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A Glance at Augmented Reality in Robotics 

Thesis Abstract—Idaho State University (2020) 

This thesis details the theory and implementation of software on the augmented reality 

platform Microsoft HoloLens® which communicates and interacts with ABB robotic systems. 

Recent advancements in augmented reality technology have provided new unrealized potential 

for use in industrial robotic development. This project uses the exposure of ABB’s controller 

information by HTTP web requests and displays the information in a specially built application 

in HoloLens®. System information is displayed to the user on a virtual panel, and a virtual robot 

model with path targets can be displayed on the actual robot to create a new intuitive 

development environment. Though the project is in its infant stages and has room for many 

improvements, the realized concepts from this project and further avenues of development show 

great promise. 
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1 Introduction 

Objective 

The objective of this work is to describe the foray into developing software to 

communicate between an AR headset and an ABB industrial robot controller. Some of the topics 

introduced and presented in this thesis deal with the programming of AR headsets and their 

communication with robot control hard and software, as well as capabilities and impact of such 

systems in industrial settings. 

Augmented Reality 

The world of virtual reality and augmented reality is a young one, with computational 

equipment only recently becoming powerful and compact enough to bring them to practical use.  

Virtual Reality (VR) is a concept that brings computer-rendered graphics a new 

experience by allowing the user to view the virtual surroundings as if they were truly in that 

world. Augmented Reality (AR), by contrast, brings some virtual elements into the real world 

that the user is viewing, superimposing those elements on the physical surroundings.  

AR provides an ideal tool to join the experiences of the physical world and electronic 

data in a way never-before possible. This technology has great potential in a variety of settings, 

including automated manufacturing. 

Robotics in Industry 4.0 

Robots are at the heart of the modern manufacturing plant, and the advances of Industry 

4.0 bring about methods of robotic implementation that a short time ago would have seemed 

overwhelming. 

Industry 4.0 is the changes brought about to the manufacturing world due to the fourth 

industrial revolution, which took place in the last decade, [1]. It takes advantage of recent 

concepts such as the Internet of Things (IoT) and applies them in an industrial setting. 
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The increasing ability for individual manufacturing components to take and transmit data, 

and act according to data received by other components, is a phenomenon that is referred to as 

the Industrial Internet of Things (IIoT). This trend allows for much more complex and nuanced 

control of automated processes than previously attainable. 

This interconnectedness of manufacturing devices allows unprecedented automation of 

record keeping, and access to virtually unlimited statistics about a given manufacturing process. 

The advance of processing technology such as powerful PLCs and machine learning algorithms 

across the world has led to widespread use of smart automation processes, as the machinery can 

now make complex decisions without human intervention, [1]. 

Combination of Robotics and AR Technology 

Modern industrial robots are typically controlled and monitored via software on a 

computer nearby the system. These computers provide useful and practical interfaces to control 

robot operations; however, the connection between the planned robot workspaces in the software 

and the robot’s physical environment can be unintuitive. 

The burgeoning world of augmented reality presents a logical combination with 

manufacturing robotics. AR can provide a new tool to developers and customers of industrial 

systems.  
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2  State of the Art 

There is a multitude of solutions currently on the market for automated manufacturing. 

Numerous companies compete to provide products and services for this demand, such as ABB, 

Siemens, Rockwell Automation, Eaton, Honeywell, and Mitsubishi, just to name a few. In 

addition, tech-savvy prospective producers can venture into open-source software for running 

their custom-built robots, such as Robot Operating System (ROS). 

RobotStudio® 

This work focuses on robots, controllers, and software produced by ABB. The company’s 

flagship robotic software is RobotStudio®, a powerful program with wide-ranging capabilities, 

[2]. It facilitates the design of robotic systems by furnishing ready-to-use virtual versions of the 

entire catalog of ABB robots. It allows the setup of a simulated workspace for the robot and 

provides straightforward planning of the robot’s path during each production cycle. It also 

provides direct access to write and edit controllers’ code. It has capabilities to interface with 

Computer-Aided Design (CAD) software, such as SolidWorks, [3]. 

RobotStudio® also has a feature allowing the robotic systems built within the program to 

be viewed from a VR headset. RobotStudio® provides simulation of its virtual robot following 

the designated paths, and this simulation can be viewed from a VR headset to better feel the scale 

and operation of a production cycle, [3]. 

As powerful as RobotStudio® is, there are issues imposed by its scope and the hardware it 

uses. The software currently has no implementation for AR glasses, a useful new tool as 

previously stated. This second issue is the focus of this thesis. Ideally, the AR software would 

ultimately feel natural to any developer already familiar with RobotStudio®, [3].  

AR Hardware 

There are multiple AR platforms developed by companies. For example, Microsoft™ 

HoloLens® and Google™ Glass are two competing projects to build state-of-the-art eyewear for 

commercial use. Additionally, Leap Motion develops Project North Star, a device which has a 
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fully 3D printable frame, and has a much lower cost than the products from Google and 

Microsoft, at the expense of developmental support.  
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3 Proposed Approach 

The main goal of this project is to provide an example of the potential of AR technology 

applied to the world of industrial robotics. The result is an application that can communicate with 

an ABB system to provide developers and customers a new way to interface with their 

production technology. 

Microsoft HoloLens® 

The project’s hardware of choice is Microsoft’s AR eyewear product, HoloLens®. It has 

numerous advantages that facilitate development of specialized software. HoloLens® has a 

simple group of predefined controls, and fully functional motion tracking algorithms allowing 

developers to focus on their products [4]. 

In the center of the user’s field of vision is a white dot called the “gaze,” which is 

analogous to the cursor on a regular computer. When the user places the gaze on something that 

they wish to interact with, there are a variety of hand gestures; a simple click activates any 

button. Clicking and dragging with one hand can move objects around in the virtual space and 

doing so with two hands also allows rotation and scaling of objects. Finally, if one needs to exit 

the program and return to the main menu, a bloom gesture can be done from any application, [4]. 

HoloLens® uses a range of different sensors to calculate the movements of the headset 

within its real surroundings, using algorithms that are known as Simultaneous Location And 

Mapping (SLAM) algorithms. This procedure allows developers to place objects in their 

application and have those objects stay in place relative to the physical surroundings, giving the 

user the impression that they can move freely in this hybrid world, [4]. 

Since HoloLens® is an active commercial development, it is likely that programs 

developed for the current HoloLens® should be relatively easily ported to HoloLens® 2 and 

further versions of the eyewear. 
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Experimental Setup 

The final product should be able to handle any system the user needs, but for 

development and testing, the proposed system consists of a single ABB brand IRB 120™ six-

degree-of-freedom robot, which is attached to an aluminum table surrounded by an aluminum 

cage for safety. Mounted under the table is an IRC5™ Controller connected to the robot above, 

[5]. 

ABB’s controllers come with a teach pendant called FlexPendant™. The FlexPendant™ is 

the most direct route to editing a robot controller’s program. Any other smart equipment trying to 

modify the program must be given explicit permission through the FlexPendant™, [5]. 

Either the FlexPendant™ or RobotStudio® can edit the controller’s code, which is scripted 

in a high-level language called RAPID™, [3]. The controllers code is made up of structures 

called tasks, which are further subdivided into modules containing symbols and routines.  
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4 Mathematics of Robotics 

Position vectors 

Positions are represented by three-dimensional vectors showing the position in the basis 

of some coordinate frame. Relative position between two objects can be found by adding and 

subtracting these vectors from each other, [6]. 

It should be noted that these position vectors are closed under addition and scalar 

multiplication, as stated in Equations (4-1) and (4-2). Successive positions can be added to other 

positions for translations between each. Scalar multiplication (as the name implies) can scale any 

vector to any size. Vector addition and scalar multiplication are both commutative. 

 ∀𝑢⃗ , 𝑣 ∈ 𝑊: 𝑢⃗ + 𝑣 ∈ 𝑊 

 

(4-1) 

 ∀𝑢⃗ ∈ 𝑊, ∀𝑐 ∈ ℝ: 𝑐𝑢⃗ ∈ 𝑊 (4-2) 

 

Rotation matrices and quaternions 

Rotation matrices 

There are a couple computational approaches to rotation. The first is a 3-by-3 rotation 

matrix that encodes the three basis unit vectors given by the current rotated coordinate frame. 

These rotated unit vectors are the columns of the rotation matrix. This matrix is therefore an 

orthonormal skew-symmetric matrix that can be premultiplied to any position vector to rotate 

that vector correspondingly, [7]. 

 
𝑹𝑥(𝜃) ≔ [

1 0 0
0 cos⁡(𝜃) −sin⁡(𝜃)
0 sin⁡(𝜃) cos⁡(𝜃)

] 

 

(4-3) 

 𝑹𝑦(𝜃) ≔ [
cos⁡(𝜃) 0 sin⁡(𝜃)

0 1 0
−sin⁡(𝜃) 0 cos⁡(𝜃)

] (4-4) 
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𝑹𝑧(𝜃) ≔ [

cos(𝜃) − sin(𝜃) 0
sin(𝜃) cos(𝜃) 0

0 0 1

] 

 

(4-5) 

 𝑝 𝑟𝑜𝑡𝑎𝑡𝑒𝑑 = 𝑹𝑝 𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 (4-6) 

 

Just as rotations can be multiplied onto vectors  to rotate them, they can be premultiplied 

to another rotation matrix. Since these are matrices, their multiplication is generally not 

commutative. The matrix product resulting is the second rotation factor, followed by the first. A 

chain of rotations can be made in this manner, with the right-most factor being the first rotation, 

with each next premultiplied matrix being next rotation, [7]. 

 

𝑹𝑡𝑜𝑡𝑎𝑙 = ∏𝑹𝑖

↶
𝑛

𝑖=1

= 𝑹𝑛𝑹𝑛−1 …𝑹2𝑹1 (4-7) 

 

A rotation matrix can be inverted to give the opposite rotation from the original matrix. 

Since the rotation matrix is an orthonormal skew-symmetric matrix, a rotation matrix will always 

be nonsingular, and its inverse is its transpose. A rotation pre- or postmultiplied by its inverse 

rotation will give the identity matrix, which signifies no net rotation, [6]. 

 𝑹𝑹−1 = 𝑹−1𝑹 = 𝑰⁡(𝑁𝑜⁡𝑟𝑜𝑡𝑎𝑡𝑖𝑜𝑛) (4-8) 

 

Quaternions 

The other typical computational representation of a rotation is the quaternion. It is an 

extension of complex numbers to include three different imaginary dimensions. It encodes both 

some axis of rotation away from the parent orientation, and the angle of rotation about that axis. 

The quaternion only has four elements, and only has three-degrees of freedom, since the 

quaternion has the constraint of having an absolute value of one, [7]. 
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𝑢⃗ = [

𝑢𝑥

𝑢𝑦

𝑢𝑧

] :⁡⁡⁡⁡𝑅𝑜𝑡𝑎𝑡𝑖𝑜𝑛⁡𝑎𝑥𝑖𝑠 

𝑖2 = 𝑗2 = 𝑘2 = 𝑖𝑗𝑘 = −1:⁡⁡⁡𝐼𝑚𝑎𝑔𝑖𝑛𝑎𝑟𝑦⁡𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡𝑠 

 

 

 

𝑞 ≔ 𝑒

𝜃
2
𝑢⃗⃗ ⋅[

𝑖
𝑗
𝑘
]

= cos (
𝜃

2
) + sin (

𝜃

2
) 𝑢⃗ ⋅ [

𝑖
𝑗
𝑘
] 

(4-9) 

 

Calculating the inverse of a quaternion, which is the opposite rotation just as it is with 

rotation matrices, is calculated by simply substituting −𝜃 for 𝜃, which negates all imaginary 

components of the quaternion. Also, like rotation matrices, pre- or postmultiplying a normal 

quaternion by its inverse yields the real number 1, corresponding to no rotation, [7]. 

 

𝑞−1 = 𝑒
−
𝜃
2
𝑢⃗⃗ ⋅[

𝑖
𝑗
𝑘
]

= cos (
𝜃

2
) − sin (

𝜃

2
) 𝑢⃗ ⋅ [

𝑖
𝑗
𝑘
] (4-10) 

 

These objects can be used to calculate the rotation of a point, but its calculation is 

somewhat less straight-forward compared to rotation matrices. The vector must be modified by 

using an inner product with a vector of the imaginary constants i, j, and k. The corresponding 

‘position quaternion’ has a real component of zero and is not bound by the typical normalization 

rule of quaternions. To find the rotated vector, the position quaternion is premultiplied by the 

rotation quaternion and postmultiplied by the inverse rotation. The quaternion product can then 

be returned to vector form by taking the coefficients of the three imaginary constants as 

respective elements, [7]. 

 
𝑝′ = 𝑝 ⋅ [

𝑖
𝑗
𝑘
] 

 

(4-11) 

 𝑝𝑟𝑜𝑡𝑎𝑡𝑒𝑑
′ = 𝑞𝑝′𝑞−1 (4-12) 
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Quaternions, like rotation matrices, can be premultiplied onto other quaternions to 

perform successive rotations. Using identities of products of the imaginary unit constants and 

multiplication of each right-most pair of quaternions, the single quaternion representing the 

result of the rotation sequence is achieved. 

 

𝑞𝑡𝑜𝑡𝑎𝑙 = ∏𝑞𝑖

↶
𝑛

𝑖=1

= 𝑞𝑛𝑞𝑛−1 …𝑞2𝑞1 

(4-13) 

 

Transformation Matrices 

A transformation matrix is a structure that combines a translation vector and a subsequent 

rotation matrix. It is a 4-by-4 matrix with its rotation matrix in the upper-left elements with zeros 

in the row below, and its translation vector in the top three elements of the right-most column 

with a one below, [6]. 

 

𝑻 = [𝑹 𝑡 

𝟎 1
] = [

𝑟𝑥𝑥 𝑟𝑥𝑦 𝑟𝑥𝑧 𝑡𝑥
𝑟𝑦𝑥 𝑟𝑦𝑦 𝑟𝑦𝑧 𝑡𝑦
𝑟𝑧𝑥 𝑟𝑧𝑦 𝑟𝑧𝑧 𝑡𝑧
0 0 0 1

] 

(4-14) 

 

Like rotation matrices, it can be premultiplied for successive combined transformations 

and inverted to give the opposite transformation. However, unlike them, the transformation 

matrix is not generally orthonormal or skew-symmetric due to its incorporation of the translation 

vector; thus, to find the inverse, one must manually implement a specialized inversion algorithm 

or resort to using numerical linear algebra methods. 

Comparison of methods 

The methods above all provide similar ways of calculating successive combined 

transformations, or separate positions and rotations, including rotations of points. The choice of 

which methods to use generally false to computational simplicity and performance, as well as 

compactness of data storage. The main methods for rotation computation are rotation matrices, 
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quaternions, and explicit angle-axis 4-vectors (like quaternions, but not discussed here). Rotation 

matrices and translation vectors could be further combined in transformation matrices, [8]. 

In most cases, quaternions proved the most efficient method of representing rotations, 

both in computation steps and data storage [8]. The data storage of both quaternions and angle-

axis structures is four elements (and can be reduced to three at the expense of computing the 

fourth for subsequent operations), but composing multiple rotations together is drastically more 

Table 1: Number of floats required to save a rotation in a specific form 

Representation Floats Comments 

Rotation Matrix 9  

Angle-axis 4 no precompute of sin θ or 1 - cos θ 

Angle-axis 6 precompute of sin θ or 1 - cos θ 

Quaternion 4  

 

Table 2: Operations required to convert between each rotation format 

Conversion Additions Multiplications Divisions Function 

Calls 

Comparisons 

Axis-angle 

to matrix 

13 15  2  

Matrix to 

axis-angle 

8 7 1 2  

Angle-axis 

to quaternion 

1 5 1 2  

Quaternion 

to angle-axis 

 4  2  

Quaternion 

to matrix 

12 12    

Matrix to 

quaternion 

6 5 1 1 1 or 3 
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efficient with quaternions. Quaternions are also under half the data size of rotation matrices (four 

numbers to nine) and compose rotations somewhat faster.  

The only case where quaternions are not ideal is when a position is being transformed, 

where a rotation matrix wins out. Fortunately, the conversion between quaternions and rotation 

matrices is relatively inexpensive, and that conversion followed by transformation via the 

resultant matrix is somewhat cheaper than direct rotation by quaternion. As a result, poses in 

most computer systems, including ABB’s robotic controllers, are implemented by a vector 

position and a separate quaternion rotation, [8]. 

Kinematic chain 

Most industrial robots, including the ones at the focus of this project, are six-degree-of-

freedom serial robots, meaning that each degree of freedom is represented by a joint attached to 

the previous one. If transformation matrices are used to attain this transformation, a simple chain 

of transformation matrices would give the pose of the end-effector, [6].  

With separate vectors and quaternions representing poses, however, the process is 

slightly different. Finding the rotation of the end-effector is simple, as the rotation of each link 

on the robot can be successively premultiplied on each other to get the total rotation. Finding the 

position, however, is slightly more complicated. Since all joints on this robot are revolute joints, 

each link has a vector of constant magnitude pointing from its base joint to its end joint. The 

direction of this vector is determined by its default configuration rotated by that link’s total 

Table 3: Operations required for a transformation of a vector with each rotation format. 

Representation Additions Multiplications Comparisons 

Matrix 6 9  

Axis-angle 12 18  

Quaternion 24 32 Using generic quaternion multiplies 

Quaternion 17 24 Using specialized quaternion 

multiplies 

Quaternion 18 21 Convert to matrix, then multiply 
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rotation from the base. Therefore, the end-effector’s position is given by the sum of those link 

vectors rotated by their corresponding global rotations, [6]. 

 

Kinematic calculation 

Forward Kinematics 

Forward kinematics is the process of taking a known set of robot coordinates, referred to 

as its configuration, and finding the resulting pose of the end-effector. The process of forward 

kinematics is a straight-forward one, as it is simply an addition of joint vectors and a 

composition of rotations to find the end-effector’s pose. Forward kinematics is useful when a 

robot is first constructed, as it can be used to find the reference vectors and orientations of the 

robot for later use in inverse kinematics, [6]. 

 𝑡 𝑡𝑜𝑡𝑎𝑙 = 𝑡 1 + 𝑹1𝑡 2 + 𝑹2𝑹1𝑡 3 + 𝑹3𝑹2𝑹1𝑡 4 + 𝑹4𝑹3𝑹2𝑹1𝑡 5 + 𝑹5𝑹4𝑹3𝑹2𝑹1𝑡 6

+ 𝑹6𝑹5𝑹4𝑹3𝑹2𝑹1𝑡 𝑡𝑜𝑜𝑙 

(4-15) 

 

Inverse Kinematics 

Since forward kinematics gets a pose from joint, predictably, inverse kinematics is the 

opposite function, taking a desired end-effector position and getting a set of joint variables that 

satisfies that position. As the objective of most robotic systems are targets in physical space, 

 
Figure 4-1:IRB 120 Wireframe 

showing the robot being animated 

and handled as a kinematic chain. 
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inverse kinematics is used much more in typical operation of robots. Typical numerical solvers 

treat this as a root-finding problem, with a function of one or more arguments evaluating to zero 

with a suitable selection of those arguments, [6]. 

 𝑡 1 + 𝑹1𝑡 2 + 𝑹2𝑹1𝑡 3 + 𝑹3𝑹2𝑹1𝑡 4 + 𝑹4𝑹3𝑹2𝑹1𝑡 5 + 𝑹5𝑹4𝑹3𝑹2𝑹1𝑡 6

+ 𝑹6𝑹5𝑹4𝑹3𝑹2𝑹1𝑡 𝑡𝑜𝑜𝑙 − 𝑡 𝑡𝑎𝑟𝑔𝑒𝑡 = 0⃗  

 

(4-16) 

 𝑹6𝑹5𝑹4𝑹3𝑹2𝑹1 − 𝑹𝑡𝑎𝑟𝑔𝑒𝑡 = 𝟎 (4-17) 

 

Chapter Summary 

This chapter discussed the mathematics that are involved in the poses and kinematic 

calculations of robotics. Three dimensional poses are composed of positions and rotations. 

Positions are described as a three-dimensional vector describing the position in millimeters with 

respect to a specific reference frame. Rotations are described as unit quaternions, a scalar 

numerical construct with a real component and three imaginary components, which encode a 

rotation axis and the angle of rotation about that axis. Robot joint configurations are stored as 

six-dimensional vectors representing the angle of each joint in degrees. 

Robot kinematics can be divided into forward kinematics, which transform a vector of 

joint angles into an axis pose, and inverse kinematics, which perform the opposite mapping. The 

kinematic calculations are not one-to-one, so a least-squares calculation can be done to find the 

closest inverse kinematic solution. Forward kinematics can initially be done by a large matrix 

equation to capture the reference pose and joint vectors of the robot. Inverse kinematics 

themselves can be performed by a numerical root finding method on matrix equations with terms 

obtained from the forward kinematics. 

These mathematical concepts are integral in the function of robots, including the ABB 

Robots focused on in this project. Recognizing how to transfer the poses between coordinate 

systems, such as between the RAPID™ and Unity® coordinate systems, is crucial for display of 

objects as done in this project.  
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5 IRB 120™ Operation Overview 

Safety 

Cage 

 The robot setup used during development of the application is enclosed by an aluminum 

cage with plexiglass panels allowing safe visibility into the cage. Industrial assemblies may or 

may not have safety cages built around the robot workspaces, so additional precautions may be 

necessary on a per-case basis. 

Force Sensors 

The robot is equipped with force sensors in its joints, which will deactivate any motion 

that would otherwise cause the robot to damage itself. 

Although the robot is sensitive enough to protect itself, most ABB robots, including the 

IRB 120™, are not able to prevent injury to external objects or humans. Therefore, care must be 

taken to remain clear of the robot’s workspace while it is active. 

Manual Mode and Automatic Mode 

When programming the robot’s movements for the first time, the robot will be in manual 

reduced speed mode, typically referred to as simply manual mode; in this mode the robot is 

limited to movement no faster than 250 mm/s, [5]. 

 
Figure 5-2: View from the right-front of the 

experimental robot setup 

 
Figure 5-1: Setup from the left side 
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Additionally, when moving the robot in manual mode, the operator must be holding the 

enabling device, a button on the FlexPendant™ meant to assure that the operator is fully aware of 

the current robot operation. The button must be depressed half-way, as either undepressed or 

fully depressed will not allow the robot to move. When the enabling device is not engaged while 

in manual mode, the words Guard Stop will appear at the top of the FlexPendant™ screen, [5]. 

The other primary operating mode is automatic mode. Here the operator does not have 

direct authority to change the system or the code in any direct way. However, the system can run 

at full speed and can be set to run and repeat continuously. The enabling device does not need to 

be depressed in automatic mode, as the workspace is assumed to be clear of any obstructions and 

personnel, and the scripted movements have already been defined and tested, [5]. 

Manual full-speed mode  can be thought of as an intermediate operating mode between 

the manual and automatic modes, available on some controllers. It has most of the fine control 

and abilities of the regular manual mode, but allows operation at full speed, and as such expects 

that external obstructions and personnel are safely away from its workspace. This mode is 

primarily meant for testing a system before proceeding to automatic mode, [5]. (Note: Manual 

full-speed mode is not available in the controller used in this test. ) 

Switches 

Emergency Stop Buttons 

There are emergency stop buttons on both the IRC5™ controller and the FlexPendant™, 

both being large red buttons. In the event of some failure or emergency near the robot system, 

this button can be used to immediately cease all operation, cutting power to all components 
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except the brake release circuits. The controller must be rebooted to resume operation after an 

emergency stop, [5]. 

 

On/Off switch 

The On/Off switch, as the name suggests, controls the power state of the system. It is a 

stiff rotating switch to protect against accidental toggling. When the system is first booting up, it 

will require several moments to load all software before the FlexPendant™ will show the main 

screen and any alerts, showing that the system is operational, [5]. 

 
Figure 5-4:IRC5 Controls. Clockwise from Top-Left; Manual-Auto 

Key, Emergency Stop Button, Motors-On Button, Brake Release 

 
Figure 5-3: FlexPendant™ Front and Back. 

A: Connector, B: Touch Screen, C: Emergency Stop Button, D: Joystick, E: USB Port, 

F: Three-Position Enabling Device (Guard Stop), G: Stylus Pen, H: Reset Button. 

Source: [5] 



18 

Manual/Auto Key 

There is a key on the controller that switches between manual and auto mode (and 

manual full-speed mode on some controllers). This key can be left in the controller for 

experimental setups like this or can be removed for safety and security purposes, [5].  

Motors On button 

The Motors On button allows the motors to be moved in auto mode. When automatic 

mode is first enabled, the motors will be switched off by default. This button must be pressed so 

that it is illuminated for automatic robot operation. Since, in manual mode, motor control is done 

through the FlexPendant™ this button becomes irrelevant, [5]. 

Brake Release 

The brake release button allows the robot to become limp and manually adjustable if it 

gets stuck in a certain position. Larger models of robots typically also have brake releases for 

individual joints. These individual switches can be found on the robot body if present, [5]. 

(CAUTION: The robot must be fully externally supported before the brake release is engaged; 

otherwise, the robot may fall and cause injury or equipment damage) 

Manual Operation 

Jogging 

Jogging the robot is a procedure that allows the operator to directly control the robot’s 

axes or end-effector pose by a joystick, allowing empirical definition of robotic elements in the 

controller’s script, [5]. 

Jogging requires the robot be in manual mode. To find the Jogging menu in the 

FlexPendant™ open the ABB menu and find Jogging in the left-hand column. 

In the left side of the Jogging menu, the is a variety of properties about the robot’s 

configuration, such as the current mechanical unit, motion mode, and various objects used to 

calculate the end-effectors current position and orientation. 

In the upper-right corner of the menu, the Position panel shows the joint angles if jogging 

in axis mode, or the end-effector position and orientation if jogging in linear or reorient mode. 
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In the lower-right corner of the menu the Joystick Directions panel shows the how 

movements of the joystick will affect the robot, again depending on the Motion mode. 

Per-axis jogging 

To jog axes individually, select Motion Mode in the Jogging menu and select Axis 1-3 or 

Axis 4-6, depending on which axis is desired, and press OK. The Joystick directions panel will 

show how each selected axis can be moved by the joystick, [5]. 

Linear Jogging 

To jog the end-effector on a linear path in physical space, select Motion Mode in the 

Jogging menu and select Linear. The Joystick directions panel will show which joystick 

movements correspond to each cartesian direction, [5]. 

Inverse Kinematics 

Linear movements use Inverse Kinematics to calculate the specific joint movements 

required to produce the desired end-effector movement. Inverse kinematics are further described 

in Chapter 4. 

Since, when jogging, the controller only receives information on its commanded move in 

the instant it makes that move, the inverse kinematic calculation must be redone for each discrete 

computation cycle.  

 
Figure 5-5: Jogging Menu on FlexPendant™ 
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There are places in the robot’s workspace where joints are aligned in such a way that 

movements between the joints become dependent of each other. This represents a singularity in 

the kinematic matrix, where inverse kinematics are impossible. Linear movements should avoid 

these singularities in the robot workspace, and an error message will interrupt operation should a 

singularity get too close, [6]. 

Reorientation 

To jog the end-effector in a rotating path around the Tool Center Point, select Motion 

Mode in the Jogging menu and select Reorient. The Joystick directions panel will show which 

joystick movements correspond to each Euler-angle movement. 

As with linear jogging, reorientation relies on inverse kinematics to calculate the joint 

values necessary for the new position. Like linear jogging, it is also vulnerable to approaching 

singularities, and will throw an error if one is approached, [5]. 

Coordinate Frames 

A coordinate frame exists for any object in space which has its own absolute position and 

rotation and can possibly have other coordinates as children. There are multiple coordinate 

frames available for use by controller. The coordinate frame selected in the jogging menu 

determines the location and orientation of the cardinal axes used for jogging, [5]. 

Poses 

Position 

Position vectors in RAPID™ are represented by pos, a 3D vector with each element of 

type num. In robot base coordinates, the X-axis is designated as forward and the Z-axis is up; 

consequently, the Y-axis is left, signifying that RAPID™ uses a right-handed coordinate system, 

[9]. 

Rotation 

Orientations of objects in RAPID™ are recorded as orient, a quaternion derived from a 

rotation axis in the same coordinate frame as the position, [9].  
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World 

The most basic coordinate system in a robot’s controller is called the world frame. This 

frame is system specific and is therefore defined once per robot controller. Even if a system has 

multiple robots running inside it, the world coordinate frame is common among all of them. 

Base 

The base frame is specified on a per-robot basis and is by default at the bottom center of a 

robot’s base. In a system with a single robot where neither world frame nor base frame have been 

explicitly defined, the world and base frames are identical to one another. 

 
Figure 5-6:World Coordinates and Base Coordinates. Source: [5] 
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Work Object 

In addition to the world and base frames, each work object has its own coordinate system. 

A work object can be any specific element in a system which the developer feels that warrants its 

own definition. Work objects are useful to serve as parents of certain smaller items in the system. 

The default work object is wobj0, defined in the default BASE system module. 

Tool (End-effector) 

The active tool has its own moving coordinate frame. It can be useful to jog the robot 

using the tool coordinates if certain diagonal geometry needs to be traversed that is difficult to 

navigate in other coordinate systems. Just like work objects, a default tool is given in the BASE 

module called tool0, which has a tool center point at the end of link 6, and no inertia properties, 

[9]. 

Robot Target 

Robot targets are places where the robot moves during operation. Robot targets do not 

have coordinate systems in themselves, but they are always defined with respect to the current 

jogging work object’s coordinate system. The robot target can be seen to have its own local 

position set compared to whatever work object is specified in each move instruction, [9]. 

 
Figure 5-7:Work object coordinates and definition process. Source: [5] 



23 

Calibration 

Calibration of the robot ensures that the zero positions the controller sees match with the 

reference configuration of the robot. The robot axes are measured at each joint with a small 

rotary encoder. Each rotary encoder views the angle that it is currently in, and the number of 

rotations the encoder has gone through to calculate the joint angle. If the number of complete 

rotations is incorrect however, the joint angle calculation is inaccurate, and the joint must be 

recalibrated. 

At each joint, a large mark is located on one joint and a small mark is located nearby on 

the other joint. The reference position is defined as where the two marks overlap. Therefore, 

when calibrating, the joints must be moved such that the small mark is entirely within the large 

mark at each joint. If the small mark is completely inside the large mark, the encoder will 

recognize this as within half a revolution of the reference value and will select the zero point 

automatically. 

If all axes are to be recalibrated, it is typically best to align the joints closest to the end-

effector first, using the lower joints to place the upper joints in a location convenient for 

inspection, [5]. 

To start calibration, open the ABB menu and find Calibration. Select the mechanical unit 

corresponding with the robot being serviced and tap Rev Counters. A list of axes will be 

displayed; select which axis or axes has been aligned and click Update. 

 
Figure 5-8: Calibration marks for Axis 5 

 
Figure 5-9: Calibration marks for Axis 1 
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Note that this is a simple operation for misaligned axes; if the robot needs more in-depth 

calibration, these procedures should be left to a certified technician. 

Data Editing 

During the programming process, it may be necessary to create variables on the Module 

(or Task) level. On the FlexPendant™, this is achieved by using the Program Data view. 

 
Figure 5-10: Calibration Menu showing option to update rev counters 

 
Figure 5-11: Program Data Menu 
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To access the Program Data view, open the ABB menu, and find Program Data in the 

left column. This menu shows all data types listed in the current scope, depending on some 

settings, [5].  

Scope and Viewing 

To change the current scope of variables listed under, press the Change Scope button at 

the upper-right corner of the menu. The first two options are Built-In Data Only (this option does 

not allow addition of any data to the program; it is read-only) and Current Execution, which 

looks at all data marked as Global, or are in the current Task, Module, and Routine that currently 

has the Program Pointer. Other selectable scopes are any Task, Module, or Routine in the 

selected Module.  

At the lower right of the Program Data view there is a button labeled View. Using this 

button, one can choose between all available data types, and only the data types that currently 

exist in the selected scope. This option allows creation of new data of types that have not been 

introduced in the program yet, while keeping the data menu uncluttered the rest of the time, [5]. 

Editing data 

Double press, or press and select Show Data, on any desired data type. A list of type-

specific data with their values are then displayed on the screen. Selecting any of these data and 

 
Figure 5-12: Program Data Menu, searching all robot target saved in 

the controller 
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using the Edit menu at the bottom of the screen allows changing, copying or deleting these 

variables. New variables can be declared and given values via the adjacent New menu, [5]. 

The View Data Types button at the lower right returns to the top-level Program Data 

screen. 

Complex data 

Some complex data, such as tools, robot targets and work objects, can be defined 

empirically rather than explicitly. New robot targets default their positions to the current end-

effector position, and existing robot targets can do the same using the Modify Position command 

in the Edit menu, [5]. 

Tool data and Work Object definition is slightly trickier. Once the data has been declared, 

the Define command in the Edit menu loads a method of defining several poses that, for a Tool, 

bring the Tool Center Point to the same point in world space, or for a Work Object, define the X-

Y plane of the object. 

Creating a tool 

Creating a tool is a process that involves taking the desired tool center point to a fixed 

point in space, usually some object that the tool is supposed to touch. This is done from several 

different orientations, most commonly, and by default, four. The algorithm finds the center of 

rotation between each pair of points and averages them for better accuracy, [5]. 
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Creating a work-object 

Defining a work object is a straight-forward manner and is as accurate as the placement 

of the tool center point used in its definition. Work objects are defined in world space by picking 

three points on the work object. The first two defined points form a line along which the work 

object’s X-axis is defined. The third point sets the direction of the Y-axis, which is defined as the 

shortest line projecting from the X-axis to the Y-point. The work-object’s position is 

consequently the intersection between these new X and Y-axes, with its orientation defined by 

the axis directions, [5]. 

Creating a robot target 

The process of creating a robot target is simple. The robot is jogged to the pose which is 

the desired robot target. The position will be defined relative to the active jogging tool and work 

object; however, those components are not stored in the target’s data. When creating a robot 

target, it will automatically default to the robot’s current pose, [5]. 

 
Figure 5-13: Tool definition via the 4-Point 

process. Source: [5] 
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Program Editing 

The main scripting for the robot is accessed from Program Editor. This is found in the 

ABB menu on the left-hand side. Upon opening, it will open the active PROC main on the 

control, [5]. 

Editing routines 

To edit a routine, one can use three buttons at the top, Tasks and Programs, Modules, and 

Routines, to navigate to the desired routine. When the desired routine is selected, the Show 

Routine button at the bottom opens the routine for editing. 

Adding routines 

To make a new routine, navigate to the desired module to contain the routine, then use 

File > New Routine… to add a custom routine to that Module. 

Instructions 

Routines are made up of a series of instructions. These instructions vary widely in their 

purpose; examples include procedure calls, movement instructions, and assignment instructions. 

Chapter 6 goes into more detail about the types and requirements of instructions. 

 
Figure 5-14: Program Editor, showing a procedure 
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Adding an instruction 

When viewing a routine in the Program Editor, the instruction menu is activated by the 

Add Instruction button at the bottom left. The instructions are organized into various categories, 

which may be selected by a dropdown at the top of the instruction menu. 

Editing instructions 

To edit an existing instruction, one can select the instruction’s handle (the name of the 

instruction call, e.g. MoveL, WaitTime) and go to Edit > Change Selected. A menu showing all 

required instruction arguments, and some optional, each of which may be changed however 

desired. 

Testing and debugging 

The debug menu shows a variety of tools for testing a program in manual mode. It allows 

movement of the Program Pointer, a marker showing the next statement that will be executed by 

the program if it is run. The program pointer can be moved to multiple places, such as the 

selected instruction, the beginning of a routine, or to the beginning of the main routine as the 

program would execute in automatic mode. Holding the guard-stop and play buttons will allow 

the program to slowly execute each instruction sequentially, moving the program pointer to the 

next instruction when the current one is completed, [5]. 

Module Text 

Notice that in the Program Editor view, there is a button that toggles declarations, 

labeled Show Declaration or Hide Declaration. When this is set to show declarations, not only 

the current routine, but other routines and variables currently in the module will also be 

displayed. This is the module’s complete RAPID™ code and is how all aspects of the robot script 

are stored on the controller. 
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Automatic Operation 

When the mode key is set to automatic mode, the Production Window will automatically 

appear on the FlexPendant™. From the Production Window, real-time automatic mode execution 

of the RAPID™ code can be viewed. The robot runs at full speed during automatic mode, and 

customization of the program at this point is limited to some path tweaking via the Hot Edit 

menu. Hot Editing is an operation for tuning robot targets to optimize production operations 

without reverting to manual mode for large changes. This operation is beyond the scope of this 

project, however, [5]. 

RobotStudio® RAPID™ Editing 

RobotStudio® has a couple different main features, of which the most relevant to this 

paper is its ability to remotely access and change the RAPID™ code on a robot controller set to 

manual mode. The tools for this feature in RobotStudio® can be accessed by the Controller and 

RAPID™ tabs. The computer running RobotStudio® must be on the same Local Area Network 

(LAN) as the Robot Controller, or the computer and controller must be directly connected with 

an Ethernet cord, [3]. 

 
Figure 5-15: Production Window, showing the program progressing 

through PROC main 
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To connect to a controller, switch to the Controller tab in RobotStudio®. The Add 

Controllers drop-down menu should show available controllers to connect to. However, if the 

controller is not listed as online or at all, one can connect manually by entering the IP address 

assigned to the controller, which can be found in the FlexPendant™’s System Info menu. 

Once the controller is connected, one can view the controller’s RAPID™ code, broken 

into tasks and modules, by opening the RAPID™ icon in the left-hand menu. To edit the code, 

however, one must request write access. The button for this is in the Controller tab, next to the 

Add Controllers drop-down. A notice will appear on the FlexPendant™ that an external source 

has requested write-access, giving the operator a choice to grant or deny. Upon granting write 

access, the RobotStudio® client has privileges to edit the code and apply it to the controller. The 

FlexPendant™ can revoke write-access at any time, or the RobotStudio® client can release write-

access by a button next to the Request Write-Access button. 

With write-access, the user is free to edit the RAPID™ variables and routines in existing 

modules or add/delete modules and tasks from the controller. When the user wishes to apply 

changes to the controller, they can find the Apply button in the RAPID™ tab, at the top-center of 

the screen, [3]. 

Note that debug testing and jogging must be done from the FlexPendant™ and write-

access must be released or revoked for the FlexPendant™ to become interactable again. 

 
Figure 5-16: RobotStudio®’s Controller Tab, showing buttons used to connect to a controller. Since a 

controller is not currently connected, most controls are greyed out. 
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Chapter Summary 

This chapter gives an overview of the operation of the IRB 120™, controlled by an 

IRC5™ Robot Controller equipped with the FlexPendant™. It begins by outlining some safety 

features of the system; namely the workspace cage, force sensors, emergency stop buttons, and 

mode of operation. The IRC5™ controller also has several switches on its panel which control the 

power, operation mode, motors and joint brakes. 

It then outlines some basic features and operation of the robot. Jogging is performed by 

accessing the eponymous menu on the FlexPendant™ and using the joystick to directly maneuver 

the robot. It also covers basic calibration and editing of RAPID™ code directly on the 

FlexPendant™. It shows the differences in capability and function between manual and automatic 

modes. 

The chapter concludes with an introduction to editing the RAPID™ code on the controller 

using RobotStudio® on an external computer. As supreme control authority rests with the 

FlexPendant™, write access must be given to the RobotStudio® client before it can edit the code. 

Any controller connected to the same local area network as the computer or connected directly 

by ethernet cable can be connected. The client itself has efficient coding tools to create and 

verify the RAPID™ code prior to deployment on the robot and is the typical place where most 

professionals write their programs.  
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6 Introduction to RAPID™ 

ABB systems use the RAPID™ language to set instructions and data that their robotic 

systems use in each run cycle. 

RAPID™ Structure 

Tasks 

Tasks are the most essential structure of RAPID™ code, with code execution happening 

on a per-Task basis. Tasks contain one or more Modules, one and only one of which must have a 

main procedure (PROC main) as a place for the Task to begin its code execution. Most 

 
Figure 6-1: Diagram showing the hierarchy of RAPID™ Code. Source: [5] 
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controllers support some form of multitasking, where the controller contains multiple Tasks that 

all run in parallel, [5]. 

Modules 

A module is a constituent unit of a Task. Modules are the objects where the actual 

RAPID™ text is stored, both variables and routines. Any number of Modules can be used in a 

Task, which can be used for organizational purposes. 

Variables 

Data at the module level can be created via the Program Data menu outlined in Chapter 5 

or typed directly into the module text, either in RobotStudio® or on the FlexPendant™ (directly 

editing RAPID™ code by typing is not recommended on the FlexPendant™). For the physically 

defined objects such as tools, work objects and robot targets, the typical manual definition 

processes should be used. 

Simpler variables, such as those without poses, or whose poses are known from external 

sources such as Computer Aided Design (CAD) models, are good candidates for directly 

declaring and initializing in the RAPID™ code, [10]. 

Variable Syntax 

Variable declarations are statements that create a variable and initialization is assigning 

the variable a value before the program starts. The typical syntax of a variable declaration is a 

scope (optional), a symbol type, a datatype, and finally the variable’s name, all separated by 

spaces. The initialization, required in RAPID™ for most data types, follows with the assignment 

 
 

Figure 6-2: Several variable declarations. 

Scopes include GLOBAL (default, implicit), 

LOCAL and TASK. Symbol Types include 

VAR, PERS, and CONST. After these 

elements follow the data type and name of 

the variables. 
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operator “:=” followed by a datatype-specific permutation of data, finally ended with a 

semicolon, [10]. 

 

Scopes 

Variables in the RAPID™ language are declared with a scope. The scope of a variable 

controls the locations from which the variable is accessible. GLOBAL, the default scope of a 

variable which is used if an explicit scope is omitted, allows a variable to be accessed from 

anywhere in a controller’s RAPID™ code, including other Tasks. The scope TASK allows a 

variable to be accessed from any Module in the same task as the variable definition. The scope 

LOCAL further restricts the variable to only be accessible from the same Module, [10]. 

Symbol Types 

Variables are also defined with a symbol type, which governs how it is interacted with by 

the program. The simplest type, CONST, represents a constant in the code, which cannot be 

changed anywhere other than its original definition; therefore, it is baked into the code at 

runtime. VAR and PERS, by contrast, are variables which can be changed at runtime from 

anywhere within their scopes. The primary difference between VAR and PERS is what happens 

to the data during a system reboot. A VAR loses its current value and will be redeclared with its 

default value when the system restarts, while a PERS is persistent through a reboot and will hold 

its value across sessions, [10]. 

Datatypes 

There are seventy-eight datatypes in RAPID™, the vast majority of which are not covered 

in this document. More specific details on each datatype can be found by referring to this 

technical reference manual on RAPID™, [10]. Some examples of commonly used datatypes in 

the language are given below. 

Primitives: bool, num, string 

The most basic data types in the RAPID™ language are the bool, num, and string. Like in 

most other languages, a bool represents a binary value of either True or False, and a string 

represents a sequence of characters. In RAPID™, a num is a 32-bit numeric type that can variably 

represent an integer or floating-point number, depending on the value assigned to it. 
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Other simple types may have slightly different implementations of the same concept, 

(e.g. the type dionum is a binary type which is represented by 0 or 1, rather than True or False, 

and dnum is a 64-bit numeric value that works similarly to num). 

Composite data: robtarget, tooldata, wobjdata 

There are many compound datatypes in RAPID™ which comprise of several primitive 

data. Three prominent examples are robtarget, tooldata, and wobjdata. All three of these objects 

use further compound datatypes like pos and orient, which are 3D position vectors and 

quaternions made of multiple num elements. 

The type tooldata is made when the user trains a new tool on the robot. It consists of the 

Tool Center Point, which is a pose (Position and Orientation pair), as well as a loaddata 

consisting of a mass, center of gravity, and axis of moment. The tool can serve as a coordinate 

frame by which the robot can move. When a move statement is given, the robot calculates the 

path to take so that the tooldata has the same position and rotation as the chosen robot target. 

Work objects, with their RAPID™ type name wobjdata, are objects defined in the space 

around a given robot which serve as parents to robot targets in the path. Work objects can be 

stationary or moving within the robot’s workspace. 

Robot targets, of RAPID™ type name robtarget, are places defined in 3D space that can 

be assigned to move statements in a robot’s path. They are typically made by a robot’s jogging 

position relative to the active work object. Hence, care must be taken when using move 

statements to specify the same work object that was used to create the robot target, even if the 

work object’s pose has changed. 

 

 
 

Figure 6-3: Complex data variables. Included in both wobjdata and robtarget are position 

vectors and rotation quaternions. 
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Special objects: clock, zonedata 

There are some data types that do not have explicit primitive types but are self-contained 

data that have specific functions. One example of this is the clock data type. The clock has no 

exposed field types but can be passed as an argument to numerous predefined routines and stores 

an elapsed time since the clock was started. 

Another example is zonedata, a type that encodes the behavior of the robot on 

intermediate targets in its path. There are several predefined zonedata, named by the letter ‘z’ 

prefixed to a distance from a robot target in millimeters. This distance is the proximity the tool 

must be to the designated robot target before it changes paths to the next target. 

Routines 

Routines are procedural methods in RAPID™. They can be called from other routines, be 

passed variables as arguments, and can return variables if necessary. They allow 

compartmentalization of specific tasks to simplify code and repeat complicated procedures. 

There are three routine types in RAPID™, each with a slightly different purpose. 

Routine Syntax 

Routines begin with a definition containing the routine type first, either PROC, FUNC, or 

TRAP. If the routine is a function, the return type follows. Next is the routine’s name, followed 

by parentheses unless the routine is a trap. Inside these parentheses is a list of all arguments of 

the procedure or function, each being specified by a type and a name, with the arguments 

separated by commas. 

The end line of the routine is simply END concatenated with the routine type, e.g. a 

PROC would have an end line labeled ENDPROC, and a FUNC (of any return type) would end 

with ENDFUNC. 

All non-comment lines between these beginning and end lines are either program flow 

controls such as if blocks, while loops, or error handlers, or they are instructions, which could be 

any predefined instruction, such as a move statement, a call to another user-made procedure, or 

an assignment to a variable. 
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Routine Types 

PROC 

PROC, or a procedure, is the primary routine type, which can take in any number of 

arguments and does not return anything. Any scope permitted PROC can be called from code in 

execution at any point. The program pointer will move to the new PROC and execute all lines. 

When all statements have been executed or the instruction Return is declared, the PROC ends 

execution and returns the program pointer to the code which called it. 

 

FUNC 

If a routine must return some data when execution ends, it is called a FUNC, or function. 

These are called wherever the return type serves a purpose, e.g. as an argument to another 

routine, or as an assignment to a variable. Execution of a FUNC works in a similar way to a 

PROC; when it is called, the program pointer shifts to the FUNC and executes its statements 

sequentially until it returns its value; then the value is used in-place of the function call and the 

external program continues normally. 

 
 

Figure 6-4: Example of a PROC declaration, with several move 

instructions. This procedure has no arguments. 

 
 

Figure 6-5: Example of a FUNC declaration, with a single 

position vector argument returning a number corresponding to 

the length of the vector 
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TRAP 

The final routine type is a TRAP. Trap routines are like procedures in that they are simply 

sequential executions of code. However, TRAP serves the special purpose of handling certain 

interrupts in the code. When the main code is operating as normally, but a certain interrupt signal 

is engaged, it can stop the program at any point and run the TRAP instead. 

PROC Main 

The main procedure, shown in RAPID™ as PROC main, is the starting point for any task 

execution. Every RAPID™ task must have one, and only one, main procedure defined in its 

program modules. The task’s execution begins with the first instruction given in the main 

procedure. If a system uses multiple tasks, each task will operate independently of the others, and 

they will run asynchronously. However, operation on a specific mechanical unit (robot) can only 

have one task. 

 

Instructions 

Each line in a routine that performs some sort of task is called an instruction, or 

statement. RAPID™, like most text-based programming languages, evaluates instructions in the 

order of their appearance, starting in PROC main. Instructions can be broadly separated into 

several categories. 

Move Statements   

Move statements are a kind of instruction that physically moves the robot toward a target 

in some manner. The three basic movement types are MoveJ, MoveL, and MoveC. Each move 

 
 
Figure 6-6: PROC main, showing two joint movements before and 

after a ProcCall to another procedure. 
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type additionally has different related instructions that can do other things, such as set a digital 

output signal or run a procedure in parallel with the move.  

MoveJ 

MoveJ is the simplest kind of movement, which only does inverse kinematics of the 

movement target to find the desired joint values, then interpolates each joint rotation toward that 

value; this is a linear interpolation in joint space. This is the quickest movement between points 

as inverse kinematics for the path between are not required, and the joint rotations are direct and 

efficient. MoveJ should be used whenever the motion taken between current and target positions 

is not path sensitive. 

A variant of this movement mode, MoveAbsJ, takes a jointtarget instead of a robtarget as 

its first argument. A jointtarget is a target defined by its axis angles rather than a pose in physical 

space. If the angles are explicitly known by the robotic developer, this instruction is useful to 

avoid kinematic solving for this movement. MoveExtJ performs similarly but is meant to move 

the external axes connected to the system. 

MoveL 

MoveL is a slightly more complex movement, which is a straight line in physical space. 

MoveL is most useful when the end-effector needs to move tangent to some object surface, or 

axial to a narrow channel in an object. Inverse kinematics need to be traced at intermediate 

points on the linear path; therefore, the individual joint movements are not strictly linear, and 

may take arcing values to keep the end-effector on its linear path. MoveL is also susceptible to 

singularities in the kinematic matrices, so care should be taken to avoid these when possible. 

MoveC 

MoveC is a move instruction that interpolates a circular path in physical space. It takes in 

two targets as arguments, moving in a circular path from starting pose, through an intermediate 

target, and ending at the final target. This movement type is useful when needing to move around 

circular objects or run a path concentric with them. Like MoveL, it needs to calculate inverse 

kinematics for its path, and is vulnerable to singular configurations. 
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Other movement types 

Search 

The instructions SearchL, SearchC, and SearchExtJ perform similarly to the move 

statements of the same suffix; however, these statements will cease movement when the digital 

input argument of the search instruction becomes true. This is typically useful for an unknown 

precise location of an object to be picked up, as sensors can tell the system when the object has 

been found. 

Trigg 

TriggJ and TriggL are also similar to their Move statement counterparts, but they are able 

to trigger a parallel running event at a fixed point during its movement; for example, if the end-

effector vacuum tool should engage when the tool is 10 millimeters from the target during a 

linear movement, TriggL should be used with a corresponding triggdata object as an argument. 

Move Statement Components 

Robot target 

All move instructions accept robot targets (or joint targets) as their first arguments. Joint 

and Linear movements accept a single target, while Circular movements accept two. Functions 

that return robtarget, such as the Offs() function, can be used in place of a named robot target. 

Speed data 

The speed data argument controls the speed of a given movement while the robot 

operates. Predefined speeddata are specified with a small ‘v’ followed by its speed in millimeters 

per second, e.g. “v100”. Other predefined speeddata are specified for movement of external 

linear and rotational axes by the MoveExtJ instruction. 

Custom speeddata can be defined as a variable in a module. It is defined as a tuple of four 

numbers, corresponding to the linear and rotational speeds of the TCP and of linear axes, 

respectively. 

Note that the speeds specified in these move statements are still subject to the Manual 

Mode limitation, i.e. the TCP will never move faster than 250 millimeters per second while in 

Manual Mode, even if a faster speed data is specified. 
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Zone data 

The zone data argument specifies the behavior of the robot when a target is neared by a 

move statement. The predefined zonedata “fine” forces the TCP to stop at (within 0.2 millimeters 

of) the robot target before proceeding to the next move statement. Other predefined zonedata 

start with a ‘z’ followed by the zone tolerance in millimeters, e.g. “z40”. These fly-by zonedata 

specify that the TCP must come within this zone; then it will begin veering off toward the next 

path segment, without stopping. 

Like speed data, custom zone data can be specified as a variable at the module level. Its 

first element is a Boolean specifying if the zonedata represents a stop point or a fly-by point. The 

remaining elements are sizes of the path zone and zoning data for external axes and translation 

and rotation of the TCP. 

Tool 

The Tool argument says which Tool the robot is using to approach the robot target. The 

target is considered reached when the tool’s pose in world space is within the specified zone 

distance of the target’s world pose. 

Optional: Work object, others  

There are certain optional arguments that can be given in a move statement, the most 

common of which is a work object. This argument specifies the parent work object of the 

specified robot target. Although this argument is optional, it is highly recommended as its use 

can simplify component relocation considerably, by simply changing the work object’s pose 

rather than those of all child targets. 

Other optional arguments can modify the behavior of the move statement, and some can 

substitute for the speed or zone data by specifying different parameters. All optional arguments 

are preceded with a backslash, followed by an assignment statement of the optional argument.  

 

 
 

Figure 6-7: A move statement showing the 

movement type, robot target, speed data, zone 

data, tool, and work object used in defining the 

move. 
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Other Instructions 

Program Flow Control 

The structured programming paradigm intrinsic to most modern programming languages 

provides several code structures that can control the flow of the program. These can be 

controlled by Boolean conditions for execution and repetition, repetition using an incremental 

numeric value in a certain range, or handlers of certain triggered events. 

If, elseif, else 

The simplest flow structure in a program is an If statement. The if statement takes in a 

single Boolean argument, and if the argument case is true, it executes its code block. Once the 

code block is executed, the program pointer leaves the block and executes further down the 

script. 

If statements can be extended with an ElseIf statement, which is evaluated if the 

preceding If case is false; if its own argument is true, its code block is executed. An Else block 

takes a false case from a proceeding if statement and executes its own code block. 

With a chained If…ElseIf…Else statement, once a true case is achieved, the entire chain is 

exited after executing the appropriate block. If the programmer wishes to have each case 

evaluated regardless of previous cases, serial If statements are preferable. These If statements and 

chains are useful for evaluation of a wide variety of complex logic. They can also be useful for 

catching special cases which might cause bugs in regular operation. 

 

While 

While loops function similarly to If statements, in that one takes a single Boolean 

argument and executes its code block if the argument case is true. Unlike If statements however, 

 
 

Figure 6-8: An If-ElseIf-Else 

structure, used for handling logic 
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once a While loop’s code block is completed, the argument case is reevaluated; if the case is true, 

the code block is executed again. This repetition can happen an infinite number of times and is 

only terminated by an argument that evaluates as false. While loops are useful when a procedure 

must be repeated an undetermined number of times for a condition to be met. 

 

For 

For loops repeat a certain code block, like while loops. However, for loops use a 

predetermined number of steps, with the current step represented by an iteration variable, usually 

an integer. In the most common configuration of a for loop, this variable starts at one and ends 

after its specified maximum value is reached. 

For loops are the best kind of loop to use when there is a known number of iterations to 

run. Due to their consecutive counting nature, as opposed to the While loop’s check-and-run 

nature, they are significantly less prone to infinite loop errors. 

 

Special Case Handlers 

There are structures that can be defined at the end of procedures which can handle special 

cases; the most common type is an error handler, which is jumped to if a runtime error is 

encountered in the program. This error handler has special properties including ERRNO, which 

allows case logic to determine what error occurred and to proceed accordingly. 

 
 

Figure 6-9: A While loop 

 

 
 

Figure 6-10: A For loop 
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Calls to other routines 

When one wishes to pass execution to a different procedure somewhere in the program, 

they invoke a special instruction called a procedure call, or ProcCall. It is invoked by simply 

stating the name of the desired procedure, followed by any arguments the procedure may take 

separated by commas, and ended with a semicolon. Figure 6-6 shows a ProcCall to a custom 

procedure. 

Chapter Summary 

This chapter gave a broad overview of the elements that make a RAPID™ program. A 

program deployed to a controller is made of one or more Tasks, with each Task having one or 

more Modules. Modules contain variables and routines. Each Task must have one and only one 

PROC main, which is where the Task begins execution. If multiple Tasks are present on a 

controller, all Tasks run in parallel. 

Variables can be listed at a field level in a Module, or locally in a routine. Each field level 

variable is designated a scope, symbol type, and data type. Its scope determines what locations in 

code the variable is exposed to. The symbol type determines the rules the variable uses for value 

assignment and retention. There is a long list of data types available for use in RAPID™; 

however, this project focuses on a few that are specific to robot path planning, such as work 

objects, robot targets, tools, and poses.  

 
 

Figure 6-11: An error 

handler at the end of a 

procedure 
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7 Introduction to Unity® and C# 

Unity® 

While there are multiple ways of developing AR software for HoloLens®, one sensible 

method is to use a ready-made engine that already supports the target hardware. This project uses 

Unity®, a publicly available game and software engine with a large support base and extensive 

documentation, [11]. Microsoft has an introduction to Unity® development in their own online 

development manual and provides a toolset for application building called Mixed-Reality 

Toolkit, [12]. 

An application built into Unity® is divided into parts called scenes. Each scene loads 

separately and independently of other scenes. Within a scene, there is a hierarchy of objects in 

3D space called GameObjects. Each GameObject has a position, rotation, and scale, which is 

stored as its transform. Some GameObjects can be parent to other GameObjects, and a parent’s 

transform is applied to all its child objects before their own transforms are calculated, [11]. 

GameObjects can have one or more attachments called components which alter the 

behavior of these GameObjects. These components inherit from a special Unity Engine® class, 

 
Figure 7-1: Unity® Editor interface, showing the VPanel Scene 
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MonoBehaviour, and can be scripted in the engine for nearly any purpose. Due to the open-

ended versatility of this scripting, most Unity Engine® custom scripting is done in these 

components, [11].  

There are several events triggered by the engine that components can take advantage of. 

Two examples of these events are Start and Update. Start is an event that is triggered each time 

the scene is loaded, which is useful for various initialization processes required in the scene. 

Update is an event called once per frame; most repeatable and continuous tasks are performed in 

a component method called by the Update event. 

C# 

Unity® uses C# as its primary language for developer scripting. This provides a secure 

but straightforward language to get developers off the ground. The use of C# also means it is 

relatively effortless to include references to .NET assemblies in the project. It is a massive 

subject, and an implicit look at its features is far beyond the scope of this paper. However, some 

general characteristics of the language and its implementation in the Unity Engine® are discussed 

here. 
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C# is a language developed and maintained by Microsoft Corporation in its .NET 

initiative. It is meant as a high-level object-oriented programming language building upon some 

fluid characteristics of C++ while implementing features of managed languages, such as garbage 

collection, found in related languages such as Java. 

Characteristics 

Classes and Objects 

Its chief characteristic as an object-oriented programming language is the use of classes 

and objects. A class is a template for an object that may have any number of different things built 

into it. A class can be instantiated into any number of objects with the use of constructors, a 

special method that returns a new object of its type. Classes may inherit from other classes to 

signify the subclass also being the type of the base class, [13]. 

Member: Fields, Methods, Properties 

A class contains members, programmed parts which can be interacted with by the 

program. The types of members that hold the data of the class are called fields. Methods are the 

routines of C# and can have any number of arguments and may or may not return a variable 

value. Properties are a clever way to create a method which is used as a variable in code, [13].  

 
 

Figure 7-2: Sample C# Code, taken from the app’s RobotCommunication script. Source: [15] 
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Modifiers 

Classes and their members have numerous modifiers that can be added in their 

declarations to alter their behaviors. The most common modifiers alter the scope of the variable; 

private members can only be accessed from within the class, while protected members can be 

accessed by any subclass and public members can be accessed elsewhere in code. Other 

modifiers include static, which makes the member tied to the class itself rather than an object 

instance, or abstract, which indicates the implementation of the class or member is incomplete in 

that state and must not be directly used, [13]. 

Generics 

Generics are types that are meant to be associated with another type that is not specified 

when the class or member is created. An example is the List<> class, which is implemented as 

List<T>, and T can be replaced by a true type when a list instance is created, [13]. 

Reflection 

In native C#, classes can search themselves and others for members that have a name 

only decided at runtime. This is a complicated process that has some very useful applications; 

however, the UWP implementation which is used on the HoloLens® is missing certain 

assemblies related to reflection, so this concept has been avoided in this paper after much 

experimentation, [13]. 

Garbage Collection 

A feature that makes C# relatively beginner-friendly is its garbage collection. 

Unmanaged languages such as C++ require the programmer to destroy all objects manually when 

they are no longer needed, and failure to do so causes memory leaks which are harmful to 

performance and security. The garbage collection feature of C# automatically destroys objects in 

the heap when they are no longer referenced from the stack, removing a tedious chore that a 

programmer can easily neglect, [13]. 

Use in Unity® 

Unity® uses C# as its primary scripting language for development in the engine. This 

provides a good combination of versatility and ease of learning critical for ground-breaking 

projects. It allows simple access to the vast libraries written to be compatible with the .NET 
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assemblies; it therefore can accomplish a wide variety of Windows-specific computational 

operation and data management. This proves useful for development in the HoloLens®, which 

uses the Universal Windows Platform, [12]. 

The Unity Engine® classes, such as GameObject and various MonoBehaviour derivatives, 

expose a wide variety of properties and methods for use in the engine’s scripting. A typical 

MonoBehaviour script contains references to certain events called by the engine, such as Start, 

which is called once when a scene is finished loading and beginning to operate, and Update, 

which is called once per frame thereafter. These events can be planned to dictate behavior of any 

object in the application, [11]. 

.NET Assemblies to use 

There are several .NET assemblies used in the creation of this application. Microsoft 

provides a large system-specific API for use with basic computing resources, while the Unity 

Engine® has libraries useful for application function. Other libraries need to be used for specific 

functions, such as Microsoft’s Mixed Reality Toolkit for Unity®, which provides the tools 

necessary to allow the HoloLens® to interface properly with an application made in Unity®. 

Other API’s include NewtonSoft.Json, which provides robust compilation of JSON objects to 

parse for information, and System.Net.Http, which is used for the communication between the 

application and robot which is central to the project, [13]. 

Chapter Summary 

This chapter covers the game engine Unity® and the programming language C#, which 

are the basic tools used to build the application. Unity® organizes its structure as scenes, and 

scenes have a collection of GameObjects which may or may not be visually represented in the 

application. GameObjects have components attached to them which modify the behavior of the 

parent GameObject. 

Unity® uses C# as its primary scripting language. C# provides several advantages in 

versatility and ease of use in the development of an application using Unity®. C# is an object-

oriented programming language, which allows custom classes and instantiated objects which are 

unique in form and function, allowing the storage and use of data as the application demands. It 
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contains many of the typical elements of similar programming languages, including class 

members such as fields, methods and properties. Most such symbols can be given modifiers 

which change their accessibility or function. Some classes can be specified as generic, to be 

made specific to a type when used in code. C# uses automated garbage collection, which 

destroys heap objects which are no longer referenced in code. These features all play significant 

roles in the development of the project. 
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8 Application Description and Function 

Application Overview 

The proposed application is divided into two functional scenes, Start and VPanel. The 

Start scene provides a console where the user selects a system they wish to connect to. Once 

connected, the application switches to the VPanel scene, where they are shown data and 

numerous options for interacting with the connected robot system. The VPanel can be closed, 

which will return the user to the Start scene to optionally choose another system. 

Start Scene 

The first scene, called “Start,” shows a small console that follows the user when moving. 

It displays some instructions on connecting to new or previous systems. The HoloLens® must be 

connected to the same Local Area Network (LAN) as the controller for the application to 

function properly.  

To connect to an unrecognized controller, the user must enter the controller’s LAN IP 

address. If a controller is found at that address, a message will be displayed asking to confirm 

 
Figure 8-1: VPanel, displaying system information received from 

the robot 
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connection. That controller is then recorded and saved. If the user wishes to a previously saved 

controller, they must simply select that controller from a list of previously saved ones.  

VPanel 

Overview 

Upon successful connection to a controller, the application switches to a scene with a 

virtual panel that displays information and interaction options for this robotic system. This 

“VPanel” scene has numerous features providing examples of possible uses of the software; the 

main features are described in the paragraphs below. 

In addition to displaying raw data about the controller’s status, the ability to directly 

access the unchanged RAPID™ code provides a detailed picture of the controller’s script. This is 

broken apart and parsed to identify each element in the lines of code. When these are positively 

identified, for example, as a variable of type num, or a routine with no return type (called a 

procedure), a reflected object is created in the application to reflect this element. One use of 

identifying each of these elements, is reconstructing the path that the robot will take during the 

execution of its main procedure. 

While planning the RAPID™ features in the application, the reflected objects were 

referred to as “mirror objects”; hence, the objects made in the application to reflect the actual 

 
Figure 8-2: VPanel, displaying system information received from the 

robot 
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ones may be called mirror objects to distinguish them from the true RAPID™ objects on the 

controller. 

System Info 

ABB provides an API exposed in each of their controllers called Robot Web Services, 

[14]. This interface uses Hypertext Transfer Protocol (HTTP) to allow access to various 

controller information and data via web connections by external clients. The application uses this 

service for all interactions with the robot, getting controller states, RAPID™ module text, the 

current running task or module, maintenance, and calibration information and more upon 

request. Much of this information is directly displayed to the user. 

3D Model 

The VPanel Scene has the option to enable a virtual model of the robot world, which 

appears near the panel. This robot world model has the robot model itself, which was imported 

from RobotStudio® (and possibly simplified to ease the rendering load on the HoloLens®). 

The robot lies at the center of the virtual world. The robot’s stationary base can be 

clicked and dragged around to move the virtual robot world to the desired section of physical 

space. A sphere lies before the robot, which can be dragged anywhere, and the world will pivot 

such that the robot always faces that sphere.  
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Also present are small coordinate frames representing the Work Objects and Robot 

Targets present in the main procedure in the current program module on the controller and are 

translated and rotated as such. This gives a visualization of these objects highly demanded by 

robotic developers. 

Run 

The application also can use the Robot Web Services to run the robot remotely. When the 

robot is set to automatic mode with motors on, a message can be sent for the robot to start or stop 

its main routine. This provides the ability to test out robotic operation even after the development 

of the system is complete. 

Communication 

HTTP Connection 

The app’s main purpose is to directly interact with the robot controller. The controller has 

built in support for external sources to communicate with it via HTTP web requests. .NET 

libraries include an HTTP assembly which provides the necessary tools to establish an HTTP 

client (with a class name HttpClient in C# from the namespace System.Http.Net) and send 

messages out from this client to addresses. The address used for this project is the LAN IP 

 
Figure 8-3: Robot 3D Model, with targets displayed around it 
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address of the robot, followed by the path of the specific information required from the 

controller, which is specified in Robot Web Services, and certain request parameters appended 

onto the end of the URL (parameters are shown behind the question mark in a URL), [14]. 

The default format of a response to HTTP request is an XML document transmitted as a 

string. The library System.Xml has a handler for reconstructing the XML document and 

extracting the desired information from the document. However, XML documents can often be 

cluttered and hard to read. If the parameter json=1, the returning document will be in the JSON 

format also transmitted as a string, which can be reconstructed and sorted with tools from 

numerous libraries; this project uses Newtonsoft.Json. The JSON layout is generally easier to 

read through to find the desired information, [13]. 

A GET request to the following address allows the acquisition of Module text in XML: 

http://<SystemIPAddress>/rw/rapid/modules/<ModuleName>?task=<TaskName>&resource=module-text 

GET 

The simplest type of HTTP message is a GET request. These only require the specific 

address of the desired page. Numerous data are exposed to get requests, typically ones which 

only access data on the controller without otherwise interacting with it. In C# code from the 
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System.Net.Http assembly, the HttpClient has a method named GetAsync(), for which the only 

argument is the URL with the parameters appended as described above. 

 

POST 

For most communication meant to interact with the robot in a direct manner, or a 

resource that requires a large amount of input information, a POST request is required by Robot 

Web Services. These requests are similar to get requests as they need a specific IP address, 

resource path, and certain parameters passed in as a URL, but unlike get requests there are also 

data parameters that are passed in key-value pairs in the body of a POST request. C# code from 

the same assembly also provides a PostAsync() method, which takes two arguments; the first is a 

URL in the same manner as a GET request, and an object of type FormUrlEncodedContent made 

from a Dictionary<string,string> with the key-value pairs of parameters. 

Robot Web Services 

ABB Controllers expose the information to HTTP requests via an Application 

Programming Interface (API) titled Robot Web Services (RWS). The API has online 

documentation detailing the specific resources that can be retrieved from the controller. The 

information useful to this project can be divided into two broad categories, [14]. 

 
 

Figure 8-4: Sample response to the address that gets the Module Text. Source: [14] 
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System information 

There are many details and quantities that are exposed in the system, such as motor and 

controller states, speed ratios, connected networks and devices, calibration data, elapsed time 

since maintenance, running time, service lists, file system details, I/O channels, log entries, user 

and mastership statuses, and much more. All information not directly related to the RAPID™ 

code deployed to the controller is treated as System Information by the project. This information 

is not generally used by the current version of the application but is simply displayed on the 

VPanel for developer or user reference, [14]. 

RAPID™ service 

Information on the RAPID™ code is central to features of the application and is therefore 

treated separately from the other information exposed by the API. Chapter Introduction to 

RAPID6 states that each controller’s RAPID™ code is comprised of one or more Tasks, and each 

Task contains Modules, which in turn contain all RAPID™ elements declared in the Module text. 

In Robot Web Services, a list of Tasks can be retrieved, a list of Modules can be obtained from 

each task, and each Module’s RAPID™ text can be recovered by GET requests to each respective 

resource, [14]. 

Subscription service 

It should be noted that Robot Web Services has a subscription service on many different 

resources. Subscribing to a resource establishes a WebSocket connection with the controller, 

which will send an event to the WebSocket client when the resource has its value changed. This 

would significantly reduce the computational expense of keeping track of frequently changing 

resources, as the update process could be tied to the WebSocket event rather than regular HTTP 

checkups. However, at time of writing the team is still researching the function of WebSocket 

connections, and the current understanding is insufficient to include in this paper, [14]. 
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Code Structure 

The VPanel scene is set up to make efficient use of both types of resources described in 

the previous section. The scene has a GameObject named SceneOrganizer, which has the 

components SceneOrganizerVPanel, RobotCommunication, and SpeechInputHandler. 

 

RobotCommunication 

The RobotCommunication component is a handler for all communications between the 

application and the robot controller. It contains a static HttpClient and an IRC5Services object to 

 
 

Figure 8-5: The scripts attached to the 

SceneOrganizer object, which runs the 

primary operations of the VPanel scene. 
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store information obtained from responses from the controller. Methods it has include handlers to 

return the reconstructed XML or JSON documents from a given address, or to even go straight 

through and get the desired string from a path in the returned document. It takes button events 

from the SceneOrganizerVPanel to trigger communications at desired times, and place 

information received into RobotWebData objects and RAPID™ Tasks. 

 

SceneOrganizerVPanel 

SceneOrganizerVPanel is a script that handles interaction between the 

RobotCommunication component and the VPanel scene. It handles the various buttons on the 

VPanel and reads the RAPID™ objects in the IRC5Services object to create the virtual 

RobotWorld, with the robot’s model and targets as children to the world GameObject. 

While planning the RAPID™ features in the application the reflected objects were 

referred to as “mirror objects”; hence, the objects made in the application to reflect the actual 

ones may be called mirror objects to distinguish them from the true RAPID™ objects on the 

controller. 

 
 

Figure 8-6: A method in RobotCommunication to create a JSON object from a web GET resource. 

Source: [15] 
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IRC5Services 

IRC5Services is the class create to contain information received from a robot controller, 

hence the title. It contains multiple groups of RobotWebData objects meant to capture all 

significant data to use on the VPanel display. It also serves as the host of the RAPID™ mirror 

objects, having a list of Tasks on the controller that is referred to by SceneOrganizerVPanel, and 

other classes. It uses an asynchronous method that uses the controller’s listed IP address and 

searches the RWS directory for the Task list to populate the objects own collection of Tasks and 

begins the process of searching for Modules in each Task. 

 

RobotWebData 

The class RobotWebData is designed to be a self-contained reference to data available 

from RWS and store the most recent value returned from the controller via HTTP. The 

RobotWebData class contains the user-specified identifier, full HTTP address, and data path of 

the desired data in the returned XML or JSON file, depending on the passed HTTP address 

parameters. When the data specific to this object is needed, the object is added to the queue of 

data to be updated in IRC5Services. 

RobotWebData are arranged in specialized collections of type RobotWebDataGroup, 

which are similarly identified by the developer for the nature of RobotWebData objects they 

 
 

Figure 8-7: Beginning of IRC5Services class declaration; note the fields for addresses and 

information, as well as its collection of RAPID™ Task objects. Source: [15] 
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contain. The RobotWebDataGroup objects can be passed directly to the System Info screen on 

the VPanel, where they will be listed sequentially, with the data they contain listed subordinately 

to the group for ease of reference. 

 

 

Rapid class set 

The classes collectively named Rapid have been developed specially for this application 

to serve as the set of all classes specially designed to use the RAPID™ code from the controller 

directly for various purposes. They contain all types of directly mirrored symbols, including 

Tasks, Modules, Routines and Variables of all types. They also contain some utility classes and 

interfaces such as the Symbol class, which is the base class of all variables and contains 

important methods and data-specific fields. 

Task 

The Task class is a definition for the mirror objects for Tasks found on the controller in 

RAPID™. It contains fields and properties that give its name, a  reference to its parent controller, 

 
 

Figure 8-8: A collection of RobotWebData, complete with addresses and data labels, to be 

aggregated and recorded by the IRC5Services object. Source: [15] 
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and a dictionary of its child Modules. It contains an asynchronous method which uses its name 

and searches via RWS to find all Modules in the Task and add them into its Module dictionary. 

Other properties it has includes dictionaries of all routines and data in its child modules to 

provide task-wide data search functionality. It also performs a rudimentary search for movement 

instructions beginning in PROC main. 

 

Module 

The mirror class Module is made similarly to that of Task and is the structure of the 

Rapid classes that holds the mirror objects of data and routines. It has fields for its name and a 

reference to its parent Task, as well as dictionaries of references to its data and routines. It 

contains an asynchronous routine that gets the Module text from the controller and parses it into 

each variable, routine and instruction present in the controller. The code used for parsing the 

RAPID™ code from each module is crude and incomplete at time of writing, and significant 

work into better code interpretation would benefit functionality considerably. 

 
 

Figure 8-9: Declaration of the Task mirror class; holding a collection of Modules and references to 

the variables and routines present in those modules. Source: [15] 
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It also has wrapper properties and routines that call the dictionaries of its parent Task, 

allowing a Task-wide search for variables and routines, which is useful for finding references in 

routines that may call variables that are out of the same Module.  

 

Symbol 

The Symbol class is the base class for all variables held in a Module at field level. 

Additionally, it contains a symbol type field which specifies whether the RAPID™ object being 

mirrored is a CONST, VAR, or PERS. Since the specific data classes inherit from Symbol, the 

type of the object found by GetType() determines the datatype of the object. The class contains 

static collections of all symbol types and datatypes defined in the current Rapid classes. 

Additionally, there is a static method which takes in a RAPID™ line from the Module class and 

returns a symbol, which is deposited into the Module’s data dictionary. 

 
 

Figure 8-10: Declaration of the Module mirror class; which reads its text and converts them into 

mirror symbols and routines. Source: [15] 
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Symbol-inheriting classes 

There are several types that inherit from the Symbol class, representing datatypes that 

have been implemented into the application so far. Each type has different properties, such as a 

different type of value, in the case of compound types, different component structures. 

Just like the categories of datatypes in the RAPID™ language, the mirror variable 

datatypes can be classified as primitive, compound, or special types. Primitive datatypes are just 

like the ones in RAPID™; namely, Bool, Num and String. Compound data are defined similarly, 

such as Pos, Orient, ToolData, WObjData, and RobTarget, while special types include the 

Clock. Each of these are created while breaking down declaration statements, with their 

constructors being called by reflection from the Symbol class. 

Routines 

The Routine class is a base class for all mirror objects representing procedures, functions, 

and traps in RAPID™. Each Routine holds fields that identify its routine handle (or name), 

 
 

Figure 8-11: Declaration of the Symbol mirror class, holding details on the symbol represented and 

designed to be inherited by more sophisticated data classes. Source: [15] 
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references to its parent Task and Module, and a list of instructions that the routine would execute 

on the controller.  

One of the primary properties in the routine class is its list of move statement, which 

combs through its instructions, finding move statement both in the current routine, and in any 

routines referenced by ProcCalls. This allows the program to generate absolute target poses for 

viewing with the virtual targets. 

 

 
 

Figure 8-12: Declaration of the Routine mirror class, holding information about the instructions 

executed within and, similar to the Symbol class, designed to be inherited by specific routine types. 

Source: [15] 
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Statements 

The Instruction object holds a statement extracted from the routine text. Its job is to sort 

out the kind of instruction, i.e. ProcCall, move statement, flow control, assignments, or others. 

The program only implements the use of ProcCalls and move statements, although plans for a 

proper interpreter would imply more complete emulation of all statements and variable 

assignments. 

 

Chapter Summary 

This chapter dove into the structure and function of the project in its current state. The 

application is divided into two different scenes. The start scene displays a panel for the user to 

connect to a new or previous system. The VPanel scene coordinates with a connected system to 

display information and interaction options to a connected system. It does this via an eponymous 

panel that can be manually placed by the user. A RobotWorld object shows a draggable 3D robot 

model and all movements in the systems path. 

The application uses HTTP web communication to transfer information between the 

robot controller and the application. The information used consists of various system information 

useful for currently running systems, as well as the loaded RAPID™ code in the controller. This 

 
 

Figure 8-13: Declaration of the Statement mirror class. Retains statement text but 

does have the ability to tell its own statement type. Source: [15] 
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RAPID™ code is parsed by the application to allow specific analysis and visualization in the 

application. 

The RAPID™ code is broken down and classified by the objects represented in RAPID™ 

code; each object found in the RAPID™ code is represented by a mirror object in the application. 

The controller’s Tasks are represented by Task objects within the IRC5Services object handler, 

and the child Modules and dependent variables and routines are stored in corresponding 

collections within. The code sorts through the RAPID™ code beginning with PROC main to find 

all the move statements in the Task’s path, and these move statements are then displayed as 

coordinate frame targets at the correct positions relative to the virtual robot model. 

The application remains buggy and limited in features which will be detailed in the next 

chapter. However, the visibility of targets in the robot world and accessibility to many of the 

robot’s functions meets desires put forth by robotics engineers and provides an example of the 

potential of this combination of technology.  
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9 Issues and Future Work 

Issues 

Performance 

Certain issues have troubled the development process, both in performance and user 

experience. As the interface with the robot controller is through HTTP web requests, much of the 

performance relies on the time between request and response, which has proven to be slow 

enough to make continuous updates to the information unfeasible.  

Other performance issues have arisen due to the limited graphics and central processing 

power in the HoloLens®, especially using 3D models originally meant for use on powerful PCs. 

Unity®’s support for parallel processing is also quite limited, especially when the development 

target is a device such as HoloLens®. Significant work needs to be done for model and rendering 

simplification to optimize the application. 

Programming 

A significant source of issues in the development process was inconsistencies between 

the programming libraries available in the development environment and those deployed to 

UWP. The environment specifically allowed use of the System. Reflection library consistently 

with the API documentation available on Microsoft’s website; however, Unity® does not 

successfully build the application due to certain elements in assemblies, especially the Reflection 

namespace, being different or entirely absent in UWP’s libraries.  

The source of this issue is, however, unclear. The project was hindered by a lengthy 

development process using an older version of Unity® designated for long-term support. This 

resulted in outdated versions of C# and its assemblies, and early versions of the Mixed-Reality 

Toolkit being used. This may have resulted in incompatible software preventing clean 

application-building and running. This issue is a candidate for fixing in future versions, although 

as the likely fix would require changing game engine and language versions, it would only be 

prudent as part of a major migration update. 
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User Interface 

User-interface dilemmas also frustrate efforts to create an effortless experience in the 

application. Currently, text input requires a virtual keyboard to be custom-built within the 

application. This keyboard can only be interacted with by tapping with the gaze. This is a very 

inefficient method of interaction and must be fixed if the application is to be comfortably used.  

The process for connecting to robot systems could be better streamlined as well. The 

current awkward method of finding and entering an IP address is a tedious method that requires a 

technical expert who knows how to find this information. If the system’s IP address is not static, 

it may change and require the initial connection process to be repeated. A feature to allow the 

application to scan LAN IP addresses for robotic systems would alleviate this problem 

considerably. 

Future Work 

The scope of this project can slowly widen as progress is made, with the vast possibilities 

of features that may be desired for an application such as this. However, certain next steps from 

the current abilities are evident. 

Display tool on robot model 

A trivial addition to the current functionality would be to display the tool center point at 

the robot’s end-effector. This object marker, instead of being parented directly to the robot 

world, should be parented to axis-6 of the robot. This would cause the tool to move with the 

virtual robot’s joints should they be changed during program execution. 

RAPID™ Code Editor Within the Application 

The ability to access and change the RAPID™ module text through Robot Web Services, 

direct editing of the code is theoretically possible within the application. An interface for code 

editing this code and updating it in the application would provide a crucial feature to the 

functionality of this software. 

Better Input 

An in-application code editor would be nearly useless without some way to better interact 

with the code itself than is currently implemented. Two different methods are proposed to tackle 
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the input issue for coding. One is being able to use an external keyboard for input into the 

HoloLens®, either attached to an external computer, or a wireless keyboard that can 

communicate directly to the HoloLens®. Keyboard input would allow an interface comparable to 

traditional IDEs, and to the RobotStudio® coding interface. 

The other method of improved interaction with the code is to develop an interface like 

that on the FlexPendant™. Each variable, routine and instruction has menus for editing fields and 

arguments, showing varieties of selections, and automatically changing the RAPID™ code based 

on those selections. This allows the application to minimize necessary use of a virtual keyboard 

and allow the application to run as smoothly as possible with that restriction. 

More Proper and Comprehensive RAPID™ Interpreter 

The application interprets the RAPID™ code to find and display the move instructions 

reached after starting the main procedure. While the current application can display predefined 

robot targets from relative to their work objects, it does not currently support any dynamically 

changed variables, including work objects and robot targets, and thus will incorrectly display any 

such movements. 

Writing a more complete interpreter to truly simulate a task’s progression is an important 

objective for the future of the application, as it will allow more correct function and predictions 

of robot movements. Properly writing a RAPID™ interpreter, however, is a very difficult task 

which requires extensive knowledge on the function of language interpreters in general.  

This task will involve creating “tokens” which represent every element found in RAPID™ 

definitions, values, routines, and statements. Sequential execution of the code in simulation is 

typically done with an “Abstract Syntax Tree”, which sorts through the tokens and determines 

the order that operations are performed in throughout the code. 

Simulate Robot Movement 

A development of a more complete interpreter would be the simulation of robot actuation 

by the virtual model. As the interpreter would be able to walk through execution of the RAPID™ 

code, it should be able to recreate the movements of the robot and show an approximation in the 

application. 
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This would require the use of inverse kinematics. There would be two ways that this 

could be achieved; the web services made available via HTTP requests includes an address 

which makes the controller perform the inverse kinematic calculations and sends them back to 

the application. The other method would be to develop the parameters by forward kinematics and 

make the calculations manually in the manner described in Chapter 4. For linear movements, a 

reasonable approximation of the path could be made by a cubic interpolation of two intermediate 

points and the beginning and end points, requiring only four inverse kinematic calculations. Joint 

movements would only require the beginning and end points and could be linearly interpolated 

accordingly. 

Dynamically edit robot targets/work objects 

The current visible coordinate frames of the work objects and robot targets are helpful to 

developers getting a feel for the system, but the ability to move, rotate, add, delete, or otherwise 

interact with targets in a path is a feature that certainly belongs in software bringing the potential 

of Augmented Reality to practical application. 

Chapter Summary 

This final chapter discusses problems encountered within early development of the 

application, and possible avenues to fix many of these issues and improve the features of the 

application in future project operations. The main issues discussed include performance 

problems stemming from inefficiencies of the HTTP web request system and limited graphics 

processing capabilities in the first version of HoloLens®. Additionally, programming issues 

surfaced from unknown incompatibilities between the .NET libraries available in the Unity® 

environment versus those deployed to the Universal Windows Platform. The third major issue is 

the difficult user interface, which is hampered by a poor text input method in the HoloLens®. 

These features must be addressed in a satisfactory way before such a project becomes viable for 

industrial use. 

There is a vast supply of potential features this application could incorporate to improve 

its utility. Several which were at various stages of conceptualization or development at time of 

writing include displaying objects such as a robot’s tool center point on the virtual model. 

RAPID™ code features could be added which include the ability to edit RAPID™ code directly in 
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the application, in a manner like the FlexPendant™’s Program Editor. With the app’s RAPID™ 

interaction comes the prospect of a true RAPID™ interpreter, which will allow the application to 

more completely mirror the behavior of the physical robot. With the app’s interpreter comes the 

visual simulation of the robot’s movement, obtainable by kinematic calculations detailed in 

Chapter 4. One of the best goals when it comes to useful interaction by Augmented Reality, 

however, is to be able to physically manipulate, or drag-and-drop, various RAPID™ objects 

around the app’s robot world. This ability would allow much more intuitive editing of the 

RAPID™ environment when compared to editing code directly, regardless of coding 

environment.  

  



74 

Final Thoughts 

The process of creating an application to work with industrial robots has provided 

valuable insight into multiple worlds of development. Development of an application that 

bridges these technologies requires enough extensive knowledge on the part of each developer to 

know how information from the robot’s controller and code can be received and used by 

unrelated code on the HoloLens® platform. Training from a robotics company partnered with this 

project provided priceless information, described in Chapters 4, 5 and 6 which would otherwise 

be too mercurial to navigate for the project otherwise. The skills learned about Unity® and the C# 

language proved equally critical in developing a product that showed any function at all. These 

skills must be retaught to anyone wishing to pick the project up beyond its current state. 

The issues and goals laid out in Chapter 9 provide a good roadmap for future 

development. This thesis will ideally help the next developer in multiple areas; the spirit of the 

project is to pioneer a unique blend of technologies, and any project wishing to prove useful for 

their target audience must have time and care dedicated by researchers and students beyond any 

initial survey, as this paper describes. The combination of AR and industrial robotics is one with 

enormous potential, and its realization will impart knowledge on its developers which will give 

them extensive credentials for a career in either field.  
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