 

the SHAW model were extracted from the SSURGO database and appended to a primary 

reference table.  Each SMU within the WSB was used as a bounding unit for each SHAW 

and hydrothermal model run.  Bulk density and soil texture were extracted from the 

SSURGO database for the area of interest and appended to the input table.  Slope, 

aspect and elevation for each polygon were obtained from a 10m DEM obtained from 

Inside Idaho (2015).  WSB contained 63 individual SMUs that were modeled in this 

study. A look up table was developed using Arcmap Model Builder to provide a table 

with SMU specific inputs to be used by SHAW (Table 5).  A Statistical Analysis Software 

(SAS; SAS Institute, Inc.) routine was used to create input files for each SHAW run with 

polygon-specific soil temperature, site and input files (Flerchinger et al., 2012).  The 

initialization point for soil water content for each model run was estimated to be at a 

water potential of -1.5 MPa (Abu-Hamdeh and Reeder, 2000).  Initial-condition soil-

temperature values were estimated using air temperature from the previous two weeks 

before the start of each model run (Hasfurther et al., 1972).  Starting time for each 
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model run was July 15 of each year which allowed for 2.5 months for the model run to 

normalize (Flerchinger et al., 2013).  Seedbed microclimate model runs were made for 

each year of a 31 year weather scenario in each polygon for the period Oct 1980 to Sep 

2011 following the procedures described in the previous chapter.     

Climate input data for the simulations were obtained from a combination of 

DAYMET and METdata (Thornton et al., 1997; Abatzoglou, 2013).  DAYMET provides 

1km gridded climate coverage of the lower 48 United States and certain parts of 

southern Canada and northern Mexico (Thornton et al., 2012).  DAYMET data contains 

precipitation, solar radiation, air temperature and humidity (Thornton et. al., 2012). 

Wind speed data is derived from the METdata 4km gridded climate (Abatzoglou, 2013).  

Both data sets are periodically updated from a starting period of 1980 to present so 

provide an ongoing resource for continued inference (Thornton et al., 2012, Abatzoglou, 

2013).  SHAW modeled energy and water flux at the soil surface include absorbed solar 

radiation, long-wave radiation exchange and the stochastic transfer of heat and vapor as 

influenced by slope, aspect and latitude (Flerchinger and Hardegree, 2004).  Twenty 

SMU-specific weather input files were created on a 1km grid to cover the entire WSB 

spatial domain.  This information is then appended to the reference table. Key 

parameter fields for the model run are referenced in Table 6.   

Component in the Field Alias Used in the Model 

• Key Field for linking back to SMU • LinkMe 

• Average Aspect for SMU • AspMean 
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• Average Slope for SMU • SlpMean 

• Average Elevation for SMU • ElevMean 

• Dominant SMU series % Sand • Sand 

• Dominant SMU series % Silt • Silt 

• Dominant SMU series % Clay • Clay 

• Bulk Density for the SMU • Bd 

• Longitude • Long 

• Latitude • Lat 

• Solar noon • SolNoon 

• Identification of Reference Climate File • Climate 

Table 6: Input Variables For Bulk RSI Model Run. 

SHAW model parameterization and output procedures were as described in the 

previous chapter.  Hourly seedbed temperature and water potential outputs from the 

31 year simulation within each SMU were used as input into the same hydrothermal 

models used for cheatgrass, bottlebrush squirreltail and Idaho fescue in the previous 

chapter and yielding the same monthly RSI parameters as a function of time period for 

each SMU. RSI values were estimated for each year, and seasonal values determined for 

the Oct-Nov fall period, Mar-May spring period, and growing season Oct-Jun. 

Parameters for each soil type in the study area were extracted and condensed into a 

look-up table that was referenced for building an individual SHAW input file for running 

the model. Subsequent outputs set for 2cm soil moisture and temperature values for 

each SMU were then used for calculating individual RSI values for each species.  



48 
 

 

Figure 19: SMU Units And Overlapping Climate Cells Used In RSI Model For WSB. 

Annual and seasonal RSI value categorization was based on hydrologic year (Oct 

to Sep) and divided into above-average, average and below-average years.  For the 31 

year record the 10 highest and ten lowest seasonally adjusted RSI values were averaged 

as estimators of below and above average year indices respectively.  These periods were 

defined as good, bad and average RSI periods based arbitrarily on where they ranked in 

the 31 year spectrum of RSI values. Seasonal selection was based on the previous 

chapter where the fall and spring periods were identified as being the most important 

for germination rate and initial plant establishment.  Each season was adjusted to focus 

on the most optimal periods for germination for all species.  Based on the previous 

chapter, winter (Dec – Feb) had low over-all rates and were likely too cold to generate 

significant RSI values while summer periods (Jul-Sep) were too dry to contribute to 

either perennial or annual initial establishment.  
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Analysis focuses on comparing the established cover communities of perennial 

and annual vegetation from the remote sensing to microclimate indices based on 

seasonal RSI and conditions likely to occur in below-average, average and above-

average establishment years. A stepwise regression Annual and perennial plant 

distributions were also evaluated relative to slope, aspect, elevation, and precipitation 

and air temperature gradients. The range of potential states for each soil type was 

identified based on the current cover and RSI site indices.   

 

Figure 20: Generalized Methods Workflow. 
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Results 

 

Figure 21: Slope and Aspect Distribution in WSB. 

Averaged slopes were 7% to 30% with a majority of aspects in WSB south facing 

between 145 and 270 degrees (Figure 21). Slope aspect and elevation ranges tended to 

be less than actual due to averaging effects and size of individual SMU. Annual 

Precipitation averaged 275mm at 900m to 495mm at 1700m (Figure 22).  Temperature 

Averages were the inverse of precipitation which ranged from an average of 10˚C at 

900m to 6.85˚C at 1700m (Figure 22). The mid elevation point is used to characterize 

seasonal variability within the basin (Figure 23). Most precipitation occurred between 

October and June of each year with temperature ranging from -7˚C in January to 30˚C in 

July (Figure 22).  
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Figure 22: Right Axis Is Precipitation (Ppt) In Mm And Left Axis Is Average Temperature (Co) For WSB By Elevation 

Gradient. Elevation Increments On X Axis. 

 

Figure 23: Seasonal Temperature Ranges For WSB At 1300m. Right Axis Is Precipitation (Ppt) And Left Axis Is 

Average Temperature (C) For WSB By Elevation Gradient. Elevation Increments On X Axis. 
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Predictor Variables  Annual Values Predictor Variables 

 Perennial 

Values 

41_248_NDWI2 100 41_248_NDWI 100 

41_152_B1 65.81 42_207_MSI 65.14 

41_207_B1 58.48 42_207_NDWI 56.78 

41_152_B2 45.28 41_104_B3 52.25 

41_42_239_SAVI 39.74 42_239_NDVI 45.07 

Table 7: Random Forests Predictor Variables used in generating Annual and Perennial cover Maps. First number is 

the Path, the second number is the Julian Day, the third variable is the Band of Vegetation Index. NDWI2 = 

Normalized Difference between Water Index, NDWI = Normalized Difference between Water Index, NDVI = 

Normalized Difference between Vegetation Index, SAVI = Soil Adjusted Vegetation Index, B1 = Blue, B2 = Green, B3 

= Red. 

 

 

Figure 24: Cover Maps From Landsat 8 Classified Using Random Forests.  
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Random Forests 

Random forests results for perennial and annual cover were consistently low. 

Perennial cover had an OOB of R2 value (R2= .35) with an RMSE of 0.13. Annual cover 

had slightly higher OOB R2 value (R2 = 0.38) with a RMSE of 0.23. Perennial cover was 

highest in elevations greater than 1300m.  Annual cover tended to be highest in 

elevations lower than 1200m.  

RSI classification of the 63 SMUs within WSB resulted in 31 years of RSI scenarios 

for each SMU. Annual RSI was assessed for the most and least optimal hydrologic 10 

year periods with 11 annual periods in between.  Typical “Good Year” RSI values ranged 

from .25 to .19 while “Bad Year” RSI values ranged .15 to .10 (Figure 25).   

 

Figure 25: Averaged Annual RSI Range for all Species in WSB. Each Group is a ten year period sorted from lowest to 

highest to provide a ranking of Bad, Average, and Good RSI year.  
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Figure 26: RSI distribution for Good, Average and Bad RSI years in WSB. Year is defined as October through June 

Period. July through September was not considered. 

To determine existing relationships between seasonal or annual vegetation and 

topographic and RSI categories, two tests were utilized. A stepwise linear regression was 

conducted to predict which RSI period had the best relationship to the remote sensing 

data. Above average, average and below-average Fall, Spring and Annual RSI values of 

each species and an over-all average value for all species in target season and annual 

periods. A significance level of 0.15 was used as a minimum threshold for each 
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independent variable to be included in the model.  If the significance level was not met 

the variable was not included in the model. Significant topographic and RSI variables 

were only detected for perennial plant cover. Remote Sensing values for perennial cover 

are significantly associated with the above-average microclimatic classifications for the 

three species independent from each other. Overall adjusted R2 values were 0.31 with 

an RMSE of 7.28 (Table 8). 

   

Target Variable   R2 

Perennial Cover Cheatgrass Good Yr  0.23 

Perennial Cover Squirreltail Good Yr  0.31 

Perennial Cover ID Fescue Good Yr  0.35 

 All Species 

Adjusted R2 0.31 

  All Species 

Adjusted RMSE  7.28 % 

 Table 8: Results from regression model comparing Cover variables to RSI Values. 

Discussion 

Remote Sensing derived cover maps were only weakly associated with RSI and 

topographic categories (R2 = 0.38 (Annual); R2 = 0.35 (Perennial)) overall. There was a 

clear transition between upper elevation perennial plant communities and lower-

elevation annual plant communities at an elevation of approximately 1200m in the 

remotely sensed data.  This elevation is associated with an average precipitation 

threshold of 360mm and average annual temperature threshold of 9.0˚ C.  There were 
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also consistent spatial patterns in the lower elevation zone that appeared to be 

unrelated to precipitation and temperature gradients but consistent with microclimatic 

gradients caused by soils, and topography.  Historically, the BFMA and WSB have been 

subjected to recurrent and frequent wildfire which has been documented for the 

previous 150 years (Figure 27).  The cover maps only provide a current view of 

vegetation but given the recurrent fire history, they appear to reflect relative ecological 

resilience and resistance to weed invasion.  Chambers et al., (2014) theorized that a 

precipitation threshold would exist based on elevation gradients, which appears to be 

the case here.  The area above 1200m is currently in a disturbed but mostly perennial 

state and the lower elevation area is more significantly disturbed and in a mostly annual 

state.  Our RSI data, however, are more finely tuned to topographic and soil effects on 

local microclimate within a given elevation zone.  General elevation effects are also 

mirrored by topographic transitions where northerly aspects are also more resilient and 

resistant to weed invasion. 

 

Figure 27: Recorded Fire History Extent Of The BFMA 

 Within a given elevation range, the higher and lower zones also have 

consistently different topography and soils.  Upper elevations are predominantly 
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coarser soils, have steeper slopes and a lower range of aspect variability than the lower 

elevation zone.  In general, this tends to lower microsite favorability at higher elevation 

than would be indicated by gross precipitation and air temperature gradients as a 

function of elevation.  

Our study makes several improvements over previous generic and broad-brush 

assessments of relative resistance and resilience such as characterized in Chambers et 

al., (2014). We have accounted for local topography and associated effects on soil 

microclimate, and also assigned a numerical value to reflect more site-specific soil 

microclimatic conditions.  Local topography has similar relative effects as gross 

elevational changes, but our field sites represent only a fraction of the hypothetical 

topographic and soil categories explored in the previous chapter. As a comparison to the 

previous chapter, where topographic patterns were modeled for all scenarios, only 12 

scenarios were relevant in WSB (Figure 28).   

 

Figure 28: Comparison between topographic distribution of generalized RSI values for soils modeled in Chapter 2 

and actual Topographic categories in Warm Springs Basin.  
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Conclusions and Management Implications 

 Guidelines are currently being developed for incorporating resistance and 

resilience concepts into the management decision making process (Miller et al., 2014; 

Chambers et al., 2014).  The first step in this approach focuses on characterizing the 

current ecological state (Miller et al., 2014).  RSI analysis can be used to supplement this 

information to also describe annual and seasonal variability in site favorability at a more 

detailed level than gross characterization of precipitation and air temperature.  RSI 

assessments integrate site favorability into a bioassay for potential establishment 

response in an area that has frequent wildfire disturbance and re-establishment of plant 

communities through secondary succession.  Assignment of RSI values can also be used 

to quantify annual variability in seedbed microclimate, to evaluate historical restoration 

success or failure after individual wildfire events, and perhaps in assigning transition 

probabilities for State and Transition Models for moving from weedy to perennial plant 

communities in restoration management applications (Hardegree et al., 2013).  RSI 

values may also provide a more mechanistic way of classifying habitat suitability for 

species distribution models, and for more finely defining topographic variability in 

species distribution compared to the relatively broad remote sensing/climatological 

approach described by Bradley and Mustard (2005).   
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Chapter 4: Limitations to this Study and future applications 

Soils 

In this study, we characterized near surface properties that mostly have an 

impact on initial post-disturbance establishment.  This is highly relevant for areas with a 

relatively frequent fire cycle caused by annual weeds such as cheatgrass.  This 

methodology, however, can be expanded to look at lower soil processes and seasonal 

water relations that pertain more directly to maintenance and resistance to weed 

invasion in the perennial plant communities.  One important aspect of invasive weed 

resistance is for perennial vegetation to mature sufficiently to exploit water and other 

soil resources at greater depths than are accessible by cheatgrass. 

Remote Sensing 

 Development of the cover maps resulted in low over all R2 values for both the 

annual and perennial cover estimates.  While field data consisted of 200 photo points 

which were randomly distributed throughout the lower portion of the watershed, future 

approaches should stratify sample points within landsat 30m x 30m pixels within soil 

polygons.  Landscape classification approaches that design the ground truth 

measurements  based on where the actual distribution of pixels in the study area tend 

to be more successful at ensuring higher classification accuracies in a target area 

(Sankey and Glenn, 2011; Sankey et al., 2013).  Further research should consider 

focusing ground truth efforts on locations within a broader range of elevation and 

precipitation gradients.  
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Figure 29: Example Sandy Loam Soil Unit In Foothills Terrain With Multiple Soil Components With Different Species 

Mixtures. 

Soil Mapping Units 

The RSI model currently operates on information derived from the dominant soil 

components of each SMU and utilizes a gridded climate data set.  ESDs are frequently 

applied to SMUs which are composed of a complex of soils with different degrees of 

mixing with other units (Figure 30). To this extent RSI is intended to provide a general 

description of how favorable a site might be for early plant establishment.  More 

accurate estimates of site specific RSI might be obtainable by considering a more 

detailed soil distribution within a given SMU, but that would require higher resolution 

soil maps than are currently obtainable.  Gridded Climate variables also vary in their 

relative accuracy at different locations in the landscape (McEvoy et al., 2014).  

Precipitation and humidity in particular are difficult to accurately estimate in complex 

terrain (McEvoy et al., 2014).  Better weather information and/or validation of the 
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gridded/modeled datasets that we used would also improve the accuracy of RSI 

estimates across the landscape.  

Species 

Species selection for the RSI index was based on their relative abundance in the 

region but also to provide a wide range of potential germination response among 

annual and perennial bunchgrass species (Hardegree, 2015).  The field monitoring 

identified a number of other perennial and annual plant species and evaluation of 

additional species-specific hydrothermal response and RSI indices might provide further 

insights about plant response as a function of topography and soil type (Reisner et al., 

2013). One assumption is that by considering three species with relatively slow medium 

and fast germination rates the spectrum of biological response to the microclimates is 

captured. This ratio is consistent regardless of whether or not the year is considered a 

wet or dry year (Figure 30).  

 

Figure 30: Wet and Dry Annual RSI Comparisons of Each Species. 
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Applications 

  Miller et al., (2014) outlined a method for determining the most ideal treatments 

for sagebrush restoration.  RSI values can potentially improve this process by 

characterizing the relative resilience of the site to weed invasion. Chambers et al. (2014) 

proposed using four strategies to prioritize management areas and to identify 

appropriate management actions: protection, prevention, restoration, and monitoring 

and adaptive management.  RSI can be used to supplement these strategies since they 

can inform managers of more site specific conditions of resistance and resilience 

components.   

• Protection of an ecosystem is focused on sustaining or improving resilience and 

resistance by eliminating or minimizing factors that create stress (Brooks and Chambers, 

2011).  RSI can inform managers of what species may have higher potential for 

establishing in a given ecosystem such as salt desert or Wyoming big sagebrush.  

Cheatgrass typically has a high RSI value and can take advantage of almost any micro 

environmental condition.  Successful management of cheatgrass impacted areas 

probably requires continuing and recurrent cheatgrass control until desirable perennial 

components have achieved sufficient size to be resistant to cheatgrass invasion.   

•  Prevention involves increasing both resilience and resistances of systems that have not 

crossed an undesirable ecological threshold, but that are otherwise high risk (Miller et 

al., 2013).  As RSI values are dependent on weather variability, potential effects from 

climate change can be analyzed to provide a mechanistic description of areas that may 

be under higher risk in the future.  In the BFMA, north slopes and higher elevations 
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typically can recover with relatively little management intervention.  RSI values can be 

used to determine elevation, topography and soil thresholds for potential risk reduction. 

• Restoration efforts are typically focused on improving the resilience and resistance of a 

disturbed, invaded or otherwise degraded site by recreating the diversity and 

functionality of the plant community (Chambers et al., 2014).  Lower elevation sites, in 

general may be less resilient and resistant, but in any given year, the microclimatic 

scenario may still be conducive to initial restoration success.  Incorporation of seasonal 

forecasting may facilitate prediction of these potential restoration years so that 

resources can be targeted more efficiently only when success is feasible (Hardegree et 

al., 2012).  RSI values can be used to score a given site and inform planners of a species 

potential ability to perform at a given site based on the physical properties and what 

kind of sustained weather conditions may be necessary to reach a resilient vegetation 

state.   

• A final critical component to ecosystem restoration is the monitoring and adaptation of 

management practices (Chambers et al., 2014).  RSI can contribute to monitoring efforts 

by adding an additional quantified index of ecosystem microclimatic status to the 

monitoring process.  Both long and short term monitoring strategies can use RSI as a 

physical value that is linked to both the historical probabilities of vegetation state 

transitions, and the potential restoration options under both current and potential 

future climate conditions.  Weather inputs are a primary component to the RSI model 

and are a principal driver of restoration success or failure (Hardegree, 2011).  Weather 

variability may also determine the relative probability of success in a given year, and the 
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need for specific adaptive management practices to maintain a plant community in a 

long-term trajectory toward a more desirable state.   

Further Research 

 The RSI model offers insight towards species potential performance within a 

given context of an ESD. This model focuses on the first stage of life for any plant species 

and provides a rate at which germination can occur. This model does not address 

mortality nor does it directly link to other growth models. Further research can continue 

focusing on addressing what those potential species specific mortality evens could entail 

and be further linked to a growth model that does provide some connection to 

established communities. Probable community development can be explored using this 

method and provide managers with more informed expectations about their restoration 

efforts.  
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Appendix A: Tables and Figures 
Tables  
Table 1: Input Parameters used for Soil types 

Soil Bulk 
Density 

Sand Silt Clay Slope: 4 
classes 

Aspect: 8 Classes 

Clay 1740 22 32 46 0, 15, 30, 45 0,45,90, 135, 180, 225, 270, 315 
Loam 1180 35 45 20 0, 15, 30, 45 0,45,90, 135, 180, 225, 270, 315 

Silt Loam 1510 26 55 19 0, 15, 30, 45 0,45,90, 135, 180, 225, 270, 315 

Sand 1310 88 10 2 0, 15, 30, 45 0,45,90, 135, 180, 225, 270, 315 
 
Table 2: Overall Spatial Variances for Species and Soils over all topographic categories. 
BRTE = Cheatgrass, ELEL = Squirrel Tail, FEID = Idaho Fescue.  

Spp Soil Variance 
BRTE Sand 0.011952 
BRTE Silt Loam 0.016653 
BRTE Loam 0.018628 
BRTE Clay 0.019805 
ELEL Sand 0.003799 
ELEL Silt Loam 0.004394 
ELEL Loam 0.005531 
ELEL Clay 0.006156 
FEID Sand 0.000694 
FEID Silt Loam 0.000949 
FEID Loam 0.001041 
FEID Clay 0.00109 

 
Table 3: Soil Results  

Tukey's Studentized Range HSD Test For Soils     
Alpha   0.05 

 
  

Error Degrees of Freedom 108522 
 

  
Error Mean Square   0.015855 

 
  

Critical Value of Studentized Range 3.6332     
Comparisons significant at the 0.05 level are indicated by 
***   
  Difference 

  
  

soil Between Simultaneous 95%   
Comparison Means Confidence Limits   
clay-sand 0.029769 0.027028 0.03251 *** 
clay-silt-loam 0.036467 0.033743 0.039192 *** 
clay-loam 0.037255 0.03453 0.039979 *** 
sand-clay -0.029769 -0.03251 -0.02703 *** 
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sand-silt-loam 0.006699 0.003958 0.00944 *** 
sand-loam 0.007486 0.004745 0.010227 *** 
silt-loam-clay -0.036467 -0.039192 -0.03374 *** 
silt-loam-sand -0.006699 -0.00944 -0.00396 *** 
silt-loam-loam 0.000787 -0.001937 0.003512   
loam-clay -0.037255 -0.039979 -0.03453 *** 
loam-sand -0.007486 -0.010227 -0.00475 *** 
loam-silt-loam -0.000787 -0.003512 0.001937   

 
Table 4: Difference between Species from Tukey HSD test 

Differences between species     
Alpha 0.05   
Error Degree of Freedom 108522   
Error Mean Square 0.015855   
Critical Value of Studentized Range 3.31454   
Minimum Significant Difference 0.0022   
Species Mean N 
BRTE: Cheatgrass 0.3461544 37374 
ELEL: Squirrel tail 0.2577978 37374 
FEID: Idaho Fescue 0.1733004 37374 

 
Table 5: Example of Warm Springs Basin reference table for SHMODEL 

Vegetation indices used in analysis 

Index Formulation (R = reflectance, wavelengths in nm) 

NDWI2 NDWI = (NIR - SWIR) / (NIR + SWIR) 

L8 Band 1 Deep Blue 

L8 Band 2 Blue 

L8 Band 3 Green 

L8 Band 4 Red 

L8 Band 5 Near Infrared 1 

L8 Band 6 SWIR: Shortwave Infrared 

L8 Band 7 SWIR: Shortwave Infrared 

L8 Band 8 Panchromatic 

SAVI SAVI = ((NIR - Red) / (NIR + Red + L)) x (1 + L) 

NDVI NDVI = ((NIR - Red)/(NIR + Red)) 

MSI 
 

GEMI GEMI=eta*(1-0.25*eta)-((Red-0.125)/(1-Red)) 

 

eta=(2*(NIR2-
Red2)+1.5*NIR+0.5*Red)/(NIR+Red+0.5) 

GVI 
GVI=-0.2848*Band1-0.2435*Band2-
0.5436*Band3+0.7243*Band4+0.0840*Band5-1.1800*Band7 

MSAVI2 MSAVI2 = (1/2)*(2(NIR+1)-sqrt((2*NIR+1)2-8(NIR-Red))) 

PVI PVI=(NIR-a*Red-b)/(sqrt(1+a2)) 
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TSAVI TSAVI=(s(NIR-s*Red-a))/(a*NIR+Red-a*s+X*(1+s2)) 
Table 5: Indices Used in the Random Forests Cover Classification 
Table 6, Input variables for Bulk RSI Model Run. 
Required Input Fields for running RSI Model:  
*Soil Mapping Unit (SMU) 
Component in the Field Alias Used in the Model 
• Key Field for linking back to SMU • LinkMe 
• Average Aspect for SMU • AspMean 
• Average Slope for SMU • SlpMean 
• Average Elevation for SMU • ElevMean 
• Dominant SMU series % Sand • Sand 
• Dominant SMU series % Silt • Silt 
• Dominant SMU series % Clay • Clay 
• Bulk Density for the SMU • Bd 
• Longitude • Long 
• Latitude • Lat 
• Solar noon • SolNoon 
• Identification of Reference Climate File • Climate 
 
Table 7: Random Forests Predictor Variables used in generating Annual and Perennial 
cover Maps. 

Predictor Variables  Annual Values Predictor Variables 
 Perennial 
Values 

L8_41_248_NDWI2 100 L8_41_248_NDWI 100 
L8_152_B1 65.8107 42_207_MSI 65.1385 
L8_207_B1 58.4756 42_207_NDWI 56.7798 
L8_152_B2 45.2753 41_104_B3 52.2476 
L8_42_239_SVI 39.7405 42_239_NDVI 45.0678 
 
Table 8: Results from regression model comparing Cover variables to RSI Values. 

Target Variable   R^2 
Perennial Cover Cheatgrass Good Yr  0.23 
Perennial Cover Squirreltail Good Yr  0.31 
Perennial Cover ID Fescue Good Yr  0.35 
 Adjusted R2 0.31 

  RMSE  7.28 
  

 

          The REG Procedure 
        Model: MODEL1 
        Dependent Variable: Perrenial_Cover 
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Number of Observations Read          63 
      Number of Observations Used          63 
      

          Stepwise Selection: Step 1 
       

          
          Variable BRTE_Hydro_Good Entered: R-Square = 0.2317 and C(p) = 9.9366 

   
          
                                       Analysis of Variance 

      
                                              Sum of           Mean 

      Source                   DF        Squares         Square    F Value    Pr > F 
    

          Model                     1     1109.64740     1109.64740      18.40    
<.0001 

    Error                    61     3679.02995       60.31197 
     Corrected Total          62     4788.67736 

      
          
                                Parameter     Standard 

      Variable               Estimate        Error   Type II SS  F Value  Pr > F 
    

          Intercept              73.03362     12.70124   1994.14703    33.06  <.0001 
   BRTE_Hydro_Good      -156.04368     36.37939   1109.64740    18.40  <.0001 
   

          Bounds on condition number: 1, 1 
      ------------------------------------------------------------------------------------------------------------------------ 

          Stepwise Selection: Step 2 
       

          
          Variable ELEL_Hydro_Good Entered: R-Square = 0.3093 and C(p) = 4.9720 

   
          
                                       Analysis of Variance 

      
                                              Sum of           Mean 

      Source                   DF        Squares         Square    F Value    Pr > F 
    

          Model                     2     1481.33529      740.66764      13.44    
<.0001 

    Error                    60     3307.34207       55.12237 
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Corrected Total          62     4788.67736 
      

          
                                Parameter     Standard 

      Variable               Estimate        Error   Type II SS  F Value  Pr > F 
    

          Intercept              63.58259     12.67624   1386.83112    25.16  <.0001 
   BRTE_Hydro_Good      -352.60056     83.30188    987.60716    17.92  <.0001 
   ELEL_Hydro_Good       387.20653    149.11365    371.68788     6.74  0.0118 
   

          Bounds on condition number: 5.7369, 22.947 
     ------------------------------------------------------------------------------------------------------------------------ 

          Stepwise Selection: Step 3 
       

          
          Variable FEID_Hydro_Good Entered: R-Square = 0.3470 and C(p) = 3.5943 

   
          
                                       Analysis of Variance 

      
                                              Sum of           Mean 

      Source                   DF        Squares         Square    F Value    Pr > F 
    

          Model                     3     1661.59810      553.86603      10.45    
<.0001 

    Error                    59     3127.07925       53.00134 
     Corrected Total          62     4788.67736 

      
          
                                Parameter     Standard 

      Variable               Estimate        Error   Type II SS  F Value  Pr > F 
    

          Intercept              55.21600     13.23199    922.92522    17.41  0.0001 
   FEID_Hydro_Good       646.17085    350.37872    180.26282     3.40  0.0702 
   BRTE_Hydro_Good      -434.72599     93.03362   1157.27945    21.83  <.0001 
   ELEL_Hydro_Good       303.71566    153.06491    208.67478     3.94  0.0519 
   

          Bounds on condition number: 7.4419, 56.231 
     ------------------------------------------------------------------------------------------------------------------------ 

          
          All variables left in the model are significant at the 0.1500 level. 
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          No other variable met the 0.1500 significance level for entry into the model. 
  

          
          
                                                     Summary of Stepwise Selection 

    
                  Variable              Variable              Number     Partial      Model 

    Step    Entered               Removed               Vars In    R-Square    R-Square     C(p)      F Value    Pr > F 
 

            1     BRTE_Hydro_Good                                 1       0.2317      0.2317      9.9366      18.40    <.0001 
   2     ELEL_Hydro_Good                                 2       0.0776      0.3093      4.9720       6.74    0.0118 
   3     FEID_Hydro_Good                                 3       0.0376      0.3470      3.5943       3.40    0.0702 
                                                                                           14:00 Wednesday, June 24, 2015 

  
          The REG Procedure 

        Model: MODEL1 
        Dependent Variable: Perrenial_Cover 

      
          Number of Observations Read          63 

      Number of Observations Used          63 
      

          
                                       Analysis of Variance 

      
                                              Sum of           Mean 

      Source                   DF        Squares         Square    F Value    Pr > F 
    

          Model                     3     1661.59810      553.86603      10.45    
<.0001 

    Error                    59     3127.07925       53.00134 
     Corrected Total          62     4788.67736 

      
          
          Root MSE              7.28020    R-Square     0.3470 

     Dependent Mean       18.71556    Adj R-Sq     0.3138 
     Coeff Var            38.89920 

       
          
                                     Parameter Estimates 

      
                                     Parameter       Standard 

      Variable           DF       Estimate          Error    t Value    Pr > |t| 
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          Intercept           1       55.21600       13.23199       4.17      0.0001 
    ELEL_Hydro_Good     1      303.71566      153.06491       1.98      0.0519 

   BRTE_Hydro_Good     1     -434.72599       93.03362      -4.67      <.0001 
   FEID_Hydro_Good     1      646.17085      350.37872       1.84      0.0702 
   Table 9: Full Stepwise regression Results for Comparison between Perennial and Annual Cover to RSI Annual, and 

Seasonal Good Bad and Average Categories 
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Figures 

 
Figure 8: Comparison of Rate Sum Index (RSI) between Spring and Fall Periods of growth in Clay Soil. Slope and 
Aspect categories on the X axis and RSI is on the Y axis. 

 
Figure 9: Topographic distribution of Clay RSI with increasing Slope from inner to outer rings.  
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Figure 10: Comparison of Rate Sum Index (RSI) between Spring and Fall periods of growth in Silt Loam. Slope and 
Aspect categories on the X axis and RSI is on the Y axis. 
 

 
Figure 11: Topographic distribution of Silt-Loam RSI with increasing Slope from inner to outer rings.  
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Figure 12: Comparison of Rate Sum Index (RSI) between Spring and Fall periods of growth in Loam. Slope and 
Aspect categories on the X axis and RSI is on the Y axis. 
 

 
Figure 13: Topographic distribution of Loam RSI with increasing Slope from inner to outer rings.  
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Figure 14: Comparison of Rate Sum Index (RSI) between Spring and Fall periods of growth in Sand. 
 

 
Figure 15: Topographic distribution of Sand RSI with increasing Slope from inner to outer rings. Slope and Aspect 
categories on the X axis and RSI is on the Y axis. 
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Appendix B: RSI Model Steps 
RSI model Step by Step Guide 

The Steps presented here are designed to allow a user to create the reference and initial 

condition data for running a combined Simultaneous Heat and Water (SHAW) model in 

conjunction with a Seedling Germination Model to produce a monthly average germination rate 

for a given watershed based on the physical soil characteristics, topography and climate. The 

end result will be a Species specific Rate Sum Index that can be used as a Bio Assay for 

quantifying soil specific resilience for each polygon within the area of interest. 

The Steps in this document will include: 

1. Soil information acquisition 

2. Climate Data acquisition 

3. Combining the information in a spatial environment using ARCMAP 

4. Using the combined tables generated by ARCMAP in SAS to generate bulk file runs 

5. Using the outputted Germination information in ARCMAP 

Requirements to assemble and run this model 

1. Access to the Internet 

2. A GIS platform such as ARCMAP 

3. SAS 

 Input tables and Source Data 

Step 1: Obtaining input data 

Web Soil survey can provide the data for a geospatial processing step for extracting the required 

physical properties of a soil polygon. The tool can also provide a pdf report of the area you are 

interested in which has derived values from the soil survey. Additional information includes 

Ecological Site Descriptions and some back ground information regarding parent materials.  

Obtaining Tabular and Spatial information from Web Soil Survey 

o Go to Web Soil Survey hosted by USDA NRCS at: 

http://websoilsurvey.sc.egov.usda.gov/App/HomePage.htm 

o Select the big Green Button: “Start WSS” 

http://websoilsurvey.sc.egov.usda.gov/App/HomePage.htm
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o Zoom in to Area of Interest using Map interface tools and mark out the Area of 

Interest (AOI) you need soils information from.

 
o If you select areas outside of one county you will receive a message indicating 

“Multiple Soil Survey Areas in your Area of Interest”. This matters when you need to 

put your tabular data together where the two counties might be using different 

codes for linking the tables together. Due to constraints from how the SSURGO 

databases are developed it is highly inadvisable to import areas that include other 

counties at this. Later versions may have fixed this but at the time of this 

documentation the databases do not line up for all counties. 
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o You can extract the AOI if you need to at any step along this but you will also have it 

when you download the spatial and tabular databases by selecting “Download Soils 

Data”.  

 
o Once you had determined your AOI and are at the download soils data, select “ 

Create Download Line” and wait a moment for a link to be created.  
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o After some processing time a link will appear at the bottom left of your screen. 

Select that and go to your download folder.  

 
o This automatically downloads to your download folder in windows where you can 

archive one copy and place and active version in your project folder where you will 

access it for geo-processing.  

 

Other options for extracting information from WSS are available but those are 

beyond the scope of this Appendix.  

 

Step 2  ARCMAP Assembling the tabular data 

The objective of this step will be to load the SSURGO data into ARCMAP, set up a geodatabase, 

and link the necessary fields together containing soil texture and bulk density information. 

SSURGO is a Relatable Database Management System (RDBMS) and assuming all the tables are 

in a current version can be joined together using the Join Feature in Arcmap to generate an 
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attribute table with all the necessary information in for SHMODEL. By the end of this step you 

will have a csv table that can be read by SAS which will then create the input tables for running 

SHMODEL (Mostly Just SHAW at this stage) 

o Open an ARCMAP Document (*.mxd) and set up your Environments for the folder 

you are working in. 

  
o SSURGO comes with a defulat DATUM so if you need the information in a specific 

format change it now. 

 

o If not activated select ArcCatalog in the side panel and Navigate to your project 

folder. 

 

 
 

o  Load the spatial data from your geodatabase and the following tables 

1. Mapunit 

2. Component 

3. Chorizon 

4. Chtexturegrp 

5. Chtexture 

6. Shape file with the soil polygons in the SSURGO database 

 

o The Joins between tables should go as follows:   

1. MUKEY in mapunit to MUKEY in the component table 

2. COKEY in the component table to COKEY in the chorizon table 

3. CHKEY in the chorizon table to CHKEY in the chtextgrp table 
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4. CHTGKEY in the chtexturegrp table to CHTGKEY in the chtexture table 

o Once the Joins are complete Right Click the target soil polygon file with all the joins 

on it and Export the shapefile to a feature class or with the tables so that the joins 

are permanent 

 

o Open the new file and turn off all the superfluous fields that are not representative 

of the specific polygon. Each field with an “_r” or a ”rep” attached to it can be 

turned off, i.e. sandtotal_r is desirable and sandtotal_h or _l is not. The goal is to 

obtain representative values for the polygon. 

 
 

o Open the Attribute table for the New Shape file with the soil polygons and the 

added field and Add a Field called “Linkme”. It can be a test file or a numeric.  

 
o Highlight the LinkMe field and select “Field Calculator”. Use the ObjectID field as a 

reference and select ok. This field will be used later to link to the rest of the 

variables.  

 
 



88 
 

o Add two more fields for Latitude (Y) and Longitude (X). Type should be Double. Right 

Click on each field and select “Calculate Geometry”. This step will provide an X and Y 

coordinate for each Polygon Centroid which will be used in SHAW. Use Decimal 

Degrees 

   

 
Once complete with this step you should have the above fields in your attribute 

table.  

 

o From this table select export data. Doing so from the Attribute table allows you to 

export the table and not the spatial components which you don’t need for the rest 

of the modeling until you link the data back in for further geoprocessing. Export to a 
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directory from which you will be running SHMODEL and save as a Text File. 

 

 

Climate File Extraction and Formatting: 

The objective of this step is to assemble a climate file that can be read by SHAW that is 

formatted correctly so as not to break SHAW. Daily Climate data can come from a 

number of sources such as MesoWest, NOAA, or gridded weather data obtained from 

either METDATA hosted by the University of Idaho 

(http://metdata.northwestknowledge.net/ )or from Daymet hosted by Oakridge 

National Laboratory (http://daymet.ornl.gov/). METDATA is the most complete though 

it has some limitations in regards to spatial distribution being 4 km and the data being 

completely in Netcdf.  

 

You will need on your machine:  

1. MySQL workbench 6.0 CE 

2. Microsoft Access vs 2007 or newer 

3. Python 26 and Python 27  

4. ARCMAP 10.1 or newer 

5. MS Access tool downloaded from this FTP site hosted by the Northwest Watershed 

Research Center: ftp://ftp.nwrc.ars.usda.gov/public/UofIMetData/ 

6. The specific gridded data required for you study Area. You can follow SOP’s provided 

by Daymet and METDATA to obtain that information. These data can be substantial 

so you might want to explore external storage options.  

ftp://ftp.nwrc.ars.usda.gov/public/UofIMetData/
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Additional steps for preparing to use this tool. Access needs to have the ODBC directories  

Load these afformentioned programs and data libraries allong with suplimentary packages from 

the FTP site linked above.  

Open the MS Access tool: Weather_Point_Extractor.accd and “Enable the Content” 

  
From the Initial Form select the “Select MySQL Table Path” Button and define the parameters 

below: 

 
 

Once selected go to the Initial Form and choose “Select Weather Data” 
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From this form you will need to link to your METDATA information and your Daymet 

infromation under File Setup.  

 
Next go to Search Criteria 
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o At this point you will select the file output type you need, in this Case 

SHAW+(Daymet + Abatzoglou Wind). If this is the first time running this tool an 

upfront steps required for this procedure include processing the X and Y locations 

for each point in the gridded data sets within each tile. This will take some time 

depending on your processer.  

o Once you have selected the output type select the column output type.  

o Select the option for “Create point grid shapefile of locations”. This is critical for 

linking back to the reference table being read by SAS (See Arcmap Steps).  

o Determine the Output folder and provide a prefix for the files your are creating 

o Select file extension, (SHAW works best with .csv) 

o If you are doing one location or a region you may run into a message that says it 

needs to calculate the coordinates for the grid. This will take some time but further 

operations will go much faster.  

Once you are complete and have your climate files each header should appear as below and 

explicitly in this order: Calendar Year, Calendar Month, Day, Hydrolic_Year, Hydrolic_Month, 

Julian_Day, Precipitation (inches), Dew_Point (%), Solar_Radiation (W/m^2), 

Max_Temperature (C), Min_Temperature (C), Wind Speed (mph).  SHAW will ignore any 

additional information but I fyou are assembling a climate file independently of this tool using 

other resources this is the format and order the data needs to be in. 

*Potential Errors with Climate data includes gaps, 0 values and out of range values such as 9999. 
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Merging the Climate, Soils and Topographic Data together to build a reference look-up table 

for SHMODEL 

In ARCMAP load the outputted Daymet points extracted by the Weather Point Extractor Tool 

and the Soil Polygon Data extracted using Web Soil Survey with the associated texture and bulk 

density data.  

 
You will create a Theissen Pylogon around each point which will be used in the merging process 

with some of the other input information. Ensure you include all the attribute fields from the 

input data into the output data. The objective of this step is to end up with a representative 

polygon with the associated Climate file name that can be referenced in a look up table. 
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Once this step is complete you will do a Spatial Join to merge the needed fields together for 

creating the final look-up table for SHMODELing. The Target Feature should be the soils file and 

the Join Feature should be the Climate file. The Join should be One to One since the One To 

Many option creates extra rows of data that only contribute superfluous work for later.  
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At the end of the Join process you will end up with an Attribute table with soil texture, bulk 

density, texture, topography and related climate file.  

 
If necessary a follow up step will be to incorporate as detailed a terrain model as possible you 

will then perform a raster math application using the 10m DEM. Soil Survey provide a reference 

value for slope, aspect and elevation but is derived using a 30m DEM. A 10m DEM will provide 

potentially more detailed topographic values then the 30m DEM.  

An Alternative procedure for bring all the necessary elements together for the creating and 

input SHMODEL table will be to us ArcMap Model Builder. The required inputs for this 

procedure include:  

1.  Soils Polygon Data Acquired from Web Soil Survey SSURGO data base 

2. 10m Digital Elevation Model (DEM) 

3. Reference Climate data Acquired from a Gridded Climate data set.  

A step by step method is presented here using ArcGIS Model builder: 

It is advisable to set all the outputs to the same database as well as setting the 

Environmental settings to this same location. The steps will be outlined beginning from DEM 

and shapefile organization adding the fields, zonal statistics and joining the results.  

Step 1: Input Raster Projection 

 The first step is to ensure both the input DEM and Soil shape file are in the same 

projection. 
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Step 2: 

From the newly projected raster calculate Slope and Aspect. For both tools use the 

default settings. Elevation data doesn’t require any further calculation from the DEM.  

 
Step 3: Take a pause from the raster and start preparing the soils Polygon 

Just as with the raster preparation set up the soils shapefile by setting it to the same 

projection.  
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Step 4 and 5: Creating a common reference field for the Joins.  

The next two steps are intended to establish the field that will be used to link the tables 

together.  Take the newly projected soil polygon as the input table, create a unique name usable 

throughout this process for combining the tables (LinkMe) and field type can be a Short integer 

type.   

Once a field is set up the next step is to calculate the values for it. Calculate the field as 

LinkMe = [Object ID]. 

  
Step 6: Zonal Statistics, Calculating the values of a raster that fall within another data set.  

The Raster and Reference Polygon files are now set up for Zonal Statistics.  Use the 

reference polygon that contains the new linking field carry out zonal statistics specifying MEAN 

for each polygon field as they pertain to Slope, Elevation and Aspect. A table should be the 

product of this step.    
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Step 7: Create Common fields for the three new tables 

Calculate Fields; Select the input table for the newly created field for each raster table 

and calculate the MEAN.  The outputted product from this step will be tables that you can then 

create the common fields within which should be the same as the fields created in the reference 

soils polygon in steps  4-5. Create a new field with the same name (LinkMe) and field type 

(Short) as done with the reference soil polygon. 

 
Step 8: Polygon to Point, Creating the linking shape file for all the fields  
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For the reference soil polygon create a point file that represents each soil polygon. The 

Point file will be the primary file to which the Slope, Elevation and Aspect Mean Fields will be 

linked. The file will be created from the reference polygon with the LinkMe field added in.  

 
Step 9: Join One to Many 

For doing a One to Many Join start with the Reference Polygon that contains the common field 

name (LinkMe).  Input field should be LinkMe, Join table should be the first table on to link 

(SoiltoAsp), use common table in SoiltoAsp(4) (LinkMe) and in the join fields optional block 

select the Aspmean field to include in the Join. Otherwise you will end up with all the fields in all 

the linked tables and that is beyond what is needed and will generate superfluous data fields.  
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 For doing a One to Many Join start with the Reference Polygon that contains the 

common field name (LinkMe).  Input field should be LinkMe, Join table should be the first table 

on to link (SoiltoAsp), use common table in SoiltoAsp(4) (LinkMe) and in the join fields optional 

block select the Aspmean field to include in the Join. Otherwise you will end up with all the 

fields in all the linked tables and that is beyond what is needed and will generate superfluous 

data fields.  

 
Step 10: Join One to One: Climate file to Soil2SEA 

The final stage would be to integrate the Climate file obtained in the Climate data acquisition 

stage of the input file operation. The procedures will be to correct the projection of the input 
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file using the same projection procedures as before.  During this step you will create a Thiessen 

Polygon of each climate reference point being used and Spatially Joining the attributes of the 

input climate file to the SOIL to SEA Attribute table.  

 
 

Results 

The joins should be sequential and each new join should uniquely include the appropriate field 

for each characteristic. If successful the end product should be a point file with the three new 

processed fields appended in a new outputted point shapefile representing the area being 

characterized. Null values represent areas that were too small for classification or were too 

close to the edge for reasonable analysis. 
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From this point export the tables from the attributes window as a text file and save in a 

directory from which the next stage using SAS will be applied. Once there converting the text file 

to a .CSV seems to work best for this next stage.  

 
 

Running SHAW requires a Site file, a reference soil Moisture file, a reference Soil Temperature 

File, an associated Climate file, and an Input File that directs the SHAW program to the 

reference states being modeled. Format of these files is very ridged and deviations from where 

specific inputs are located and nomenclature will result in instant SHAW failure. This process is 

designed to mitigate most of the potential deviations by automating the creation of the primary 

reference files and directing the input files to the appropriate climate file for each site specific 

run. At the end of the process, you will end up with an executable “runme” command file that 

will run a specific SHAW run for each Soil Polygon characterized in the preceding steps that 

created the reference table. Upon completion of the SHAW run a specified Hydrothermal 

Germination model will be run based on the outputted SHAW germination information. The end 

results will be a germination rate table for each soil polygon modeled that can be summarized 

into monthly Rate Sum Indices. This information can then be linked back into the original Soil to 

SEA table using the LinkMe field that is being used as the primary reference for each soil 

polygon. At that point the data can be projected in a geospatial environment.  

 

 

Steps for using SAS to run SHMODEL: 
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Additional steps to building the tables for running in SAS would be to augment the table with 

some derived values used in some of the input fields. The Site files tend to be fairly complex in 

construction and some formulas are used in building some of the values for each of the soil 

layers (nodes). Those nodes will be derived from the adjacent soil texture and bulk density 

values. In addition, build a table with reference information for the input file. This should 

include outputs for a site name, climate file name, moisture file name (15bar), temp file name 

(same as climate).  This can be done the same way as the SEA2SOIL was created.  

 

In order to maintain some mechanism of order in how the model worked these files 

were arranged so that reference data for the model runs and function of the model outputs 

could be managed separately. For example the Climate folder should contain all the referenced 

climate data for SHAW. The Climate data is also what is used for generating soil temp (tmp) files 

which are in turn kept separately.   

 

General File Structure 

 

 
 

SAS program files: 

Each of these file generates a specific component for generating input files for SHAW and 

Hydrothermal. Customizing the outputs of the over-all model occurs here using SAS. In order to 

modify the run outputs SAS or SAS emulator such as JMP is required.  
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The “Runs” folder is the primary folder needed for doing the individual site runs. Cirtical files for 

this folder should include the two executables SHAW and Hydrothermal, the reference soil 

moisture file, and the reference plant species rate files. Once the SAS code is compiled a 

“runme.cmd” file is generated that will run the completed model. 

 
 

Site files for running SHAW are created by referencing the input Primary file 

(BF_ADA_Soil2SEA.csv).  
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Soil Temperature and Climate files are all dependant on the same directory though little is done 

with the Climate files themselves in terms of modification. Temp files are stored in a separate 

directory that is referred to by the input files which are developed from the Primary regional csv 

file (BF_ADA_SOIL2SEA.csv). The number of temp files will be the same as number of files as 

there are climate files. 

 
 

Some folders are meant to retain certain outputs of the models. Germ out folder contains the 

SHAW output files that are describing the hourly hydrothermal conditions at a 2cm profile. 

These files are referred to by the hydrothermal model.  

 

 
Additional data generated that needed to be managed was the Out.out files. SHAW 

metadata file is called Out is kept in the Out folder. This file is hardwired into SHAW and 
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provides information on individual runs and is helpful for error checking. Though potentially 

useful for understanding bad runs for SHAW this file is directed into a separate folder.  

 
 

Rates folder as a repository of each rate file generated from the Hydrothermal portion of the 

model. Each file represents an hourly rate for a given scenario and is named for a particular 

reference point in the regional map.  

 

 
 

The SAS process involved reading the feature class tables from the GIS generated table 

and inserting the data into relevant tables for SHAW and Hydrothermal. The SHAW file code 

entailed preparation of an Input (inp), Site (sit), Moisture (moi), and Temperature (tmp) file for 

each soil node. Climate data needed for SHAW was obtained using a separate process 

incorporating a combined daily 1km DAYMET and 4km METDATA (Abatzoglou) file that covers 

the targeted watershed. Targets for the modeling was a script that will read the GIS table, write 
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text files for each process and run both SHAW and Hydrothermal for each polygon in the 

watershed.  

Once completed a single tool that can run a combined SHAW and Hydrothermal Seed 

Germination model for a watershed will have been created. Since the output time step is in daily 

interval of seedling germination rates a monthly average can be generated. Follow up steps still 

to be resolved is to input the outputted rate files into a single table that contains the unique 

polygon ID (linkme) for geo-referencing purposes. Determining what problems and inefficiencies 

can be improved on by applying the model to other regions and potentially running it fully in 

instead of SAS may also be useful.  

 
Figure representative output of Germination RSI distribution for a study area in the Boise Front Warm Springs 

Basin.  
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