
 

i 
 

Use Authorization 
 
In presenting this thesis in partial fulfillment of the requirements for an advanced degree at 
Idaho State University, I agree that the Library shall make it freely available for inspection.  I 
further state that permission to download and/or print my thesis for scholarly purposes may be 
granted by the Dean of the Graduate School, Dean of my academic division, or by the University 
Librarian.  It is understood that any copying or publication of this thesis for financial gain shall 
not be allowed without my written permission. 

 
Signature ___________________________________ 

 
 

Date _______________________________________ 
 



 

ii 
 

 

Modeling Human Locational Behavior  

in Montane Southeast Idaho 

 

 

 

 

 

by 

Maegan J. Tracy 

 

 

 

 

 

 

A thesis 

submitted in partial fulfillment  

of the requirements for the degree of 

Master of Science in the Department of Anthropology 

Idaho State University 

Summer 2015 



 

iii 
 

To the Graduate Faculty: 
 
 The members of the committee appointed to examine the thesis of MAEGAN J TRACY 
find it satisfactory and recommend that it be accepted. 
 
 
 
 

_____________________________________________ 
Dr. Paul Trawick, 
Major Advisor 
 
 
 
_____________________________________________ 
Dr. Donna Delparte, 
Committee Member 
 
 
 
_____________________________________________ 
Dr. John Dudgeon, 
Committee Member 
 
 
 
_____________________________________________ 
Dr. Benjamin Crosby, 
Graduate Faculty Representative



 

iv 
 

Acknowledgements 

Thank you to my family and friends, both near and far, for supporting me with their kindness, 

love, generosity, and humor through this adventure, and to my professors, mentors, and guides 

for giving me the opportunity to begin it in the first place and the advice and support to have 

made it to the end.  



 

v 
 

Table of Contents 
List of Tables ............................................................................................................................... vi 

List of Figures ............................................................................................................................. vii 

Abstract ..................................................................................................................................... viii 

I. Introduction .................................................................................................................................. 1 

Statement of Purpose .................................................................................................................. 2 

Previous Research ........................................................................................................................ 3 

Assumptions and Limitations ....................................................................................................... 4 

Significance .................................................................................................................................. 6 

II. Review of Literature ..................................................................................................................... 8 

Study Area .................................................................................................................................... 9 

Archaeology of the Great Basin ................................................................................................. 12 

Ethnohistorical Approaches to Understanding the Prehistoric Great Basin ............................. 14 

Modeling in Archaeology ........................................................................................................... 17 

III. Methods .................................................................................................................................... 22 

Model-Building Process ............................................................................................................. 23 

A. Data Selection & Archaeological Research ........................................................................ 25 

B. Selection of Parameters ..................................................................................................... 31 

C. Quantification of Parameters & Data Aggregation ............................................................ 46 

D. Sources of Error ................................................................................................................. 53 

E. Model Types ....................................................................................................................... 55 

F. Model Selection & Validation ............................................................................................ 57 

G. Model Assessment ............................................................................................................ 57 

IV. Results ....................................................................................................................................... 59 

Results from Model 1: Logistic Regression ................................................................................ 59 

Results from Model 2: Regression Tree ..................................................................................... 68 

Results from Model 3: Random Forest ...................................................................................... 71 

V. Conclusions ................................................................................................................................ 75 

Research Findings ...................................................................................................................... 75 

Future Research Possibilities ..................................................................................................... 78 

References ..................................................................................................................................... 80 

Appendices ..................................................................................................................................... 86 

Appendix A: Site data used in model creation ........................................................................... 86 

Appendix B: Nonsite data used in model creation .................................................................... 89 



 

vi 
 

 

List of Tables 
Table 1: Semivariogram range of data ........................................................................................... 30 

Table 2: Methods for relative topographic position analysis ........................................................ 43 

Table 3: Classification of the landscape into morphological classes ............................................. 44 

Table 4: Complete list of predictor variables assessed .................................................................. 51 

Table 5: Logistic regression results from AIC stepwise regression model. .................................... 60 

Table 6: Detailed accuracy by class for regression tree ................................................................. 69 

Table 7: Confusion matrix for regression tree ............................................................................... 69 

Table 8: Detailed accuracy by class for random forest .................................................................. 73 

Table 9: Confusion matrix for random forest ................................................................................ 73 

 



 

vii 
 

List of Figures 
Figure 1: Study area ....................................................................................................................... 10 

Figure 2: Predictive modeling workflow ........................................................................................ 25 

Figure 3: Cost distance to obsidian sources using slope as an input barrier ................................. 35 

Figure 4: Cost distance to springs using slope as an input barrier ................................................ 37 

Figure 5: Overgeneralization of landscape at 2000m neighborhood size ..................................... 40 

Figure 6: Topographic characterization of the Sublett Range landscape using DEV, from top left: 
250m, 500m, 1000m, 1500m ......................................................................................................... 42 

Figure 7: Neighborhood effects on landform classification, from top left: 250m; 500m; 1000m; 
1500m ............................................................................................................................................ 45 

Figure 8: Viewshed calculated using both nonsites and sites as observer points ......................... 47 

Figure 9: Aspect of landforms converted to "Northness" ............................................................. 49 

Figure 10: Histograms characterizing site parameters .................................................................. 53 

Figure 11: Relative importance of variables for determining site presence or absence ............... 61 

Figure 12: Plot of AUC results for logistic regression, at left: complete logistic regression model 
0.90, at right: AIC step-wise reduction model 0.88 ....................................................................... 62 

Figure 13: Predictive map of Minidoka District generated using logistic regression; darker blue 
indicates areas of higher probability ............................................................................................. 63 

Figure 14: Predictive map of Sublett Division generated using logistic regression ....................... 64 

Figure 15: Predictive map of Albion division generated using logistic regression ........................ 65 

Figure 16: Predictive map of Black Pine division generated using logistic regression .................. 66 

Figure 17: Predictive map of Raft River division generated using logistic regression ................... 67 

Figure 18: Regression tree visualized............................................................................................. 69 

Figure 19: Predictive map generated from regression tree model ............................................... 71 

Figure 20: Parameter importance derived from random forest analysis. ..................................... 72 

Figure 21: AUC results from regression tree and random forest models; at left: regression tree 
0.85, at right: random forest 0.94 ................................................................................................. 73 

 



 

viii 
 

Abstract 
In this research, three models were developed to predict the potential spatial distribution of 

archaeological sites for the prehistoric period in the mountainous Minidoka Ranger District of 

the Sawtooth National Forest in southern Idaho and northern Utah. A Geographic Information 

System (GIS) was used to assemble and process archaeological data and parameters of the 

geographic and ecological environment, and statistical analyses were used to build the models. 

Predictor variables were statistically evaluated to discover correlates with human locational 

behavior and compared against a control dataset. Three methods, logistic regression, regression 

tree, and random forest were used to create the final models and assessed for efficacy using k-

fold cross-validation and gain statistics. Although the relationships observed could result from 

biases in archaeological data and predictors, the models suggest a strong correlation between 

environment and the location of prehistoric sites. 
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I. Introduction 
Modeling human behavior is fundamental to archaeological interpretation. The development of 

modeling in archaeology can be traced to the theoretical framework established by processual 

archaeologists in the 1960’s and 1970’s, who were the first to apply the scientific method in 

answering new questions about past humans and human societies (Verhagen and Whitley, 

2011). The past cannot be known in its complex entirety, but it can be understood, extrapolated, 

and explained through building simplified representations of reality (Lock, 2003). Landscape 

archaeology looks at the ways that humans consciously or unconsciously shape the land, 

organize space, and manifest symbolic content and power both in and through landscape(Lock, 

2003). This interest in spatiality has become one of the primary concerns of modern 

archaeology, and vast improvements over the past decades in methodological tools have 

contributed to the development of sub-disciplines such as landscape archaeology, spatial 

statistics (García et al., 2012), and the kind of Geographical Information Science (GIS) –based 

modeling that is presented in this thesis (Killick, 2015). Research that examines variation among 

both past and present-day hunter-gatherers is important to anthropology and archaeology as a 

whole, in order to explore diversity among human cultures and behaviors and attempt to 

investigate possible sources of that variability (Ames, 2009).  

In archaeological practice, a related question has become increasingly important in Cultural 

Resource Management (CRM): how to best identify areas that have a high potential to yield 

archaeological sites. A better understanding of human locational behavior can help to inform 

and improve strategies for managing cultural resources. The Sublett Division of the Sawtooth 

National Forest in southern Idaho is an area that remains largely understudied in CRM and in 

archaeological research more generally, and about whose prehistory relatively little is known. 
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The Sublett represents an ideal area in which to develop predictive and spatial models that have 

the potential to advance the theory of archaeology as well as its local practice. 

This research will address these questions by generating models that examine human 

exploitation of the area’s landscape by compiling a GIS system of known prehistoric sites and 

analyzing their distribution to determine the influence of relevant environmental and 

geographic parameters. These models may be further used to determine archaeological 

resource potential, specifically focused on hunter-gatherers. Output consists of map 

visualizations representing quantified archaeological potential calculated from a statistical 

analysis of input parameters. This predictive model of archaeological resource potential will be 

suitable for use by both government agencies and by local tribal organizations - the Shoshone 

and Bannock peoples in particular - in the future managing of cultural resources (Carleton et al., 

2012). 

Statement of Purpose 
The central goals of this project are to contribute to the understanding of hunter-gather ecology 

and create a useful management tool that can be utilized in decision-making by land 

management agencies tasked with CRM. A second practical goal is to assess the potential 

research value of creating predictive models for site location, specifically in a semi-arid alpine 

environment. The advantages of utilizing predictive modeling in CRM are in improving cost-

effectiveness and expediting planning by entities involved in land management. Federal and 

state agencies mandate the identification and preservation of cultural resources, but a complete 

inventory of past human activity on the land remains, for financial and practical reasons, out of 

reach. Work of this kind has the potential to be used early in project planning to minimize 

disturbance of cultural resources (Kohler and Parker, 1986).  
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Previous Research 
The Sawtooth National Forest manages the Minidoka Ranger District and its five subdivisions, 

the Albion, Black Pine, Cassia, Sublett, and Raft River. Situated at the edge of the Great Basin 

catchment and physiographic province, the forest is within an area of known prehistoric 

interaction between the peoples of the Great Basin and Columbia Plateau cultural areas. As part 

of its cultural resource management mandates, the Forest Service has completed a number of 

pedestrian surveys in the area to determine the presence and explore the nature of cultural 

resources. These surveys were typically opportunistic in nature; they discovered a number of 

diagnostic artifacts on the surface, but little subsurface testing was done. Limited small-scale 

systematic survey and testing was carried out as a part of the Idaho State University Field School 

in the Sublett Division during the summer of 2013. The only sites to be tested at that time were 

the Sublett Troughs and Summit Spring sites, where artifacts were uncovered up to a depth of 

two meters (Tracy et al., 2015). Prior to this study it was believed that there was little potential 

for deposition and thus little possibility for the existence of intact archaeological sites.  

Data acquired during the 2013 Field School suggests that instead, there is substantial potential 

for intact subsurface elements and demonstrated that the area is in critical need of further 

research. Large scale reconnaissance survey requires a considerable and costly investment of 

time and resources, and predictive modeling can help focus efforts strategically to increase the 

likelihood of site discovery. Such research also has the potential to uncover previously unknown 

sites and enhance our understanding of human interaction with the environment, specifically by 

prehistoric hunter-gatherers. Previous surveys in the Sublett leave much to be accomplished in 

investigating these questions, especially through research on land-use patterning. 
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Assumptions and Limitations 
Criticisms of the use of predictive modeling in archaeology vary, but tend to focus on two main 

issues: a perceived lack of either theoretical rigor in inductive approaches or scientific rigor in 

deductive approaches. These criticisms in some ways reflect ongoing debates among 

archaeologists about the evolution of archaeological theory, practice, and the nature of 

archaeology as a science. This research does not presuppose the ability to explain whole 

cultures across enormous time depths solely through the application of statistical analysis; the 

purpose instead is to use the analysis to develop a data-driven understanding of the broad 

patterns of human activity on a regional level. Ethnographic research on existing hunter-

gatherers and contextual data of various kinds will be used to enrich this understanding. 

Inductive modeling performs well at describing variation, but developing ways to determine the 

underlying causes of that variation is a much more complex task. As a result, it is still an open 

question of how to best integrate the study of underlying processes in Human Behavioral 

Ecology (HBE) research, especially in the context of transmitted culture. Attempts to include 

discussions of causality can sometimes muddle an otherwise empirically productive model 

(Nettle et al., 2013). In part the tendency of archaeologists to engage in spatial analysis that 

utilizes environmental parameters rather than social ones is a result of the ability to easily 

quantify and digitize the environment, two qualities that social variables often lack (Gaffney and 

van Leusen, 1995).  

Concentrating on environmental parameters as inputs in site selection modeling relies on a 

number of assumptions. First and foremost is one that arose from Julian Steward’s data-driven 

ethnological work in the Great Basin that established an intellectual tradition which strongly 

influenced much of the archaeological work done in the region. Responsible for basic 

anthropological concepts such as “hunter-gatherer” and cultural adaptation, Steward’s early 
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influence cannot be overstated in research of this kind (Clemmer et al., 1986). This assumption 

is that human behavior evolves in relation to ecological conditions (Nettle et al., 2013). A 

complementary intellectual tradition in anthropological research in this area is that of Human 

Behavioral Ecology (HBE). This deductive theoretical approach utilizes rational choice theory as 

its basic framework and continues to influence archaeological work to this day in the Great 

Basin (e.g. Morgan and Bettinger, 2012). Human ecology assumes that humans tend to minimize 

the time and effort required to access resources, and that economic transactions with the 

environment drive decision making. Through these assumptions, the distribution of 

environmental features can be used to predict the location of human settlements (Kohler and 

Parker, 1986, p.400). There are likely to have been significant effects on locational decision 

making related to changes in climate and landscape over time that cannot be adequately 

known, especially within large spatial extents and time scales that span many thousands of years 

of human occupation. A significant limitation of the research presented here is that it relies 

primarily on observing site patterns as they relate to the environment in its current form, and 

does not include paleoclimatic data. 

Predictive models have been applied to archaeological research questions since the late 1960’s, 

and although approaches and methodologies in constructing models vary, archaeological spatial 

analysis follows the same basic principle. Modeling employs at its core a proven methodology, 

used in many sciences, of pattern recognition and classification of features. The theoretical 

approach used in this study is that human ecology is a natural as well as social science, and it 

can be conducted using the same conceptual basis and analytical and methodological 

approaches that apply to non-human systems (Burnside et al., 2012). Techniques adopted from 

other natural sciences such as species distribution modeling could be profitably used in 

addressing anthropological research questions (Franklin et al., 2015).  
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Human-environment interactions tend to exhibit enormous variation over spatial and temporal 

scales, but it is possible to document patterns in those interactions and to evaluate hypotheses 

about the underlying processes of adaptation determining them. A macroecological approach 

will be used here, as proposed by Burnside et al. (2012), who used comparative statistics to 

identify patterns of variation and test for causal relationships in human-environment systems. 

The small-scale ways in which humans adapt to and transform the landscapes and environments 

around them can in this way be linked with large-scale, emergent patterns and their underlying 

processes. 

Significance 
The guiding principles of archaeological modeling are that human locational behavior is related 

to environmental conditions, and that within a particular time period or geographic area, 

patterns of site selection can be identified. Elucidating such patterns can result in identifying 

previously unknown locations of similar human activities. A predictive model attempts to 

establish a statistical relationship between a set of environmental parameters and known site 

locations in order to create a model that can be applied to predict sites in previously unsurveyed 

areas. These models typically use a combination of geospatial and cultural features of the study 

area and subject (Balla et al., 2014a).  

As computing power increased beginning in the 1980’s, predictive modeling techniques became 

a major area of interest in North American archaeology. One of the primary concerns of this 

type of research is rooted in an awareness of the CRM obligations of various state and federal 

agencies that must manage large land areas based on limited survey (Lock, 2003). The potential 

advantages of utilizing predictive modeling in CRM lie in improving cost-effectiveness and 

planning. Federal and state laws mandate the identification and preservation cultural resources, 

but a complete inventory of human activity on the land remains impractical. Use of predictive 
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models early in project planning makes it possible to avoid the destruction or disturbance 

cultural resources entirely (Kohler and Parker, 1986).  

Exploring different kinds of land use is especially important in the Great Basin as human 

population densities and distributions shifted due to pressures of Holocene climate change. The 

impact of Middle Holocene warming may have depressed population density, especially in 

lowland areas, driving people to inhabit more mountainous areas (Antevs, 1948). It is now 

known that the Middle Holocene was not homogeneously hot and dry and was instead marked 

by significant episodes of increased and decreased effective precipitation (Louderback et al., 

2011). This fluctuation may have favored selective pressure for behavioral plasticity. 
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II. Review of Literature 
The modeling techniques used in this study are primarily based on an inductive and inferential 

approach. Interactions of site location and environmental parameters are analyzed using 

statistical procedures to produce a set of independent variables that are demonstrably 

correlated with the distribution of observed sites (Kohler and Parker, 1986). Various physical 

features in the landscape may be used as stand-ins or proxies for more abstract cultural 

parameters, since human systems are known to respond to environmental pressures in nuanced 

ways. The prehistoric Northern Great Basin shows notable consistency in human ecological 

patterns throughout its time depth of habitation in the region. Because geographic patterns of 

diversity of human indigenous groups parallel similar patterns of diversity in plant, animal and 

microbial species (Burnside et al., 2012), a regional boundary can be used to constrain the study 

area.  

Subsistence strategies among hunter-gatherers in North American prehistory have been broadly 

grouped into three periods: the Prearchaic, Archaic, and Prehistoric. Early periods of human 

occupation in North America are largely known from associated projectile point typologies, and 

as late as the 1970’s and 1980’s the cultural chronology of the prehistoric North American 

Desert West “consisted of little more than changing projectile point forms” (Thomas and 

Bettinger, 1976, p.280). The known 6,600 year known duration of the Western Stemmed Point 

Tradition throughout a period of substantial environmental and climatic variability provides 

support for hypotheses of low population and high residential mobility.  

Consistency in the general pattern of archaeological remains in the Northern Great Basin 

suggests that Prearchaic foraging strategies were resilient and well-adapted to high variability in 

climate and available resources. As basin wetlands disappeared in the latter part of the Early 
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Holocene, travel time between wetland patches would have increased, making alpine and 

subalpine ecotones more desirable for habitation. Introduction of intensive seed grinding 

appeared in the Middle Holocene and may represent the emergence of a more rigid division of 

labor by gender during the transition from Prearchaic to Archaic subsistence patterns (Elston 

and Zeanah, 2002). Some authors, e.g. Zeanah (2004) have proposed that shifts in diet breadth 

are unlikely to generate gender-related changes in foraging strategy and that residential bases 

are instead sited in order to minimize conflicts between men’s and women’s interests in 

provisioning. A general pattern of low population and high mobility throughout human 

prehistory in the Northern Great Basin is also supported by fundamental concepts of ecology 

such as the home range, and by the low linguistic diversity evident in the contact-period Great 

Basin (Burnside et al., 2012). 

These characterizations are not meant to imply that the peoples who inhabited the Great Basin 

prior to the arrival of Europeans were nothing more than simple hunter-gatherers eking out a 

marginal living, a point debated at length by generations of scholars since Steward (see 

Clemmer et al., 1986). Recent anthropological research into foraging goals of Great Basin 

peoples has recognized greater variability in regional diet breadth and mobility patterns 

(Morgan and Bettinger, 2012). Research in the past few decades in the Columbia Plateau 

cultural area has also expanded knowledge of hunter-gatherer cultural diversity and 

evolutionary processes (Prentiss et al., 2006).  

Study Area 
The geographical boundary for this study is the Minidoka Ranger District of the Sawtooth 

National Forest, areas of mountain ranges in Southeast Idaho and Northern Utah which include 

many previously unsurveyed areas. The Sublett Mountains, of particular interest for future 

research for both the Forest Service and ISU Field School activities, stretch approximately 55 
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miles (89 km) longitudinally across Southeastern Idaho and cover an area of approximately 886 

mi2 (2295 km2). 

 

FIGURE 1: STUDY AREA 

The geographic setting of the Minidoka is located on the edge of the northeastern Great Basin 

and is a part of the Basin and Range Province, bordered by the Snake River Plain on the north 

and the Bonneville Basin in the south. The topography is rugged, with lots of elevation change 

among relatively low peaks, the highest of which is 10321 ft (3143 m). The Sublett division is 

characterized by comparatively lower peaks, the highest at 7492 ft (2284 m). The modern plant 

community varies between sagebrush steppe, wetland meadows with herbaceous shrubs, 

montane shrub, and some areas heavily treed with aspen and douglas fir. The Minidoka is 

situated culturally in a boundary area between three broadly-defined cultural areas in North 

America; the Great Basin, Columbia Plateau, and High Plains. The peripheral nature of this area 

suggests that it may have been inhabited over time by peoples associated with one or more of 
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these cultural areas, although it appears to have regularly been included in a broader pattern of 

north-south movement within the eastern Great Basin, paralleling the orientation of mountain 

ranges and valley basins (Jones et al., 2003).  

Vegetation of the Great Basin is predominantly a desert community and mountain biomes are 

home to primarily xerophytic plants. Most rivers and streams are ephemeral and run seasonally, 

disappearing into the playa bottoms in lower elevations with no outlet to the sea. Common 

plants are shadscale (Atriplex confertifolia), saltgrass (Districhlis stricta), greasewood 

(Sarcobatus sp.), rabbitbrush (Chrysothamnus sp.), sagebrush (Artemesia sp.), Mormon tea 

(Ephedra nevadensis), and grasses. Singleleaf piñon (Pinus monophylla), piñon pine (Pinus 

edulis) and western juniper (Juniperus osteosperma) co-occur in the northern portion of the 

province in mountain ranges and along the Snake River (Kelly, 1997).  

As of the Younger Dryas, a vast majority of Pleistocene large mammals were regionally extinct, 

and modern large mammals already characterized the typical faunal inhabitants of the region 

(Goebel et al., 2011). These fauna appear consistently in archaeological evidence of prehistoric 

human subsistence. The modern large mammal community consists primarily of artiodactyls 

such as Pronghorn antelope (Antilocapra americana), desert bighorn sheep (Ovis canadensis), 

mule deer (Odocoileus hemionus), elk (Cervus canadensis), and moose (Alces alces). Bison 

(Bison bison) were endemic to the region in prehistoric times although their modern range is 

artificially limited. Jackrabbits (Lepus californicus) and other small mammals such as Townsend's 

ground squirrel (Spermophilus townsendii) are plentiful subsistence resources. A wide variety of 

tubers, roots, shoots, corms, berries, leaves, fish, insects, and fowl are also known to have been 

consumed in prehistory (Kelly, 1997; Smith, 1988; Thomas and Bettinger, 1976).  
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Significant occupation in this area began in the Late Pleistocene/ Early Holocene, coinciding with 

the late-regressive phase of Lake Bonneville and other pluvial lakes (Oviatt et al., 2003). The 

paleoecological record of the Bonneville basin shows evidence of episodic changes, suggesting 

that modern plant and animal communities are subject to a recurring pattern of environmental 

change as well as longer trajectories of species change (Madsen et al., 2001). This evidence 

supports the use of a modeling approach that relies on environmental parameters, since 

smaller-scale and local changes would be masked by the longer-term developments included 

within this broader pattern. Some sites in the Sublett range are known to reflect the hunting and 

gathering activities of the Shoshone-Bannock peoples who still inhabit the area (Mart, n.d.). The 

range was also used as a travel corridor in recent prehistoric and historic times between the 

Goose Creek area and the Snake River and Fort Hall winter camps (Mart, n.d.).  

Archaeology of the Great Basin 
Prehistoric cultures of this study area have typically been defined almost entirely in terms of the 

lithic technologies associated with recorded sites due to the lack of preservation of diagnostic 

artifacts other than projectile points. While these assemblages provide much useful information 

(Beck and Jones, 1997), other research has been conducted to include a more holistic 

understanding of prehistoric lifeways including settlement and mobility, local adaptations, and 

subsistence practices beyond big game hunting (Elston and Zeanah, 2002; Smith, 1988; Stirn, 

2014; Thomas and Bettinger, 1976).  

Diet-breadth indices derived from faunal, floral, and tool assemblages recovered from sites in 

the Bonneville and Little Boulder basins in the Great Basin suggest that patterns in the 

archaeological record in this area reflected climatically driven variability in foraging efficiency 

and diet breadth (Kent, 1999). Paleoindians employed strategies featuring a highly mobile 

settlement pattern consisting of short-term redundant occupations of sites and long-distance 
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residential moves of up to 400 km. Subsistence pursuits focused largely on artiodactyls, leoprids, 

birds, insects, fish, supplemented by some plant foods. More intensive utilization of plant 

resources occurred after the Younger Dryas (Goebel et al., 2011).  

Many archaeological investigations in the area have demonstrated that both the cultural 

remains and mobility patterns of Prearchaic peoples differed from those of later Holocene 

peoples, due to the changing landscape and biota in the Pleistocene-Holocene transitional 

phase. The lower-elevation subalpine steppe environment of the Sublett during the Early 

Holocene would have sustained a rich community of fish, waterfowl, and mammals that 

occurred at lower elevations than at present (Elston and Zeanah, 2002) in turn supporting a 

flourishing population of Great Basin hunter-gatherers. The Middle Holocene marked an 

increase in diet breadth, although fluctuations in resource abundance would have demanded 

that both Prearchaic and Archaic period foragers make frequent adjustments in resource 

procurement strategies from seed harvesting to big-game hunting on a regular basis. This 

interpretation is supported by the persistence of some Prearchaic projectile point types into the 

Middle Holocene epoch (Simms, 1988).  

A behavioral ecological model put forth by Elston and Zeanah (2002, p.121) suggests that the 

archaeological record of Prearchaic sites in the Great basin is biased in favor of sites “positioned 

primarily to access women’s resources, but bearing a technology reflecting men’s subsistence 

and mobility strategies.” The authors propose that a more varied representation of different 

gendered resource-gathering could be discovered in valley piedmonts and mountain passes, 

instead of the valley-bottom wetland settings where a majority of Prearchaic sites have been 

found to date. The Sublett is well suited to this type of investigation due to its topography and 

location. 
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As outlined above, more recent archaeological research in the Great Basin has embraced 

principles of human ecology and applications of evolutionary theory in analysis of site 

distribution and interpretation of material remains. For example, Byers and Broughton (2004) 

tested prey body size and ranking as measures of foraging efficiency and diet breadth to 

examine how Northern Great Basin prehistoric peoples may have responded to climate-driven 

changes in artiodactyl densities. Other recent research has made a substantial contribution by 

employing niche-construction theory to investigate how socio-ecological conditions may have 

structured past behaviors of Western Great Basin hunter-gatherers (Broughton et al., 2010).  

Ethnohistorical Approaches to Understanding the Prehistoric Great 
Basin 
The development of archaeological research in the Great Basin has its roots in the processual 

and culture-historical theoretical framework established by theorists such as V. Gordon Childe, 

who emphasized the adaptive capacity of material culture. Julian Steward’s cultural ecology 

proposed that historical trajectories of cultural development resulted in technologies available 

to exploit the resources of varied environments, and social organizations that could be modified 

in response to seasonally changing conditions. It was argued that the Great Basin Shoshonean 

(Numic) “culture core” was a result of the patchy and unpredictable productivity of local biota, 

and consisted of mostly simple hunting technology but sophisticated plant processing 

technologies. The culture core, which Steward defined as the cultural elements most closely 

related to subsistence, was comprised of small, mobile family bands that practiced a pattern of 

aggregation and dispersal based on the varying seasonal availability of key resources. These 

groups merged into larger communities subsisting on stored piñon nut in the winter and 

dispersed during the remainder of the year into small patrilineal bands to hunt and gather a 

broad spectrum of spatially less-concentrated seasonal resources (Steward, 1938). 
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In “Basin-Plateau Aboriginal Sociopolitical Groups,” Steward defined the lifeways of the 

Shoshone, people who still inhabit the region today, as being organized based on a seasonal 

round of transhumance. The seasonal round was structured on ecological relationships that 

limited population size, shaped mobility patterns, and helped determine the distribution of local 

groups (Steward, 1938, p.230). People were dependent upon a subsistence pattern in which 

they exploited contiguous but dissimilar microenvironments throughout the year. This pattern 

relied on movement between ripening plant food resources such as piñon nuts and other hard-

shelled seeds from herbaceous plants, supplemented by hunting and fishing. Subsistence-

settlement networks were organized around seasonal variation in availability of these foods. 

This demographic pattern centered about a semi-permanent winter village encampment, often 

located on the ecotone between the sagebrush flats and the alpine piñon-juniper biome. 

Villages were argued by Steward to be sited according to "accessibility to stored seeds, 

especially pine nuts, water, sufficient wood for house building and fuel, and absence of 

extremely low winter temperatures" (Steward, 1938, p.232). This explanation of subsistence and 

settlement pattern is centered on a patrilineal organizational structure, due to the key 

importance of hunting relatively small, non-migratory game (especially deer), and the 

consequent importance of intimate familiarity – presumably by men – with the territory. 

In a 1973 study using rudimentary computer-based predictive analysis, David Hurst Thomas 

used a classification of artifact assemblages derived from Steward’s ethnographic work (i.e. 

those used for butchering, hunting, plant procurement, and habitation) in the Reese River Valley 

in central Nevada. It was found that over 75% of all predicted artifact assemblage frequencies in 

the valley were verified by the random sampling of archaeological remains. This early model of 

locational decisions was applied to a prehistoric Shoshonean context and defined several 

environmental variables believed to be important to decision-making regarding site selection, 
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including considerations of slope, distance to water sources, landform (specifically ridges and 

saddles), and proximity to piñon pine ecotones. This subsistence-settlement pattern correlated 

well with the ethnographic description of the Shoshonean seasonal round (Thomas, 1973). 

Further research in the Sublett would benefit from an attempt to characterize artifact 

assemblages at known sites, in order to better understand the seasonality of site distribution in 

the area and make inferences about the patterns of subsistence and settlement at work in the 

area.  

A notable gap in this understanding of prehistoric peoples is the lack of inclusion of the complex 

influences of culture in driving human decision-making that can override more basic concerns of 

subsistence and environmental context. One example are the native cultures of the American 

Southwest and the Great Basin who established habitation sites on cliff walls with no direct 

access to either food or water. This was a response to the political rather than natural 

environment, i.e. to endemic warfare. As research into human lifeways in the Great Basin 

evolved in the 1980’s, many archaeologists used Binford’s forager-collector continuum (1980) to 

understand how environment affected foraging strategies and responses. Binford’s model 

proposed that sociocultural complexity in the region was based mainly on richness of 

environment, dividing peoples broadly into foragers, small groups who moved frequently 

between resource areas, and collectors, larger and more sedentary groups who stored 

seasonally available resources. Criticisms of this approach focused on the reductive explanations 

that functionally linked environment and technology with behavior. Responses to these critiques 

involved in many cases the adoption of optimal foraging theory, which made use of cost-benefit 

models from borrowed from ecology and economics (Morgan and Bettinger, 2012).  

A more contemporary study of the foraging behavior of Great Basin peoples found that their 

practices demonstrated resilience and persistence, common themes in the culture history of the 
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Great Basin. Because many of the material remains left behind from plant foraging practices are 

not preserved in the archaeological record, many sites in the Great Basin may have been 

improperly classified as hunting sites. Couture et al. (1986) suggest that the pattern of 

prehistoric foraging activity included in some areas the utilization of plant resources as a 

primary focus of activity. 

Beginning in the 1990’s, Great Basin archaeology moved away from culture-historical analysis 

but continued to employ an evolutionary ecological approach. It soon became apparent that 

analysis of macroregional patterns can contribute to a better understanding of spatiotemporal 

patterns in behavior (Morgan and Bettinger, 2012). Processes of population growth, emigration, 

and cultural competition were shown to be interrelated with changing physical and social 

environments (Kelly, 1997). Current knowledge of adaptations in the Great Basin is informed by 

a fundamental ecological dialectic, according to which behavior is seen to be driven primarily by 

environment, with cultural transmission “guiding the adoption, persistence, and demise of 

various behaviors” (Morgan and Bettinger, 2012, p.196). Climatic variation may have altered 

resource abundance and diet breadth, and human population increases may have then led to 

expansion into new areas or to the intensification of different resources. Traditional modes of 

cultural transmission likely defined which behaviors and technologies persisted in light of both 

their efficiency and their relationship to existing or evolving social norms (Morgan and Bettinger, 

2012). 

Modeling in Archaeology 
Within the archaeological community the primary criticism of predictive modelling has been 

that it relies on a functionalist interpretation and is guilty of a form of environmental 

determinism (Gaffney and van Leusen, 1995). When GIS began to be used in addressing 

archaeological questions, its harshest critics referred to modeling with environmental 
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parameters as an “unacceptably reductionist version of complex social decision making” (Lock 

and Stancic, 1995, p.170) or asserted that GIS was inherently environmentally and functionally 

deterministic. Other authors, such as Gaffney (1995), argued in favor of essentially sanctioning 

“environmental determinist” approaches in deductive modeling when used in CRM contexts. 

This was seen as desirable due to the practical limits on time and money available, since 

researching environmental correlates of site locations can assist greatly in effective and 

economical protection of cultural heritage (Gaffney and van Leusen, 1995). Others foresaw an 

oncoming polarization between the goals of archaeology and those of natural science that they 

believed could not be reconciled, a radical split that fortunately did not ultimately transpire 

(Torrence et al., 2015).  

Many of these criticisms have since subsided as spatial analysis has become integral to a large 

number of sciences. The trend over the past 40 years has been one of increasing focus on the 

use of science in addressing archaeological questions (Torrence et al., 2015). Boivin (2005) 

pointed to emerging new perspectives on the interplay between materiality and culture that 

speak to a “post-textual archaeology” and movement away from the post-processual discourse 

that dominated the 1980’s and 1990’s. Killick (2015) notes that although it is still maturing, in 

the last fifteen years archaeology has been thoroughly transformed by new and improved 

scientific methods. Earlier prejudices against science from within the broader discipline of 

archaeology are largely overcome, due to the positive results that scientific analyses have now 

undeniably generated in discussions of the prehistoric past.  

Archaeological science requires advances in theory as well as method – not to mention practice 

– to help extract information from a fragmentary material record and structure its 

interpretation. In biological disciplines, it would not be radical to suggest that a living organism 

can be understood by applying the general theory of evolution by natural selection to its 
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analysis. In the context of studying humans, this has become known as Human Behavioral 

Ecology (HBE) (Bird and O’Connell, 2006; Broughton et al., 2010). HBE assumes that behavior is 

shaped by natural selection, just like that of any other animal; and that this assumption can be 

tested in archaeological contexts through careful analysis of material remains. HBE can advance 

archaeological science in the future by directing research towards systematic analysis of 

variability in human behavior and its material consequences, with the ultimate goal of 

explaining variability across the entire range of human experience. Theoretical frameworks that 

make explicit use of scientific methods in hypothesis-driven research have been used 

successfully to model and understand human behavior. In particular, HBE can be used to 

structure research on subsistence, on settlement, and on the evolution of settlement patterns 

through time (Codding and Bird, 2015). 

The assumption that organisms will behave in a way that maximizes their evolutionary fitness 

can be used to generate hypotheses about what behaviors might be observed under particular 

ecological conditions. Selective evolutionary pressures do not generate behavioral strategies 

that are under direct genetic control, but instead favor the emergence of phenotypic and 

behavioral plasticity because they allow individuals to acquire locally adaptive behavioral 

strategies over a range of environments (Pigliucci, 2005). Longer timescales can include many 

short-term shifts in cultural behavior that potentially result in less strong patterning of 

relationships. This could be seen as “noise” in the resulting data, or unpatterned locational 

behavior, when it may represent the influence of some currently unknown social or 

environmental factor. It is hypothesized then that the consistency in locational behavior 

observed over long timescales in the montane environment of the Minidoka results from 

selective pressures that favored plasticity in cultural adaptation. Although this hypothesis 
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cannot be directly tested through experimentation, modeling research of this type can be 

evaluated to determine whether or not it supports the hypothesis of behavioral plasticity.  

According to Codding and Bird (2015), human behavior can be explained at least partly through 

its material consequences by building on principles of natural selection to provide a general 

theory of behavior, and clearly linking behavior to expected material outcomes. Effective 

modeling of relationships between species and environment is an important goal of any 

ecological research, and recently the focus of such modeling has shifted towards prediction, 

with less emphasis on description and explanation (De’ath, 2002). Predictive accuracy is now 

routinely used as a criterion for selection of a statistical model (Breiman, 1999) and can replace 

the formerly widely used practice of repeated hypothesis testing, which may lead to the 

inclusion of spurious explanatory variables (De’ath, 2002).  

Clearly prediction cannot necessarily be equated with explanation. It is important to understand 

the underlying variables and principles that drive a given distribution of sites, and more reliable 

empirical correlative models may result in interpretable results that can inform an 

understanding of locational behavior. Thus the twofold goals of this project may be realized; by 

demonstrating the ability to correctly classify site presence or absence, and using the 

information gained from site modeling to improve our knowledge and understanding of human 

locational behavior. Theoretical interests and more practical CRM interests can be seen as more 

congruent by considering each CRM project, including this one, as contributing to an evolving 

regional research design, thereby providing a valuable service while incorporating CRM into 

wider research concerns (Kohler and Parker, 1986).  

A discussion of how to best integrate human behavior into spatial analysis from an 

anthropological perspective is ongoing (see García et al., 2012). In applying GIS in research and 
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fieldwork, archaeologists seek to understand human beings and gain better knowledge of the 

spaces they inhabit. Through modeling it is possible to explore how changes in specific 

socioenvironmental conditions could be related to observed variation in human behavior. 

Results of spatial analyses can then be integrated into a broader anthropological and historical 

framework (García et al., 2012).  
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III. Methods 
Technological developments in both hardware and software have transformed the ways in 

which spatial analysis is carried out, although it remains computationally intensive. Opportunity 

cost that was at one time prohibitive (Anselin and Getis, 1992) is now much lower with the 

introduction of a variety of open-source, freely available software options. Hardware remains a 

limiting factor, although the rapid innovation and exponential growth in computational 

capability makes regional-level analysis much more accessible today than even five years ago. 

Species distribution modeling, a method widely used to develop empirical models of species-

environment relationships in biological fields, has been supported by the development and 

dissemination of GIS methods (Franklin et al., 2015).  

The modeling techniques used in this study are primarily based on an inductive/inferential 

strategy. Correlates of site location and parameters are identified using statistical inferential 

procedures to produce a set of independent variables that are demonstrably correlated with 

observed sites (Kohler and Parker, 1986). The rasters used to define site characteristics were 

developed using GIS-based, map algebra methods. A data-driven model was constructed and 

validated using three approaches. The methods employed here, logistic regression, regression 

tree, and random forest, were successful in correctly classifying archaeological site location in 

the Minidoka. Predictive models based largely on environmental parameters tend to perform 

better for hunter-gatherer populations than for more politically complex populations, which 

may be exhibiting locational behavior based more on social than environmental capital (Ebert, 

2004). However it is clear from macroecological analysis that even politically complex cultural 

groups are subject to influences from the natural world that exert strong pressures on behavior 

(Burnside et al., 2012). 
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Regression trees are a machine-learning method that construct predictive models by recursively 

partitioning the data and fitting a model within each partition. This process can be visualized 

graphically as a decision tree and output to a binary predictive mappable surface. Random 

forest is an ensemble machine-learning algorithm that generates many classifiers and 

aggregates their results. This method is built on classification and regression trees and further 

utilizes “bagging,” in which successive trees are built that are independent of earlier trees using 

a bootstrap sample of the data, and adding another layer of randomness through changing how 

the classification or regression trees are constructed (Breiman, 1999).  

Logistic regression characterizes interactions between the categorical dependent variable (site 

presence or absence) and the collected independent variables by estimating coefficients. 

Independent variables were chosen in this case through review of regional archaeological 

literature and landscape analysis. Random forest has comparatively stronger predictive power 

than regression, but lacks explanatory power since it relies on “black box” functions that cannot 

be successfully extracted to generate a model beyond relative weighting of parameters. Logistic 

regression has less predictive power but greater explanatory power than does random forest. 

Logistic regression models have been demonstrated to be effective in building models for 

archaeological investigation (Brandt et al., 1992; Kvamme, 1989; Wheatley and Gillings, 2003). 

Random forest models have only recently been applied to archaeological modeling (Märker and 

Heydari-guran, 2009; Menze and Ur, 2014).  

Model-Building Process  
The workflow is based on the following procedures: through spatial analysis, correlations 

between site location and environmental parameters are established, resulting in selection of a 

set of criteria with the greatest influence on site selection. The most frequently used parameters 

in archaeological modeling are land use, elevation and proximity to water bodies. Less frequent 
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are insolation, viewshed, and Euclidean distance or cost distance between features of interest 

(Danese et al., 2014). Variables used in this study are measurable spatial variables which “stand-

in” for those that are unmeasurable: the whole of human behavior involved in locational 

decision making (see Table 4 for a complete list of independent variables used in model 

construction).  

Workflow 

A. Data selection & archaeological research 
B. Selection and theoretical approach of parameters 
C. Quantification of parameters 
D. Sources of error 
E. Discussion of model types/model building 
F. Model selection 
G. Validation/model assessment  
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FIGURE 2: PREDICTIVE MODELING WORKFLOW 

A. Data Selection & Archaeological Research 
All data were compiled in a GIS environment using ArcMap 10.3 and converted to a common 

projection for interpretation and display, Universal Transverse Mercator (UTM) zone 11N NAD 

1983. This allows spatial statistics to be compiled in common scales of meters. The final dataset 

is comprised of 112 prehistoric and multicomponent sites, reduced from a set of 893. Historic 
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sites and those without sufficient identifying information were excluded from the analysis. Sites 

with areal extents were converted into centroid points for direct comparison with those 

recorded as single points. The majority are small, possibly ephemeral sites, but it is also possible 

that these represent sites which were not surveyed or tested thoroughly enough to yield a 

representative artifact assemblage. As a result most have not been dated with absolute 

methods, and also cannot be assigned to a cultural period reliably only through diagnostic 

artifacts (De Reu et al., 2011). Because surface site assemblages may contain too few diagnostic 

types that are representative of a number of different occupation events and a complete 

chronological inventory of the data is absent, dates of occupation were not included in the 

analysis.  

Although a number of functional site-types ultimately are defined within the dataset provided 

by the USFS, some with identifiable chronological associations, site location modeling in the 

Minidoka is focused only on site presence. This binary outcome was chosen as the dependent 

variable since the dataset is not rich enough to have functional types or chronologies associated 

with every known site. Combining a variety of site types results in a potentially less robust 

model, since previous work has shown that sites corresponding to different functionalities or 

cultural groups may be located according to different criteria (Lock and Stancic, 1995).  

The primary goal of this model is to identify open-air sites as opposed to rockshelter or cave 

sites. Open-air site location preference is assumed to be a function of human choice in terms of 

maximizing desirable environmental factors, while rockshelters occur at locations determined by 

a small range of geologic conditions not easily identified by the type of data used to build 

independent variables in this study (Kvamme, 1992). Since the dataset of known sites in the 

Minidoka consists almost entirely of open-air sites, the model is restricted to identifying 

additional sites that fit the general pattern of environmental relationships. 
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Landscape archaeology often deals with aggregated data and phenomena that interact with the 

environment at different spatial scales. It is important to understand how the results of analyses 

are sensitive to the definition of units for which data are collected in order to build models that 

minimize bias and avoid spurious relationships. Categorical classes for data should be defined as 

objectively as possible, and continuous variables are best used whenever possible to avoid 

arbitrary categorizing that can result in “archaeological gerrymandering” (Harrower, 2013). It is 

common in spatial analysis to work with many sources of data of varying quality or spatial 

accuracy. Inexactness is inherent to the practice of geography since any data must serve as a 

higher level of generalization than the real-world phenomena it represents (Magnin, 2015).  

Background data are necessary for describing the distribution of sites in particular environments 

against the general pattern of the environment. This data is not a targeted effort to guess at 

particular site absence locations, but rather to characterize the environmental domain of the 

study region. A comparison set of “nonsite” point locations were generated within the 

boundaries of the Forest Service managed lands using random point generation with a minimum 

separation distance of 100 m. Those within 1000 m of known sites were excluded from the 

dataset, resulting in a set of 125 nonsites for use in producing a statistical comparison of site 

characteristics against background values. Actual surveyed areas known to be nonsites were not 

used as a dataset for this purpose due to the strongly biased nature of the surveys; since most 

were conducted for the purposes of road improvements, fencing projects, or cattle watering 

infrastructure, they did not represent an unbiased sample of the topography and ecology of the 

background environment. Surveyed nonsites also comprised an areal sample too small to be 

effective in statistical analysis.  
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Nature of the Sample 

Datasets used in this analysis were assembled without a specific sampling design. This results in 

bias due to the following intrinsic and extrinsic factors: in some cases only specific topographic 

areas were investigated, buried material was not detected at the surface, or only positives are 

reported, and in most only surface finds are reported with no subsurface testing (Märker and 

Heydari-guran, 2009). Another source of bias centers on the taxonomy of archaeological sites 

and criteria used to define sites. Less dense evidence of past human activity, defined as “the 

presence of fewer than 10 artifacts in a 10 m x 10 m area or are found to be re-deposited 

material that lacks significant locational context, and there are no other associated artifacts or 

features within a 30 meter radius of the location” (The State of Idaho State Historic Preservation 

Office and The Bureau of Land Management, 2014) is considered an Isolated Find (IF). Although 

this statistical criterion exists, context, potential for buried deposits, and professional judgment 

play a significant role in classification of sites and isolates. 

This approach has several limitations, the most important of which is that the data used to 

derive environmental parameters is incomplete and sometimes inaccurate (Verhagen and 

Whitley, 2011). An analysis including a Normalized Difference Vegetation Index (NDVI) 

demonstrated a strong negative correlation with recorded sites and green vegetation density; 

this demonstrates that the recording and survey techniques used to build this dataset are 

subject to a strong discovery bias. Although there is a statistically significant relationship 

between NDVI values and site presence, this parameter was excluded from the model since it 

would preclude discovery of sites at vegetated locations.  

It is a clear limit of the dataset that site presence is negatively correlated with NDVI since the 

goal of generating a predictive model is to predict site locations instead of merely site visibility. 



 

29 
 

It would be reasonable to expect the opposite: that site location would be positively correlated 

with NDVI since in the Northern Great Basin healthy green vegetation tends to occur in 

association with well-developed soils, lesser degrees of slope, reliable water supply, and 

depositional surfaces. All of these factors should also positively correlate with both site 

presence and site preservation. It could therefore be hypothesized that an inductive-deductive 

model might perform better than a strictly inductive model when tested against new data. The 

data available are imperfect, but that imperfection need not limit the inferences one can make. 

Spatial Autocorrelation  

Multiple logistic regression assumes that the observations are independent. However it 

frequently occurs in spatial analysis that an observed phenomenon is not independent: the 

tendency of a set of data to be clustered together in space or dispersed is known as spatial 

autocorrelation (Bivand, 2010). If the relative outcome of site presence in the Minidoka is 

related to intra-site distance, sites are spatially autocorrelated. In other words, are sites in the 

Minidoka located without any influence of near-site proximity, or are do they cluster or disperse 

as a result of some human locational preference that drives siting? If sites in the dataset are 

contemporary, then one can expect that they would be positively spatially autocorrelated, 

potentially representing groups or bands of associated people who prefer to live near each 

other. It is also reasonable to assume that sites associated with unrelated groups or bands may 

be negatively autocorrelated, since human social and cultural units tend to occupy non-

overlapping home range territories (Burnside et al. 2012).  

Temporal autocorrelation cannot be detected in this dataset since it does not contain 

information about site occupation dates. Sites may also be occupied continuously or 

discontinuously/intermittently for many thousands of years. Predictive modeling methods 
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typically assume spatial stationarity and isotropy, meaning that both spatial autocorrelation and 

the effects of environmental correlates are constant across the study region and that there is no 

variance due to directionality. Few methods directly address non-stationarity (F. Dormann et al., 

2007). One method able to accommodate, although not remove, spatial variation in 

autocorrelation is Geographically Weighted Regression (GWR) (Brunsdon et al., 1998). Another 

method is to subsample the data and re-run each model, although smaller sample sizes may 

result in undesirable outcomes due to over-representation of certain site types.  

Because observations are limited to those that fall within the boundaries of the Forest Service 

land, a semivariogram was generated for each division: the Albion, Black Pine, Raft River, and 

the Sublett. Results indicate that sites at less than a mean range of 2782 m are positively 

spatially autocorrelated. The fact that all divisions display a similar nugget, range, and sill 

indicates that the underlying cause is consistent between all divisions and upholds the 

assumption of second order stationarity in model development. Analysis of the complete 

dataset results in a range of 2748 m. The data does not display geometric or zonal anisotropy. 

Geographic Subset Semivariogram Range 

Albion 2612.4 

Black Pine 3336.8 

Raft River 2615.3 

Sublett 2563.8 

Mean 2782.1 

All subsets included 2748.4 

TABLE 1: SEMIVARIOGRAM RANGE OF DATA 

Unfortunately the limited nature of the cultural data available precludes answers to these 

questions. The degree of spatial autocorrelation can be estimated, but it is beyond the scope of 

this project to hypothesize the causes behind it. Areas of future research could also include 

analyses of the interaction between spatial distributions. Because other natural features of the 

landscape may be autocorrelated as well, concordance of these patterns of spatial variation in 
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habitat components can be used to determine whether distribution of humans might in part 

reflect patterns of spatial autocorrelation of environmental variables (Fleishman and Mac Nally, 

2006).  

B. Selection of Parameters 
One of the fundamental goals of archaeological research is understanding how prehistoric 

human populations utilized natural resources. Because hunter-gatherer economies are closely 

tied to the distributions of animal and plant resources, it can be assumed that understanding 

the variation in these distributions will lead to a better understanding of hunter-gatherer 

lifeways. The paleoenvironment can be reconstructed through direct zooarchaeological and 

paleobotanical evidence recovered and associated with modern environmental patterns that 

are correlated with those species (Franklin et al., 2015). For example, if a site in the study area 

has a record of past humans eating a particular diet, is it possible to extract a collection of 

environmental parameters that are correlated with the distributions of those resources, and 

further to assume that similar site selection criteria driving decision-making can be applied to 

undiscovered sites as well.  

Another benefit of inductive research is that a predictive framework for locational behavior 

must be consistent rather than allowing the application of theory post hoc. Application of theory 

to explain observed distribution of sites or materials may result in inconsistencies that belie the 

complexity of human locational behavior. Therefore, the risk of proceeding with a deductive 

model is that the totality of human-landscape interaction is extremely complex, and a locational 

model based on assumptions of past human behavior and environmental structure may be 

incomplete or poorly informed (Kohler and Parker, 1986).  

Deductive models typically derive predictive variables from ethnohistoric sources and those 

identified in previous correlative research. Hassan et al. (n.d.) suggest a complete model for 
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determining human activity locations must include variables measuring the following, in 

descending order of importance: hazard avoidance, proximity to vital resources, transportation 

costs and accessibility, security, social factors, and aesthetics. However, a model built utilizing all 

of these parameters would exclude expedient hunting camps, quarrying sites, and other 

locations of human activity that are task-specific and do not follow this “complete” model of 

settlement pattern.  

Whitley (2002) suggests that North American approaches to modeling, heavily influenced by 

processualism, could benefit from a more enriching discussion of human agency and social 

theory, without deviating into a “speculative form of epistemological argumentation” (Whitley, 

2002, p.2). It is the nature of research into the behavior of past humans that discussions 

regarding causality may only be speculative. One way to begin a discussion of behavior is to use 

the spatial variables derived from this study as proxies for cognitive decision-making and social 

agency. This relies on a series of assumptions. The first is that past humans thought and 

behaved in much the same way as present-day humans and that their activities left observable 

traces in the archaeological record, and that these observations can be adequately interpreted 

and explained. Nearly all archaeologists would agree upon these assumptions, but there is a 

wide range of techniques available through which to interpret them (Verhagen and Whitley, 

2011). This research does not address the “why” behind spatial behavior, instead leaving such 

explorations to future studies. 

Hunter-gatherer populations are known to modify their environments in a variety of ways, 

including the construction of fishing weirs, antelope drives and irrigation ditches (Steward, 

1938). Habitat modification through the use of anthropogenic fire, which has a long evolutionary 

history, is frequently employed to lower search costs and effect long-term increases in patch 

quality. Anthropogenic landscape change may have had profound effects on ecosystem 



 

33 
 

function, which in turn shaped mobility, settlement, and social organization (Codding and Bird, 

2015). Ethnographic research also provides evidence of the common practice of burning of 

brush to facilitate growth of wild seed plants by the Shoshone on the plains surrounding the 

Bear River and Snake River (Smith, 1988; Steward, 1938). A dominant theme in research into 

human prehistory in the Great Basin has been that basic subsistence concerns drove cultural 

development, and thus help to explain things like technology, social structure, settlement 

pattern, and even ideology (Zeanah, 2004). 

In archaeological studies, both spatial and temporal distribution play an important role in 

enabling researchers to detect patterns. Paleo-environmental conditions specific to the time 

frame under study are not known with precision, so it is necessary to account for the ways in 

which former conditions may have changed and cycled through comparable conditions in the 

past. The present-day landscape frequently contains conserved features from the Pleistocene-

Holocene transition onward, especially if morphodynamics are low. Since the last period of 

dramatic landscape change in this area was during the last glacial maximum in the Pleistocene, 

many of the landforms have remained relatively stable. Therefore, analysis of present-day 

topography may reveal information relevant for past conditions and that will be useful in model 

generation (Märker and Heydari-guran, 2009). Specific parameters relating to long-term 

landscape change or paleoclimatic variability are not reflected in the model. Instead, it shows 

the interaction of variables as they exist in the present. Modeling research that includes 

prehistoric climate (e.g. Franklin et al., 2015) provides an opportunity for greatly enhanced 

understanding of the relationship between humans and the natural world, but is beyond the 

scope of this project.  

One significant resource that prehistoric peoples encountered in the area is a wide variety of 

lithic resources, most notably obsidian sources related to rift valley volcanism in the Snake River 
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Plain that began around 15 Ma (Hackett and Morgan, 1988). Lithic resource availability is one 

marker that, due to its durability in the archaeological record, is frequently employed to track 

mobility and trace processes of exchange of raw materials and manufactured goods (Conolly 

and Lake, 2006). The many obsidian sources in the area – Malad, Browns Bench, Bear Gulch, 

Wolverine Creek, Big Southern Butte, Obsidian Cliff, and others – were all actively quarried and 

visited frequently by prehistoric peoples. The mountains surrounding these sources provided 

not only transportation corridors but habitation sites, as highly mobile prehistoric peoples 

traveled between habitats and their associated resources such as wetlands, different game and 

fowl habitats, and plant communities (Jones et al., 2003). Nodular chert formations found in 

Permian and Pennsylvanian sedimentary rocks in the Minidoka are also known to have provided 

a source of raw lithic material. The conveyance of obsidian throughout the Great Bain through 

travel or trade has been well documented as an element of broader mobility patterns and 

cultural contact (Jones et al., 2003). It is also important to note that lithic sourcing choices are 

not a simple result of availability and instead can represent socially important functions. Raw 

material circulation has been studied in many regions as a way to understand provisioning 

strategies of mobile hunter-gatherers (Magnin, 2015).  
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FIGURE 3: COST DISTANCE TO OBSIDIAN SOURCES USING SLOPE AS AN INPUT BARRIER 

The Cassia division of the dataset is dominated by a lithic landscape formed by the Browns 

Bench obsidian source, and sites are typically characterized by primary reduction activities and 

ephemeral campsites. The primary controlling independent variable in archaeological site 

patterning is in this case is apparently the obsidian source, which is not localized but instead is 

dispersed over the landscape continuing north across the Snake River Plain. This pattern is due 

to the intercalated rhyolite, volcanic glass, and felsic and ash layers that are present (Bowers 

and Savage, 1962). This observed pattern of human site preferencing differs from the 
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occupation type in the remaining divisions of the Minidoka Ranger District and thus is excluded 

from the analysis even though it represents a large sample size.  

Possible vegetation resources that may have impacted site selection include Pinus edulis and 

monophylla (piñon pine), Typha (cattail), Prunus virginiana (chokecherry), and Camassia 

quamash (camas) as well as a long list of other plant resources that are present in the area and 

are known to have been exploited by Great Basin peoples, based either on archaeological or 

ethnographic resources (Couture et al., 1986). It is hypothesized that the region’s abundant 

natural springs positively impacted site patterning, especially in late summer and fall when 

ephemeral streams are dry. The presence of springs may also have been positively correlated 

with desirable food resources and fertile hunting grounds.  
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FIGURE 4: COST DISTANCE TO SPRINGS USING SLOPE AS AN INPUT BARRIER 

Many of the variables discussed here are likely to be in fact social instead of environmental 

variables, however the link between what is measurable and its possible social value is not 

always clear. Inter-site distance, viewshed, and intervisibility have been proposed as some of 

the social values that can be measured by proxy using spatial analysis. Viewshed measures the 

range of visibility from a site which would offer visual control over a territory, which can be an 

important factor in a site’s defensibility. Site intervisibility can be important for communication 



 

38 
 

between inhabitants of contemporaneous sites, and inter-site distance influences the ability of 

site locations to engage in economic support and trade activities (Stančič and Kvamme, 1999). 

Another social factor is control of non-renewable resources; just as in the modern era control of 

finite resources such as petroleum is politically and socially important, in the prehistoric, control 

of obsidian sources may have been an important social variable that can be measured by 

distance to sources. Viewsheds represent not only all locations visible from a point but also all 

locations from which a point of interest is visible. Thus viewshed can be significant to the 

construction of symbolic features in the landscape, defensibility, and to territoriality in general 

(Kvamme, 1999; Wheatley and Gillings, 2003). Least-cost paths between important resources 

can be calculated in a GIS and used as a proxy for community knowledge of traveled routes, and 

together these variables can help to explain agent-based cognitive processes (Whitley, 2004).  

It is common for archaeological modeling to use aspect as a parameter (Brandt et al., 1992) 

under the assumption that south-facing slopes are a more hospitable place to live, especially in 

the winter months. Characterizations of human habitation in the Northern Great Basin have 

included south-facing slopes at least as early as Steward (1938). The montane sites under 

investigation here could potentially exhibit a preference for either north-facing or south facing 

slopes, depending on the time of year that habitation occurred. North facing slopes in the 

summer months may be significantly more desirable due to their soil-moisture preservation 

properties, improving potential for vegetation resources and game habitat. This parameter also 

affects insolation, or the amount of daylight hours and solar radiation, which is linked to 

mobility strategies of foraging communities since it affects the microclimate of a potential 

habitation site dramatically (García-Moreno, 2015).  

Correlations between known sites and their environmental parameters can help describe the 

typical microenvironment of sites in this area. Relevant data that was sourced for this project 
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includes NOAA Landsat data; Idaho Hydrography; National Elevation Datasets (NED) and 1/3 arc 

Digital Elevation Models (DEM); Landcover data; mineral resources data; and National 

Agriculture Imagery Program (NAIP) 0.5 meter orthoimagery. Data was procured via the United 

States Geological Survey (USGS) and the Interactive Numeric & Spatial Information Data Engine 

(INSIDE) Idaho.  

DEMs & topographic analysis 

As is typical in geomorphologic studies, DEMs formed the information base for extracting basic 

components and terrain classes. Topographic forms of the earth’s surface including slope vary 

with the scale at which they are measured, and hence, the characteristics of landforms derived 

using slope are also scale-dependent (Mokarram et al., 2015). Because of this inherent scale-

dependence, feature detection often needs to be performed at different scales of measurement 

in order to determine which is best suited to the study design. The scale at which humans 

interact with the environment also varies, but can be grouped into two main categories; the 

“viewshed”, which ranges approximately from 500 to 3000 m; and the “local”, which ranges 

approximately from 250 to 1000 m. These two measurements, the distance at which people can 

see their surroundings and the area that they might live in, are the scales used in topographic 

analysis for this study. A neighborhood of 250m was chosen as a local “living surface” scale and 

a neighborhood of 1500m was chosen as a “viewshed” scale. Other neighborhood sizes were 

tested and discarded due to a lack of relationship between classes and human activity, or 

because they resulted in over-generalization of the landscape, for example at 2000m (see Figure 

5).  
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FIGURE 5: OVERGENERALIZATION OF LANDSCAPE AT 2000M NEIGHBORHOOD SIZE 

Topographic characterization 

Local topography is an important parameter in determining site preference for a certain location 

in the landscape, and can help refine the model when added to other specific topographic 

parameters such as slope, aspect, and curvature. Based on De Reu et al. (2011) methods utilizing 

focal statistics were used to assess the relative topographic position of sites in the Minidoka 

using a predetermined neighborhood for each function (see Table 2). Difference from mean 
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elevation (DIFF) measures the relative topographic position of the site as the difference 

between site elevation and mean elevation. Deviation from mean elevation (DEV) calculates the 

relative topographic position as the difference of site elevation from mean elevation divided by 

the standard deviation of elevation (See Figure 6). Neighborhood size affects analysis in a 

number of ways; a larger neighborhood assesses site selection against broader landscape units 

while a small neighborhood will highlight small environmental features. Different neighborhood 

sizes can emphasize or generalize landscape features, so it is necessary to produce a variety of 

classifications at varying scales to determine which is best suited to the research topic. This 

study considered circular neighborhood sizes of 250m, 500m, 1000m, 1500m, and 2000m for 

landscape analysis. The intermediate classes were discarded due either to strong 

multicollinearity with other neighborhood sizes or lack of relationship with site presence. The 

2000m neighborhood was discarded due to both overgeneralization of the landscape and lack of 

correlation with site presence. A final selection of 250m and 1500m was used in model-building.  
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FIGURE 6: TOPOGRAPHIC CHARACTERIZATION OF THE SUBLETT RANGE LANDSCAPE USING DEV, FROM TOP LEFT: 
250M, 500M, 1000M, 1500M 

The neighborhood radii chosen for focal statistics and landform classification are also within the 

daily foraging ranges of a Late Prehistoric Great Basin hunter-gatherer group as calculated by 

Morgan (2008) who found peaks in mean foraging radius between 500 and 5000m. These 

foraging distances supported winter group aggregations and facilitated mobility through caching 

behavior, representing the average distance people would have routinely traveled from a 

central settlement location. 
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Method Algorithm Description 

Mean elevation (MEAN, z ̅) 

 

Average DEM value around a central point 
(z0), within neighborhood (R). 

Elevation range (RANGE) 
 

 

Difference between highest and lowest DEM 
value around a central point (z0), within 
neighborhood (R). 

Standard deviation of 
elevation (SD) 

 

Standard deviation (variability) of DEM 
values, around a central point (z0), within 
neighborhood (R). 

Percentile as percentage of 
elevation range (PCTG) 

 

Ranking of central point (z0) as percentage of 
elevation range (RANGE), within 
neighborhood (R). 

Difference from mean 
elevation (DIFF)  

Difference between central point and mean 
elevation around central point (z0), within 
neighborhood (R). 

Deviation from mean 
elevation (DEV) 

 

Relative topographic position of central 
point (z0) as difference from mean divided 
by standard deviation, within neighborhood 
(R). 

TABLE 2: METHODS FOR RELATIVE TOPOGRAPHIC POSITION ANALYSIS (ADAPTED FROM GALLANT AND WILSON, 
2000) 

Elevation percentile (PCTG) calculates the ranking of the central point as a percentage of the 

elevation range (RANGE), within a predetermined neighborhood. This value can be used to 

assess whether sites are situated on a prominence, since values less than 50 correspond with 

lower locations such as valleys, sinks, or downslope areas, while values of greater than 50 

correspond with higher places in the landscape such as ridges, hilltops, or upslope areas (De Reu 

et al., 2011). Quantifying the landscape in this way is significant to model formation since it 

provides a stand-in for a variety of possible culturally significant choices; for example in some 

cultures landform prominence is associated with social status, and sites may be chosen based on 

the viewshed or protection that they offer. 

DIFF measures relative topographic position as the difference between site elevation and the 

mean elevation within a neighborhood (Table 3) (Wilson and Gallant, 2000). The resulting value 

is positive when the site is situated higher than its neighborhood mean, or negative when site 

location is lower than its neighborhood mean. The resulting range of DIFF values varies with the 
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size of neighborhood chosen and topographic variability. A more rugged landscape, such as the 

montane Minidoka, will necessarily result in a wide range of output values.  

DEV measures relative topographic position as DIFF divided by standard deviation of elevation 

(SD) within the neighborhood. DEV values typically range between 1 and -1 and are measured as 

a fraction of local relief normalized to the local surface roughness (Wilson and Gallant, 2000). 

Positive DEV values result from a site situated higher than its average neighborhood and 

negative values result when a site is situated lower than its average neighborhood.  

A methodology to classify the landscape into morphological classes representing landscape 

entities was adapted from Weiss (2001) and is similar to Topographic Position Index (De Reu et 

al., 2013; Weiss, 2001). The method uses the standard deviation (SD) of the DIFF values of the 

background landscape (DEV). Values higher than 1 SD indicate ridges, while values lower than -1 

SD represent valley bottoms. Upper slope area values are between 0.5 and 1 SD. Middle slope 

values are between -0.5 and 0.5 SD, with a slope greater than 6 degrees. Flat area values are 

between 0.5 and -0.5 SD, with a slope of less than 6 degrees. Lower slope area values are 

between -0.5 and -1 SD (Table 2).  

Morphologic class Value Map Symbology 

Ridge z0 > 1 SD 
 

Upper slope SD ≥ z0 > 0.5SD  
Middle slope 0.5SD ≥ z0 ≥ − 0.5SD, slope > 6° 

 
Flat area 0.5SD ≥ z0 ≥ − 0.5SD, slope ≤ 6° 

 
Lower slope − 0.5SD > z0 ≥ − SD 

 
Valley z0 < −1 SD  

TABLE 3: CLASSIFICATION OF THE LANDSCAPE INTO MORPHOLOGICAL CLASSES (ADAPTED FROM WEISS 2011) 

Landform classification is an important component in model-building since many biophysical 

processes in a given landscape are highly correlated with topographic position. This includes 

effects from geomorphological processes, such as soil erosion and deposition or hydrologic 
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balance, as well as climatological processes such as wind exposure and ambient temperature. 

These attributes are predict habitat suitability, community composition, and species distribution 

and abundance for plant and animal communities (Weiss, 2001). Human ecology is affected in 

turn by these environmental elements. 

 

FIGURE 7: NEIGHBORHOOD EFFECTS ON LANDFORM CLASSIFICATION, FROM TOP LEFT: 250M; 500M; 1000M; 
1500M 
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C. Quantification of Parameters & Data Aggregation 
The inclusion of least-cost strategies arises from fundamental assumptions about past decision 

making in an environment known in detail. Cost distance rasters were created using ArcGIS 10.3 

and inputs of a DEM-derived slope raster combined with resources derived from publicly 

available datasets (e.g. USGS, NHD) and original research (Dr. Rick Holmer of ISU). These include 

locations of permanent water resources such as springs or streams, obsidian quarries, and plant 

resources such as piñon stands or deciduous shrubs. A cost distance surface may provide a more 

accurate representation of the ability to acquire resources than a simple Euclidean distance 

which does not take into account topographic barriers. Cost distance rasters were also exported 

to UTM projection and a common pixel size of approximately 9.3 m using geoprocessing tools. 

Viewshed was calculated using both nonsites and sites as observer points with the mosaicked 

DEM as a topographic surface. A mean of viewshed values was extracted using the 

neighborhood sizes described above to determine whether visible area has an effect on 

locational preference. This process can help to identify whether sites are situated preferentially 

for intersite visibility.  
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FIGURE 8: VIEWSHED CALCULATED USING BOTH NONSITES AND SITES AS OBSERVER POINTS 

Geologic layers were used as a parameter in the model not because humans are likely to exhibit 

some kind of locational preference for a particular rock or mineral substrate (except in the 

obvious cases of cliff dwellings and rockshelters), but because the geology of an area can play a 

role in the vegetation community, topography, and differential outcomes of site preservation or 

destruction. Although preliminary results of analysis suggest that it was a strong predictor of site 

location, geologic unit was removed as a possible independent variable since it corresponds to 
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uplifted exposures of units that are common to the area, and thus demonstrates a strong 

recursive locational correlation with alpine site location. This correlation however is not a 

meaningful indicator of human decision making or of preservation outcomes.  

Because the result of spatial analyst tools measure aspect in degrees, statistical analysis of 

compass measurements is problematic; a value of 359° and 1° are both “north,” but a logistic 

regression would treat these as very different values occurring at the opposite ends of the scale 

and muddying results (Jenness, 2005). To compensate for this, aspect was recalculated to a 

measure of “northness,” or deviation from north, using a raster math conditional statement:  

IF aspectValue > 180, northnessValue = 360 – aspectValue, else northnessValue = aspectValue 

This results in a raster that may be included in statistical evaluations that depend on continuous 

variables by producing a measurement of landscape aspect on a scale of 0 to 180 in which the 

lowest values are the most northerly and the highest are the most southerly. This choice of 

transformation relies on the assumption that there is no preferential selection of east or west 

facing slopes.  
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FIGURE 9: ASPECT OF LANDFORMS CONVERTED TO "NORTHNESS" 

Once parameters are rasterized, values are extracted to the dataset based on a centroid of the 

site point. This results in a table that may be further analyzed for relationships between 

independent and dependent variables. Rasterized parameters are listed in the table below. 

Those marked with stars were excluded prior to modeling due to spurious correlations or 

multicollinearity, which is a problem because it can increase the variance of the coefficient 

estimates and make the estimates overly sensitive to minor changes in the model.   
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Multicollinearity was tested in R using Variance Inflation Factor (VIF) which indicate the extent 

to which multicollinearity is present in the logistic regression analysis. A VIF of 5 or greater 

indicates a highly correlated predictor variable. This was examined using the following 

expression: 

sqrt(vif(model)) > 2 

Criterion 

Aspect (Converted to “Northness”) 

Curvature 

DEV 250m 

DEV 500m* 

DEV 1000m* 

DEV 1500m 

DEV 2000m* 

DIFF 250m  

DIFF 500m* 

DIFF 1000m* 

DIFF 1500m 

DIFF 2000m* 

Elevation 

Geologic unit* 

Insolation* 

Landform 250m 

Landform 500m* 

Landform 1000m* 

Landform 1500m 

Landform 2000m* 

Landsat-derived NDVI* 

Obsidian source cost distance 

PCTG 250m 

PCTG 500m* 

PCTG 1000m* 

PCTG 1500m 

PCTG 2000m* 

Permanent streams cost distance 

Piñon stand cost distance 

Slope 

Springs cost distance 

Viewshed 250m 

Viewshed 500m* 

Viewshed 1000m* 

Viewshed 1500m 

Viewshed 2000m* 
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TABLE 4: COMPLETE LIST OF PREDICTOR VARIABLES ASSESSED 
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FIGURE 10: HISTOGRAMS CHARACTERIZING SITE PARAMETERS 

The final parameters used in model-building are shown above using red to indicate nonsite 

(background) values and blue to indicate site presence values, with overlap in distribution 

shown in purple. These figures describe the ways in which human habitation sites differ from 

the landscape as a whole.  

D. Sources of Error 
A variety of sources of error are introduced by the archaeological dataset used in evaluation. 

The first is that data collected in the earliest periods of management by federal agencies under 
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the mandates of cultural resource law was typically done through opportunistic sampling 

protocols that produce dramatically biased samples. As practices later evolved, different 

sampling strategies were employed to reduce this bias; however it is still evident in the dataset, 

as most surveys were conducted along roadsides in preparation for grading or development. A 

second source of error is that the technology used to record sites or isolated finds has changed 

dramatically over time, having originated in hand-drawn maps created with a compass and 

topographic map. The accuracy of hand drawn maps depends greatly on the practitioner, and 

can potentially introduce large errors, for example when sites are mapped in a neighboring 

drainage that is topographically similar by accident. This evolved into the now-standard use of 

GPS systems to record site location and map features, a tool that introduced up to 500+ m 

positional errors in its early iterations. Modern GPS with differential correction can be used to 

record archaeological features with sub-meter accuracy, although they are still subject to error 

sources from atmospheric effects, multipath signals, and signal interference (Bolstad, 2005). 

A second main source of error is introduced by the many GIS processes used in generating the 

environmental parameters used in the model. A variety of these are derived products generated 

from a mosaicked DEM with a spatial scale of approximately 10 m. Errors that exist in first-order 

data products may be amplified when derivatives such as slope or aspect are calculated, 

confounding relationships between computed terrain attributes and terrain-controlled site 

conditions (Bolstad, 2005). It is critical that processing of DEMs, including mosaicking and 

projecting to different coordinate systems, utilize bilinear or cubic resampling instead of nearest 

neighbor to avoid the generation of spurious artifacts in the derivatives. Since all of the 

parameters used in this study were rasterized and matched to the cell size of the DEM, they may 

be considered derivative products. A thorough examination of the sources of error in DEMs as 
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well as the variety of methods possible to correct error is available in Digital Terrain Analysis 

(Wilson and Gallant, 2000). 

For these reasons, a precise measurement of error is extremely difficult to quantify since it 

varies over time within the archaeological dataset as well as within the variety of sources used 

to generate derived data and first-order data. A baseline for accuracy is that it will be at 

minimum ±10 m, but is likely to be larger in reality.  

E. Model Types 
Model 1: Multiple Logistic Regression 

Logistic Regression, also called a logit model, is used to model dichotomous (binary) outcome 

variables. In the logit model the log odds of the outcome is modeled as a linear combination of 

the predictor variables. This technique was used to analyze which independent variables are 

most useful in predicting site presence or absence. Since the data available for analysis was 

primarily collected through pedestrian survey, a continuous response variable such as intensity 

of occupation or duration of occupation is not available and the few data-rich sites that do exist 

would result in a dataset too small to build an effective model. Logistic regression models have 

been used successfully in building models of archaeological potential using environmental 

parameters (e.g., Clark, 2012; Duncan and Beckman, 2005; Espa et al., 2006; Kvamme, 1983, 

1992; Warren and Asch, 2005; Wheatley and Gillings, 2003).  

The statistical null hypothesis is that the probability of the dependent variable (site presence) is 

not associated with the value of the independent variable. In this case the line describing the 

relationship between an environmental parameter and the probability of the site presence has a 

slope of zero. R statistical software and Weka 3, both open source software, were used for 

logistic regression. 
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Model 2: Regression Tree 

In the last few decades, geoinformatics, statistical and machine-learning methodologies have 

made significant progress (Märker and Heydari-guran, 2009), especially in use with 

archaeological datasets. Regression trees are a statistical learning method that can help to meet 

the fundamental objectives of both accurate prediction and explanation. These methods have 

been applied in a wide range of geomorphologic and ecological studies, but are not as 

frequently used in archaeology in spite of their predictive utility (Breiman, 1999; De’ath and 

Fabricius, 2013; Märker and Heydari-guran, 2009). Regression trees and random forest analyses 

have also been used to explore the development of cooperation in hunter-gatherer societies 

(Santos et al., 2015). Interactions between predictors and response variables are quantified and 

visualized. R statistical software and Weka 3 were also used for regression tree generation. 

Model 3: Random Forest 

Random Forest algorithms are used frequently in data-mining where large datasets of binary 

outcomes are important, such as in medicine, but have also recently been applied to 

archaeological prospection (Märker and Heydari-guran, 2009; Menze and Ur, 2007; Santos et al., 

2015; Verhagen and Whitley, 2011). This nonlinear ensemble classifier performs an internal 

feature selection, choosing features with a high relevance to the classification task while safely 

ignoring irrelevant predictors. Thus error converges as the number of trees increases. Individual 

trees in random forests cannot be distinguished in terms of simple interpretations of its 

mechanisms. Use of internal out-of-bag estimates and model re-runs using only selected 

variables can help to improve understanding of variable interactions that are providing 

predictive accuracy (Breiman, 1999). As with models 1 and 2, R statistical software and Weka 3 

were used for random forest generation.  
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F. Model Selection & Validation 
Model selection involves an iterative process of creating many models and estimating their 

performance of in order to choose the best one. The method used to test model performance 

was to split the data into 5-fold cross-validation sets. Cross-validation assesses performance by 

testing how the results of a statistical analysis on a training dataset will generalize to an 

independent (testing) data set. Both the training and testing sets are extracted from the entire 

dataset of preclassified dependent and independent variables. Using supervised data mining 

algorithms, the training set is used to build the model. The test set is then used to evaluate how 

well the model performs with data outside the training set by withholding the test set from the 

model-building stage and using it as a comparison against model results. The model is then 

reiterated and adjusted to minimize error on the test set. 

G. Model Assessment 
Having chosen a final model, its prediction error (generalization error) must be estimated on 

new data. In the 2014 field seasons, limited new data was collected using reconnaissance survey 

and subsurface testing methods. Due to budget constraints, the sample acquired is not large 

enough to provide an accurate assessment of the predictive power of the models, but it does 

give some indication of preliminary outputs.  

Errors of Omission/Commission 

Data for nonsite locations is required to evaluate the efficacy of a predictive model and compare 

the results of discovery against chance. Given that the study area consists of a rasterized grid of 

15196341 pixels, and that 4705 pixels contain known sites, the probability that a randomly 

chosen pixel will contain a known site is 0.000309614 or 0.03%. Errors of commission (false 

positives) identify areas as sites when in reality none exists, and errors of omission (false 

negatives) fail to identify an area as a site when one does exist. The sensitive legal and cultural 
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issues surrounding CRM in the United States necessitate a model that minimizes errors of 

omission.  
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IV. Results 
The methods discussed here can be used to determine areas where previously unknown cultural 

resources might be located. It is strongly cautioned however that these results do not make 

causal connections between the environmental parameters under study and the locations of 

human activities. Site presence is an effect correlated with other independent effects, rather 

than caused by them. This study may, however, provide a starting point from which to form new 

hypotheses regarding causal relationships associated with the environmental parameters that 

determine site location.  

Results from Model 1: Logistic Regression 
Results of this model type are presented in the table below. Significance codes are as follows: 0 

‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1. The dispersion parameter for binomial family is taken to 

be 1, and 5 Fisher scoring iterations are used. Akaike's Information Criterion (AIC) is used as an 

index for selecting between competing models, under the assumption that it represents the 

most parsimonious available model given the data supplied. This index takes into account both 

statistical goodness of fit and the number of parameters that must be estimated to achieve a 

particular degree of fit, and imposes a penalty for increasing the number of parameters. 

Standalone AIC values are not interpretable due to arbitrary constants and effects of sample 

size, however a comparative reduction in AIC indicates a more robust model, i.e., one with the 

fewest parameters that still provides an adequate fit (Burnham, 2004). 

model <- glm(site presence ~ curvature + elevation + dev_1500m + dev_250m  + obsidian_c +  
pinyon_c + slope + northness + spring_c + view_1500m, data=data) 

The first trial model resulted in a null deviance of 235.00 on 235 degrees of freedom and 

residual deviance of 135.91 on 225 degrees of freedom with an AIC score of 563.5. This model 

run suggests that the most important predictors for site location are the cost distance to springs 
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and obsidian sources, slope, and aspect. However, the inclusion of all possible parameters 

masks effects of other predictors that may be contributing to the response variable. A stronger 

model is created by a stepwise reduction of parameters judged by resulting AIC. Stepwise 

reduction is performed using an algorithm that automatically chooses from among a set of 

available predictors to create the regression model. The following expression is used to perform 

the stepwise regression: 

step.model <- step(model, direction="both") 

Coefficients Estimate Std. Error z value Pr(>|z|) 

dev_1500m -2.39E-01 5.65E-02 -4.229 3.39E-05 *** 

obsidian_c -1.02E-01 5.33E-02 -1.91 0.05741 . 

slope -4.53E-01 5.42E-02 -8.361 5.99E-15 *** 

spring_c -1.79E-01 5.98E-02 -2.986 0.00313 ** 

view_1500m -1.19E-01 5.28E-02 -2.261 0.02467 * 

TABLE 5: LOGISTIC REGRESSION RESULTS FROM AIC STEPWISE REGRESSION MODEL.  

The pared-down model using stepwise reduction represents the predictor variables with the 

most influence on site selection, in this case, slope, DEV at a neighborhood of 1500m, cost 

distance to obsidian sources and springs, and the mean viewshed at a neighborhood of 1500m. 

Null deviance remains the same at 235.00 on 235 degrees of freedom, and residual deviance 

increased to 136.6 on 230 degrees of freedom. AIC was reduced from 563.5 to 554.69 in the 

pared-down model, suggesting it is the most parsimonious model available. All parameters used 

have a significant effect on site presence, with slope, DEV at 1500 m, and cost distance to 

springs having the strongest influence. It is of interest that aspect, although commonly used by 

other researchers as a parameter in modeling in this area, had no relationship with site presence 

in the Minidoka.  

In order to determine which of the variables might be contributing the most to site selection 

behavior, the model was run using scaled variables. For example in R statistics software, the 

following command was used to scale the input data to common units for direct comparison: 
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data <- data.frame(scale(data, center = TRUE, scale = TRUE)) 

An assessment of relative importance of variables included in the final logistic regression model 

shows that slope, DEV (specifically at a 1500m neighborhood), and cost distance to springs are 

the three parameters that account for most of the variation seen in site distribution (see Figure 

11). This demonstrates that the other factors included in the model account for only a small 

proportion of the variance, and suggests that the primary concerns in site selection are 

considerations of landform suitability and access to fresh water from natural springs. To 

calculate relative importance for each predictor, the following statement was used to bootstrap 

measures with 1000 samples: 

boot <- boot.relimp(step.model, b = 1000, type = c("lmg", "last", "first", "pratt"), rank = TRUE,  
diff = TRUE, rela = TRUE) 

booteval.relimp(boot)  

 

FIGURE 11: RELATIVE IMPORTANCE OF VARIABLES FOR DETERMINING SITE PRESENCE OR ABSENCE 

Model selection and validation for Model 1 used the Receiver Operating Characteristic (ROC) 

curve to assess the performance of the model by cross-validation. ROC is a graphical 

representation that can quantify a binary-outcome model’s performance by evaluating its 
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performance against a test set. Created by plotting the true positive rate against the false 

positive rate, this measure can assess accuracy by measuring the Area Under the ROC Curve 

(AUC) (Metz, 1978). An area of 1 represents a perfect model in which it is able to correctly 

classify the dependent variable in every instance of the test data, while an area of 0.5 or less 

represents a worthless test (in which the model performs below chance). In general, an AUC of 

greater than 0.90 is considered to be excellent, 0.80 to 0.90 to be good, 0.70 to 0.80 to be fair, 

and 0.60 to 0.70 to be poor (Zou et al., 2007). 

  

 

FIGURE 12: PLOT OF AUC RESULTS FOR LOGISTIC REGRESSION, AT LEFT: COMPLETE LOGISTIC REGRESSION 

MODEL 0.90, AT RIGHT: AIC STEP-WISE REDUCTION MODEL 0.88 

The AUC results obtained show that both models are performing very well at correctly 

classifying site presence when tested against the ‘test’ data. The small reduction in AUC from 

0.90 when testing the full logistic regression model to 0.88 when testing the stepped model is 

not significant enough to include all possible parameters, since it would run the risk of over-

fitting the model. This result shows that the more parsimonious model still performs as well as 

the full model when tested against a subset of the data.  
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FIGURE 13: PREDICTIVE MAP OF MINIDOKA DISTRICT GENERATED USING LOGISTIC REGRESSION; DARKER BLUE 

INDICATES AREAS OF HIGHER PROBABILITY 
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FIGURE 14: PREDICTIVE MAP OF SUBLETT DIVISION GENERATED USING LOGISTIC REGRESSION 



 

65 
 

 

FIGURE 15: PREDICTIVE MAP OF ALBION DIVISION GENERATED USING LOGISTIC REGRESSION 
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FIGURE 16: PREDICTIVE MAP OF BLACK PINE DIVISION GENERATED USING LOGISTIC REGRESSION 
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FIGURE 17: PREDICTIVE MAP OF RAFT RIVER DIVISION GENERATED USING LOGISTIC REGRESSION 

The predictive raster outputs above were generated using the AIC stepwise logistic regression 

model. Dark blue corresponds to areas of higher probability, and yellow corresponds to areas of 

lower probability. This rasterized grid was masked to the boundaries of the study site since it 

represents only the pattern of locational behavior observed in montane sites and would not 

accurately predict site presence in open areas. The Cassia division was omitted from the 

rasterized model output as well.  

One method to account for the effects of spatial autocorrelation that was encountered in this 

dataset is subsampling the data and rerunning the model. There are a number is issues that 

arise from a subsample in this case, most notably that the sample size of positive responses is 

reduced to a much smaller size (n=33). Logistic regression performs best when the proportion of 

positive and negative responses is approximately 50%, which requires that the nonsites dataset 

be subsampled as well. The result is a combined dataset smaller than the minimum sample size 

(n=100) necessary to achieve a minimally acceptable level of statistical power (Long, 1997). The 

subsampled dataset resulted in a model that reduces the probability that it is correctly able to 

reject the null hypothesis due to its reduced statistical power, increasing the chances of a false 
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negative. Logistic regression model rerun produced a model that corresponded well to the 

model using the full dataset, with slope, DEV at 1500m, and cost distance to springs as the 

statistically significant parameters. Obsidian cost distance is not statistically significant to site 

location with the subsampled data. It should be cautioned however that subsampled modeling 

in this instance will necessarily reduce model confidence due to the smaller sample size.  

Results from Model 2: Regression Tree 
Weka software was used to generate the regression tree using the RepTree algorithm. This 

algorithm uses regression tree logic to create multiple trees in different iterations and selects 

the best one by pruning. The mean square error of predictions is used to prune the tree. Run 

information for the regression tree model is displayed below: 

=== Run information === 
Instances: 236 
Attributes: 
              Presence 
              curvature 
              dev_1500m 
              dev_250m 
              diff_1500m 
              diff_250m 
              northness 

              obsidian_c 
              pinyon_c 
              slope 
              spring_c 
              stream_c 
              view_1500m 
              view_250m

Test mode: 5-fold cross-validation 
 
=== Classifier model (full training set) === 
REPTree 
============ 
slope < 8.92 : site (39/3) [41/6] 
slope >= 8.92 
|   spring_c < 2476.25 
|   |   view_1500m < 0.83 : site (11/0) [19/7] 
|   |   view_1500m >= 0.83 : nonsite (4/1) [1/0] 
|   spring_c >= 2476.25 
|   |   dev_250m < 1.52 
|   |   |   diff_1500m < -58.09 
|   |   |   |   pinyon_c < 1294.68 : site (3/0) [4/1] 
|   |   |   |   pinyon_c >= 1294.68 : nonsite (5/0) [5/1] 
|   |   |   diff_1500m >= -58.09 : nonsite (53/2) [47/4] 
|   |   dev_250m >= 1.52 : site (3/0) [1/1] 
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Size of the tree: 13 
 
=== Stratified cross-validation === 
=== Summary === 
Correctly Classified Instances 190 80.5085 % 
Incorrectly Classified Instances 46 19.4915 % 
Kappa statistic   0.6088 
Mean absolute error  0.2733 
Root mean squared error 0.3889 
Relative absolute error  54.8426 % 
Root relative squared error 77.9171 % 
Total Number of Instances 236 

 TP Rate FP Rate Precision Recall  F-Measure ROC Area Class 

 0.793 0.184 0.793 0.793 0.793 0.85 Site 

 0.816 0.207 0.816 0.816 0.816  0.85 Nonsite 

Weighted Avg. 0.805 0.196 0.805 0.805 0.805 0.85   

TABLE 6: DETAILED ACCURACY BY CLASS FOR REGRESSION TREE 

Site Nonsite Classified as 

88 23 Site 

23 102 Nonsite 

TABLE 7: CONFUSION MATRIX FOR REGRESSION TREE 

 

FIGURE 18: REGRESSION TREE VISUALIZED 
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Cross-validation was also used to prune the tree to prevent overfitting by evaluating the error 

on the testing data at each pair of leaf nodes with a common parent to determine whether the 

sum of squares would be smaller by removal of the nodes to turn the parent into a leaf. This 

process is repeated until pruning no longer improves the error on testing data. Using regression 

tree, the environmental parameters under investigation here can correctly identify 

approximately 80% of site presence/absence instances, although there are undoubtedly less 

easily quantifiable influences such as ideology and more abstract cultural practices that 

influence spatial behavior being picked up in this model. The model output may be less desirable 

than that of logistic regression, since it results in a binary outcome representing a classified 

landscape in which sites are either likely to occur, or not likely to occur (see Figure 19). 
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FIGURE 19: PREDICTIVE MAP GENERATED FROM REGRESSION TREE MODEL 

Results from Model 3: Random Forest  
Weka software was used to create a random forest model. The algorithm was executed with 13 

parameters and 500 iterations. Permutation-based MDG reduction is used as the criterion of 

importance to rank model parameters. Random permutation of predictors demonstrates an 

increase in MDG positively correlated with its importance rank as a predictor. The random forest 

model produced an out-of-bag error of 0.1356, demonstrating its efficacy as a predictor of site 

presence. Run information from the model implementation is included below.  
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FIGURE 20: PARAMETER IMPORTANCE DERIVED FROM RANDOM FOREST ANALYSIS. 

=== Run information === 
Instances:    236 
Attributes: 

Presence 
              curvature 
              dev_1500m 
              dev_250m 
              diff_1500m 
              diff_250m 
              northness 

              obsidian_c 
              pinyon_c 
              slope 
              spring_c 
              stream_c 
              view_1500m 
              view_250m 

Test mode: 5-fold cross-validation 
 
=== Classifier model (full training set) === 
Random forest of 500 trees, each constructed while considering 4 random features. 
Out of bag error: 0.1356 
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=== Stratified cross-validation === 
=== Summary === 
Correctly Classified Instances 206 87.2881 % 
Incorrectly Classified Instances 30 12.7119 % 
Kappa statistic   0.7449 
Mean absolute error  0.2278 
Root mean squared error 0.315  
Relative absolute error  45.7262 % 
Root relative squared error 63.1013 % 
Total Number of Instances 236 

 TP Rate FP Rate Precision Recall  F-Measure ROC Area Class 

 0.865 0.12 0.865 0.865 0.865 0.939 Site 

 0.88 0.135 0.88 0.88 0.88 0.939 Nonsite 

Weighted Avg. 0.873 0.128 0.873 0.873 0.873 0.939  

TABLE 8: DETAILED ACCURACY BY CLASS FOR RANDOM FOREST 

Site Nonsite Classified as 

96 15 Site 

15 110 Nonsite 

TABLE 9: CONFUSION MATRIX FOR RANDOM FOREST 

 

FIGURE 21: AUC RESULTS FROM REGRESSION TREE AND RANDOM FOREST MODELS; AT LEFT: REGRESSION TREE 

0.85, AT RIGHT: RANDOM FOREST 0.94 

The AUC results of regression tree (0.85) and random forest (0.94) demonstrate that both 

perform well at correctly classifying site presence when cross validated.  
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Results from Model Assessment 
The limited testing done in 2014 provides an opportunity to compare the results of the model 

classifiers on novel data, although it is a clear limitation of this data that the sample size is not 

large enough to be statistically significant. A second limitation is that it was collected prior to 

model development, and in the case of both the logistic regression and regression tree outputs, 

only provides a comparison sample of areas classified as having a higher likelihood to bear 

cultural resources. Unfortunately no subsurface testing was done in any areas of low probability, 

so this sample may only confirm errors of omission and not errors of commission. Seven 

locations were visited and surveyed either through systematic transect reconnaissance, shovel 

testing, or a combination of the two. Of the seven, four were positive for the presence of 

cultural resources. Although it may appear that these results show poor model performance and 

contradict the cross-validation results outlined above, it is cautioned that the very small sample 

size limits what inferences can be made. Furthermore, even a rather disappointing 57% success 

rate would represent a marked improvement over the 0.03% probability that a randomly chosen 

pixel (approximately a 10x10m location) will contain a known site.   
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V. Conclusions 
Research Findings 
The fact that it has been possible to construct a predictive model does not in itself guarantee 

the accuracy of the model’s predictions (Conolly and Lake, 2006). Validation of the model must 

be carried out by determining its predictive power above chance, in this case using k-fold cross-

validation. The 0.88 AUC value from the stepped logistic regression model shows that it is 

performing very well at correctly classifying site presence, and the AUC values of 0.85 and 0.94 

for regression tree and random forest demonstrate that all of the models examined here are 

suitable methods for predicting site presence when tested using cross-validation. It is the 

author’s recommendation that the logistic regression model be utilized in future field research 

as opposed to the regression tree or random forest models, since it represents the most 

parsimonious model and reliably classifies site presence and absence.  

A widely reported measure of model performance in archaeological predictive modeling is 

Kvamme’s gain index (Balla et al., 2014a, 2014b; Brandt et al., 1992; Carleton et al., 2012; Chen 

et al., 2013; Ebert, 2004, 2005; Harrower, 2013; Kvamme, 1992; Verhagen and Whitley, 2011). 

The validity of the logistic regression and regression tree models were tested by calculating 

Kvamme’s gain, expressed by the following: 

Gain = 1− ((% of total area covered by the model)/(% of total sites within model area))   

As gain approaches 1, the predictive utility of the model increases (Kvamme, 1989). The gain 

statistics produced by the regression tree and logistic regression models are 0.96 and 0.97 

respectively, indicating that they are both excellent classifiers of site presence. This method of 

evaluating model performance provides a measure of the efficiency of prediction as a function 
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of area and is useful for comparing models developed using different algorithms or techniques 

(Hill et al., 2005).  

This study is one of a very small number that compares multiple model types directly. Given 

that, depending on the model used, 80-90% of the variation observed in human locational 

patterning can be explained by a handful of environmental attributes, the premise of using an 

ecological approach to studying human systems in the Northern Great Basin is supported. The 

hypothesis that consistency in locational behavior observed over long timescales in the 

Minidoka results from selective pressure that favored plasticity in cultural adaptation is 

supported by these results. Although it is evident that locational behavior was correlated 

strongly with environment, other social and ritual forces almost certainly influenced the 

observed variation.  

Predictive models can be used in both CRM and academic research to identify areas in need of 

further investigation. Discovery of new archaeological sites adds to existing knowledge and 

deepens our understanding of past human activity. There is also great utility in potentially 

reducing costs by providing guidance and support for development and land use projects. 

Predictive modelling can be a successful tool that also advances archaeological thinking and 

interpretation of the past (Balla et al., 2014a). This research contributes to the understanding of 

hunter-gatherer adaptations in the intersection between the Great Basin and Plateau cultural 

areas of North America.  

Results show that there is a significant relationship between site distribution and terrain 

characteristics and processes that can be assessed by topographic indices and environmental 

parameters. It was demonstrated that the modeling methodologies employed here yielded 

relationships that can be applied to the region under study to derive spatial archaeological site 
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probabilities. The information gained here can be used to develop hypotheses that can be 

tested in further research as well as improving sampling design for future field work. 

Use of statistical methods to predict site locations strikes a delicate balance; is the goal to 

continue to find sites that are similar in functionality and time depth to the sites already known, 

or is it preferable to proceed with an inductive model and include environmental parameters 

that may define classes of sites under-represented in the dataset? Results of analysis from the 

models examined here suggest that it would perform very well at predicting locations of human 

activity that conform to the dataset available, but it is an open question as to whether or not 

this dataset is truly representative. Taken together with field testing, these data will help to 

enhance knowledge of mobility patterns, subsistence, and economy over time. High altitude 

regions have been traditionally thought of as marginal and peripheral to core areas of cultural 

development, and so too have nomadic groups traditionally been excluded from discussions of 

complexity (Aldenderfer, 2006). This research helps to understand human movement across the 

landscape in montane regions and further general knowledge about the ecology and culture of 

nomadic peoples. 

Overall this study contributes not only to our knowledge of culture history of the region, but to a 

greater understanding of human prehistory by investigating the change over time in hunter-

gatherer communities in the Great Basin and Plateau cultural areas of North America. This 

research demonstrates that modeling human behavior as a response to environment is effective 

in the spatial and temporal extent studied. It also contributes to anthropological studies about 

human-environment interaction in general by modeling and testing variability in resource 

exploitation as a response to environment, and evaluates continuity in the range and variation 

of human locational behavior. Data generated here describes cultural practices on a local level 

and may be used in comparative study in a wider regional context. This research focuses on 
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elucidating patterns of human locational behavior by using an HBE framework to draw 

inferences from material remains. Future work can build on these foundations to better 

understand human behavior and how it interacts with and is influenced by dynamic and 

complex socio-environmental contexts. 

Future Research Possibilities 
The strong negative correlation between site location and NDVI values suggests a discovery bias 

in survey methods. This could be corrected in future research by the inclusion of subsurface 

testing in areas with low surface visibility due to vegetation, potentially resulting in a more 

representative sample of cultural resources in the area. Future modeling efforts could be made 

substantially more robust by including a detailed paleoenvironmental record to reconstruct 

paleoscapes that more accurately represent the landscape that past humans inhabited at 

different points in time. Although computational resources have improved dramatically in 

recent years, many of the methodological processes described here remain time-consuming 

analyses. Further research will no doubt benefit from improved processing power in the future. 

Other modeling methods that could be applied to this data are spatial generalized linear mixed 

models, generalized linear models (GLMs) and Geographically Weighted Regression (GWR). 

GWR has been used to model archaeological data (e.g., Bevan and Conolly, 2009; Gkiasta et al., 

2003) although is not employed as frequently as the other methods used in this study.  

These results also provide many opportunities for field investigation in future seasons. 

Upcoming Idaho State University Field Schools may make further use of these results in testing 

the model’s predictive validity to produce a detailed dataset of cultural resources through 

reconnaissance pedestrian survey, GPS mapping, and shovel testing. To uncover possible 

outliers or exceptions it will be necessary to employ a sampling strategy that includes survey of 

areas with low archaeological potential as well as those that are expected to contain sites. 



 

79 
 

Radiocarbon dating of existing materials from previous field studies could help to develop a 

better understanding of potential temporal variation in site attributes. 
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Appendices 
Appendix A: Site data used in model creation 

curvature elevation dev 
1500m 

dev 
250m 

diff 
1500m 

diff 
250m 

northness obsidian 
cost 

pinyon 
cost 

slope insolation spring 
cost 

stream 
cost 

view 
1500m 

view 
250m 

-0.67 2250.46 -1.53 -1.15 -125.02 -24.58 81.06 86679.14 1969.50 3.70 1464783.25 295.59 6021.97 0.69 0.90 

-0.37 2063.11 -1.47 -0.80 -179.29 -21.00 121.48 48341.49 115.57 10.76 1479168.88 7130.16 214.62 0.68 0.54 

-0.38 1714.05 -1.72 -1.08 -105.68 -18.95 54.21 81675.93 987.44 2.46 1378075.63 688.54 18.49 0.55 0.66 

-0.99 1855.75 -1.44 -1.11 -69.39 -22.69 1.64 72364.76 908.56 13.80 1213348.50 900.13 17610.21 0.45 0.45 

-0.12 2986.20 1.01 0.80 117.71 18.82 171.73 61816.66 7509.36 3.53 1667730.88 3070.44 2364.00 0.71 0.83 

-0.60 2075.70 -1.10 -0.35 -101.12 -9.65 34.36 64428.93 720.55 16.94 1227557.75 690.98 139.67 0.83 0.93 

-8.72 2166.21 -0.96 -1.00 -104.59 -28.44 90.51 76123.87 241.90 5.83 1384668.00 812.89 0.00 0.73 0.79 

-0.94 2160.25 -1.07 -0.66 -127.65 -25.75 105.08 75675.08 863.07 24.69 1414103.13 345.52 322.02 0.68 0.85 

0.04 1698.87 0.02 0.34 1.19 4.25 50.82 30053.35 78.45 7.42 1342099.63 8626.46 12109.42 0.50 0.76 

-2.82 1803.97 -1.44 -1.33 -85.63 -23.39 3.45 80782.48 974.48 9.68 1257718.00 74.29 5767.44 0.58 0.63 

-4.53 2186.00 -0.55 -1.06 -65.73 -37.40 126.47 43714.43 1312.36 15.95 1506017.50 388.32 4839.27 0.58 0.72 

0.25 1778.57 0.00 0.23 0.13 2.62 136.33 47739.63 0.00 8.76 1484029.13 12961.39 380.86 0.98 1.00 

3.28 1954.45 0.22 1.02 33.24 39.40 26.06 40284.93 83.21 6.57 1363510.00 12263.21 15117.74 0.61 0.37 

-0.37 1838.68 -1.55 -1.04 -170.07 -43.03 175.78 50490.36 0.00 26.36 1517529.63 2383.54 747.38 0.71 0.54 

-1.26 1889.74 -1.09 -1.32 -109.24 -36.89 144.43 52856.30 111.28 3.88 1422120.63 8481.63 142.85 0.88 0.85 

-2.20 1911.70 -0.61 -1.30 -51.34 -30.25 56.68 54971.23 39.23 5.18 1379430.25 5710.01 4415.18 0.89 0.95 

-0.76 1847.86 -1.06 -0.44 -101.60 -8.83 72.16 37633.30 364.66 6.26 1384021.63 260.33 23.11 0.45 0.37 

-0.21 1877.33 -0.48 -0.16 -63.15 -3.57 19.88 63788.18 165.50 6.77 1330480.25 100.12 14045.65 0.68 0.96 

-1.05 1830.12 -0.64 -0.94 -79.14 -18.33 83.52 62960.13 837.57 11.55 1380164.13 882.70 13566.59 0.66 0.94 

-0.60 1958.10 -0.67 -0.83 -51.25 -12.95 34.48 59163.97 143.17 6.93 1362893.13 2116.83 27.74 0.86 0.82 

-0.42 1935.60 -1.36 -0.91 -156.05 -29.52 39.55 53272.08 226.52 20.99 1128236.00 2214.32 127.39 0.74 0.78 

-0.73 1999.53 -1.48 -1.37 -145.43 -25.01 140.49 50559.03 508.30 5.03 1478658.13 2827.50 46.23 0.84 0.54 

-0.04 2188.33 -0.05 -0.39 -6.13 -11.50 74.78 47176.23 764.21 13.22 1401871.38 1868.07 1933.45 0.67 1.00 

-1.48 2196.36 -0.01 -0.53 -1.25 -15.59 30.63 47091.83 459.50 15.84 1245652.50 2076.04 2104.25 0.66 0.97 

0.38 2305.13 0.34 0.17 28.36 2.43 32.16 72646.94 770.88 7.59 1412246.00 364.80 3948.38 0.81 0.74 

-0.80 2318.36 -0.69 -1.33 -59.20 -23.01 139.02 77138.03 1279.18 8.24 1557887.75 46.56 225.59 0.79 0.83 

-0.17 1542.19 -0.38 -0.58 -18.84 -9.33 43.87 61250.24 27.74 7.25 1312931.75 160.22 10481.10 0.98 0.99 

-1.35 1890.51 -1.10 -1.06 -76.15 -21.56 0.86 57782.46 32.36 3.74 1372080.13 367.04 0.00 0.87 0.80 

-0.02 1854.69 -0.75 -1.09 -58.14 -15.70 174.73 56736.96 110.81 8.68 1508898.13 2010.06 64.72 0.85 0.87 

-0.05 1898.77 -0.31 -0.61 -35.02 -11.05 76.75 78596.83 587.96 8.29 1400793.38 3407.64 3374.89 0.99 1.00 

-0.18 1898.47 -0.28 -0.57 -29.90 -14.61 58.84 76251.55 235.82 21.60 1219326.88 5365.00 5391.62 0.99 1.00 

0.47 2852.29 0.76 1.06 143.14 33.16 116.57 71450.50 1617.45 2.86 1611252.88 5529.15 3830.03 0.92 0.87 

-4.53 1754.77 -0.74 -1.48 -73.42 -53.62 165.48 59149.71 152.88 9.11 1282667.50 23450.86 26206.04 0.07 0.15 

-1.86 1929.94 -1.61 -1.25 -99.41 -32.31 56.70 73194.74 907.24 13.38 1281201.50 4035.98 18376.96 0.28 0.36 
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-0.49 1676.70 -0.99 -1.07 -61.91 -23.75 164.34 52058.60 66.96 7.48 1465060.25 26039.21 29788.70 0.24 0.50 

-0.17 1814.74 -1.61 -0.71 -115.28 -13.39 104.87 66671.34 1113.63 1.82 1398896.50 2420.61 11510.25 0.44 0.46 

0.27 1906.99 -0.85 -1.22 -44.63 -13.39 34.84 75501.12 2519.08 6.12 1368211.25 221.63 14478.93 0.56 0.80 

-0.37 1888.16 -0.86 -1.01 -40.64 -15.48 160.39 73699.71 1043.03 5.03 1482052.00 245.01 18771.12 0.38 0.39 

-0.46 1805.54 -1.41 -1.24 -86.34 -19.93 167.09 80739.31 957.57 8.20 1489950.50 189.40 5732.70 0.58 0.59 

-0.16 1802.29 -1.54 -0.72 -121.51 -15.16 59.50 66605.88 1175.51 2.60 1383848.38 76.21 12818.61 0.44 0.54 

-0.01 1484.37 -0.14 -0.08 -5.93 -0.59 110.88 26990.58 1148.40 3.50 1389520.38 1868.84 5576.79 0.74 0.96 

1.47 2034.65 -1.23 -0.53 -203.84 -29.15 57.80 56628.54 3125.15 43.60 817654.00 359.58 22175.15 0.66 0.68 

0.50 2021.93 -1.27 -0.68 -212.62 -35.73 74.04 56485.42 2914.49 31.53 1081601.13 403.56 22084.83 0.66 0.70 

-0.04 2115.62 -0.85 -0.40 -53.27 -6.06 164.58 70741.63 952.70 14.39 1604069.50 216.68 1749.46 0.63 0.66 

-0.23 1810.46 -0.42 -0.42 -50.49 -10.18 5.68 89176.98 27.74 9.71 1290608.38 2286.57 4690.62 0.28 0.44 

0.07 1809.71 -0.90 -0.10 -64.23 -0.96 133.97 70358.39 926.28 3.06 1447139.88 3873.27 300.74 1.00 1.00 

0.16 2053.85 -0.44 -0.27 -57.88 -4.11 115.58 60271.68 263.10 7.43 1492523.75 5758.34 8348.33 0.40 0.29 

0.30 1841.75 -0.31 -0.29 -26.09 -4.01 114.37 52168.68 84.99 8.61 1456946.25 376.95 3555.17 0.32 0.44 

-3.19 2036.78 -0.64 -0.37 -63.65 -9.17 175.67 60232.81 3480.32 13.72 1591325.75 91.99 5702.88 0.32 0.08 

0.09 2952.98 0.80 0.48 87.73 12.00 64.39 56742.48 7063.42 3.16 1594996.00 1436.83 4209.67 0.65 0.98 

-0.19 1971.37 -1.44 -0.89 -156.56 -16.21 43.31 51786.09 730.20 12.10 1289460.25 2799.30 119.73 0.80 0.62 

-0.07 1770.44 -0.16 -0.32 -7.93 -3.49 165.22 47625.18 0.00 8.80 1507164.75 12872.70 235.77 0.98 1.00 

0.16 2742.96 0.44 -0.53 56.81 -8.62 21.19 58645.01 3095.30 10.09 1430302.50 319.04 2956.59 0.93 0.97 

-1.29 2133.33 -0.50 -0.08 -33.75 -1.69 137.63 71805.64 78.59 4.30 1512665.50 118.14 1913.83 0.60 0.34 

-3.05 1709.72 -0.31 -1.07 -30.73 -16.02 115.88 37104.52 115.57 11.52 1425920.63 8587.50 11096.16 0.68 0.77 

-0.04 1771.63 -0.53 -0.36 -33.10 -5.43 40.24 37621.04 55.01 2.39 1394974.88 4303.45 9.25 0.97 1.00 

-0.03 1764.35 -0.45 -0.07 -26.38 -0.51 2.81 37354.02 193.23 2.04 1393855.38 4085.46 36.98 0.98 1.00 

0.03 1771.72 -0.54 -0.35 -33.88 -4.88 43.20 37607.33 40.81 2.38 1396758.63 4289.72 13.08 0.98 1.00 

-0.14 1772.49 -0.53 -0.39 -33.77 -6.27 49.82 37648.46 78.45 2.54 1396212.38 4320.82 0.00 0.97 1.00 

-0.14 1772.49 -0.53 -0.39 -33.77 -6.27 49.82 37648.46 78.45 2.54 1396212.38 4320.82 0.00 0.97 1.00 

-1.73 2904.32 0.15 -0.35 15.57 -14.17 117.78 58067.93 8197.44 18.46 1596310.00 1369.40 3821.81 0.68 0.97 

0.00 2920.74 0.37 -0.20 39.10 -7.40 12.75 57471.02 7610.11 30.94 1019359.13 1685.28 4117.24 0.66 0.97 

0.00 2920.74 0.37 -0.20 39.10 -7.40 12.75 57471.02 7610.11 30.94 1019359.13 1685.28 4117.24 0.66 0.97 

-0.05 2028.29 -1.13 -0.15 -91.77 -1.90 34.32 62756.21 52.30 5.18 1394936.88 2572.12 328.88 0.87 0.92 

1.62 2112.93 -0.10 0.39 -12.03 12.33 170.47 63303.88 0.00 5.86 1528439.25 5399.50 2132.19 0.87 0.83 

0.17 1687.87 -0.21 0.05 -8.52 0.32 117.91 35323.37 0.00 6.56 1436331.00 5866.47 5862.64 0.97 0.89 

-0.02 1773.52 -0.12 0.44 -9.51 5.56 123.45 40511.17 0.00 4.99 1450046.13 10013.93 9332.09 0.96 0.82 

0.18 1673.57 -0.31 0.26 -21.65 3.29 104.38 30968.19 0.00 5.33 1415225.25 8055.96 11538.93 0.54 0.59 

0.08 1832.99 -0.01 0.44 -1.31 9.17 139.97 32498.12 0.00 9.28 1502965.63 11699.97 13689.41 0.51 0.67 

-0.16 1484.86 -0.16 -0.13 -6.63 -0.76 128.07 27284.64 821.67 2.93 1396709.75 1797.16 5272.50 0.78 0.92 

0.17 1491.04 -0.08 0.02 -3.29 0.10 135.76 27597.72 403.70 1.68 1391542.38 1832.10 5180.67 0.80 0.86 

0.02 1475.00 -0.14 -0.23 -5.82 -1.19 50.80 26846.62 1042.70 0.73 1369557.50 1558.78 5116.50 0.79 0.96 

0.78 1713.43 0.58 0.57 50.02 18.96 51.19 32914.15 240.39 14.03 1269798.50 6311.37 9687.26 0.64 0.61 

-0.11 1689.73 -0.08 0.25 -5.10 3.90 68.95 38151.52 0.00 7.66 1366015.63 9022.50 10737.36 0.76 0.80 

-0.15 1675.08 -0.18 0.42 -10.47 7.58 107.03 38142.20 0.00 6.41 1421377.88 8979.91 10651.18 0.78 0.73 

0.26 1644.45 -0.60 -0.49 -32.78 -7.49 35.00 37733.55 51.18 5.81 1334581.88 8580.41 10174.62 0.80 0.76 
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0.51 1648.07 -0.64 -0.64 -33.75 -7.37 116.99 37973.47 219.38 3.68 1415320.13 8775.95 10370.15 0.80 0.82 

-1.85 1684.58 -1.45 -1.27 -76.03 -28.60 130.80 78968.40 904.42 22.96 1410697.75 1975.11 75.42 0.38 0.44 

0.86 2051.21 0.49 1.70 44.05 33.99 69.46 43224.66 1630.99 14.10 1355695.13 2279.00 3588.22 0.42 0.09 

0.10 1760.16 -1.29 -0.69 -68.03 -12.76 49.27 74018.81 503.16 29.28 1037073.69 2750.85 202.67 0.32 0.76 

0.03 1654.50 -1.57 -0.87 -109.10 -19.16 92.90 78431.41 541.07 1.85 1378810.25 927.59 39.23 0.59 0.83 

1.46 2098.50 1.75 1.82 134.24 48.87 45.40 73939.33 234.18 17.64 1263414.75 12050.04 12055.78 0.49 0.65 

1.63 2102.80 1.89 1.42 141.79 40.16 57.05 74102.04 150.50 5.49 1432710.63 12729.58 12717.30 0.48 0.51 

1.09 2174.78 2.85 2.10 211.37 51.69 178.03 73834.84 526.79 10.69 1601813.13 12646.67 14413.37 0.48 0.84 

1.11 2087.24 1.63 1.53 132.67 28.35 171.31 75030.21 642.17 11.18 1587614.13 10291.87 11980.19 0.55 0.77 

1.22 2053.91 1.31 1.83 90.57 33.09 19.77 76768.84 780.73 6.41 1384175.88 7020.90 15213.71 0.49 0.47 

-0.30 2363.55 -0.46 -0.82 -68.01 -16.99 104.68 69697.30 416.06 6.88 1516861.38 5643.44 77.33 0.94 0.98 

-0.44 1662.43 -1.51 -0.97 -100.99 -14.39 74.34 78947.80 975.00 5.99 1368014.25 496.49 82.42 0.59 0.75 

-0.98 1665.05 -1.67 -1.23 -99.23 -27.12 11.56 80023.06 608.23 3.43 1329419.38 792.22 45.76 0.58 0.75 

-0.14 1726.20 -1.67 -1.10 -101.56 -24.09 22.57 81398.07 1143.72 5.75 1316731.63 26.15 23.11 0.52 0.74 

-1.88 1674.28 -1.43 -1.26 -95.98 -23.15 25.26 80101.62 717.92 8.94 1260816.50 855.95 52.30 0.58 0.67 

-0.42 1682.92 -1.40 -1.22 -95.29 -37.70 169.51 81023.19 294.47 4.79 1318937.50 55.80 18.49 0.56 0.67 

-1.47 1779.75 -1.41 -1.20 -125.27 -22.32 74.48 81390.65 159.75 8.37 1353647.38 1283.09 6350.39 0.62 0.55 

-1.14 1838.87 -1.11 -1.34 -64.39 -21.07 145.75 79432.83 2174.74 2.49 1406799.50 0.00 4487.13 0.58 0.43 

-0.33 1754.25 -1.49 -0.98 -77.70 -13.19 144.95 74232.70 387.12 2.29 1431353.13 2369.32 22.32 0.33 0.89 

-0.21 1754.22 -1.55 -1.07 -82.86 -17.73 128.61 74361.22 529.97 0.88 1411618.88 2363.90 101.70 0.33 0.82 

-5.05 1829.47 -0.95 -1.58 -48.52 -36.28 150.61 77310.04 1223.52 14.63 1481460.75 142.85 93.12 0.46 0.36 

-0.01 1765.14 -1.17 -1.38 -75.76 -24.50 110.60 74171.66 1514.45 0.07 1396456.50 9.25 2574.17 0.43 0.53 

0.69 2010.18 0.72 0.59 46.96 15.40 52.94 79287.75 1729.11 17.29 1273889.75 3190.93 14589.67 0.64 0.80 

-1.86 1878.47 -1.00 -1.05 -60.94 -16.30 133.16 78047.86 1986.05 3.13 1450875.50 150.97 12776.42 0.65 0.73 

-0.25 1666.69 -1.54 -0.80 -96.61 -12.92 86.72 79289.75 656.43 5.50 1384833.88 867.96 68.88 0.58 0.76 

-0.43 2002.02 -1.12 -1.00 -91.52 -24.39 167.74 63463.91 794.87 15.73 1571182.25 1381.27 1381.27 0.78 0.82 

0.17 2156.28 -0.78 -0.43 -44.73 -5.48 31.68 68832.53 1641.57 7.05 1393445.38 333.97 599.91 0.65 1.00 

-0.23 1828.19 -0.49 -0.22 -40.72 -2.50 33.71 31946.38 212.05 2.37 1402873.38 45.76 3185.39 0.99 1.00 

-0.01 1539.82 -0.40 -0.61 -19.80 -8.15 66.05 61234.77 32.69 5.48 1351674.13 266.54 10383.50 0.98 0.99 

-0.02 1755.46 -0.47 -0.96 -46.58 -20.64 34.10 75923.57 488.50 7.92 1296663.75 2892.31 168.86 0.73 0.75 

-2.81 1744.39 -1.05 -1.37 -88.99 -32.94 124.02 46185.35 109.36 4.28 1417858.63 6478.29 4802.25 0.89 0.72 

0.19 1678.06 0.27 0.71 14.86 12.12 132.59 26343.13 73.97 11.18 1475058.63 10303.42 6808.03 0.71 0.30 

-0.12 2052.28 -0.21 0.07 -32.71 1.29 152.25 79944.10 232.13 6.23 1515342.38 5158.49 5000.36 0.99 1.00 

-0.41 2022.63 -0.54 -0.56 -61.09 -14.45 8.06 79545.46 1181.12 12.41 1254781.63 8507.67 6504.54 0.99 1.00 

0.29 1934.21 -0.69 -0.12 -59.19 -3.50 11.94 61386.40 1640.51 11.21 1275735.13 7487.67 15369.07 0.68 0.89 
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Appendix B: Nonsite data used in model creation 
curvature elevation dev 

1500m 
dev 
250m 

diff 
1500m 

diff 
250m 

diff 
500m 

northness obsidian 
cost 

pinyon 
cost 

slope insolation spring 
cost 

stream 
cost 

view 
1500m 

view 
250m 

0.25 2554.70 -0.21 -0.28 -40.03 -19.74 -29.53 109.36 47993.18 2490.50 27.65 1507099.13 10115.39 8282.07 0.42 0.29 

-0.25 2969.50 0.71 -0.19 65.65 -5.60 -3.05 91.07 60073.76 9646.68 13.05 1584096.50 2430.64 3551.38 0.61 0.68 

-1.36 1903.91 -0.38 -0.78 -19.68 -12.37 -15.15 128.35 57582.83 41.61 21.65 1509693.63 6383.43 4207.02 0.44 0.49 

-0.01 2320.53 0.59 0.09 44.57 1.11 10.06 122.91 72338.09 831.91 6.86 1546188.88 3212.19 3240.04 0.75 0.66 

-0.72 1922.31 -0.19 -0.29 -19.40 -5.48 -8.72 27.15 37109.38 173.15 9.28 1326165.13 684.25 2401.27 0.98 1.00 

-0.21 2479.11 -0.73 -0.31 -121.53 -15.70 -30.51 76.13 72251.49 1885.17 25.68 1312121.00 3875.48 2333.32 0.62 0.75 

-0.30 2094.59 0.13 -0.40 17.15 -10.90 -15.79 26.46 40200.53 794.46 12.97 1287974.63 3041.12 3091.26 0.94 1.00 

-0.78 1958.32 0.48 -0.18 53.94 -7.26 26.50 15.79 57583.07 0.00 23.04 1083007.00 2743.80 7067.49 0.91 1.00 

0.01 2535.18 0.03 -0.06 5.01 -2.34 2.11 85.12 73634.95 1623.60 16.41 1471949.50 3326.56 3022.15 0.89 1.00 

0.01 2505.14 0.01 0.19 0.95 6.73 15.46 56.12 69748.23 450.26 10.52 1438430.88 5882.00 2461.77 0.74 1.00 

0.15 2103.91 0.28 0.09 34.68 2.71 11.91 20.19 65324.38 1314.39 11.84 1309095.75 3492.05 3433.35 0.93 1.00 

0.25 2015.62 -0.28 0.05 -22.12 0.78 -8.38 31.81 61021.77 152.56 8.43 1354385.13 7992.77 7591.94 0.32 0.41 

-0.59 1917.43 -0.69 -0.32 -47.38 -4.29 -13.43 44.53 66167.88 0.00 13.50 1277623.50 3460.02 6478.76 0.78 0.68 

-0.14 2270.80 0.29 0.45 24.01 10.10 12.95 169.10 71298.73 1377.41 14.90 1644599.88 2160.73 2160.73 0.71 0.61 

0.61 1976.53 0.73 0.64 63.20 22.64 30.91 70.56 28091.93 0.00 24.61 1249280.63 5165.52 10598.26 0.40 0.37 

0.27 2134.07 -0.18 0.04 -20.98 1.16 -6.83 64.84 62682.70 41.61 14.25 1361189.00 8336.26 8571.71 0.90 0.98 

0.68 2111.88 -0.56 0.30 -39.16 11.47 11.28 43.34 76284.65 1705.50 17.44 1251836.75 1912.50 1411.22 0.74 0.94 

0.53 2917.00 1.70 1.35 195.03 16.05 38.42 35.45 67865.98 4480.22 3.66 1566639.88 4550.70 3786.33 0.68 0.97 

-0.12 2139.65 -0.12 0.01 -8.81 0.45 13.15 79.81 76855.91 1514.81 14.29 1398358.00 2665.93 2043.44 0.76 0.99 

-1.26 2151.52 -0.48 0.52 -38.36 15.03 4.10 100.17 75304.26 743.41 20.76 1434961.63 1411.72 1246.65 0.80 0.83 

0.21 2216.05 0.72 0.32 83.47 11.22 33.92 50.86 36931.56 787.70 12.92 1356199.13 6810.30 11265.41 0.69 0.99 

-0.83 1951.62 -0.28 0.27 -29.35 6.90 4.31 57.66 63295.75 0.00 11.26 1350154.50 2887.47 2433.49 0.94 1.00 

-0.46 1872.17 -0.20 -0.41 -8.19 -11.27 -14.33 120.68 64443.11 0.00 27.79 1452052.50 1544.80 405.34 0.90 0.92 

0.03 2043.37 -0.51 -0.33 -38.50 -8.32 -14.77 149.76 72522.02 851.77 10.01 1549122.25 3511.23 878.22 0.22 0.48 

0.88 2589.50 0.77 0.78 111.72 22.89 44.70 126.91 74571.60 2248.25 13.43 1623135.63 4626.29 4735.78 0.71 0.96 

-0.41 2526.89 0.44 0.11 68.37 4.61 19.11 43.21 52611.80 1187.65 17.88 1308618.13 10439.29 2272.27 0.89 0.97 

-0.41 2549.91 0.25 -0.22 35.87 -7.75 -1.87 153.41 74781.22 3189.41 17.62 1680071.75 4232.42 4108.03 0.69 0.80 

0.82 2676.97 0.58 0.30 116.31 16.52 46.95 148.41 64254.30 1462.32 31.11 1706833.63 7060.04 7030.39 0.18 0.12 

-0.02 2236.79 -1.00 -0.19 -161.05 -10.94 -48.68 5.77 52241.55 1701.01 30.09 922771.25 9328.84 827.50 0.65 0.72 

-0.60 2267.24 0.19 -0.28 20.00 -11.34 -17.42 14.35 72068.74 0.00 12.20 1308892.13 3528.87 3977.87 0.89 1.00 

-0.06 2675.18 0.33 -0.16 45.89 -8.83 -19.25 13.89 49830.94 1240.86 23.41 1145452.63 7999.95 5378.55 0.73 0.98 

0.51 1826.13 0.19 0.64 11.53 8.80 12.36 122.32 33791.54 126.27 13.15 1482967.13 10039.17 10031.19 0.91 0.95 

0.03 1620.51 -0.28 -0.37 -8.84 -1.78 -3.98 146.44 24879.82 193.23 9.04 1470675.50 11873.17 9186.95 0.73 0.92 

1.15 2075.90 0.96 1.08 95.95 44.44 96.08 4.59 51309.08 0.00 29.12 969174.00 11560.03 23740.34 0.58 0.93 

-0.24 2396.82 -0.06 -0.01 -11.89 -0.68 -22.60 179.96 53250.25 3087.40 13.88 1649098.63 5505.17 5482.98 0.87 0.95 

0.32 2209.80 -0.04 0.45 -7.27 18.28 17.07 101.88 66155.63 197.86 20.46 1461968.13 5961.29 11208.24 0.94 0.99 

1.25 1862.77 -0.51 -0.22 -53.21 -7.34 -19.83 61.33 33971.55 106.98 25.38 1158277.50 4075.08 4713.05 0.56 0.59 

-0.12 2190.62 1.16 0.34 128.31 14.77 32.10 144.47 53842.82 1901.74 24.63 1613424.00 9393.53 7911.11 0.83 0.99 
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0.73 2208.73 -0.02 0.15 -3.59 6.34 1.98 107.48 66455.25 966.14 16.93 1493810.75 6795.06 12020.94 0.94 0.99 

-0.14 2070.02 -0.21 -0.51 -36.67 -18.50 -26.08 102.80 60642.36 989.33 25.51 1405620.50 2664.64 2526.96 0.90 0.97 

-0.53 1861.72 0.03 -0.02 2.38 -0.48 0.39 156.74 38863.73 116.23 25.12 1586537.63 10982.58 10972.87 0.88 0.98 

-0.73 2388.07 0.38 -0.39 68.59 -22.80 -4.61 114.53 61764.07 1201.96 33.45 1463039.63 10551.84 10517.68 0.91 1.00 

-0.03 2788.26 1.63 0.48 253.49 21.58 69.67 122.46 60311.16 323.00 24.96 1640395.88 12563.57 12554.19 0.89 0.92 

-0.01 2006.22 -0.32 -0.73 -54.08 -28.90 -39.41 154.25 40661.30 612.58 21.91 1567635.38 12926.33 14606.37 0.64 0.84 

-0.01 2094.82 -0.42 -0.64 -87.78 -20.65 -43.33 43.84 63229.09 1658.78 36.22 855159.44 4864.33 5117.05 0.92 0.75 

3.88 2685.11 0.91 0.86 155.44 46.56 54.05 85.91 62412.17 681.54 19.42 1479151.88 12395.20 15643.90 0.80 0.50 

0.47 1921.64 0.07 -0.14 7.67 -4.42 2.56 89.72 60907.30 0.00 31.71 1262718.38 10935.96 12761.90 0.83 0.87 

1.46 1818.11 -0.27 -0.72 -24.50 -17.15 -16.23 85.95 61401.29 101.70 19.35 1332976.13 13487.96 16225.82 0.87 0.88 

0.32 1783.03 -0.10 0.38 -6.74 4.72 2.87 129.57 56709.43 176.98 11.63 1486821.38 8616.68 9497.16 0.89 0.86 

-1.21 1969.41 0.21 -0.48 15.04 -10.25 -6.57 22.33 56578.14 397.95 20.79 1130548.00 12505.01 14287.22 0.76 0.89 

-0.01 1822.33 -0.43 -0.82 -45.18 -20.41 -26.16 47.44 67172.87 622.10 20.27 1149654.13 5962.88 11619.16 0.59 0.77 

0.98 1781.56 0.03 0.15 1.48 1.59 0.64 60.10 35214.95 0.00 7.30 1368454.50 8823.14 8819.31 0.93 0.99 

-0.13 1851.87 0.25 0.62 16.09 9.26 16.33 106.84 33715.48 27.74 8.22 1450582.50 11696.82 10441.48 0.90 0.98 

0.36 1760.77 0.01 0.26 0.38 2.75 6.07 5.86 57495.07 0.00 11.65 1253025.00 12533.29 11965.34 0.90 0.94 

0.04 1771.98 -0.47 -0.02 -27.33 -0.08 0.62 73.83 44153.07 305.77 2.04 1413277.25 12808.20 16117.09 0.68 0.50 

-2.66 1887.73 -1.27 -1.36 -110.66 -52.02 -83.31 99.12 34939.59 466.50 6.80 1324285.13 9574.33 9175.26 0.64 0.46 

0.05 1975.70 -0.89 -0.02 -97.88 -1.07 -18.41 13.88 53362.49 1915.65 20.62 1109934.25 5204.86 24624.80 0.62 0.24 

0.29 1711.07 -0.05 0.22 -3.27 2.79 2.50 47.35 58157.18 197.06 4.30 1373094.00 9152.57 13606.76 0.93 0.93 

1.03 2037.19 -0.37 0.23 -41.32 11.02 8.33 174.98 62927.76 971.19 33.13 1627116.13 4021.66 8180.57 0.92 0.98 

-0.22 2017.88 0.17 0.05 24.40 2.29 -8.42 22.83 43860.20 0.00 28.00 983548.56 11815.83 17943.42 0.65 0.75 

0.38 2333.12 0.32 0.41 56.52 11.59 26.57 2.20 57390.00 3592.63 13.43 1303684.13 7540.39 1244.93 0.71 0.98 

0.80 1895.71 0.45 0.58 58.46 20.44 34.65 11.42 59809.32 1169.84 17.12 1180444.25 4942.33 4552.61 0.24 0.13 

0.25 2134.45 0.04 0.31 4.52 7.68 19.28 169.19 77519.84 410.10 9.22 1576183.50 1782.09 1227.54 1.00 1.00 

-0.66 2394.82 -0.91 -0.48 -118.78 -13.88 -36.32 158.64 68915.75 3100.72 14.78 1637517.88 5497.43 962.53 0.87 0.93 

0.12 2402.47 0.83 0.05 149.51 2.57 27.30 121.78 85156.58 2877.45 24.50 1571511.88 7898.88 7937.01 0.96 1.00 

0.66 2086.57 0.58 1.09 87.51 25.38 48.15 135.97 82420.75 785.00 19.33 1555951.13 1714.03 1797.74 0.82 0.99 

-0.08 1885.60 -0.01 -0.14 -1.17 -7.55 -17.36 94.91 66040.23 1562.11 21.76 1374446.75 2658.83 9866.57 0.39 0.39 

0.07 2389.20 0.94 0.30 119.86 6.98 17.90 36.16 90436.45 1016.66 10.17 1396174.00 3745.68 4907.93 0.74 0.97 

-0.09 2147.89 -0.40 0.03 -59.43 0.95 0.49 130.00 79634.37 2386.58 12.42 1545346.38 3013.10 1125.86 1.00 1.00 

0.72 1884.48 0.32 0.77 35.10 19.34 29.04 168.81 49621.69 2428.35 17.62 1583209.50 6905.94 2779.65 0.55 0.40 

-0.09 2561.76 0.44 0.03 90.46 1.59 16.12 43.27 76676.07 1044.07 26.60 1167925.00 8420.17 3901.84 0.98 1.00 

0.33 1870.10 -0.20 0.41 -28.03 13.67 17.69 116.09 71229.84 1153.92 12.51 1464712.00 4399.68 2306.95 0.92 0.83 

-0.65 1782.87 -0.89 -0.59 -107.86 -14.88 -38.73 174.38 56917.27 430.45 15.09 1531712.00 1336.52 73.97 0.11 0.46 

0.03 1850.66 -1.01 -0.92 -55.10 -11.19 -22.82 65.11 65440.80 878.19 10.52 1354462.00 3980.65 163.44 0.96 1.00 

-0.09 2034.40 0.50 0.00 76.37 0.24 12.57 78.05 53740.71 297.37 26.71 1273272.88 7126.53 7328.91 0.59 0.29 

-0.31 1970.89 -0.16 0.03 -16.33 0.41 3.37 123.20 68712.80 642.31 6.23 1481708.13 7244.23 1368.52 0.94 1.00 

0.64 2412.66 -0.15 0.29 -24.29 15.07 -4.57 5.64 63617.71 5239.16 23.93 1101935.63 5385.56 4658.73 0.78 0.66 

0.59 2252.72 -0.22 0.53 -39.72 25.35 5.00 55.10 60451.57 7297.36 25.28 1200228.50 9253.80 5396.00 0.70 0.06 

-0.09 2246.23 0.99 -0.20 127.29 -8.25 -2.74 79.79 73072.30 943.46 22.66 1351453.25 8926.38 5272.57 0.37 1.00 

0.02 2063.64 -0.28 0.15 -36.72 6.70 12.59 19.70 56663.02 3246.16 17.67 1198736.00 3853.85 3661.81 0.70 0.52 



 

91 
 

0.28 2781.75 0.40 0.10 65.88 4.98 3.31 87.46 70646.79 4962.93 21.03 1487137.38 6639.72 3513.67 0.88 1.00 

-0.16 1956.16 -0.12 -0.67 -12.77 -16.53 -21.16 38.38 65692.27 874.25 9.72 1329570.75 3905.52 2870.17 0.98 0.99 

0.02 2452.34 0.32 0.19 46.62 6.67 25.00 10.74 81244.34 1292.80 15.80 1280700.13 2526.11 2461.20 0.71 0.55 

1.48 2095.13 -0.26 0.10 -45.98 2.29 -2.57 172.25 73582.56 157.18 14.38 1601337.88 7966.14 3800.55 0.93 0.98 

0.23 2829.45 0.96 0.27 147.79 8.66 24.38 5.32 72258.41 3197.06 10.68 1426758.88 12818.47 4184.62 0.92 0.96 

-0.26 2062.59 0.45 -0.10 60.77 -5.04 -6.34 108.19 56068.48 2131.05 22.61 1455808.88 7169.26 7923.84 0.43 0.36 

-0.08 2328.41 -0.34 -0.42 -63.19 -18.18 -47.70 63.33 81566.05 1408.24 26.70 1202327.38 4473.81 4318.16 0.65 0.45 

1.01 2536.10 0.13 1.15 21.35 44.88 68.91 67.95 65535.24 6010.94 18.49 1388580.63 2248.41 1436.33 0.83 1.00 

0.21 2471.55 -0.20 -0.15 -37.54 -7.75 -22.12 179.86 86534.91 2454.76 22.03 1688635.25 15681.81 7015.70 0.99 1.00 

1.27 2667.55 2.02 1.51 254.66 40.63 98.92 67.04 68329.10 675.33 10.25 1494129.38 6865.56 5003.87 0.80 0.76 

0.36 2057.37 0.35 0.44 52.23 20.58 30.10 54.68 55385.68 498.92 25.55 1161075.88 4376.85 6946.73 0.58 0.02 

-0.44 1844.70 0.18 -0.13 25.01 -4.17 6.58 12.22 60659.50 1614.66 14.32 1219958.25 3083.35 3068.03 0.27 0.62 

0.12 1934.18 -0.60 -0.18 -77.29 -4.81 -30.70 7.58 66294.48 1734.47 14.88 1214445.75 2607.33 485.52 0.98 0.93 

-0.13 1719.66 -0.36 -0.51 -47.11 -14.18 -33.52 127.54 61146.49 637.69 12.24 1464011.88 4423.95 330.53 0.29 0.68 

-0.15 2196.03 0.04 -0.11 6.69 -4.44 8.22 47.53 54997.00 1303.58 15.36 1309296.13 7630.64 2417.70 0.31 0.19 

0.69 1907.40 0.33 1.09 25.97 25.64 53.86 158.87 69969.37 405.56 10.31 1540433.75 16218.28 12898.32 0.47 0.64 

0.26 1992.17 1.68 0.38 111.96 11.59 30.16 161.00 52131.11 582.93 12.87 1566945.00 19239.40 14915.42 0.23 0.62 

0.78 1831.96 -0.03 -0.38 -2.91 -9.24 -6.77 4.60 49612.56 601.61 27.95 954361.44 22540.67 18373.31 0.19 0.50 

-0.35 1940.45 1.09 0.99 104.62 40.54 67.66 114.89 82069.64 104.60 35.80 1397312.75 5968.17 5644.83 0.64 0.70 

-1.78 1831.65 -0.05 -0.92 -3.43 -28.09 -10.99 169.69 74724.14 1205.14 18.66 1514122.00 4208.30 4156.22 0.21 0.45 

-6.36 1841.47 -0.64 -1.18 -41.06 -36.00 -43.14 1.35 76669.07 2187.24 29.54 859230.63 5140.05 5148.08 0.43 0.66 

0.33 2019.44 -0.47 -0.31 -36.50 -12.31 -7.99 60.30 71526.95 2777.15 30.41 1095873.88 7939.44 18479.57 0.47 0.45 

-0.12 1890.36 -0.61 -0.11 -50.33 -3.59 -17.62 94.40 59225.09 1717.76 16.07 1388096.13 10080.22 13276.00 0.61 0.64 

1.96 1933.55 -0.16 0.27 -15.08 10.74 5.99 116.34 61966.11 899.33 32.20 1424918.63 23851.99 31168.41 0.21 0.22 

-1.21 1966.47 -0.33 -0.90 -24.98 -36.19 -33.95 166.67 71517.65 2394.57 23.97 1564417.88 2383.54 16706.48 0.42 0.54 

0.00 1848.18 -0.10 0.46 -11.85 23.58 21.09 50.07 68543.99 2849.73 28.49 1066552.13 8816.33 13510.07 0.25 0.16 

-1.47 1778.51 -1.28 -0.66 -81.63 -18.89 -40.74 25.31 54542.53 594.42 40.76 742621.81 13314.20 8215.48 0.38 0.45 

0.49 2062.93 0.83 1.68 67.24 35.99 58.03 149.27 64286.46 2734.85 10.30 1556818.00 7912.01 17858.22 0.60 0.59 

5.14 1814.61 -0.17 0.24 -14.16 9.55 -0.28 48.65 49339.92 374.70 29.21 1054933.25 23574.39 18792.75 0.21 0.32 

1.30 1973.24 0.61 0.03 53.56 0.95 -10.42 77.30 65088.91 1885.82 36.57 1113419.13 4656.32 17454.44 0.44 0.75 

6.59 2023.32 0.75 0.61 68.34 19.29 25.79 76.17 59490.00 1142.30 22.39 1297275.50 14595.08 14940.13 0.49 0.82 

2.97 1959.58 1.49 1.22 112.65 34.90 60.48 17.18 81849.89 319.31 14.75 1238778.00 6340.67 6217.74 0.73 0.72 

-0.76 2065.36 0.18 -0.69 18.38 -31.02 -47.99 61.81 73681.29 2593.06 19.25 1263033.13 9256.29 10817.40 0.56 0.84 

-0.81 1989.34 -0.24 -0.27 -29.46 -12.25 -30.84 93.40 80474.66 5099.52 26.06 1349482.75 3089.50 9061.72 0.74 0.99 

-0.03 1944.16 0.58 -0.45 54.03 -18.39 -0.45 113.91 80940.59 1333.42 26.13 1440301.63 8971.00 8448.35 0.68 0.99 

-1.83 1998.57 0.06 -0.92 4.48 -39.92 -23.32 135.61 72091.34 3065.08 23.53 1506859.50 3046.59 17318.67 0.40 0.64 

-3.69 1927.76 1.09 0.12 84.82 3.86 23.74 85.45 81141.83 666.74 18.33 1353618.63 6791.26 6376.86 0.74 0.91 

-0.04 1791.99 0.09 0.56 8.73 19.52 16.20 61.91 79250.55 1180.73 29.22 1114734.13 4919.06 2620.02 0.59 0.44 

-1.67 1856.98 -0.93 -0.84 -80.87 -26.08 -42.69 94.08 77265.63 1538.42 33.14 1212023.88 6184.10 6141.70 0.56 0.61 

0.07 2226.90 2.17 1.11 194.97 40.75 99.16 97.10 70464.07 509.95 28.25 1394720.13 19786.54 19061.16 0.35 0.66 

0.05 2103.91 0.57 0.11 37.90 4.40 11.79 30.69 68411.77 1650.14 21.40 1150236.75 10181.81 20662.65 0.37 0.69 

0.94 2000.16 0.66 0.94 62.71 27.30 56.41 99.54 78260.05 2069.02 23.84 1402257.25 7717.78 7672.67 0.59 0.52 
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0.62 2077.76 1.64 0.71 162.45 28.70 78.31 98.03 61159.27 1665.73 21.06 1423571.13 10868.99 15459.02 0.44 0.56 

2.13 2073.65 1.37 1.29 107.12 40.93 58.16 36.69 76479.97 610.61 19.56 1206783.63 10489.81 11002.66 0.65 0.82 

-1.36 2100.11 0.92 -0.65 88.51 -30.97 -17.65 136.65 67557.16 3261.45 30.21 1513042.50 20373.79 19667.69 0.34 0.65 

 

 


