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Computer Aided Drug Discovery and Molecular Simulation: 

Software Development and Applications 

Dissertation Abstract -- Idaho State University (2020) 

Computer-aided drug design (CADD) is an indispensable part of drug discovery, 

which provides advanced techniques, for example, molecular modeling and high 

throughput virtual screening. Applying CADD techniques can significantly reduce the 

time and cost in the study of drug design, and impressively improve the success rate in 

the research and development of the drug. However, many experimental researchers in 

the research area of drug discovery have limited experience of CADD applications and 

very basic understandings of CADD, due to the expenses of CADD software packages 

and hardware, the complexity of CADD techniques, and the difficulty in learning and 

training for CADD techniques.  

To eliminate the technical and fiscal barriers for underserved researchers who 

want to apply CADD to their studies, we have developed a web-based CADD 

environment (ezCADD) which provides graphical CADD applications. ezCADD 

simplifies the complexity of CADD, which enables researchers to perform CADD tasks 

without the distress of the requirements of (1) computational background; (2) computer 

hardware and software purchase; (3) software compilation, installation, and update; and 

(4) computer system maintenance. To date, we have developed several fundamental 

CADD applications for the ezCADD platform, for example, small-molecule docking 

(ezSMDock), binding site detection (ezPocket), protein-protein docking (ezPPDock), 

high throughput virtual screening (ezHTVS), drug target and poly-pharmacology 

identification (ezPocketSearch) and other applications. Those applications have drawn 
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researchers’ attention from all over the world. More than 20,000 CADD jobs have been 

executed on the ezCADD platform by more than 2000 users from different countries.  

A variety of CADD techniques have been applied in TMC1 and Mcs1 studies, 

along with experimental studies from collaborators. In the TMC1 study, we built a 

homology model of zebrafish TMC1 protein. Then molecular dynamics simulations and 

high throughput virtual screening were performed with the homology model, and 

machine learning and QSAR methods were also applied with the existing compound data. 

In the Mcs1 study, a high-quality Mcs1 protein model and a full-length VCAM-1 model 

were built. Molecular dynamics simulations were performed with the homology models. 

Then the very plausible conformations of the Mcs1 and VCAM-1 were extracted from 

simulation trajectories for docking studies.  

 

 

 

 

 

 

 

Key Words: Computer Aided Drug Discovery, Drug Design, Molecular Dynamics, 

Homology Modeling, Machine Learning, High Throughput Virtual Screening.  
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Chapter I: ezCADD Development 

I.1 Introduction 

Computer-Aided Drug Design 

Computer-aided drug design (CADD) has become a powerful tool in the realm of 

modern drug discovery and rational drug design, along with the development of computer 

sciences and the increase of computing power. With the facilitation of computer 

modeling techniques and in silico studies to drug discovery, the importance of 

understanding the mechanism of drug-receptor interactions has been gradually increasing. 

Using advanced CADD techniques can dramatically increase the hit rate, decrease the 

cost and human efforts in high throughput drug screening, comparing to a large number 

of workloads for conventional benchtop experiments in the wet lab (Cheng, Li, Zhou, 

Wang, & Bryant, 2012). Combining with explosive increments of data, machine learning 

techniques have been applied in many scientific research areas in recent decades (Lo, 

Rensi, Torng, & Altman, 2018). In drug discovery, machine learning has become a 

powerful tool for researchers.  

Based on the knowledge of the biological target receptor and the ligand molecule 

that binds to the target receptor, CADD can be mainly divided into two categories, 

structure-based drug design (SBDD) and ligand-based drug design (LBDD) 

(Kapetanovic, 2008; Macalino, Gosu, Hong, & Choi, 2015; Marshall, 1987; Merz Jr, 

Ringe, & Reynolds, 2010; Veselovsky & Ivanov, 2003).   
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Structure-Based Drug Design 

Structure-based drug design, also known as direct drug design, is based on the 

three dimensional (3D) structure of the target receptor which can be not only 

experimentally determined by X-ray crystallography, nuclear magnetic resonance (NMR) 

spectroscopy, and electron microscopy (EM), but also computationally predicted by ab 

initio protein modeling and homology modeling (also known as comparative protein 

modeling). A potential ligand binding site of target protein will be identified with many 

characters, such as the shape and size of pocket or cavity, amount and location of 

hydrogen bond donors and acceptors, and hydrophobicity of the binding site. The ligand 

binding site can be either an active site (also known as the orthosteric site) or allosteric 

site, and the ligand can be designed as an agonist or antagonist depending on the 

therapeutic effects. In structure-based drug design, a molecular docking study or high 

throughput virtual screening (HTVS) task usually will be performed with a library of a 

large number of compounds to evaluate the binding affinity of ligand and investigate the 

relationship between receptor and ligand (Anderson, 2003; Konc & Janežič, 2014; Merz 

Jr et al., 2010). 

Ligand-Based Drug Design 

Ligand-based drug design, also known as indirect drug design, is based on the 

information of known ligand molecules without the necessity of understanding the target 

receptor or drug-receptor relationship. The 3D structure of the target receptor can be very 

difficult to obtain due to a variety of reasons, such as the large size of protein, difficulties 

in crystallization, or other technical difficulties (Macalino et al., 2015; Merz Jr et al., 

2010). Therefore, ligand-based drug design is the only and best option for many research 
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studies. Besides, ligand-based drug design can be applied in the study where multiple 

different target receptors have been involved, which can be extremely difficult in the 

structure-based drug design study. Quantitative structure-activity relationship (QSAR), 

pharmacophore modeling, and ligand-based virtual screening (LBVS) are the widely used 

ligand-based drug design techniques (Macalino et al., 2015). 

A statistical QSAR model can be generated based on the correlation between 

bioactivity data, such as absorption, distribution, metabolism, and excretion (ADME) 

properties, and structural variation of a set of compounds. Although a QSAR model does 

not need a target receptor information, some molecular data are still required to generate 

a good QSAR model, such as the amount of compounds with activity data from 

experiments, molecular descriptors for the compounds, and selection of training and test 

datasets. Similar to QSAR modeling, pharmacophore modeling can screen similar 

compounds in 3D arrangement with different scaffolds. Based on the 3D alignment of 

ligands, key features and mechanistic properties of pharmacophore can be revealed 

(Macalino et al., 2015; Veselovsky & Ivanov, 2003).  

Ligand-based virtual screening also utilizes structural similarity of the ligand 

molecules. Two-dimensional (2D) or 3D molecular fingerprints usually will be used in 

similarity search against a large database to find compounds that structurally similar to 

the query molecule. Molecular structural similarity search is extremely fast and 

inexpensive when using high-performance graphics processing unit (GPU) (Lavecchia, 

2015). A molecular structural similarity search against a database with millions of 

compounds can be finished in minutes.   
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Machine Learning 

Machine learning, a new and hot topic in the realm of artificial intelligence, has 

provided a variety of tools that facilitate the development of drug discovery (Vamathevan 

et al., 2019). A variety of machine learning techniques (such as random forest, decision 

tree, support vector machine, relevance vector machine, neural network, etc.) have been 

well applied and developed in the applications for QSAR modeling, and quantitative 

structure-property relationship (QSPR) modeling (Agarwal, Dugar, & Sengupta, 2010). 

Although sometimes controversial, machine learning techniques have been widely 

applied in docking-based virtual screening (Cheng et al., 2012). 

As an ensemble machine learning technique, the random forest method constructs 

many decision trees to classify the entire dataset (or learning sample) with the majority 

vote (details as illustrated in Figure 1). Each of the decision tree nodes in the random 

forest is independent of other nodes. A subset of attributes will be randomly selected by 

each node from the entire set of attributes (Oshiro, Perez, & Baranauskas, 2012; Svetnik 

et al., 2003). Unlike its predecessor, decision tree learning, random forest averages 

multiple independent decision trees to reduce the high variance and irregular patterns 

from each decision tree. The random forest method can be used in both classification and 

regression models (Svetnik, Liaw, Tong, & Wang, 2004). 

Similar to random forest, support vector machine (SVM) is another supervised 

machine learning method for both classification and regression models. SVM is fairly 

straightforward to apply to many scientific studies with high performance (Matsumoto, 

Aoki, & Ohwada, 2016). Researchers in life science have been using the SVM method 

for classifying objects such as protein and DNA sequences, mass spectrums, and micro-
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array expression profiles (Noble, 2006). In drug discovery, the SVM method can be used 

for the computational identification of active compounds and the prediction of chemical 

and biological properties (Heikamp & Bajorath, 2014; Matsumoto et al., 2016). 

Artificial Neural Network 

Artificial neural network (ANN), as a novel machine learning model, is designed 

to mimic the biological neural networks that constitute the human brain to process 

information (schematic of ANN is illustrated in Figure 2) (Terfloth & Gasteiger, 2001). 

The basic unit of the neural network is called the artificial neuron, also known as a node, 

which mimics a neuron in the human brain. The connection between neurons called an 

edge, which is similar to the biological synapse, transmits signals from the presynaptic 

neuron to the postsynaptic neuron. The artificial neuron can receive a signal, process it, 

and then pass it to the next connected neuron. The artificial neural networks consist of 

three different layers: one input layer, one output layer, and one hidden layer that 

processing the signals from the input layer and passing the result to the output layer 

(Hessler & Baringhaus, 2018). 

Deep neural network (DNN) is based on artificial neural networks, but with 

multiple hidden layers between the input layer and the output layer. Recurrent neural 

network (RNN) is another kind of artificial neural networks, where the connections 

between nodes are directed. In RNN, signals can travel in loops from layer to layer, 

which is different from any of feedforward neural networks, where signals can only travel 

from layer to the next layer in one direction (Hessler & Baringhaus, 2018; Manallack & 

Livingstone, 1999; Terfloth & Gasteiger, 2001). Deep learning techniques are widely 

used in many research areas and our daily life, such as speech recognition, facial 
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recognition, natural language processing, automatic translation, gaming, and so on. In 

drug discovery, deep learning techniques are also applied in many research studies, such 

as property prediction, QSAR and QSPR modeling, and de novo drug design (Hessler & 

Baringhaus, 2018). Although widely applied in many fields, there are still many 

challenges for ANN. Overfitting and computing time are the two very common issues in 

ANN modeling studies, including DNN and RNN (Manallack & Livingstone, 1999).  

ezCADD 

CADD has been applied in many different research fields of drug discovery for 

decades, with its powerful computation capacity. However, the majority of experimental 

biomedical researchers, including but not limited to medicinal chemists, biochemists, cell 

biologists, pharmacologists, and toxicologists, have little to no computational 

background. Many researchers, particularly in academia, may not have access to a 

computational collaborator or team member. Although CADD software is relatively 

abundant, the more user-friendly packages are likely to be commercial ones, costing from 

hundreds to thousands of US dollars per year at academic pricing. On the other hand, 

most free or open-source CADD software is designed for Unix/Linux operating system, 

requiring users’ technical ability to maintain a Unix/Linux system, compile, and install 

the software directly from source code. Furthermore, regardless of the choice of 

commercial or free software, a biomedical researcher would still need to purchase a 

powerful computer, maintain the computer system, and perform software updates. 

Therefore, access to CADD depends on (1) technical expertise and (2) funding 

availability for the acquisition of a good computer system and/or commercial software 

(Tao et al., 2019). 
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Due to these technical and fiscal barriers, it is clear that a large population of 

biomedical researchers around the world, particularly those from developing countries, 

are underserved. Without access to CADD, their drug discovery work may be hindered or 

less efficient. To address this research disparity and the need to help biomedical 

researchers overcome these barriers, we have developed a web-based CADD 

environment (ezCADD) with the goal to implement and provide a suite of CADD 

applications essential to drug discovery. The choice of web service as the ezCADD 

platform has many advantages over other types of application delivery to the end-users. 

ezCADD enables access to CADD by removing the traditional requirements of (1) 

computational background; (2) computer purchase; (3) software purchase; (4) software 

compilation or installation; (5) software update; and (6) computer system maintenance 

(Tao et al., 2019). 

Upon searching for recent publications and a directory of open-source molecular 

modeling software (Pirhadi, Sunseri, & Koes, 2016), there are only a small number of 3D 

visualization-enabled web services similar to ezCADD. PlayMolecule.org offers multiple 

web applications for protein preparation (Martínez-Rosell, Giorgino, & De Fabritiis, 

2017), neural network-based virtual screening (Skalic, Martínez-Rosell, Jiménez, & De 

Fabritiis, 2019), binding pocket prediction (Jiménez, Doerr, Martínez-Rosell, Rose, & De 

Fabritiis, 2017), and ligand properties (Skalic, Varela-Rial, Jiménez, Martínez-Rosell, & 

De Fabritiis, 2019). Koes et al. developed ligand-based virtual screening web services, 

Pharmit (Sunseri & Koes, 2016), and ZINCPharmer (Koes & Camacho, 2012). Although 

there seems to be some overlap between these web services and ezCADD, the underlying 

computational approaches and implementation and are completely different. For 
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example, we plan to implement GPU/CPU hybrid methods for ligand-based virtual 

screening. Unlike PlayMolecule.org which utilizes a stripped-down version of NGL 

Viewer (A. S. Rose & Hildebrand, 2015) for 3D molecular visualization, we took the 

opposite approach by building new CADD applications and functions on top of the 

original NGL. This design allows users to take full advantages of all NGL’s molecular 

visualization features and high-quality image rendering (Tao et al., 2019). 

To date, we have developed eight fundamental CADD applications for ezCADD 

platform: 1) small-molecule docking (ezSMDock); 2) binding site detection (ezPocket); 

3) protein-protein docking (ezPPDock); 4) 2D/3D protein-ligand interactions visualizer 

(ezLigPlot); 5) high throughput virtual screening (ezHTVS); 6) de novo lead optimization 

(ezGrow); 7) drug target and poly-pharmacology identification (ezPocketSearch); 8) 

cross-database molecule search (ezTargetSearch).  

We will also show the impact of ezCADD on students who mostly had no prior 

computational background through an in-class modeling exercise followed by a survey of 

user experience (Tao et al., 2019).  
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Figure 1 Decision process for random forest workflow. Yellow circles represent decision 

path of the tree.  
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Figure 2 Schematic of artificial neural network. The blue nodes represent input layer. 

The orange nodes represent hidden layer. The green nodes represent output layer. 

Arrows between two nodes represent connections between different layers. 
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I.2 ezCADD Application Implementation and Graphic User Interface (GUI) 

Four simple design concepts, easy, quick, user-friendly, and 2D/3D visualization-

enabled, were maintained throughout ezCADD development. To realize these design 

goals, we embraced the NGL Viewer, a versatile WebGL-based (Marrin, 2011) 

application, as our 3D molecular visualizer. We added a JavaScript-based 2D molecular 

visualizer and integrated a set of high-performance free/open-source software with the 

2D/3D molecular visualizers through a combination of multiple client-server orientated 

programming languages (shown in Figure 3). ezCADD is designed to be system agnostic 

and accessible from anywhere by any computers or tablets with an up-to-date web 

browser that has the latest JavaScript support. ezCADD has been successfully tested on 

the latest version of Firefox, Chrome, and Safari web browsers.  

Frontend Implantation 

ezCADD adopts the original GUI layout of NGL Viewer, with the center 

WebGL-based 3D window dedicated to molecular visualization and the right navigation 

panel dedicated to visualization controls. CADD applications are added to the top menu 

bar. A left navigation panel is added to display computational results. It is noteworthy 

that both left and right navigation panels can be flexibly minimized or resized by double-

clicking or dragging the panel edge to make more space available for the 3D visualization 

window. ezCADD has a floating window GUI design, i.e., invoked windows and menus 

can be overlaid and freely moved around; closed windows and menus can be re-invoked 

without interrupting the current task. Imported molecular files or representations are 

accessible until they are updated during the same session.   
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Backend Implantation 

ezCADD has implemented a job tracking program, which is capable of multi-

tasking job recording for millions of times in parallel without any errors. The job tracker 

is written in C++ programming language using the C++11 standard (sample C++ source 

code is shown in Figure 4). Line 1 to 9 of Figure 4 is the description of the usage and 

purpose of this program. All the required libraries will be included from line 12 to 23. 

This program has defined 3 different modes for job status, which are SUBMIT, START, 

and END. In lines 29 to 33 of Figure 4, the count of arguments will be compared to the 

number 7 to further proceed. The current system time will be recorded and held by the 

time_t variable “now_Time” in the line 34. The user IP, name of the application, and job 

ID will be combined and left-aligned to an output stream class variable “str_uni” in lines 

42 to 44. The log file under the user-specified directory will be checked in the function 

“log_FILE” (line 45 of Figure 4, and Figure 7). Then the job status will be recorded in 

the function “job_STATUS” (line 46 of Figure 4, and Figure 5 and Figure 6).  

In the function of log file checking “log_FILE” (source code is shown in Figure 

7), a pointer variable of constant character “log_name” is defined to receive the name of 

the log file in line 1. An input file stream class object variable “non_log” is defined and 

initialized with the name of “log_name” in line 3, and an output file stream class object 

variable “log” is defined in line 4. If the file “non_log” does not exist (line 6), then the 

output file “log” will be open (line 7) and initialized with the file information and title 

line (lines 8 to 17). Then the output file will be closed properly in line 18. This operation 

will not be executed if the log file already exists.  
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In the function of job status recording “job_STATUS” (source code is shown in 

Figure 5 and Figure 6), the references of constant string “folder”, “job”, “id”, “uni”, and 

“de_note”, the pointer of constant string “log_name”, and the time class “t” will be 

received (line 1). If the string variable “job” is “SUBMIT”, then the information of the 

current job will be written to the log file (lines 9 to 19). If the string variable “job” is 

“START”, then the lock for the file will be checked, and the job information will be 

written to the line with the unique job ID (line 19 to 45). If the string variable “job” is 

“END”, then the execution time of the job will be calculated and written to the line with 

the unique job ID in the log file (lines 45 to 72).  

This job tracking system has provided an essential function for the ezCADD job 

submission and control. With the integration of the job tracking program, all the backend 

jobs will be recorded in a well-formatted log file. The log file is currently stored and 

maintained in the directory “/host/daemon/phptemp/log”.  
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Figure 3 ezCADD web service implementation. 
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Figure 4 Sample CPP source code of job tracker. 

File location of C++ source code for job tracker:  

~/Desktop/test_folder/C_test/IPTracker/iptracker.cc 

Compilation command (using ISO C++ 2011 standard): 

/usr/bin/g++-4.8 -std=c++11 -o jobTracker.out iptracker.cc   
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Figure 5 Sample CPP source code of job status fuction (part 1 of 2) in job tracker 

program. 
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Figure 6 Sample CPP source code of job status fuction (part 2 of 2) in job tracker 

program. 

The file location of C++ source code for job tracker:  

~/Desktop/test_folder/C_test/IPTracker/iptracker.cc 
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Figure 7 CPP source code of log file check function.  

The file location of C++ source code for job tracker:  

~/Desktop/test_folder/C_test/IPTracker/iptracker.cc 
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I.3 ezSMDock: Small Molecule Docking 

Frontend Implementation 

In this web application, the receptor structure can be imported by either uploading 

a Protein Data Bank (PDB) (P. W. Rose et al., 2010) file or entering a PDB ID. 

ezSMDock provides a variety of options for users to import the ligand structure: (1) a 3D 

ligand file in PDB, MOL2, or SDF/MOL format; (2) a 2D ligand file in SDF/MOL 

format; (3) SMILES string; and (4) InChI string, all of which can be easily obtained and 

downloaded from public chemical/drug databases such as PubChem (Bolton, Wang, 

Thiessen, & Bryant, 2008), ChEMBL (Gaulton et al., 2012), RSCB/PDB (P. W. Rose et 

al., 2010), DrugBank (Wishart et al., 2006), and Wikipedia (https://www.wikipedia.org/) 

or Google (https://www.google.com/) searches. The combination of PDB ID, SMILES, 

and InChI allows users to easily perform a docking experiment without the need for 

downloading and uploading files. For medicinal chemists who work on de novo drug 

design, ezSMDock enables them to draw and modify molecular structures of interest 

using PubChem Sketcher (Ihlenfeldt, Bolton, & Bryant, 2009), automatically generates 

SMILES/InChI strings of the new structures as ligand input, and quickly docks them into 

receptor binding site. This makes ezSMDock an efficient tool for medicinal chemists to 

rapidly enumerate diverse structural possibilities and predict associated binding affinity 

changes for exploring structure activity relationships (SARs) and formulating hypotheses.  

The input ligand file or representation is converted to a MOL2 file using Unicon 

(Sommer et al., 2016), which calculates the best protonation and tautomer state at the 

physiological pH. An InChI string is converted to SMILES string using OpenBabel 

(O'Boyle et al., 2011) and fed into Unicon for MOL2 file generation. The MOL2 file is 

https://www.wikipedia.org/
https://www.google.com/
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then converted to a PDBQT file using MGLTools (Forli et al., 2016). The receptor PDB 

file is cleaned up using BASH and regular expression before it is converted to a PDBQT 

file using MGLTools. Both the receptor and ligand PDBQT files are used as the input 

files for AutoDock Vina (Trott & Olson, 2010) or Smina (Koes, Baumgartner, & 

Camacho, 2013) docking on the server-side. Both programs are highly efficient and 

considered one of the best open-source small-molecule docking code. The XYZ 

coordinates of the docking box center can be entered manually or automatically 

populated by clicking the “User Ligand Center” button when a 3D ligand file is provided. 

If users choose to manually enter the center coordinates, the data can be obtained from 

ezPocket (see section I.4), which provides the center coordinates of all predicted binding 

pockets. In addition, users can set up the appropriate box size. The docking box is 

automatically updated with user input. Upon setting up the parameters, a docking job is 

submitted for execution on the server side by clicking the “Start” button.  

An ezSMDock job typically takes a few seconds. Upon completion, the docked 

poses and predicted scores are displayed in the left navigation panel. Users can click on 

each pose to inspect their binding modes in the 3D visualization window. A pop-up 

window is also launched to display the 2D structure of the input ligand. The 2D 

molecular visualization is implemented using Kekule.js open-source JavaScript library 

(Jiang, Jin, Dong, & Chen, 2016). The rapid 2D and 3D molecular visualization in 

combination provide users with ease and flexibility to compare multiple ligands after 

docking. A zip file containing (1) user receptor and ligand inputs, (2) all docked poses in 

an SDF file, and (3) all docking scores in a tab-delimited TSV file, is also available for 

download and further analysis. It is recommended that users perform re-docking of 
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ligands with known experimentally determined bound coordinates to validate the docking 

parameters before docking other molecules.  

ezSMDock currently allows docking one ligand at a time for the purpose of 

resource sharing and abuse prevention. A new high throughput virtual screening web 

application (ezHTVS) is under development and the beta version is added to ezCADD for 

users to screen millions of compounds within minutes. 

Backend Implementation 

In the backend of ezSMDock, a PHP script is in charge of receiving parameters 

from front-end JavaScript, processing parameters and passing them to Bash scripts, and 

return the results to frontend JavaScript.  

As shown in Figure 8, all the parameters will be passed from JavaScript to PHP 

script by the variable “$_POST”. In line 3, a string variable “$version_no” controls the 

current version of the backend script. In line 5, a string variable “$receptor_format” will 

hold the format of the receptor, as PDB file or PDB ID. In line 19, the variable 

“$ligand_format” will hold the ligand format, as 3D structure file, 2D structure file, 

SMILES string, or InChI String. The center of the docking box will be received by the 

variables “$co_x”, “$co_y”, and “$co_z” in lines 21 to 23, and the size of each side of the 

docking box will be received by the variables “$s_x”, “$s_y”, and “$s_z” in lines 25 to 

27. The docking program will be received and defined in lines 8 to 15. All of those 

parameters will be processed and passed to Bash scripts to perform small molecule 

docking.  
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The sample Bash script for preparation of receptor and ligand and execution of 

molecular docking is shown in Figure 9. All the parameters from the PHP script will be 

received and defined in lines 3 to 15. Multiple processors will be used to accelerate the 

execution of molecular docking in line 16. In lines 18 to 27, the ligand will be processed 

to generate a 3D structure in the mol2 file. Then the 3D ligand structure will be prepared 

in pdbqt format for molecular docking in line 30. The 3D receptor structure will also be 

prepared in pdbqt format for molecular docking, in lines 33 and 34. All the docking 

parameters will be written to a configure file in lines 37 and 38. The final molecular 

docking will be performed in lines 40 to 48, depending on the docking program user 

selected in the frontend.  

The entire backend process of ezSMDock usually will be finished within one 

minute. The docking results will be collected and returned to the JavaScript, and the 

docking poses will be shown in the ezCADD main window.  
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Figure 8 Sample PHP source code for ezSMDock parameter receiving. 

The file location of PHP source code for ezSMDock parameter receiving:  

/host/apps/ezCADD/php2/smdock.php 
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Figure 9 Sample Bash script for ezSMDock.  

File location of Bash script for ezSMDock: /host/apps/ezCADD/SMDock/dockone.sh  
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I.4 ezPocket: Binding Site Prediction 

Frontend Implementation 

In this web application, the receptor structure can be imported by either uploading 

a PDB file or entering a PDB ID. ezPocket provides users with a consensus approach to 

detect plausible receptor binding pockets. Three popular cavity detection programs are 

currently offered: (1) fconv (Neudert & Klebe, 2011), (2) fpocket2 (Le Guilloux, 

Schmidtke, & Tuffery, 2009), and (3) fpocket3 (Le Guilloux et al., 2009; Schmidtke, Le 

Guilloux, Maupetit, & Tuffery, 2010). fconv uses Delaunay triangulation with weighted 

points to detect cavities whereas fpocket2 and fpocket3 rely on fast Voronoi tessellation. 

Upon setting up the parameters, a job is submitted for execution on the server-side by 

clicking the “Start” button.  

An ezPocket job typically takes a few seconds. Upon completion, the detected 

binding cavities, their associated cavity center XYZ coordinates, and cavity volumes are 

displayed in the left navigation panel. All detected pockets are shown in a gray wireframe 

representation in the 3D visualization window. When users select a pocket in the left 

navigation panel, its corresponding wireframe is highlighted in cyan in the 3D 

visualization window. Users can use the consensus results predicted by multiple 

programs in conjunction with their biochemical intuition and knowledge of the receptor 

to determine the most plausible cavity for small-molecule binding. As described earlier, 

once users determine a binding cavity, the center XYZ coordinates of the cavity can be 

entered into ezSMDock to set up a molecular docking job. A zip file containing (1) user 

receptor input, (2) all detected pockets in a 3D multi-model MOL2 file, and (3) the XYZ 
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center coordinates and volumes of all detected pockets in a tab-delimited TSV file, is also 

available for download and further analysis.  

Backend Implementation  

The backend of the ezPocket application consists of a PHP script (sample code 

shown in Figure 10) embedded with a Bash script (sample code shown in Figure 11).  

In the PHP script of ezPocket as shown in Figure 10, the parameters will be 

received from JavaScript in lines 7 to 10. In lines 11 to 20, the output files will be defined 

based on the string variable “$method” from user selection. The receptor file will be 

moved or downloaded from the RCSB PDB website to the temporary working directory, 

in lines 24 to 28. Then the parameters will be passed to the Bash script to be executed, in 

line 29. The final results will be zipped in line 30 and returned to the front-end 

JavaScript.  

As shown in Figure 11, the Bash script of ezPocket receives the parameters from 

the PHP script in lines 4 to 7. The parameters for pocket2 and pocket3 are defined in lines 

12 to 19. If the method fconv is selected (from lines 21 to 34), then the fconv program 

will be executed to detect all the possible pockets in the receptor. All the pocket 

information will be collected and written to a TSV file. If the method pocket2 or pocket3 

is selected (from line 35 to 50), then the corresponding program will be executed on the 

receptor to search for all the possible cavities. All the center coordinate of pockets will be 

calculated, collected, and written to the TSV file.  
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After the backend execution of ezPocket, the coordinates will be returned to the 

JavaScript. And the pockets will be shown in the main window of ezCADD with a 

meshed surface representation.   
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Figure 10 Sample PHP source code of ezPocket. 

The file location of PHP source code of ezPocket:  

/host/apps/ezCADD/php2/poktek.php 
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Figure 11 Sample Bash script for ezPocket 

File location of Bash script for ezPocket:  

/host/apps/ezCADD/Pocket/poktek.sh  
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I.5 ezPPDock: Protein-Protein Docking 

Frontend Implementation 

In this web application, both receptor and ligand structures can be imported by 

either uploading a PDB file or entering a PDB ID. If users feel that the HETATM entries 

(water, metal ions, glycosylated sugars, etc.) surrounding the receptor should be taken 

into account during the protein−protein docking, they are provided an option to keep 

them. Users need to specify the chain IDs of both receptor and ligand that are involved in 

the protein-protein interactions. If the users have biochemical information indicating 

some residues do not belong to the actual binding interface, they can specify any receptor 

and/or ligand residues to be blocked from the docking experiment. All blocked residues 

are highlighted in solid green surface representation in the 3D visualization window. 

Upon setting up the parameters, a job is submitted for execution on the server-side by 

clicking the “Start” button. MegaDock 4.0 (Ohue et al., 2014) is used as the docking 

engine because of its ultra-high-performance and the support of GPU/CPU hybrid 

computing.  

An ezPPDock job typically takes a few seconds. Upon completion, the top 2000 

docked poses and their associated scores are displayed in the left navigation panel. Users 

can inspect the docked poses in the 3D visualization window by selecting them in the left 

navigation panel. ezPPDock also takes advantage of NGL’s molecular dynamics 

trajectory support by loading all 2000 docked poses in a compressed DCD trajectory file 

to the right control panel. All docked poses can be animated and viewed in the form of 

automatic movie playback. A zip file containing (1) user receptor and ligand inputs, (2) 

2000 docked poses in a DCD trajectory file, and (3) docking scores associated with all 
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docked poses in a tab-delimited text output file is also available for download and further 

analysis.  

Backend Implementation 

The backend operation of ezPPDock is mainly based on the PHP script (sample 

code shown in Figure 12 and Figure 13). In lines 6 to 10, the essential input and output 

files are defined. The JSON strings of receptor and ligand received from frontend 

JavaScript are decoded to PHP variables in lines 11 and 12, respectively. The format of 

the trajectory file is received in line 14 and the name of the output trajectory file is 

defined in line 15.  

If the format of the receptor is “file”, then the receptor file will be uploaded to the 

current working directory (as shown in lines 18 to 20). If the format of the receptor is 

“pdbid”, then the receptor file will be downloaded from the RCSB PDB website (as 

shown in lines 20 to 22). If the format of the ligand is “file”, then the ligand file will be 

uploaded to the current working directory (as shown in lines 23 to 25). If the format of 

the ligand is “pdbid”, then the ligand PDB file will be downloaded from the RCSB PDB 

website (as shown in lines 25 to 27).  

For the receptor structure, if the user unselected “KeepHETATM” as default, only 

protein atoms will be retained without heteroatoms of amino acids, in line 30 to 34. If the 

“KeepHETATM” option is selected by the user, then both protein atoms and heteroatoms 

will be kept to the receptor PDB file in lines 34 to 38. For the ligand structure, only atoms 

of protein will be retained in line 39.  
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When the receptor or ligand contains more than one chain, the chain(s) of the 

protein will be selected and written to a new file (as shown in lines 43 to 46). When the 

user chose to exclude some residues for the protein-protein docking, the excluded amino 

acid residues will be blocked as “BLK” in the structure file for both receptor and ligand 

proteins (as shown in lines 49 to 78).  

The protein-protein docking will be performed with the final prepared receptor 

protein file and ligand-protein file, by using multiple processors and GPUs enabled 

Megadock-GPU (as shown in line 80). All the docking results will be processed in line 

81, zipped in line 82, and returned to the frontend JavaScript.  
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Figure 12 Sample PHP source code (part 1 of 2) of ezPPDock. 

The file location of PHP source code of ezPPDock:  

/host/apps/ezCADD/php2/ppd.php  
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Figure 13 Sample PHP source code (part 2 of 2) of ezPPDock. 

The file location of PHP source code of ezPPDock:  

/host/apps/ezCADD/php2/ppd.php 
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I.6 Case Study: Methylthioadenosine Nucleosidase 

Methylthioadenosine nucleosidase (MTN) is an important enzyme in many 

pathogenic microbes, responsible for the catabolism of 5′-methylthioadenosine (MTA) 

and S-adenosylhomocysteine (SAH), two molecules involved in key microbial functions 

(Lee et al., 2005). Here we use the E. coli MTN as an example to demonstrate the 

applications of ezCADD in drug design.  

ezPocket (Figure 14)  

The E. coli MTN structure was imported from PDB ID 1Y6Q. Automatic cavity 

detection was performed using fconv, fpocket2, and fpocket3. There was a consensus 

result that matched the catalytic binding site of chain A, highlighted in cyan in the 3D 

visualization window (Figure 14). All three cavities predicted by the programs enclosed 

the bound inhibitor Methylthio-DADMe-Immucillin A (TDI). If we pretended that there 

was no known inhibitor inside the cavity, we could record one of three sets of reported 

center XYZ coordinates for the next molecule docking step.  

ezSMDock (Figure 15)  

The E. coli MTN structure was imported from PDB ID 1Y6Q. The SMILES or 

InChI string of inhibitor TDI were be obtained from PubChem (CID 656970). In this 

case, the InChI string was used as ligand input. The docking box center XYZ coordinates 

were taken from ezPocket, and the box size was set to 15 (Å). This re-docking 

experiment was performed using AutoDock Vina. Figure 15 shows that the highest 

scored pose was selected in the left navigation panel and displayed (ball and stick) on top 
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of the crystallographically bound TDI (licorice) in the 3D visualization window. 

AutoDock Vina correctly reproduced the experimental binding mode of TDI. 

SAR and de novo Drug Design (Figure 16)  

Here we used retrospective experimental data of two TDI derivatives to 

demonstrate how easily medicinal chemists can use ezCADD to study SAR and design 

novel compounds. First, the SMILES or InChI string of inhibitor TDI was copied and 

pasted to PubChem Sketcher for structural modification to create Benzylthio-DADMe-

Immucillin A (DF9) and 4-Cl-phenylthio-DADMe-Immucillin A (4CT). Next, the 

automatically generated InChI strings of DF9 and 4CT were copied and pasted back to 

ezSMDock as ligand input for docking the congeneric ligands to MTN. Figure 16 shows 

that the docking results were displayed in the left navigation panel, the 2D structures of 

docked molecules were compared in the 2D visualization pop-up windows, and the top 

scored docked poses of TDI, DF9, and 4CT were overlaid in the 3D visualization 

window. Table 1 shows that the trend of the predicted docking scores was in good 

agreement with published experimental data (Gutierrez et al., 2007). 

ezPPDock (Figure 17) 

MTN is a homodimer. Modeling the protein-protein interactions at the dimer 

interface may offer new molecular insights into MTN enzymatic activity and potential 

inhibitor design that disrupts its dimerization and catalysis. Here we used ezPPDock to 

reconstruct MTN dimer from monomers. PDB ID 1Y6Q was imported, with chain B 

selected as the receptor. PDB ID 1NC1 was imported, with chain A selected as the 

ligand. Since we knew that residues 1-6 of the receptor and residues 10-16 of the ligand 

would not be involved in the protein-protein interactions, these residues were selected 
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(highlighted in the solid green surface) to be blocked during the docking experiment. This 

feature, analogous to the docking box used in small-molecule docking, may significantly 

improve protein-protein docking quality. Figure 17 shows that the top-scored pose was 

selected in the left navigation panel and displayed (yellow ribbon) with respect to the 

crystallographically bound monomer (red ribbon) in the 3D visualization window. 

MegaDock correctly reproduced the experimental assembly of MTN homodimer. 

 

  



38 

 

 

Figure 14 Consensus binding site detection using ezPocket (PDB ID 1Y6Q). 
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Figure 15 Redocking inhibitor TDI to E. coli MTN (PDB ID 1Y6Q) using ezSMDock. 
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Figure 16 Computational SAR and de novo design using ezSMDock. 

  



41 

 

Table 1 Experimental inhibition constants and predicted docking scores of DADMe-

Immucillin A derivatives on E.Coli MTN.  

 

 

  

Inhibitor:  

DADMe-Immucillin A derivatives 

Experimental Kd (pM) Docking Score 

methylthio-(TDI) 2 −8.7 

benzylthio-(DF9) 0.46 −10.3 

4-Cl-phenylthio-(4CT) 0.047 −10.9 
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Figure 17 Re-constructing E. coli MTN homodimer (PDB ID 1Y6Q and 1NC1) using 

ezPPDock.  
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I.7 User Evaluation and Feedback 

To assess user experience and the effectiveness of our implementation, we 

introduced ezCADD to 95 first-year pharmacy students as an active learning component 

in the Principles of Drug Action course. Before we started the ezCADD exercise, we 

collected the baseline data by asking the students about their level of experience with 

molecular modeling and visualization. We then loaded human β2 adrenergic receptor 

(PDB ID 3NYA) and bound drug alprenolol, a nonselective beta-blocker, into ezCADD. 

We used ezCADD’s 2D and 3D molecular visualization to illustrate the structural and 

chemical features of the receptor and alprenolol. Next, we guided students to search 

PubChem for the SMILES or InChI representation of alprenolol and used them as the 

ligand input to re-dock the drug back to the receptor-binding site using ezSMDock. The 

web service handled 95 simultaneous docking jobs without an issue. All submitted jobs 

finished within minutes. We used ezCADD’s 3D visualization again to explain molecular 

recognition and interactions between the receptor and alprenolol. Lastly, we followed up 

with five additional questions to gauge student experience. The results of the student 

survey are shown in Figure 18. This study received exempt status from Idaho State 

University Institutional Review Board (study number IRB-FY2019-38). 

Our student survey data showed that, among the majority of students who 

participated, their experience level with molecular modeling and visualization was 

improved from zero or a little experience (64 % students) to some or good experience 

(79 % students). After the exercise, students with zero molecular modeling experience 

decreased to 0 % compared to a significant 32 % before the exercise (Figure 18A). At the 

end of the exercise, 99-100 % of students thought ezCADD enhanced their understanding 
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of drug and receptor structures as well as the concepts of drug-receptor binding and 

recognition (Figure 18B). 84 % of students fully completed the molecular docking 

experiment on their own whereas 14 % partially completed (Figure 18C). 88 % of 

students considered the tool to be easy and user-friendly (Figure 18D). The student 

feedback provided representative baseline data of ezCADD user experience for 

biomedical researchers with little or no computational background. It is clearly 

demonstrated that ezCADD is an easy, user-friendly, and powerful tool for both drug 

discovery research and STEM education. 
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Figure 18 Student evaluation of ezCADD. (A) Student experience level in molecular 

modeling and visualization before and after the ezCADD exercise. (B) Impact of ezCADD 

on student understanding of drug-receptor structure and recognition. (C) Student 

completion status of the ezCADD exercise. (D) Student user experience with ezCADD.  
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I.8 ezHTVS: High Throughput Virtual Screening 

Traditional high throughput virtual screening is based on the ligand, which 

usually does not require a profound understanding of the target receptor. Ligand-based 

high throughput virtual screening also has the advantage in speed when millions or 

billions of compounds need to be screened. However, this method is limited by the 

structure and pharmacophore of the ligand itself, which means compounds with similar 

structure or pharmacophore will usually have a higher ranking. The structure-based high 

throughput virtual screening, also known as molecular docking, requires the structure of 

the target receptor. Although performing molecular docking with a large compound 

database takes a much longer time than ligand-based high throughput virtual screening, 

structure-based high throughput virtual screening has relatively higher accuracy in 

prediction and could also get higher ranking compounds not only limited by the similarity 

of structure or pharmacophore.  

ezHTVS combines the advantages of both structure-based and ligand-based high 

throughput virtual screening methods. First, ligand-based high throughput virtual 

screening will be performed based on the similarity between query and target structures. 

Then the top-ranking compounds will be selected for structure-based high throughput 

virtual screening, which is energy minimization with the target receptor. 13 databases are 

implemented in ezHTVS with more than 52 million drug-like compounds (criteria: 

molecular weight < 600, and -4 < logP < 6) available (detail is shown in Table 2). 11 

different types 2D molecular fingerprints (Avalon, FCFP, Morgan, Pairs, Pattern, RDK, 

Rdmaccs, and Torsions from RDKit, and Circular, Path, and Tree from OpenEye toolkit 

suite) and 2 types of 3D molecular similarity search and alignment (FastROCS and 
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Inertial At Heavy Atoms methods from OpenEye toolkit suite) methods are provided, 

along with the 13 databases.  

Frontend Implementation 

In this application, the receptor file can be uploaded in PDB format and the ligand 

file can be uploaded in PDB, MOL2, or SDF/MOL format. The receptor structure could 

be either experimentally determined by X-ray crystallography, NMR spectroscopy, or 

EM, or computationally predicted by ab initio protein modeling or homology modeling. 

The ligand structure could be determined by the experimental methods or computational 

methods such as molecular docking. User can choose one interest database from the 

dropdown menu of database option, and one search method in either 2D or 3D molecular 

similarity search methods. One single ezHTVS task usually will be finished within one 

minute, with up to 100 top ranking results. 2D or 3D molecular similarity score and Vina 

score will be listed along with the compound ID, which is hyperlinked with the 

corresponding database page. A 2D molecular viewer with the 2D structure of the 

corresponding compound will be showed up when clicked on the item on the left side 

result panel, and the 3D structure in the main window will also be changed to the current 

selection. A zip file that contains user receptor and ligand input files, top-ranking 

compound structures in an SDF file, and top-ranking compound scores in a tab-delimited 

TSV file is also available for users to download and further analyze.  

Backend Implementation 

In the backend of ezHTVS, a PHP script is in control of receiving parameters 

from the frontend JavaScript, processing parameters and passing them to Bash and 

Python scripts, and then return the results to the frontend JavaScript. As shown in Figure 



48 

 

19 and Figure 20, all the parameters will be passed from JavaScript to PHP script by the 

variable “$_POST”. In line 58, variable “$ext” will hold the extension of the ligand file. 

Database, type of molecular similarity search, and search method will be stored in 

variables “$database”, “$twoD_threeD”, and “$method” respectively in lines 63 to 65. 

Then the main function “fpsMain” will be called in line 67. The function “fpsMain” 

mainly parses the type of molecular similarity search to determine whether it’s a 2D or 

3D search.  

If the selected search method is 2D, then the function “fpsTwoD” will be called in 

lines 49 and 50. In the function “fpsTwoD” (line 3 to 38), the array “$arr_fps” holds all 

the names of molecular fingerprints and has all the lowercase value except “RDK”. 

Arrays “$arr_oe_fps” and “$arr_rdkit_fps” holds all the names of fingerprints in 

OpenEye toolkit suite and RDKit, respectively. If the user chooses OpenEye fingerprints, 

then lines 29 to 31 will be executed. If the RDKit fingerprints method is chosen, then 

lines 32 to 35 will be executed.  

If the selected search method is 3D, then the function “fpsThreeD” will be called 

in lines 51 and 52. The function “fpsThreeD” (line 40 to 45) controls the 3D molecular 

similarity search for both fastROCS and Inertial At Heavy Atoms methods.  

The database screening SDF (“$ligand_out”) and score (“$score_out”) files, and 

the receptor (“$receptor”) and ligand (“ligand”) files will be compressed to a zip file 

(“$zip_out”) for the user to download in line 68.   
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Benchmark Test 

A Directory of Useful Decoys (DUD) benchmark set has 40 different targets with 

2,950 ligands, and each ligand has 36 decoy compounds, constructing a database of 

98,266 molecules (Huang, Shoichet, & Irwin, 2006). Because of the variety and diversity 

of the DUD benchmark set, we used the DUD benchmark set to perform a benchmark test 

with different structure-based and ligand-based molecular screening methods. One type 

of molecular fingerprints (extended-connectivity fingerprints with Morgan algorithm, 

also known as Morgan fingerprints) (Rogers & Hahn, 2010), a commercial docking 

program Glide (Glide, 2018-4b), and two academic docking programs Vina and SMINA 

(Koes et al., 2013; Trott & Olson, 2010), and a 3D shape-based similarity search program 

FastROCS (Rush, Grant, Mosyak, & Nicholls, 2005) were used in the benchmark test.  

All the ranking and scoring have been collected from the screening results of 

different methods. For the analysis and comparison of the accuracy of different methods, 

the receiver operating characteristic curve and enrichment curve was used. All the 

average with standard deviation and median results of ROC-AUC, top 10 enrichment, 

and top 100 enrichment are shown in Table 3 (detailed results shown in Table 13, Table 

14, and Table 15). Figure 21 and Figure 22 show the curves of ROC-AUC and 

enrichment, respectively. 23M_combo, the scoring function which combines ligand-

based screening score (Tanimoto score of Morgan fingerprints similarity) and structure-

based screening score (Vina score), has overall better accuracy than most of the other 

methods.   
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Table 2 Implemented databases in ezHTVS.  

 

 

  

Name of Database Amount of Compounds 

ChEMBL23 1727112 

FDA-Approved 2162 

DrugBank 8752 

DrugCentral 3965 

eMolecules 17074118 

HMDB 41943 

LINCS 41847 

MolPort 6800897 

NCI-2016 284176 

NCI-Diversity-Set 1605 

PDB 25148 

SureChEMBL 14344657 

ZINC15 12100459 

TOTAL 52,456,841 
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Figure 19 Sample PHP source code (part 1 of 2) of ezHTVS. 

The file location of PHP source code of ezHTVS:  

/host/apps/ezCADD/php2/htvs.php  
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Figure 20 Sample PHP source code (part 2 of 2) of ezHTVS. 

The file location of PHP source code of ezHTVS:  

/host/apps/ezCADD/php2/htvs.php  
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Table 3 DUD benchmark test results: ROC-AUC, Top 10 enrichment, and Top 100 

enrichment.  

 

 

 

 

  

ROC-AUC 

 2D 

Morgan 

3D 

FastROCS 

Glide 

HTVS 

Glide 

SP 

Vina 

Dock 

Smina 

Dock 

23M 

Combo 

Average 0.728 0.703 0.710 0.748 0.593 0.649 0.744 

Median 0.747 0.736 0.724 0.751 0.593 0.638 0.774 

Stdv. 0.211 0.198 0.160 0.162 0.152 0.139 0.194 

Top 10 Enrichment 

Average 0.588 0.553 0.388 0.438 0.243 0.265 0.630 

Median 0.600 0.650 0.350 0.500 0.200 0.200 0.650 

Stdv. 0.344 0.334 0.301 0.320 0.292 0.294 0.320 

Top 100 Enrichment 

Average 0.492 0.419 0.326 0.400 0.197 0.263 0.503 

Median 0.444 0.364 0.290 0.400 0.126 0.179 0.456 

Stdv. 0.321 0.303 0.225 0.229 0.205 0.205 0.314 
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Figure 21 ROC-AUC of DUD benchmark test results. Morgan (blue), FastROCS 

(yellow), Vina (green), SMINA (red), 23M_combo (purple), 3M_combo (brown), and 

2M_combo (pink). 
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Figure 22 Enrichment of DUD benchmark test results. Morgan (blue), FastROCS 

(yellow), Vina (green), SMINA (red), 23M_combo (purple), 3M_combo (brown), and 

2M_combo (pink). 
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I.9 ezPocketSearch: Drug Target and Polypharmacology Identification 

In drug discovery, an ideal drug is usually designed for a specific target receptor 

for therapeutic effects. However, the drug molecule could potentially interact with other 

receptors, which often causes side effects. Although the unintended drug-target 

interaction is inevitable and most of the time sabotage the therapy, researchers have also 

been looking at the good side of multi-target interactions such as drug repurposing and 

multi-target treatment for different pathways (Reddy & Zhang, 2013).  

ezPocketSearch is a powerful tool for multi-target search and polypharmacology 

identification. 340,075 protein models were collected from PDB. We then extracted all 

the potential pockets from the 340,075 protein models. After processing and cleaning all 

the pockets, a total number of 5,919,621 pockets were yielded, including 556,161 pockets 

with a bound ligand. Thus ezPocketSearch consists of two individual databases as the 

backend service, database of all pockets, and database of ligand-bound pockets.  

Frontend Implementation 

ezPocketSearch consists of two steps, which are controlled by the “Next” and 

“Back” buttons in the first window and second window of the ezPocketSearch application 

panel, respectively. In the first step of this application, a protein structure is needed, 

which could be uploaded by the user from local or provided with PDB ID in the 

ezPocketSearch panel. The protein structure will be processed and the second window 

will replace the first window in the ezPocketSearch panel after clicking the button 

“Next”. In the second step of this application, all the detected pockets will be shown in 

the main window, and the corresponding data such as ID, coordinate, and volume of 

pockets will be shown in the ezPocketSearch application panel for users to choose. When 
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the user selects a pocket in the application panel, the selected pocket will be represented 

in the cyan meshed surface in the main window, to be distinguished from the white 

meshed surfaces which are not selected. Users can choose either “All PDB Pockets” or 

“PDB Pockets with Known Ligands” as the target database. After clicking the “Start” 

button, the backend service of ezPocketSearch will be launched. One single search 

against the “All PDB Pockets” database will be finished within one minute, and the 

search against “PDB Pockets with Known Ligands” takes about 10 seconds. 100 top-

ranking results will be shown on the left navigation panel, and the 100 pockets will be 

represented in the purple solid surface in the main window.  

Case Study: Decernotinib 

Decernotinib, also known as VX-509, is a Janus kinase 3 (JAK3) inhibitor in 

trails to study the treatment of many autoimmune diseases, for example, rheumatoid 

arthritis (Farmer et al., 2015). Because of its high selectivity in JAK3 inhibition, fewer 

side effects have been observed with decernotinib comparing with other non-selective 

JAK inhibitors (Fragoulis, McInnes, & Siebert, 2019). Although decernotinib has fewer 

side effects due to its high selectivity in JAK3 inhibition, the side effects still cannot be 

neglected.  

A JAK3 protein with a covalent inhibitor complex (PDB ID: 5TTS) was randomly 

picked from PDB for the ezPocketSearch case study. First, the binding site of the 5TTS 

protein structure was selected after the generation of pockets in the receptor. Then the 

selected binding pocket was searched against the “All PDB Pockets” database. In the top 

100 results, Janus kinase 3 (PDB ID: 5TTS), Janus kinase 2 (PDB ID: 4E6D), Janus 

kinase 1 (PDB ID: 4E4L), tyrosine kinase 2 (PDB ID: 4PYL), and others were found 
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(results shown in Figure 23). The binding pockets from 5TTS, 4E6D, and 4E4L were 

chosen and used for small molecule docking with decernotinib drug molecule in 

ezSMDock (results are shown in Table 4). In this docking study, decernotinib has the best 

docking score with the JAK3 binding pocket, and good docking scores in other JAK 

protein binding pockets, which confirms that decernotinib is a selective JAK3 inhibitor.  

Case Study: Levonorgestrel 

Levonorgestrel (LNG), for most people known as a birth control drug with the 

brand name Plan B, is a hormonal medication for birth control, emergency contraception, 

and hormone therapy. As a progestogen, although Levonorgestrel is a highly selective 

agonist of the progestogen receptor, it works as a very weak agonist on the androgen 

receptor. The hormonal effects of levonorgestrel on other target receptors can be 

neglected, such as estrogen, glucocorticoid, and mineralocorticoid receptors (Kuhl, 

2005). 

A progestogen receptor with bound levonorgestrel complex (PDB ID: 3D90) was 

used in ezPocketSearch. The binding site of progestogen receptor was selected in the 

second step of ezPocketSearch and further used in the search against the “All PDB 

Pockets” database. In the top 100 results, progesterone receptor (PDB ID: 3D90), 

glucocorticoid receptor (PDB ID: 3RY9), mineralocorticoid receptor (PDB ID: 2OAX), 

androgen receptor (PDB ID: 4OFR), and others were found. The binding pocket of 3D90, 

3RY9, 2OAX, 4OFR, and 6CBZ (estrogen receptor) were used for small molecule 

docking with levonorgestrel drug molecule and endogenous ligands respectively in 

ezSMDock. All the docking results are shown in Table 5.  
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In the progestogen receptor, levonorgestrel has a docking score of -11.5, much 

better than -8.7, the docking score of the endogenous ligand progestogen. Thus the 

experimental relative binding affinity 323%, which is the binding affinity of 

levonorgestrel in comparison with a progestogen molecule in progestogen receptor, has 

been well proved in the docking results comparison. The docking results of 

levonorgestrel in glucocorticoid receptor, mineralocorticoid receptor, androgen receptor, 

and estrogen receptor are lower than the endogenous ligands respectively, which also 

validates the experimental relative binding affinity. The combination methods of 

ezPocketSearch and ezSMDock used in the case study of levonorgestrel proves that 1) 

the computational results are in accordance with the experimental data, 2) levonorgestrel 

is a highly selective agonist of progestogen receptor, and 3) levonorgestrel has very little 

effects on other target receptors.  
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Table 4 Experimental inhibition constants and predicted docking score of decernotinib.  

 

 

 

  

Receptor ezPocketSearch 

Similarity (0 to 2) 

Expt. Ki (nM) 

(Farmer et al., 

2015) 

ezSMDock Score 

(Decernotinib) 

JAK3 (5TTS) 1.26 2 ± 0.7 -8.7 

JAK2 (4E6D) 0.76 13 ± 0 -8.4 

JAK1 (4E4L) 0.73 11 ± 0 -8.6 
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Figure 23 JAK3 (PDB: 5TTS) binding pocket search using ezPocketSearch (left), and 

decernotinib docked to JAK3 binding pocket (PDB: 5TTS) using ezSMDock. In the left 

side figure, blue meshed surface represents the query pocket from JAK3, and purple solid 

surface represents result pocket from JAK2 (PDB: 4E6D). In the right side figure, 

decernotinib drug molecule (ball and stick) docked to JAK3 (white solid surface).  
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Table 5 Experimental relative binding affinity and predicted docking score of 

levonorgestrel. 

 

 

  

Receptor 

(Endogenous) 
ezPocketSearch 

Similarity (0 to 2) 

Levonorgestrel 

Relative binding 

affinity (%) 

(Sitruk-Ware, 2005)  

ezSMDock 

(Levonorgestrel) 

ezSMDock 

(endogenous) 

Progesterone 

(Progesterone) 

2.0 (3D90) 323 -11.5  -8.7 

Androgen 

(Testosterone) 

0.996 (4OFR) 58 -8.9 -10.2 

Glucocorticoid 

(Cortisol) 

1.227 (3RY9) 7.5 -10.3 -11.7 

Mineralocorticoid 

(Aldosterone) 

1.206 (2OAX) 17  -8.7 -9.5 

Estrogen 

(Estradiol) 

(Milletti & 

Vulpetti, 2010) 

Not found 

(6CBZ) 

<0.02 -6.6 -8.1 
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I.10 Conclusion 

ezCADD delivers a rapid, rich, smooth, dynamic, and desktop-like molecular 

modeling and drug design experience to biomedical researchers and students around the 

world through the seamless and synergistic integration of high-performance free CADD 

software packages with powerful web-enabled 2D/3D molecular visualization. Our 

ultimate goal is to break down barriers that limit access to CADD by making ezCADD a 

one-stop shop for the CADD needs of most researchers. The limitations of ezCADD are 

the same as those of the software packages used on the server-side. An advantage of 

ezCADD, as a web application, is the ease of software maintenance and updates on the 

server-side, which is completely carefree to users. ezCADD will be continuously 

developed and improved by the authors to address user needs and feedback. New features 

that will be added soon include 2D/3D protein−ligand interaction analysis and 

visualization, high-throughput virtual screening, fragment-based drug design, 

polypharmacology screening, etc. The user evaluations provided by first-year pharmacy 

students confirmed ezCADD’s robustness and effectiveness in helping non-

computational experts become self-sufficient molecular modelers and CADD 

practitioners. While ezCADD aims to enable biomedical discovery by democratizing 

CADD among traditionally underserved researchers, it also makes biomedical research 

more appealing to the web-orientated digital generation.   
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Chapter II: CADD Applications in TMC1 Study 

II.1 Introduction 

Hearing Loss 

More than 1 billion people in the world have suffered from some degree of 

hearing loss. Hearing loss could happen in one or both ears in patients. Depending on the 

severity of hearing loss, some patients with severe hearing loss are unable to hear and 

having difficulties in social communication, while some patients with minor hearing loss 

are unaware of their condition (Global Burden of Disease Study, 2015). Hearing loss has 

both physiological and psychological impact on patients, leading patients with hearing 

loss experience more negative emotional reactions (e.g. depression, feelings of loneliness, 

and irritability) and social limitations than people without hearing loss (Monzani, 

Galeazzi, Genovese, Marrara, & Martini, 2008). 

Many factors have been identified as the cause of hearing loss, for example, 

aging, genetic, disease, medication, noise, exposure to chemical, and physical trauma. 

Since there is no proven treatment for hearing loss currently available, people without 

hearing loss can only prevent hearing loss by avoiding the causes of hearing loss although 

some causes are inevitable such as aging, and people with hearing loss can only use 

hearing aids device or seek for alternative non-acoustic communication skills such as lip-

reading and sign language.  

Drug-Induced Ototoxicity 

Drug (or medication) induced ototoxicity is one of the major causes of hearing 

loss. Patients who have been receiving treatment of aminoglycosides, glycopeptide, and 
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macrolide antibiotics, platinum-based anticancer drugs, loop diuretics, quinine, and 

salicylate analgesics could experience drug-induced ototoxicity, which is usually 

permanent. As the treatments are usually highly recommended due to the severe medical 

condition of patients, those drugs with known ototoxic side effects have to be inevitably 

used in patients who are in life-threatening situations. After the treatment of ototoxic 

drug, although the life-threatening condition might have been controlled, patients might 

have developed hearing loss from the drug-induced ototoxicity. Follow up costs of 

hundreds of thousands of US dollars were estimated for each adult who acquired 

permanent hearing loss due to treatment of ototoxic drugs, and the estimated follow up 

costs increase to 1 million US dollars for children who experienced permanent hearing 

loss before their language acquisition (Lanvers-Kaminsky, Zehnhoff-Dinnesen, Parfitt, & 

Ciarimboli, 2017). 

Aminoglycoside Antibiotics Induced Ototoxicity 

Aminoglycoside antibiotics are primary medications for the treatment of 

infections caused by gram-negative bacteria (e.g. Enterobacter, Pseudomonas, 

Acinetobacter, etc.). More than 10 million doses are prescribed every year in the United 

States. The primary mechanism of action of aminoglycosides is inhibition of protein 

synthesis in gram-negative bacteria (Mingeot-Leclercq, Glupczynski, & Tulkens, 1999). 

In the cytosol of the bacterium, aminoglycoside antibiotic binds to the aminoacyl 

site (A site) of 16S ribosomal RNA of the 30S small subunit of the bacterial ribosome, 

negatively interfering with the binding of formyl-methionyl transfer RNA, which is an 

initiation transfer RNA in the bacterium, to the 30S ribosomal subunit. The improper 

pairing of ribosomal RNA and transfer RNA leads to a misreading of the messenger RNA 
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codon and further causes protein synthesis with wrong amino acids. Thus the incorrectly 

synthesized proteins will be misfolded, aggregated, and eventually causing the death of 

the bacterium (Davis, 1987; Sharma, Cukras, Rogers, Southworth, & Green, 2007). Due 

to the structural difference between prokaryotic ribosomes and eukaryotic ribosomes, 

aminoglycoside antibiotics selectively target ribosomes in bacteria without interfering 

with eukaryotic ribosomes in the patient.  

However, aminoglycoside antibiotics have ototoxic side effects in humans and 

some experimental animals. In the auditory system and vestibular system, the ototoxicity 

of aminoglycoside antibiotics could cause the destruction of the sensory hair cells in the 

cochlea and vestibular labyrinth, respectively (Brummett & Fox, 1989). It has been 

proved that patients with mutations in mitochondrial 12S ribosomal RNA are more 

susceptible to ototoxicity of aminoglycosides since the mutations in the mitochondrial 

12S ribosomal RNA in humans make the eukaryotic RNA more similar to the ribosomal 

RNA in bacteria, which is the primary target of the bactericidal activity of 

aminoglycoside antibiotics (Hutchin & Cortopassi, 1994; Rybak & Ramkumar, 2007; 

Schacht, Talaska, & Rybak, 2012). The mechanism of aminoglycoside-induced outer hair 

cell death is that 1) aminoglycoside enters into hair cells through mechano-electrical 

transducer channel, and 2) the formation of aminoglycoside-iron complex generates 

reactive oxygen species (ROS) and further trigger the apoptotic pathway in the hair cell 

(Rybak & Ramkumar, 2007). 2% to 25% of the patients receiving single aminoglycoside 

treatment might develop hearing loss. When receiving multiple courses of intravenous 

aminoglycoside antibiotics, hearing loss might occur in more than 50% of the patients 

(O’Sullivan et al., 2017). 
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Cisplatin Induced Ototoxicity 

Cisplatin, cis-diamminedichloroplatinum (II) or cis-DDP, is the most commonly 

used chemotherapy drug in the world for treating various types of cancers (e.g. testicular 

cancer, ovarian cancer, cervical cancer, breast cancer, bladder cancer, lung cancer, etc.), 

because of its inexpensive price and effectiveness in cancer treatments.  

As an anti-cancer medication for chemotherapy, cisplatin interferes with DNA 

replication in the nucleus of cancer cells, causing the apoptosis of the proliferative cancer 

cells. After administration of cisplatin through intravenous injection, the bloodstream 

transports cisplatin across the entire body of the patient. Cisplatin enters into cancer cells 

through passive diffusion, as well as active uptake through the high-affinity copper 

uptake protein 1 (CTR1). In the cytosol of the cancer cell, non-selective binding of 

cisplatin to non-DNA target proteins will cause cytotoxicity in the cancer cell. In the 

nucleus of cancer cells, the N7 atoms of adenine and guanine located in the major groove 

of the double helix are the most reactive sites of DNA, which are nucleophilic and 

accessible for metal binding, including platinum-based compounds. Upon binding, 

cisplatin reacts with DNA and form a variety of structurally different adducts, i.e. inter-

strand and intra-strand cross-links. The adducts in the nucleus further block the 

replication and transcription, causing the death of the cancer cell (Cepeda et al., 2007; 

Fuertes, Castilla, Alonso, & Prez, 2003). 

It has been demonstrated by many studies that cisplatin-induced cytotoxicity is 

also related to excessive generation of mitochondrial ROS (Choi et al., 2015). Mutations 

in the mitochondrial genome are also well-studied risk factors in cisplatin-induced 

hearing loss. In the inner ear, glutathione S-transferases (GST) proteins are crucial for 
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detoxification of destructive electrophiles such as cisplatin. Mutations of GST proteins in 

patients receiving cisplatin treatment are associated with higher susceptibility to cisplatin-

induced hearing loss (Schacht et al., 2012). Genetic variants in thiopurine S-methyl 

transferase (TMPT), catechol-O-methyl transferase (COMT), and several other variants, 

including the ATP-binding cassette transporter C3 (ABCC3) are also associated with a 

higher risk of cisplatin-induced hearing loss (Pussegoda et al., 2013; Schacht et al., 

2012). In total, the incidence of hearing loss occurs from 11% to 97%, with an average of 

62% of patients receiving cisplatin treatment (Chirtes & Albu, 2014).  

Approaches of Ototoxicity Prevention 

Due to the prevalence and urgency of drug-induced hearing loss, many 

approaches have been studied from different research groups in the last couple of decades 

to seek treatments for drug-induced ototoxicity. While auditory hair cells and neurons in 

humans cannot be regenerated and the damage of auditory hair cells is irreversible, 

seeking oto-protective agents has become the most popular and feasible strategy for 

hearing loss prevention. In mitochondria, the Bcl-2 family of proteins, caspases, and p53 

are the targets of cisplatin-induced ototoxicity. Since increasing of ROS generation by 

ototoxic drugs (e.g. aminoglycoside antibiotics and platinum-based chemotherapy drugs) 

can trigger the apoptotic pathway of the hair cells, antioxidants have been tested in many 

studies to suppress ROS generation and reduce the oxidative stress in the cochlea. For 

cisplatin, CTR1 and organic cation transporter 2 (OCT-2) are the major entry ports in the 

cochlea of mammals, but the blockage of CTR1 and OCT-2 did not show protection 

significantly against the killing of hair cells in the lateral line in zebrafish (Sheth, 

Mukherjea, Rybak, & Ramkumar, 2017). A recent study has shown inhibition of 
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mechano-electrical transducer (MET) channel with the oto-protective drug can protect 

hair cells of the lateral line in zebrafish against cisplatin-induced hair cell death (Choi et 

al., 2015; Sheth et al., 2017; Thomas et al., 2013).  

MET Channel and TMC1 Protein 

In the cochlea, the mechanoelectrical transduction is an essential step for the 

conversion of the mechanical movements to electrical signals. The deflections of 

stereocilia lead to the opening of MET channels, initializing the process of 

mechanoelectrical transduction in the hair cells of the cochlea. In the mammalian inner 

ear, both outer hair cells and inner hair cells are mechanosensory cells for the detection of 

sound pressure waves that are transmitted along with the auditory organ. The one row of 

inner hair cells is responsible for the transmission of the sound signal to the central 

nervous system, and the three rows of outer hair cells are responsible for the 

amplification of the motility of the hair bundles (Holt & Géléoc, 2017). Protocadherin 15 

(PCDH15) of the tip link connects to MET channel (the schematic diagram of 

“stereocilium - tip link - MET channel complex” is illustrated in Figure 24 from Kurima 

et al.) (Kurima et al., 2015), receives the mechanical movement from the higher 

stereocilium of the hair bundle, and controls the opening of MET channel. MET channel 

is a large protein complex sitting at the membrane of the stereocilium of the hair cell 

bundle (the possible schematic is illustrated in Figure 25 from Corey et al.) (Corey, 

Akyuz, & Holt, 2019). Many membrane proteins have been demonstrated the linkage to 

the MET channels, such as lipoma high mobility group IC fusion partner-like 5 

(LHFPL5) / tetraspan membrane protein of hair cell stereocilia (TMHS), transmembrane 

inner ear (TMIE), and transmembrane channel-like proteins 1 and 2 (TMC1/2), calcium 
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and integrin-binding family member 2 (CIB2), transmembrane O-methyltransferase 

(TOMT), and phosphatidylinositol 4,5-bisphosphate (PIP2). Among the many protein 

components, TMC1 has been shown the major role in the whole MET channel complex 

(Cunningham & Muller, 2019; Pan et al., 2018). In 2018, Holt et al. and Swartz et al. 

both proposed mouse TMC1 protein dimer structures based on the similarity to the 

transmembrane member 16A (TMEM16A), which is a voltage-gated calcium-activated 

anion channel protein belong to the same superfamily of TMC proteins (Ballesteros, 

Fenollar-Ferrer, & Swartz, 2018; Pan et al., 2018). TMC1 protein has 10 transmembrane 

domains (shown in Figure 26), which are helices, and assembles as a homodimer in the 

MET complex (Corey et al., 2019; Pan et al., 2018).  
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Figure 24 Schematic representation of stereocilia, tip link (cadherin-25 and 

protocadherin-15), and MET channel complex (from Kurima et al).  
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Figure 25 Schematic of MET channel complex (from Corey et al.). 
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Figure 26 Predicted transmembrane topology of mouse TMC1 protein, based on the 

known structure of mouse TMEM16A. (modified from Holt et al.) Light yellow rectangle 

represents membrane. 
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II.2 TMC1 Homology Modelling 

Human TMC1 protein has a sequence of 760 amino acids, while mouse TMC1 

has 757 amino acids and zebrafish has 935 amino acids. We acquired human, mouse, and 

zebrafish TMC1 protein FASTA files from UniProt (Consortium, 2014) 

(https://www.uniprot.org/). All the FASTA files were uploaded to NCBI BLAST 

(Johnson et al., 2008) (Basic Local Alignment Search Tool, 

https://blast.ncbi.nlm.nih.gov/Blast.cgi) to perform global alignment for proteins by using 

the program of Needleman-Wunsch Global Align Protein Sequences (Altschul et al., 

1997). Human and mouse TMC1 proteins share an identity of 95.419%. Zebrafish TMC1 

protein shares around 54% identity with human and mouse TMC1 proteins (shown in 

Table 6).  

In the workspace of the Schrodinger Maestro (Maestro, 2018-4) suite, we 

performed template structure alignment, multiple sequence alignment, and homology 

modeling.  

Structure Alignment 

Template structure alignment was performed based on the following detailed 

steps: 1) open protein preparation wizard panel, and import TMEM16A experimentally 

determined structure (PDB ID: 5OYB) from PDB; 2) download the mouse TMC1 

homology model from the supplemental material of the paper of Swartz et al. 

(https://elifesciences.org/articles/38433), and then import the mouse TMC1 structure with 

Ca ions into Maestro user interface; 3) in the tasks menu, choose structure alignment and 

then choose protein structure alignment; 4) use the entire 5OYB structure as reference 

https://www.uniprot.org/
https://blast.ncbi.nlm.nih.gov/Blast.cgi
https://elifesciences.org/articles/38433
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structure, then superimpose the mouse TMC1 structure onto the reference structure 

(check the box of force alignment if needed).  

Sequence Alignment 

Multiple sequence alignment was performed by the following steps: 1) select 

mouse TMC1 structure entry and 5OYB structure entry in the project table; 2) in the 

tasks menu, open Prime toolkit on the applications side; 3) choose homology modeling in 

Prime application; 4) in the homology modeling panel, choose multiple sequence viewer; 

5) in the multiple sequence viewer window, click Maestro menu button and select 

“Incorporate Selected Entries from Project Table” to import mouse TMC1 sequence and 

TMEM16A sequence; 6) click Edit menu button and select “New Sequence”, then paste 

the zebrafish TMC1 sequence with the sequence name; 7) select all the entries in the 

multiple sequence viewer window, and then choose multiple alignments in the alignment 

menu. The result of multiple sequence alignment is shown in Figure 27.  

Homology Modeling 

Homology modeling was performed by the following steps: 1) in the tasks menu, 

open Prime toolkit on the applications side; 2) choose homology modeling in Prime 

application; 3) choose structure prediction wizard in the homology modeling window; 4) 

in the structure prediction window, paste the zebrafish TMC1 sequence as text, and then 

click next; 5) in the “Input Sequence” section, import the templates from project table 

(select mouse TMC1 structure entry and 5OYB structure entry in the project table if 

needed); 6) in the “Find Homologs” section, select chain A of 5OYB and chain A of 

mouse TMC1 structure as homologs (align selected structure if needed in the current 

window), and click next; 7) in the “Edit Alignment” section, run the secondary structure 
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prediction in the current window, and align the multiple sequences, then click next; 8) in 

the “Build Structure” section, choose energy-based building method, and include too Ca 

ions from template, then build composite/chimera model for the query sequence. The 

zebrafish homology model is shown in Figure 28.  

The chimeric homology model from Prime has two gaps with amino acid residue 

number 131 to 166, and 462 to 483. The template TMEM16A structure (PDB ID: 5OYB) 

has four gaps (amino acid residue number 131 to 164, 260 to 266, 467 to 487, and 669 to 

682) in each chain, and three of four are large gaps. In addition to the incompletion of the 

5OYB template structure, the mouse TMC1 structure from Swartz et al only contains 

transmembrane domains that are alpha-helices, which does not include any of the 

extracellular or intracellular loops. Thus the major gaps of the template structures led to 

the incompletion of the homology model.  

QUARK online server (https://zhanglab.ccmb.med.umich.edu/QUARK/) provides 

ab initio protein structure prediction and peptide folding, which constructs the 3D protein 

structure using amino acid sequence. In the free-modeling of CASP9 (the Critical 

Assessment of protein Structure Prediction) and CASP10 experiments for 3D protein 

structure prediction, QUARK online server was ranked No 1 of the competitions (Xu & 

Zhang, 2013; Yang & Zhang, 2015). We then used the QUARK online server to model 

the structures for amino acid sequence 128 to 169, and 459 to 486, respectively. Then we 

performed the superposition and fusion in Maestro user interface with the following 

steps: 1) import the predicted structure with amino acid 128 to 169 to Maestro; 2) open 

the superposition panel in the tools bar; 3) use the homology model as reference 

structure, choose atom pairs as the method and pick the same amino acid residues from 

https://zhanglab.ccmb.med.umich.edu/QUARK/
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both structures or select the substructures with Atom Specification Language; 4) open 3D 

builder panel, then delete the redundant residues after the superposition; 5) choose “add 

bond between two selected atoms” to connect each end of the proteins; 6) choose 

“minimize selected atoms” to minimize the regional structure (in other edits, use “change 

atom properties” to change the number and name of residue if needed); 7) repeat step 1 to 

6 for the predicted structure with amino acid 459 to 486; 8) open protein preparation 

wizard panel in tools bar; 9) under the tab of refine, in the restrained minimization 

section, set 0.30 Å for “converge heavy atoms to RMSD” and use OPLS3e as the force 

field, then perform minimization for the completed protein structure. Since the TMC1 

protein complex is a homodimer, the TMC1 protein monomer was duplicated and then 

aligned to the chain B of mouse TMC1 structure. The chain name of the duplicate 

monomer was changed to B, and the chain B monomer was further merged with chain A 

monomer. The TMC1 dimer structure was further refined in the protein preparation 

wizard. The final zebrafish dimer structure is shown in Figure 29. The zebrafish TMC1 

model contains two identical chains. Each chain has 12630 atoms, including 777 amino 

acid residues and 2 Ca ions.  
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Table 6 Sequence identity of human (Homo sapiens), mouse (Mus musculus), and 

zebrafish (Danio rerio) TMC1 protein. 

 

 

  

TMC1 Sequence Length 
Identity (%) 

Human Mouse Zebrafish 

Human 

(Homo sapiens) 
760 100 95.419 54.289 

Mouse 

(Mus musculus) 
757 95.419 100 53.139 

Zebrafish 

(Danio rerio) 
935 54.289 53.139 100 



79 

 

 

Figure 27 Multiple sequence alignment of zebrafish TMC1 (DR_TMC1), mouse 

TMEM16A (5OYB_A), and mouse TMC1 (MM_TMC1_A). 
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Figure 28 Homology model of zebrafish TMC1 (left). There are two gaps in the model (in 

the orange circle, and enlarged on the right side). Amino acid residue number 131 to 166 

(in red circle), and 462 to 483 (in the green circle) are missing. 
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Figure 29 Zebrafish TMC1 homology model. Chain A (cyan ribbon). Chain B (purple 

surface). Ca ions (green sphere). 
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II.3 TMC1 Molecular Dynamics Simulation 

Simulation System Building 

In the Maestro user interface, the zebrafish TMC1 dimer structure was 

superimposed to the pre-aligned TMEM16A crystal structure (PDB ID: 5OYB) 

downloaded from the Orientations of Proteins in Membranes (OPM, 

https://opm.phar.umich.edu/) database (Lomize, Pogozheva, Joo, Mosberg, & Lomize, 

2012). Then we performed system builder in Desmond (Desmond, 2018-4) as the 

following steps: 1) select the entry of zebrafish TMC1 model to present it in Maestro 

workspace; 2) open tasks menu, choose Desmond on the applications side; 3) in 

Desmond menu, choose system builder; 4) in the solvation panel of system builder 

window, open “Set Up Membrane” window; 5) in membrane model, choose POPC (1-

palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine) as the model, and then choose “Place 

on Prealigned Structure”; 6) the bilayer membrane will be placed based at the 

transmembrane domain of the TMC1 structure, use “Adjust membrane position” if 

needed, then click OK to exit the “Set Up Membrane” window; 7) in the solvent model, 

choose the predefined TIP3P water as solvent model; 8) in the boundary conditions 

section of the system builder window, choose orthorhombic as solvent box shape, use 

buffer for box size calculation method, and set 10 Å × 10 Å × 10 Å for the buffer 

distance (show the boundary box in the workspace, and adjust the distance if necessary); 

8) in the ions panel of the system builder window, choose neutralize by adding 40 Cl ions 

(recalculate if needed); 9) choose add salt and set the salt concentration at 0.15 M to 

solvate the water system, and set K ion as salt positive ion and Cl ion as negative ion; 10) 

set OPLS3e (Jorgensen, Maxwell, & Tirado-Rives, 1996) (Optimized Potentials for 

https://opm.phar.umich.edu/
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Liquid Simulations) as the force field, and then run the system builder job with the 

current setting.  

The zebrafish TMC1 bilayer membrane system in the TIP3P water box has 

227764 atoms, including 25260 atoms from the zebrafish TMC1 dimer protein with 2 Ca 

ions in each chain, 40 Cl ions for neutralization, 135 K ions and 135 extra Cl ions for 

solvation, 432 POPC molecules with 57888 atoms, and 48102 water molecules. The 

entire system was built with the OPLS3e force field. 

Membrane Relaxation 

Then we performed membrane relaxation for the entire protein-membrane system 

with the following steps: 1) save the newly built zebrafish TMC1 membrane system in a 

CMS file with a name DR_TMC1_membrane.cms; 2) use Schrodinger’s python script 

relax_membrane.py to prepare input files with the following commands: 

$SCHRODINGER/run relax_membrane.py DR_TMC1_membrane.cms -t 300 -j 

DR_TMC1_membrane-relaxation -gpu; 3) execute the membrane relaxation protocol 

with the following commands: $SCHRODINGER/utilities/multisim -JOBNAME 

DR_TMC1_membrane-relaxation -HOST localhost -mode umbrella -cpu 1 

DR_TMC1_membrane-relaxation-in.cms -m DR_TMC1_membrane-relaxation.msj -o 

DR_TMC1_membrane-relaxation-out.cms -set 'stage[1].set_family.md.jlaunch_opt=["-

gpu"]'. The membrane relaxation can also be performed in the graphical user interface of 

the newer version (2018-4 or newer) of Schrodinger Desmond. When using the newer 

version of Maestro, check “Relax membrane model system” in the molecular dynamics 

panel before the simulation.   
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Molecular Dynamics Simulation 

After the membrane relaxation protocol was finished, in Schrodinger Maestro, we 

loaded the DR_TMC1_membrane-relaxation-out.cms file into Desmond molecular 

dynamics panel. We set the parameters with following steps: 1) set simulation time to 

100 ns, and set recording interval as 2 ps for trajectory and energy; 2) set NPT for the 

ensemble class; 3) set 300.0 K for temperature and 1.01325 bar for pressure; 4) check the 

“Relax membrane model system” if necessary; 5) open advanced options, in the 

integration tab, set 2.0 fs for bonded time step with 2.00 for near and 6.00 for far; 6) in 

ensemble tab, set Nose-Hoover chain as thermostat method, and 1.0 ps for the relaxation 

time; 7) in barostat section, set Martyna-Tobias-Klein as barostat method, 2.0 ps for 

relaxation time and isotropic as coupling style; 8) in the interaction tab, set cutoff for 

short range method, and 9.0 Å as cutoff radius; 9) in the miscellaneous tab, choose 

random seed, and check randomize velocities at the starting time of 0.0 ps; 10) in the 

molecular dynamics panel, choose 1 GPU for the molecular dynamics simulation; 11) set 

the name for the simulation and execute the 100 ns simulation job.  

After the 100 ns molecular dynamics simulation, the trajectory analysis was 

performed with RMSD (shown in Figure 31) and RMSF (shown in Figure 32) of alpha 

carbon of TMC1 protein. The movement of the loops in the trajectory contributes mostly 

to the overall deviation and fluctuation of the atoms. No large conformational change has 

been observed in the 100 ns simulation. 
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Figure 30 Zebrafish TMC1 model in bilayer membrane with explicit aqueous solvation. 

Chain A (green ribbon). Chain B (green surface). Bilayer membrane (VdW surface). 

Water box (blue). K ions (blue sphere). Cl ions (brown sphere). 
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Figure 31 RMSD of alpha carbon of TMC1 protein from 100 ns MD simulation. 
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Figure 32 RMSF of alpha carbon of TMC1 protein from 100 ns MD simulation. 
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II.4 TMC1 Binding Site Detection 

After the molecular dynamics simulation, we then looked for the binding sites of 

the zebrafish TMC1 model by using ezPocket web service and SiteMap (Glide, 2018-4c; 

Halgren, 2009), a binding site identification program from Schrodinger Maestro.  

ezPocket Binding Site Detection 

Three different methods (i.e., fconv, fpocket2, and fpocket3) from ezPocket were 

applied in binding pocket detection.  

The top 2 results from fpocket2 (shown in Figure 33) are located in each chain of 

zebrafish TMC1 dimer. The binding pocket of chain A (with a solid surface 

representation) is located at the extracellular domain of chain A with the center 

coordinate (XYZ) of 24.5, 11.1, 20.6, and the binding pocket of chain B (with a solid 

surface representation) is also located at the extracellular domain with the center 

coordinate (XYZ) of -27.9, -10.8, 17.7. The pocket volume of chain A is around 3000 Å3, 

and the pocket volume of chain B is around 2500 Å3.  

SiteMap Binding Site Detection 

In Schrodinger Maestro user interface, we tried SiteMap to detect zebrafish 

TMC1 binding site with the following steps: 1) select the zebrafish TMC1 protein in the 

entry; 2) click the tasks button, then choose “Structure Analysis” in the tasks menu; 3) in 

“Protein Analysis” section, select “Binding Site Detection” to open SiteMap window; 4) 

in the SiteMap window, choose “identify top-ranked potential receptor binding sites” 

with all atoms in the workspace constitute the receptor; 5) in the settings section, set 15 

site points per reported site for the least requirement, and set report up to 5 sites; 6) use 
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less restrictive definition or hydrophobicity, and use a coarse grid with the crop site maps 

at 4 Å from nearest site point; 7) uncheck detect shallow binding sites, and run the 

binding site detection job. The top predicted binding site of chain A is located in the 

extracellular domain of chain A with around 3000 Å3 hydrophilicity volume and a total of 

around 6600 Å3 surface volume, which is overlapped with the top predicted chain A 

binding site from the fpocket2 result. The top predicted binding site of chain B is located 

in the extracellular domain of chain B with around 3200 Å3 hydrophilicity volume and a 

total of around 7400 Å3 surface volume, which is overlapped with the top predicted chain 

B binding site from the fpocket2 result.  
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Figure 33 Potential extracellular binding sites of zebrafish TMC1 model. The center 

coordinate (XYZ) of binding site (in white solid surface) of chain A (in green ribbon): 

24.5, 11.1, 20.6. The center coordinate (XYZ) of binding site of chain B (in purple ribbon 

and transparent surface): -27.9, -10.8, 17.7. Two Ca ions (green solid sphere) are in 

eahc chain.  
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II.5 High Throughput Virtual Screening  

Based on the binding site prediction of ezPocket from ezCADD web service and 

SiteMap from Schrodinger Maestro, we performed ligand docking with small molecules, 

which were collected from the literature. Different docking methods were applied in 

small-molecule docking.  

Receptor Grid Generation 

Schrodinger Glide (Glide, 2018-4b) docking package was used in small molecule 

docking. The receptor grid generation was performed with the following procedure: 1) in 

the workspace of Maestro, select zebrafish TMC1 model, and then click tasks button; 2) 

on the application side of tasks menu, select Glide; 3) in Glide menu, select “Receptor 

Grid Generation”; 3) in the Receptor Grid Generation window, choose the receptor tab, 

and then unselect “pick to identify the ligand” box; 4) in the Van der Waals radius scaling 

section, set 1.0 for scaling factor and 0.25 for partial charge cutoff, and uncheck “use 

input partial charges” box; 5) open the advanced settings panel in the receptor tab, select 

OPLS3e as force field; 6) in the site tab, set 24.5, 11.1, 20.6 as the X, Y, Z coordinates of 

the docking center, and set 10 Å for “dock ligands with length”; 7) open the advanced 

settings panel in the site tab, set 20 Å for the size of midpoint box length in X, Y, and Z; 

8) skip constraints, rotatable groups, and excluded volumes, then run the job for the 

receptor grid generation using localhost. The receptor grid will be generated to a 

designated zip file.   
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Ligand Preparation 

42 compounds (shown in Table 7) have been collected from literature and 

purchased from different vendors, which have been shown oto-protective effect against 

the ototoxicity of cisplatin or aminoglycoside antibiotics in different animal studies. The 

simplified molecular-input line-entry system (SMILES) string and structure data format 

(SDF) file of each compound was collected from PubChem (Kim et al., 2019) web 

service (https://pubchem.ncbi.nlm.nih.gov) based on the PubChem compound 

identification number (CID).  

After the structural data collection, ligand preparation was performed in 

Schrodinger with the following steps: 1) in the File menu, import the structural file that 

contains all the 42 compounds to Schrodinger, and then select all the 42 items; 2) in the 

tasks menu, choose “Ligand Preparation and Library Design”, then choose LigPrep under 

2D to 3D Conversion; 3) in the LigPrep window, choose the 42 selected items from the 

project table in the source selection; 4) select OPLS3e as force field; 5) in the ionization 

section, select generate possible state at target pH 7.0 ± 2.0 using Epik, and select add 

metal-binding states and include original state; 6) choose to desalt and generate 

tautomers; 7) in the stereoisomers section, choose to retain specified chiralities for 

computation and generate at most 32 per ligand; 8) choose SDF as output format, and 

perform the LigPrep task. 512 3D structures were generated from the LigPrep job of the 

42 compounds.  

Molecular Docking 

After the receptor grid generation job was completed and all the ligands were 

prepared in 3D, we then performed ligand docking in Schrodinger Glide with the 

https://pubchem.ncbi.nlm.nih.gov/
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following steps: 1) in tasks menu, choose Glide on the applications side, then choose 

Ligand Docking; 2) in Ligand Docking window, choose the receptor grid from the zip 

file from receptor grid generation; 3) in the ligand tab, use the ligand from SDF file or 

512 selected items from the ligand preparation, and select use input partial charges; 4) set 

0.80 as scaling factor and 0.15 as partial charge cutoff in the scaling of van der Waals 

radii section; 5) in the settings tab, choose HTVS as the docking precision; 6) select 

flexible for the ligand sampling method, and choose sample nitrogen inversions and 

select sample ring conformations; 7) choose add Epik state penalties to docking score; 8) 

in the output tab, choose ligand pose file (exclude receptor) in SD format for file type; 9) 

set at most 1 pose per ligand as the write out; 10) select perform post-docking 

minimization, and set 5 as the number of poses per ligand to include; 11) leave other 

settings as default and use all the processors in localhost for the ligand docking job, then 

run the current job. Repeat the ligand docking job with settings of SP (standard precision) 

and XP (extra precision) for the 42 compounds. The best docking result of each 

compound from HTVS and SP jobs are shown in Table 7 (XP data not shown). 
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Table 7 Experimental proven oto-protective compounds collected from the literature.  

Chemical Name PubChem 

CID 

Glide 

(HTVS) 

Glide 

(SP) 

Zebrafish Screen 

(0-2) 

Ebselen 3194 NA NA D 

Atorvastatin calcium 60823 -2.2 -5.9 0 

Omeprazole 4594 -4.1 -4.9 2 

Paroxetine hydrochloride 43815 -4.9 -4.7 2 

SAHA (Suberoylanilide 

hydroxamic acid) 

5311 -0.5 -1.7 0 

Quinine 1065 -5.7 -5.8 2 

MR 16728 (Anti-cancer) 378811 -4.7 -5 2 

EGTA 6207 -2.8 -2.8 1 

Berbamine 275182 NA NA 1 

Cimetidine 2756 -2.1 -1.2 1 

Bupropion 444 -5.3 -4.2 1 

amifostine 2141 -4.7 -3.4 0 

Trazodone 5533 -3.6 -5.5 0 

Methiothepin 4106 -4 -4.8 D 

Rapamycin 5284616 NA NA 0 

ML-172 (NOX1 Inhibito 

3-Acetylphenothiazine) 

81131 -4.2 -5.5 0 

Etoposide (topoisomerase 

2 inhibitor) 

36462 NA -5.5 0 

CoQ10 combine Acuval 

400 

5281915 NA NA 0 

CoQ10 combine Acuval 

400 

/ NA NA 1 

Transplatin 84691 NA NA 0 

Teniposide 

(topoisomerase 2 

inhibitor) 

452548 NA NA 0 

Geldanamycin 5288382 NA NA D 

Berbemine 10170 NA NA 2 

N-acetyl cysteine (NAC) 12035 -5.1 -5 0 

Doxepin 667468 -4.3 -4.3 2 

allopurinol 135401907 -4.3 -4.7 0 

ML-171 (NOX1 Inhibitor 

2-Acetylphenothiazine) 

81131 -4.2 -5.5 0 

D-methionine 84815 -3.9 -4.3 1 

Sodium Thiosulfate 24477 NA NA 0 

Phenoxybenzamine 4768 -4.7 -4.5 0 

Dexamethasone 5743 -4.2 -5.3 0 
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Table 7 Experimental proven oto-protective compounds collected from the literature 

(continue) 

Note. Glide docking (HTVS and SP) was performed on the 42 compounds. Docking 

result with NA means the compound was not able to be docked in the docking site. The 

zebrafish screening results rank from 0 to 2. 0 means no protective effect against 

cisplatin. 2 means a fully protective effect against cisplatin. 1 means partial protective 

effect against cisplatin. D means dead in the experiment. 

  

Curcumin 969516 -5.2 -6.4 0 

Aspirin 2244 -4.5 -5.1 0 

2-APB (2-Aminoethyl 

diphenylborinate) 

1598 -3.5 -4.3 1 

Quinine 8549 -5.7 -6 0 

Edaravone 

(Methylphenylpyrazolone) 

4021 -4.2 -5.7 0 

Rasagiline mesylate 3052776 -3.6 -4 0 

Rosuvastatin Calcium 446157 -4.6 -6.5 0 

Pantoprazole Sodium 4679 -5.1 -5.9 0 

Benzamil hydrochloride 

hydrate 

108107 -4.4 -4.3 0 

Loperamide 

Hydrochloride 

3955 -3.5 -4.3 2 

Pififthrin-u 327653 -3.7 -4.9 0 
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II.6 Machine Learning Study 

235 compounds (sample data are shown in Table 10) have been collected from the 

literature (Hazlitt et al., 2018; Teitz et al., 2018), which were tested against cisplatin in 

the cell assay. The SMILES string for each compound was also collected. Mol2vec 

(Jaeger, Fulle, & Turk, 2018), an unsupervised machine learning technique that 

vectorizes the molecular structure into vector representation and based on natural 

language processing, was used in the vectorization of the compound dataset. 100 vectors 

(sample data shown in Table 11) were generated for each of the dataset compounds after 

the Mol2vec featurization.  

Ligand Preparation  

After the structural data collection and Mol2vec vectorization, ligand preparation 

was performed for the 235 compounds in Schrodinger with the following steps: 1) in the 

File menu, import the structural file that contains all the 235 compounds to Schrodinger, 

and then select all the 235 items; 2) in tasks menu, choose “Ligand Preparation and 

Library Design”, then choose LigPrep under 2D to 3D Conversion; 3) in the LigPrep 

window, choose the 235 selected items from the project table in the source selection; 4) 

select OPLS3e as force field; 5) in the ionization section, select generate possible state at 

target pH 7.0 ± 2.0 using Epik, and select add metal-binding states and include original 

state; 6) choose to desalt and unselect generate tautomers; 7) in the stereoisomers section, 

choose to generate all combinations for computation and generate at most 1 per ligand; 8) 

choose SDF as output format, and perform the LigPrep task. After the ligand preparation, 

one 3D structure for each compound was generated.  
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Molecular Descriptors Generation 

After the ligand preparation for the compound dataset, we generated 273 

molecular descriptors with the following steps: 1) in Schrodinger user interface, select all 

the 235 items of 3D structure; 2) in tasks menu, choose “ADME and Molecular 

Properties”, and then select “Molecular Descriptors” in the section of “Molecular 

Properties”; 3) in the Molecular Descriptors window, choose structures from project 

tables with 235 selected entries which are 3D structures; 4) in the Topological 

Descriptors tab, choose all the 226 topological descriptors; 5) in the QikProp Properties 

tab, choose all the 46 QikProp descriptors and unselect “Do not run QikProp with -fast 

option (enables PM3 calculation)”; 6) in the Semiempirical Properties tab, select 

Compute Semiempirical Properties and uncheck “Do not optimize geometry”, and then 

choose AM1 as the method to use for semiempirical calculations; 7) choose CSV file as 

output format and run the molecular descriptors job for 235 compounds with prepared 

unique 3D structure. 273 molecular descriptors were generated by Schrodinger (sample 

data are shown in Table 12). 

We then developed multiple Python scripts (sample scripts are shown in Figure 34 

to Figure 37) to build different machine learning models based on SMILES string, 

activity data, and different features (i.e. 100 vectors generated from Mol2vec and 273 

molecular descriptors from Schrodinger) of each compound.  

Dataset Processing 

In the dataset loading script (sample script is shown in Figure 34), we define 

“load_dataset” (line 1 of Figure 34) as the name of the function for loading and 

processing compound dataset. Four keyword arguments are defined with the default value 
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for this function. Keyword argument “data_type” can be “convmol” or “ecfp”. The 

keyword argument “fps_size” is defined with a value of 1024, which could be changed to 

any positive integer as needed. The keyword argument “descriptor”, with False as the 

default Boolean value, is defined for molecular descriptors generated by Schrodinger. 

The keyword argument “mol2vec”, with False as the default Boolean value, is defined for 

vectors generated by Mol2vec. Data files (activity data file with compound structural 

information: “dataset_activity.csv”; data file with the information of molecular 

descriptors: “dataset_descriptors.csv”; data file with the information of Mol2vec vectors: 

“dataset_mol2vec.csv”) are placed under the same directory of this script, as 

recommended. The variable “dataset_file_1” (line 3 of Figure 34) is used to hold the 

activity data file. CSVLoader (line 12 of Figure 34) function from DeepChem (Altae-

Tran, Ramsundar, Pappu, & Pande, 2017; Subramanian, Ramsundar, Pande, & Denny, 

2016) is used to load the variable “dataset_file_1” (tasks with column name “activity”, 

smile_field with column name “smiles”, and id_field with column name “ID”). Then the 

activity data with SMILES is featurized by the predefined variable “featurizer”. When 

using “convmol” as data type, ConvMolFeaturizer (line 8 of Figure 34) function from 

DeepChem will be used for generating features of graphic convolution, and the variables 

“descriptor” and “mol2vec” will be neglected. When using “ecfp” as data type, 

CircularFingerprint (line 6 of Figure 34) function will be called for fingerprints 

generation by using the RDKit (Landrum, 2006) Python toolkit package, with the size of 

the user-defined fingerprints. When the Boolean value of variable “descriptor” is True, 

the data file “dataset_descriptors.csv” will be loaded (line 18 of Figure 34). The first line 

of the data file will be read as the header line, and the first column with the title “ID” of 
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the data file will be read as the index. The variable “dataset” will be iterated by the 

attribute “id” of each object (line 19 of Figure 34). The array of molecular fingerprints 

and list of molecular descriptors for each compound will be concatenated and then 

append to the temporary list (line 20 of Figure 34). Then the shard of the dataset will be 

reset with the molecular descriptors (line 21 of Figure 34). By applying the same method, 

vectors generated from Mol2vec can be integrated into the dataset (lines 23 to 28 of 

Figure 34). After data integration, the dataset will be transformed. At the end of the 

function, variables “dataset_tasks”, “dataset”, and “transformers” will be returned (line 

33 of Figure 34).  

Molecular Fingerprints Generation 

In the class “CircularFingerprint” (script shown in Figure 35), we define the 

default radius value to 2, size of binary digits to 2048, bonds value to True, features value 

to False, sparse value to False, and value of smiles string to False (line 3 of Figure 35). 

Then all the user-defined parameters will be passed to the function of 

“GetMorganFingerprintAsBitVect” from RDKit (line 27 of Figure 35). The array of 

Morgan fingerprints in the binary form will be generated and returned by the function of 

“GetMorganFingerprintAsBitVect”, and further returned from the current class 

“CircularFingerprint” (line 28 of Figure 35).  

Random Forest Modeling 

In the function “buildModel”, one positional argument is defined for the dataset, 

and two keyword arguments are defined for the fraction of training set and test set with 

the default value 0.6 and 0.4, respectively. The machine learning model building has 5 

steps: 1) split the dataset into a training set, a validation set, and a test set based on user-
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defined fractions (line 4 of Figure 36). “RandomSplitter” from DeepChem (line 3 of 

Figure 36) will be used to randomly split the dataset at the user-defined fractions. 2) 

define the ROC-AUC (area under the receiver operating characteristic curve) as the 

metric in classification mode (line 6 of Figure 36). 3) define “RandomForestClassifier” as 

the machine learning model with 100 trees in the entire forest (line 8 of Figure 36), and 

then train the model with the training dataset (line 10 of Figure 36). 4) after the model 

training, the model will be used to predict the test dataset (line 12 of Figure 36) and 

compute the ROC-AUC score based on the prediction data (line 13 of Figure 36). 5) the 

random forest machine learning model and its ROC-AUC score based on the user-defined 

dataset will be returned after model testing (line 15 of Figure 36).  

For machine learning model building, we perform multiple trials to obtain the best 

and average score of the models with the following steps: 1) we will load the dataset by 

using the function “load_dataset” (line 1 of Figure 37); 2) define the number of trials for 

machine learning model building (line 3 of Figure 37); 3) define new arrays for the 

machine learning models and a dictionary for the best model of the trials (line 4 to 6 of 

Figure 37); 4) iterate the trials and get the best model with a score (line 7 to 14 of Figure 

37); 5) the mean score and standard deviation of the trials will be calculated with Numpy 

functions (line 16 and 17 of Figure 37). To validate the machine learning method and 

quality of the dataset, we use the y-scrambling method to randomize the “activity” data in 

the dataset (the script is shown in Figure 48). One dataset will be created (line 5 of Figure 

48), and the shard of the dataset will be set with randomized y data (line 12 of Figure 48). 

The scrambled dataset will be returned (line 14 of Figure 48) for machine learning 

validation.  
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Random forest machine learning method from RDKit was applied to train the 

small dataset with 235 compounds at the split ratio of 60:40 to randomly divide the 

dataset into a training dataset and a test dataset. The best model yielded an AUC of 0.891 

with the test dataset (green curve of Figure 38). With further Y-scrambled data, the model 

predicted an AUC of 0.479 (red curve of Figure 38), which validated the good quality of 

the dataset and random forest method. Combining with the normal and Y-scrambled 

AUC scores, the random forest machine learning model with a small dataset shows 

promising performance in drug prediction. 
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Figure 34 Function for compound dataset loading.  

The file location of Python script for dataset processing:  

~atao/Desktop/test_folder/machine_learning_test/deepchem_test/zebrafish/O1_datasets_

processing.py 
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Figure 35 Function for molecular fingerprint featurization. Morgan fingerprint (from 

RDKit) is used in this featurization.  

The file location of Python script for circular fingerprint featurization:  

~atao/Desktop/test_folder/machine_learning_test/deepchem_test/zebrafish/O1_datasets_

processing.py 
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Figure 36 Function for random forest classification model. RandomSplitter is used to 

split training and test datasets. ROC-AUC is used for the metric.  

The file location of Python script for random forest classification model:  

~atao/Desktop/test_folder/machine_learning_test/deepchem_test/zebrafish/O2_datasets_r

f_class.py 

 

  



105 

 

 

Figure 37 Multiple trials of machine learning modeling and scoring (average and best). 

100 trials is used in this sample script.  

The file location of Python script for multiple trials of model building and scoring:  

~atao/Desktop/test_folder/machine_learning_test/deepchem_test/zebrafish/O2_datasets_r

f_class.py 
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Figure 38 ROC curve of random forest machine learning model using Morgan 

Fingerprints. FPR: false positive rate. TPR: true positive rate. AUC: area under the 

curve. The green curve is from random forest model in prediction of the test set. The red 

curve is from Y-scrambled model. The blue line is the random line that has an AUC of 

0.5. 
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II.7 Quantitative Structure-Activity Relationship Study 

We also used the same dataset with 235 compounds (sample data are shown in 

Table 10) that used in machine learning study for QSAR modeling study. In Schrodinger 

Maestro, we used two different QSAR modeling methods to build models, which are 

traditional AutoQSAR (Dixon et al., 2016; Glide, 2018-4a) and AutoQSAR/DeepChem 

(Altae-Tran et al., 2017; Subramanian et al., 2016). AutoQSAR/DeepChem uses the 

convolutional neural network, a popular image processing method in machine learning, to 

process molecular structures.  

Traditional AutoQSAR Modeling 

With the CSV file of compound dataset, we perform traditional AutoQSAR with 

the following steps: 1) in Maestro menu, click “File” and select “Import Structures”; 2) 

select the target CSV file in the import window; 3) in the “Import SMILES” window, 

select SMILES column of the CSV file as input SMILES column and compound ID 

column of the CSV file as input Entry Title column, then uncheck the box of “Discard 

any additional properties”; 4) select all the 235 entries and group them into a new group; 

5) select the entry of the created group; 6) in tasks menu, select “Discovery Informatics 

and QSAR”; 7) in the “Discovery Informatics and QSAR” menu, select “AutoQSAR” in 

QSAR group; 8) in AutoQSAR window, select “build model” as QSAR task; 9) in the 

“Build model” section, use structures from project table (selected entries), and uncheck 

“use validation set”; 7) choose “i_canvas_activity” as the prediction property, and then 

choose categorical as the property type; 8) in the options section, set 2 for the number of 

categories; 9) set 75 % for the random training set, and set 10 as the number of models to 

keep; 10) in the advanced options panel, set “Equal widths” for the categories, set 50 for 
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the numbers of models to build for each model type (MLR, PLS, etc), and set 0.80 for the 

maximum allowed correlation between any pair of independent variables; 11) in the 

descriptors section of advanced options, select “Binary fingerprints” (radial, linear, 

dendritic molprint2D) and “Molecular properties” (canvasMolDescriptors), and then save 

the parameters; 12) in the job setting panel, choose 8 processors from localhost, and then 

start the AutoQSAR job.  

After the AutoQSAR model building job finished, we will be able to see the 

details of the model and use the model to make prediction with the following steps: 1) 

choose “view model and make prediction” from the QZIP file under the task folder 

generated by AutoQSAR job; 2) the top 10 models can be seen in the model report, and 

all the details can be viewed by clicking the button with a plus symbol; 3) in model 

prediction section, select compound(s) in project table or choose to use structure(s) from 

file; 4) choose one method from three different modeling methods to test, which are all 

models (consensus prediction), best model, and selected models (consensus prediction); 

5) type the name for AutoQSAR prediction, and then launch the prediction job. After the 

AutoQSAR prediction task, a new entry of the predicted compounds will be generated in 

the entry list. We can check the prediction result in the corresponding column with the 

customized task name in the project table.  

The best model has a ranking score of 0.7518. The confusion matrix of the test 

dataset was also generated after modeling. In the confusion matrix, 36 are true positive, 

15 are true negative, 3 are false positive, and 4 are false negative (see Table 8) for the 

confusion matrix). We then calculated sensitivity, specificity, precision, negative 

predictive value, accuracy, and Matthews correlation coefficient based on Equation 1, 
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Equation 2, Equation 3, Equation 4, Equation 5, and Equation 6, respectively. All the 

evaluation results of the confusion matrix are shown in Table 9.  

AutoQSAR/DeepChem Modeling  

With the same CSV file of the compound dataset, we perform 

AutoQSAR/DeepChem with the following steps: 1) in Maestro menu, click “File” and 

select “Import Structures”; 2) select the target CSV file in the import window; 3) in the 

“Import SMILES” window, select SMILES column of the CSV file as input SMILES 

column and compound ID column of the CSV file as input Entry Title column, then 

uncheck the box of “Discard any additional properties”; 4) select all the 235 entries and 

group them into a new group; 5) select the entry of the created group; 6) in tasks menu, 

select “Discovery Informatics and QSAR”; 7) in the “Discovery Informatics and QSAR” 

menu, select “DeepChem/AutoQSAR” in QSAR group; 8) in the 

“AutoQSAR/DeepChem” panel, choose “Build model” as the task; 9) in the options 

section, choose “Classification” as the model type; 10) use structure from the selected 

entries in the project table, and then select “Activity” as the prediction property without 

adding extra descriptors; 11) use random split at 75 % to split the dataset into training set 

and test set; 12) set 1 hour for the model training time; 13) set 1 GPU on localhost for the 

current task and launch the AutoQSAR/DeepChem job.  

After the AutoQSAR/DeepChem model building job finished, we will be able to 

check the details of the model and use the model to make a prediction with the following 

steps: 1) in the “AutoQSAR/DeepChem” panel, choose the load model as the task; 2) 

select the generated QZIP file with the customized job name for AutoQSAR/DeepChem 

model building; 3) select compound(s) in the entry list; 4) in the “Model Predictions” 
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section, choose the selected entries from project table; 5) set the output property name, 

and then set the job name and launch the task with 8 processors on localhost. In the 

“Model Summary” section, we will be able to view the full report for the current model 

by clicking the button of “View Full Report”, and we can visualize the ROC curve 

(shown in Figure 39) and ROC-AUC score of the current model in the plot panel of the 

AutoQSAR/DeepChem report viewer window.  
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Table 8 Confusion matrix for the test dataset.  

Note. 58 compounds were used for the test of the QSAR model. 36 are true positive (TP) 

and 15 are true negative (TN). 3 are false positive (FP) and 4 are false negative (FN). 

  

  True condition 

  Positive Negative 

Predicted condition 
Positive 36 3 

Negative 4 15 
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Table 9 Measures for test dataset confusion matrix from the best AutoQSAR model.  

 

 

  

Measure Value 

Sensitivity 0.9000 

Specificity 0.8333 

Precision 0.9231 

NPV 0.7895 

ACC 0.8793 

MCC 0.7229 
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Figure 39 ROC curve for AutoQSAR/DeepChem model.  
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II.8 Conclusion 

Drug-induced ototoxicity with the zebrafish model enables rapid high throughput 

screening in the studies of the ototoxic effect of a drug and the discovery of oto-

protective drugs against the drug-induced ototoxicity (Ton & Parng, 2005). In this study, 

we built the very first zebrafish TMC1 homology model, embedded in a bilayer 

membrane, and performed molecular dynamic simulation. With the TMC1 protein model, 

we were able to perform structure-based virtual screening. Compound CID 1065 

(quinine) got the best score in the Glide HTVS docking study, and also proved by a full 

oto-protective effect in zebrafish experiment with a score of 2. With all the compound 

information collected from literature, we were able to build a library for ligand-based 

drug design. Different techniques of machine learning and QSAR were applied to build 

machine learning models and QSAR models, respectively. Those models can be used in 

the ligand-based virtual screening with databases and improved with more experimental 

data. More CADD techniques can be applied in the zebrafish ototoxicity studies with 

different targets. With all the advantages of zebrafish screening, the results from CADD 

studies can be easily translated to zebrafish study.  
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Chapter III: CADD Applications in Mcs1 Study 

III.1 Introduction 

Clostridium sordellii, a Gram-positive anaerobic bacterium, can be found in soil 

or human intestines. C. sordellii can cause rapidly progressive myonecrosis with a 

fulminant shock syndrome especially in obstetric and gynecologic patients, which is life-

threatening in many cases (Kimura et al., 2004; Ramirez & Abel-Santos, 2010). A 

metalloproteinase of C. sordellii (Mcs1) cleavage activity in humans contributes to the C. 

sordellii infections and also exhibits immune-inflammatory response and a marked 

leukemoid reaction (LR) (M. J. Aldape et al., 2017).  

Vascular cell adhesion molecule 1 (VCAM-1) is a protein that regulates the 

leukocyte-endothelial cell adhesion and signal transduction (M I Cybulsky et al., 1991). 

Proteolytic cleavage of VCAM-1 will release the soluble ectodomain, further causing 

inflammatory symptoms associated with many diseases. Previous experimental studies 

show Mcs1 cleaves VCAM-1 protein in vitro, and the cleavage plays an important role in 

C. sordellii infections (Michael John Aldape, Bryant, Ma, & Stevens, 2007; M. J. Aldape 

et al., 2017; Myron I Cybulsky et al., 2001). 

The function of Mcs1 is crucial in C. sordellii infections as well as in the research 

of disease prevention and treatment. However, since it was recently discovered, currently 

there is no experimentally determined 3D structure of Mcs1 or the full-length VCAM-1 

structure. In this study, we used the homology modeling method to build Mcs1 and the 

full-length VCAM-1 homology model and performed molecular dynamics simulation for 
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both models. We also investigated protein-protein interaction between Mcs1 and VCAM-

1 and molecular docking with the Mcs1 structure.   
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III.2 Mcs1 Homology Modelling 

The ORF_00259 (referred to as mcs1) contained 1539 base pairs that encoded for 

a 512-amino acid protein. No identical sequence was found from GenBank (Benson et al., 

2012) for the full-length mcs1 sequence. Pfam (Bateman et al., 2004) 

(https://pfam.xfam.org/) and NCBI protein-BLAST (Altschul et al., 1997; Johnson et al., 

2008) analyses indicated that Mcs1 has 3 domains: a fungalysin/thermolysin propeptide 

(FTP) domain, a peptidase propeptide, and YPEB (PEPSY) domain, and an M4 peptidase 

domain. No homologous structures of the FTP and PEPSY domains were found in the 

Protein Data Bank. Protein-BLAST searches against NCBI non-redundant protein PDB 

databases demonstrated that homology with Mcs1 was largely restricted to the catalytic 

M4 peptidase domain of the proteins. Bacillolysin (47% identity, 66% similarity) and 

elastase from Staphylococcus epidermidis (47% identity, 64% similarity), and aureolysin 

from Staphylococcus aureus (52% identify, 65% similarity) possessed the highest 

homology, suggesting that Mcs1 belongs to the M4 family of neutral peptidases 

(thermolysin-like metalloendopeptidases), a member of the zinc-dependent “GluZincin” 

superfamily. No Mcs1 homologs were identified in the C. difficile genome. 

When the Mcs1 protein sequence corresponding to the catalytic M4 peptidase 

domain was used, the NCBI protein-BLAST search against the PDB yielded the top-

ranked crystal structure (PDB ID: 1BQB) (Banbula et al., 1998) with 99 % coverage, 4 × 

10-92 E-values, and 52 % sequence identity. This high-resolution structure (1.72 Å) of S. 

aureus aureolysin (referred to as aureolysin) was selected as a template for homology 

modeling of the Mcs1 catalytic M4 peptidase domain. Amino acid sequence alignment 

between the catalytic domains of Mcs1 and aureolysin showed that, similar to aureolysin, 

https://pfam.xfam.org/
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the catalytic domain of Mcs1 is a single-chain enzyme consisting of 302 residues (Figure 

40). This high degree of similarity supported Mcs1’s connection to the bacterial 

thermolysin family of metalloproteinases. 

40 candidate structures were generated by Modeller (Webb & Sali, 2014) and one 

candidate structure by PRIME. The energetic fitness of the 41 candidate structures, along 

with the template structure 1BQB as a reference, was evaluated using the DOPE score. 

The PRIME generated structure was considered the best among all candidates and the 

Modeller structure #21 the second most suitable (Figure 41 A). DOPE (Shen & Sali, 

2006) per-residue based scores confirmed that the PRIME structure was energetically 

more favorable than Modeller structure #21 (Figure 41 B). Specifically, less per-residue 

deviation from template structure 1BQB was observed in the PRIME structure when 

compared to Modeller structure #21. The structural quality of the PRIME structure 

against the template structure was also evaluated using Ramachandran plots (Figure 41 C 

and D). Both the PRIME and template structure each had 100% of their residues within 

the allowed regions, with 81.4% and 87.9%, respectively, observed in the most favored 

region (Figure 41 C and D). Because of its comparable energetic and structural quality to 

the crystal structure template, the PRIME structure represented the best 3D atomic model 

for characterizing the functional peptidase domain of Mcs1.  

Visual inspection of the Mcs1 model structure showed that the N-terminal 

subdomain (residues 1-156) consisted of mostly β-sheets and two α-helices. By 

comparison, the C-terminal subdomain (residues 157-302) contained primarily α-helices 

(Figure 49 A). The Mcs1 active site was located in a deep and narrow cleft between the 

N-terminal and the C-terminal subdomains. The entrance to this cleft was gated by loop 
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structures found on both the N-terminal (loop-N) and C-terminal subdomains (loop-C) 

(Figure 49 A). The Mcs1 loop-C is longer than its counterpart in aureolysin due to 

insertions. The presence of one zinc and three calcium ions were located within the active 

site of Mcs1 and are essential to maintaining enzymatic activity. Additionally, the 

residues involved in coordinating the active site (i.e., zinc ion, substrate binding, and 

catalysis) are conserved between Mcs1 and aureolysin (Figure 40). The calcium ions 

located near the active site are a common feature shared by all members of the 

thermolysin and neutral protease family (Figure 49 A).  
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Figure 40 Protein sequence alignment of Staphylococcus aureus aureolysin (PDB: 

1BQB) and C. sordellii Mcs1 catalytic domain. Conserved residues are highlighted in 

color. Cylinders represent α-helices and arrows represent β-strands.  
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Figure 41 Energetic and structural quality of Mcs1 model structures and the S. aureus 

aureolysin crystal structure template (PDB: 1BQB) as a control. (A) Overall DOPE 

score (lower is better); (B) DOPE per-reside scores; (C) Ramachandran plot of 1BQB; 

and (D) Ramachandran plot of the best Mcs1 structure modeled using PRIME.  
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III.3 Mcs1 Molecular Dynamics Simulation 

To further optimize the best-scored structure and assess the structural 

characteristics of Mcs1, a 250 ns all-atom explicit solvent MD simulation was performed. 

Protonation states of the Mc1 protein residues were determined at pH 7 with PROPKA 

(Li, Robertson, & Jensen, 2005). The protonated Mcs1 structure was solvated in an 

orthorhombic TIP3P water box, leaving 10 Å between the solute surface and the box 

boundary. The Mcs1 protein and metal ions were parameterized with the OPLS 2005 

force field (Banks et al., 2005). After the system was neutralized, an ionic concentration 

of 0.15 M NaCl was introduced to mimic experimental assay conditions. DESMOND 4.3 

module of Schrodinger suite 2015-3 package (Schrödinger, 2015) was used to carry out 

the MD simulation. Before the production run, a 5-step simulation protocol was 

performed to relax the system: (1) 100 ps NVT ensemble with Brownian dynamics at 10 

K with solute non-hydrogen atoms restrained; (2) 12 ps NVT ensemble using a 10 K 

Berendsen thermostat with a fast temperature relaxation constant, velocity resampling 

every 1 ps, and non-hydrogen solute atoms restrained; (3) 12 ps NPT ensemble using a 10 

K Berendsen thermostat and a 1 atm Berendsen barostat with a fast temperature 

relaxation constant, a slow pressure relaxation constant, velocity resampling every 1 ps, 

and non-hydrogen solute atoms restrained; (4) 12 ps NPT ensemble using a 300 K 

Berendsen thermostat and a 1 atm Berendsen barostat with a fast temperature relaxation 

constant, a slow pressure relaxation constant, velocity resampling every 1 ps, and non-

hydrogen solute atoms restrained; (5) 24 ps NPT ensemble using a 300 K Berendsen 

thermostat and a 1 atm Berendsen barostat with a fast temperature relaxation constant, a 

normal pressure relaxation constant. Finally, the 250 ns production run was performed in 
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the NPT ensemble without restraint. 300 K temperature and 1 atm pressure were 

maintained with Nosé-Hoover chain dynamics and Martyna-Tobias-Klein barostat 

(Martyna, Klein, & Tuckerman, 1992). A 2 fs time step and periodic boundary conditions 

were applied in conjunction with particle-mesh Ewald (Essmann et al., 1995) to treat 

long-range electrostatics. A multiple-time-stepping algorithm was employed, in which 

bonded interactions short-range nonbonded interactions were evaluated at every time step 

and long-range electrostatic interactions were evaluated every three time-steps at a cutoff 

of 9 Å.  

Similar to the aureolysin template structure, the Mcs1 active site cleft possesses a 

predominantly “closed” conformation. Cleft “opening” prompts Mcs1 enzymatic activity 

by allowing substrates to make contact with the zinc active site located at the bottom of 

the cleft. Our 250 nanosecond (ns) MD simulation demonstrated that cleft opening and 

closing is mostly dictated by the polar interactions between Glu113 and Arg227, located 

on the loop-N and loop-C subdomains, respectively, on opposing sides of the cleft. 

Maximal “open” and “closed” Mcs1 conformations illustrate how the accessibility of the 

zinc active site is “controlled” by the Glu113-Arg227 distance (Figure 49 B). MD 

simulation trajectory analysis also indicated that the Mcs1 active site is completed 

blocked when the Glu113-Arg227 distance is less than 12.5 Å. During the flexibility 

simulation, the Mcs1 active site was completely closed (Glu113-Arg227 distance < 12.5 

Å) ~50% of the time and only moderately accessible (Glu113-Arg227 distance = 12.5-15 

Å) the other ∼50% (Figure 42 A). In very few instances was the Mcs1 cleft determined 

completely open (Glu113-Arg227 distance > 20 Å) (Figure 42 A).  
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The conformational flexibility of the subdomains and their contributions to the 

overall Mcs1 flexibility was also investigated (Figure 42 B). The C-terminal subdomain 

was far more rigid than that of the N-terminal subdomain (Figure 42 C and D). The 

overall root mean square deviation (RMSD) of the entire Mcs1 catalytic domain trended 

well with the RMSD of the N-terminal domain, indicating the N-terminal subdomain is 

the driving force behind Mcs1's conformational changes (Figure 42 B and C). 
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Figure 42 Mcs1 conformational dynamics computed from the 250 ns MD simulation. (A) 

Glu113-Arg227 residue distance; (B) overall Mcs1 structural flexibility measured in 

RMSD; (C) N-terminal subdomain structural flexibility measured in RMSD; (D) C-

terminal subdomain structural flexibility measured in RMSD. Cα atoms were used in the 

residue distance and RMSD calculations. 
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III.4 VCAM-1 Homology Modelling 

The intact VCAM-1 protein has seven immunoglobulin-like domains, but only a 

few fragments of the full-length VCAM-1 structure are available. D1D2 domain of 

VCAM-1 was well characterized and structurally determined, but previous structure 

studies merely indicate the D4D5 domain has a similar structure and functions to the 

D1D2 domain (Jones et al., 1995; Wang et al., 1995). The full-length VCAM-1 crystal 

structure is not available regardless of a lot of research studies of VCAM-1 have been 

done. Under this circumstance, a full-length VCAM-1 model is essential and urgent for 

related research.  

The experimental result shows the cleavage site is at 42 kDa out of an entire 94 

kDa of VCAM-1 amino acid sequence (M. J. Aldape et al., 2017). Accordingly, in the 

entire amino acid sequence of VCAM-1, the cleavage site is located at the D4D5 domain. 

From Clostridium histolyticum which is the same genus but different species from C. 

sordellii, Asp229 of clostripain is responsible for binding Arg at the P1 position (Labrou 

& Rigden, 2004). As shown in Figure 50, Arg381 at the potential cleavage site of the 

D4D5 domain is highly responsible for the binding of Mcs1. The amino acid from the N-

terminus to the Arg381 has a weight of 41946.8 Da, highly consistent with the 

experimental data. 

D4D5 domain shares 66% identity and 100% query coverage with the D1D2 

domain of VCAM-1. Thus, using the D1D2 domain as a template, we built a homology 

model for the D4D5 domain. We performed a Protein-Blast search on the NCBI server to 

get the model template for the query sequence. Prime module (Jacobson, Friesner, Xiang, 

& Honig, 2002; Jacobson et al., 2004) of Schrodinger Suite was used to build the 
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homology model for the query sequence based on the template structure. We then 

performed the homology modeling for the full-length VCAM-1 with the following 

procedure in VMD (Humphrey, Dalke, & Schulten, 1996) for alignment and 

visualization: 1) fix VCAM-1 D1D2 domain in space; 2) align the D1 domain of a second 

VCAM-1 D1D2 molecule to the D2 domain of the initial VCAM-1 D1D2 molecule; 3) 

repeat step 2 five times to elongate the molecule to fulfill seven domains; 4) align 

VCAM-1 D3, D4D5 and D6D7 domains to the D2 domain of the second VCAM-1 D1D2 

molecule, D1D2 of the forth VCAM-1 D1D2 molecule and D1D2 of the sixth VCAM-1 

D1D2 molecule, respectively; 4) in Schrodinger Maestro, connect and fuse D1D2, D3, 

D4D5 and D6D7 domains of VCAM-1 to get the full-length of VCAM-1; 5) use Prime to 

minimize VCAM-1 molecule.  

The full-length VCAM-1 structure as shown in Figure 43 was fused with the 

crystal structure of the D1D2 and homology model of D3, D4D5, D6, and D7. Each 

domain of VCAM-1 has at least one intra-domain disulfide bond to maintain the integrity 

of the structure. D1 or D4 domain has an extra intra-domain disulfide bond, thus this 

additional feature makes them distinct from other domains. In the full-length model, 

located at the disordered linker of the D4D5 domain, exposure of Arg381 makes it easy 

for binding and cleavage. There are seven Arginine residues located at the D1D2 domain, 

but none of them is located at the linker. Arg381 makes D4D5 distinct from D1D2 even 

though they are they share 66% identity and 100% query coverage. 
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Figure 43 VCAM-1 model. D1 and D4 domains (pink) have two disulfide bonds (yellow), 

respectively. D2, D3, D5, D6, and D7 domains (white) have one disulfide bond (yellow), 

respectively. Arg381 (green) is located at the D4D5 domain. 
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III.5 VCAM-1 Molecular Dynamics Simulation 

100 ns MD simulations were performed on D4D5 and full-length of the VCAM-1 

model, respectively, with the same MD protocol as Mcs1. During the 100 ns MD 

simulation, the full-length VCAM-1 bent and had undergone a large-scale conformational 

change. Since Arg381 is the key potential residue for Mcs1 binding, the exposure of 

Arg381 could be the decisive factor in Mcs1 binding. We used Arg381 as the vertex and 

the residues at the two ends of the D4D5 domain as the points on each side of the angle. 

The change of the angle showed the D4D5 domain was more bent in the full-length 

VCAM-1 than by itself (Figure 44 A&B). In addition, the distance between Gly304 in the 

D4 domain and Arg381 can also determine the exposure of Arg381. As shown in Figure 

44 C&D, the change of distance suggests Arg381 was less interfered with by Gly304 in 

full-length VCAM-1 than in the D4D5 domain. The change of angle and distance of 

VCAM-1 suggests the D4D5 domain in full-length VCAM-1 is more active and closer to 

the real environment of cleavage activity. Thus, the most bent D4D5, which is the most 

exposed Arg381 in the D4D5 domain of full-length VCAM-1 in the trajectory of the MD 

simulation, was extracted for protein-protein docking. 
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Figure 44 Distance and angle of D4D5 domain during 100 ns MD simulation. 

(A) Angle of Val291-Arg381-Asn484 D4D5 domain of full-length VCAM-1 during 100 

ns MD simulation.  

(B) Angle of Val291-Arg381-Asn484 in the D4D5 domain during 100 ns MD simulation. 

(C) Distance between Arg381 and Gly304 in the D4D5 domain of full-length VCAM-1 

during 100 ns MD simulation. 

(D) Distance between Arg381 and Gly304 in the D4D5 domain during 100 ns MD 

simulation.  
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III.6 Protein-Protein Docking Study 

Protein-protein docking was performed by Megadock (Ohue et al., 2014), with the 

most open Mcs1 and the most bent D4D5 of the full-length VCAM-1. We set voxel at 

0.6, Mcs1 as the receptor, and VCAM-1 D4D5 domain as the ligand in Megadock 4.0 for 

protein-protein docking. Among the 2,000 docking poses, the top-scored pose indicates 

the binding mode of Mcs1 and VCAM-1 as shown in Figure 45. Sitting in the bottom of 

the Mcs1 cleft, the D4D5 domain perfectly docked to Mcs1. Figure 51 shows that Arg381 

of VCAM-1 is encompassed by the Zinc-Glu113-Arg227 triangle of Mcs1.  

As shown in Figure 52, the electrostatic potential surface of the binding site of 

Mcs1 is negatively charged while the binding site of VCAM-1 is positively charged. The 

docking result shows that both the shape and electrostatic state of the binding surface of 

the two binding partners contribute to the binding and catalysis of VCAM-1. 
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Figure 45 Best docking pose of Mcs1 (green) and VCAM-1 (yellow) from different 

perspectives, side view (A), front view (B), and high-angle shot (C). 
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III.7 High Throughput Virtual Screening Study 

Using docking software packages Glide (Glide, 2018-4b), AutoDock Vina (Trott 

& Olson, 2010), and MVD (Molegro, 2011), high-throughput virtual screenings were 

applied to protein-ligand docking. 2,016 compounds from the National Cancer Institute 

Diversity Set III were docked to the binding surface of Mcs1. Three different 

conformations of Mcs1 were used in the docking study, which was the initial built, the 

most open, and the most closed Mcs1 structures.  

Docking scores from MVD, Vina docking score, and Glide and Emodel scores 

from Schrodinger Glide of each ligand were collected and analyzed. Because of the 

different algorithms were used in those four different scoring functions, the scores cannot 

be compared directly between different scoring methods. However, the ranking of 

compounds was inter-comparable with different scoring methods. Thus a consensus 

scoring method was applied in the final scoring function. The rankings of every 

compound from those four different scoring methods were added arithmetically without 

weighting. The summations of all the compound rankings were re-ranked and assigned in 

a consecutive and ascending order. The top-ranked 40 available compounds were thus 

ordered for the further investigation of the Mcs1 inhibition study (the top 40 docking 

result data shown in Error! Reference source not found.).  

The 40 compounds were then evaluated by fluorescence resonance energy transfer 

(FRET) study with Mcs1 protease assay in Dr. Michael Aldape’s laboratory. All the 40 

FRET results were shown in Error! Reference source not found.. Among the top 40 c

ompounds, #227186, #639174, #61610, #67436, #177365, #71881, and #91529 were 
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confirmed with good inhibition of Mcs1 proteolytic activity in FRET assay (shown in 

Figure 47).   
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Figure 46 Docking pose of compound #71881 (in licorice representation) with Mcs1 

protease (pink ribbon represents protein and green surface represents the binding site, 

white sphere represents Zinc ion, and brown sphere represents Calcium ion) in front view 

(top) and top view (bottom).  
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Figure 47 Best seven FRET results of the top 40 Mcs1 inhibitors.  
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III.8 Conclusion 

The experimental data of Aldape et al. showed a fragment of VCAM-1 with 

around 42k Da molecular weight was cleaved by Mcs1 in vitro (M. J. Aldape et al., 

2017). Only one single band was observed in the VCAM-1 cleavage assay with the 

presence of Mcs1, which indicates only one cleavage site exists in VCAM-1 and only one 

form of VCAM-1 fragment was cleaved in the experiment. Although VCAM-1 could 

have two different forms which are seven domains in full-length or six domains with 

alternatively spliced (Myron I Cybulsky et al., 2001; Vonderheide, Tedder, Springer, & 

Staunton, 1994), the experimental result suggests only seven domain VCAM-1 was 

predominant or Mcs1 could only cleave the seven domain VCAM-1 (M. J. Aldape et al., 

2017). 

Our docking result shows the Arg381 of VCAM-1 is close to the Mcs1 catalytic 

site. With a molecular weight of 41946.8 Da, the fragment from N-terminal amino acid to 

Arg381 of VCAM-1 can be cleaved by Mcs1 at Arg381. The electrostatic surface of the 

two binding partners also demonstrates the binding preference which Arg381 prefers to 

bind Mcs1 at the catalytic site. From the MD simulation study, we were able to sample 

more conformations of Mcs1 and VCAM-1 proteins. In this study, MD simulation shows 

large-scale conformational changes of full-length VCAM-1 which was reported in 

experiments. In the high-throughput virtual screening study, some of the compounds 

showed good binding affinity to Mcs1, which was also confirmed in the experimental 

study. We could further investigate and design the inhibitors of the protein-protein 

interaction of Mcs1 and VCAM-1, to inhibit the proteolytic function of Mcs1.   
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Appendix A 

Table 10 Compound dataset (sample) for machine learning study.  

  

Compo

und ID 

Activ

ity 

SMILES 

JZC-1 1 Oc1ccc(cc1)c2[nH]c3nnc(NC(=O)C4CC4)c3cc2Br 

JZC-2 1 NS(=O)(=O)c1ccc(cc1)N=Nc2c(O)[nH]c3ccc(Br)cc23 

JZC-3 1 Oc1[nH]c2cc(Br)ccc2c1c3[nH]c4ccccc4c3N=O 

JZC-4 1 Brc1ccc2[nH]c3c(CC(=O)Nc4ccccc34)c2c1 

JZC-5 1 COc1cccc(c1)C(=O)c2sc(Nc3ccc(cc3)N4CCN(CC4)C(C)C)nc2N 

JZC-6 1 Clc1cccc(Cl)c1C(=O)Nc2c[nH]nc2C(=O)NC3CCNCC3 

JZC-7 1 COc1cccc(c1)n2ncc3c(N\N=C\c4ccncc4)ncnc23 

JZC-8 1 COc1cccc(c1)c2c[nH]c3c(N\N=C\c4ccncc4)ncnc23 

JZC-9 1 CC[C@H](CO)Nc1nc(NCc2ccccc2O)c3ncn(C(C)C)c3n1 

JZC-10 1 Nc1nc(NCCNc2ncc(c(n2)c3ccc(Cl)cc3Cl)n4ccnc4)ccc1[N+](=O)[O

-] 

JZC-11 1 CC(C)n1c(C)ncc1c2ccnc(Nc3ccc(cc3)S(=O)(=O)C)n2 

JZC-12 1 [O-][N+](=O)c1ccc2[nH]c3c(CC(=O)Nc4ccccc34)c2c1 

JZC-13 1 CCCCOc1c(c[nH]c2nncc12)C(=O)c3c(F)cc(C)cc3F 

JZC-14 1 CCN1CCN(Cc2ccc(Nc3ncc(F)c(n3)c4cc(F)c5nc(C)n(C(C)C)c5c4)n

c2)CC1 

JZC-15 1 Cn1cc(C2=C(C(=O)NC2=O)c3ccc(Cl)cc3Cl)c4ccccc14 

JZC-16 1 COc1cc(C=NNc2ncnc3c2cnn3c4ccccc4)ccc1O 

JZC-17 1 COc1cc[nH]c1C=C2C(=O)Nc3ccc(F)c(C#CC4(O)CCNCC4)c23 

JZC-18 1 COc1ccc2NC(=O)C(=Cc3c[nH]cn3)c2c1 

JZC-19 1 CCCCc1c([nH]c2nccnc12)c3ccc(O)cc3 

JZC-20 1 COc1ccc(OC)c(c1)C2=C(C(=O)NC2=O)c3cn(C)c4ccccc34 

… … … 

JZC-

200 

0 FC1=CC=CC(F)=C1C(NC2=CNN=C2C(NC3CCNCC3)=O)=O 

JZC-

201 

0 FC1=CC(F)=CC(F)=C1C(NC2=CNN=C2C(NC3CCNCC3)=O)=O 

JZC-

202 

0 FC1=CC=CC(OC)=C1C(NC2=CNN=C2C(NC3CCNCC3)=O)=O 

JZC-

203 

1 FC1=CC=CC(Cl)=C1C(NC2=CNN=C2C(NC3CCNCC3)=O)=O 

JZC-

204 

1 O=C(C1=C(Cl)C=CC=C1Cl)NC2=CNN=C2C(NC3CCN(C(C4=C(

Cl)C=CC=C4Cl)=O)CC3)=O 

JZC-

205 

0 O=C(C1=C(Cl)C=CC=C1Cl)NC2=CN(C)N=C2C(NC3CCN(C(C4=

C(Cl)C=CC=C4Cl)=O)CC3)=O 

JZC-

206 

0 O=C(NC1=CN(N=C1C(NC2=CC=CC=C2)=O)CC)C3=CC=C(C=C

3Cl)Cl 
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Table 10 Compound dataset (sample) for machine learning study. (continue) 

Compou

nd ID 

Activi

ty 

SMILES 

JZC-207 1 O=C(C1=CC=C(CN2C=C(Cl)C=N2)C=C1)NC3=CN(CC)N=C3C

(NC4CCCC4)=O 

JZC-208 1 O=C(NC1=CN(N=C1C(NCC(C)C)=O)CC)C2=CC=C(COCC(F)(

F)F)C=C2 

JZC-209 0 O=C(NC1=CN(N=C1C(NCC(C)C)=O)CC)C2=C(F)C=CC=C2F 

JZC-210 0 O=C(NC1=CN(N=C1C(NCC(C)C)=O)CC)C2=CC=CC=C2Cl 

JZC-211 0 O=C(NC1=CN(N=C1C(NC)=O)C)C2=CC=CC=C2Cl 

JZC-212 0 O=C(NC1=CN(N=C1C(NCCC2=CC=CO2)=O)C)C3=CC=C(Cl)

C=C3Cl 

JZC-213 0 O=C(N1CCCCC1)C2=C(NC(C3=C(Cl)C=CC=C3)=O)C=NN2C 

JZC-214 0 CCCNC(C1=C(C=NN1C)NC(C2=C(Cl)C=CC=C2)=O)=O 

JZC-215 0 CCCNC(C1=C(C=NN1C)NC(C2=C(Cl)C=C(Cl)C=C2)=O)=O 

JZC-216 0 CN1N=CC(NC(C2=CC=C(C=C2Cl)Cl)=O)=C1C(NCC3=CC=CO

3)=O 

JZC-217 0 CCCNC(C1=C(C=NN1C)NC(C2=CC(S(=O)(N(C)C)=O)=C(C=C

2Cl)Cl)=O)=O 

JZC-218 0 CCCNC(C1=C(C=NN1C)NC(C2=C(Cl)C=C(Cl)C(S(=O)(N3CCC

C3)=O)=C2)=O)=O 

JZC-219 0 CC(CNC(C1=C(C=NN1C)NC(C2=CC=C(COCC(F)(C(F)F)F)C=

C2)=O)=O)C 

JZC-220 0 CC1=C(C(NC2=C(NN=C2C(N)=O)C)=O)C=CC(Br)=C1 

JZC-221 0 CC(C(NC1=C(NN=C1C(N)=O)C)=O)NC(C2=CC=C(Cl)C=C2)=

O 

JZC-222 0 CC1=C(NC(C2=CC=C(OCC3CC3)C=C2)=O)C(C(N)=O)=NN1 

JZC-223 0 CC1=C(NC(C2=CC(Br)=CC(F)=C2)=O)C(C(N)=O)=NN1 

JZC-224 0 CC1=C(NC(C2=CC(F)=C(F)C(F)=C2)=O)C(C(N)=O)=NN1 

JZC-225 0 CN(C(C1=NN(C(C)=C1NC(C2=CC=C(C=C2)C)=O)C)=O)C 

JZC-226 0 CN1N=CC(NC(C2=NNC=C2Cl)=O)=C1C(N3CCCCC3)=O 

JZC-227 0 NS(C1=CC=C(C=C1)CNC2=NC(C3=CC=CC=N3)=CC=N2)(=O)

=O 

JZC-228 0 CCC(NC1=NC(C2=CC=CC=N2)=CC=N1)C3=CC=C(S(C)(=O)=

O)C=C3 

JZC-229 0 NS(C(C=C1)=CC=C1CCNC2=NC(C3=CC=CC=N3)=CC=N2)(=

O)=O 

JZC-230 1 C1(NC2=CC=CC=C2)=NC(C3=CC=CC=N3)=CC=N1 

JZC-231 0 CN(CC1=NC=CN1CC2=CC=CC=C2)C3=NC(C4=CC=CC=N4)=

CC=N3 
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Table 10 Compound dataset (sample) for machine learning study. (continue) 

Compo

und ID 

Activ

ity 

SMILES 

JZC-

232 

0 CN(CC1=NC=CN1CC)C2=NC(C3=CC=C(C)N=C3C)=CC=N2 

JZC-

233 

0 CC1=NC(C)=CC=C1C2=CC=NC(NCC(C)N3N=C(C)C=C3C)=N2 

JZC-

234 

0 NC1=NC(C2=CN(CC3=C(Cl)C=CC=C3Cl)C(C)=N2)=CC=N1 

JZC-

235 

0 FC1=C(C2=CN=C(C)N2C(C)C)N=C(NC3=CC=C(C(N4CC[C@@

H](NC)C4)=O)C=C3)N=C1 

Note. Activity value 1 means protective against cisplatin, while 0 means no protective 

effect against cisplatin. 

The file location of the entire compound dataset:  

~atao/Desktop/test_folder/machine_learning_test/deepchem_test/zebrafish/dataset_activit

y.csv 
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Appendix B 

Table 11 Mol2vec vectors (sample) of the compound dataset. 

Compound 

ID 

mol2vec-

000 

mol2vec-

001 

… mol2vec-

098 

mol2vec-

099 

JZC-1 1.052486 0.927305 … -13.0191 -1.76772 

JZC-2 2.713912 1.827421 … -10.0308 -3.68559 

JZC-3 2.427935 2.503767 … -12.0065 -2.10662 

JZC-4 0.373738 3.765923 … -10.6032 -4.68433 

JZC-5 3.125469 -1.49734 … -13.3179 -3.88405 

JZC-6 2.952922 1.107688 … -16.2054 0.810853 

JZC-7 -2.42199 3.831441 … -9.51197 -0.07321 

JZC-8 0.206047 3.962412 … -11.315 -1.16715 

JZC-9 4.127991 -0.74615 … -23.1811 -4.11265 

JZC-10 -1.59946 5.908677 … -12.4169 -1.17412 

JZC-11 1.882193 -0.33321 … -14.0631 -3.70532 

JZC-12 0.764841 6.804127 … -10.9767 -4.007 

JZC-13 1.849891 1.370996 … -10.9871 -3.19645 

JZC-14 1.529856 -1.55927 … -18.1177 -3.92226 

JZC-15 1.040933 5.873358 … -10.168 -5.32595 

JZC-16 -2.24769 3.658378 … -11.0843 -1.34151 

JZC-17 2.538042 9.659736 … -15.4411 -5.96477 

JZC-18 2.777096 5.215434 … -10.8554 -3.26038 

JZC-19 2.463235 1.940857 … -11.4866 -3.28527 

JZC-20 2.150861 5.490986 … -11.6875 -5.51498 

… … … … … … 

JZC-200 1.933628 -0.97394 … -15.7592 1.102077 

JZC-201 1.373614 -0.96338 … -15.2114 1.583534 

JZC-202 2.924865 -0.07886 … -16.6264 0.85126 

JZC-203 2.443275 0.066873 … -15.9823 0.956465 

JZC-204 1.504102 -0.41144 … -16.7607 -1.51201 

JZC-205 0.753028 -1.24318 … -15.5327 -1.08268 

JZC-206 0.251455 1.153448 … -11.1942 -4.29976 

JZC-207 2.07379 0.79079 … -16.0968 -1.29861 

JZC-208 4.07919 -0.05883 … -17.5966 -6.22719 

JZC-209 2.862992 -2.6815 … -15.6815 -2.94689 

JZC-210 3.941807 -0.89134 … -16.1428 -3.27097 

JZC-211 0.995919 -1.35669 … -10.0646 -0.18837 

JZC-212 0.543512 0.420206 … -12.2332 -1.92081 

JZC-213 0.441556 -2.1181 … -10.813 -0.61485 

JZC-214 1.962303 -1.28805 … -12.0048 -2.78796 
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Table 11 Mol2vec vectors (sample) of the compound dataset. (continue) 

Compound 

ID 

mol2vec-

000 

mol2vec-

001 

… mol2vec-

098 

mol2vec-

099 

JZC-215 1.804642 -0.24502 … -11.6566 -2.70939 

JZC-216 -0.96347 0.601184 … -12.1091 -1.5048 

JZC-217 3.851608 -1.00402 … -17.2319 -4.68065 

JZC-218 4.51144 -1.23726 … -15.6319 -5.49331 

JZC-219 0.584949 -1.96508 … -18.2691 -3.36905 

JZC-220 1.589696 -1.79965 … -12.7536 0.939225 

JZC-221 4.471495 -1.5167 … -17.8351 0.622057 

JZC-222 3.392971 0.383118 … -14.7918 0.488642 

JZC-223 0.523873 -1.97448 … -10.9889 1.403259 

JZC-224 0.405894 -2.65815 … -11.3846 1.325038 

JZC-225 1.608622 -1.57759 … -12.2974 -0.12924 

JZC-226 1.711285 -3.24568 … -12.5501 0.818426 

JZC-227 0.625473 0.9778 … -10.5508 -3.32771 

JZC-228 4.177768 0.695673 … -13.2371 -6.28058 

JZC-229 1.41407 0.945515 … -10.8648 -3.6641 

JZC-230 -0.80922 1.646897 … -6.58457 -1.83906 

JZC-231 0.373032 1.294561 … -12.2126 -2.32776 

JZC-232 3.273234 0.500488 … -13.0074 -2.38105 

JZC-233 2.781635 0.85577 … -15.0331 -1.36858 

JZC-234 -0.82061 1.95022 … -8.89985 -0.25377 

JZC-235 1.014053 -2.17394 … -17.5744 -0.21666 

Note. The file location of Mol2vec 100 vectors for the entire compound dataset:  

~atao/Desktop/test_folder/machine_learning_test/deepchem_test/zebrafish/dataset_mol2v

ec.csv 
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Appendix C 

Table 12 Molecular descriptors (sample) generated by Schrodinger.  

  

Compound 

ID 

i_desc_Ato

m_Count 

i_desc_Ato

ms_in_Rin

g_System 

… r_qp_mol_

MW 

r_qp_volu

me 

JZC-1 23 18 … 373.208 1009.651 

JZC-2 23 15 … 395.23 991.289 

JZC-3 22 18 … 356.178 901.643 

JZC-4 20 18 … 327.18 851.594 

JZC-5 32 23 … 451.585 1426.204 

JZC-6 25 17 … 382.249 1103.723 

JZC-7 26 21 … 345.363 1104.382 

JZC-8 26 21 … 344.375 1110.223 

JZC-9 27 15 … 370.453 1185.888 

JZC-10 33 23 … 486.319 1356.429 

JZC-11 26 17 … 371.456 1182.622 

JZC-12 22 18 … 293.281 876.424 

JZC-13 25 15 … 345.348 1079.764 

JZC-14 37 27 … 506.6 1612.2 

JZC-15 25 20 … 371.222 996.834 

JZC-16 27 21 … 360.374 1144.456 

JZC-17 28 20 … 381.406 1193.389 

JZC-18 18 14 … 241.249 774.405 

JZC-19 20 15 … 267.33 931.35 

JZC-20 27 20 … 362.384 1062.471 

… … … … … … 

JZC-200 26 17 … 361.375 1111.092 

JZC-201 25 17 … 365.794 1062.436 

JZC-202 35 23 … 555.247 1362.67 

JZC-203 36 23 … 569.274 1435.35 

JZC-204 27 17 … 403.267 1215.49 

JZC-205 31 21 … 440.931 1418.291 

JZC-206 30 11 … 426.438 1369.348 

JZC-207 25 11 … 350.367 1126.244 

JZC-208 24 11 … 348.831 1115.107 

JZC-209 20 11 … 292.724 904.777 

JZC-210 27 16 … 407.255 1200.235 

JZC-211 24 17 … 346.816 1060.46 

JZC-212 22 11 … 320.778 1016.928 

JZC-213 23 11 … 355.223 1060.872 
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Table 12 Molecular descriptors (sample) generated by Schrodinger. (continue) 

Compound 

ID 

i_desc_Ato

m_Count 

i_desc_Ato

ms_in_Rin

g_System 

… r_qp_mol_

MW 

r_qp_volu

me 

JZC-214 26 16 … 393.229 1076.251 

JZC-215 29 11 … 462.35 1278.278 

JZC-216 31 16 … 488.388 1405.014 

JZC-217 31 11 … 444.428 1331.312 

JZC-218 20 11 … 337.175 906.961 

JZC-219 24 11 … 349.776 1053.53 

JZC-220 23 14 … 314.343 1032.161 

JZC-221 20 11 … 341.139 856.693 

JZC-222 21 11 … 298.224 834.279 

JZC-223 22 11 … 300.36 1027.741 

JZC-224 23 16 … 336.78 1007.089 

JZC-225 24 18 … 341.387 1060.559 

JZC-226 26 18 … 368.453 1199.643 

JZC-227 25 18 … 355.414 1118.6 

JZC-228 19 18 … 248.287 848.765 

JZC-229 27 23 … 356.429 1177.296 

JZC-230 24 17 … 322.412 1106.751 

JZC-231 25 17 … 336.439 1158.086 

JZC-232 22 17 … 334.207 990.418 

JZC-233 32 22 … 437.519 1404.898 

Note. The file location of molecular descriptors for the entire compound dataset:  

~atao/Desktop/test_folder/machine_learning_test/deepchem_test/zebrafish/dataset_descri

ptors.csv 
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Appendix D 

Figure of Y-Scramble Function for Machine Learning 

 

Figure 48 Figure of y-scramble function for machine learning. 

The file location of Python script for y-scramble function:  

~atao/Desktop/test_folder/machine_learning_test/deepchem_test/zebrafish/O20_datasets

_scramble.py 
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Appendix E 

Equations and Derivations for Confusion Matrix 

𝑇𝑃𝑅 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

Equation 1 Sensitivity, recall, hit rate, or true positive rate (TPR).  

 

𝑇𝑁𝑅 =
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
 

Equation 2 Specificity, selectivity, or true negative rate (TNR).  

 

𝑃𝑃𝑉 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

Equation 3 Precision or positive predictive value (PPV).  

 

𝑁𝑃𝑉 =
𝑇𝑁

𝑇𝑁 + 𝐹𝑁
 

Equation 4 Negative predictive value (NPV).  
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Equations and Derivations for Confusion Matrix 

(continue) 

𝐴𝐶𝐶 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 

Equation 5 Accuracy (ACC).  

 

𝑀𝐶𝐶 =
𝑇𝑃 × 𝑇𝑁 − 𝐹𝑃 × 𝐹𝑁

√(𝑇𝑃 + 𝐹𝑃)(𝑇𝑃 + 𝐹𝑁)(𝑇𝑁 + 𝐹𝑃)(𝑇𝑁 + 𝐹𝑁)
 

Equation 6 Matthews correlation coefficient (MCC).  
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Appendix F 

The 3D Structures of C. sordellii Mcs1 

 



167 

 

Figure 49 3D structures of C. sordellii Mcs1 (A) Mcs1 aligned with S. aureus aureolysin. 

C. sordellii Mcs1 (purple), Staphylococcus aureus aureolysin crystal structure 1BQB 

(cyan), zinc ion (silver), calcium ions (brown). Homology modeling was performed using 

PRIME. (B) Superimposition of the most open and the most closed conformations of 

Mcs1 extracted from MD simulations. Open cleft conformation (Mcs1: white solid 

surface, Glu113-Arg227: green solid surface) and closed cleft conformation (Mcs1: 

purple transparent surface; Glu113-Arg227: cyan solid surface). In the closed cleft 

conformation, Glu113-Arg227 interactions (cyan) completely block access to Mcs1 zinc 

cleavage site.  
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Appendix G 

VCAM-1 Amino Acid Sequence Analysis 

 

Figure 50 VCAM-1 amino acid sequence. The yellow Pac-man represents Mcs1. Mcs1 

cleaves VCAM-1 at Arg381 of the D4D5 domain. 
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Appendix H 

Transparent View of Mcs1 and VCAM-1 Docking Complex 

 

Figure 51 Transparent front view of the best docking result of Mcs1 and VCAM-1. Blue 

residue represents Arg381 of VCAM-1, red residues represent Glu113-Arg227 gate of 

Mcs1, and silver ball represents zinc ion of Mcs1. 
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Appendix I 

The Electrostatic State of Mcs1 and VCAM-1 Docking Complex 

 

Figure 52 Electrostatic potential surface of Mcs1 and VCAM-1 docking complex.  
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Appendix J 

Table 13 ROC-AUC of DUD benchmark test results. 

 Morgan 3D Glide 

HTVS 

Glide 

SP 

Vina SMINA 23M 

Combo 

3M 

Combo 

2M 

Combo 

ace 0.90 0.68 0.50 0.47 0.44 0.47 0.85 0.66 0.85 

ache 0.79 0.75 0.64 0.61 0.67 0.65 0.78 0.75 0.78 

ada 0.53 0.75 0.40 0.67 0.51 0.61 0.66 0.74 0.60 

alr2 0.53 0.45 0.80 0.68 0.69 0.69 0.53 0.50 0.55 

ampc 0.89 0.86 0.42 0.40 0.29 0.45 0.89 0.84 0.88 

ar 0.72 0.83 0.90 0.86 0.78 0.78 0.84 0.85 0.81 

cdk2 0.49 0.71 0.64 0.71 0.60 0.62 0.71 0.76 0.60 

comt 0.87 0.28 0.71 0.67 0.52 0.56 0.65 0.33 0.76 

cox1 0.58 0.57 0.84 0.73 0.72 0.63 0.57 0.56 0.59 

cox2 0.90 0.95 0.91 0.92 0.77 0.89 0.95 0.95 0.94 

dhfr 0.75 0.87 0.59 0.65 0.63 0.66 0.83 0.83 0.73 

egfr 0.97 0.96 0.70 0.81 0.65 0.61 0.98 0.96 0.98 

er_agon

ist 

0.91 0.93 0.90 0.91 0.81 0.85 0.96 0.93 0.93 

er_anta

gonist 

0.88 0.96 0.90 0.73 0.73 0.72 0.94 0.95 0.90 

fgfr1 0.58 0.59 0.55 0.50 0.44 0.43 0.57 0.55 0.53 

fxa 0.75 0.38 0.72 0.75 0.61 0.64 0.59 0.40 0.65 

gart 0.93 0.45 0.66 0.89 0.69 0.76 0.89 0.55 0.90 

gpb 0.91 0.93 0.73 0.76 0.46 0.62 0.93 0.93 0.91 

gr 0.63 0.74 0.78 0.73 0.49 0.50 0.63 0.65 0.56 

hivpr 0.51 0.50 0.50 0.76 0.67 0.75 0.49 0.50 0.49 

hivrt 0.59 0.66 0.81 0.75 0.64 0.65 0.67 0.69 0.67 

hmga 0.95 0.93 0.89 0.84 0.48 0.86 0.96 0.97 0.97 

hsp90 0.71 0.81 0.59 0.75 0.54 0.58 0.82 0.86 0.81 

inha 0.72 0.73 0.59 0.63 0.48 0.52 0.71 0.71 0.70 

mr 0.89 0.85 0.95 0.98 0.85 0.81 0.85 0.82 0.84 

na 0.95 0.88 0.87 0.93 0.33 0.46 0.96 0.87 0.95 

p38 0.27 0.54 0.52 0.62 0.58 0.57 0.36 0.58 0.35 

parp 0.50 0.56 0.89 0.91 0.73 0.70 0.58 0.59 0.61 

pde5 0.48 0.59 0.79 0.73 0.57 0.63 0.52 0.60 0.52 

pdgfrb 0.50 0.35 0.35 0.28 0.29 0.30 0.45 0.33 0.48 

pnp 0.99 0.87 0.83 0.90 0.37 0.56 0.96 0.85 0.94 

ppar 0.96 0.77 0.51 0.79 0.72 0.81 0.98 0.74 0.97 

pr 0.39 0.58 0.60 0.50 0.52 0.47 0.42 0.54 0.41 

rxr 0.99 0.97 0.93 0.95 0.94 0.94 0.99 0.98 0.99 

sahh 0.97 0.98 0.84 0.92 0.73 0.79 0.98 0.98 0.98 
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Table 13 ROC-AUC of DUD benchmark test results. (continue) 

 

 

  

 Morgan 3D Glide 

HTVS 

Glide 

SP 

Vina SMINA 23M 

Combo 

3M 

Combo 

2M 

Combo 

Thromb

in 

0.80 0.58 0.78 0.88 0.53 0.70 0.77 0.54 0.76 

tk 0.89 0.84 0.69 0.90 0.59 0.63 0.89 0.85 0.89 

trypsin 0.70 0.43 0.75 0.94 0.40 0.74 0.75 0.53 0.74 

vegfr2 0.21 0.55 0.66 0.68 0.55 0.61 0.35 0.57 0.30 

src 0.62 0.52 0.74 0.85 0.70 0.73 0.58 0.50 0.61 
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Appendix K 

Table 14 Enrichment of DUD benchmark test results (Top 10). 

 Morgan 3D Glide 

HTVS 

Glide 

SP 

Vina SMINA 23M 

Combo 

3M 

Combo 

2M 

Combo 

ace 0.9 0.7 0.1 0.2 0.2 0.2 0.8 0.7 0.9 

ache 1 1 0 0 0.3 0.1 1 0.9 1 

ada 0.1 0.2 0 0.4 0 0.3 0.2 0.2 0.1 

alr2 0.1 0.1 0.2 0.3 0.2 0.1 0.1 0.1 0.1 

ampc 1 0.8 0 0 0 0 1 0.8 1 

ar 0.8 0.9 0.8 0.6 1 0.9 0.9 0.9 0.8 

cdk2 0.4 0.7 0.7 0.2 0.3 0.3 0.4 0.7 0.4 

comt 0.1 0.2 0.2 0 0.2 0.3 0.3 0.2 0.3 

cox1 0.6 0.5 0.4 0 0.3 0.1 0.6 0.6 0.6 

cox2 1 1 0.9 0.8 0.7 0.8 1 1 1 

dhfr 0.8 0.8 0 0 0.1 0 0.8 0.8 0.8 

egfr 1 1 0.6 0.7 0 0 1 1 1 

er_agon

ist 0.4 0.8 0.7 0.5 0.5 0.6 0.6 0.7 0.5 

er_anta

gonist 0.5 0.3 0.4 0.2 0.4 0.6 0.6 0.3 0.6 

fgfr1 0.5 0.4 0 0.9 0 0 0.6 0.3 0.5 

fxa 0.5 0.6 0.3 0.6 0 0.1 0.5 0.5 0.4 

gart 0.2 0.2 0.5 0.4 0 0 0.3 0.1 0.3 

gpb 0.8 1 0.3 0 0 0 0.9 1 0.9 

gr 1 0.8 0.6 0.5 0.7 0.6 0.8 0.8 0.8 

hivpr 0.1 0 0.2 0.8 0 0.1 0.3 0.1 0.3 

hivrt 0.7 0.6 0.7 0.6 0.3 0.3 0.8 0.6 0.7 

hmga 1 1 1 1 0.2 0.1 1 1 1 

hsp90 0.9 0.8 0 0.1 0 0 0.9 0.5 0.9 

inha 1 1 0.6 1 0.6 0.8 1 1 1 

mr 0.4 0.7 0.8 0.7 0.8 0.7 0.5 0.7 0.4 

na 0.4 0.7 0.8 0.8 0 0 0.5 0.8 0.4 

p38 1 0.8 0.1 0 0 0 1 0.9 1 

parp 0.1 0.4 0.7 0.6 0.2 0.2 0.1 0.6 0.1 

pde5 0.6 0.5 0.6 0.6 0.1 0.2 0.7 0.6 0.7 

pdgfrb 1 0 0 0.8 0.9 0.9 1 0 1 

pnp 0.7 0.7 0.3 0.1 0 0 0.9 0.6 0.8 

ppar 1 0.2 0.1 0.7 0.2 0.2 1 0.2 1 

pr 0.7 0.4 0.1 0.2 0.1 0.1 0.6 0.4 0.6 

rxr 0.5 0.7 0.7 0.8 0.8 0.8 0.8 0.8 0.7 

sahh 0.9 0.9 0.3 0.2 0.2 0.2 0.8 0.9 0.8 
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Table 14 Enrichment of DUD benchmark test results (Top 10). (continue) 

 Morgan 3D Glide 

HTVS 

Glide 

SP 

Vina SMINA 23M 

Combo 

3M 

Combo 

2M 

Combo 

thrombi

n 0.2 0 0.2 0.5 0 0 0.1 0 0.1 

tk 0.2 0.4 0.1 0.1 0 0 0.4 0.4 0.3 

trypsin 0 0.1 0.5 0.3 0 0.2 0 0.1 0 

vegfr2 0.2 0.2 0.4 0.5 0.4 0.6 0.2 0.3 0.2 

src 0.2 0 0.6 0.8 0 0.2 0.2 0 0.3 
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Appendix L 

Table 15 Enrichment of DUD benchmark test results (Top 100). 

 Morgan 3D Glide 

HTVS 

Glide 

SP 

Vina SMINA 23M 

Combo 

3M 

Combo 

2M 

Combo 

ace 0.55 0.29 0.10 0.10 0.10 0.16 0.55 0.31 0.55 

ache 0.62 0.39 0.08 0.05 0.17 0.12 0.61 0.39 0.62 

ada 0.09 0.35 0.13 0.48 0.13 0.39 0.30 0.39 0.09 

alr2 0.15 0.12 0.35 0.35 0.46 0.42 0.08 0.19 0.15 

ampc 0.86 0.67 0.10 0.05 0.05 0.10 0.86 0.67 0.86 

ar 0.39 0.45 0.39 0.30 0.42 0.43 0.42 0.43 0.38 

cdk2 0.20 0.38 0.30 0.40 0.28 0.20 0.34 0.40 0.28 

comt 0.82 0.18 0.36 0.45 0.27 0.36 0.45 0.27 0.73 

cox1 0.40 0.32 0.48 0.44 0.52 0.52 0.32 0.36 0.36 

cox2 0.98 0.98 0.78 0.72 0.47 0.70 0.98 0.98 0.98 

dhfr 0.43 0.64 0.02 0.03 0.14 0.06 0.62 0.62 0.41 

egfr 0.98 0.95 0.53 0.45 0.13 0.13 0.97 0.94 0.96 

er_agon

ist 0.60 0.76 0.60 0.57 0.51 0.51 0.81 0.78 0.70 

er_anta

gonist 0.46 0.79 0.54 0.56 0.18 0.36 0.79 0.87 0.59 

fgfr1 0.18 0.12 0.02 0.19 0.01 0.00 0.19 0.12 0.19 

fxa 0.11 0.06 0.21 0.40 0.02 0.07 0.09 0.07 0.12 

gart 0.86 0.33 0.48 0.71 0.05 0.29 0.67 0.33 0.81 

gpb 0.50 0.81 0.21 0.21 0.08 0.17 0.83 0.83 0.63 

gr 0.17 0.21 0.15 0.09 0.10 0.12 0.26 0.21 0.22 

hivpr 0.13 0.08 0.08 0.38 0.17 0.26 0.15 0.11 0.15 

hivrt 0.20 0.25 0.40 0.40 0.20 0.18 0.28 0.30 0.23 

hmga 0.94 0.80 0.66 0.60 0.06 0.43 0.94 0.86 0.94 

hsp90 0.46 0.54 0.21 0.29 0.04 0.17 0.46 0.58 0.46 

inha 0.54 0.46 0.15 0.29 0.24 0.28 0.54 0.40 0.54 

mr 0.87 0.80 0.67 0.73 0.80 0.80 0.87 0.80 0.80 

na 0.82 0.51 0.47 0.59 0.02 0.04 0.76 0.49 0.76 

p38 0.30 0.26 0.12 0.01 0.07 0.07 0.32 0.24 0.30 

parp 0.09 0.39 0.73 0.64 0.30 0.15 0.24 0.39 0.06 

pde5 0.20 0.16 0.31 0.31 0.18 0.18 0.20 0.18 0.20 

pdgfrb 0.19 0.00 0.01 0.10 0.11 0.11 0.13 0.00 0.15 

pnp 1.00 0.84 0.28 0.52 0.00 0.04 0.96 0.68 0.84 

ppar 0.90 0.14 0.02 0.33 0.11 0.32 0.85 0.15 0.84 

pr 0.30 0.22 0.15 0.07 0.07 0.07 0.22 0.19 0.22 

rxr 1.00 0.90 0.70 0.80 0.85 0.85 1.00 0.95 1.00 

sahh 0.88 0.91 0.73 0.76 0.27 0.48 0.91 0.88 0.91 
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Table 15 Enrichment of DUD benchmark test results (Top 100). (continue) 

 

 

  

 Morgan 3D Glide 

HTVS 

Glide 

SP 

Vina SMINA 23M 

Combo 

3M 

Combo 

2M 

Combo 

Thromb

in 0.42 0.05 0.26 0.55 0.00 0.22 0.22 0.03 0.28 

tk 0.73 0.45 0.32 0.73 0.09 0.18 0.64 0.50 0.68 

trypsin 0.09 0.07 0.43 0.52 0.00 0.30 0.05 0.07 0.23 

vegfr2 0.04 0.12 0.26 0.27 0.12 0.16 0.07 0.15 0.11 

src 0.24 0.03 0.25 0.53 0.07 0.14 0.21 0.02 0.20 
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Appendix M 

Table 16 Mcs1 Docking Results (Top 40). 

NSC 
MVD GScore Emodel Vina Ranking 

Sum 

Total 

Ranking Original Open Closed Original Open Closed Original Open Closed Original Open Closed 

319990 3 14 4 14 61 1 5 7 1 5 4 5 124 1 

80731 7 19 31 32 23 47 4 3 11 8 10 14 209 2 

80735 4 30 10 132 34 72 9 4 4 19 7 8 333 3 

319994 19 59 43 3 104 6 15 29 7 7 67 36 395 4 

37553 32 6 11 54 225 23 8 14 17 3 2 3 398 5 

654260 173 131 28 8 135 45 1 5 5 43 43 35 652 6 

204232 29 12 41 272 198 20 19 13 27 24 11 22 688 7 

227186 69 481 22 13 54 49 2 1 6 11 5 13 726 8 

639174 28 71 107 22 315 43 14 46 12 99 73 25 855 9 

60339 70 128 14 143 213 102 17 15 23 45 51 59 880 10 

61610 2 4 1 94 712 58 7 11 2 1 1 2 895 11 

5856 9 143 40 173 268 63 22 22 16 33 35 95 919 12 

335979 15 53 8 149 43 83 39 23 10 189 231 110 953 13 

67436 93 322 17 104 269 53 3 12 3 119 33 49 1077 14 

177365 14 43 56 58 272 578 11 21 30 16 40 50 1189 15 

320218 25 21 30 297 211 348 101 42 39 20 55 20 1209 16 

134137 110 97 208 7 5 194 63 38 132 104 219 47 1224 17 

341196 46 41 120 5 110 270 13 35 37 136 187 231 1231 18 

73735 147 73 484 18 26 180 36 16 70 102 32 68 1252 19 

71881 135 179 96 127 112 96 121 155 56 57 84 71 1289 20 

202386 64 34 29 268 326 471 18 9 9 12 19 92 1351 21 

91529 16 500 9 1 9 725 6 2 14 29 56 7 1374 22 

122819 1 9 3 62 353 763 10 44 31 34 50 16 1376 23 

133075 178 168 64 100 356 192 47 63 36 55 143 86 1488 24 

146771 18 1 26 340 540 419 29 28 25 6 25 34 1491 25 

46385 61 16 21 141 307 66 43 60 24 353 323 76 1491 26 

81750 119 194 36 17 8 299 78 41 140 225 235 142 1534 27 

143491 209 231 13 196 403 361 16 33 20 30 49 1 1562 28 

280594 12 47 16 11 136 674 21 107 38 283 203 66 1614 29 

311153 38 29 89 342 367 375 115 94 79 58 17 23 1626 30 

146554 232 232 505 34 105 92 33 19 64 85 299 89 1789 31 

58904 299 158 77 503 333 56 27 40 19 44 83 152 1791 32 

63680 97 215 137 193 443 357 53 54 28 46 119 72 1814 33 

164435 118 115 333 90 146 382 105 59 72 87 216 183 1906 34 

329065 34 77 58 293 639 540 44 96 91 9 31 42 1954 35 

50650 273 180 34 409 347 44 97 308 34 120 103 38 1987 36 
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Table 16 Mcs1 Docking Results (Top 40). (continue) 

 

 

  

NSC 
MVD GScore Emodel Vina Ranking 

Sum 

Total 

Ranking Original Open Closed Original Open Closed Original Open Closed Original Open Closed 

329255 121 296 114 76 108 229 81 70 65 166 348 348 2022 38 

128606 114 88 203 712 89 505 147 30 111 25 12 41 2077 39 

11668 56 23 6 443 258 557 214 123 69 140 153 45 2087 40 

329249 259 257 349 95 175 313 82 68 54 56 180 109 1997 37 
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Appendix N 

Figure of Mcs1 FRET Experimental Results (Top 40) 

 

Figure 53 Mcs1 FRET Experimental Results (Top 40). 

 


