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Abstract

Cayley digraphs were introduced in 1878 by Arthur Cayley with the objective

of understanding properties of groups. Two standard properties are that a

Cayley digraph is connected if and only if the connection set generates the

group and that all Cayley digraphs are vertex-transitive. As a result of this

symmetry property, Cayley digraphs are used to model interconnection net-

works. Some generalizations of Cayley digraphs that relax the group axioms

have been studied by Gauyacq, Kelarev and Praeger, and Mwambene. An-

other generalization of Cayley digraphs, called two-sided Cayley digraphs, was

introduced in 2014 by Iradmusa and Praeger. As with Cayley digraphs, the

group is the vertex-set, but two subsets are used to generate arcs. Iradmusa

and Praeger determined sufficient conditions for a two-sided Cayley digraph

to be connected. We generalize their result and give necessary and sufficient

conditions for a two-sided Cayley digraph to be connected.

ix



Chapter 1

Introduction

Cayley digraphs were introduced in 1878 by Arthur Cayley. The purpose

was to visualize and better understand the properties of groups. Over the

years Cayley digraphs have also been used to have equivalencies of expressions.

Given a nonempty subset S of a group G, the Cayley digraph Cay(G,S) is the

digraph with vertex set G such that (g, h) is an arc if and only if hg−1 ∈ S.

The Cayley digraph has loops if and only if e ∈ S, and is undirected if and

only if S is inverse closed. Since S is a set, and not a multiset, the digraph

has no multiple arcs. Cayley graphs are used to model many interconnection

networks because of their symmetry properties.

A number of generalizations of Cayley digraphs have been introduced, for ex-

ample group action graphs by Annexstein et al. [2], Gauyacq’s quasi-Cayley di-

graphs [6], semigroup graphs by Kelarev and Praeger [8], and groupoid graphs

by Mwambene [11]. Whereas in [6], [8], and [11] the generalization is on the

group structure where some axioms are relaxed, in [2] the elements of the

connection set consist of permutations of vertices instead of group elements.

In [7] Iradmusa and Praeger introduce a generalization of a Cayley digraph

which they call a two-sided Cayley graph. Given nonempty subsets L and

R of group G, the two-sided Cayley digraph 2SCay(G;L,R) is the directed

graph with vertex-set G and for each g ∈ G and for each l ∈ L and r ∈ R

there is an arc from g to l−1gr. Unlike the Cayley digraph Cay(G,S) whose
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connection set is a subset S of group G, and like group action graphs, the

connection set for 2SCay(G;L,R) is a set of permutations. In this case the set

of permutations is Ŝ(L,R) = {λl,r | (l, r) ∈ L × R} such that for any g ∈ G

then λl,r(g) = l−1gr.

Iradmusa and Praeger prove that for inverse-closed subsets L and R of G,

• the adjacency relation of 2SCay(G;L,R) is symmetric if and only if

L−1gR = LgR−1 for each g ∈ G;

• the graph has no loops if and only if Lg ∩R = ∅ for each g ∈ G; and

• the two-sided Cayley digraph 2SCay(G;L,R) has no multiple arcs if and

only if (LL−1)g ∩ (RR−1) = {e} for each g ∈ G.

The three properties L−1gR = LgR−1 for each g ∈ G, Lg ∩ R = ∅ for each

g ∈ G, and (LL−1)g ∩ (RR−1) = {e} for each g ∈ G are collectively called the

2S-Cayley property. In general, a two-sided Cayley graph is not a Cayley graph

and it is not fully understood which two-sided Cayley graphs are isomorphic

to one-sided Cayley graphs. However, Iradmusa and Praeger [7] give some

sufficient conditions for a two-sided Cayley graph to be a Cayley graph. A

special case is when the group G is abelian or if L or R is a subset of the

center of G.

It is a standard result that a Cayley digraph Cay(G,S) is connected if and only

if S generates the group G. To give conditions under which 2SCay(G;L,R) is

connected we first define a factorization of an element g of G by elements of L

and R as follows. For nonempty subsets L and R of G, an L-R factorization of

g ∈ G is an expression g = wLwR where wL is a word in L and wR is a word in

R. Iradmusa and Praeger [7] prove that for nonempty inverse-closed subsets L

and R with the 2S-Cayley property, the digraph 2SCay(G;L,R) is connected

if and only if G = 〈L〉〈R〉 and there exists an L-R factorization ww′ = e

where `(w) and `(w′) have opposite parity. If, given the same conditions on

L and R, G = 〈L〉〈R〉 but the second condition does not hold, it is proved

in [7] that 2SCay(G;L,R) is disconnected with exactly two components. In
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this dissertation we prove a modification of the above connectedness result.

We will not require L and R to be inverse-closed nor to have the 2S-Cayley

property, but their elements will be required to have finite order. We show

that the digraph is connected if and only if

1. G = 〈L〉〈R〉 and

2. there exists an L−1-R factorization e = uL−1uR of e ∈ G such that

|`(uL−1)− `(uR)| = 1.

We give a direct proof, and for a finite group G we give an alternative proof

that makes use of the fact that a finite directed graph is weakly connected if

and only if it is strongly connected provided that at each vertex the in-degree

and out-degree are equal. Another version of the connectedness theorem is

stated, where L and R may have elements of infinite order, (L,R) need not

have the 2S-Cayley property, and in addition L and R are not assumed to

be inverse-closed, as follows. Given nonempty subsets L and R of G, then

2SCay(G;L,R) is connected if and only if

1. G = 〈L−1〉mon〈R〉mon and G = 〈L〉mon〈R−1〉mon, and

2. there exist a length+ 1 and a length− 1 L−1-R factorization of e.

We further investigate disconnected two-sided Cayley digraphs. If condition

1 holds but condition 2 fails and either L ∩ L−1 or R ∩ R−1 is nonempty, we

show that 2SCay(G;L,R) is disconnected with exactly two components. We

also prove that if both conditions fail, then the graph is disconnected with at

least three components.

For any group G with G 6= 〈L〉〈R〉, conditions under which 2SCay(G;L,R)

is disconnected with exactly two components have not been fully understood.

Perhaps it will be fruitful to start with the special case where G = I2(n). For

a dihedral group I2(n) of order 2n, we prove that if L and R are subsets of

〈r〉 and if ri ∈ L and rj ∈ R with gcd(i − j, n) = 1 and gcd(i + j, n) = 1

then 2SCay(I2(n), L,R) is disconnected with exactly two components. We
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require more general subsets L and R that guarantee that 2SCay(I2(n), L,R)

has exactly two components. It is observed that vertex- and edge-transitivity

are important in applications. For non-empty subsets L and R of a group G [7]

proves that if G factorizes as G = NG(L)NG(R) then 2SCay(G;L,R) is vertex-

transitive. Finding necessary and sufficient conditions such that two-sided

Cayley graphs are vertex-transitive or edge-transitive are still open questions.

In Chapter 2 some general graph theory is studied. This includes relevant

definitions and results on connectedness and symmetry of graphs.

In Chapter 3 Cayley digraphs are studied, their properties, an application to

interconnection networks and some generalizations of Cayley digraphs.

A new generalization of Cayley digraphs, called two-sided Cayley digraphs, is

studied in Chapter 4. We provide a comparative study of the properties of

one-sided and two-sided Cayley digraphs, focusing mainly on connectedness of

the digraphs.
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Chapter 2

Some Graph Theory

2.1 Preliminaries

This chapter treats some basic theory of general graphs mostly as given in [4]

and [10]. Results on connectedness and vertex-transitivity of graphs are dis-

cussed in the second and third sections respectively. We begin with a definition

of a graph and some examples.

Definition 2.1 A graph, Γ, is a pair of sets V (Γ) and E(Γ) where elements

of V (Γ) are called vertices and E(Γ) is a set of unordered pairs of elements

of V (Γ) called edges. We call V (Γ) and E(Γ) the vertex-set and edge-set of Γ

respectively. The number of vertices in a graph Γ is called the order of Γ. A

graph of order 0 or 1 is called trivial.

When it is clear what graph we are referring to, we write V for V (Γ) and E

for E(Γ). Unless otherwise stated we allow the vertex-set to be infinite, but

require the graph to be locally finite, meaning that there are only finitely many

edges containing any given vertex.

Example 2.2 Figure 2.1 shows a graph Γ on vertex-set V = {v1, v2, v3, v4, v5, v6, v7}

with edge-set of size 6.

A more general concept than a graph is a directed graph or digraph for short.
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v1

v2 v3

v5v4 v6

Figure 2.1: Graph

Definition 2.3 A directed graph or digraph, Γ, is a pair of sets (V (Γ), A(Γ))

where A(Γ) consists of ordered pairs of distinct elements of V (Γ) called arcs.

An arc (x, y) is said to go from x to y. An arc is represented by an arrow and

an edge is represented by a line segment (with no arrow). In a digraph if both

(x, y) and (y, x) are arcs, then the two are usually collapsed to become a single

unordered edge. In a digraph Γ, if (x, y) ∈ A if and only if (y, x) ∈ A, then Γ

is in fact a graph.

Example 2.4 In Figure 2.2, the vertex-set is V = {v1, v2, v3, v4, v5, v6, v7},

and A = {(v1, v2), (v1, v6), (v2, v3), (v3, v4), (v4, v5), (v6, v3), (v6, v5), (v6, v7)} is

the arc-set. Since for example (v1, v2) ∈ A but (v2, v1) /∈ A, then (v1, v2) is an

arc and therefore Γ = (V,A) is a digraph but not a graph.

v1

v2 v6

v3

v4

v5

v7

Figure 2.2: Directed graph

An edge that joins a vertex to itself is called a loop, and a graph is said to

be simple if it has no loops and any two vertices are connected by at most

6



one edge. Graphs with loops and/or multiple edges will be discussed only in

Chapter 3.

An edge is written as an unordered pair {u, v} or as uv whereas an arc is

written as an ordered pair (u, v). An edge {u, v} is said to join u and v or

to be incident with vertices u and v. In this case vertices u and v are said to

be adjacent, or to be neighbors. In a graph the number of vertices adjacent to

a vertex v is called its degree and is denoted by deg(v). If in a graph all the

vertices have the same degree, then the graph is said to be regular, or k-regular

if the common degree is k. In a digraph, given vertex v, the in-degree of v is

the number of arcs that go into v, and the out-degree is the number of arcs

that go out of v. A digraph is regular if each vertex has the same in-degree

and the same out-degree. A vertex with in-degree zero is called a source while

a vertex with out-degree zero is called a sink.

Example 2.5 In the digraph in Figure 2.2 vertex v6 has in-degree 1 since the

only arc going into it is the arc from vertex v1, and has out-degree 3 since arcs

(v6, v3), (v6, v5) and (v6, v7) are the only arcs going out of v6. Note that vertex

v1 in Figure 2.2 is a source and vertices v5 and v7 are sinks.

Definition 2.6 A walk from v0 to vn or a v0−vn walk is a sequence of vertices

and arcs v0, e1, v1, ..., en, vn in which each arc is ei = (vi−1, vi). A walk will be

denoted by its sequence of vertices v0, v1, ..., vn. The number n of arcs in a

walk is called its length. A v0-vn walk is closed if v0 = vn. A walk in which

no vertex is repeated is called a path, and a non-trivial closed path is called a

cycle. A graph with no cycles is said to be acyclic.

Example 2.7 In the acyclic graph in Figure 2.2, v1, v6, v3, v4, v5 is a path of

length 4.

Given a graph Γ, if there is a path joining vertices u and v, the distance

between the vertices u and v is the minimum length of a path from u to v.

This distance is denoted by d(u, v).

7



For a connected graph (see Definition 2.9), the distance function d is a metric

on Γ since it satisfies the following properties for all vertices u, v and w;

• 0 ≤ d(u, v) <∞,

• d(u, v) = 0 if and only if u = v,

• d(u, v) = d(v, u),

• d(u, v) ≤ d(u,w) + d(w, v).

The diameter of Γ is the maximum distance between two distinct vertices in

Γ and the girth is the length of the shortest cycle.

Example 2.8 In the complete graph 2.4 any two distinct vertices are adja-

cent. Hence, the diameter is 1. The shortest cycle in the complete graph has

length 3. Hence the girth is 3. In Figure 2.1, the distance between vertices

v1 and v2 in the graph is 1 while the distance between vertices v4 and v6 is 4.

Since 4 is the maximum distance between two distinct vertices in the graph,

the diameter of the graph is 4. The graph has a cycle v1, v2, v5, v3 of length 4

which happens to be the shortest and only cycle. Hence the girth of the graph

is 4.

Suppose Γ1 and Γ2 are two graphs such that V (Γ1) ⊆ V (Γ2) andE(Γ1) ⊆ E(Γ2),

then Γ1 is a subgraph of Γ2. The components of a graph that will be considered

in the next section are examples of subgraphs.

Some common types of graphs are defined below.

A graph with n vertices and no edges is called an empty graph and is denoted

by Nn. See Figure 2.3 for an empty graph on 6 vertices.

A graph with n vertices is called a complete graph, and is denoted Kn, if each

of its vertices is adjacent to all the other vertices. In Figure 2.4 each vertex is

adjacent to every other vertex. Hence the graph is complete.

A cycle graph, denoted Cn, has n vertices joined by n edges in an undirected

cycle of length n.

8



v1

v2

v3 v4

v5

v6

Figure 2.3: Empty graph N6 on six vertices

v1

v2

v3 v4

v5

v6

Figure 2.4: Complete graph K6 on six vertices

A connected graph with no cycles is called a tree. A graph that does not

have cycles is called a forest. Therefore a tree is a connected component of a

forest. Observe that if we remove vertex v5 in the graph of Figure 2.1 then

the resulting graph is a tree and a forest.

An undirected path with n vertices and n − 1 edges is called a path graph

which is denoted by Pn. Observe that a path graph is a tree with two vertices

of degree 1 and all other vertices of degree 2.

A graph Γ is bipartite if its vertex set can be partitioned into two nonempty

subsets such that edges only join vertices that are in different subsets. If each

vertex of one set in a bipartite graph is joined to every vertex of the other set

and vice versa, then the bipartite graph is called a complete bipartite graph

and is denoted Km,n if the two subsets have cardinality m and n. Figure 2.8

is a complete bipartite graph. A complete bipartite graph K1,n is called a star

graph.

In Chapter 3 we will define Cayley graphs. It is a well-known fact that each

Cayley graph is vertex-transitive (see Definition 2.25). However not all vertex-

transitive graphs are Cayley graphs. The smallest vertex-transitive graph that

9



v1

v2

v3 v4

v5

v6

Figure 2.5: Cycle graph C6 on six vertices

v1 v2 v3 v4 v5 v6

Figure 2.6: Path graph P6 on six vertices

is not a Cayley graph is the Petersen graph. See Figure 2.9.

2.2 Connectedness of graphs

We consider connectedness of both graphs and digraphs. While connectedness

is quite intuitive for graphs, the concept is slightly more subtle for directed

graphs since strong connectedness takes direction into account while weak

connectedness ignores direction. Some results on connectedness will also be

explored, including some results that will be useful in the discussion of con-

nectedness of two-sided Cayley graphs.

2.2.1 Connectedness of graphs

Definition 2.9 Two vertices g and h of a graph are said to be connected if

g = h or if g 6= h and there is a path joining them. A graph is said to be

connected if any two vertices are joined by a path in the graph. A graph that is

not connected is said to be disconnected. A maximal connected subgraph of a

graph is called a connected component or simply a component of the graph. We

call vertex g of a graph Γ a cut-vertex if removing g partitions the component

of the graph containing g into more than one component. If removing an edge

e of a graph Γ partitions the component of the graph that contains e into more

10



v1

v2
v3

v4

v5
v6

v7

v8

v9

Figure 2.7: Star graph on 9 nodes

v1 v2 v3

v4 v5 v6 v7

Figure 2.8: Complete bipartite graph K3,4

than one component then we call e a cut-edge.

Example 2.10 The graph in Figure 2.11 is connected, but the graph in Figure

2.10 is disconnected since, for example, there is no path joining vertices v1 and

v5. In Figure 2.10 removal of vertex v6 increases the number of components of

the graph. Hence v6 is a cut-vertex. However there is no edge whose removal

increases the number of components of the graph. Therefore the graph has no

cut-edge. The graph in Figure 2.10 has two connected components {v1, v2, v3}

and {v4, v5, v6, v7, v8}.

If a graph is to model electrical power lines or cables of telephone network then

it is not only important that the graph is connected, but that if one electrical

power line develops a fault, there should be other line(s) through which power

can be supplied to any consumer on the grid. To make this precise we give

the following definition.

Definition 2.11 Let Γ be a graph. The vertex-connectivity or simply con-

nectivity of the graph κ(Γ) is the minimum number of vertices that must be

removed to make Γ a disconnected graph or a trivial graph. Given k ∈ N,

a graph Γ is k-connected if there does not exist a set of k-1 vertices whose

removal disconnects the graph.
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Figure 2.9: Petersen graph P

v1

v2 v3

v4 v5

v6

v7 v8

Figure 2.10: Cut vertices and cut edges

Note: Every graph is 0-connected and any connected graph is both 0- and

1-connected.

Example 2.12 Since any vertex of the path graph Pn of degree 2 is a cut-

vertex, then κ(Pn) = 1. In a cycle there is no cut-vertex since a cycle is

disconnected by removal of at least two nonadjacent vertices but not by re-

moving only one vertex. Hence, κ(Cn) = 2. Since each pair of vertices of the

complete graph on n vertices, Kn, is connected, the graph can only be discon-

nected by removing at least n − 1 vertices (in fact becomes a trivial graph),

meaning that κ(Kn) = n − 1. Since in a complete bipartite graph vertices

of a partition set are adjacent to all the vertices of the other partition set,

the graph will be disconnected at a minimum when at least all the vertices of

the smaller partition set have been deleted. Therefore, κ(Kn,m) = min{m,n}.

Observe that by definition given any graph Γ if κ(Γ) = n, then the graph Γ is

n-connected (n−1)-connected, (n−2)-connected, ..., 2-connected, 1-connected

and 0-connected.

Example 2.13 The graph in Figure 2.11 is connected and cannot be discon-

nected by the removal of fewer than three vertices. Hence κ(Γ) = 3 and the

12



graph is 3-connected, 2-connected, 1-connected, and 0-connected.

v1

v3

v2

v4 v5

Figure 2.11: A 3-connected and 3-edge-connected graph

We also observe that in the graph of Figure 2.11 the removal of fewer than 3

edges will not disconnect the graph.

Definition 2.14 Given graph Γ, the edge-connectivity of the graph, λ(Γ), is

the minimum number of edges that if removed results in a disconnected graph

or in a trivial graph. We say that a graph is k-edge-connected if there does not

exist a set of k − 1 edges whose removal disconnects the graph.

Example 2.15 If Γ is the graph in Figure 2.11, then λ(Γ) = 3.

Observe that if graph Γ1 is obtained from the graph of Figure 2.11 by excluding

edges {v1, v4} and {v2, v5}, then κ(Γ1) = 1 and λ(Γ1) = 2. This illustrates

that connectivity and edge-connectivity need not be equal.

Example 2.16 Observe that λ(Kn) = n − 1, λ(Cn) = 2, λ(Pn) = 1 and

λ(Km,n) = min{m,n}.

The inequality λ(Γ) ≤ δ(Γ), where δ(Γ) denotes the minimum degree of a

vertex in Γ, is clear. Since removing a vertex also removes all the edges incident

with it, connectivity based on edges is more stable than connectivity based on

vertices, i.e. κ(Γ) ≤ λ(Γ). This means if a graph is k-edge connected then it

is also k-vertex connected.

Proposition 2.2.1 For any graph Γ, κ(Γ) ≤ λ(Γ) ≤ δ(Γ).
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It is possible to characterize a 2-connected graph.

Lemma 2.2.2 A graph Γ is 2-connected if and only if for any two vertices u

and v of Γ there are two paths between them that are disjoint except at u and

v.

Proof Let Γ be a graph such that any two vertices u and v have two paths

P1 and P2 joining them that are disjoint except at u and v. If one vertex from

P1, different from u and v, is removed then u and v remain connected by path

P2. Since u and v are arbitrary, Γ is 2-connected. Conversely suppose that

Γ is 2-connected. Then Γ is connected. Hence for each pair of vertices u and

v there is a path joining them. Suppose that there is a cut-vertex between u

and v. This contradicts the assumption that Γ is 2-connected. Suppose that

there are at least three paths joining u and v with no vertex common to all

the paths except u and v. Then two disjoint paths paths between u and v can

be constructed as follows. Starting at vertex u, follow the two outer paths. At

each intersection follow the outer paths, until reaching vertex v. Therefore for

any two vertices of the graph there are two disjoint paths joining them.

Lemma 2.2.2 is a special case of Menger’s Theorem [3] which we give below

without proof. The proof of Menger’s Theorem is by induction and is non-

constructive (it does not give a systematic way to construct k vertex-disjoint

paths for a given k-connected path).

Theorem 2.2.3 (Menger) A graph Γ is k-connected if and only if every pair

of vertices v and w has k paths that are pairwise disjoint except at u and v.

Proposition 2.2.4 For any pair of vertices of a 2-connected graph Γ, there

is a cycle containing them.

Proof Let Γ be a 2-connected graph and let u and v be vertices of Γ. Then,

by Lemma 2.2.2, there are two disjoint paths joining u and v. These paths

together with the vertices u and v form a cycle that contains the two ver-

tices.
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In applications of graphs to computer networks edges represent links or con-

nections. In a k-connected component if k-1 routers fail then the messages can

still be routed within that component using the remaining routers.

Recall that a graph with no cycles is called a forest and a tree is a connected

component of a forest. In a tree, any vertex of degree one is called a leaf.

Example 2.17 The graph in Figure 2.12 is a tree. Vertices v1, v4, v6, v8, v11,

v12, v14 and v15 are leaves of the tree.

v1

v2v3

v4

v5

v6

v7

v8

v9

v10

v11 v12

v13

v14

v15

Figure 2.12: Tree

Proposition 2.2.5 characterizes a tree in different ways.

Proposition 2.2.5 For any graph Γ the following statements are equivalent.

(1) The graph Γ is a tree.

(2) For any two vertices of Γ there is a unique path in Γ connecting them.

(3) The graph Γ is minimally connected in the sense that Γ is connected but

Γ \ e is disconnected for every edge e of Γ.

(4) The graph Γ is maximally acyclic, that is Γ contains no cycle but Γ∪ uv

has a cycle if any two nonadjacent vertices u, v ∈ V (Γ) are joined by an

edge uv.

Proof Suppose that Γ is a tree. Let u and v be two distinct vertices of Γ with

at least two paths in Γ joining them. If the paths only have u and v in common,

15



then the two paths together with u and v give a cycle in Γ containing u and

v, contradicting that Γ is a tree. If the paths intersect at least in one other

vertex different from u and v, then they form a cycle that excludes both u and

v if vertices adjacent to both u and v are common to both paths, otherwise

the cycles contain either of the vertices. Each case contradicts that Γ is a tree.

Hence there is only one path connecting u and v, proving that (1) implies (2).

Suppose that for any two vertices u and v of Γ there is a unique path joining

them. If an edge e of the path is removed, then there is no path connecting

vertices u and v. Therefore e is a cut-edge and hence Γ \ e is disconnected.

Therefore Γ is minimally connected, proving that (2) implies (3).

Suppose that Γ is minimally connected. If Γ had a cycle, then removing any

edge e of the cycle would leave Γ \ e disconnected. Hence Γ is acyclic. Let u

and v be two nonadjacent vertices of Γ. Since Γ is connected, then there is

a path p connecting u and v. Join vertices u and v to form edge uv. Hence

p ∪ uv is a cycle in Γ ∪ uv. But since u and v are arbitrary, Γ ∪ uv has a

cycle if an edge uv is formed using any two nonadjacent vertices u and v of Γ,

contradicting that Γ is minimally connected. Hence (3) implies (4).

Suppose that graph Γ is maximally acyclic. Then, by definition, Γ is a con-

nected forest and hence a tree. Therefore (4) implies (1).

Every nontrivial tree has at least two leaves, for example the ends of the longest

path.

2.2.2 Connectedness of directed graphs

Connectedness for directed graphs could take directions into account. For that

purpose strong connectedness is distinguished from weak connectedness and

we say that a directed graph is connected if the digraph is strongly connected.

Definition 2.18 Two vertices u and v of a digraph are said to be strongly

connected if there exists a directed u-v path and a directed v-u path in the
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digraph. We say that a digraph is strongly connected if for each ordered pair

of vertices u and v of the digraph there is a directed path from u to v.

A digraph that is not strongly connected is said to be disconnected.

Example 2.19 In the digraph of Figure 2.13 there is a directed path from

each vertex vi to any other vertex vj for i, j ∈ {1, 2, 3, 4, 5, 6}. Hence the

digraph is strongly connected.

v1

v2

v3

v4

v5

v6

Figure 2.13: Strongly connected directed graph

For many digraphs, while the underlying graph may be connected, there may

not be a directed path between some pairs of vertices.

Definition 2.20 In a digraph, vertex u is weakly connected to vertex v if there

is a path u = v0, v1, ..., vn = v so that either (vi−1, vi) is an arc or (vi, vi−1) is

an arc in the digraph. A digraph is weakly connected if any pair of its vertices

is weakly connected, that is if the underlying graph is connected.

In particular, every strongly connected pair of vertices in a digraph is also

weakly connected, but not vice versa.

Example 2.21 In the digraph of Figure 2.14, there is no directed path from

vertex v1 to vertex v5. However, in the underlying graph there is a path from

any vertex to any other vertex. Hence, the digraph is weakly connected.

We further consider the relation between strongly connected vertices.
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v1

v4

v5

v2

v6

v3

Figure 2.14: Weakly connected directed graph

Proposition 2.2.6 Let Γ be a digraph and let a relation ∼ be defined on the

vertex set of Γ by, for vertices u and v, u ∼ v if and only if u is strongly

connected to v. This defines an equivalence relation on the vertex set V (Γ).

Proof Consider digraph Γ and let vertices u and v be related by ∼ if u is

strongly connected to v. For each u ∈ V (Γ), there is the trivial path of length

zero from vertex u to itself. Hence u ∼ u and the relation ∼ is reflexive. Let u

and v be in V (Γ) such that u ∼ v. Then there exist a u-v path and an v-u path

in Γ, so we conclude that v ∼ u and ∼ is a symmetric relation. Suppose u ∼ v

and v ∼ w. Then there exist a u-v path, v-u path, v-w path, and w-v path

in Γ. Hence, there exist a u-v-w path and a w-v-u path in Γ, implying that

u ∼ w, and hence ∼ is transitive. Therefore ∼ is an equivalence relation.

The equivalence relation defined by strong connectedness partitions the vertex

set V (Γ) where the equivalence classes are the maximal strongly connected

subdigraphs of the digraph, called strongly connected components or simply

strong components of the digraph. Therefore, the equivalence class containing

g will be written as Γg.

Observe that the directed graph in Figure 2.13 contains at least one directed

cycle whereas the graph in Figure 2.14 does not have any directed cycle.

Definition 2.22 A digraph is called a directed acyclic graph if it contains no

directed cycles.

The digraph given in Figure 2.14 is a directed acyclic graph.
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Recall that given vertex v of a digraph, the number of arcs that go into v is

called the in-degree of v, and the number of arcs that go out of v is called the

out-degree of v. A vertex with in-degree zero is called a source while a vertex

with out-degree zero is called a sink.

Note that Figure 2.14 has one sink and one source.

Proposition 2.2.7 Every finite directed acyclic graph has at least one source

and at least one sink.

Proof Let v0v1v2...vn be a longest path in a finite directed acyclic graph Γ.

We claim that v0 is a source and vn is a sink.

Suppose, to the contrary, that there is an arc (u, v0) in Γ. Then, either u = vi

for some i ∈ {1, 2, ..., n} or u /∈ {v1, ..., vn}. If u = vi for some i ∈ {1, 2, ..., n},

then Γ contains a cycle viv0v1...vi, which is a contradiction since Γ is acyclic.

If u /∈ {v1, ..., vn}, then uv0v1...vn is a path in Γ that is longer than the initial

path. This contradiction proves that v0 is a source.

A similar argument shows that vn is a sink.

Definition 2.23 Given a directed graph Γ, the component graph of Γ is the

digraph formed by replacing each strong component by a single vertex, with

an arc from component Γ1 to component Γ2 if there exists an arc (g, h) in Γ

for some g ∈ V (Γ1) and some h ∈ V (Γ2).

Proposition 2.2.8 For any digraph, the corresponding component graph is a

directed acyclic graph.

Proof Let Γ be a digraph and let Γ1,Γ2, ...,Γn be the corresponding strong

components of Γ. These components form the vertices of the component graph

of Γ. Suppose, by re-labeling if necessary, that Γ1,Γ2, ...,Γk,Γ1 is a directed

cycle of the component graph. Then in the component graph any two vertices

Γi, Γj with 1 ≤ i 6= j ≤ k are strongly connected. Since each Γi with 1 ≤ i ≤ k

is strongly connected as a subgraph of Γ, then the union of Γ1,Γ2, ...,Γk is a
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strongly connected subgraph of Γ. Hence Γ1, ...,Γk are in a single strongly

connected component. This contradicts the assumption that Γ1,Γ2, ...,Γn are

maximal strong components of Γ. Therefore the component graph is acyclic.

As noted above, every strongly connected graph is also weakly connected.

However, the converse is not true. The graph in Figure 2.14 is weakly con-

nected but not strongly connected since there is no directed path from vertex

v6 to vertex v1 for example. The following proposition will be used in an

indirect proof of Theorem 4.3.5 in case the graph there is finite.

Proposition 2.2.9 Given a finite directed graph Γ, if at each vertex the in-

degree and the out-degree are equal then Γ is weakly connected if and only if Γ

is strongly connected.

Proof Suppose Γ is a finite directed graph and at each vertex the in-degree

equals the out-degree. If Γ is strongly connected, then Γ is weakly connected.

Now, suppose Γ is weakly connected but not strongly connected. Consider

the component graph of Γ. By Proposition 2.2.8 the component graph is a

directed acyclic graph and hence by Proposition 2.2.7 it has at least one sink

and at least one source. By hypothesis, in any strong component of Γ, the sum

of the out-degrees equals the sum of the in-degrees. In particular, this is true

for a sink Γ1 of the component graph. Considering Γ1 as a subgraph of Γ, the

sum of its out-degrees equals the total number of arcs coming out of vertices

in Γ1 and going into vertices in Γ1. Since Γ1 is a sink of the component graph,

there are arcs coming from other components to vertices in Γ1 whereas all arcs

coming out of Γ1 end up in Γ1. This contradicts the hypothesis that the sum

of in-degrees and sum of out-degrees of Γ1 are equal. Therefore, Γ is strongly

connected.
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2.3 Symmetry of graphs

Consider a network of processors or communication ports. It is preferable for

the network to look the same from any processor or communication port so that

congestion is minimized and so that identical processors with the same routing

algorithms may be used at each port. Graphs or digraphs are used to model

interconnection networks where the ports are considered to be the vertices

and communication channels are the edges or arcs. A graph or digraph with

characteristics similar to those of the interconnection network just described

is preferred.

The notion of isomorphism provides a way to compare any two given graphs

or digraphs. In applications if two isomorphic (di)graphs model two situa-

tions, then the two situations being modeled should be similar in some way.

Subsequently, vertex-transitivity and some of its consequences are discussed.

Definition 2.24 Let Γ1 and Γ2 be two digraphs. A bijection of vertex sets

α : V (Γ1)→ V (Γ2) is called an isomorphism of graphs Γ1 and Γ2 if for vertices

u and v of Γ1, (u, v) is an arc in Γ1 if and only if (α(u), α(v)) is an arc in Γ2.

By definition every isomorphism preserves adjacency and nonadjacency of ver-

tices. This implies that every isomorphism preserves the degree of a vertex. If

vertex v has degree k, then so does its image under an isomorphism. Similarly,

isomorphisms preserve the lengths of cycles that contain vertex v. If digraphs

have multiple arcs an isomorphism must preserve the multiplicities as well.

A bijection from a graph to itself that preserves adjacency also preserves non-

adjacency, that is is an isomorphism. An isomorphism of a graph with itself

is called an automorphism. The set of automorphisms of a graph Γ under

composition of functions is a group, denoted by Aut(Γ). To illustrate we give

a list of graphs and their corresponding automorphism groups in Table 2.1,

where Sn is the symmetric group of degree n, I2(n) is the dihedral group of

order 2n, and Cn is the cyclic group of order n. Note that Sm×Sn is the direct

product of groups Sm and Sn, and Sm oC2 is the wreath product of Sm by C2.
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Table 2.1: Some automorphism groups of graphs up to isomorphism

Symbol Graph Automorphism Vertex- Edge-

group transitive transitive

Nn Empty Sn Yes Yes

Kn Complete Sn Yes Yes

Cn Cycle I2(n) Yes Yes

Pn Path Z2 Yes Yes

Km,n Complete bipartite Sm × Sn(m 6= n) Yes Yes

Sm o Z2(m = n) Yes Yes

P Petersen S5 Yes Yes

For any graph there is a corresponding automorphism group. In [4] R. Frucht

proved that given a group G, we can find a graph Γ for which G is isomorphic

to its automorphism group, see Theorem 3.2.2.

The desire for every vertex in a network to look the same motivates the fol-

lowing definition.

Definition 2.25 A digraph Γ is vertex-transitive if for all g, h ∈ V (Γ) there

is an automorphism φ of the graph Γ such that φ(g) = h.

In other words Γ is vertex-transitive if its automorphism group has a single

orbit on the vertex set. In Proposition 3.2.1 we note that every Cayley digraph

is vertex-transitive.

Example 2.26 The cyclic subgroup of order n in Aut(Cn) ∼= I2(n) acts

vertex-transitively on the n-cycle Cn.

We now discuss some important consequences of the vertex-transitive property.

Proposition 2.3.1 Every vertex-transitive digraph is regular.

Proof Let u and v be distinct vertices of graph Γ. If φ ∈ Aut(Γ) maps u to v,

then it maps neighbors of u to neighbors of v in a one-to-one correspondence.
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Proposition 2.3.2 If a graph is vertex-transitive and disconnected, then its

connected components are all isomorphic.

Proof Let Γ1 and Γ2 be connected components of a graph Γ. Since Γ is vertex-

transitive, for each u in Γ1 and for each v in Γ2 there is an automorphism

φ ∈ Aut(Γ) such that φ(u) = v. Consider φ1 the restriction of φ on Γ1. Note

that φ1 is a bijection between Γ1 and φ1(Γ1). Observe that {u, v} is an edge in

Γ1 if and only if {φ1(u), φ1(v)} is an edge in Γ2. Hence φ1 is an isomorphism

of the two subgraphs Γ1 and Γ2.

Because of Proposition 2.3.2 it suffices to study connected vertex-transitive

graphs.

Other forms of graph symmetry which are important in applications that in-

volve interconnection networks include edge-transitivity, distance-transitivity

and distance-regularity. However in this paper we will discuss only vertex-

and edge-transitive properties and their importance in one application of Cay-

ley graphs. A desirable property of an interconnection network is that if a

path within the network develops a fault, there is still a path joining any two

vertices of the network. This is called fault-tolerance. A property of Cayley

graphs that ensures fault-tolerance is edge-transitivity which we define below.

Definition 2.27 A graph Γ is edge-transitive if, given any two edges {x, y}

and {u, v}, there exists an automorphism φ of Γ such that {φ(x), φ(y)} = {u, v}.

Example 2.28 Consider the star graph K1,8 in Figure 2.7. If a map on

V (K1,8) sends vertex 1 to any other vertex, then adjacency of vertices will

not be preserved. Hence the star graph is not vertex-transitive. However,

given any two edges, a rotation through a given fixed angle transforms one

edge into the other. Hence the star graph is edge-transitive.

For a digraph a concept analogous to edge-transitivity is arc-transitivity. A di-

graph Γ is arc-transitive if Aut(Γ) acts transitively on the arcs of Γ. Notice that
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an arc-transitive (di)graph is also edge-transitive and vertex-transitive. How-

ever, an edge-transitive graph may not be arc-transitive since edge-transitivity

does not fix the order of the vertices. It is easy to prove that if a graph Γ has no

isolated vertices and is edge-transitive but not vertex-transitive, then Aut(Γ)

has exactly two orbits, and the orbits partition V (Γ). In Theorem 3.2.8 we give

necessary and sufficient conditions for a Cayley graph to be edge-transitive.
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Chapter 3

Cayley Digraphs

3.1 Preliminaries

For any given group G and any nonempty subset S of G we consider a digraph

with elements of G as vertices that displays the multiplicative structure of

G relative to S, called a Cayley digraph. In subsequent sections we discuss

some well-known results, an application to interconnection networks, and some

generalizations of Cayley digraphs. We first define Cayley digraphs and give

an example.

Definition 3.1 Let S be a nonempty subset of a group G. The Cayley digraph

Cay(G,S) has vertex set G and for g, h ∈ G a vertex pair (g, h) is an arc if

and only if hg−1 ∈ S. The subset S is called the connection set.

This defines a left Cayley digraph. It is also possible to define a right Cayley

digraph and if S−1 is used as its connection set then they are isomorphic. In

Chapter 4 we will refer to a Cayley digraph as one-sided to distinguish it from

the two-sided Cayley digraph defined in that chapter.

Example 3.2 Let G = S3, and S = {(23), (123)}. Figure 3.1 shows the

digraph Cay(G,S). Observe that successive multiplication of an element by

(23) gives two opposite arcs between adjacent vertices, and hence give an
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edge. However, if we multiply an element by (123) there is no element in S

that would give an opposite arc since (123)−1 = (132) /∈ S. Hence the graph

is directed. The graph has no loops, and we observe that the graph can only

have a loop if e is in the connection set.

e

(23)(12)

(13)

(132)

(123)

Figure 3.1: Directed Cayley digraph Cay(S3, {(23), (123)})

Remark 3.1.1 The adjacency relation for the Cayley digraph Cay(G,S) is

symmetric (i.e., Cay(G,S) is an undirected graph) if and only if S = S−1.

A Cayley digraph has a loop at each vertex if and only if e ∈ S. For these

reasons, many sources define a Cayley graph as requiring S = S−1 and e /∈ S,

or restrict to such cases. If S is allowed to be a multiset rather than a set,

then the Cayley digraph has multiple arcs. However in most cases, including

throughout this chapter, S is just a set and the Cayley digraph does not have

multiple arcs. The more general definition of two-sided Cayley digraphs given

in Chapter 4 will allow multiple arcs as well as loops.

3.2 Some results on Cayley digraphs

Recall the following from Definition 2.24 and Definition 2.25. Two graphs

are isomorphic if there is an adjacency and nonadjacency-preserving bijection

between their vertex sets. If the two graphs are equal, then such a function is an

automorphism. If for any two vertices of the graph there is an automorphism

that maps one into the other, then the graph is vertex-transitive.
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The following result is an important property which is useful in applications

of Cayley digraphs.

Proposition 3.2.1 Every Cayley digraph is vertex-transitive.

Proof Let S be a nonempty subset of a group G and let Γ = Cay(G,S).

For any g ∈ G, define a function ρg : G → G, with ρg(h) = hg. Note that

ρg(h) = ρg(k) implies hg = kg, and hence h = k. If k ∈ G, then there exists

kg−1 ∈ G such that ρg(kg
−1) = (kg−1)g = k. Thus, ρg is a bijection on the

vertex set of Γ. Let (h, sh) be an arc in Γ. Then

(ρg(h), ρg(sh)) = (hg, (sh)g) = (hg, s(hg)) = (ρg(h), sρg(h)),

which is also an arc in Γ. Hence ρg is an automorphism of Γ (since ρg is

an adjacency preserving bijection from a graph to itself) and therefore the

permutation group GR = {ρg | g ∈ G} is a subgroup of Aut(Γ).

To show that GR acts transitively on the vertices of the Cayley digraph, let h

and k be vertices of Γ. Then equation hg = k has solution g = h−1k in G and

ρg(h) = ρh−1k(h) = h(h−1k) = k.

Since h and k are arbitrary, GR acts transitively on the vertices of Cay(G,S)

and hence every Cayley digraph is vertex-transitive.

Since every Cayley digraph Cay(G,S) is vertex-transitive, by Proposition 2.3.2

any disconnected digraph with components of different sizes cannot be a Cayley

digraph. Similarly, by Proposition 2.3.1 any digraph that is not regular cannot

be a Cayley digraph.

Suppose Γ is a vertex-transitive digraph. Then Aut(Γ) acts transitively on

V (Γ). Conversely, if G is a group then we can construct a digraph Γ such that

G acts vertex-transitively on Γ as a group of automorphisms. The construction

can be done as follows. Let V (Γ) = G and let S be a nonempty subset of G

and let E(Γ) consist of all ordered pairs of the form (g, sg) where g ∈ G and
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s ∈ S. In this way we have constructed the Cayley digraph Γ = Cay(G,S).

Let S = {s1, s2, · · · , sk}. In each arc (g, sg) insert a vertex and attach a

directed path of length i to the new vertex. Then by Theorem 3.2 of [10], G

is isomorphic to the automorphism group of this graph.

We have the following theorem.

Theorem 3.2.2 (Frucht) Every finite group is isomorphic to the automor-

phism group of some digraph.

Note that creating an undirected graph whose automorphisms are the same

as for the constructed Cayley digraph requires a way to use edges to indicate

and distinguish the various arc directions.

We define the following concept that will be helpful in this and subsequent

sections.

Definition 3.3 Let S be a subset of a group G. A word in S is a string

w = s1s2...sk such that each si ∈ S.

We proved in Proposition 2.2.6 that for any digraph Γ the relation ∼ in V (Γ)

defined by

g ∼ h if and only if g is strongly connected to h

is an equivalence relation and hence partitions V (Γ). We observed that the

class of V (Γ) containing g is the strong component Γg containing g. We now

describe the strong components of Γ = Cay(G,S).

Let G be a finite group and let Γ = Cay(G,S). For any g ∈ V (Γ), if h ∈ Γg

then h = sg for some word s in S and hence in 〈S〉. Therefore h ∈ 〈S〉g and

Γg ⊆ 〈S〉g. Now suppose h ∈ 〈S〉g. Then h = wsg where ws ∈ 〈S〉. Since G is

finite, every element of G has finite order. In particular, each s ∈ S has finite

order, and if the order of s is m then s−1 = sm−1. Hence every word in 〈S〉 can

be written as a word in S, and we conclude that there is a path from g to h.

Therefore g and h are weakly connected. Observe that for each s ∈ S, every
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vertex g has a single arc with label s leading into g and a single arc labeled s

leading out of g. Therefore since h and g are weakly connected, by Proposition

2.2.9, h and g are strongly connected, and hence there is also a directed path

from h to g. Thus h ∼ g and we have h ∈ Γg and hence 〈S〉g ⊆ Γg. Therefore,

Γg = 〈S〉g.

As shown above, the components are the right cosets of the subgroup generated

by S and are isomorphic as subgraphs. Observe that the number of components

of Γ equals the number of right cosets of 〈S〉 which is given by the index

[G : 〈S〉]. The case when [G : 〈S〉] = 1 is equivalent to G = 〈S〉. This proves

the following proposition.

Proposition 3.2.3 Let S be a nonempty subset of a finite group G, and let

Γ = Cay(G,S). Then for each g ∈ G, Γg = 〈S〉g. Therefore, the number of

components of Γ equals the number of right cosets, which is given by [G : 〈S〉].

In particular, Cay(G,S) is strongly connected if and only if G = 〈S〉.

It follows that Cay(G,S) is disconnected with the number of components equal

to the size of the group G if and only if S = {e}.

The following perspective will be useful for two-sided Cayley digraphs in Chap-

ter 3. Consider a Cayley digraph Cay(G,S) and suppose that there is a path

from e to g. Start at vertex e and move along the path from e to g. Write si

if the path traverses an arc labeled si. Each time left multiply by the label of

the arc traversed until vertex g is reached. In this way if the path traverses

the sequence of edges s1, ..., sn we write snsn−1...s2s1e = g where s1, ..., sn ∈ S.

This is a factorization of g making use of elements of S. Hence, the Cayley di-

graph Cay(G,S) is connected if and only if each element g of G can be written

as a product of elements of S. Suppose that |G| > 1 and that the correspond-

ing Cayley digraph is connected. Since each g ∈ G has some factorization

g = snsn−1...s2s1, then

g−1 = s−11 s−12 ...s−1n−1s
−1
n = s′m...s

′
2s
′
1
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for some s′1, ..., s
′
m ∈ S. Therefore e = gg−1 = snsn−1...s2s1s

′
m...s

′
2s
′
1 is a non-

trivial factorization of e by elements of S.

Because it is desirable to work with Cayley digraphs due to their nice proper-

ties, it makes sense to ask when a graph is a Cayley digraph of a group. The

answer to this question is given by Sabidussi’s theorem.

Recall that given a group G and a nonempty set X, a group action of G on X

is a map G×X → X denoted by g.x for x ∈ X and g ∈ G, that satisfies the

axioms:

1. g2.(g1.x) = (g2g1).x for all x ∈ X, and g1, g2 ∈ G and

2. e.x = x for all x ∈ X.

An action G×X → X is said to be free if, for all x ∈ X, g.x = x implies that

g = e (that is, only the identity fixes any element of X). A group with free

action is said to act freely.

Theorem 3.2.4 (Sabidussi’s Theorem) A digraph Γ is a Cayley digraph of a

group G if and only if it admits a free and transitive action of G on V (Γ).

Proof Suppose that G acts freely and transitively on Γ. Choose a vertex

u ∈ Γ. Define φ : G → V (Γ) by φ(g) = g(u) and S = {s ∈ G |

(u, s(u)) is an arc in Γ}. Now build Cay(G,S). We claim that φ is bijective.

We note that each v in V (Γ) is an image of u under some g by transitivity.

Therefore φ is onto. If g(u) = h(u), then g−1h(u) = u. Because G acts freely,

g−1h = e, and g = h, implying that φ is one-to-one. Therefore φ is bijective.

We want to show that Γ is isomorphic to Cay(G,S). We observe that

(g, h) is an arc in Cay(G,S)

if and only if hg−1 ∈ S if and only if each of the following is an arc in Γ

(u, hg−1(u)), (u, (u.h).g−1), (u.g, u.h), and (φ(g), φ(h)).
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We observe that a similar result holds true for graphs rather than digraphs.

Remark 3.2.5

Let H be a subgroup of a finite group G. Identify subgroup H and all its left

cosets as subgraphs of Cay(G,S). Take the cosets to be vertices and define

two cosets aH and bH to be adjacent if and only if there exists c ∈ aH and

d ∈ bH such that c−1d ∈ S. Akers and Krishnamurthy [1] call such a graph a

quotient graph. Lauri and Scapellato [10] call this a coset graph and denote it

by Cos(G,H, S).

Praeger [3, page 186] defines a quotient graph in a more general way. Given a

graph Γ and any partition P of its vertex set, the quotient graph has vertex-set

P and an edge joining P1, P2 ∈ P if and only if there exist v1 ∈ P1 and v2 ∈ P2

that are adjacent in Γ. Notice that by this definition, a component graph and

a coset graph are both quotient graphs.

When we refer to a coset graph in this subsection we mean as defined in [10]

and will denote it by Cos(G,H, S).

Theorem 3.2.6 Consider a Cayley digraph Cay(G,S) and let H be a sub-

group of G. Then the coset graph Cos(G,H, S) is vertex-transitive.

Before proving the theorem we observe that vertices aH and bH are adjacent

if and only if the following equivalent statements hold:

there exist h1, h2 ∈ H such that ah1s = bh2 for some s ∈ S,

h1s = a−1bh2 for some h1, h2 ∈ H and s ∈ S,

a−1b = h1sh
−1
2 for some h1sh

−1
2 ∈ HSH, or

a−1b ∈ HSH.

We now prove the theorem.
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Proof Let aH and bH be cosets of H in G. Then aH and bH are adjacent in

Cos(G,H, S) if and only if a−1b ∈ HSH if and only if (ga)−1(gb) ∈ HSH if and

only if gaH and gbH are adjacent in Cos(G,H, S) for all g ∈ G. Therefore, for

all g ∈ G, λg defined by λg(aH) = g(aH) is an endomorphism of Cos(G,H, S).

The mapping λg is a bijection and hence an automorphism. Consider ar-

bitrary vertices aH and bH of Cos(G,H, S). Then since λba−1(aH) = bH,

Cos(G,H, S) is vertex-transitive.

Vertex-transitive digraphs are characterized in the following result which is

due to Sabidussi and is Theorem 3.8 of [10]. The proof uses the fact that all

stabilizers in a transitive permutation group are conjugate.

Theorem 3.2.7 Every vertex-transitive digraph is isomorphic to some coset

graph Cos(G,H, S).

Proof Let Γ be a vertex-transitive digraph and G = Aut(Γ). Consider vertex

v of Γ and let H = Gv = {g ∈ G | gv = v} be the stabilizer of v and

S = {σ ∈ G | σ(v) is adjacent to v}. Observe that H ∩ S = ∅. Define

φ : V (Cos(G,H, S)) → V (Γ) such that φ(αH) = α(v). Let αH = βH. Then

α−1β ∈ H and by definition of H, α−1β(v) = v, implying that α(v) = β(v)

and hence φ(αH) = φ(βH). Therefore φ is well-defined.

Now let φ(αH) = φ(βH). Then α(v) = β(v) and hence α−1β(v) = v, implying

that α−1β ∈ H and αH = βH and therefore φ is one-to-one. Take v ∈ V (Γ).

If there exists g ∈ G such that g(v) = v, then v = g(v) = φ(H). If no such g

exists in G, then v is adjacent to α(v) = φ(αH). Therefore φ(αH) = v and

therefore φ is onto. Hence φ is a bijection.

To show that φ is an isomorphism, let αH and βH be elements of Cos(G,H, S).

We have αH and βH are adjacent in Cos(G,H, S) if and only if α−1β ∈ HSH

if and only if α−1β = h1sh2 for some h1, h2 ∈ H and s ∈ S if and only

if h−11 α−1βh−12 = s if and only if (v, h−11 α−1βh−12 (v)) ∈ E(Γ) if and only

if (v, α−1β(v)) ∈ E(Γ) if and only if (α(v), β(v)) ∈ E(Γ) if and only if

(φ(αH), φ(βH)) ∈ E(Γ). Therefore φ is an isomorphism.

32



An important property of undirected graphs in applications is that of edge-

transitivity. For a Cayley graph Cay(Sn, S) where S ⊂ Sn with |S| = d, the

following result was given in [1] as Theorem 2.

Theorem 3.2.8 Let S = {s1, · · · , sd} ⊂ Sn and consider the Cayley graph

Cay(Sn, S). Then the Cayley graph is edge-transitive if and only if for each

pair of generators s1 and s2 there is a permutation of the n symbols that maps

the set of generators onto themselves, and in particular, maps s1 into s2.

Proof Suppose that the Cayley graph is edge-transitive. Since each generator

corresponds to an edge from the identity e, then by edge-transitivity for each

pair of generators si and sj there is an automorphism of the graph mapping

si onto sj.

Conversely, suppose that each pair of generators si and sj can be mapped

into each other by a permutation of the graph. Let {u, v} and {x, y} be

two edges of the graph. Then there exists an automorphism ρu−1x such that

ρu−1x(u) = x. If the two edges correspond to the same generator si then v = siu

and y = six. Therefore ρu−1x(v) = v(u−1x) = siu(u−1x) = six = y, and hence

{u, v} is mapped to {x, y}. Suppose that {u, v} and {x, y} correspond to two

different generators. Then the automorphism ρu−1x maps {u, v} to some edge

{u(u−1x), siu(u−1x)} = {x, six}. By hypothesis there exists an automorphism

ψ that maps {x, six} to {x, y}. Hence {u, v} is mapped to {x, y} and therefore

the Cayley graph is edge-transitive.

3.3 An application of Cayley digraphs to in-

terconnection networks

We will discuss an application of Cayley digraphs to interconnection networks

as first proposed in [1] and further studied in [9] and [12]. If we model in-

terconnection networks by graphs, the vertices will correspond to processors,

memory modules or switches, and the edges correspond to links. When the
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communication is one way, the graph is directed, and when the communication

is two way the graph is undirected. The said papers discuss Cayley digraph

properties that are useful for a good communication model. The properties

include symmetry, connectivity, small diameter, small degree, and properties

of specific Cayley digraphs as relates to the connection sets of the Cayley

digraphs. All of [1], [9], and [12] suggest that the aim when designing inter-

connection networks is to have large networks that are symmetric, with small

diameter and small degree and high connectivity, and offering simple routing

algorithms.

Symmetry properties include vertex-transitivity, edge-transitivity, distance-

transitivity and distance-regularity. In our study we will limit our discussion

to the vertex-transitive properties and and only make short reference to edge-

transitivity. The other symmetry properties are more complex for the Cayley

graph case, and are expected to be quite complex for two-sided Cayley graphs.

The vertex-transitive property is important since a graph with the property

looks the same from each vertex, thereby minimizing congestion since the load

is distributed uniformly through all vertices. Edge-transitivity makes all the

edges look the same and hence ensures that the load is distributed evenly

along all links. By [9], an edge-transitive graph has more vertex-disjoint paths

between any pair of vertices than any other and hence if a fault develops in a

given link of the network, any two vertices of the graph will still be linked by

another path. The diameter of a graph is also important because the smaller

the diameter the smaller the delay in communication within a network since

delay in communication is measured by the number of edges that a message

has to pass through.

The following table, Table 3.2, adopted from [9], gives some common types of

graphs used to model interconnection networks, together with a comparison

of some of their symmetry properties, number of nodes, degree, and diameter.

In the following table c(n) denotes the cycle (12 · · ·n) and for example c2(n) =

(12 · · ·n).(12 · · ·n).
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Table 3.1: Representation of some graphs as Cayley digraphs

Name of graph Symbol Cayley graph

Star STn Cay(Sn, {(1i) | 2 ≤ i ≤ n})

Bubble-sort BSn Cay(Sn, {(ii+ 1) | 1 ≤ i ≤ n− 1})

Modified bubble-sort MBn Cay(Sn, {(ii+ 1) | 1 ≤ i ≤ n− 1} ∪ {(1n)})

Binary hypercube BCn Cay((Z/2Z)n, {(1, 0, · · · , 0), · · · , (0, · · · , 0, 1)}

Complete-transposition CTn Cay(Sn, {(ij) | 1 ≤ i < j ≤ n})

Alternating group AGn Cay(An, {(12i), (1i2) | 3 ≤ i ≤ n})

Complete Kn Cay(Sn, {ci(n) | 1 ≤ i ≤ n− 1})

Table 3.2: Some Cayley digraphs and some of their characteristics

Cayley digraph Vertex- Edge- Number Degree Diameter

transitive transitive of nodes

STn yes yes n! n− 1 b3(n−1)
2
c

BSn yes no n! n− 1 n(n−1)
2

MBn yes yes n! n unknown

BCn yes yes 2n n n

CTn yes yes n! n(n−1)
2

n− 1

AGn yes yes n!
2

2(n− 2) b3(n−1)
2
c

Kn yes yes n n− 1 1

As can be seen in Table 3.2 the n-cube has 2n vertices with degree n and

diameter n whereas the star graph has n! vertices with degree n − 1 and

diameter b3(n−1)
2
c. For that reason the star graph gives a network with fewer

edges and hence less communication delay than the n-cube. Hence the star

graph is better in this regard. Observe that the connectivity of the n-cube is

n and therefore a total of up to n-1 vertices may fail without disrupting the

network. The star graph has both degree and connectivity equal to n-1 and

therefore its fault tolerance is maximal.

Akers and Krishnamurthy, [1], introduced star and pancake graphs that they

35



found to be superior to the n-dimensional binary hypercube and the cube-

connected cycle networks considering their degree, diameter and connectivity.

In [1] Cayley graphs were used to design symmetric interconnection networks.

Such network could be decomposed recursively into smaller graphs with sim-

ilar structure. This is significant since this allows a single model for many

apparently different interconnection networks. Previously, each interconnec-

tion network was being modeled individually.

It was noted in [12] that a shortcoming of the star and pancake graphs is that

there are not many of these graphs within a given range of the number of ver-

tices since their vertex-sets grow factorially. A graph is said to be hierarchical

if its generators can be ordered as s1, s2, ..., sd such that for all 1 < i ≤ d, si is

not in the subgroup generated by the first i− 1 generators. An importance of

a hierarchical Cayley graph is that it has a recursive decomposition structure.

Cayley graphs that are hierarchical under any ordering of the set of generators

are called strongly hierarchical. An example of a strongly hierarchical Cayley

graph is any edge-transitive Cayley graph. Exploiting the properties that for

example an n-cube can be decomposed into two (n− 1)-cubes interconnected

by edges that are said to be in the nth dimension, and similarly, an n-pancake

graph can be seen as n copies of (n−1)-pancake graphs, bigger interconnection

networks with the same structure can be built by duplicating an existing one.

A type of Cayley graph, Cay(Sn, T ) where T consists of transpositions of the

form (i, i+1), for 1 ≤ i ≤ n−1, called a bubble sort graph was considered in [1].

The graph has n! vertices, degree n−1, and diameter n!
2!(n−2)! = n(n−1)

2
. Observe

that in a bubble sort graph a path is a sequence of adjacent transpositions.

Finding a route from a given permutation to the identity is done using the

bubble sort algorithm. For example suppose we want to sort a sequence of

numbers 3641257 using the bubble sort algorithm. Compare pairs of adjacent

elements as follows. Passing from left to right, after comparing pairs, write

the smaller one to the left and the bigger to the right. After moving through

once, we have 3412567. The second time yields the sequence 3124567. A third

pass yields 1234567.
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Suppose that pancakes are labeled in order by the symbols 123...(i − 1)i(i +

1)...n. Then flipping the first i pancakes yields i(i− 1)...321(i + 1)(i + 2)...n.

A pancake graph as a graph has vertices and generators representing pancake

flips. Finding the diameter for a pancake graph is the same as finding the

maximum number of flips needed to sort an arbitrary stack. The flipping

algorithm is as follows. The first flip brings symbol n in first position. The

second flip brings symbol n to nth position. Now ignore n and make the next

flip bring n− 1 to the first position and the subsequent flip bring n− 1 in the

(n − 1)th position, and so on. It was observed that the diameter and degree

of the n-cube grow logarithmically as a function of the number of vertices,

and the diameter and degree of the pancake graph grow at a rate lower than

logarithmic.

In most cases fault-tolerance is one less than the connectivity and gives the

largest number of vertices that can be removed without disconnecting the

graph. Hierarchical Cayley graphs are maximally fault-tolerant, that is fault-

tolerance is exactly one less than the degree.

Schibell and Stafford, [12], made use of the fact that a routing algorithm on

a Cayley graph can be seen as some factoring in the corresponding group

to produce a more efficient routing algorithm on Cayley graphs. Until their

study, routing algorithms were designed for specific networks, and theirs was

a first in designing a routing that works for a wide range of networks. In [12] a

study of processor interconnection networks from Cayley graphs is done. The

idea is to improve the speed and efficiency of supercomputers. The vertex-

transitive property is seen to be important since at each processor the same

routing algorithms may be used, and the symmetry of the graph reduces con-

gestion. As observed in [1] the networks corresponding to the star and pancake

graphs were found to be superior to the n-cube when considering degree, di-

ameter, and connectivity. The paper makes reference to a number of results

by Mckenzie(1984), Babai (1988) and Babai et al (1989) that give bounds on

the diameter of Cayley graphs generated by permutations and Cayley graphs

of nonabelian finite simple groups.
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The routing problem was reduced to factoring of an element of a group G as

a word in S, the generating set of Cay(G,S). For Cayley graphs of permu-

tation groups with some special generators, a bound on the diameters of the

corresponding graphs is given by making use of some special factorizations.

The paper by Lakshmivarahan, Jwo, and Dhall, [9], is a survey of symmetry

properties of Cayley graphs of permutation groups. To determine how good

a network is, the following are used: degree, diameter, node disjoint paths,

optimal algorithms for various modes of packet communication, embeddability,

symmetry properties, and recursive scalability. We note that most of the

results on interconnection networks in [9] make reference to higher symmetries

that we have not dealt with in our study. However the summaries given in

Table 1, on the Cayley graphs and their generators; Table 4, comparison of

symmetry among Cayley graphs; and Table 5, a comparison of topological

properties of some Cayley graphs, are quite helpful.

3.4 Generalizations of Cayley digraphs

Cayley graphs have been generalized in the past in a few different ways. Exam-

ples of generalizations of Cayley graphs are Annexstein, Baumslag, and Rosen-

berg’s group action graphs [2], Gauyacq’s quasi-Cayley graphs [6], semigroup

graphs by Kelarev and Praeger [8], and groupoid graphs by Mwambene [11].

In [2] what is generalized is the connection set, where instead of group elements

the connection set consists of permutations of vertices of the graph. In [6], [8],

and [11] the Cayley graph generalization is on the group structure where some

axioms are relaxed. A brief overview of each of the generalizations and some

of their properties is given below.

3.4.1 Group action graphs (GAGs)

Annexstein et al. introduce and study group action graphs as a generalization

of Cayley graphs in [2]. Given a set of vertices V and a set of permutations Π
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of set V , a group action graph (GAG) is defined to be the graph with vertex set

V and for each v ∈ V and each π ∈ Π there is an arc from vertex v to vertex

π(v). An example of a GAG is a Cayley digraph in which each permutation is

of the form λg with λg(h) = gh. Observe that a Cayley graph is a GAG (V,Π)

where V = 〈Π〉 and for each g ∈ V and π ∈ Π there is an arc from g to π.g.

Annexstein et al. discuss a number of results that include:

1. Every weakly connected GAG is strongly connected. Hence, if (V,Π) is

a connected GAG, then 〈Π〉 is a transitive group. i.e. for all v1, v2 ∈ V

there exists π ∈ 〈Π〉 such that π(v1) = v2. Recall: In a transitive

permutation group, all stabilizers are conjugate. Hence we may refer to

the stabilizer subgroup of a group G, denoted Gx for some x ∈ G.

2. Each connected group action graph (V,Π) is isomorphic to the coset

graph Cos(〈Π〉; Gx,Π).

The following are some consequences of this theorem on the relation

between a GAG (V,Π) and its induced Cayley graphs.

3. Each directed tree T which is a subgraph of GAG (V,Π) is a subgraph

of Cay(〈Π〉,Π) with multiplicity the size of 〈Π〉x. It was noted that a

cycle in a GAG may not result in a cycle in the induced Cayley graph

since, while the initial and final arcs in the Cayley graph will start and

end in the same coset, they may not be at the same vertex within the

coset. However, 2 allows for a scheme that gives a point-to-point routing

in a Cayley graph (〈Π〉,Π) from a similar scheme in an associated GAG

(V,Π). The resulting routes are generally optimal and give an upper

bound on diameter. Since Cay(〈Π〉,Π) is symmetric, only optimal rout-

ings from the identity of Cay(〈Π〉,Π) to any other vertex of the graph

were considered. Notice that the shortest path from vertex u to vertex v

follows the same path sequence of group generators as the shortest path

from e to vu−1.

4. Corollary 3.4.1 Let F = (V,Π) be a connected GAG with associated
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Cayley graph Γ = Cay(〈Π〉,Π), and let H = 〈Π〉x. Then

Diam(Γ) ≤ DiamH(Γ) + Diam(F ).

If H is generated by a subset Ψ of Π, then

Diam(Γ) ≤ Diam(Cay(〈Ψ〉,Ψ)) + Diam(F ).

An edge-bisector (vertex-bisector) for a given graph Γ is a set of edges

(respectively, vertices) which if removed partitions Γ into two subgraphs

with an equal number of vertices or differing by one.

5. If the GAG Cos(〈Π〉;H,Π) has an edge-bisector (respectively, vertex-

bisector) of size n, then Cay(〈Π〉; Π) has an edge-bisector (respectively,

vertex-bisector) of size n.|H|.

3.4.2 Quasi-Cayley digraphs

The generalization of Cayley digraphs to quasi-Cayley graphs discussed in [6]

is a special case of a quasi-group digraph introduced by Dörfler (1974). A

groupoid is a set with a binary operation. A groupoid Q is called a quasi-

group if for each a, b ∈ Q there exist unique x, y ∈ Q such that ax = b and

ya = b.

Given a quasi-group Q and S ⊂ Q, the directed graph with vertex-set Q and

with arc from q to qs for each q ∈ Q and s ∈ S, denoted QD(Q,S), is called

a quasi-group digraph.

A subset S of a quasi-group Q is said to be right-associative if for every

a, b ∈ Q, (ab)S = a(bS). Consider a quasi-group Q with a right identity

element e and S a right-associative subset of Q which generates Q and for any

s ∈ S if sx = e then x ∈ S. A graph, denoted QC(Q,S), with vertex-set Q

and an edge joining q and qs for q ∈ Q and s ∈ S is called a quasi-Cayley

graph. Dörfler gave the following analogue of Sabidussi’s Theorem for quasi-

group digraphs: Every digraph with a quasi-group representation involving a

right-associative subset is a quasi-Cayley graph.
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Thus, the group axioms are relaxed to form a groupoid, but the connection

set S imposes some quasi-associativity, which is not associativity on elements.

Some properties of quasi-Cayley graphs given in [6] are as follows.

1. Since the right identity element e is not in S, a quasi-Cayley digraph has

no loops.

2. Since S generates Q, then QC(Q,S) is connected.

3. Suppose that (g, h) is an arc of the quasi-Cayley graph. Then h = gs

for some s ∈ S. By hypothesis there exists s1 ∈ S such that ss1 = e.

Since S is right associative there exists s2 ∈ S such that g = g(ss1) =

(gs)s2 = hs2. We conclude that (h, g) is also a an arc and hence every

quasi-Cayley graph is undirected.

4. Given vertices g and h of QC(Q,S), since Q is a quasi-group there

exists q ∈ Q such that gq = h and hence the quasi-Cayley graph is

vertex-transitive.

5. The quasi-Cayley graph QC(Q,S) is a Cayley graph if Q is a group.

In [6] a theorem analogous to Sabidussi’s Theorem, Theorem 3.2.4, is given

for quasi-Cayley graphs. To state the theorem, we need the following concept.

For any graph Γ = (V,E), a subset F of Aut(Γ) is called a regular family on

V if for any vertices u, v ∈ V there exists a unique automorphism f ∈ F such

that f(u) = v. Hence, if F is regular on V then |F | = |V |. The following

generalization of Sabidussi’s Theorem to quasi-Cayley graphs is Theorem 1

of [6].

Theorem 3.4.2 For any connected graph Γ = (V,E) the automorphism group

of Γ contains a regular family on V if and only if Γ is a quasi-Cayley graph.

If all paths from u to v are shortest paths then it is said that there is routing of

shortest paths. A routing in which there is an equal number of paths through

each vertex is called a uniform routing. In 1989 Heydmann, Meyer and Sotteau
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conjectured that in each vertex-transitive graph there is uniform routing of

shortest paths. They proved that ”in any quasi-Cayley graph there exists a

uniform routing of shortest paths.”

3.4.3 General semigroup graphs

In [8], Kelarev and Praeger define Cayley digraphs on semigroups. A semi-

group is a setG with an associative binary operation. For any nonempty subset

S of G Cay(G,S) is defined as in definition of right-sided Cayley graph. Since

the existence of the identity element and the existence of an inverse for each

element are not assumed, the existence and uniqueness of solutions of the equa-

tions ax = b and ya = b in G used in proving vertex-transitivity of Cay(G,S)

is lost. Hence, Cay(G,S) is no longer guaranteed to be vertex-transitive when

G is a semigroup. Kelarev and Praeger [8] give conditions for the recovery of

the vertex-transitive property.

The automorphism group of Cay(G,S) is denoted in [8] by AutS(G). Observe

that each element of G acting by right multiplication defines an endomorphism

of the Cayley digraph Cay(G,S).

To better understand results in [8] we define a number of concepts. The

elements of S can be thought of as colors associated with the edges of the

Cayley digraph. An endomorphism φ is color-preserving if for x, y ∈ G and

for all s ∈ S, if sx = y then sφ(x) = φ(y). The set of all color-preserving

automorphisms is denoted by ColAutS(G)). A semigroup G is said to be a

right zero band if for all x, y ∈ G the equation xy = y holds.

The following concepts were also defined. These allow the conditions for

vertex-transitivity of the Cayley digraph Cay(G,S) to be stated more clearly.

A subset S of a semigroup G is called

1. a subsemigroup if SS is a subset of S,

2. a left ideal if GS is a subset of S (proper if S 6= G),
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3. a principal left ideal if for some g0 in G, S = {gg0 | g ∈ G}.

Recall that a relation is a partial order if it is reflexive, antisymmetric, and

transitive. A relation is a total or linear order if it is a partial order and any

two elements are comparable. In addition, a semigroup is said to be completely

simple if it has no proper ideals and has an idempotent minimal with respect

to the partial order e ≤ f if and only if e = ef = fe.

We will only state the main results from the paper that give conditions needed

for a Cayley digraph of a semigroup to be vertex-transitive. We state these

without proof since the proofs are very involved.

Theorem 3.4.3 Suppose S is a subset of a semigroup G such that all prin-

cipal left ideals of the subsemigroup 〈S〉 are finite. Then the Cayley digraph

Cay(G,S) is ColAutS(G)-vertex-transitive if and only if the following condi-

tions hold:

1. sG = G for all s ∈ G;

2. 〈S〉 is isomorphic to a direct product of a right zero band and a group;

3. | 〈S〉g | is independent of the choice of g ∈ G.

Theorem 3.4.4 Suppose S is a subset of a semigroup G such that all prin-

cipal left ideals of the subsemigroup 〈S〉 are finite. Then the Cayley digraph

Cay(G,S) is AutS(G)-vertex-transitive if and only if the following conditions

hold:

1. SG = G;

2. 〈S〉 is a completely simple semigroup;

3. the Cayley digraph Cay(〈S〉, S) is AutS(G)-vertex-transitive;

4. | 〈S〉g | is independent of the choice of g ∈ G.
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Lemma 5.1, Lemma 5.2, Corollary 5.3(ii) and Corollary 6.4(iii) of [8] give

conditions under which the (strongly) connected component containing a given

element equals the right coset of the subsemigroup 〈S〉 containing the same

element, results that are analogous to Proposition 3.2.3.

Kelarev and Praeger also prove that under the hypothesis that G is a finite

rectangular band, conditions 1 through 4 of Theorem 3.4.4 collapse to yield

that Cay(G,S) is AutS(G)-vertex-transitive if and only if S ∩ gG 6= ∅ for all

g ∈ G.

A final result is that if S is a subset of a semigroup G then the Cayley

graph Cay(G,S) = ∪s∈SCay(G, {s}), and if Cay(G,S) is ColAutS(G)-vertex-

transitive then Cay(G, {s}) is ColAut{s}(G)-vertex-transitive for each s ∈ S.

The paper ends by asking if the converse is true; whether Cay(G, {s}) being

ColAut{s}(G)-vertex-transitive for each s ∈ S implies that all of Cay(G,S)

is ColAutS(G)-vertex-transitive as well. This was proven false in general but

true when G is a band or a completely simple semigroup by Jiang (Semigroup

Forum, 2004).

3.4.4 Groupoid graphs

In [11] Mwambene considers graphs defined on groupoids. Given groupoid G,

a groupoid graph is the digraph Γ = (G,S) with vertex set G and edge set

{(g, gs)|g ∈ G, s ∈ S}.

Mwambene refers to a subset S of a groupoid G as quasi-associative if for

every g, h ∈ G, g(hS) = (gh)S (i.e., right-associative in [6]). To generalize the

conditions e /∈ S and S = S−1 from the group setting, a subset S of a groupoid

G is called a Cayley subset if for any g ∈ G then g /∈ gS and for any g ∈ G

and s ∈ S, then g ∈ g(sS). Observe that g /∈ gS implies that g 6= gs for any

s ∈ S. Hence, if S is a Cayley subset then the groupoid graph Γ = Γ(G,S) has

no loops. Observe that if g ∈ g(sS) for all g ∈ G and for all s ∈ S, then there

exists s1 ∈ S such that g = g(ss1). Notice that if S is also quasi-associative

then g = g(ss1) = (gs)s2 for some s2 ∈ S and hence in this case Γ(G,S) is
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undirected.

For each b ∈ G, suppose that λb is the left translation defined by λb(g) = bg.

If S is also quasi-associative, then λb(gS) = (λb(g))S. Now suppose that S is

a quasi-associative Cayley subset. Consider an edge (g, gs). Then λb(g, gs) =

(bg, b(gs)) = (bg, (bg)s1) is also an edge of Γ. Hence, λb is an endomorphism.

Suppose that any left translation on G is an endomorphism of Γ(G,S). Then

if (g, gs) is an arc, then (bg, b(gs)) is an arc since λb is an endomorphism and

hence has the form (bg, (bg)s1) for some s1 in S. Hence, for any g, b ∈ G

and s ∈ S there is an s1 ∈ S such that b(gs) = (bg)s1. Therefore we have

b(gS) = (bg)S and hence S is quasi-associative. Hence S is quasi-associative

if and only if every left translation on G is an endomorphism of Γ(G,S).

As seen in 3.4.2 a groupoid G is a quasi-group if for any a, b ∈ G, there is a

unique x such that ax = b and a unique y such that ya = b. If in addition G has

an identity element, then it is unique and G is called a loop. It was observed

that Cayley digraphs described by quasi-associative Cayley subsets on quasi-

groups are vertex-transitive. In fact all left multiplications are in Aut(Γ). We

have already shown that every left multiplication is an endomorphism on the

graph if S is quasi-associative. Now suppose that G is a quasi-group and g

and h are vertices of the quasi-group graph. Then there is a unique b ∈ G

such that h = bg = λb(g). Therefore, Γ = Γ(G,S) is vertex-transitive.

It was observed that there is a generalization of Sabidussi’s characterization

of Cayley digraphs: A graph Γ is isomorphic to a Cayley digraph described

by a quasi-associative Cayley subset on a quasi-group if and only if its auto-

morphism group Aut(Γ) contains a subset that acts regularly on the vertex

set V (Γ). Such graphs are called quasi-Cayley digraphs. We have the fol-

lowing result: A graph is a Cayley digraph described by a quasi-associative

Cayley subset on a left quasi-group with a right identity element if and only

if its automorphism group Aut(Γ) acts transitively on its vertex set V (Γ). It

was also shown that a graph Γ is vertex-transitive if and only if Γ is isomor-

phic to a Cayley digraph Γ(Q,S) such that S is quasi-associative on some left

quasi-group Q with a right identity element.
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Chapter 4

Two-Sided Cayley Digraphs

4.1 Preliminaries

In the last chapter Cayley digraphs, their properties and importance in appli-

cations were discussed as well as some generalizations. The generalizations to

quasi-Cayley digraphs, semigroup graphs, and groupoid graphs entail relaxing

the group axioms, and in group action graphs the generating set is a subset of

permutations of the vertices of the graph as opposed to being a subset of the

corresponding group. This chapter treats a generalization of Cayley digraphs

due to Iradmusa and Praeger [7] called a two-sided Cayley digraph in which

two subsets of a group are used to generate arcs. We begin with an overview

of the work done in [7], focusing mainly on results that relate to connected-

ness of the two-sided Cayley digraphs. We then discuss some new results on

connectedness of two-sided Cayley digraphs and in the final section we suggest

possible areas of future inquiry.

Definition 4.1 Let L and R be nonempty subsets of a group G. The two-

sided Cayley digraph 2SCay(G;L,R) is a digraph with vertex set G and such

that for each g ∈ G and for each l ∈ L and r ∈ R, there is an arc from

g to l−1gr. The connection set of 2SCay(G;L,R) is the set of permutations

Ŝ(L,R) = {λl,r|(l, r) ∈ L×R}, where for any g ∈ G, λl,r(g) = l−1gr.
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Example 4.2 Let G = C4 = {e, a, a2, a3} be the cyclic group of order 4 and

let L = {a2, a3} and R = {e, a, a2, a3}. Then 2SCay(G;L,R) is a two-sided

Cayley digraph with two edges between any two vertices and two loops at each

vertex.

Remark 4.1.1 As was seen in Proposition 3.2.3 a Cayley graph Cay(G,S) is

undirected if and only if S is inverse-closed, has loops if and only if e ∈ S, and

never has multiple edges (unless S were to be a multiset). However, Example

4.2 illustrates that 2SCay(G;L,R) may have multiple arcs even if L and R are

not multisets, and can have loops even if e /∈ L and e /∈ R.

For two-sided Cayley digraphs, Iradmusa and Praeger [7] define the 2S-Cayley

property which by Theorem 4.1.2 characterizes when a two-sided Cayley di-

graph is undirected, has no loops, and has no multiple edges, i.e., is undirected

and simple.

Definition 4.3 Let G be a group with identity element e. If L and R are

nonempty subsets of G, the pair (L,R) is said to have the 2S-Cayley Property

or be 2S-Cayley if the following conditions hold.

1. L−1gR = LgR−1 for each g ∈ G;

2. Lg ∩R = ∅ for each g ∈ G; (where Lg = g−1Lg)

3. (LL−1)g ∩ (RR−1) = {e} for each g ∈ G.

Theorem 4.1.2 Let G be a group and let L and R be nonempty subsets of G.

Then Γ = 2SCay(G;L,R) is a simple undirected graph if and only if (L,R)

has the 2S-Cayley property.

Proof We prove the three parts of the 2S-Cayley property are respectively

equivalent to Γ = 2SCay(G;L,R) being undirected, having no loops and

having no multiple arcs. The adjacency relation for any pair of vertices is

symmetric if the number of opposite arcs between the vertices is equal.
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The adjacency relation on Γ is symmetric if and only if any of the following

equivalent statements hold.

(g, h) is an arc if and only if (h, g) is an arc with equal multiplicities,

h = l−1i gri for li ∈ L, ri ∈ R if and only if g = l−1j hrj for lj ∈ L, rj ∈ R,

with equal numbers of i’s and j’s

h = l−11 gr1 for l1 ∈ L, r1 ∈ R if and only if h = l2gr
−1
2 for l2 ∈ L, r2 ∈ R,

with equal numbers of i’s and j’s

h ∈ L−1gR if and only if h ∈ LgR−1 for each g ∈ G with multiplicities, or

L−1gR = LgR−1 as multisets.

The graph Γ has no loops is equivalent to the statement

for each g ∈ G and for all l ∈ L and r ∈ R, then g 6= l−1gr

which is equivalent to

for each g ∈ G, l ∈ L and r ∈ R, r 6= g−1lg,

which can be restated as

Lg ∩R = ∅ for each g ∈ G.

The graph Γ has no multiple arcs if and only if any of these three equivalent

conditions holds.

If l1, l2 ∈ L and r1, r2 ∈ R, then l−11 gr1 = l−12 gr2 iff l1 = l2 and r1 = r2 for all g ∈ G.

If l1, l2 ∈ L and r1, r2 ∈ R, then g−1l1l
−1
2 g = r1r

−1
2 iff g−1l1l

−1
2 g = r1r

−1
2 = {e}.

As sets,

(LL−1)g ∩RR−1 = {e} for each g ∈ G.

Proposition 5.3 of [7] gives a simpler characterization of the 2S-Cayley prop-

erty when G = NG(L)NG(R), which arises in trying to understand when

2SCay(G;L,R) is vertex-transitive. If G = NG(L)NG(R) then the condi-

tions for (L,R) to have the 2S-Cayley property become that L−1R = LR−1,

L ∩R = ∅ and L−1L ∩R−1R = {e}.
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4.2 Comparison between one- and two-sided

Cayley digraphs

This section seeks to compare one-sided and two-sided Cayley digraphs. In

particular we study some special circumstances under which a two-sided Cay-

ley digraph is also a one-sided Cayley digraph. But first some isomorphisms of

two-sided Cayley digraphs are discussed. If S is closed under inverses then the

left and right Cayley digraphs on G with respect to S are isomorphic via the

map g 7→ g−1. Similarly, if S is closed under conjugation, since sg = g(g−1sg)

for all s ∈ S and g ∈ G, then the left and right Cayley digraphs are isomorphic

(g 7→ g). The following result provides some isomorphisms amongst two-sided

Cayley digraphs. It is given as Theorem 1.7 of [7] with the additional assump-

tion that (L,R) is 2S-Cayley, but also holds when the two-sided Cayley graph

has loops, has multiple arcs, and/or is directed.

Theorem 4.2.1 Let L and R be nonempty subsets of a group G, and let

x, y ∈ G, and φ ∈ Aut(G). Consider Γ = 2SCay(G;L,R). Then

2SCay(G;L,R) ∼= 2SCay(G;R,L) ∼= 2SCay(G;Lφ, Rφ) ∼= 2SCay(G;Lx, Ry).

Proof Let ψ : G → G be the bijection g 7→ g−1. It will be shown that ψ

preserves adjacency and nonadjacency of vertices and also preserves multiple

arcs. Let g be in V (Γ), l ∈ L and r ∈ R. Since ψ−1 = ψ, then ψ(l−1gr) =

(l−1gr)−1 = r−1g−1l = r−1ψ(g)l and ψ(ψ(g)) = g so ψ(r−1ψ(g)l) = l−1gr.

Hence, (g, l−1gr) is an arc in 2SCay(G;L,R) if and only if (ψ(g), r−1ψ(g)l) is

an arc in 2SCay(G;R,L). Observe also that for l1, l2 ∈ L and r1, r2 ∈ R and

for g ∈ G, if l−11 gr1 = l−12 gr2 with l1 6= l2 or r1 6= r2 then applying ψ gives

r−11 g−1l1 = r−12 g−1l2 with l1 6= l2 or r1 6= r2. Hence ψ preserves multiplicity

of arcs incident with the same pair of vertices. Therefore, 2SCay(G;L,R) ∼=

2SCay(G;R,L).

Let φ ∈ Aut(G) and denote φ : G → G by g 7→ gφ. By assumption φ is
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bijective. We have

(l−1gr)φ = (l−1)φ(g)φrφ = φ(l)−1φ(g)φ(r) = φ(l)−1φ(g)φ(r).

Similarly, φ−1(φ(l)−1ψφ(g)φ(r)) = l−1gr. Hence (g, l−1gr) is an arc in the two-

sided Cayley digraph 2SCay(G;L,R) if and only if (ψφ(g), φ(l)−1ψφ(g)φ(r)) is

an arc in 2SCay(G;Lφ, Rφ). Notice that since φ is a well-defined one-to-one

function, then by an argument similar to the one above, ψφ preserves multiple

arcs. We conclude that 2SCay(G;L,R) ∼= 2SCay(G;Lφ, Rφ).

Let x, y ∈ G and ψx,y : G→ G with ψx,y : g 7→ x−1gy. Then ψx,y is a bijection

and

ψx,y(l
−1gr) = x−1(l−1gr)y = (l−1)x(x−1gy)ry = (lx)−1(x−1gy)ry = (lx)−1ψx,y(g)ry.

Observe also that ψx−1,y−1 = ψ−1x,y, and ψx−1,y−1((lx)−1ψx,y(g)ry) = l−1gr.

Hence, (g, l−1gr) is an arc in 2SCay(G;L,R) if and only if (ψx,y(g), (lx)−1ψx,y(g)ry)

is an arc in 2SCay(G;Lx, Ry). Observe that since conjugation is a bijection we

have for example x−1l−11 x 6= x−1l−12 x if and only if l1 6= l2. Hence ψx,y preserves

multiple arcs. We conclude that 2SCay(G;L,R) ∼= 2SCay(G;Lx, Ry).

Note that 2SCay(G; {e}, R) = Cay(G,R) where the graph Cay(G,R) is ob-

tained by right multiplication, and 2SCay(G;L, {e}) = Cay(G,L−1) where the

graph Cay(G,L−1) is obtained by left multiplication.

Now, consider the graph 2SCay(G;L,R) where G = C5 and L = {r} and

R = {r4}. Then both 2SCay(G;L,R) and Cay(G, {r3}) have the same

digraph, shown in Figure 4.1, implying that the two-sided Cayley digraph

2SCay(G;L,R) is a Cayley digraph. Also if either L = {e} or R = {e} then

Γ = 2SCay(G;L,R) is a Cayley digraph. In Theorems 4.2.2 and 4.2.3 other

instances in which a two-sided Cayley digraph is a Cayley digraph are given.

Theorem 4.2.2 Let G be an abelian group, and let L and R be nonempty sub-

sets of G with LL−1 ∩ RR−1 = {e}. Then, 2SCay(G;L,R) = Cay(G,L−1R).

Therefore, for an abelian group, every two-sided Cayley graph is a Cayley

graph.
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e r

r2

r3

r4

Figure 4.1: Graph of 2SCay(C5; {r}, {r4}) is the same as the graph of

Cay(C5, r
3)

Proof Let G be an abelian group. Then the hypothesis LL−1 ∩ RR−1 = {e}

is sufficient to guarantee 2SCay(G;L,R) has no multiple edges and that L−1R

is not a multiset. For g, h ∈ G, h = l−1gr for l ∈ L and r ∈ R if and only

if h = (l−1r)g for l−1r ∈ L−1R and hence (g, h) is an arc in 2SCay(G;L,R)

if and only if (g, h) is an arc in Cay(G,L−1R). Therefore, 2SCay(G;L,R) =

Cay(G;L−1R).

If connection sets of Cayley graphs are allowed to be multisets, then the hy-

pothesis LL−1 ∩RR−1 = {e} can be removed and the statement remains true

for graphs with multiple edges. Since every Cayley graph is vertex-transitive,

then for each abelian group G, the two-sided Cayley digraph Γ = 2SCay(G;L,R)

is vertex-transitive and is connected if and only if L−1R generates G. For an

abelian group G, if L = {g} = R ⊂ G then since L−1R = {e}, Γ is discon-

nected with the number of components equal to the size of G.

Let GL and GR defined by GL = {λg,e | g ∈ G} and GR = {λe,g|g ∈ G} be the

regular permutation groups. Theorem 1.9 of [7], given below as Theorem 4.2.3,

gives sufficient conditions for a two-sided Cayley digraph 2SCay(G;L,R) to be

a Cayley digraph with the assumption that (L,R) is 2S-Cayley. The following

result is a modification of Theorem 1.9 which removes most of the 2S-Cayley

hypothesis since we allow Cay(G,S) to be directed and have loops.

Theorem 4.2.3 Let L and R be nonempty subsets of a group G such that

(LL−1)g ∩ (RR−1) = {e} for all g ∈ G. Then the following hold.

1. GR ≤ Aut(Γ) if and only if L−1gR = L−1Rg for each g ∈ G; here
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Γ = Cay(G;L−1R).

2. GL ≤ Aut(Γ) if and only if L−1gR = gL−1R for each g ∈ G; here

Γ ∼= Cay(G;R−1L)

Proof Let L,R be subsets of a group G and (LL−1)g ∩ (RR−1) = {e} for all

g ∈ G. Therefore, as in the proof of Theorem 4.2.2, there are no multiple arcs

in the Cayley digraph Cay(G,L−1R). Suppose that L−1gR = L−1Rg. It will

be shown that GR is a subgroup of Aut(Γ). Given x ∈ G, l ∈ L and r ∈ R,

then a = (x, l−1xr) is an arc of Γ. Since L−1gR = L−1Rg for all g ∈ G, then

a = (x, l−1xr) = (x, (l′)−1r′x) for some l′ ∈ L and r′ ∈ R. Take λg ∈ GR.

Then λg(a) = (xg, l−1xrg) = (xg, (l′)−1r′xg) = (xg, (l′′)−1xgr′′) is an arc in

Γ. Hence λg ∈ Aut(Γ) and thus GR ≤ Aut(Γ). Therefore, by Sabidussi’s

Theorem, Theorem 3.2.4, Γ is a Cayley digraph for group G. Each vertex x is

adjacent to vertices in L−1Rx, hence Γ = Cay(G;L−1R).

Conversely, suppose that GR ≤ Aut(Γ). For x ∈ G, l ∈ L and r ∈ R, then

l−1xr ∈ L−1xR, it will be shown that l−1xr ∈ L−1Rx. Apply λx−1 ∈ Aut(Γ)

to the arc (x, l−1xr) to get (e, l−1xrx−1). Hence (e, l−1xrx−1) is an arc in Γ.

Therefore there exist l1 ∈ L and r1 ∈ R such that l−1xrx−1 = l−11 er1, that is

l−1xr = l−11 r1x, and hence l−1xr ∈ L−1Rx. We therefore have L−1xR ⊂ L−1Rx.

Let l−1rx ∈ L−1Rx. Applying λe,x to the arc (e, l−1r) gives arc (x, l−1rx). But

by definition an arc from x is of from (x, l−11 xr1). Hence l−1rx ∈ L−1xR and

therefore L−1Rx ⊂ L−1xR. This proves L−1xR = L−1Rx for all x ∈ G, and

hence Γ = Cay(G;L−1R).

Similarly, L−1gR = gL−1R for all g ∈ G if and only if GL ≤ Aut(Γ), but this

time Γ ∼= Cay(G,R−1L) with isomorphism g 7→ g−1.

The example below illustrates some isomorphisms of graphs studied in Theo-

rem 4.2.3 and in Theorem 4.2.1.

Example 4.4 1. ConsiderG = S3, L = {(12), (13), (23)} andR = {(123)}.

Then L−1gR = gL−1R for all g ∈ S3. Therefore, by Theorem 4.2.3,
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GL ≤ Aut(2SCay(G;L,R)) and hence 2SCay(G;L,R) ∼= Cay(G;R−1L),

where R−1L = {(12), (13), (23)} and GL := {λg,e|g ∈ G} .

2. For L = {(12), (13), (23)}, and R = {(123)}, by Theorem 4.2.1, for any

permutation φ ∈ Aut(S3) ∼= S3 and any elements x, y ∈ S3,

2SCay(G;L,R) ∼= 2SCay(G;R,L) ∼= 2SCay(G;Lσ, Rσ) ∼= 2SCay(G;Lx, Ry)

3. Since the pair (L,R) in parts 1 and 2 is 2S-Cayley, then by Theorem

4.2.1 the graphs of 2SCay(G;R,L), 2SCay(G;Lσ, Rσ), 2SCay(G;Lx, Ry)

are all connected because 〈R−1L〉 = S3.

Theorem 4.2.3 includes the special case when the group G is abelian. Corol-

lary 4.2.4 also gives some special circumstances when 2SCay(G;L,R) is a

Cayley digraph.

Corollary 4.2.4 Let G be a group and let L and R be nonempty subsets of

G with (LL−1)g ∩ (RR−1) = {e} for all g ∈ G and let Γ = 2SCay(G;L,R).

Further,

1. if L ⊂ Z(G), then Γ ∼= Cay(G,R−1L).

2. if R ⊂ Z(G), then Γ = Cay(G,L−1R).

Proof This follows by applying the above theorem since

1. if L ⊂ Z(G), then for every g ∈ G, L−1gR = gL−1R, and

2. if R ⊂ Z(G), then for every g ∈ G, L−1gR = L−1Rg.

Proposition 5.1 of [7] gives other special circumstances under which a two-

sided Cayley digraph is a Cayley digraph. Namely, given subsets L and R of

a group G with the 2S-Cayley property, then Γ = 2SCay(G;L,R) is a Cayley

digraph if either (NG(L−1)∩NG(L−1R)).NG(R) = G, orNG(L−1).(NG(L−1R)∩

NG(R)) = G. It is not understood more generally which 2SCay(G;L,R) are

Cayley digraphs. In fact Problem 3 of [7] asks if all 2SCay(G;L,R) with

G = NG(L)NG(R) are Cayley graphs.
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4.3 Connectedness of two-sided Cayley digraphs

This section mainly discusses results that relate to connectedness of two-sided

Cayley digraphs. We start with a discussion of a result on connectedness of

two-sided Cayley digraphs given in [7]. Our more general result is then given,

together with some conditions under which different numbers of components

may be obtained for some disconnected two-sided Cayley digraphs.

4.3.1 Connected two-sided Cayley graphs

Iradmusa and Praeger, [7], characterize when Γ = 2SCay(G;L,R) is connected

assuming that the pair (L,R) is 2S-Cayley and both L andR are inverse closed.

In fact if L and R are inverse closed then Γ is undirected by Theorem 4.1.2

since the condition L−1gR = LgR−1 for all g ∈ G in the definition of the

2S-Cayley property is trivially true in this case. Since connectedness is not

affected by loops or multiples edges, the proof in [7] does not use anything

further of the 2S-Cayley property. Theorem 1.5 of [7] is stated below, with the

2S-Cayley property omitted, as Theorem 4.3.1.

Before stating the theorem we give the following definitions of a factorization of

elements of any group G and length of a word that will be used to characterize

when any pair of group elements is connected.

Definition 4.5 Given a group G and nonempty subsets S and T of G, an

S-T factorization of g ∈ G is an expression g = wSwT for g where wS is a

word in S and wT is a word in T .

Definition 4.6 Let S be a subset of a group G. If w = s1s2...sk is a word in

S then the integer k is called the length of w, and is denoted `(w).

Observe that if G is a group there can be many words equivalent to g ∈ G. The

concept of length depends on the choice of expression and is not well-defined

with respect to words equivalent in G.
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Theorem 4.3.1 Let L and R be inverse-closed subsets of a group G and

Γ = 2SCay(G;L,R). Then Γ is connected if and only if

1. G = 〈L〉〈R〉 and

2. there exists an L-R factorization ww′ = e of e where `(w) and `(w′) have

opposite parity.

Proof Let L and R be inverse-closed subsets of a group G. Note that this im-

plies the first part of the 2S-Cayley property holds and hence Γ = 2SCay(G;L,R)

is undirected by Proposition 4.1.2. It also implies that an L-R factorization

of an element exists if and only if an L−1-R factorization exists.

Suppose Γ is connected. Then every g ∈ G can be written in the form

g = wLewR = wLwR (4.1)

for some L-R factorization wLwR = g of g with `(wL) = `(wR), proving that

G ⊆ 〈L〉〈R〉 and hence G = 〈L〉〈R〉. Applying (4.1) to g = r−1 ∈ R and

rearranging yields

e = wLwRr = ww′

where w = wL and w′ = wRr have lengths of opposite parity.

Conversely, suppose G = 〈L〉〈R〉 and the second condition holds. Since

G = 〈L〉〈R〉, each g ∈ G has an L-R factorization

g = wLwR = wLewR. (4.2)

If `(wL) and `(wR) have opposite parity then in (4.2) replace e with ww′ where

w and w′ are words in L and R respectively such that `(w) and `(w′) have

opposite parity. As a result, we may assume that for each g ∈ G there is an

L-R factorization wL, wR with lengths `(wL) and `(wR) of the same parity.

If `(wL) = `(wR) then the resulting expression g = wLwR = wLewR shows

there is a path from e to g. If `(wL) 6= `(wR), then note e = ll−1 = rr−1

since L and R are nonempty, and thus e ∈ L2 ∩R2 since L and R are inverse-

closed. Inserting |`(wL)−`(wR)|
2

copies of e written in the appropriate form into

55



whichever word is shorter will again demonstrate that there is a path from e

to g. Since Γ is undirected, in both cases there is also a path from g to e and

this proves Γ is connected.

A consequence of Proposition 3.2.1 is that if a Cayley digraph is disconnected,

then all its components are isomorphic. This result shows that the following

two-sided Cayley graph is not a Cayley graph.

Example 4.7 As in [7, Example 2.3], letG = I2(6) = 〈r, s|r6 = s2 = e, rsrs =

e〉 and let L = {rs, r3, e} and R = {s}. Then the simple undirected graph

2SCay(G;L,R) is disconnected since 〈L〉〈R〉 = {e, s, r, rs, r3, r3s, r4, r4s} 6= G,

(see Theorem 4.3.1). The two-sided Cayley graph has the following two non-

isomorphic components {e, s, r, rs, r3, r4, r3s, r4s} and {r2, r5, r2s, r5s}. See

Figure 4.2. Hence by Proposition 2.3.2 and Proposition 3.2.1 the graph is not

a Cayley digraph.

e

s

rs

r4 r3

r3s

r4s

r

r5 r5s

r2sr2

Figure 4.2: Two-sided Cayley digraph with non-isomorphic components

In the following example some hypotheses of Theorem 4.3.1 do not hold, but

the two-sided Cayley digraph is connected.

Example 4.8 Consider group G = S3 and let L = {(12), (13), (23)} and

R = {(123)}. Then 〈L〉 = S3 and 〈R〉 = {e, (123), (132)}. Hence 〈L〉〈R〉 = G.

Since L = {(12), (13), (23)} = L−1 and R = {(123)} 6= {(132)} = R−1,

then L is inverse closed but R is not. Note that w = (12)(13) = (132) is

a word in L and w′ = (123) is a word in R with lengths of opposite parity

and ww′ = (132)(123) = e. Despite R not being inverse-closed, the two-sided
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Cayley digraph Γ = 2SCay(G;L,R) ∼= K3,3 is connected, as seen in Figure 4.3.

(132) (123)e

(13) (23) (12)

Figure 4.3: Graph of 2SCay(S3; {(12), (13), (23)}, {(123)})

Example 4.8 illustrates that there are two-sided Cayley digraphs 2SCay(G;L,R)

that are connected but for which L or R is not inverse-closed or the pair (L,R)

does not satisfy the 2S-Cayley property. Our main result, Theorem 4.3.5, gen-

eralizes Theorem 1.5 from [7], included here as Theorem 4.3.1, to characterize

when any two-sided Cayley digraph is connected and thereby explains Exam-

ple 4.8. We begin with some lemmas useful for manipulating factorizations of

elements of G.

We allow the possibility that G is an infinite group and use nonempty subsets

of G that consist of elements of finite order. But note that if G is finite, the

results will apply to any nonempty subsets of G. If a result applies only for

finite groups or finite graphs we will state that.

Lemma 4.3.2 Let G be a group and let S be a nonempty subset consisting of

elements of finite order. For any word wS in S there is a word wS−1 in S−1

so that wS = wS−1 as elements in G.

Proof Let wS be a word in S. For any letter s ∈ S appearing in wS that is

of order m in G, s = (s−1)m−1. Replacing all letters in wS in this way yields a

word wS−1 in S−1 so that wS = wS−1 .

Lemma 4.3.3 Let G be a group and let L and R be nonempty subsets of G

that consist of elements of finite order. If there exists an 〈L〉-〈R〉 factorization
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of g ∈ G then there exists an L−1-R factorization and an L-R−1 factorization

of g.

Proof Let L and R be nonempty subsets of G that consist of elements of finite

order. Let g = w〈L〉w〈R〉 be an 〈L〉-〈R〉 factorization of g ∈ G. In particular,

w〈L〉 and w〈R〉 are words in L ∪ L−1 and R ∪ R−1 respectively. Applying

Lemma 4.3.2 to any letter l ∈ L appearing in w〈L〉 and to any letter r−1 ∈ R−1

appearing in w〈R〉 yields an L−1-R factorization. Applying Lemma 4.3.2 to

any letter l−1 ∈ L−1 appearing in w〈L〉 and to any letter r ∈ R appearing in

w〈R〉 yields an L-R−1 factorization.

Although we will not use this observation, note that a similar argument proves

that there is also an L-R and an L−1-R−1 factorization of g ∈ G. Since all four

such factorizations are in particular 〈L〉-〈R〉 factorizations, in fact any of the

five factorizations can be converted to any other.

Definition 4.9 Let S and T be nonempty subsets of a group G. Given an

integer k, an S-T factorization g = wSwT of g ∈ G will be said to sat-

isfy the length + k condition or be a length + k S-T factorization of g if

`(wT ) = `(wS) + k.

The cases k = 1 or k = −1 will be particularly relevant and we combine these

and say g = wSwT satisfies the length±1 condition if |`(wT )−`(wS)| = 1. The

following lemma provides an important relationship between the length+1 and

length−1 conditions and will be used to adjust relative lengths of factorizations

in the proofs of Theorem 4.3.5 and Proposition 4.3.8.

Lemma 4.3.4 Let G be a group and let S and T be nonempty subsets of

G that consist of elements of finite order. There exists a length + 1 S-T

factorization of the identity element e ∈ G if and only if there is a length− 1

S-T factorization of e and in either case there is a length+k S-T factorization

of e for every integer k.
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Proof Let S and T be nonempty subsets of a group G that consist of elements

of finite order. Suppose there exists an S-T factorization e = wSwT with

`(wT ) = `(wS) + 1.

Using that S consists of elements of finite order, choose s ∈ S of order m.

If m = 1, then s = e and e = (e2wS)wT is an S-T factorization of e with

`(wT ) = `(e2wS)− 1. If m > 1, then e = (smwS)wT and successively inserting

e = wSwT between the S word and T word m − 2 times in the factorization

yields the S-T factorization e = (smwm−1S )wm−1T where

`(wm−1T ) = (m− 1)(`(wS) + 1) = (m− 1)`(wS) +m− 1 = `(smwm−1S )− 1.

Similarly, if e = wSwT with `(wT ) = `(wS)− 1 then it is possible to use t ∈ T

of finite order to produce a length + 1 S-T factorization of e.

Lastly, if e = wSwT is a length + 1 S-T factorization and e = xSxT is a

length− 1 S-T factorization, then note that

e = xkSx
k
T is a length− k S-T factorization with k > 0,

e = wSxSxTwT is an equal length S-T factorization, and

e = wkSw
k
T is a length + k S-T factorization with k > 0.

The following is our main result.

Theorem 4.3.5 Let G be a group and let L and R be nonempty subsets of G

that consist of elements of finite order. Then Γ = 2SCay(G;L,R) is strongly

connected if and only if

1. G = 〈L〉〈R〉 and

2. there exists an L−1-R factorization e = uL−1uR of e ∈ G such that

|`(uL−1)− `(uR)| = 1.

Proof AssumeG = 〈L〉〈R〉 and, using Lemma 4.3.3 if necessary, that e = uL−1uR

is a length + 1 L−1-R factorization of e. Fix g ∈ G. We will first show that

there is a path from the identity element e of G to any element g of G.
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Since G = 〈L〉〈R〉, each g ∈ G has some 〈L〉-〈R〉 factorization and hence, by

Lemma 4.3.3, an L−1-R factorization g = wL−1wR. If `(wL−1) = `(wR), then

we write g = wL−1ewR. If `(wL−1)−`(wR) = k > 0 then the equal-length L−1-R

factorization g = (wL−1ukL−1)(ukRwR) can be written as g = (wL−1ukL−1)e(ukRwR).

If `(wL−1)−`(wR) = k < 0, first use Lemma 4.3.3 to obtain a length−1 L−1-R

factorization of e, insert such a factorization k times between the L−1 and R

words to obtain an equal-length L−1-R factorization of g, and then insert e.

In all three cases we see there is a path from e to g in Γ.

We next show there is a path from g to e in Γ. Since G = 〈L〉〈R〉, there is an

〈L〉-〈R〉 factorization of g and hence, by Lemma 4.3.3, an L-R−1 factorization

g = wLwR−1 . Writing wL−1 for w−1L and wR for w−1R−1 yields e = wL−1gwR. If

`(wL−1)− `(wR) = k for k ∈ Z (including k = 0), there is a length + k L−1-R

factorization of e, say e = ukL−1ukR and then writing

e = ukL−1ukR = ukL−1eukR = (ukL−1wL−1)g(wRu
k
R)

provides a path from g to e in Γ. If k = 0, then there is a path from g to e.

Since the arbitrary vertex g is strongly connected to e, Γ is strongly connected.

Conversely, suppose Γ is strongly connected. Then for each g ∈ G, there

is a path from e to g and we have g = wL−1ewR = wL−1wR, proving that

G = 〈L〉〈R〉. Since g = wL−1wR is an equal-length L−1-R factorization, taking

g = r−1 for r ∈ R yields e = wL−1(wRr), a length + 1 L−1-R factorization of

e ∈ G.

When 2SCay(G;L,R) is finite, for the sake of comparison we provide a more

indirect proof of Theorem 4.3.5. This approach will use Proposition 2.2.9, that

if the in-degree and out-degree at each vertex in a digraph are equal, then the

digraph is weakly connected if and only if it is strongly connected.

Indirect proof of Theorem 4.3.5 If Γ is strongly connected, then, pro-

ceeding as in the first proof of Theorem 4.3.5, we conclude that G = 〈L〉〈R〉

and there is a length ± 1 L−1-R factorization of e ∈ G. Repeat the same

argument as in that proof to conclude that if both these conditions hold then
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there is a path from e to each vertex g of Γ and hence Γ is weakly connected.

Proposition 2.2.9 provides an alternative method to show that Γ is strongly

connected.

We claim that for every vertex g of Γ, indeg(g) = outdeg(g). For each pair

(l−1, r) in L−1×R, and for each vertex g of Γ, g = l−1(lgr−1)r. Thus for each

(l−1, r) ∈ L−1×R and each vertex g of Γ, there is an arc (lgr−1, g) into vertex

g, and these are all such arcs. Therefore, for all g ∈ G indeg(g) = outdeg(g)

and, by Proposition 2.2.9, Γ is strongly connected.

The following examples illustrate that both conditions of Theorem 4.3.5 are

necessary for the two-sided Cayley digraph to be connected.

Example 4.10 Consider Γ = 2SCay(G;L,R) where G = I2(3), with L =

{rs} and R = {rs, r2s}. Note that 〈L〉〈R〉 = G. All elements of L−1 and R are

transpositions, therefore there is no length ± 1 L−1-R factorization of e and

hence Γ is disconnected. The graph Γ has the two components Γe = {e, r, r2}

and Γs = {s, rs, r2s} as shown in Figure 4.4.

e

r

r2 s

r2s

rs

Figure 4.4: 2SCay(I2(3); {rs}, {rs, r2s})

Example 4.11 Consider I2(3) = 〈r, s | r3 = e, s2 = e, rsrs = e〉 and let

L = {r2s}, and R = {e, r2s}. Then clearly 〈L〉〈R〉 6= I2(3), but since e ∈ R,

the second condition of Theorem 4.3.5 holds. The graph is disconnected with

two components as shown in Figure 4.5.

Example 4.12 Consider the group I2(4) = 〈r, s | r4 = e, s2 = e, rsrs = e〉,
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e r2

s r

rs

r2s

Figure 4.5: 2SCay(I2(3); {r2s}, {e, r2s})

and let L = {r3} and R = {r2s}. The corresponding graph, shown in Fig-

ure 4.6, is disconnected with two components. Note that G = 〈L〉〈R〉. Hence

there is no length± 1 L−1-R factorization of e. Otherwise the graph would be

connected.

e

rs

r2

r3s s

r

r2s

r3

Figure 4.6: 2SCay(I2(4); {r3}, {r2s})

The following result is an immediate consequence of Theorem 4.3.5 since the

length ± 1 L−1-R factorization of e is guaranteed by the containment of e in

L or R.

Corollary 4.3.6 Let G be a group and let L and R be nonempty subsets of G

that consist of elements of finite order. If Γ = 2SCay(G;L,R) and G = 〈L〉〈R〉

and e ∈ L or e ∈ R, then Γ is connected.

Proof Without loss of generality let e ∈ L. Every element of R has finite

order. Let the order of r ∈ R be n. Then, en+1rn = e is a length−1 L−1-R

factorization of e and the result follows by applying Theorem 4.3.5.
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We have considered a two-sided Cayley digraph Γ = 2SCay(G;L,R) where G

can be an infinite group and found conditions necessary for Γ to be connected

provided that L and R consist of elements of finite order. The following result

gives conditions for the connectedness of Γ where the elements in L or in R

may have infinite order. Given any subset L of a group G, we will write 〈L〉mon
to denote the monoid generated by L.

Theorem 4.3.7 Let G be a group and L and R be nonempty subsets of G.

Then 2SCay(G;L,R) is connected if and only if

1. G = 〈L−1〉mon〈R〉mon and G = 〈L〉mon〈R−1〉mon, and

2. there exist a length+ 1 and a length− 1 L−1-R factorization of e.

Proof Let L and R be nonempty subsets of a group G and let 2SCay(G;L,R)

be connected. Then for each g ∈ G, there is a path from e to g and hence there

is an L−1-R factorization g = wL−1ewR = wL−1wR where `(wL−1) = `(wR).

Hence g ∈ 〈L−1〉mon〈R〉mon and therefore G = 〈L−1〉mon〈R〉mon. Since the

two-sided Cayley digraph 2SCay(G;L,R) is strongly connected, there is also

a path from g to e and hence e = vL−1gvR where `(vL−1) = `(vR). Solv-

ing for g gives g = (v−1L )−1v−1R which implies that g ∈ 〈L〉mon〈R−1〉mon
and hence G = 〈L〉mon〈R−1〉mon. Since for each g ∈ G there is a factor-

ization g = wL−1wR, choosing g = l ∈ L gives l = wL−1wR and hence

e = (l−1wL−1)wR with `(l−1wL−1) = `(wR) + 1, while choosing g = r−1 for

r ∈ R gives `(wR) = `(l−1wL−1)− 1 r−1 = wL−1wR and hence e = wL−1(wRr)

with `(wL−1) = `(wRr)− 1, hence `(wRr) = `(wL−1) + 1.

Conversely, suppose conditions 1 and 2 hold. Then, arguing as in the proof of

Theorem 4.3.5 yields that every g ∈ G is strongly connected to e.
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4.3.2 Disconnected two-sided Cayley digraphs with three

components

The statement of [7, Theorem 1.5] also includes, under the assumption L = L−1

and R = R−1, that if G = 〈L〉〈R〉 but there is no L-R factorization of e ∈ G

into words whose lengths have opposite parity, then Γ = 2SCay(G;L,R) is dis-

connected with exactly two components. The cases when both conditions fail

or when G 6= 〈L〉〈R〉 but there is an opposite length parity L-R factorization

of e are not addressed. In this subsection we treat the case where G 6= 〈L〉〈R〉

and there is no length± 1 L−1-R factorization of e.

Proposition 4.3.8 Let G be a group and let L and R be nonempty subsets of

G that consist of elements of finite order. Let Γ = 2SCay(G;L,R). If

1. G 6= 〈L〉〈R〉, and

2. there is no length± 1 L−1-R factorization of e ∈ G,

then Γ is disconnected with at least three components.

Proof Since the conditions of Theorem 4.3.5 do not hold, Γ is disconnected.

Since there is no length± 1 L−1-R factorization of e, L and R do not contain

the identity element. Any element of G must be in 〈L〉〈R〉 or in G \ 〈L〉〈R〉,

and both are nonempty since e = e.e ∈ 〈L〉〈R〉 and G 6= 〈L〉〈R〉. We find

elements in three distinct components.

Element e is in some connected component, Γe, of Γ and is connected to all

vertices g with an L−1-R factorization g = wL−1wR such that `(wL−1) = `(wR).

Element r−1 = er−1 is in 〈L〉〈R〉 as well but is not in Γe. If r−1 were connected

to e that would yield an equal-length L−1-R factorization r−1 = uL−1uR and

hence an L−1-R factorization e = uL−1(uRr) with `(uRr) = `(uL−1) + 1.

Since G \ 〈L〉〈R〉 6= ∅, let h ∈ G \ 〈L〉〈R〉. Then element h is not in Γe and

not in Γr−1 since if h were connected to e or r−1 then the connecting words in

L−1 and R would yield an expression for h in 〈L〉〈R〉.
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Since elements e, r−1 and h are in distinct components of Γ this shows that Γ

has at least three connected components Γe, Γr−1 , and Γh.

In the following two examples G 6= 〈L〉〈R〉 and there is no length ± 1 L−1-R

factorization of e. Both corresponding two-sided Cayley digraphs are discon-

nected with four and three components, illustrating the conclusions of Propo-

sition 4.3.8.

Example 4.13 Consider the group G = I2(3), and subsets L = {rs} and

R = {r2s}. Then 〈L〉〈R〉 = {e, rs, r2s, r2} 6= G and, since both rs and r2s

have order 2, there is no length± 1 L−1-R factorization of e ∈ G. The graph

2SCay(G;L,R) has the four components {e, r2}, {s}, {r} and {rs, r2s} as

shown in Figure 4.7.

e

r2

s r rs

r2s

Figure 4.7: 2SCay(I2(3); {rs}, {r2s})

Example 4.14 Let L = {r2s} and R = {r2, r2s} be subsets of the group

G = I2(4) = 〈r, s | r4 = e, s2 = e, rsrs = e〉. There is no length ± 1 L−1-R

factorization of e ∈ G and G 6= 〈L〉〈R〉. The corresponding two-sided Cayley

digraph has the three components {e, s}, {r, r3, rs, r3s} and {r2, r2s}. Figure

4.8 illustrates this example.

e

s

r r3

rsr3s

r2

r2s

Figure 4.8: 2SCay(I2(3); {r2s}, {r2, r2s})
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4.3.3 Disconnected two-sided Cayley graphs with two

components

For inverse-closed subsets L and R of group G such that (L,R) has the 2S-

Cayley property, Theorem 1.5 of [7] proves that if G = 〈L〉〈R〉 and if `(w)

and `(w′) have opposite parity for each L-R factorization e = ww′ of e, then

the corresponding two-sided Cayley graph is disconnected with exactly two

components. Dropping the 2S-Cayley property from Theorem 1.5 does not

affect connectedness, and we have the following result.

Proposition 4.3.9 Let L and R be inverse-closed subsets of a group G. If

G = 〈L〉〈R〉 but the second condition of Theorem 4.3.1 does not hold, then

Γ = 2SCay(G;L,R) is disconnected with exactly two components.

Proof Suppose that G = 〈L〉〈R〉 and if ww′ = e is an L-R factorization of

e then `(w) and `(w′) have the same parity. Since G = 〈L〉〈R〉, then each

g ∈ G has an L-R factorization of the form g = wLwR. If there are two

factorizations g = uLuR = vLvR so that in one factorization the lengths of the

L and R words have the same parity while in the other factorization the lengths

have opposite parity, then v−1L uLuRv
−1
R = e is an L-R factorization of e with

`(v−1L uL) = `(v−1L ) + `(uL) and `(uRv
−1
R ) = `(uR) + `(vR) of opposite parity.

This contradicts the hypothesis. This contradiction proves that the parity

relationship between lengths of words in L−R factorizations of g remain fixed

as such words vary.

Case 1: Suppose `(wL) and `(wR) have the same parity.

• If `(wL) = `(wR), then g = wLwR = wLewR and g is connected to e.

• If `(wL) 6= `(wR), without loss of generality let `(wL) > `(wR). Since

`(wL) − `(wR) is even, for any r ∈ R, right multiplying g = wLewR by

`(wL)−`(wR)
2

copies of rr−1 = e shows that g is connected to e.

Case 2: Suppose `(wL) and `(wR) have opposite parity. Then for any expres-

sion of g the lengths of the words in the L-R factorization have opposite parity
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and hence there is no path from e to g.

Now it will be shown that all elements of G with L-R factorizations where

the lengths of the L and R words have opposite parity are connected. Let

g = wLwR with `(wL) and `(wR) of opposite parity and let h = vLvR with

`(vL), `(vR) of opposite parity.

Note that

g = wLv
−1
L hv−1R wR.

Regardless of whether `(wL) and `(vL) are odd and `(wR) and `(vR) are even,

or `(wR) and `(vR) are odd and `(wL) and `(vL) are even, or `(wL) and `(vL)

are even and `(wR) and `(vR) are odd, `(wLv
−1
L ) and `(v−1R wR) have the same

parity. Using ll−1 = rr−1 = e as needed proves that g and h are connected.

Therefore Γ is disconnected with exactly two connected components.

We now consider the case where G = 〈L〉〈R〉 but there is no length± 1 L−1-R

factorization of e ∈ G. Under an additional condition that allows adjusting

the relative lengths of the factorizations by two, Γ will consist of exactly two

components.

Proposition 4.3.10 Let G be a group and let L and R be nonempty subsets

of G that consist of elements of finite order. Let Γ = 2SCay(G;L,R). Assume

that

1. G = 〈L〉〈R〉,

2. there is no length± 1 L−1-R factorization of e ∈ G, and

3. L ∩ L−1 or R ∩R−1 is nonempty.

Then Γ is disconnected with exactly two components.

Proof Since there is no length ± 1 L−1-R factorization of e ∈ G then Γ is

disconnected. We identify the two components of Γ. Since G = 〈L〉〈R〉, then

every element g ∈ G has an 〈L〉-〈R〉 factorization. Hence, by Lemma 4.3.3, g
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has an L−1-R factorization g = wL−1wR. Suppose that L ∩ L−1 is nonempty

with l, l−1 ∈ L−1.

If `(wL−1) = `(wR) then g = wL−1ewR is in Γe, the connected component of Γ

containing e. If `(wR)− `(wL−1) = 2k > 0 writing g = [wL−1(l−1l)k]ewR shows

that g is in Γe. If `(wR) − (wL−1) = 2k + 1 > 0 then g = [wL−1(l−1l)kl−1]lwR

shows that g is in Γl. Note that e /∈ Γl since otherwise there is a length-1

L−1-R factorization of e.

If `(wL−1) > `(wR), then let r ∈ R be of order m. Rewrite g = wL−1wR by

inserting enough copies of rm so that g = wL−1w′R with `(w′R) > `(wL−1). Then

proceed by the same argument to see that g ∈ Γe or g ∈ Γl and conclude that

Γ has two components.

If R ∩ R−1 is nonempty, swap the roles of L and R above to yield g ∈ Γe or

g ∈ Γr, proving that Γ has two components in either case.

Example 4.15 There exist two-sided Cayley digraphs for which the hypothe-

ses of Proposition 4.3.10 hold. Consider the two-sided Cayley digraph Γ defined

as 2SCay(G;L,R) where G = I2(3), with L = {rs} and R = {rs, r2s}. Note

that 〈L〉〈R〉 = G and also L ∩ L−1 = {rs} 6= ∅, and R ∩ R−1 = {rs, r2s} 6= ∅.

Since all elements of L−1 and R are transpositions, then there is no length± 1

L−1-R factorization of e and hence Γ is disconnected. Observe that Γ has

the two components Γe = {e, r, r2} and Γs = {s, rs, r2s}. The graph of

Γ = (I2(3); {rs}, {rs, r2s}) is shown in Figure 4.9.

The following example illustrates that the third condition of Proposition 4.3.10

is not a necessary condition. We give subsets L and R of the quaternion group

G = Q8 in which the first two conditions hold but the third fails, and yet the

two-sided Cayley digraph 2SCay(G;L,R) has two components.

Example 4.16 Let G = Q8, the quaternion group, and L = {i, k}, and

R = {−i,−k}. It can be verified that 2SCay(G;L,R) has two components

Γe = {±1,±j} and Γi = {±i,±k}. Note that the first two conditions of
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Figure 4.9: 2SCay(I2(3); {rs}, {rs, r2s})

Proposition 4.3.10 hold. However, L−1 = {−i,−k} and R−1 = {i, k} and

hence L ∩ L−1 = ∅ and R ∩ R−1 = ∅. Therefore the third condition is not

necessary for the two-sided Cayley digraph to have two components.

Let G be a group and let L and R be nonempty subsets of G that satisfy

the hypotheses of Proposition 4.3.10. Then in fact the orders of elements of

L and R are even, which can be used to construct an alternative proof of

Proposition 4.3.10.

Proposition 4.3.11 Let G be a group and let L and R be nonempty subsets

of G that consist of elements of finite order. Let Γ = 2SCay(G;L,R). Assume

that

1. G = 〈L〉〈R〉,

2. there is no length± 1 L−1-R factorization of e ∈ G, and

3. L ∩ L−1 or R ∩R−1 is nonempty.

Then each element in L and each element in R has even order.

Proof LetG be a group and let L andR be nonempty subsets ofG that consist

of elements of finite order such that G = 〈L〉〈R〉 and there is no length ± 1

L−1−R factorization of e ∈ G. Suppose also that L∩L−1 6= ∅. We will prove

that the order of each l ∈ L and each r ∈ R must be even. Suppose, to the
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contrary, that there exists at least one element in L or in R whose order is

odd.

Suppose l0 ∈ L has odd order m = 2j + 1. Let r ∈ R have order n. Take

l, l−1 ∈ L−1. If n = 2k + 1 is odd, then e = (ll−1)kr2k+1 is a length + 1

L−1-R factorization of e. If n = 2k is an even number and 2j < 2k + 1, then

e = ((l−10 )2j+1(ll−1)k−j−1)r2k is a length + 1 L−1-R factorization of e. If n = 2k

is even and 2j > 2k + 1, if necessary repeatedly multiply rn by itself until

`((l−10 )m) < `(rn · · · rn). Then, by the case above, there is a length + 1 L−1-R

factorization of e.

Suppose that r ∈ R has odd order n = 2k + 1. Condition L ∩ L−1 6= ∅ implies

that there exist l and l−1 in L−1. Therefore e = (ll−1)kr2k+1 is a length + 1

L−1-R factorization of e.

The case where R ∩R−1 6= ∅ is treated in a similar way. We conclude that all

elements of L and of R have even order.

Remark 4.3.12 The results of Proposition 4.3.11 can be used to provide an

alternative proof of Proposition 4.3.10. Suppose that L and R are subsets

of group G that consist of elements of finite order. By Proposition 4.3.11, if

element l ∈ L and element r ∈ R have orders m and n respectively, then both

m and n are even. Hence, adjusting the length of any word by making use of

e = (l−1)m or e = rn will not change the parity of the length of the word.

In Proposition 4.3.10 we proved that given nonempty subsets L and R of a

group G such that G = 〈L〉〈R〉 and either L∩L−1 6= ∅ or R∩R−1 6= ∅, if there

is no length ± 1 L−1 − R factorization of e ∈ G then Γ is disconnected with

exactly two components. Observations made from computer generated exam-

ples show that for groups G = I2(3), I2(4) or I2(5) such that 2SCay(G;L,R)

has two components and G = 〈L〉〈R〉, but the length ± 1 condition fails,

then L ∩ L−1 6= ∅ or R ∩ R−1 6= ∅. One question for further investigation is

whether for any dihedral group if the corresponding two-sided Cayley graph

has two components, the length±1 condition fails and G = 〈L〉〈R〉, then either
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L ∩ L−1 6= ∅ or R ∩R−1 6= ∅.

While Theorem 4.3.5 gives conditions under which Γ = 2SCay(G;L,R) has

only one component, Proposition 4.3.13 considers another extreme case, the

conditions under which the number of components of Γ equals the size of the

group G.

Proposition 4.3.13 Let L and R be nonempty subsets of a group G. The

number of components of the digraph Γ = 2SCay(G;L,R) equals the size of G

if and only if L = {z} = R for some z ∈ Z(G).

Proof Suppose that L = {z} = R for some z ∈ Z(G). Then for each g ∈ G,

z−1gz = z−1zg = g. Hence {g} is a component for each g ∈ G. Therefore the

number of components equals the cardinality of G.

Conversely, suppose that the number of components equals the cardinality of

G. Then for all g ∈ G, {g} is a component and hence l−1gr = g for all l ∈ L

and r ∈ R. Taking g = e, gives l = r for all l ∈ L and r ∈ R forcing L and R

to consist of a single common element. Let l = r = z. Then z−1gz = g gives

zg = gz, implying that z ∈ Z(G) and L = {z} = R.

More generally, when L and R are subsets of Z(G), then L−1gR = L−1Rg

and hence by Theorem 4.2.3, Γ = 2SCay(G;L,R) is the Cayley digraph

Cay(G,L−1R) whose number of components is [G : 〈L−1R〉] by Proposition

3.2.3.

4.3.4 Other two-sided Cayley graphs with two compo-

nents

We end by considering the situation where G 6= 〈L〉〈R〉 and there is a length±1

L−1-R factorization of e ∈ G, and find some conditions on L andR under which

Γ has exactly two connected components.

Motivated by the study of Cayley digraphs Cay(G,S) where the coset 〈S〉g is

the connected component of the graph containing g ∈ G, we consider how the
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component containing g ∈ G in the two-sided Cayley digraph 2SCay(G;L,R)

compares to the double coset 〈L〉g〈R〉.

Proposition 4.3.14 Let L and R be nonempty subsets of a group G and let

Γ = 2SCay(G;L,R). If Γg is the connected component of Γ containing vertex

g, then Γg ⊂ 〈L〉g〈R〉. If further L and R are subgroups of G, then Γg = LgR.

Proof If h ∈ Γg, then h is strongly connected to g. Hence there exist equal-

length words wL−1 and wR in L−1 and R respectively such that h = wL−1gwR.

Therefore Γg ⊂ 〈L〉g〈R〉.

If L and R are subgroups of G, then L−1 = L = 〈L〉 and R = 〈R〉. Let

h ∈ L−1gR. Then h = l−1gr, where l ∈ L and r ∈ R. As words in L−1 and R

respectively, l−1 and both r have length one. Hence h is connected to g, that

is h ∈ Γg. Therefore, LgR ⊂ Γg and hence Γg = LgR.

Remark 4.3.15 In general, Γg 6= 〈L〉g〈R〉. Consider for example the group

S3 and subsets L = {(123)} = R. Then 〈L〉 = {e, (123), (132)} = 〈R〉 and

〈L〉e〈R〉 = {e, (123), (132)}. However Γe = {e} and hence Γe 6= 〈L〉e〈R〉.

If L and R are subgroups of G, then 〈L〉〈R〉 = LR and it is easy to see by

Proposition 4.3.14 that Γ = 2SCay(G;L,R) is connected if and only if for

each g ∈ G, G = LgR. Since e ∈ L and e ∈ R there is always a length ± 1

L−1-R factorization of e so we find a condition under which Γ has exactly two

components provided that G 6= LR.

Proposition 4.3.16 Let L and R be subgroups of a group G, where LR 6= G.

Then the digraph Γ = 2SCay(G;L,R) has exactly two components if and only

if for all g ∈ G \ LR, then LgR = G \ LR.

Proof Let L and R be subgroups of G. Then 〈L〉〈R〉 = LR. In addition, e is

in L and in R. Hence there is a length±1 L−1−R factorization of e. Suppose

that LR 6= G and Γ = 2SCay(G;L,R) has exactly two components. One
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such component is Γe. Since L and R are subgroups, by Proposition 4.3.14,

Γe = LeR = LR. Since Γ has exactly two components, the other component

has to be G \ Γe = G \ LR. For any g ∈ G \ LR, we have Γg 6= Γe. By

Proposition 4.3.14 Γg = LgR. Since Γ has exactly two components, then they

have to be Γe = LR and Γg = LgR = G \ LR.

Conversely, suppose that for all g ∈ G \ LR, LgR = G \ LR. Since L and R

are subgroups of G, then Γg = LgR = G \ LR. Element e = e.e ∈ LR is not

connected to g. We have, Γe = LeR = LR. Since Γe ∪ Γg = G, Γe and Γg are

the only components of Γ.

For L and R nonempty subsets of a dihedral group G, if G 6= 〈L〉〈R〉 but the

length ± 1 condition holds, then the following examples give some conditions

under which Γ = 2SCay(G;L,R) is disconnected with exactly two components.

These show that when G is a dihedral or an arbitrary group and G 6= 〈L〉〈R〉,

finding general conditions for Γ to have exactly two components may be subtle.

Example 4.17 Let G = I2(n) = 〈r, s | rn = s2 = rsrs = e〉 and let L and R

be nonempty subsets of 〈r〉. Suppose there exist ri ∈ L and rj ∈ R such that

gcd(i− j, n) = 1 and gcd(i+ j, n) = 1. Then Γ = 2SCay(G;L,R) has exactly

two connected components.

Explanation: Since L and R are subsets of 〈r〉, then clearly 〈L〉〈R〉 6= I2(n).

Suppose ri ∈ L and rj ∈ R are such that gcd(i−j, n) = 1 and gcd(i+j, n) = 1.

Then some elements of Γe are: e, r−ierj = r−i+j, r2(−i+j), ..., r(n−1)(−i+j).

These are n distinct elements since i − j is coprime with n. Similarly, some

elements of Γs are s, r−isrj = sri+j, sr2(i+j), ..., sr(n−1)(i+j), which are n

distinct elements since i+ j is coprime with n. Observe that the 2n elements

that have been computed are all distinct and |I2(n)| = 2n. Therefore, Γ has

exactly the two connected components Γe = {e, r−i+j, r2(−i+j), ..., r(n−1)(−i+j)}

and Γs = {s, sri+j, sr2(i+j), ..., sr(n−1)(i+j)}.

Example 4.18 Consider G = I2(n) with n even and let L = {r2} and

R = {e, ris} for i ∈ {0, ..., n − 1}. Then Γ = 2SCay(G;L,R) has precisely
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two components. They are Γe = {e, r2, r4, ..., rn−2, s, r2s, r4s, ..., rn−2s} and

Γr = {r, r3, ..., rn−1, rs, r3s, ..., rn−1s}.

Example 4.19 In G = I2(3), all pairs of the form L = {ris}, R = {e, rjs}

yield two components in 2SCay(G;L,R). In I2(4) the pairs L = {ris} and

R = {e, rjs} give two components provided that (i− j, 4) = 1.

Example 4.20 Consider the dihedral groupG = I2(3). Then each of the pairs

L,R in the following table satisfies that G 6= 〈L〉〈R〉 and there is a length± 1

L−1-R factorization of e. In each case 2SCay(G;L,R) has two components.

L

{s}

{rs}

{r2s}

R

{e, s}

{e, rs}

{e, r2s}

Now consider G = I2(4) and the pairs of subsets L,R given in the following

table. Then G 6= 〈L〉〈R〉 and since e ∈ R, there is a length ± 1 L−1-R

factorization of e. The pairs of sets L,R appear to have the same structure

as in I2(3). However for each of the pairs L,R, the graph 2SCay(G;L,R) has

more than two components.

L

{s}

{rs}

{r2s}

{r3s}

R

{e, s}

{e, rs}

{e, r2s}

{e, r3s}

The same situation holds for I2(5) with the following pairs of subsets.

L

{s}

{rs}

{r2s}

{r3s}

{r4s}
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R

{e, s}

{e, rs}

{e, r2s}

{e, r3s}

{e, r4s}

Given these observations, an attempt was made, to no avail, to check if the

orders of elements of L−1R may give a hint on the relations that give a graph

with two components when I2(n) 6= 〈L〉〈R〉. We have yet to find general

conditions on arbitrary nonempty subsets L and R of I2(n) that ensure that

Γ is disconnected with exactly two components when 〈L〉〈R〉 6= I2(n).

4.4 Questions for future inquiry

The following questions are yet to be addressed.

• Finding conditions under which 2SCay(G;L,R) has two components

when G 6= 〈L〉〈R〉. A partial result was obtained for dihedral groups

but a result for general groups has not been fully done. Starting with an

attempt at finding a complete result for dihedral groups may be a good

first step.

• Is it possible to count the number of components of a two-sided Cayley

digraph if both conditions of the connectedness result fail? We only

determined that if both conditions fail, then the digraph is disconnected

into at least three components. We need conditions under which the

digraph has exactly three, four, five, . . . , etc, components.

• What are necessary and sufficient conditions for a two-sided Cayley di-

graph to be vertex-transitive (Iradmusa and Praeger)? Iradmusa and

Praeger determined that if G is the product of the normalizers of L and

R, then the corresponding two-sided Cayley digraph is vertex-transitive.

Can necessary and sufficient conditions be obtained, maybe starting with

a strengthening of this result?
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• Necessary and sufficient conditions for a two-sided Cayley digraph to be

edge-transitive.

• What other classes of two-sided Cayley digraphs are guaranteed to be

Cayley digraphs? (Iradmusa and Praeger.) For certain factorizations of

G, Iradmusa and Praeger determined that a two-sided Cayley digraph is

a Cayley digraph. We need other classes of two-sided Cayley digraphs

that are Cayley digraphs.
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