

Photocopy and Use Authorization

In presenting this thesis in partial fulfillment of the requirements for an advanced degree at

Idaho State University, I agree that the Library shall make it freely available for inspection. I further

state that permission for extensive copying of my thesis for scholarly purposes may be granted by the

Dean of the Graduate School, Dean of my academic division, or by the University Librarian. It is

understood that any copying or publication of this thesis for financial gain shall not be allowed

without my written permission.

X
Kenneth Stone

Author

A Glance at Augmented Reality in Robotics

by

Kenneth Stone

A thesis submitted in partial fulfillment of the requirements for the degree of

Master of Science in the Department of Mechanical Engineering

Idaho State University

August 2020

ii

Committee Approval

To the Graduate Faculty:

The members of the committee appointed to examine the thesis of KENNETH STONE find it

satisfactory and recommend that it be accepted.

X
Marco Schoen, Ph.D.

Major Advisor

X
Kenneth Bosworth, Ph.D.

Committee Member

X
Wenxiang Zhu, Ph.D.

Graduate Faculty Representative

iii

© 2020, Kenneth Stone

iv

Acknowledgements

I would firstly like to thank my primary advisor, Dr. Marco Schoen, for his guidance in

research and writing this thesis. His help has been instrumental in the success of this project and

documentation of the results thereof. Additionally, the original principle investigator of this

project, Dr. Alba Perez-Gracia, deserves special recognition of her effective organization and

training of myself and other participants early in the project’s duration. Committee members Dr.

Ken Bosworth and Dr. Wenxiang Zhu deserve recognition for their willingness to assist in the

completion of this thesis.

The project lead was Omid Heidari, whose brilliance and determination produced the

most significant parts of the project’s structure and substance. Colleagues Shovan Chowdhury,

Tyler Hedgepeth and others contributed critical components to the project that aided

substantially in its function and usability.

The project would have been impossible without the equipment and training provided by

the partner company House of Design. Expertise and guidance critically came from a few

different members of their company, including Shane Dittrich and Mike Luna. Training in the

usage of ABB Robots and RAPID™ Programming given by Trevor Hall made possible much of

the robot interaction featured in the current version of the application.

I would also like to thank Idaho Global Entrepreneurial Mission for their funding of this

project and our participation with House of Design. Finally, Idaho State University provided the

research laboratory and infrastructure which gave us the ability to perform the project.

v

A Glance at Augmented Reality in Robotics

Thesis Abstract—Idaho State University (2020)

This thesis details the theory and implementation of software on the augmented reality

platform Microsoft HoloLens® which communicates and interacts with ABB robotic systems.

Recent advancements in augmented reality technology have provided new unrealized potential

for use in industrial robotic development. This project uses the exposure of ABB’s controller

information by HTTP web requests and displays the information in a specially built application

in HoloLens®. System information is displayed to the user on a virtual panel, and a virtual robot

model with path targets can be displayed on the actual robot to create a new intuitive

development environment. Though the project is in its infant stages and has room for many

improvements, the realized concepts from this project and further avenues of development show

great promise.

Key Words:

ABB, Industrial Robots, FlexPendant, HoloLens, Unity, Augmented Reality, IRC5, IRB-

120, C#, HTTP, RAPID

vi

Table of Contents

Table of Contents ... vi

List of Figures .. xi

List of Tables ... xiv

List of Equations ... xv

1 Introduction ... 1

Objective ... 1

Augmented Reality ... 1

Robotics in Industry 4.0 .. 1

Combination of Robotics and AR Technology ... 2

2 State of the Art .. 3

RobotStudio® .. 3

AR Hardware .. 3

3 Proposed Approach ... 5

Microsoft HoloLens® .. 5

Experimental Setup ... 6

4 Mathematics of Robotics .. 7

Position vectors ... 7

Rotation matrices and quaternions .. 7

Rotation matrices .. 7

Quaternions ... 8

Transformation Matrices ... 10

Comparison of methods .. 10

Kinematic chain .. 12

Kinematic calculation ... 13

Forward Kinematics .. 13

Inverse Kinematics .. 13

Chapter Summary ... 14

5 IRB 120™ Operation Overview .. 15

Safety .. 15

Cage .. 15

Force Sensors .. 15

Manual Mode and Automatic Mode ... 15

vii

Switches .. 16

Emergency Stop Buttons ... 16

On/Off switch .. 17

Manual/Auto Key .. 18

Motors On button .. 18

Brake Release .. 18

Manual Operation ... 18

Jogging .. 18

Per-axis jogging .. 19

Linear Jogging .. 19

Inverse Kinematics.. 19

Reorientation ... 20

Coordinate Frames .. 20

Poses ... 20

Position ... 20

Rotation ... 20

World .. 21

Base ... 21

Work Object .. 22

Tool (End-effector) ... 22

Robot Target ... 22

Calibration ... 23

Data Editing .. 24

Scope and Viewing ... 25

Editing data ... 25

Complex data .. 26

Creating a tool ... 26

Creating a work-object .. 27

Creating a robot target .. 27

Program Editing .. 28

Editing routines ... 28

Adding routines ... 28

Instructions .. 28

Adding an instruction .. 29

viii

Editing instructions ... 29

Testing and debugging .. 29

Module Text .. 29

Automatic Operation ... 30

RobotStudio® RAPID™ Editing .. 30

Chapter Summary ... 32

6 Introduction to RAPID™ ... 33

RAPID™ Structure .. 33

Tasks ... 33

Modules ... 34

Variables ... 34

Variable Syntax ... 34

Scopes ... 35

Symbol Types ... 35

Datatypes ... 35

Primitives: bool, num, string ... 35

Composite data: robtarget, tooldata, wobjdata ... 36

Special objects: clock, zonedata ... 37

Routines .. 37

Routine Syntax .. 37

Routine Types ... 38

PROC .. 38

FUNC .. 38

TRAP .. 39

PROC Main ... 39

Instructions .. 39

Move Statements ... 39

MoveJ .. 40

MoveL ... 40

MoveC... 40

Other movement types .. 41

Move Statement Components ... 41

ix

Other Instructions.. 43

Program Flow Control .. 43

Calls to other routines ... 45

Chapter Summary ... 45

7 Introduction to Unity® and C# .. 46

Unity® ... 46

C# .. 47

Characteristics ... 48

Classes and Objects... 48

Member: Fields, Methods, Properties ... 48

Modifiers ... 49

Generics .. 49

Reflection .. 49

Garbage Collection ... 49

Use in Unity® .. 49

.NET Assemblies to use .. 50

Chapter Summary ... 50

8 Application Description and Function .. 52

Application Overview ... 52

Start Scene .. 52

VPanel ... 53

Overview ... 53

System Info ... 54

3D Model .. 54

Run .. 55

Communication ... 55

HTTP Connection ... 55

GET ... 56

POST ... 57

Robot Web Services .. 57

System information ... 58

RAPID™ service .. 58

Subscription service .. 58

Code Structure .. 59

x

RobotCommunication ... 59

SceneOrganizerVPanel ... 60

IRC5Services .. 61

RobotWebData .. 61

Rapid class set ... 62

Task ... 62

Module .. 63

Symbol .. 64

Symbol-inheriting classes ... 65

Routines .. 65

Statements ... 67

Chapter Summary ... 67

9 Issues and Future Work .. 69

Issues ... 69

Performance .. 69

Programming ... 69

User Interface .. 70

Future Work .. 70

Display tool on robot model ... 70

RAPID™ Code Editor Within the Application .. 70

Better Input ... 70

More Proper and Comprehensive RAPID™ Interpreter .. 71

Simulate Robot Movement ... 71

Dynamically edit robot targets/work objects .. 72

Chapter Summary ... 72

Final Thoughts .. 74

References ... 75

Index 77

xi

List of Figures

Figure 4-1:IRB 120 Wireframe showing the robot being animated and handled as a kinematic

chain. ..13

Figure 5-1: View from the right-front of the experimental robot setup ...15

Figure 5-2: Setup from the left side ...15

Figure 5-3: FlexPendant™ Front and Back. ...17

Figure 5-4:IRC5 Controls. Clockwise from Top-Left; Manual-Auto Key, Emergency Stop

Button, Motors-On Button, Brake Release ..17

Figure 5-5: Jogging Menu on FlexPendant™ ...19

Figure 5-6:World Coordinates and Base Coordinates. Source: [5] ...21

Figure 5-7:Work object coordinates and definition process. Source: [5]22

Figure 5-8: Calibration marks for Axis 1 ...23

Figure 5-9: Calibration marks for Axis 5 ...23

Figure 5-10: Calibration Menu showing option to update rev counters ..24

Figure 5-11: Program Data Menu ..24

Figure 5-12: Program Data Menu, searching all robot target saved in the controller25

Figure 5-13: Tool definition via the 4-Point process. Source: [5] ...27

Figure 5-14: Program Editor, showing a procedure...28

Figure 5-15: Production Window, showing the program progressing through PROC main30

Figure 5-16: RobotStudio®’s Controller Tab, showing buttons used to connect to a controller.

Since a controller is not currently connected, most controls are greyed out.31

Figure 6-1: Diagram showing the hierarchy of RAPID™ Code. Source: [5]33

Figure 6-2: Several variable declarations. Scopes include GLOBAL (default, implicit), LOCAL

and TASK. Symbol Types include VAR, PERS, and CONST. After these elements

follow the data type and name of the variables. ...34

Figure 6-3: Complex data variables. Included in both wobjdata and robtarget are position vectors

and rotation quaternions. ..36

Figure 6-4: Example of a PROC declaration, with several move instructions. This procedure has

no arguments. ...38

xii

Figure 6-5: Example of a FUNC declaration, with a single position vector argument returning a

number corresponding to the length of the vector ...38

Figure 6-6: PROC main, showing two joint movements before and after a ProcCall to another

procedure..39

Figure 6-7: A move statement showing the movement type, robot target, speed data, zone data,

tool, and work object used in defining the move. ..42

Figure 6-8: An If-ElseIf-Else structure, used for handling logic ...43

Figure 6-9: A While loop ...44

Figure 6-10: A For loop ...44

Figure 6-11: An error handler at the end of a procedure ...45

Figure 7-1: Unity® Editor interface, showing the VPanel Scene ...46

Figure 7-2: Sample C# Code, taken from the app’s RobotCommunication script. Source: [15] ..48

Figure 8-1: VPanel, displaying system information received from the robot52

Figure 8-2: VPanel, displaying system information received from the robot53

Figure 8-3: Robot 3D Model, with targets displayed around it ...55

Figure 8-4: Sample response to the address that gets the Module Text. Source: [14]57

Figure 8-5: The scripts attached to the SceneOrganizer object, which runs the primary operations

of the VPanel scene. ...59

Figure 8-6: A method in RobotCommunication to create a JSON object from a web GET

resource. Source: [15] ..60

Figure 8-7: Beginning of IRC5Services class declaration; note the fields for addresses and

information, as well as its collection of RAPID™ Task objects. Source: [15]61

Figure 8-8: A collection of RobotWebData, complete with addresses and data labels, to be

aggregated and recorded by the IRC5Services object. Source: [15]62

Figure 8-9: Declaration of the Task mirror class; holding a collection of Modules and references

to the variables and routines present in those modules. Source: [15]63

Figure 8-10: Declaration of the Module mirror class; which reads its text and converts them into

mirror symbols and routines. Source: [15] ..64

Figure 8-11: Declaration of the Symbol mirror class, holding details on the symbol represented

and designed to be inherited by more sophisticated data classes. Source: [15]65

xiii

Figure 8-12: Declaration of the Routine mirror class, holding information about the instructions

executed within and, similar to the Symbol class, designed to be inherited by specific

routine types. Source: [15] ...66

Figure 8-13: Declaration of the Statement mirror class. Retains statement text but does have the

ability to tell its own statement type. Source: [15] ..67

xiv

List of Tables

Table 1: Number of floats required to save a rotation in a specific form 11

Table 2: Operations required to convert between each rotation format .. 11

Table 3: Operations required for a transformation of a vector with each rotation format. 12

xv

List of Equations

(4-1)... 7

(4-2)... 7

(4-3)... 7

(4-4)... 7

(4-5)... 8

(4-6)... 8

(4-7)... 8

(4-8)... 8

(4-9)... 9

(4-10)... 9

(4-11)... 9

(4-12)... 9

(4-13)... 10

(4-14)... 10

(4-15)... 13

(4-16)... 14

(4-17)... 14

1

1 Introduction

Objective

The objective of this work is to describe the foray into developing software to

communicate between an AR headset and an ABB industrial robot controller. Some of the topics

introduced and presented in this thesis deal with the programming of AR headsets and their

communication with robot control hard and software, as well as capabilities and impact of such

systems in industrial settings.

Augmented Reality

The world of virtual reality and augmented reality is a young one, with computational

equipment only recently becoming powerful and compact enough to bring them to practical use.

Virtual Reality (VR) is a concept that brings computer-rendered graphics a new

experience by allowing the user to view the virtual surroundings as if they were truly in that

world. Augmented Reality (AR), by contrast, brings some virtual elements into the real world

that the user is viewing, superimposing those elements on the physical surroundings.

AR provides an ideal tool to join the experiences of the physical world and electronic

data in a way never-before possible. This technology has great potential in a variety of settings,

including automated manufacturing.

Robotics in Industry 4.0

Robots are at the heart of the modern manufacturing plant, and the advances of Industry

4.0 bring about methods of robotic implementation that a short time ago would have seemed

overwhelming.

Industry 4.0 is the changes brought about to the manufacturing world due to the fourth

industrial revolution, which took place in the last decade, [1]. It takes advantage of recent

concepts such as the Internet of Things (IoT) and applies them in an industrial setting.

2

The increasing ability for individual manufacturing components to take and transmit data,

and act according to data received by other components, is a phenomenon that is referred to as

the Industrial Internet of Things (IIoT). This trend allows for much more complex and nuanced

control of automated processes than previously attainable.

This interconnectedness of manufacturing devices allows unprecedented automation of

record keeping, and access to virtually unlimited statistics about a given manufacturing process.

The advance of processing technology such as powerful PLCs and machine learning algorithms

across the world has led to widespread use of smart automation processes, as the machinery can

now make complex decisions without human intervention, [1].

Combination of Robotics and AR Technology

Modern industrial robots are typically controlled and monitored via software on a

computer nearby the system. These computers provide useful and practical interfaces to control

robot operations; however, the connection between the planned robot workspaces in the software

and the robot’s physical environment can be unintuitive.

The burgeoning world of augmented reality presents a logical combination with

manufacturing robotics. AR can provide a new tool to developers and customers of industrial

systems.

3

2 State of the Art

There is a multitude of solutions currently on the market for automated manufacturing.

Numerous companies compete to provide products and services for this demand, such as ABB,

Siemens, Rockwell Automation, Eaton, Honeywell, and Mitsubishi, just to name a few. In

addition, tech-savvy prospective producers can venture into open-source software for running

their custom-built robots, such as Robot Operating System (ROS).

RobotStudio®

This work focuses on robots, controllers, and software produced by ABB. The company’s

flagship robotic software is RobotStudio®, a powerful program with wide-ranging capabilities,

[2]. It facilitates the design of robotic systems by furnishing ready-to-use virtual versions of the

entire catalog of ABB robots. It allows the setup of a simulated workspace for the robot and

provides straightforward planning of the robot’s path during each production cycle. It also

provides direct access to write and edit controllers’ code. It has capabilities to interface with

Computer-Aided Design (CAD) software, such as SolidWorks, [3].

RobotStudio® also has a feature allowing the robotic systems built within the program to

be viewed from a VR headset. RobotStudio® provides simulation of its virtual robot following

the designated paths, and this simulation can be viewed from a VR headset to better feel the scale

and operation of a production cycle, [3].

As powerful as RobotStudio® is, there are issues imposed by its scope and the hardware it

uses. The software currently has no implementation for AR glasses, a useful new tool as

previously stated. This second issue is the focus of this thesis. Ideally, the AR software would

ultimately feel natural to any developer already familiar with RobotStudio®, [3].

AR Hardware

There are multiple AR platforms developed by companies. For example, Microsoft™

HoloLens® and Google™ Glass are two competing projects to build state-of-the-art eyewear for

commercial use. Additionally, Leap Motion develops Project North Star, a device which has a

4

fully 3D printable frame, and has a much lower cost than the products from Google and

Microsoft, at the expense of developmental support.

5

3 Proposed Approach

The main goal of this project is to provide an example of the potential of AR technology

applied to the world of industrial robotics. The result is an application that can communicate with

an ABB system to provide developers and customers a new way to interface with their

production technology.

Microsoft HoloLens®

The project’s hardware of choice is Microsoft’s AR eyewear product, HoloLens®. It has

numerous advantages that facilitate development of specialized software. HoloLens® has a

simple group of predefined controls, and fully functional motion tracking algorithms allowing

developers to focus on their products [4].

In the center of the user’s field of vision is a white dot called the “gaze,” which is

analogous to the cursor on a regular computer. When the user places the gaze on something that

they wish to interact with, there are a variety of hand gestures; a simple click activates any

button. Clicking and dragging with one hand can move objects around in the virtual space and

doing so with two hands also allows rotation and scaling of objects. Finally, if one needs to exit

the program and return to the main menu, a bloom gesture can be done from any application, [4].

HoloLens® uses a range of different sensors to calculate the movements of the headset

within its real surroundings, using algorithms that are known as Simultaneous Location And

Mapping (SLAM) algorithms. This procedure allows developers to place objects in their

application and have those objects stay in place relative to the physical surroundings, giving the

user the impression that they can move freely in this hybrid world, [4].

Since HoloLens® is an active commercial development, it is likely that programs

developed for the current HoloLens® should be relatively easily ported to HoloLens® 2 and

further versions of the eyewear.

6

Experimental Setup

The final product should be able to handle any system the user needs, but for

development and testing, the proposed system consists of a single ABB brand IRB 120™ six-

degree-of-freedom robot, which is attached to an aluminum table surrounded by an aluminum

cage for safety. Mounted under the table is an IRC5™ Controller connected to the robot above,

[5].

ABB’s controllers come with a teach pendant called FlexPendant™. The FlexPendant™ is

the most direct route to editing a robot controller’s program. Any other smart equipment trying to

modify the program must be given explicit permission through the FlexPendant™, [5].

Either the FlexPendant™ or RobotStudio® can edit the controller’s code, which is scripted

in a high-level language called RAPID™, [3]. The controllers code is made up of structures

called tasks, which are further subdivided into modules containing symbols and routines.

7

4 Mathematics of Robotics

Position vectors

Positions are represented by three-dimensional vectors showing the position in the basis

of some coordinate frame. Relative position between two objects can be found by adding and

subtracting these vectors from each other, [6].

It should be noted that these position vectors are closed under addition and scalar

multiplication, as stated in Equations (4-1) and (4-2). Successive positions can be added to other

positions for translations between each. Scalar multiplication (as the name implies) can scale any

vector to any size. Vector addition and scalar multiplication are both commutative.

 ∀𝑢⃗ , 𝑣 ∈ 𝑊: 𝑢⃗ + 𝑣 ∈ 𝑊

(4-1)

 ∀𝑢⃗ ∈ 𝑊, ∀𝑐 ∈ ℝ: 𝑐𝑢⃗ ∈ 𝑊 (4-2)

Rotation matrices and quaternions

Rotation matrices

There are a couple computational approaches to rotation. The first is a 3-by-3 rotation

matrix that encodes the three basis unit vectors given by the current rotated coordinate frame.

These rotated unit vectors are the columns of the rotation matrix. This matrix is therefore an

orthonormal skew-symmetric matrix that can be premultiplied to any position vector to rotate

that vector correspondingly, [7].

𝑹𝑥(𝜃) ≔ [

1 0 0
0 cos⁡(𝜃) −sin⁡(𝜃)
0 sin⁡(𝜃) cos⁡(𝜃)

]

(4-3)

 𝑹𝑦(𝜃) ≔ [
cos⁡(𝜃) 0 sin⁡(𝜃)

0 1 0
−sin⁡(𝜃) 0 cos⁡(𝜃)

] (4-4)

8

𝑹𝑧(𝜃) ≔ [

cos(𝜃) − sin(𝜃) 0
sin(𝜃) cos(𝜃) 0

0 0 1

]

(4-5)

 𝑝 𝑟𝑜𝑡𝑎𝑡𝑒𝑑 = 𝑹𝑝 𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 (4-6)

Just as rotations can be multiplied onto vectors to rotate them, they can be premultiplied

to another rotation matrix. Since these are matrices, their multiplication is generally not

commutative. The matrix product resulting is the second rotation factor, followed by the first. A

chain of rotations can be made in this manner, with the right-most factor being the first rotation,

with each next premultiplied matrix being next rotation, [7].

𝑹𝑡𝑜𝑡𝑎𝑙 = ∏𝑹𝑖

↶
𝑛

𝑖=1

= 𝑹𝑛𝑹𝑛−1 …𝑹2𝑹1 (4-7)

A rotation matrix can be inverted to give the opposite rotation from the original matrix.

Since the rotation matrix is an orthonormal skew-symmetric matrix, a rotation matrix will always

be nonsingular, and its inverse is its transpose. A rotation pre- or postmultiplied by its inverse

rotation will give the identity matrix, which signifies no net rotation, [6].

 𝑹𝑹−1 = 𝑹−1𝑹 = 𝑰⁡(𝑁𝑜⁡𝑟𝑜𝑡𝑎𝑡𝑖𝑜𝑛) (4-8)

Quaternions

The other typical computational representation of a rotation is the quaternion. It is an

extension of complex numbers to include three different imaginary dimensions. It encodes both

some axis of rotation away from the parent orientation, and the angle of rotation about that axis.

The quaternion only has four elements, and only has three-degrees of freedom, since the

quaternion has the constraint of having an absolute value of one, [7].

9

𝑢⃗ = [

𝑢𝑥

𝑢𝑦

𝑢𝑧

] :⁡⁡⁡⁡𝑅𝑜𝑡𝑎𝑡𝑖𝑜𝑛⁡𝑎𝑥𝑖𝑠

𝑖2 = 𝑗2 = 𝑘2 = 𝑖𝑗𝑘 = −1:⁡⁡⁡𝐼𝑚𝑎𝑔𝑖𝑛𝑎𝑟𝑦⁡𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡𝑠

𝑞 ≔ 𝑒

𝜃
2
𝑢⃗⃗ ⋅[

𝑖
𝑗
𝑘
]

= cos (
𝜃

2
) + sin (

𝜃

2
) 𝑢⃗ ⋅ [

𝑖
𝑗
𝑘
]

(4-9)

Calculating the inverse of a quaternion, which is the opposite rotation just as it is with

rotation matrices, is calculated by simply substituting −𝜃 for 𝜃, which negates all imaginary

components of the quaternion. Also, like rotation matrices, pre- or postmultiplying a normal

quaternion by its inverse yields the real number 1, corresponding to no rotation, [7].

𝑞−1 = 𝑒
−
𝜃
2
𝑢⃗⃗ ⋅[

𝑖
𝑗
𝑘
]

= cos (
𝜃

2
) − sin (

𝜃

2
) 𝑢⃗ ⋅ [

𝑖
𝑗
𝑘
] (4-10)

These objects can be used to calculate the rotation of a point, but its calculation is

somewhat less straight-forward compared to rotation matrices. The vector must be modified by

using an inner product with a vector of the imaginary constants i, j, and k. The corresponding

‘position quaternion’ has a real component of zero and is not bound by the typical normalization

rule of quaternions. To find the rotated vector, the position quaternion is premultiplied by the

rotation quaternion and postmultiplied by the inverse rotation. The quaternion product can then

be returned to vector form by taking the coefficients of the three imaginary constants as

respective elements, [7].

𝑝′ = 𝑝 ⋅ [

𝑖
𝑗
𝑘
]

(4-11)

 𝑝𝑟𝑜𝑡𝑎𝑡𝑒𝑑
′ = 𝑞𝑝′𝑞−1 (4-12)

10

Quaternions, like rotation matrices, can be premultiplied onto other quaternions to

perform successive rotations. Using identities of products of the imaginary unit constants and

multiplication of each right-most pair of quaternions, the single quaternion representing the

result of the rotation sequence is achieved.

𝑞𝑡𝑜𝑡𝑎𝑙 = ∏𝑞𝑖

↶
𝑛

𝑖=1

= 𝑞𝑛𝑞𝑛−1 …𝑞2𝑞1

(4-13)

Transformation Matrices

A transformation matrix is a structure that combines a translation vector and a subsequent

rotation matrix. It is a 4-by-4 matrix with its rotation matrix in the upper-left elements with zeros

in the row below, and its translation vector in the top three elements of the right-most column

with a one below, [6].

𝑻 = [𝑹 𝑡

𝟎 1
] = [

𝑟𝑥𝑥 𝑟𝑥𝑦 𝑟𝑥𝑧 𝑡𝑥
𝑟𝑦𝑥 𝑟𝑦𝑦 𝑟𝑦𝑧 𝑡𝑦
𝑟𝑧𝑥 𝑟𝑧𝑦 𝑟𝑧𝑧 𝑡𝑧
0 0 0 1

]

(4-14)

Like rotation matrices, it can be premultiplied for successive combined transformations

and inverted to give the opposite transformation. However, unlike them, the transformation

matrix is not generally orthonormal or skew-symmetric due to its incorporation of the translation

vector; thus, to find the inverse, one must manually implement a specialized inversion algorithm

or resort to using numerical linear algebra methods.

Comparison of methods

The methods above all provide similar ways of calculating successive combined

transformations, or separate positions and rotations, including rotations of points. The choice of

which methods to use generally false to computational simplicity and performance, as well as

compactness of data storage. The main methods for rotation computation are rotation matrices,

11

quaternions, and explicit angle-axis 4-vectors (like quaternions, but not discussed here). Rotation

matrices and translation vectors could be further combined in transformation matrices, [8].

In most cases, quaternions proved the most efficient method of representing rotations,

both in computation steps and data storage [8]. The data storage of both quaternions and angle-

axis structures is four elements (and can be reduced to three at the expense of computing the

fourth for subsequent operations), but composing multiple rotations together is drastically more

Table 1: Number of floats required to save a rotation in a specific form

Representation Floats Comments

Rotation Matrix 9

Angle-axis 4 no precompute of sin θ or 1 - cos θ

Angle-axis 6 precompute of sin θ or 1 - cos θ

Quaternion 4

Table 2: Operations required to convert between each rotation format

Conversion Additions Multiplications Divisions Function

Calls

Comparisons

Axis-angle

to matrix

13 15 2

Matrix to

axis-angle

8 7 1 2

Angle-axis

to quaternion

1 5 1 2

Quaternion

to angle-axis

 4 2

Quaternion

to matrix

12 12

Matrix to

quaternion

6 5 1 1 1 or 3

12

efficient with quaternions. Quaternions are also under half the data size of rotation matrices (four

numbers to nine) and compose rotations somewhat faster.

The only case where quaternions are not ideal is when a position is being transformed,

where a rotation matrix wins out. Fortunately, the conversion between quaternions and rotation

matrices is relatively inexpensive, and that conversion followed by transformation via the

resultant matrix is somewhat cheaper than direct rotation by quaternion. As a result, poses in

most computer systems, including ABB’s robotic controllers, are implemented by a vector

position and a separate quaternion rotation, [8].

Kinematic chain

Most industrial robots, including the ones at the focus of this project, are six-degree-of-

freedom serial robots, meaning that each degree of freedom is represented by a joint attached to

the previous one. If transformation matrices are used to attain this transformation, a simple chain

of transformation matrices would give the pose of the end-effector, [6].

With separate vectors and quaternions representing poses, however, the process is

slightly different. Finding the rotation of the end-effector is simple, as the rotation of each link

on the robot can be successively premultiplied on each other to get the total rotation. Finding the

position, however, is slightly more complicated. Since all joints on this robot are revolute joints,

each link has a vector of constant magnitude pointing from its base joint to its end joint. The

direction of this vector is determined by its default configuration rotated by that link’s total

Table 3: Operations required for a transformation of a vector with each rotation format.

Representation Additions Multiplications Comparisons

Matrix 6 9

Axis-angle 12 18

Quaternion 24 32 Using generic quaternion multiplies

Quaternion 17 24 Using specialized quaternion

multiplies

Quaternion 18 21 Convert to matrix, then multiply

13

rotation from the base. Therefore, the end-effector’s position is given by the sum of those link

vectors rotated by their corresponding global rotations, [6].

Kinematic calculation

Forward Kinematics

Forward kinematics is the process of taking a known set of robot coordinates, referred to

as its configuration, and finding the resulting pose of the end-effector. The process of forward

kinematics is a straight-forward one, as it is simply an addition of joint vectors and a

composition of rotations to find the end-effector’s pose. Forward kinematics is useful when a

robot is first constructed, as it can be used to find the reference vectors and orientations of the

robot for later use in inverse kinematics, [6].

 𝑡 𝑡𝑜𝑡𝑎𝑙 = 𝑡 1 + 𝑹1𝑡 2 + 𝑹2𝑹1𝑡 3 + 𝑹3𝑹2𝑹1𝑡 4 + 𝑹4𝑹3𝑹2𝑹1𝑡 5 + 𝑹5𝑹4𝑹3𝑹2𝑹1𝑡 6

+ 𝑹6𝑹5𝑹4𝑹3𝑹2𝑹1𝑡 𝑡𝑜𝑜𝑙

(4-15)

Inverse Kinematics

Since forward kinematics gets a pose from joint, predictably, inverse kinematics is the

opposite function, taking a desired end-effector position and getting a set of joint variables that

satisfies that position. As the objective of most robotic systems are targets in physical space,

Figure 4-1:IRB 120 Wireframe

showing the robot being animated

and handled as a kinematic chain.

14

inverse kinematics is used much more in typical operation of robots. Typical numerical solvers

treat this as a root-finding problem, with a function of one or more arguments evaluating to zero

with a suitable selection of those arguments, [6].

 𝑡 1 + 𝑹1𝑡 2 + 𝑹2𝑹1𝑡 3 + 𝑹3𝑹2𝑹1𝑡 4 + 𝑹4𝑹3𝑹2𝑹1𝑡 5 + 𝑹5𝑹4𝑹3𝑹2𝑹1𝑡 6

+ 𝑹6𝑹5𝑹4𝑹3𝑹2𝑹1𝑡 𝑡𝑜𝑜𝑙 − 𝑡 𝑡𝑎𝑟𝑔𝑒𝑡 = 0⃗

(4-16)

 𝑹6𝑹5𝑹4𝑹3𝑹2𝑹1 − 𝑹𝑡𝑎𝑟𝑔𝑒𝑡 = 𝟎 (4-17)

Chapter Summary

This chapter discussed the mathematics that are involved in the poses and kinematic

calculations of robotics. Three dimensional poses are composed of positions and rotations.

Positions are described as a three-dimensional vector describing the position in millimeters with

respect to a specific reference frame. Rotations are described as unit quaternions, a scalar

numerical construct with a real component and three imaginary components, which encode a

rotation axis and the angle of rotation about that axis. Robot joint configurations are stored as

six-dimensional vectors representing the angle of each joint in degrees.

Robot kinematics can be divided into forward kinematics, which transform a vector of

joint angles into an axis pose, and inverse kinematics, which perform the opposite mapping. The

kinematic calculations are not one-to-one, so a least-squares calculation can be done to find the

closest inverse kinematic solution. Forward kinematics can initially be done by a large matrix

equation to capture the reference pose and joint vectors of the robot. Inverse kinematics

themselves can be performed by a numerical root finding method on matrix equations with terms

obtained from the forward kinematics.

These mathematical concepts are integral in the function of robots, including the ABB

Robots focused on in this project. Recognizing how to transfer the poses between coordinate

systems, such as between the RAPID™ and Unity® coordinate systems, is crucial for display of

objects as done in this project.

15

5 IRB 120™ Operation Overview

Safety

Cage

 The robot setup used during development of the application is enclosed by an aluminum

cage with plexiglass panels allowing safe visibility into the cage. Industrial assemblies may or

may not have safety cages built around the robot workspaces, so additional precautions may be

necessary on a per-case basis.

Force Sensors

The robot is equipped with force sensors in its joints, which will deactivate any motion

that would otherwise cause the robot to damage itself.

Although the robot is sensitive enough to protect itself, most ABB robots, including the

IRB 120™, are not able to prevent injury to external objects or humans. Therefore, care must be

taken to remain clear of the robot’s workspace while it is active.

Manual Mode and Automatic Mode

When programming the robot’s movements for the first time, the robot will be in manual

reduced speed mode, typically referred to as simply manual mode; in this mode the robot is

limited to movement no faster than 250 mm/s, [5].

Figure 5-2: View from the right-front of the

experimental robot setup

Figure 5-1: Setup from the left side

16

Additionally, when moving the robot in manual mode, the operator must be holding the

enabling device, a button on the FlexPendant™ meant to assure that the operator is fully aware of

the current robot operation. The button must be depressed half-way, as either undepressed or

fully depressed will not allow the robot to move. When the enabling device is not engaged while

in manual mode, the words Guard Stop will appear at the top of the FlexPendant™ screen, [5].

The other primary operating mode is automatic mode. Here the operator does not have

direct authority to change the system or the code in any direct way. However, the system can run

at full speed and can be set to run and repeat continuously. The enabling device does not need to

be depressed in automatic mode, as the workspace is assumed to be clear of any obstructions and

personnel, and the scripted movements have already been defined and tested, [5].

Manual full-speed mode can be thought of as an intermediate operating mode between

the manual and automatic modes, available on some controllers. It has most of the fine control

and abilities of the regular manual mode, but allows operation at full speed, and as such expects

that external obstructions and personnel are safely away from its workspace. This mode is

primarily meant for testing a system before proceeding to automatic mode, [5]. (Note: Manual

full-speed mode is not available in the controller used in this test.)

Switches

Emergency Stop Buttons

There are emergency stop buttons on both the IRC5™ controller and the FlexPendant™,

both being large red buttons. In the event of some failure or emergency near the robot system,

this button can be used to immediately cease all operation, cutting power to all components

17

except the brake release circuits. The controller must be rebooted to resume operation after an

emergency stop, [5].

On/Off switch

The On/Off switch, as the name suggests, controls the power state of the system. It is a

stiff rotating switch to protect against accidental toggling. When the system is first booting up, it

will require several moments to load all software before the FlexPendant™ will show the main

screen and any alerts, showing that the system is operational, [5].

Figure 5-4:IRC5 Controls. Clockwise from Top-Left; Manual-Auto

Key, Emergency Stop Button, Motors-On Button, Brake Release

Figure 5-3: FlexPendant™ Front and Back.

A: Connector, B: Touch Screen, C: Emergency Stop Button, D: Joystick, E: USB Port,

F: Three-Position Enabling Device (Guard Stop), G: Stylus Pen, H: Reset Button.

Source: [5]

18

Manual/Auto Key

There is a key on the controller that switches between manual and auto mode (and

manual full-speed mode on some controllers). This key can be left in the controller for

experimental setups like this or can be removed for safety and security purposes, [5].

Motors On button

The Motors On button allows the motors to be moved in auto mode. When automatic

mode is first enabled, the motors will be switched off by default. This button must be pressed so

that it is illuminated for automatic robot operation. Since, in manual mode, motor control is done

through the FlexPendant™ this button becomes irrelevant, [5].

Brake Release

The brake release button allows the robot to become limp and manually adjustable if it

gets stuck in a certain position. Larger models of robots typically also have brake releases for

individual joints. These individual switches can be found on the robot body if present, [5].

(CAUTION: The robot must be fully externally supported before the brake release is engaged;

otherwise, the robot may fall and cause injury or equipment damage)

Manual Operation

Jogging

Jogging the robot is a procedure that allows the operator to directly control the robot’s

axes or end-effector pose by a joystick, allowing empirical definition of robotic elements in the

controller’s script, [5].

Jogging requires the robot be in manual mode. To find the Jogging menu in the

FlexPendant™ open the ABB menu and find Jogging in the left-hand column.

In the left side of the Jogging menu, the is a variety of properties about the robot’s

configuration, such as the current mechanical unit, motion mode, and various objects used to

calculate the end-effectors current position and orientation.

In the upper-right corner of the menu, the Position panel shows the joint angles if jogging

in axis mode, or the end-effector position and orientation if jogging in linear or reorient mode.

19

In the lower-right corner of the menu the Joystick Directions panel shows the how

movements of the joystick will affect the robot, again depending on the Motion mode.

Per-axis jogging

To jog axes individually, select Motion Mode in the Jogging menu and select Axis 1-3 or

Axis 4-6, depending on which axis is desired, and press OK. The Joystick directions panel will

show how each selected axis can be moved by the joystick, [5].

Linear Jogging

To jog the end-effector on a linear path in physical space, select Motion Mode in the

Jogging menu and select Linear. The Joystick directions panel will show which joystick

movements correspond to each cartesian direction, [5].

Inverse Kinematics

Linear movements use Inverse Kinematics to calculate the specific joint movements

required to produce the desired end-effector movement. Inverse kinematics are further described

in Chapter 4.

Since, when jogging, the controller only receives information on its commanded move in

the instant it makes that move, the inverse kinematic calculation must be redone for each discrete

computation cycle.

Figure 5-5: Jogging Menu on FlexPendant™

20

There are places in the robot’s workspace where joints are aligned in such a way that

movements between the joints become dependent of each other. This represents a singularity in

the kinematic matrix, where inverse kinematics are impossible. Linear movements should avoid

these singularities in the robot workspace, and an error message will interrupt operation should a

singularity get too close, [6].

Reorientation

To jog the end-effector in a rotating path around the Tool Center Point, select Motion

Mode in the Jogging menu and select Reorient. The Joystick directions panel will show which

joystick movements correspond to each Euler-angle movement.

As with linear jogging, reorientation relies on inverse kinematics to calculate the joint

values necessary for the new position. Like linear jogging, it is also vulnerable to approaching

singularities, and will throw an error if one is approached, [5].

Coordinate Frames

A coordinate frame exists for any object in space which has its own absolute position and

rotation and can possibly have other coordinates as children. There are multiple coordinate

frames available for use by controller. The coordinate frame selected in the jogging menu

determines the location and orientation of the cardinal axes used for jogging, [5].

Poses

Position

Position vectors in RAPID™ are represented by pos, a 3D vector with each element of

type num. In robot base coordinates, the X-axis is designated as forward and the Z-axis is up;

consequently, the Y-axis is left, signifying that RAPID™ uses a right-handed coordinate system,

[9].

Rotation

Orientations of objects in RAPID™ are recorded as orient, a quaternion derived from a

rotation axis in the same coordinate frame as the position, [9].

21

World

The most basic coordinate system in a robot’s controller is called the world frame. This

frame is system specific and is therefore defined once per robot controller. Even if a system has

multiple robots running inside it, the world coordinate frame is common among all of them.

Base

The base frame is specified on a per-robot basis and is by default at the bottom center of a

robot’s base. In a system with a single robot where neither world frame nor base frame have been

explicitly defined, the world and base frames are identical to one another.

Figure 5-6:World Coordinates and Base Coordinates. Source: [5]

22

Work Object

In addition to the world and base frames, each work object has its own coordinate system.

A work object can be any specific element in a system which the developer feels that warrants its

own definition. Work objects are useful to serve as parents of certain smaller items in the system.

The default work object is wobj0, defined in the default BASE system module.

Tool (End-effector)

The active tool has its own moving coordinate frame. It can be useful to jog the robot

using the tool coordinates if certain diagonal geometry needs to be traversed that is difficult to

navigate in other coordinate systems. Just like work objects, a default tool is given in the BASE

module called tool0, which has a tool center point at the end of link 6, and no inertia properties,

[9].

Robot Target

Robot targets are places where the robot moves during operation. Robot targets do not

have coordinate systems in themselves, but they are always defined with respect to the current

jogging work object’s coordinate system. The robot target can be seen to have its own local

position set compared to whatever work object is specified in each move instruction, [9].

Figure 5-7:Work object coordinates and definition process. Source: [5]

23

Calibration

Calibration of the robot ensures that the zero positions the controller sees match with the

reference configuration of the robot. The robot axes are measured at each joint with a small

rotary encoder. Each rotary encoder views the angle that it is currently in, and the number of

rotations the encoder has gone through to calculate the joint angle. If the number of complete

rotations is incorrect however, the joint angle calculation is inaccurate, and the joint must be

recalibrated.

At each joint, a large mark is located on one joint and a small mark is located nearby on

the other joint. The reference position is defined as where the two marks overlap. Therefore,

when calibrating, the joints must be moved such that the small mark is entirely within the large

mark at each joint. If the small mark is completely inside the large mark, the encoder will

recognize this as within half a revolution of the reference value and will select the zero point

automatically.

If all axes are to be recalibrated, it is typically best to align the joints closest to the end-

effector first, using the lower joints to place the upper joints in a location convenient for

inspection, [5].

To start calibration, open the ABB menu and find Calibration. Select the mechanical unit

corresponding with the robot being serviced and tap Rev Counters. A list of axes will be

displayed; select which axis or axes has been aligned and click Update.

Figure 5-8: Calibration marks for Axis 5

Figure 5-9: Calibration marks for Axis 1

24

Note that this is a simple operation for misaligned axes; if the robot needs more in-depth

calibration, these procedures should be left to a certified technician.

Data Editing

During the programming process, it may be necessary to create variables on the Module

(or Task) level. On the FlexPendant™, this is achieved by using the Program Data view.

Figure 5-10: Calibration Menu showing option to update rev counters

Figure 5-11: Program Data Menu

25

To access the Program Data view, open the ABB menu, and find Program Data in the

left column. This menu shows all data types listed in the current scope, depending on some

settings, [5].

Scope and Viewing

To change the current scope of variables listed under, press the Change Scope button at

the upper-right corner of the menu. The first two options are Built-In Data Only (this option does

not allow addition of any data to the program; it is read-only) and Current Execution, which

looks at all data marked as Global, or are in the current Task, Module, and Routine that currently

has the Program Pointer. Other selectable scopes are any Task, Module, or Routine in the

selected Module.

At the lower right of the Program Data view there is a button labeled View. Using this

button, one can choose between all available data types, and only the data types that currently

exist in the selected scope. This option allows creation of new data of types that have not been

introduced in the program yet, while keeping the data menu uncluttered the rest of the time, [5].

Editing data

Double press, or press and select Show Data, on any desired data type. A list of type-

specific data with their values are then displayed on the screen. Selecting any of these data and

Figure 5-12: Program Data Menu, searching all robot target saved in

the controller

26

using the Edit menu at the bottom of the screen allows changing, copying or deleting these

variables. New variables can be declared and given values via the adjacent New menu, [5].

The View Data Types button at the lower right returns to the top-level Program Data

screen.

Complex data

Some complex data, such as tools, robot targets and work objects, can be defined

empirically rather than explicitly. New robot targets default their positions to the current end-

effector position, and existing robot targets can do the same using the Modify Position command

in the Edit menu, [5].

Tool data and Work Object definition is slightly trickier. Once the data has been declared,

the Define command in the Edit menu loads a method of defining several poses that, for a Tool,

bring the Tool Center Point to the same point in world space, or for a Work Object, define the X-

Y plane of the object.

Creating a tool

Creating a tool is a process that involves taking the desired tool center point to a fixed

point in space, usually some object that the tool is supposed to touch. This is done from several

different orientations, most commonly, and by default, four. The algorithm finds the center of

rotation between each pair of points and averages them for better accuracy, [5].

27

Creating a work-object

Defining a work object is a straight-forward manner and is as accurate as the placement

of the tool center point used in its definition. Work objects are defined in world space by picking

three points on the work object. The first two defined points form a line along which the work

object’s X-axis is defined. The third point sets the direction of the Y-axis, which is defined as the

shortest line projecting from the X-axis to the Y-point. The work-object’s position is

consequently the intersection between these new X and Y-axes, with its orientation defined by

the axis directions, [5].

Creating a robot target

The process of creating a robot target is simple. The robot is jogged to the pose which is

the desired robot target. The position will be defined relative to the active jogging tool and work

object; however, those components are not stored in the target’s data. When creating a robot

target, it will automatically default to the robot’s current pose, [5].

Figure 5-13: Tool definition via the 4-Point

process. Source: [5]

28

Program Editing

The main scripting for the robot is accessed from Program Editor. This is found in the

ABB menu on the left-hand side. Upon opening, it will open the active PROC main on the

control, [5].

Editing routines

To edit a routine, one can use three buttons at the top, Tasks and Programs, Modules, and

Routines, to navigate to the desired routine. When the desired routine is selected, the Show

Routine button at the bottom opens the routine for editing.

Adding routines

To make a new routine, navigate to the desired module to contain the routine, then use

File > New Routine… to add a custom routine to that Module.

Instructions

Routines are made up of a series of instructions. These instructions vary widely in their

purpose; examples include procedure calls, movement instructions, and assignment instructions.

Chapter 6 goes into more detail about the types and requirements of instructions.

Figure 5-14: Program Editor, showing a procedure

29

Adding an instruction

When viewing a routine in the Program Editor, the instruction menu is activated by the

Add Instruction button at the bottom left. The instructions are organized into various categories,

which may be selected by a dropdown at the top of the instruction menu.

Editing instructions

To edit an existing instruction, one can select the instruction’s handle (the name of the

instruction call, e.g. MoveL, WaitTime) and go to Edit > Change Selected. A menu showing all

required instruction arguments, and some optional, each of which may be changed however

desired.

Testing and debugging

The debug menu shows a variety of tools for testing a program in manual mode. It allows

movement of the Program Pointer, a marker showing the next statement that will be executed by

the program if it is run. The program pointer can be moved to multiple places, such as the

selected instruction, the beginning of a routine, or to the beginning of the main routine as the

program would execute in automatic mode. Holding the guard-stop and play buttons will allow

the program to slowly execute each instruction sequentially, moving the program pointer to the

next instruction when the current one is completed, [5].

Module Text

Notice that in the Program Editor view, there is a button that toggles declarations,

labeled Show Declaration or Hide Declaration. When this is set to show declarations, not only

the current routine, but other routines and variables currently in the module will also be

displayed. This is the module’s complete RAPID™ code and is how all aspects of the robot script

are stored on the controller.

30

Automatic Operation

When the mode key is set to automatic mode, the Production Window will automatically

appear on the FlexPendant™. From the Production Window, real-time automatic mode execution

of the RAPID™ code can be viewed. The robot runs at full speed during automatic mode, and

customization of the program at this point is limited to some path tweaking via the Hot Edit

menu. Hot Editing is an operation for tuning robot targets to optimize production operations

without reverting to manual mode for large changes. This operation is beyond the scope of this

project, however, [5].

RobotStudio® RAPID™ Editing

RobotStudio® has a couple different main features, of which the most relevant to this

paper is its ability to remotely access and change the RAPID™ code on a robot controller set to

manual mode. The tools for this feature in RobotStudio® can be accessed by the Controller and

RAPID™ tabs. The computer running RobotStudio® must be on the same Local Area Network

(LAN) as the Robot Controller, or the computer and controller must be directly connected with

an Ethernet cord, [3].

Figure 5-15: Production Window, showing the program progressing

through PROC main

31

To connect to a controller, switch to the Controller tab in RobotStudio®. The Add

Controllers drop-down menu should show available controllers to connect to. However, if the

controller is not listed as online or at all, one can connect manually by entering the IP address

assigned to the controller, which can be found in the FlexPendant™’s System Info menu.

Once the controller is connected, one can view the controller’s RAPID™ code, broken

into tasks and modules, by opening the RAPID™ icon in the left-hand menu. To edit the code,

however, one must request write access. The button for this is in the Controller tab, next to the

Add Controllers drop-down. A notice will appear on the FlexPendant™ that an external source

has requested write-access, giving the operator a choice to grant or deny. Upon granting write

access, the RobotStudio® client has privileges to edit the code and apply it to the controller. The

FlexPendant™ can revoke write-access at any time, or the RobotStudio® client can release write-

access by a button next to the Request Write-Access button.

With write-access, the user is free to edit the RAPID™ variables and routines in existing

modules or add/delete modules and tasks from the controller. When the user wishes to apply

changes to the controller, they can find the Apply button in the RAPID™ tab, at the top-center of

the screen, [3].

Note that debug testing and jogging must be done from the FlexPendant™ and write-

access must be released or revoked for the FlexPendant™ to become interactable again.

Figure 5-16: RobotStudio®’s Controller Tab, showing buttons used to connect to a controller. Since a

controller is not currently connected, most controls are greyed out.

32

Chapter Summary

This chapter gives an overview of the operation of the IRB 120™, controlled by an

IRC5™ Robot Controller equipped with the FlexPendant™. It begins by outlining some safety

features of the system; namely the workspace cage, force sensors, emergency stop buttons, and

mode of operation. The IRC5™ controller also has several switches on its panel which control the

power, operation mode, motors and joint brakes.

It then outlines some basic features and operation of the robot. Jogging is performed by

accessing the eponymous menu on the FlexPendant™ and using the joystick to directly maneuver

the robot. It also covers basic calibration and editing of RAPID™ code directly on the

FlexPendant™. It shows the differences in capability and function between manual and automatic

modes.

The chapter concludes with an introduction to editing the RAPID™ code on the controller

using RobotStudio® on an external computer. As supreme control authority rests with the

FlexPendant™, write access must be given to the RobotStudio® client before it can edit the code.

Any controller connected to the same local area network as the computer or connected directly

by ethernet cable can be connected. The client itself has efficient coding tools to create and

verify the RAPID™ code prior to deployment on the robot and is the typical place where most

professionals write their programs.

33

6 Introduction to RAPID™

ABB systems use the RAPID™ language to set instructions and data that their robotic

systems use in each run cycle.

RAPID™ Structure

Tasks

Tasks are the most essential structure of RAPID™ code, with code execution happening

on a per-Task basis. Tasks contain one or more Modules, one and only one of which must have a

main procedure (PROC main) as a place for the Task to begin its code execution. Most

Figure 6-1: Diagram showing the hierarchy of RAPID™ Code. Source: [5]

34

controllers support some form of multitasking, where the controller contains multiple Tasks that

all run in parallel, [5].

Modules

A module is a constituent unit of a Task. Modules are the objects where the actual

RAPID™ text is stored, both variables and routines. Any number of Modules can be used in a

Task, which can be used for organizational purposes.

Variables

Data at the module level can be created via the Program Data menu outlined in Chapter 5

or typed directly into the module text, either in RobotStudio® or on the FlexPendant™ (directly

editing RAPID™ code by typing is not recommended on the FlexPendant™). For the physically

defined objects such as tools, work objects and robot targets, the typical manual definition

processes should be used.

Simpler variables, such as those without poses, or whose poses are known from external

sources such as Computer Aided Design (CAD) models, are good candidates for directly

declaring and initializing in the RAPID™ code, [10].

Variable Syntax

Variable declarations are statements that create a variable and initialization is assigning

the variable a value before the program starts. The typical syntax of a variable declaration is a

scope (optional), a symbol type, a datatype, and finally the variable’s name, all separated by

spaces. The initialization, required in RAPID™ for most data types, follows with the assignment

Figure 6-2: Several variable declarations.

Scopes include GLOBAL (default, implicit),

LOCAL and TASK. Symbol Types include

VAR, PERS, and CONST. After these

elements follow the data type and name of

the variables.

35

operator “:=” followed by a datatype-specific permutation of data, finally ended with a

semicolon, [10].

Scopes

Variables in the RAPID™ language are declared with a scope. The scope of a variable

controls the locations from which the variable is accessible. GLOBAL, the default scope of a

variable which is used if an explicit scope is omitted, allows a variable to be accessed from

anywhere in a controller’s RAPID™ code, including other Tasks. The scope TASK allows a

variable to be accessed from any Module in the same task as the variable definition. The scope

LOCAL further restricts the variable to only be accessible from the same Module, [10].

Symbol Types

Variables are also defined with a symbol type, which governs how it is interacted with by

the program. The simplest type, CONST, represents a constant in the code, which cannot be

changed anywhere other than its original definition; therefore, it is baked into the code at

runtime. VAR and PERS, by contrast, are variables which can be changed at runtime from

anywhere within their scopes. The primary difference between VAR and PERS is what happens

to the data during a system reboot. A VAR loses its current value and will be redeclared with its

default value when the system restarts, while a PERS is persistent through a reboot and will hold

its value across sessions, [10].

Datatypes

There are seventy-eight datatypes in RAPID™, the vast majority of which are not covered

in this document. More specific details on each datatype can be found by referring to this

technical reference manual on RAPID™, [10]. Some examples of commonly used datatypes in

the language are given below.

Primitives: bool, num, string

The most basic data types in the RAPID™ language are the bool, num, and string. Like in

most other languages, a bool represents a binary value of either True or False, and a string

represents a sequence of characters. In RAPID™, a num is a 32-bit numeric type that can variably

represent an integer or floating-point number, depending on the value assigned to it.

36

Other simple types may have slightly different implementations of the same concept,

(e.g. the type dionum is a binary type which is represented by 0 or 1, rather than True or False,

and dnum is a 64-bit numeric value that works similarly to num).

Composite data: robtarget, tooldata, wobjdata

There are many compound datatypes in RAPID™ which comprise of several primitive

data. Three prominent examples are robtarget, tooldata, and wobjdata. All three of these objects

use further compound datatypes like pos and orient, which are 3D position vectors and

quaternions made of multiple num elements.

The type tooldata is made when the user trains a new tool on the robot. It consists of the

Tool Center Point, which is a pose (Position and Orientation pair), as well as a loaddata

consisting of a mass, center of gravity, and axis of moment. The tool can serve as a coordinate

frame by which the robot can move. When a move statement is given, the robot calculates the

path to take so that the tooldata has the same position and rotation as the chosen robot target.

Work objects, with their RAPID™ type name wobjdata, are objects defined in the space

around a given robot which serve as parents to robot targets in the path. Work objects can be

stationary or moving within the robot’s workspace.

Robot targets, of RAPID™ type name robtarget, are places defined in 3D space that can

be assigned to move statements in a robot’s path. They are typically made by a robot’s jogging

position relative to the active work object. Hence, care must be taken when using move

statements to specify the same work object that was used to create the robot target, even if the

work object’s pose has changed.

Figure 6-3: Complex data variables. Included in both wobjdata and robtarget are position

vectors and rotation quaternions.

37

Special objects: clock, zonedata

There are some data types that do not have explicit primitive types but are self-contained

data that have specific functions. One example of this is the clock data type. The clock has no

exposed field types but can be passed as an argument to numerous predefined routines and stores

an elapsed time since the clock was started.

Another example is zonedata, a type that encodes the behavior of the robot on

intermediate targets in its path. There are several predefined zonedata, named by the letter ‘z’

prefixed to a distance from a robot target in millimeters. This distance is the proximity the tool

must be to the designated robot target before it changes paths to the next target.

Routines

Routines are procedural methods in RAPID™. They can be called from other routines, be

passed variables as arguments, and can return variables if necessary. They allow

compartmentalization of specific tasks to simplify code and repeat complicated procedures.

There are three routine types in RAPID™, each with a slightly different purpose.

Routine Syntax

Routines begin with a definition containing the routine type first, either PROC, FUNC, or

TRAP. If the routine is a function, the return type follows. Next is the routine’s name, followed

by parentheses unless the routine is a trap. Inside these parentheses is a list of all arguments of

the procedure or function, each being specified by a type and a name, with the arguments

separated by commas.

The end line of the routine is simply END concatenated with the routine type, e.g. a

PROC would have an end line labeled ENDPROC, and a FUNC (of any return type) would end

with ENDFUNC.

All non-comment lines between these beginning and end lines are either program flow

controls such as if blocks, while loops, or error handlers, or they are instructions, which could be

any predefined instruction, such as a move statement, a call to another user-made procedure, or

an assignment to a variable.

38

Routine Types

PROC

PROC, or a procedure, is the primary routine type, which can take in any number of

arguments and does not return anything. Any scope permitted PROC can be called from code in

execution at any point. The program pointer will move to the new PROC and execute all lines.

When all statements have been executed or the instruction Return is declared, the PROC ends

execution and returns the program pointer to the code which called it.

FUNC

If a routine must return some data when execution ends, it is called a FUNC, or function.

These are called wherever the return type serves a purpose, e.g. as an argument to another

routine, or as an assignment to a variable. Execution of a FUNC works in a similar way to a

PROC; when it is called, the program pointer shifts to the FUNC and executes its statements

sequentially until it returns its value; then the value is used in-place of the function call and the

external program continues normally.

Figure 6-4: Example of a PROC declaration, with several move

instructions. This procedure has no arguments.

Figure 6-5: Example of a FUNC declaration, with a single

position vector argument returning a number corresponding to

the length of the vector

39

TRAP

The final routine type is a TRAP. Trap routines are like procedures in that they are simply

sequential executions of code. However, TRAP serves the special purpose of handling certain

interrupts in the code. When the main code is operating as normally, but a certain interrupt signal

is engaged, it can stop the program at any point and run the TRAP instead.

PROC Main

The main procedure, shown in RAPID™ as PROC main, is the starting point for any task

execution. Every RAPID™ task must have one, and only one, main procedure defined in its

program modules. The task’s execution begins with the first instruction given in the main

procedure. If a system uses multiple tasks, each task will operate independently of the others, and

they will run asynchronously. However, operation on a specific mechanical unit (robot) can only

have one task.

Instructions

Each line in a routine that performs some sort of task is called an instruction, or

statement. RAPID™, like most text-based programming languages, evaluates instructions in the

order of their appearance, starting in PROC main. Instructions can be broadly separated into

several categories.

Move Statements

Move statements are a kind of instruction that physically moves the robot toward a target

in some manner. The three basic movement types are MoveJ, MoveL, and MoveC. Each move

Figure 6-6: PROC main, showing two joint movements before and

after a ProcCall to another procedure.

40

type additionally has different related instructions that can do other things, such as set a digital

output signal or run a procedure in parallel with the move.

MoveJ

MoveJ is the simplest kind of movement, which only does inverse kinematics of the

movement target to find the desired joint values, then interpolates each joint rotation toward that

value; this is a linear interpolation in joint space. This is the quickest movement between points

as inverse kinematics for the path between are not required, and the joint rotations are direct and

efficient. MoveJ should be used whenever the motion taken between current and target positions

is not path sensitive.

A variant of this movement mode, MoveAbsJ, takes a jointtarget instead of a robtarget as

its first argument. A jointtarget is a target defined by its axis angles rather than a pose in physical

space. If the angles are explicitly known by the robotic developer, this instruction is useful to

avoid kinematic solving for this movement. MoveExtJ performs similarly but is meant to move

the external axes connected to the system.

MoveL

MoveL is a slightly more complex movement, which is a straight line in physical space.

MoveL is most useful when the end-effector needs to move tangent to some object surface, or

axial to a narrow channel in an object. Inverse kinematics need to be traced at intermediate

points on the linear path; therefore, the individual joint movements are not strictly linear, and

may take arcing values to keep the end-effector on its linear path. MoveL is also susceptible to

singularities in the kinematic matrices, so care should be taken to avoid these when possible.

MoveC

MoveC is a move instruction that interpolates a circular path in physical space. It takes in

two targets as arguments, moving in a circular path from starting pose, through an intermediate

target, and ending at the final target. This movement type is useful when needing to move around

circular objects or run a path concentric with them. Like MoveL, it needs to calculate inverse

kinematics for its path, and is vulnerable to singular configurations.

41

Other movement types

Search

The instructions SearchL, SearchC, and SearchExtJ perform similarly to the move

statements of the same suffix; however, these statements will cease movement when the digital

input argument of the search instruction becomes true. This is typically useful for an unknown

precise location of an object to be picked up, as sensors can tell the system when the object has

been found.

Trigg

TriggJ and TriggL are also similar to their Move statement counterparts, but they are able

to trigger a parallel running event at a fixed point during its movement; for example, if the end-

effector vacuum tool should engage when the tool is 10 millimeters from the target during a

linear movement, TriggL should be used with a corresponding triggdata object as an argument.

Move Statement Components

Robot target

All move instructions accept robot targets (or joint targets) as their first arguments. Joint

and Linear movements accept a single target, while Circular movements accept two. Functions

that return robtarget, such as the Offs() function, can be used in place of a named robot target.

Speed data

The speed data argument controls the speed of a given movement while the robot

operates. Predefined speeddata are specified with a small ‘v’ followed by its speed in millimeters

per second, e.g. “v100”. Other predefined speeddata are specified for movement of external

linear and rotational axes by the MoveExtJ instruction.

Custom speeddata can be defined as a variable in a module. It is defined as a tuple of four

numbers, corresponding to the linear and rotational speeds of the TCP and of linear axes,

respectively.

Note that the speeds specified in these move statements are still subject to the Manual

Mode limitation, i.e. the TCP will never move faster than 250 millimeters per second while in

Manual Mode, even if a faster speed data is specified.

42

Zone data

The zone data argument specifies the behavior of the robot when a target is neared by a

move statement. The predefined zonedata “fine” forces the TCP to stop at (within 0.2 millimeters

of) the robot target before proceeding to the next move statement. Other predefined zonedata

start with a ‘z’ followed by the zone tolerance in millimeters, e.g. “z40”. These fly-by zonedata

specify that the TCP must come within this zone; then it will begin veering off toward the next

path segment, without stopping.

Like speed data, custom zone data can be specified as a variable at the module level. Its

first element is a Boolean specifying if the zonedata represents a stop point or a fly-by point. The

remaining elements are sizes of the path zone and zoning data for external axes and translation

and rotation of the TCP.

Tool

The Tool argument says which Tool the robot is using to approach the robot target. The

target is considered reached when the tool’s pose in world space is within the specified zone

distance of the target’s world pose.

Optional: Work object, others

There are certain optional arguments that can be given in a move statement, the most

common of which is a work object. This argument specifies the parent work object of the

specified robot target. Although this argument is optional, it is highly recommended as its use

can simplify component relocation considerably, by simply changing the work object’s pose

rather than those of all child targets.

Other optional arguments can modify the behavior of the move statement, and some can

substitute for the speed or zone data by specifying different parameters. All optional arguments

are preceded with a backslash, followed by an assignment statement of the optional argument.

Figure 6-7: A move statement showing the

movement type, robot target, speed data, zone

data, tool, and work object used in defining the

move.

43

Other Instructions

Program Flow Control

The structured programming paradigm intrinsic to most modern programming languages

provides several code structures that can control the flow of the program. These can be

controlled by Boolean conditions for execution and repetition, repetition using an incremental

numeric value in a certain range, or handlers of certain triggered events.

If, elseif, else

The simplest flow structure in a program is an If statement. The if statement takes in a

single Boolean argument, and if the argument case is true, it executes its code block. Once the

code block is executed, the program pointer leaves the block and executes further down the

script.

If statements can be extended with an ElseIf statement, which is evaluated if the

preceding If case is false; if its own argument is true, its code block is executed. An Else block

takes a false case from a proceeding if statement and executes its own code block.

With a chained If…ElseIf…Else statement, once a true case is achieved, the entire chain is

exited after executing the appropriate block. If the programmer wishes to have each case

evaluated regardless of previous cases, serial If statements are preferable. These If statements and

chains are useful for evaluation of a wide variety of complex logic. They can also be useful for

catching special cases which might cause bugs in regular operation.

While

While loops function similarly to If statements, in that one takes a single Boolean

argument and executes its code block if the argument case is true. Unlike If statements however,

Figure 6-8: An If-ElseIf-Else

structure, used for handling logic

44

once a While loop’s code block is completed, the argument case is reevaluated; if the case is true,

the code block is executed again. This repetition can happen an infinite number of times and is

only terminated by an argument that evaluates as false. While loops are useful when a procedure

must be repeated an undetermined number of times for a condition to be met.

For

For loops repeat a certain code block, like while loops. However, for loops use a

predetermined number of steps, with the current step represented by an iteration variable, usually

an integer. In the most common configuration of a for loop, this variable starts at one and ends

after its specified maximum value is reached.

For loops are the best kind of loop to use when there is a known number of iterations to

run. Due to their consecutive counting nature, as opposed to the While loop’s check-and-run

nature, they are significantly less prone to infinite loop errors.

Special Case Handlers

There are structures that can be defined at the end of procedures which can handle special

cases; the most common type is an error handler, which is jumped to if a runtime error is

encountered in the program. This error handler has special properties including ERRNO, which

allows case logic to determine what error occurred and to proceed accordingly.

Figure 6-9: A While loop

Figure 6-10: A For loop

45

Calls to other routines

When one wishes to pass execution to a different procedure somewhere in the program,

they invoke a special instruction called a procedure call, or ProcCall. It is invoked by simply

stating the name of the desired procedure, followed by any arguments the procedure may take

separated by commas, and ended with a semicolon. Figure 6-6 shows a ProcCall to a custom

procedure.

Chapter Summary

This chapter gave a broad overview of the elements that make a RAPID™ program. A

program deployed to a controller is made of one or more Tasks, with each Task having one or

more Modules. Modules contain variables and routines. Each Task must have one and only one

PROC main, which is where the Task begins execution. If multiple Tasks are present on a

controller, all Tasks run in parallel.

Variables can be listed at a field level in a Module, or locally in a routine. Each field level

variable is designated a scope, symbol type, and data type. Its scope determines what locations in

code the variable is exposed to. The symbol type determines the rules the variable uses for value

assignment and retention. There is a long list of data types available for use in RAPID™;

however, this project focuses on a few that are specific to robot path planning, such as work

objects, robot targets, tools, and poses.

Figure 6-11: An error

handler at the end of a

procedure

46

7 Introduction to Unity® and C#

Unity®

While there are multiple ways of developing AR software for HoloLens®, one sensible

method is to use a ready-made engine that already supports the target hardware. This project uses

Unity®, a publicly available game and software engine with a large support base and extensive

documentation, [11]. Microsoft has an introduction to Unity® development in their own online

development manual and provides a toolset for application building called Mixed-Reality

Toolkit, [12].

An application built into Unity® is divided into parts called scenes. Each scene loads

separately and independently of other scenes. Within a scene, there is a hierarchy of objects in

3D space called GameObjects. Each GameObject has a position, rotation, and scale, which is

stored as its transform. Some GameObjects can be parent to other GameObjects, and a parent’s

transform is applied to all its child objects before their own transforms are calculated, [11].

GameObjects can have one or more attachments called components which alter the

behavior of these GameObjects. These components inherit from a special Unity Engine® class,

Figure 7-1: Unity® Editor interface, showing the VPanel Scene

47

MonoBehaviour, and can be scripted in the engine for nearly any purpose. Due to the open-

ended versatility of this scripting, most Unity Engine® custom scripting is done in these

components, [11].

There are several events triggered by the engine that components can take advantage of.

Two examples of these events are Start and Update. Start is an event that is triggered each time

the scene is loaded, which is useful for various initialization processes required in the scene.

Update is an event called once per frame; most repeatable and continuous tasks are performed in

a component method called by the Update event.

C#

Unity® uses C# as its primary language for developer scripting. This provides a secure

but straightforward language to get developers off the ground. The use of C# also means it is

relatively effortless to include references to .NET assemblies in the project. It is a massive

subject, and an implicit look at its features is far beyond the scope of this paper. However, some

general characteristics of the language and its implementation in the Unity Engine® are discussed

here.

48

C# is a language developed and maintained by Microsoft Corporation in its .NET

initiative. It is meant as a high-level object-oriented programming language building upon some

fluid characteristics of C++ while implementing features of managed languages, such as garbage

collection, found in related languages such as Java.

Characteristics

Classes and Objects

Its chief characteristic as an object-oriented programming language is the use of classes

and objects. A class is a template for an object that may have any number of different things built

into it. A class can be instantiated into any number of objects with the use of constructors, a

special method that returns a new object of its type. Classes may inherit from other classes to

signify the subclass also being the type of the base class, [13].

Member: Fields, Methods, Properties

A class contains members, programmed parts which can be interacted with by the

program. The types of members that hold the data of the class are called fields. Methods are the

routines of C# and can have any number of arguments and may or may not return a variable

value. Properties are a clever way to create a method which is used as a variable in code, [13].

Figure 7-2: Sample C# Code, taken from the app’s RobotCommunication script. Source: [15]

49

Modifiers

Classes and their members have numerous modifiers that can be added in their

declarations to alter their behaviors. The most common modifiers alter the scope of the variable;

private members can only be accessed from within the class, while protected members can be

accessed by any subclass and public members can be accessed elsewhere in code. Other

modifiers include static, which makes the member tied to the class itself rather than an object

instance, or abstract, which indicates the implementation of the class or member is incomplete in

that state and must not be directly used, [13].

Generics

Generics are types that are meant to be associated with another type that is not specified

when the class or member is created. An example is the List<> class, which is implemented as

List<T>, and T can be replaced by a true type when a list instance is created, [13].

Reflection

In native C#, classes can search themselves and others for members that have a name

only decided at runtime. This is a complicated process that has some very useful applications;

however, the UWP implementation which is used on the HoloLens® is missing certain

assemblies related to reflection, so this concept has been avoided in this paper after much

experimentation, [13].

Garbage Collection

A feature that makes C# relatively beginner-friendly is its garbage collection.

Unmanaged languages such as C++ require the programmer to destroy all objects manually when

they are no longer needed, and failure to do so causes memory leaks which are harmful to

performance and security. The garbage collection feature of C# automatically destroys objects in

the heap when they are no longer referenced from the stack, removing a tedious chore that a

programmer can easily neglect, [13].

Use in Unity®

Unity® uses C# as its primary scripting language for development in the engine. This

provides a good combination of versatility and ease of learning critical for ground-breaking

projects. It allows simple access to the vast libraries written to be compatible with the .NET

50

assemblies; it therefore can accomplish a wide variety of Windows-specific computational

operation and data management. This proves useful for development in the HoloLens®, which

uses the Universal Windows Platform, [12].

The Unity Engine® classes, such as GameObject and various MonoBehaviour derivatives,

expose a wide variety of properties and methods for use in the engine’s scripting. A typical

MonoBehaviour script contains references to certain events called by the engine, such as Start,

which is called once when a scene is finished loading and beginning to operate, and Update,

which is called once per frame thereafter. These events can be planned to dictate behavior of any

object in the application, [11].

.NET Assemblies to use

There are several .NET assemblies used in the creation of this application. Microsoft

provides a large system-specific API for use with basic computing resources, while the Unity

Engine® has libraries useful for application function. Other libraries need to be used for specific

functions, such as Microsoft’s Mixed Reality Toolkit for Unity®, which provides the tools

necessary to allow the HoloLens® to interface properly with an application made in Unity®.

Other API’s include NewtonSoft.Json, which provides robust compilation of JSON objects to

parse for information, and System.Net.Http, which is used for the communication between the

application and robot which is central to the project, [13].

Chapter Summary

This chapter covers the game engine Unity® and the programming language C#, which

are the basic tools used to build the application. Unity® organizes its structure as scenes, and

scenes have a collection of GameObjects which may or may not be visually represented in the

application. GameObjects have components attached to them which modify the behavior of the

parent GameObject.

Unity® uses C# as its primary scripting language. C# provides several advantages in

versatility and ease of use in the development of an application using Unity®. C# is an object-

oriented programming language, which allows custom classes and instantiated objects which are

unique in form and function, allowing the storage and use of data as the application demands. It

51

contains many of the typical elements of similar programming languages, including class

members such as fields, methods and properties. Most such symbols can be given modifiers

which change their accessibility or function. Some classes can be specified as generic, to be

made specific to a type when used in code. C# uses automated garbage collection, which

destroys heap objects which are no longer referenced in code. These features all play significant

roles in the development of the project.

52

8 Application Description and Function

Application Overview

The proposed application is divided into two functional scenes, Start and VPanel. The

Start scene provides a console where the user selects a system they wish to connect to. Once

connected, the application switches to the VPanel scene, where they are shown data and

numerous options for interacting with the connected robot system. The VPanel can be closed,

which will return the user to the Start scene to optionally choose another system.

Start Scene

The first scene, called “Start,” shows a small console that follows the user when moving.

It displays some instructions on connecting to new or previous systems. The HoloLens® must be

connected to the same Local Area Network (LAN) as the controller for the application to

function properly.

To connect to an unrecognized controller, the user must enter the controller’s LAN IP

address. If a controller is found at that address, a message will be displayed asking to confirm

Figure 8-1: VPanel, displaying system information received from

the robot

53

connection. That controller is then recorded and saved. If the user wishes to a previously saved

controller, they must simply select that controller from a list of previously saved ones.

VPanel

Overview

Upon successful connection to a controller, the application switches to a scene with a

virtual panel that displays information and interaction options for this robotic system. This

“VPanel” scene has numerous features providing examples of possible uses of the software; the

main features are described in the paragraphs below.

In addition to displaying raw data about the controller’s status, the ability to directly

access the unchanged RAPID™ code provides a detailed picture of the controller’s script. This is

broken apart and parsed to identify each element in the lines of code. When these are positively

identified, for example, as a variable of type num, or a routine with no return type (called a

procedure), a reflected object is created in the application to reflect this element. One use of

identifying each of these elements, is reconstructing the path that the robot will take during the

execution of its main procedure.

While planning the RAPID™ features in the application, the reflected objects were

referred to as “mirror objects”; hence, the objects made in the application to reflect the actual

Figure 8-2: VPanel, displaying system information received from the

robot

54

ones may be called mirror objects to distinguish them from the true RAPID™ objects on the

controller.

System Info

ABB provides an API exposed in each of their controllers called Robot Web Services,

[14]. This interface uses Hypertext Transfer Protocol (HTTP) to allow access to various

controller information and data via web connections by external clients. The application uses this

service for all interactions with the robot, getting controller states, RAPID™ module text, the

current running task or module, maintenance, and calibration information and more upon

request. Much of this information is directly displayed to the user.

3D Model

The VPanel Scene has the option to enable a virtual model of the robot world, which

appears near the panel. This robot world model has the robot model itself, which was imported

from RobotStudio® (and possibly simplified to ease the rendering load on the HoloLens®).

The robot lies at the center of the virtual world. The robot’s stationary base can be

clicked and dragged around to move the virtual robot world to the desired section of physical

space. A sphere lies before the robot, which can be dragged anywhere, and the world will pivot

such that the robot always faces that sphere.

55

Also present are small coordinate frames representing the Work Objects and Robot

Targets present in the main procedure in the current program module on the controller and are

translated and rotated as such. This gives a visualization of these objects highly demanded by

robotic developers.

Run

The application also can use the Robot Web Services to run the robot remotely. When the

robot is set to automatic mode with motors on, a message can be sent for the robot to start or stop

its main routine. This provides the ability to test out robotic operation even after the development

of the system is complete.

Communication

HTTP Connection

The app’s main purpose is to directly interact with the robot controller. The controller has

built in support for external sources to communicate with it via HTTP web requests. .NET

libraries include an HTTP assembly which provides the necessary tools to establish an HTTP

client (with a class name HttpClient in C# from the namespace System.Http.Net) and send

messages out from this client to addresses. The address used for this project is the LAN IP

Figure 8-3: Robot 3D Model, with targets displayed around it

56

address of the robot, followed by the path of the specific information required from the

controller, which is specified in Robot Web Services, and certain request parameters appended

onto the end of the URL (parameters are shown behind the question mark in a URL), [14].

The default format of a response to HTTP request is an XML document transmitted as a

string. The library System.Xml has a handler for reconstructing the XML document and

extracting the desired information from the document. However, XML documents can often be

cluttered and hard to read. If the parameter json=1, the returning document will be in the JSON

format also transmitted as a string, which can be reconstructed and sorted with tools from

numerous libraries; this project uses Newtonsoft.Json. The JSON layout is generally easier to

read through to find the desired information, [13].

A GET request to the following address allows the acquisition of Module text in XML:

http://<SystemIPAddress>/rw/rapid/modules/<ModuleName>?task=<TaskName>&resource=module-text

GET

The simplest type of HTTP message is a GET request. These only require the specific

address of the desired page. Numerous data are exposed to get requests, typically ones which

only access data on the controller without otherwise interacting with it. In C# code from the

57

System.Net.Http assembly, the HttpClient has a method named GetAsync(), for which the only

argument is the URL with the parameters appended as described above.

POST

For most communication meant to interact with the robot in a direct manner, or a

resource that requires a large amount of input information, a POST request is required by Robot

Web Services. These requests are similar to get requests as they need a specific IP address,

resource path, and certain parameters passed in as a URL, but unlike get requests there are also

data parameters that are passed in key-value pairs in the body of a POST request. C# code from

the same assembly also provides a PostAsync() method, which takes two arguments; the first is a

URL in the same manner as a GET request, and an object of type FormUrlEncodedContent made

from a Dictionary<string,string> with the key-value pairs of parameters.

Robot Web Services

ABB Controllers expose the information to HTTP requests via an Application

Programming Interface (API) titled Robot Web Services (RWS). The API has online

documentation detailing the specific resources that can be retrieved from the controller. The

information useful to this project can be divided into two broad categories, [14].

Figure 8-4: Sample response to the address that gets the Module Text. Source: [14]

58

System information

There are many details and quantities that are exposed in the system, such as motor and

controller states, speed ratios, connected networks and devices, calibration data, elapsed time

since maintenance, running time, service lists, file system details, I/O channels, log entries, user

and mastership statuses, and much more. All information not directly related to the RAPID™

code deployed to the controller is treated as System Information by the project. This information

is not generally used by the current version of the application but is simply displayed on the

VPanel for developer or user reference, [14].

RAPID™ service

Information on the RAPID™ code is central to features of the application and is therefore

treated separately from the other information exposed by the API. Chapter Introduction to

RAPID6 states that each controller’s RAPID™ code is comprised of one or more Tasks, and each

Task contains Modules, which in turn contain all RAPID™ elements declared in the Module text.

In Robot Web Services, a list of Tasks can be retrieved, a list of Modules can be obtained from

each task, and each Module’s RAPID™ text can be recovered by GET requests to each respective

resource, [14].

Subscription service

It should be noted that Robot Web Services has a subscription service on many different

resources. Subscribing to a resource establishes a WebSocket connection with the controller,

which will send an event to the WebSocket client when the resource has its value changed. This

would significantly reduce the computational expense of keeping track of frequently changing

resources, as the update process could be tied to the WebSocket event rather than regular HTTP

checkups. However, at time of writing the team is still researching the function of WebSocket

connections, and the current understanding is insufficient to include in this paper, [14].

59

Code Structure

The VPanel scene is set up to make efficient use of both types of resources described in

the previous section. The scene has a GameObject named SceneOrganizer, which has the

components SceneOrganizerVPanel, RobotCommunication, and SpeechInputHandler.

RobotCommunication

The RobotCommunication component is a handler for all communications between the

application and the robot controller. It contains a static HttpClient and an IRC5Services object to

Figure 8-5: The scripts attached to the

SceneOrganizer object, which runs the

primary operations of the VPanel scene.

60

store information obtained from responses from the controller. Methods it has include handlers to

return the reconstructed XML or JSON documents from a given address, or to even go straight

through and get the desired string from a path in the returned document. It takes button events

from the SceneOrganizerVPanel to trigger communications at desired times, and place

information received into RobotWebData objects and RAPID™ Tasks.

SceneOrganizerVPanel

SceneOrganizerVPanel is a script that handles interaction between the

RobotCommunication component and the VPanel scene. It handles the various buttons on the

VPanel and reads the RAPID™ objects in the IRC5Services object to create the virtual

RobotWorld, with the robot’s model and targets as children to the world GameObject.

While planning the RAPID™ features in the application the reflected objects were

referred to as “mirror objects”; hence, the objects made in the application to reflect the actual

ones may be called mirror objects to distinguish them from the true RAPID™ objects on the

controller.

Figure 8-6: A method in RobotCommunication to create a JSON object from a web GET resource.

Source: [15]

61

IRC5Services

IRC5Services is the class create to contain information received from a robot controller,

hence the title. It contains multiple groups of RobotWebData objects meant to capture all

significant data to use on the VPanel display. It also serves as the host of the RAPID™ mirror

objects, having a list of Tasks on the controller that is referred to by SceneOrganizerVPanel, and

other classes. It uses an asynchronous method that uses the controller’s listed IP address and

searches the RWS directory for the Task list to populate the objects own collection of Tasks and

begins the process of searching for Modules in each Task.

RobotWebData

The class RobotWebData is designed to be a self-contained reference to data available

from RWS and store the most recent value returned from the controller via HTTP. The

RobotWebData class contains the user-specified identifier, full HTTP address, and data path of

the desired data in the returned XML or JSON file, depending on the passed HTTP address

parameters. When the data specific to this object is needed, the object is added to the queue of

data to be updated in IRC5Services.

RobotWebData are arranged in specialized collections of type RobotWebDataGroup,

which are similarly identified by the developer for the nature of RobotWebData objects they

Figure 8-7: Beginning of IRC5Services class declaration; note the fields for addresses and

information, as well as its collection of RAPID™ Task objects. Source: [15]

62

contain. The RobotWebDataGroup objects can be passed directly to the System Info screen on

the VPanel, where they will be listed sequentially, with the data they contain listed subordinately

to the group for ease of reference.

Rapid class set

The classes collectively named Rapid have been developed specially for this application

to serve as the set of all classes specially designed to use the RAPID™ code from the controller

directly for various purposes. They contain all types of directly mirrored symbols, including

Tasks, Modules, Routines and Variables of all types. They also contain some utility classes and

interfaces such as the Symbol class, which is the base class of all variables and contains

important methods and data-specific fields.

Task

The Task class is a definition for the mirror objects for Tasks found on the controller in

RAPID™. It contains fields and properties that give its name, a reference to its parent controller,

Figure 8-8: A collection of RobotWebData, complete with addresses and data labels, to be

aggregated and recorded by the IRC5Services object. Source: [15]

63

and a dictionary of its child Modules. It contains an asynchronous method which uses its name

and searches via RWS to find all Modules in the Task and add them into its Module dictionary.

Other properties it has includes dictionaries of all routines and data in its child modules to

provide task-wide data search functionality. It also performs a rudimentary search for movement

instructions beginning in PROC main.

Module

The mirror class Module is made similarly to that of Task and is the structure of the

Rapid classes that holds the mirror objects of data and routines. It has fields for its name and a

reference to its parent Task, as well as dictionaries of references to its data and routines. It

contains an asynchronous routine that gets the Module text from the controller and parses it into

each variable, routine and instruction present in the controller. The code used for parsing the

RAPID™ code from each module is crude and incomplete at time of writing, and significant

work into better code interpretation would benefit functionality considerably.

Figure 8-9: Declaration of the Task mirror class; holding a collection of Modules and references to

the variables and routines present in those modules. Source: [15]

64

It also has wrapper properties and routines that call the dictionaries of its parent Task,

allowing a Task-wide search for variables and routines, which is useful for finding references in

routines that may call variables that are out of the same Module.

Symbol

The Symbol class is the base class for all variables held in a Module at field level.

Additionally, it contains a symbol type field which specifies whether the RAPID™ object being

mirrored is a CONST, VAR, or PERS. Since the specific data classes inherit from Symbol, the

type of the object found by GetType() determines the datatype of the object. The class contains

static collections of all symbol types and datatypes defined in the current Rapid classes.

Additionally, there is a static method which takes in a RAPID™ line from the Module class and

returns a symbol, which is deposited into the Module’s data dictionary.

Figure 8-10: Declaration of the Module mirror class; which reads its text and converts them into

mirror symbols and routines. Source: [15]

65

Symbol-inheriting classes

There are several types that inherit from the Symbol class, representing datatypes that

have been implemented into the application so far. Each type has different properties, such as a

different type of value, in the case of compound types, different component structures.

Just like the categories of datatypes in the RAPID™ language, the mirror variable

datatypes can be classified as primitive, compound, or special types. Primitive datatypes are just

like the ones in RAPID™; namely, Bool, Num and String. Compound data are defined similarly,

such as Pos, Orient, ToolData, WObjData, and RobTarget, while special types include the

Clock. Each of these are created while breaking down declaration statements, with their

constructors being called by reflection from the Symbol class.

Routines

The Routine class is a base class for all mirror objects representing procedures, functions,

and traps in RAPID™. Each Routine holds fields that identify its routine handle (or name),

Figure 8-11: Declaration of the Symbol mirror class, holding details on the symbol represented and

designed to be inherited by more sophisticated data classes. Source: [15]

66

references to its parent Task and Module, and a list of instructions that the routine would execute

on the controller.

One of the primary properties in the routine class is its list of move statement, which

combs through its instructions, finding move statement both in the current routine, and in any

routines referenced by ProcCalls. This allows the program to generate absolute target poses for

viewing with the virtual targets.

Figure 8-12: Declaration of the Routine mirror class, holding information about the instructions

executed within and, similar to the Symbol class, designed to be inherited by specific routine types.

Source: [15]

67

Statements

The Instruction object holds a statement extracted from the routine text. Its job is to sort

out the kind of instruction, i.e. ProcCall, move statement, flow control, assignments, or others.

The program only implements the use of ProcCalls and move statements, although plans for a

proper interpreter would imply more complete emulation of all statements and variable

assignments.

Chapter Summary

This chapter dove into the structure and function of the project in its current state. The

application is divided into two different scenes. The start scene displays a panel for the user to

connect to a new or previous system. The VPanel scene coordinates with a connected system to

display information and interaction options to a connected system. It does this via an eponymous

panel that can be manually placed by the user. A RobotWorld object shows a draggable 3D robot

model and all movements in the systems path.

The application uses HTTP web communication to transfer information between the

robot controller and the application. The information used consists of various system information

useful for currently running systems, as well as the loaded RAPID™ code in the controller. This

Figure 8-13: Declaration of the Statement mirror class. Retains statement text but

does have the ability to tell its own statement type. Source: [15]

68

RAPID™ code is parsed by the application to allow specific analysis and visualization in the

application.

The RAPID™ code is broken down and classified by the objects represented in RAPID™

code; each object found in the RAPID™ code is represented by a mirror object in the application.

The controller’s Tasks are represented by Task objects within the IRC5Services object handler,

and the child Modules and dependent variables and routines are stored in corresponding

collections within. The code sorts through the RAPID™ code beginning with PROC main to find

all the move statements in the Task’s path, and these move statements are then displayed as

coordinate frame targets at the correct positions relative to the virtual robot model.

The application remains buggy and limited in features which will be detailed in the next

chapter. However, the visibility of targets in the robot world and accessibility to many of the

robot’s functions meets desires put forth by robotics engineers and provides an example of the

potential of this combination of technology.

69

9 Issues and Future Work

Issues

Performance

Certain issues have troubled the development process, both in performance and user

experience. As the interface with the robot controller is through HTTP web requests, much of the

performance relies on the time between request and response, which has proven to be slow

enough to make continuous updates to the information unfeasible.

Other performance issues have arisen due to the limited graphics and central processing

power in the HoloLens®, especially using 3D models originally meant for use on powerful PCs.

Unity®’s support for parallel processing is also quite limited, especially when the development

target is a device such as HoloLens®. Significant work needs to be done for model and rendering

simplification to optimize the application.

Programming

A significant source of issues in the development process was inconsistencies between

the programming libraries available in the development environment and those deployed to

UWP. The environment specifically allowed use of the System. Reflection library consistently

with the API documentation available on Microsoft’s website; however, Unity® does not

successfully build the application due to certain elements in assemblies, especially the Reflection

namespace, being different or entirely absent in UWP’s libraries.

The source of this issue is, however, unclear. The project was hindered by a lengthy

development process using an older version of Unity® designated for long-term support. This

resulted in outdated versions of C# and its assemblies, and early versions of the Mixed-Reality

Toolkit being used. This may have resulted in incompatible software preventing clean

application-building and running. This issue is a candidate for fixing in future versions, although

as the likely fix would require changing game engine and language versions, it would only be

prudent as part of a major migration update.

70

User Interface

User-interface dilemmas also frustrate efforts to create an effortless experience in the

application. Currently, text input requires a virtual keyboard to be custom-built within the

application. This keyboard can only be interacted with by tapping with the gaze. This is a very

inefficient method of interaction and must be fixed if the application is to be comfortably used.

The process for connecting to robot systems could be better streamlined as well. The

current awkward method of finding and entering an IP address is a tedious method that requires a

technical expert who knows how to find this information. If the system’s IP address is not static,

it may change and require the initial connection process to be repeated. A feature to allow the

application to scan LAN IP addresses for robotic systems would alleviate this problem

considerably.

Future Work

The scope of this project can slowly widen as progress is made, with the vast possibilities

of features that may be desired for an application such as this. However, certain next steps from

the current abilities are evident.

Display tool on robot model

A trivial addition to the current functionality would be to display the tool center point at

the robot’s end-effector. This object marker, instead of being parented directly to the robot

world, should be parented to axis-6 of the robot. This would cause the tool to move with the

virtual robot’s joints should they be changed during program execution.

RAPID™ Code Editor Within the Application

The ability to access and change the RAPID™ module text through Robot Web Services,

direct editing of the code is theoretically possible within the application. An interface for code

editing this code and updating it in the application would provide a crucial feature to the

functionality of this software.

Better Input

An in-application code editor would be nearly useless without some way to better interact

with the code itself than is currently implemented. Two different methods are proposed to tackle

71

the input issue for coding. One is being able to use an external keyboard for input into the

HoloLens®, either attached to an external computer, or a wireless keyboard that can

communicate directly to the HoloLens®. Keyboard input would allow an interface comparable to

traditional IDEs, and to the RobotStudio® coding interface.

The other method of improved interaction with the code is to develop an interface like

that on the FlexPendant™. Each variable, routine and instruction has menus for editing fields and

arguments, showing varieties of selections, and automatically changing the RAPID™ code based

on those selections. This allows the application to minimize necessary use of a virtual keyboard

and allow the application to run as smoothly as possible with that restriction.

More Proper and Comprehensive RAPID™ Interpreter

The application interprets the RAPID™ code to find and display the move instructions

reached after starting the main procedure. While the current application can display predefined

robot targets from relative to their work objects, it does not currently support any dynamically

changed variables, including work objects and robot targets, and thus will incorrectly display any

such movements.

Writing a more complete interpreter to truly simulate a task’s progression is an important

objective for the future of the application, as it will allow more correct function and predictions

of robot movements. Properly writing a RAPID™ interpreter, however, is a very difficult task

which requires extensive knowledge on the function of language interpreters in general.

This task will involve creating “tokens” which represent every element found in RAPID™

definitions, values, routines, and statements. Sequential execution of the code in simulation is

typically done with an “Abstract Syntax Tree”, which sorts through the tokens and determines

the order that operations are performed in throughout the code.

Simulate Robot Movement

A development of a more complete interpreter would be the simulation of robot actuation

by the virtual model. As the interpreter would be able to walk through execution of the RAPID™

code, it should be able to recreate the movements of the robot and show an approximation in the

application.

72

This would require the use of inverse kinematics. There would be two ways that this

could be achieved; the web services made available via HTTP requests includes an address

which makes the controller perform the inverse kinematic calculations and sends them back to

the application. The other method would be to develop the parameters by forward kinematics and

make the calculations manually in the manner described in Chapter 4. For linear movements, a

reasonable approximation of the path could be made by a cubic interpolation of two intermediate

points and the beginning and end points, requiring only four inverse kinematic calculations. Joint

movements would only require the beginning and end points and could be linearly interpolated

accordingly.

Dynamically edit robot targets/work objects

The current visible coordinate frames of the work objects and robot targets are helpful to

developers getting a feel for the system, but the ability to move, rotate, add, delete, or otherwise

interact with targets in a path is a feature that certainly belongs in software bringing the potential

of Augmented Reality to practical application.

Chapter Summary

This final chapter discusses problems encountered within early development of the

application, and possible avenues to fix many of these issues and improve the features of the

application in future project operations. The main issues discussed include performance

problems stemming from inefficiencies of the HTTP web request system and limited graphics

processing capabilities in the first version of HoloLens®. Additionally, programming issues

surfaced from unknown incompatibilities between the .NET libraries available in the Unity®

environment versus those deployed to the Universal Windows Platform. The third major issue is

the difficult user interface, which is hampered by a poor text input method in the HoloLens®.

These features must be addressed in a satisfactory way before such a project becomes viable for

industrial use.

There is a vast supply of potential features this application could incorporate to improve

its utility. Several which were at various stages of conceptualization or development at time of

writing include displaying objects such as a robot’s tool center point on the virtual model.

RAPID™ code features could be added which include the ability to edit RAPID™ code directly in

73

the application, in a manner like the FlexPendant™’s Program Editor. With the app’s RAPID™

interaction comes the prospect of a true RAPID™ interpreter, which will allow the application to

more completely mirror the behavior of the physical robot. With the app’s interpreter comes the

visual simulation of the robot’s movement, obtainable by kinematic calculations detailed in

Chapter 4. One of the best goals when it comes to useful interaction by Augmented Reality,

however, is to be able to physically manipulate, or drag-and-drop, various RAPID™ objects

around the app’s robot world. This ability would allow much more intuitive editing of the

RAPID™ environment when compared to editing code directly, regardless of coding

environment.

74

Final Thoughts

The process of creating an application to work with industrial robots has provided

valuable insight into multiple worlds of development. Development of an application that

bridges these technologies requires enough extensive knowledge on the part of each developer to

know how information from the robot’s controller and code can be received and used by

unrelated code on the HoloLens® platform. Training from a robotics company partnered with this

project provided priceless information, described in Chapters 4, 5 and 6 which would otherwise

be too mercurial to navigate for the project otherwise. The skills learned about Unity® and the C#

language proved equally critical in developing a product that showed any function at all. These

skills must be retaught to anyone wishing to pick the project up beyond its current state.

The issues and goals laid out in Chapter 9 provide a good roadmap for future

development. This thesis will ideally help the next developer in multiple areas; the spirit of the

project is to pioneer a unique blend of technologies, and any project wishing to prove useful for

their target audience must have time and care dedicated by researchers and students beyond any

initial survey, as this paper describes. The combination of AR and industrial robotics is one with

enormous potential, and its realization will impart knowledge on its developers which will give

them extensive credentials for a career in either field.

75

References

[1] B. Sneiderman, M. Mahto and M. J. Cotteleer, "Industry 4.0 and manufacturing

ecosystems".

[2] ABB Group, "RobotStudio SDK: Getting Started," 2016. [Online]. Available:

http://developercenter.robotstudio.com/robotstudio/api_reference?Url=html%2F4

ffca351-267a-4b49-a512-81638c3b21bf.htm.

[3] ABB Group, "Operating Manual - Robot Studio," ABB, Västerås, 2008-10.

[4] "Microsoft HoloLens," Microsoft, 14 October 2019. [Online]. Available:

https://docs.microsoft.com/en-us/hololens/. [Accessed April 2020].

[5] ABB Group, "Operating Manual - IRC5 with FlexPendant," ABB, Västerås, 2004-08.

[6] K. M. Lynch and F. C. Park, Modern Robotics: Mechanics, Planning and Control,

Cambridge University Press, 2017.

[7] J. M. McCarthy, Introduction to Theoretical Kinematics, MIT Press, 1990.

[8] D. Eberly, "Rotation Representations and Performance Issues," Geometric Tools,

Redmond WA, 2002.

[9] ABB Group, "Application manual - RAPID development guidelines for handling

applications," ABB, Västerås, 2013.

[10] ABB Group, "Technical reference manual - RAPID Instructions, Functions and Data

types," ABB, Västerås, 2004-10.

[11] Unity Technologies, "Unity User Manual (2017.4)," [Online]. Available:

https://docs.unity3d.com/2017.4/Documentation/Manual/.

76

[12] Microsoft, "Unity development overview: Microsoft Mixed Reality," 25 October 2018.

[Online]. Available: https://docs.microsoft.com/en-us/windows/mixed-

reality/unity-development-overview.

[13] "Get started with C#," Microsoft, 5 April 2019. [Online]. Available:

https://docs.microsoft.com/en-us/dotnet/csharp/getting-started/. [Accessed April

2020].

[14] ABB Group, "Robot Web Services," [Online]. Available:

http://developercenter.robotstudio.com/blobproxy/devcenter/Robot_Web_Servic

es/html/index.html.

[15] O. Heidari, S. Chowdhury, T. Hedgepeth and K. Stone, ARPRI App, Pocatello, Idaho:

Idaho State University, 2019-20.

77

Index

.NET Assemblies 52

ABB .. 3

Augmented Reality 1

Automatic Mode 16

Brake Release.. 19

C# .. 49

Classes and Objects............................... 50

Fields, Methods, Properties................... 50

Garbage Collection 51

Generics .. 51

Modifiers ... 51

Reflection .. 51

Cage .. 15

Classes and Objects................................... 50

coordinate frame 21

Data Types .. 36

Emergency Stop Buttons........................... 17

Fields, Methods, Properties....................... 50

FlexPendant™ .. 6

For Loop.. 46

Forward Kinematics 13

FUNC .. 39

Future Work .. 72

Garbage Collection 51

gaze ... 5

Generics .. 51

HoloLens® ... 5

If, Elseif, Else .. 44

Industry 4.0 ... 1

Instruction ... 40, 69

Move Statement 40

Move Statement Components 42

MoveC... 41

MoveJ .. 41

MoveL ... 41

Search .. 42

Trigg .. 42

ProcCall... 47

Program Flow Control 44

For Loop.. 46

If, Elseif, Else 44

Special Case Handlers....................... 46

While Loop 45

Internet of Things .. 2

Inverse Kinematics.................................... 13

IRB 120™ .. 6, 15

IRC5™ ... 6, 17

Issues ... 71

Jogging .. 19

Jogging menu .. 19

Manual full-speed mode 16

Manual Mode .. 16

Manual Operation 19

Manual/Auto Key...................................... 18

Modifiers ... 51

Module 26, 30, 35, 60, 65

Motors On button 18

Move Statement .. 40

Move Statement Components 42

MoveC... 41

MoveJ .. 41

MoveL ... 41

Search .. 42

Trigg .. 42

On/Off switch.. 18

Operating Modes

Automatic Mode 16

Manual full-speed mode 16

Manual Mode .. 16

Optional Arguments 43

Performance Issues 71

Position ... 7

PROC .. 39

PROC Main ... 40

ProcCall... 47

Program Flow Control 44

For Loop.. 46

If, Elseif, Else .. 44

While Loop ... 45

Programming Issues 71

Quaternions ... 8

Rapid Mirror Classes 64

78

Module .. 65

Routine .. 67

Statement... 69

Symbol .. 66

Symbol-inheriting classes 67

Task ... 64

RAPID™ .. 30, 34, 55

RAPID™ service .. 60

Reflection .. 51

Robot Target ... 42

RobotStudio® .. 3, 31

Rotation ... 7

Rotation matrices .. 7

Routine .. 38, 67

FUNC .. 39

PROC .. 39

PROC Main ... 40

Routine Syntax 38

TRAP .. 40

Safety .. 15

Cage .. 15

Emergency Stop Buttons....................... 17

Scope ... 36

Search .. 42

SLAM ... 5

Special Case Handlers............................... 46

Speed Data .. 42

Statement............................... See Instruction

Switches .. 17

Brake Release.. 19

Emergency Stop Buttons....................... 17

Manual/Auto Key.................................. 18

Motors On button 18

On/Off switch.. 18

Symbol 66, See Variable

Symbol Type ... 36

Syntax

Move Statement Components 42

Routine Syntax 38

Variable Syntax 35

Task ... 26, 34, 64

Tool ... 43

Transformation Matrices 10

TRAP .. 40

Trigg .. 42

Unity® ... 48

User Interface Issues 72

Variable 35, 36, 64, 66

Data Types .. 36

Scope ... 36

Symbol Type ... 36

Variable Syntax 35

While Loop ... 45

Work Object .. 43

Zone Data .. 43

