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Abstract 

 

Feature Extraction and Pattern Recognition with Fusion Classification in Infrared Thermal 

Imaging for Serial Number Restoration 

Thesis Abstract -- Idaho State University (2020) 

In forensics, identifying the obliterated serial number unique to each firearm is very 

important in assisting a criminal investigation. A non- destructive method based on infrared lock-

in thermography (LIT) and pattern recognition technique were developed for recovery of the 

defaced serial with marginal human bias. This thesis focuses on assessing the developed semi-

automated method for consistency, validity, and comprehensive automation. Amplitude and 

phase shift using LIT is suitable to distinguish defective and non-defective regions based on 

differences in thermal emissivity at an optimal lock-in frequency. The technique has a limitation 

on shallow defects caused by imprint, which leads to low signal to noise ratio. Image analysis, 

such as smoothing, segmentation, and morphological operations, can enhance feature extraction. 

Image description technique, such as pseudo-Zernike moments, is used to characterize the 

extracted feature distinctively. Pattern recognition based on the library of reference alphanumeric 

characters can be achieved with fusion classification. These techniques are aligned to formulate 

an automatic character identification protocol (ACIP) for serial number restoration.  

Keywords: Infrared Lock-in thermography, Serial number restoration, Thermal 

emissivity, Feature extraction, Lock-in frequency, Pseudo-Zernike moments, Pattern recognition, 

and Fusion classification 
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Chapter 1 

1.0 Introduction 

Federal law requires manufacturers to engrave a unique serial number on every firearm 

[1-3]. The serial number is generally removed when guns are associated with criminal activities 

[4]. Chemical (acid) etching is a standard procedure to restore defaced serial number [4-6]. This 

technique is effective but destructive and requires highly trained experts. As an alternative, a 

non-destructive and user-friendly method for recovery of the defaced serial number was 

developed. This new technique is based on infrared thermography in which an infrared camera 

captures thermal images to evaluate the apparent temperature. Infrared thermography measures 

potential temperature (thermal emissivity) differences. The difference is triggered by the change 

in thermal conductivity with the regions of plastic strain underneath the metal surface. The 

localized distortion of crystalline structure in a metal due to stamping causes plastic strain [7-9]. 

There are different ways of collecting thermal images for each thermography, such as lock-in, 

pulse, and transient, to characterize the temperature differences [10-13]. 

The developed method is primarily based on lock-in thermography (LIT) of the 

restoration of an obliterated serial number. Thermal images are captured at a particular frame rate 

with periodic thermal excitation of a sample using heat sources such as a laser. Based on the 

lock-in principle, thermal images are integrated to produce amplitude and phase images for each 

lock-in period [14-15].  The amplitude image can characterize the surface attributes, whereas the 

phase image is associated with the subsurface. The phase image is less likely to be affected by 

the temperature gradient on the surface or heat sources. As a result, the phase is more applicable 

to bring out useful data to distinguish between the stamped and non-stamped region of serial 

number underneath the metal surface. The ideal lock-in frequency is essential for LIT analysis. 
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The sensitivity of LIT is high at the optimal frequency, avoiding blind frequencies, which would 

generate a better phase image. 

However, still, there is a limitation to achieve the best possible spatial resolution with a 

phase image as the temperature difference is very marginal across the surface. The depth of the 

plastic strain zone is shallow to get any significant variation in temperature. Also, the area of 

stamped character or force applied to engrave can cause a variety of depth as well as the spread 

of the plastic strain zone. These factors are unquantifiable to attain accurate local lock-in 

frequency to extract useful features. As a result, the signal to noise ratio (SNR) on each thermal 

image is shallow. This issue makes feature extraction using a single-phase image to be less 

sensitive. Low sensitivity creates enormous complexity for a productive examination of phase 

image. 

The phase image can be simplified to a binary model for further analysis. The optimal 

threshold depending on the distribution is determined for image binarization. Image smoothing 

with a box filter can be used to reduce the noise and enhances contrast that can be visually 

comprehended as any pattern. Image segmentation and morphological operations such as dilation 

and erosion can be applied to strengthen patterns, which could be applicable for better visual 

interpretation. It is imperative to decide visually whether the enhanced image resembles the 

defaced character. The visual representation is likely subject to human bias as the binary phase 

image can be interpreted differently. Hence, the mathematical description for image 

characterization can be beneficial to minimize human bias.  

The mathematical functions such as geometric moments, Legendre moments (LM), 

Zernike moments (ZM), and Pseudo-Zernike moments (PZM) have abilities to represent the 

image features and describe images [16-17]. The application of moment invariants in the field of 



3 

 

pattern recognition has been very useful. However, geometric moments are not orthogonal, and 

as a consequence, reconstructing the image from the moments is deemed to be a difficult task. 

Based on the theory of orthogonal polynomials, it can be shown that the image can be easily 

reconstructed from a set of orthogonal moments, such as Legendre moments, Zernike moments, 

and Pseudo-Zernike moments. The Pseudo-Zernike moments have the best overall performance 

among various moments based on noise sensitivity, information redundancy, and image 

description [17-18]. For this study, the PZM is used to fully characterize the features that 

generate a unique vector representation of phase image and references. Images are preprocessed 

to be scale and translation invariant before computation of Pseudo-Zernike moment; the 

rotational invariance can be achieved.  The order of the PZM is determined based on its image 

reconstruction capability. The predetermined PZM vector generated for the phase image is a 

basis for pattern recognition. 

 The underlying pattern described in binary phase image can be classified into a specific 

letter or a number from a set of thirty-six alphanumeric characters (0-9 and A-Z). There are 

multiple pattern recognition techniques, such as neural networks, library matching, and 

classification [19,20]. Neural networks require a large training dataset for simulation, which 

could only be applicable for digital images. Library matching is usually appropriate when the 

reference library contains a specific instance of the binary phase image. Classification is a 

method in which the image is classified into a particular category (class) rather than a single 

case. It is almost impossible to acquire a phase image for a defaced serial number that could 

exactly resemble a specific example from a reference library. For serial number restoration, 

classification is more practical for pattern recognition. The intra-class and inter-class variation 

among reference categories can be adjusted for classification to function efficiently.  
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There are multiple methods (classifiers) to perform classification for pattern recognition. 

Most commonly used stand-alone classifiers such as partial least squares discriminant analysis 

(PLS-DA) [21,22], and k-nearest neighbors (kNN) [23,24] are based on corresponding tuning 

parameter values. As a tuning parameter, PLS-DA has a number of latent variables (LVs), and 

kNN has the number of nearest neighbors and distance measures. The applicability of each stand-

alone classifier depends on intra-class and inter-class variation within the data and can be 

optimized with a tuning parameter. Tuning parameter selection is a complex problem with no 

concrete consensus. In addition, there are similarity measures, such as cos θ and Euclidean 

distance, that can be considered as non-traditional classifiers with no tuning parameters. The 

purpose of these classifiers is to evaluate the degree of similarity between unknown and class 

mean. All classifiers utilize a piece of specific information which suggests variability, likely 

prompting misclassification with method selection. 

These classifiers can be ensembled to obtain robust classification with consensus and 

improved pattern recognition. There are two approaches to combine classifiers. Grouping of 

classifiers based on one single algorithm is one approach [25].  Random Forest is one of these 

types of methods. The purpose of this approach is to create a robust classifier from a collection 

of weak classifiers. The other outcome is to combine the result of multiple optimized classifiers. 

For better performance, eventually, these methods require the optimization of tuning parameters 

associated with each classifier.  

The alternative approach is fusion classification [26]. For fusion classification, non-

optimized classifiers are fused based on the respective window of tuning parameter values 

instead of selecting an optimal tuning parameter value. For better consensus, non-traditional 

classifiers are stacked with non-optimized classifiers.  An appropriate fusion process, sum fusion 
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rule, is used [26,27]. The sum fusion is the sum of the normalized raw values (across classes) 

computed for each classifier. For each tuning parameter window, the lowest sum for a category 

associated with the alphanumeric character is predicted to the defaced number or letter. The 

majority vote, another fusion approach, is applied to the outcomes of all tuning parameter 

windows. The consensus for pattern recognition with fusion classification is achieved.  

1.1 Motivation and Goals 

The motivation of this study is to enhance the previously developed non-destructive method 

for serial number restoration and create a robust automated process for identification of 

recovered defaced serial number. The overall goal of this project is to determine the best-fitted 

control variables and measurements for infrared lock-in thermography and develop an automatic 

character identification protocol (ACIP) to recover the defaced serial number.  

These goals were attainable with the digital device's availability for accurate 

measurements and an additional image analysis application, including feature enhancement and 

pattern recognition techniques. For the completion of this study, the three primary goals are 

presented as follows:  

1. To evaluate experimental design, including sample preparation and environment, for 

collecting thermal images.  

2. To assess the efficacy of infrared lock-in thermography for feature extraction. 

3. To develop an automatic character identification protocol (ACIP – black box) that is user-

friendly and minimizes human bias for serial number restoration. 

  



6 

 

1.2 Thesis Structure 

This thesis is organized with multiple chapters (sections) illustrated as follows: Chapter 2 

outlines a review of relevant literature and background information for serial number restoration, 

feature extraction using infrared lock-in thermography, and image analysis. Chapter 3 describes 

the experimental design, including sample preparation, environment, and control variables to 

collect thermal imaging data based on the LIT review. Section 4 outlines ACIP for pattern 

recognition, including image preprocessing, feature enhancement, creation of reference library, 

image description, and classification. Chapter 5 provides results for different samples based on 

ACIP applied to image generated using LIT analysis. Section 6 contains the conclusion of all 

studies carried out in the project and the future work. 
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Chapter 2 

2.0 Literature Review 

This section presents a brief literature review of several concepts, fundamentals, and 

background which are related to serial number restoration, infrared lock-in thermography, and 

image analysis; such as plastic and elastic deformation underneath the metal surface, infrared 

radiation, thermal conductivity and emissivity, lock-in principles, and multivariate image 

analysis.  

2.1 Serial Number Restoration 

The manufacturers of firearms are required by the Gun Control Act of 1968 to engrave a 

unique serial number for identification. In forensics, tracing a gun is essential to speed up the 

criminal investigation when firearms are involved. The serial number is generally removed, 

which can act as evidence of the crime scene. The restoration of a defaced serial number would 

be beneficial. 

2.1.1 Background 

Most firearms are made up of metals such as iron, aluminum, zinc, or alloy. Different 

techniques such as die-stamping (mechanical) and laser etching are used to stamp a serial 

Figure 2-1  Types of crystalline metal structure [28] 
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number on the metal surface.  The atoms of pure metals are arranged in a closely packed pattern, 

which gives the crystalline structure. As shown in Figure 2.1, the most common arrangements 

are body-centered cubic (BCC), face-centered cubic (FCC), and close-packed hexagonal (CPH). 

Each unit cell of the crystalline structure is called grain. These arrangements of grains determine 

the physical and chemical properties of the metal. 

While stamping a serial number on the metal surface, an enormous force or external 

energy is applied, which could distort the arrangement of atoms. The distortion leads to the 

alteration of the crystalline structure underneath the metal surface. Figure 2.2 shows the 

graphical representation of Young's Modulus (E), which measures the elasticity of a metal.  

The severity of deformation depends on the ratio of stress (σ) by strain (ε) of the metal. 

Stress is defined as the force applied over the metal surface area. A strain is defined as 

deformation caused by stress. Elastic deformation occurs up to the point where the crystalline 

structure is stretching and not deforming. If the metal is stressed beyond that point, the grains in 

the metal will begin to distort and permanently change the crystalline structure. This 

Figure 2-2  Representation of Young's Modulus (E) [8] 
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(2.1) 

phenomenon is called plastic deformation. Figure 2.3 demonstrates how the grains dislocate and 

penetrate through the crystal when the stress is applied.  

The change in the crystalline arrangement of this local zone of plastic strain causes 

localized changes in the metal physical properties such as thermal conductivity (k) and 

emissivity (ε) and density [30,31]. Metals are a good conductor of heat due to a large number of 

free electrons moving about the crystalline structure. When the structure is distorted, the 

electrons cannot move freely. This phenomenon results in reducing the thermal conductivity in 

the localized plastic strain region from the non-deformation area underneath the metal surface. 

The relationship between the thermal emissivity perpendicular to the polished metal surface and 

thermal conductivity of pure metal can be described by Equation 2.1 [32].    

 ( )
1

-4 2= 1.0×10 ×T×ε k

 
− 
    

where: 

ε is the thermal emissivity of a polished metal surface 

T is the absolute temperature of a metal (K) 

k is the thermal conductivity (W cm-1 K-1) 

Figure 2-3  Dislocation motion through crystalline structure of metal [29] 
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The lower thermal conductivity of the plastic strain region possibly contributes to slightly higher 

thermal emissivity. Also, the dislocation density increases with deformation. These changes 

affect the temperature gradient of the deformed area to be different from the non-deformed area. 

The magnitude of the plastic strain depends on metal properties and the indentation 

geometry used for engraving serial numbers. Figure 2.4 illustrates plastic strain for two types of 

stainless steel (P675 SS and 303 SS) and how this relates to the zone of plastic deformation [33].   

 

Figure 2-4  The relationship between stress and strain based on two types of stainless steel, (a) 

P675 SS and (b) 303 SS [33] 

The magnitude of plastic deformation decreases with the depth of the distortion until the point 

where there is elastic or no strain. Hence, the bottom of the obliteration is an essential part of 

recovering defaced serial number. As the depth of the defacing increases, the degree of accuracy 



11 

 

for serial number restoration diminishes. Eventually, when the defacing reaches or exceeds the 

extent where there is elastic or no deformation, it becomes impossible to recover the defaced 

serial number. 

 Generally, methods to obliterate serial numbers involve standard procedures that will 

remove enough surface material up to the depth where the serial number is no longer visible with 

naked eyes. These include filing, sanding, and scraping with a sharp tool, that is likely not to 

create any zone of plastic deformation underneath the metal surface. This condition will allow 

for the high possibility of serial number restoration. Nevertheless, overstamping on the serial 

number is another method which can cause similar plastic strain as the actual serial number 

imprint. This filing technique could blur the subsurface pattern of plastic deformation and create 

false identification of a restored serial number.  

2.1.2 Methodology 

Multiple methods have been tested for serial number restoration. These methods utilize 

the localized change in the region's physical and chemical properties with plastic deformation 

relative to the non-stamped area. Some of the established methods are chemical etching and 

electrolytic etching [34]. Electron backscatter diffraction (EBSD) with scanning electron 

microscopy [35-37], and magnetic particle inspection [38] are newly developed methods.  

Traditional methods are destructive and require expertise. The most commonly used way 

is chemical etching. This method examines the corrosion process where there is a difference in 

the reaction rate between the engraved and non-engraved areas to the chemical reagent (acid). 

Depending on the metal, the proper composition of chemical reagents is used to achieve the best 

visible contrast between defaced and clean areas on the metal surface [39-43]. The electrolytic 

etching is similar to chemical etching in which an electric field is applied to control the etching 
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process. The electrolysis of the metal is used to speed up or slow the reaction rate. The optimal 

voltage depending on the metal is determined to get the best result for restoring the serial 

number. In these techniques, the use of highly concentrated acid solutions during the etching 

process has a significant drawback as it permanently destroys whether the defaced serial number 

was restored entirely or not. 

Newly developed methods are designed to be non-destructive. These methods have not 

been entirely successful compared to traditional techniques, but these techniques can still be used 

as an alternative. The most commonly used non-destructive method is a magnetic particle 

inspection. This technique relies on the difference in magnetic permeability between the zone of 

plastic deformation and the non-deformed region for recovery of the defaced serial number. 

Although this method is relatively successful for serial number restoration, it has limitations. 

This method is only applicable to metals that have magnetic properties and primarily mechanical 

stamping approaches. Another non-destructive method currently in development is EBSD with 

scanning electron microscopy. This technique assesses the diffraction pattern of electron beam 

targeted onto stamped and non-stamped area by mapping crystallographic orientation at high 

resolution. EBSD software for quality mapping is implemented to generate the best visual 

contrast. During the experimental stage, this method has shown the potential for recovering 

obliterated serial numbers on firearms.  With the primary focus on developing efficient non-

destructive techniques, these methods could potentially enhance or replace traditional plans as a 

standard protocol for serial number restoration in forensics.   
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2.2 Infrared Thermal Imaging 

 Infrared thermal imaging is the non-destructive evaluation method with a wide variety of 

applications in non-destructive testing, medicine, and process monitoring. This technique relies 

primarily on the intensity of infrared radiation emitted by the surface of the object as a function 

of temperature [44,45]. The infrared (IR) region of the electromagnetic spectrum lies between 

0.75 µm and 1mm. For thermographic measurement, the area is divided into three sub-regions 

according to atmospheric attenuation. Short-wave infrared (SWIR) lies between 1 µm and 2.5 

µm, medium-wave infrared (MWIR) ranges from 3 µm and 5 µm, and long-wave infrared 

(LWIR) from 8 µm and 12 µm. Atmospheric attenuation prevents an object's total radiation from 

reaching the camera. If no correction for attenuation is applied, the apparent measured 

temperature will be lower with increased distance. The correction of atmospheric attenuation is 

performed at each spectral range using IR camera software. The spectral range of IR camera 

depends on the type of IR detector; indium gallium arsenide for SWIR, indium antimonide for 

MWIR, and mercury cadmium telluride for LWIR [30]. Figure 2.5 shows the infrared region for 

the thermographic measurement [46].  

Figure 2-5  Percent transmittance of different infrared wavelength (µm) through the 

atmosphere [46] 
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There are two major categories of infrared thermography (IRT) - passive and active. 

Passive thermography is simply collecting thermal images relying only on the infrared radiation 

emitted from the surface contributed by the internal thermal energy of the object. Active infrared 

thermography involves applying external thermal energy into the object, thermal conductivity, 

recording thermal images in real-time, and understanding the spatial distribution of surface 

temperature [13,47-49]. These include pulse, transient, and lock-in. Vibration and transient 

thermography are primarily used for defect detection. Lock-in thermography is used for both 

defect depth analysis and feature extraction. Lock-in thermography (LIT) is particularly useful 

for detecting near-surface defects because of its sensitivity to interface between materials, which 

is similar to a local change in thermal conductivity within defective areas [48-49]. LIT can be 

applied to develop a new non-destructive method for serial number restoration. 

2.2.1 Lock-in Thermography 

 Lock-in thermography involves generating periodic energy waves at a lock-in period or 

frequency into the surface of an object under observation. The heat flow, as the thermal wave 

propagates through the object, will be affected by thermal conductivity differences across the 

observed surface, so changes in the phase of the stream are experienced. The temperature 

changes are observed at predetermined lock-in frequency using thermographic images collected 

over the entire lock-in period at an equal time interval. These images reveal information about 

changes in the object's thermal conductivity across the surface under observation [49].   

According to the lock-in principle, synchronization of the thermographic image sequence 

and the lock-in frequency is assumed with a fixed number of thermal images per lock-in period 

and weighing factors on each image. The optimal lock-in correlation among thermal images uses 

harmonic (sine or cosine) function as a weighting factor to achieve the best signal to noise ratio. 
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This approach compresses thermal images to generate different kinds of images containing 

dominant information, which could display the local variation between defective and non-

defective areas [50,51]. These developed images have some surface information suppressed, 

making them less sensitive to uneven heating and local emissivity variations, which are concerns 

in using other thermal imaging techniques. As a result, LIT is more useful than other 

thermography techniques. These processed images have better surface temperature signals that 

are more robust than thermal models for analyzing subsurface components [15,50,51]. Figure 2.6 

illustrates step by step process to perform LIT analysis.  

Figure 2-6   Schematic diagram of the lock-in imaging process of a certain lock-in period [15] 

A non-sinusoidal thermal energy wave is induced into the surface of a sample. An infrared 

camera is used to collect thermal images (F(t)) of the sample surface over the entire lock-in 

period (t) at equal time intervals. Two-channel lock-in correlation is used to process the thermal 

images. The correlation method uses two sets of weighting factors resembling sine and -cosine 

function, respectively, at a complete cycle (360˚). The correlation is performed twice in parallel 

with these two weighing factors. The first channel measures the signal in phase with the sine 

function, and the second channel measures the signal in phase with the -cosine function, which is 
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(2.2) 

(2.3) 

(2.4) 

(2.5) 

-90˚ out of phase from the sine function. The in-phase image (S0˚) and out-of-phase image (S-90˚) 

is calculated using Equations 2.2, and 2.3 [14]. 
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where: 

n is the number of thermal images per lock-in period 

x,y is the pixel coordinate of the two-dimensional thermal image 

, (t )x y kF  is the thermal image pixel value at a specific time 

kt  is the relative angle in the time domain 

0°

x,yS  is the in-phase signal (positive or negative) at (x,y) pixel coordinates 

-90°

x,yS  is the -90˚ out of phase signal (positive or negative) at (x,y) pixel coordinates 

A phase independent amplitude image (A), and a signal phase shift image (P) are then generated 

using Equations 2.4 and 2.5 [14].  
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where: 

,x yA  is the phase-independent amplitude value at (x,y) pixel coordinate 

,x yP  is the -90˚ phase shift value at (x,y) pixel coordinate 
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A significant drawback of LIT is blind frequencies, i.e., lock-in frequencies at which the contrast 

between clean and defective areas is minimal. Defect detection in phase images developed at these 

frequencies is usually unreliable, and thus, such rates need to be avoided. This shortcoming can be 

addressed by evaluating defect depth analysis, which involves calculating phase images of undefaced 

stamped serial numbers over several thermal input frequencies.  

 For serial number restoration, optimization of lock-in frequency contributes to efficient feature 

extraction. The defaced and non-defaced region has distinct structures that are subject to visual 

interpretation for identification. However, the visual description is not yet practical due to the low quality 

of spatial resolution in processed images, likely caused by an insignificant temperature difference.  
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2.2.2 Image Analysis 

For serial number restoration, optimization of lock-in frequency contributes to efficient 

feature extraction. The defaced and non-defaced region has distinct structures that are subject to 

visual interpretation for identification. However, the visual description is not yet practical due to 

the low quality of spatial resolution in processed images caused by an insignificant temperature 

difference. Even though the resolution is low, image processing techniques enhance the features 

[52-54]. 

Univariate image analysis is a method to perform some operations on an image's spatial 

domain (two- or three-dimensional) to get an enhanced image. Image analysis concentrates 

mainly on spatial relationships between pixels in a grey level image. This kind of image analysis 

is generally used for digital image processing. A single-phase or amplitude image processed via 

lock-in thermography can be treated like a digital image. For serial number identification, two 

critical components of the image area of interest are where one of the components is associated 

with the defaced city and the other one with a non-defaced area.  Image binarization should 

better characterize the images obtained from the LIT analysis since there are only two regions of 

interest for analysis. The process of binarization works by finding a threshold value in the 

histogram of pixel values – an amount that effectively divides the histogram into two parts, one 

represents the object, and the other is a background. Image smoothing, segmentation, and 

morphological operations (dilation or erosion) are used in binary image processing for feature 

enhancement. These techniques intend to remove background noise from the image, which 

improves the image quality for a better visual interface. 

On the other hand, multivariate image analysis (MIA) is a methodology for analyzing 

multidimensional images, where the image coordinates are position (pixels of 2-D or 3-D) and 
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variable number [55,56]. The variables can be time, wavelength, energy, and many others. MIA 

focuses on the correlation of structure between the variables to provide additional information 

useful for exploring images and classifying regions in them. A wide range of applications for 

MIA includes medical imaging, hyperspectral imaging, remote sensing, microscopy, and many 

more. Principal component analysis (PCA) is the backbone of MIA [55-59], which can be 

applied with infrared lock-in thermography (LIT) for serial number restoration.  

PCA  utilizes multiple lock-in parameters, which generates numerous images with 

distinct features. These conditions could include various temporal phases, amplitude, or thermal 

images [59] at different lock-in frequencies with or without optimization. The technique is based 

on the fact that sequential images are highly correlated and often contain almost the same 

information object pattern in the image. The analysis is used to remove the time-series 

correlation by identifying the optimal linear combination of original temporal images accounting 

for the variation of pixel values in an image.   Image preprocessing, such as smoothing (box 

filtering) is still required before carrying out PCA on amplitude or phase images for additional 

feature extraction. The significant challenges of using PCA with LIT are - determining the 

optimal number of images to get a consistent result and finding a model that resembles the 

defaced serial number. Image processing techniques such as binarization, segmentation, and 

others can also be used on each generated image via multivariate image analysis. 

2.3 Pattern Recognition 

Pattern recognition is an automatic recognition of an object in the image which involves 

three primary operations, including representation, feature extraction, and classification. Feature 

extraction and representation are used to describe an image. The two parts are collaboratively 

referred to as an image description. Classification is a technique to assign the image to a specific 
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category (class) from a set of pre-defined types. Image description and classification method are 

the two entities for consideration to bolster pattern recognition.  

The size or location of an object within the image should not matter for pattern 

recognition since the shape of an object defines the image [60]. Several methods are applied to 

transform an image into a set of unique descriptive features that represent the picture [61-63]. 

Different representations are based on several feature extraction techniques, including statistical 

functions such as zoning, global descriptors such as moments, and geometrical and topological 

features such as strokes and chain codes [64-66]. The most important properties for a proper 

feature extraction technique include invariance against some geometric transformations (scale, 

translation, and rotation), stability to noise, blur, and small local deformations as well as 

completeness in describing the shape of an object [67,68]. A method that has proven to be very 

robust in meeting these attributes is moment invariants.  

There are several ways to identify the image based on the best image descriptor available. 

Two major approaches are library (reference) matching and classification. Library matching 

involves searching every instance within the library and linking independently. The similarity 

measures determine the strength of the pairing to each case, computational methods of 

quantifying the similarity between objects. These measures are primarily based on a vector to 

vector similarity, including correlation coefficient, Euclidean distance, cosine, and cosine.  

Classification is the method of assigning an object to a category or class (collection of instances). 

The efficiency of this method depends on intra-class and inter-class variation.  The most 

commonly used classification techniques (classifiers) are PLS-DA, kNN, support vector machine 

[69], and neural networks [70-72]. Classification with image moment invariants, especially 

Zernike and Pseudo-Zernike moments, are applied in various fields [73-74].  
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(2.6) 

2.3.1 Moment Invariants 

Moment invariants are properties of connected regions in binary images that are invariant 

to translation, rotation, and scale. Moments are scalar quantities used to characterize a function 

and capture its significant features. The role of moments has been utilized as pattern features in 

many applications to achieve invariant recognition of two-dimensional image patterns [75,76]. In 

image processing, they are measurable quantities insensitive to particular deformations and 

provide enough discrimination power to distinguish among objects belonging to different classes 

[77]. Also, moments with orthogonal basis functions, represent an image with a set of mutually 

independent descriptors, thus minimizing redundancy [16,75-77]. 

Regular or geometric moments which form the basis for most moment-based feature 

extraction techniques are defined by Equation 2.6 [16]. 

 ( , )p q

pqM x y F x y dxdy
 

− −
=     

where: 

(x, y) is the pixel coordinates of an image 

F (x, y) is real image intensity, piecewise continuous function 

p and q are non-negative integers 

For images with discrete pixel locations, the integrals are estimated with summations. 

These essentially define moments by projecting a function onto a monomial basis set 𝑥𝑝𝑦𝑞. 

However, this basis set is not orthogonal, and as such, there is some redundancy in the 

information associated with the moments developed [76,77].  
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Various types of orthogonal moments have been developed and used in image recognition 

processes to varying degrees of successes solving redundancy issues [30]. Three classes of 

orthogonal moment invariants that have proven to extract robust features for the classification of 

images are LMs, ZMs), and PZMs [31]. LMs are based on Legendre polynomials, whereas ZMs 

and PZMs rely on radial polynomials. Figure 2.7 shows an example of the image reconstruction 

ability of these orthogonal moments [16]. 

Most of the image information can be recaptured by using a sufficiently large number of a 

particular set of image moments (order of the moments). In terms of overall performance, which 

includes sensitivity to image noise, aspects of information redundancy, and capability for image 

representation, ZMs and PZMs outperform all other moments. ZMs are the most widely used 

family of orthogonal moments due to their other property of being invariant to an arbitrary 

rotation of the object they describe. Even though PZMs are also derived from Zernike 

polynomials, PZMs are used in many pattern recognition and image processing applications as 

alternatives to the traditional ZMs. It has been proved that PZM have better feature 

representation capabilities and are more robust to image noise than ZMs [78]. 

Figure 2-7  Reconstruction of a letter E by a) Legendre moments, b) Zernike moments, and c) 

Pseudo-Zernike moments; Original Image and reconstructed image using 2nd through 20th order 

of moments [16] 
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(2.7) 

(2.8) 

• Pseudo-Zernike Moments 

Zernike polynomials were introduced and later derived from the requirement of 

orthogonality and invariance properties for use in characterizing images [79]. One of the 

components that form Zernike polynomial is real-valued radial polynomials, and the other part is 

imaginary. Pseudo-Zernike polynomials differ from Zernike polynomial only on the constraints 

applied in the radial polynomial. The pseudo-Zernike polynomials form an utterly orthogonal set 

over the interior of a unit circle and are of the form shown in Equation 2.7 [79]. 
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where:  

n is a number of basis polynomials that define the order of Pseudo-Zernike moments, 

m is a positive or negative integer bound by |𝑚|≤𝑛, 

m

n
Z  is the pseudo-Zernike polynomial, 

m

n
R  is the real-valued radial polynomial, 



24 

 

(2.9) 

(2.10) 

r is the length of the vector from the origin to the 𝑥, 𝑦-coordinates, and 

𝜃 is the angle between the vector and the x-axis in the counterclockwise direction. 

The PZMs are calculated using Pseudo-Zernike polynomial and the input images, as 

shown in Equation 2.9. 
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where, 

Am

n  is the PZM coefficient 

(n+1)2 = number of PZM coefficients at nth order of the moment  

The PZMs are rotation invariant, and images could be preprocessed to make them scale and 

translation invariant, thus removing these variables from the image classification problem [78]. 

Such preprocessing is achieved using affine transformations to map variables (pixel intensity 

values at a location in the case of images) into new variables (new locations for images) by 

applying a linear combination of translation and scaling operations [73-80].  The rotational 

invariance using PZM is shown in Equation 2.10, which is derived by rotating the images with 

phase angle (α) from Equation 2.9.  
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The rotation of an image does not change the magnitude of the moments with the rotation 

invariance of pseudo-Zernike moments. Another useful property of pseudo-Zernike moment is 

the orthogonality of the orders of independent basis polynomials. This orthogonality property 

makes it possible to determine the quality of features extracted at each request of basis 

polynomials by reconstructing the images at a particular order [81]. Due to the orthogonality 

between the order of PZMs, they capture unique features at different moment orders, minimizing 

information redundancy. These properties make the PZM more suitable as an image descriptor, 

an exclusive vector representation of an image.  

2.3.2 Classification 

  Classification techniques (classifiers) that involve a comparison of a vector to a spatial 

domain defined by a class are based on tuning parameters. These standalone classifiers include 

PLS-DA, kNN, and others. Optimization of the tuning parameter is a necessity for a single 

method to be a robust classifier. Each classifier utilizes different characteristics to define a class. 

For example, PLS-DA and kNN rely on different fundamental attributes of a class to classify an 

image. 

PLS-DA is a linear classification method that combines the projection-based regression 

method, partial least squares (PLS) with the discrimination power of a classification technique 

[82-83]. PLS finds a linear regression model with a maximum covariance between the dependent 

and independent variables.  The linear regression models are called latent variables (LVs) that are 

the linear combination of independent variables. Hence, the tuning parameters of PLS-DA are 

LVs (1,2, 3... full rank), which describes the appropriate sources of data variability. PLS1-DA is 

applied for one dependent variable (y) and PLS2-DA for multiple independent variables (Y). 

These response variables are replaced by the set of dummy variables describing the categories 
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that express the class membership of the statistical units. This constraint does not allow for other 

response variables than the one for defining the types of images. As a consequence, all 

independent variables play the same role for the class assignment. 

 PLS-DA is performed to sharpen the separation between groups of observations, by 

selecting LVs such that a maximum separation among classes is obtained to understand which 

tuning parameter carries the class separating information [84]. The efficiency of the method is 

dataset dependent. Figure 2.8 is an illustration of enlarged separation between two types using 

PLS-DA for classification at a specific number of LVs [85].  

  

Figure 2-8 Classification using PCA and PLS-DA [85] 



27 

 

The kNN is a non-parametric classification method based on distance measures, such as 

Manhattan, Chebyshev, and Euclidean distance [86].  An object is classified by a majority vote of 

its k neighbors, with the purpose assigned to the class most common among its k nearest 

neighbors [86,87].  Figure 2.9 demonstrates a schematic diagram of the kNN classification [88].  

The number of neighbors (k) is the parameter used for kNN classification. The distance is 

measured between the independent variables of each training sample and a new sample. The 

most commonly used distance measure is the Euclidean distance. It can be observed in Figure 

2.9 that depending on the value of k; the object can be classified either way. This problem 

demands optimization of the tuning parameter. 

Additionally, similarity measures such as cosine and Euclidean distance can be used as 

classifiers to compare a vector to the mean class (vector). No tuning parameters are required. 

These can be considered as weak classifiers as some of the information associated with a class 

could be minimized by averaging. As a result, these classifiers are not as reliable to classify an 

image independently. 

There is no consensus on a single classification method and how to optimize it. Hence, 

several ensembles (fusion) approaches have been developed to avoid method selection. Fusion 

tends to strengthen the classification compared to a single classifier since the outcome is based 

Figure 2-9  An example of kNN classification [88] 
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on diverse information provided by multiple classifiers [89,90]. There are three approaches to 

fuse classifiers. One of the strategies uses a separate algorithm such as random forests and other 

bagging processes to come up with a set of classifiers. The purpose of this approach to combine 

weak classifiers to form reliable classifiers. This fusion method still requires method selection 

and optimization of the tuning parameter. The second approach is to combine optimized 

classifiers, which is more efficient, as this fusion strategy avoids choosing a single method for 

classification. However, this still requires picking a set of classifiers and the best single tuning 

parameter for each classifier.  The third approach is to ensemble non-optimized classifiers with 

tuning parameter window. Rather than selecting an individual tuning parameter, windows of 

tuning parameters are used. For example, with PLS-DA, the LVs are 1,2,3…, p where p is the 

total number of LVs used, and windows of LVs are 1,1-2, 1-3, 1-4…,1-p. This approach makes it 

possible to avoid both method and tuning parameter selection for robust classification. 
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Chapter 3 

3.0  Lock-in Procedure 

The methodology for this study was designed to acquire useful thermal imaging data 

based on the lock-in principle. A different set of samples are tested to validate the application of 

infrared lock-in thermography (LIT) for serial number restoration. The procedure is carried out 

in three main stages as outlined below: 

1. Sample – acquisition, and preparation 

2. Equipment setup 

3. Analysis of lock-in thermography (LIT) 

3.1 Sample 

A set of samples were used in this study to develop a feature extraction process of the 

defaced serial number. These test samples include a metal plate, a needle holder, and a gun 

barrel. 

3.1.1  Acquisition 

The experimental process was mostly developed by testing on a stainless-steel plate (72 

mm × 25 mm) stamped with several numbers. This sample obtained as a test piece from 

Precision Forensic Testing [91], was stamped using an open back inclinable (OBI) press. The 

numbers were stamped to depths of approximately 0.17mm, 0.15mm, 0.15mm, 0.16mm, and 

0.18mm for the 2,6,2,5 and 0 respectively, as measured using a profilometer. Initially, 6.35 mm 

thick, the stamped numbers were defaced in a controlled manner. A uniform thickness of 0.16mm 

was mechanically shaved off the top surface, leaving the numbers barely visible. Each number 

except the first was then progressively shaved off to a depth 0.03 mm beyond the previous. The 

first number on the plate is left visible to serve as a control, ensuring consistent knowledge of the 
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positions of the defaced numbers. Figures 3.1 and 3.2 show the original and damaged sample, 

respectively [1].  

 

 

Another sample acquired and defaced is a gun barrel for a Stevens Model 95 12-gauge 

shotgun. The shotgun had no serial number, and so some numbers stamped on the barrel were 

defaced using a common filing technique to simulate the serial number defacing. Two numbers 

(1 and 2) were damaged on the barrel surface and used to test the recovery process. Figures 3.4 

and 3.5 show the barrel's images before and after defacing with the red box, indicating the 

numbers removed. 

Figure 3-1 Stamped Serial Number (2,6,2,5, and 0) on 

Stainless Steel plate with depth of 0.17mm, 0.15mm, 0.15 

mm, 0.16 mm and 0.18mm respectively [1] 

Figure 3-2 Non-defaced two, partly defaced six, and completely 

defaced two, five and zero [1] 
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A laser engraved surgical needle holder (Model BM034R) was obtained. This sample is 

used to test the efficacy of the method on laser engraved samples. Numbers 0,3, and 4 and a 

letter R were filed to simulate defacing serial numbers. Figures 3.5 and 3.6 show the needle 

holder before and after some part of the serial number was damaged. 

Figure 3.3 Stamped numbers (1 and 2) on a gun barrel [1] 

Figure 3.4 Defaced stamped numbers (1 and 2) on a gun barrel [1] 

Figure 3.5 Laser engraved serial number (BM034R) on a surgical needle handler [1] 

Figure 3.6 Defacing 0,3,4 and R of a laser engraved serial number 

on a surgical needle handler [1] 
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3.1.2 Preparation 

The surface areas around the defaced numbers on all the acquired samples were polished 

with ~600-1500 grit sandpaper to ensure a smooth surface for homogeneous distribution of 

thermal emissivity. The polished surfaces were then thoroughly cleaned with ethanol to remove 

any extraneous material from the metal surface's smoothing process. The polished surfaces were 

then covered with a black vinyl electric tape (thickness of 0.18 mm and thermal emissivity 

~0.95) to reduce surface emissivity differences. 

3.2 Experiment Setup 

3.2.1 Equipment 

• Infrared (IR) Camera 

A FLIR SC6700, Science-Grade MWIR InSb Infrared Camera, along with the software, 

is used to collect thermal images for the experiments performed for this thesis. The computer 

with FLIR software is connected to the IR camera via an Ethernet cable for the operation of 

control variables and store thermal images.  The specifications for the camera are shown in Table 

3-1. 

Table 3-1 System Overview of FLIR SC6700 

Detector Type Indium Antimonide (InSb) 

Spectral Range 3.0- 5.0 µm or 1.0- 5.0 µm 

Resolution 640 × 512 

Detector Pitch 15 µm 

Standard Temperature Range -20 ˚C to 350 ˚C 

Operating Temperature Range for Lens -40˚C to 50 ˚C 
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• Laser 

A 5W Ar-ion CW laser, from Coherent inc., was used as the primary thermal excitation 

source for all samples tested. The laser was operated in all-lines mode (351.1 nm, 363.8 nm, 

454.6 nm, 457.9 nm, 465.8 nm, 476.5 nm, 488.0 nm, 496.5 nm, 501.7 nm, 514.5 nm, and 528.7 

nm) to maximize the amount of power reaching the sample. The laser was generally set to 

produce 2.5-2.75 W of thermal energy, allowing approximately 1.2-1.5W of thermal energy to 

reach the sample after going through the prisms used to direct the beam and the top hat filter, 

which converted the Gaussian profile of the laser beam to a square pattern. 

• Function Generator 

An FY 6900 Dual-channel Arbitrary Waveform Signal Generator is used as a function 

generator. The function generator is used to generate a non-sinusoidal periodic waveform 

(square) with frequencies ranging from 0.01~100 MHz at two channels. Also, the device is used 

to synchronize the laser pulsing frequencies with the frame rate of the camera, as well as act as 

an external device. 

• Shutter 

A Uniblitz mechanical shutter was used to pulse the laser energy to the sample under study.  

It is synchronized to the square waveform frequency generated by the function generator. 

3.3 Setup 

 The LIT analysis system involves guiding the thermal energy from a heat source via a 

pulse generator onto the sample surface and collecting the infrared radiation emitted from the 

sample surface. In the previously developed method, the significant components of the 

experiment were an infrared camera, a function generator, and two thermal energy sources [1]. 

One source is the laser used to perform lock-in thermography. The other source is a hot plate 
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where the sample is placed. This setup allows the experiment to be carried out at a higher sample 

temperature. As shown in Figure 3.3, the new experimental setup has an IR camera, a function 

generator, and a single thermal energy source, i.e., laser, allowing the experiment to be carried 

out at room temperature. 

The primary heat source, a 5W Ar-ion CW laser, operating in all-lines mode, is chopped 

with a Uniblitz mechanical shutter to apply pulsed energy to the samples. The laser was 

controlled to generate 2.5-2.75W of thermal energy. However, losses through the top-hat filter 

transform the Gaussian shape into a square-shape profile to ensure that the intensity profile of the 

beam is constant across the surface area under observation. Reflection losses from the optical 

prisms result in only about half of the power reaching the sample.  Thus approximately 1.2-1.5W 

of laser light hit the sample. This amount of laser power gave a decent amount of temperature 

Figure 3-3  Schematic diagram of the experimental setup  

for infrared lock-in thermography (LIT) [15] 
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variation over the lock-in period while avoiding overheating the electric tape.  This phenomenon 

provides the ability to capture the temporal thermal gradient of the plastic deformation zone. 

The control variables of the FLIR SC6700 IR camera are adjusted for the measurements 

using the FLIR software. The settings in the software were specified based on the research 

design. Table 3-2 illustrates the specifications of control variables in FLIR software used for this 

experiment.  

Table 3-2 Fixed settings of control variables in the FLIR software 

CONTROL VARIABLES SETTINGS 

Sequencing Preset 

Temperature Calibration Range 10˚C to 90˚C 

Dwell No. of frames (thermal images) 

Integration  ≥ Frame rate 

Sync Source External 

Sync Polarity High 

Trigger Source External 

Trigger Polarity Low 

  

 As mentioned previously, an FY 6900 dual-channel signal generator is an external device 

used to regulate the thermal energy from the laser and thermal imaging using an IR camera 

simultaneously. One of the channels (channel 1) is used to control the pulsation of a shutter for 

controlled operation of the energy supply from the laser, ensuring that the thermal energy from is 

delivered to the sample in a non-sinusoidal pattern. The other channel (channel 2) is connected to 

the FLIR SC6700 IR camera as a sync source as well as a trigger device.  The function generator 
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synchronizes the laser pulses with the IR camera's control variables, ensuring a fixed rate of 

recording thermal images over an entire period of pulsation regardless of the lock-in frequency 

used in pulsing the thermal energy be achieved. Channel 2 is used as a manual trigger to collect 

thermal images of the sample surface as the pulsed thermal energy propagates through the 

sample. The experiment is conducted at room temperature (~20˚C to 25˚C). The temperature 

distribution on the surface is monitored using the infrared camera to collect thermal imaging data 

over the lock-in period. 

For the samples with stamped or laser engraved numbers (defaced or non-defaced), the 

setup is adjusted with the camera field of view narrowed to capture areas over two of the 

removed stamped number. The adjustment is made to enhance the detail captured with more 

pixels per millimeter and to ensure an even spread of the pulsed thermal energy from the laser 

beam to avoid possible lateral thermal gradients. The collected images are then digitally split to 

have datasets focused on the areas around each removed number.  

During the experiments, thermal energy is pulsed into the surface of the sample (covered 

with black vinyl electric tape) under observation using the laser at a defined lock-in frequency. 

Data was collected at several rates independently and used to generate phase and amplitude 

images for the undefaced number on the stainless-steel plate. This variation was used to 

determine an optimal range of lock-in frequencies, and avoid the blind frequencies.  These 

optimal frequencies should adequately characterize the change in a thermal gradient within the 

stamped area and non-stamped areas on the metal surface. The thermal images for defaced serial 

numbers are collected at the determined range of lock-in frequencies. 
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3.4 Lock-in Thermography Analysis 

 An in-depth analysis of lock-in thermography was performed by testing on undefaced 

stamped number 2 and partially defaced six on a stainless-steel test sample. The black vinyl 

electrical tape was placed on the surface to cover to minimize enormous differences in thermal 

emissivity for accurate measurement of the surface temperature. Figure 3.4 shows the 

improvement in thermal emissivity difference for precise measurement of apparent surface 

temperature.  

Since the numbers are not visible in the thermal image as well, undefaced two and partially 

defaced six are considered equivalent where numbers now have the same surface features and 

different subsurface features. This condition is ideal for controlled testing for defaced serial 

number restoration.  

The test sample is then placed underneath the IR camera at room temperature. The non-

sinusoidal (square) thermal excitation (heating and cooling for each half of the lock-in period) is 

performed by targeting laser pulse to the surface. The temporal thermal images (frames) are 

collected at an equal time interval with varying lock-in frequencies to analyze the optimal lock-in 

frequency for feature extraction. The fixed number of frames (thermal images) per lock-in cycle 

Figure 3-4  Thermal imaging with no external heating of stamped serial 

numbers, 2 (non-defaced) and 6 (partially defaced), on a stainless steel: a) 

without a black electric tape and b) black electric tape on the surface 
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– 8 frames per cycle, are recorded for uniformity. Four thermal images are recorded when the 

laser is on and the other four images when the laser is off at each period. The variation of lock-in 

frequencies and the frame rate for each lock-in period is presented in Table 3-3. 

Table 3-3  Tabulation of Lock-in frequencies and the respective frame rate 

Lock-In Frequency (Hz) Frame Rate (Hz) 

0.0125 1 

0.25 2 

0.5 4 

1 8 

2 16 

4 32 

8 64 

 

 The thermal images for undefaced two and partially defaced six are collected and 

processed based on the lock-in principle. For feature extraction of the stamped numbers, phase 

shift (P) and amplitude (A) images are computed at all the lock-in frequencies mentioned in 

Table 3-3. Figures 3.5 and 3.6 show the features of thermal, phase, and amplitude images at 

different lock-in frequencies for undefaced two and partially defaced six, respectively. 
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 As the lock-in frequency increases, the change in temperature decreases. At 8Hz, the 

temperature change is approximately 1˚C, whereas the lock-in frequency of 0.125 has a variation 

of about 2.5˚C. The amplitude image of amplitude extract features from the surface or close is 

hugely affected by the occurrence of a temperature gradient observed in thermal images.  The 

temperature gradient is caused mainly by the uneven distribution of laser power across the 

sample surface, some variation in surface emissivity, and IR camera's field of view. However, the 

temperature gradient does not hurt the phase images as the feature extracted is underneath the 

surface. The lock-in frequency defines the depth of subsurface that is being analyzed. The phase 

image at 1Hz seems to extract the features of number 2, which can be observed visually. 

Figure 3-5  Thermal images (3-dimensional), phase shift (ϕ) and amplitude (A) images 

for undefaced 2 at each 7 different lock-in frequencies (0.125, 0.25, 0.5, 1, 2 ,4 and 

8Hz) 
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Frequency of 0.5 and 2Hz also have some features, but not entirely clear, as seen in 1Hz.  The 

lock-in frequency analysis for undefaced 2 indicates that the optimal rate would be close to 1 Hz, 

which could vary from 0.5 to 2 Hz. For more verification, a similar analysis to optimize the 

range of lock-in frequency is carried out on partially defaced 6, as shown in Figure 3.6.  

In this experiment, the amplitude is also slightly affected by the temperature gradient as a 

similar trend between amplitude and thermal images is observed in Figure 3-6. Phase image 

seems to be the choice based on previous analysis. However, the spatial resolution of the phase 

image is not good enough for visual interpretation, since the number is partially defaced. The 

pattern cannot be clearly defined by either lower or higher phase shift values. As a result, 

Figure 3-6  Thermal images (3-dimensional), phase shift (ϕ) and amplitude (A) 

images for partially defaced six at each 7 different lock-in frequencies (0.125, 

0.25, 0.5, 1, 2 ,4 and 8Hz) 
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determining the range of optimal frequency based on a visual understanding of phase images is 

not possible. Further image analysis on the defaced serial number may show the efficacy of the 

range of optimal frequency proposed based on a single visual review of phase images associated 

with undefaced two, which is treated as a defaced serial number for testing. The same 

experimental design is used to collect thermal images and compute phase images for the rest of 

the defaced number from all test samples. 

3.5 Image Enhancement 

The image analysis efficiency is tested with phase images obtained for each of the serial 

numbers engraved on the stainless-steel plate. The region of interest used in image analysis is 

expected to be the exact location of each serial number's stamped area. The undefaced two and 

partly defaced six were used as a cross-reference to locate the approximate section of phase 

image, which resembles the plastic stain pattern of each serial number. The visual interpretation 

of phase image associated with undefaced 2 suggests that the small phase values define the 

features that resemble the stamped region and higher values to be non-stamped areas within the 

image. 

 The phase images are converted to binary images using a threshold value. The phase 

values can be positive or negative. For data transformation, these values are scaled to a fifth 

power where the positive and negative directionality is still preserved.  This transformation is 

performed to maximize the separation between low and high values so that the distribution is 

close to being bimodal. The proposed idea behind the change is to improve the thresholding, 

which, in turn, helps minimize background noise. An additional step of normalizing the 

transformed data to a maximum or minimum value ranging from 0 through 1 is performed to be 
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consistent with further image processing. The normalized value, close to 0, is now the 

representative of a non-stamped region, and large amounts, close to 1, represent stamped regions.  

For binarization, the threshold value is set to be 75th percentile of the pixel values. The 

value higher than the threshold is called a foreground pixel (1) and less than or equal to limit as 

background (0). To further improve the quality of the binary image, the image is processed with 

a smoothing technique called box filtering to reduce background noise. Box filtering involves 

each pixel value being substituted with the average weight of pixels within the box (17 by 17 

pixels) centered on that pixel—image smoothing results in no binarization. Re-binarization of the 

processed image is done with the threshold of the 50th percentile. 

Image segmentation is applied to simplify the representation of an image into more 

meaningful images, which is easier to analyze. Image segmentation is the process of partitioning 

a binary image into multiple segments. For this process, the pixel area with less than the area of 

box size used for image smoothing is removed so that the unconnected small pixel area does not 

affect the overall object pattern in an image. 

The image analysis is performed on phase image obtained from lock-in thermography for 

recovery of every defaced serial number used for testing. The phase image for an original and a 

replicate, was evaluated to recover the undefaced number two and partially defaced six. The 

location of the phase image that contains the defaced number is assumed based on a visual 

inspection of enhanced binary images obtained via image analysis. The size (height and width) of 

the phase image region containing the defaced number is tuned with image analysis until the 

approximate representation of a number or letter pattern is achieved. The decision making for 

approximation is made based on visual inspection of the multiple enhanced binary images 
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obtained using different image sizes and moving locations (left to right or top to bottom) about 

the assumed location. 

The phase image replicates are obtained for the undefaced 2 and partially defaced 6 at the 

optimal lock-in frequency for verification of feature extraction via LIT. The replicates are 

different from one another on two settings; a new set of black electric tape is placed on the metal 

surface and positioning of the defaced area changes within the region where the laser hits on the 

surface for external heat. The experimental setup, laser power and lock-in frequency are same 

across replicates. The room temperature may vary from ~20˚C to 25˚C depending on the time 

when the experiment is carried out. The image enhancement techniques are applied to phase 

replicates. Small adjustment had to be made for similar outcome. Figure 3-7 shows the binary 

image developed from the phase shift in the presumed location of the stamped number on a 

stainless-steel plate.  

Figure 3-7 Binary image processed from phase shift at optimal lock-in frequency (1Hz) for 

undefaced two (left) and partly defaced six (right) with two trials: 

a) Original, b) Replicate. 
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These binary images are the representation of the pre-defined location on the stainless-steel plate 

that is assumed to have the features of plastic deformation zones underneath the surface. The 

visualization of the profile associated with a binary image's foreground pixels helps to identify 

the defaced serial number.  Each binary image seems to fairly represent the pattern related to 

every stamped serial number on the stainless-steel plate.  The model for a recovered undefaced 

number is slightly more apparent than a partly and completely defaced serial number. However, 

this approach is likely to be biased due to prior knowledge of the stamped serial number. If the 

damaged serial number were a real unknown, some of the patterns could be interpreted 

differently, resulting in varying identification. For unbiased identification of features present in 

the binary image, ACIP, develop using a pattern recognition technique, is used. Figure 3.8 

illustrates the complete flowchart of phase image processing for feature enhancement. 

 

Figure 3-8 Flow chart of Phase Image Analysis 
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CHAPTER 4 

4.0 ACIP 

The MATLAB code is written for the protocol. The programming code uses Statistical 

and Machine Learning Toolbox and Image Processing Toolbox present in MATLAB software. 

4.1 Image Description 

The first stage of ACIP is to describe images distinctly. Figure 4.1 illustrates the procedure 

to describe every binary image in the reference database and the phase binary image.  

The system is divided into five sub-stages: image resizing, morphological operations, scale, 

translation invariance, feature extraction, and image representation.  The first three are used for 

pre-processing the binary image for normalization among both databases (reference and 

unknown). The fourth is very crucial, which evaluates Pseudo-Zernike polynomials for a basis 

set to extract features of an image. The fifth step utilizes a set of moments derived from the basis 

Figure 4-1 Schematic diagram for image description process for reference and phase binary 

images 
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(4.1) 

set of pseudo-Zernike polynomials for an accurate and unique vector representation of the image 

[1-3].  

The phase and reference binary images (x × y pixels) are resized to a fixed dimension 

(200 × 100) for consistency across all images. The variation of morphological operations was 

analyzed for suitable applicability to enhance classification. The boundary of the object pattern 

in the binary image is enlarged using dilation and reduced with erosion. With dilation, additional 

features are added to the boundary of the object, and with erosion, the existing feature at the 

object boundary is removed. The morphological operations, such as dilation and erosion, are 

applied to the enhanced binary image to form an image with desired object proportion.  Three 

different proportion, 35%, 50%, and 65%,  are chosen based on their ability to retain the original 

pattern of the image with minimal variation consistently, as shown in Figure 4-2. 

Mapping the image residing in a unit circle with the origin at the center of the image is 

required to evaluate the Pseudo-Zernike moments. Pixels outside a unit circle are not used in 

computing the moments. Thus, to ensure that all phases and library image pixels are captured 

within the unit circle, each binary image is placed into the square image of dimensions 

calculated, as shown in Equation 4.1. 

 
2 22x y x yN N n n= +=   

Figure 4-2 An example of morphological operations performed on 

binary image converged to different object area percentage a) 

35% b) 50% and c) 65% 
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(4.2) 

(4.3) 

(4.4) 

where: 

nx and ny are respectively one half of the number of x and y pixels in the image, and 

𝑁𝑥 and 𝑁𝑦 are the new dimensions of the resized image. 

Scale invariance is achieved by altering the object size such that its area (pixel count for 

binary images) is set to a predetermined value (β). This value (β) resizes the object in the image, 

either increasing its size or reducing it from its original area and needs to be determined 

empirically to ensure that the entire object still lies within the image and is large enough to be 

discernable without losing any information from the original image. For all image objects in this 

analysis, the β value is set to 5000 pixels, which makes the object within the inscribed unit circle 

with an image size that is being used. Even though the pre-selected β value is fixed, the scale 

invariance technique is only able to scale the object with approximation. The number of object 

pixels with scale invariance is close to the fixed β value (slightly higher or lower).  The scale 

invariance is achieved by Equations 4.2 and 4.3. 

 ( , ) ,
x y

g x y f
a a

 
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a
m


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where: 

(x, y) are the pixel coordinates of each pixel in the image, 

m00 is the area (pixel count for binary image), and 

g(x, y) is the invariant image pixel coordinates. 

Translation involves moving the center of mass of the object in the image to the center of 

the image. The invariance is achieved, as shown in Equation 4.4. 

 ( , ) ( , )h x y g x x y y= + +   
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(4.5) 

(4.6) 

where: 

h(x, y) is the translation-invariant image pixel coordinates, and 

(x̅, y̅) is the centroid of the object in the binary image. 

 The dependency of scale and translation invariance on an object’s proportion was 

analyzed for accurate image representation. Even though the images are scale and translation 

invariant, variation in the object’s proportion controls the spatial domain of the pattern in a unit 

circle, as shown in Figure 4-3. 

PZMs are moment based overall shape descriptors which compute features by 

considering the entire image as a whole and represent the total aspects of the image. The polar 

coordinates with radius r and angle 𝜃 for any pixel (𝑥, 𝑦) are calculated using equations 4.5 and 

4.6 [75,76]. 

 

2 2
x x y y

r
d d

− −   
= +   

   
  

 1tan
x x

y y
 −  −
=  

− 
  

where: 

(𝑥, 𝑦) is the pixel coordinates of each pixel, 

( , )x y  is the pixel coordinates of the center of the image, and 

Figure 4-3 Scale and Translation invariant object in a unit circle with three 

different object’s proportions: a) 35% b) 50% and c) 65% 
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(4.7) 

(4.8) 

(4.9) 

𝑑 is half the length of the square-shaped image. 

Equations 4.5 and 4.6 maps each pixel coordinates to the unit circle in polar coordinates. The 

radial polynomials (R ( ))m

n r   necessary for the determination of the Pseudo-Zernike basis 

polynomials are calculated using the radius r and defined order 𝑛 as shown in Equation 4.7. 

2

0

1
R

2 2

kn m n k

m
n

k

n k r
r

n m n m
k k k

!
 

! ! !

 

where: 

𝑛 is the order of pseudo-Zernike moments, and  

𝑚 is a positive or negative integer bound by |𝑚|≤𝑛. 

The Pseudo-Zernike basis functions (polynomials) and the corresponding moments are 

determined from these real-valued radial polynomials, complex function, and the input images 

using Equations 4.8 and 4.9. 

( ) ( ) ( )Z Z R jmm m m
n n nx y r r e = =, ,   
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*
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1
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n n
x y

n
f x y r θ

π
+

=   

where: 

Zm

n  is the Pseudo-Zernike polynomial, 

j is imaginary 

Am

n  is the Pseudo-Zernike moment, and 

f(𝑥, 𝑦) is the intensity value of an image pixel with coordinates 𝑥, 𝑦. 

The pseudo-Zernike moment vectors are developed by concatenating the pseudo-Zernike 

moments (A )m

n  at each order into a single vector. An image pixel can be recreated using the 
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(4.10) 

pseudo-Zernike basis polynomial and the pseudo-Zernike moments up to a defined order, as 

shown in Equation 4.10. 

ˆ ( , ) A Z ( , )
m m

n n

n m

f x y r θ=  

where: 

ˆ ( , )f x y   is a reconstructed pixel in the translated (centered) representation 

(n+1)2 defines the number of moments or polynomials used at nth order PZM for reconstruction 

The image's reconstruction ability is used to determine the fixed number of moments for a 

precise and unique vector representation to describe the image. The reconstructed image is used 

as a foundation to determine fixed order PZM (number of moments) for image representation. 

Figure 4-4 shows an example of image representation using different order PZM. 

It can be observed that the pseudo-Zernike polynomial starts to gradually capture pieces of full-

length features with incremental order until the complete information is captured. However, there 

Figure 4-4 Undefaced two (35%) original enhanced binary image and their reconstructed 

image using fifth-order PZM through 20th order PZM 
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is a limit on the number of moments to be used. At higher order, the polynomial is very sensitive 

to image noise. At twenty fifth order PZM, there is significant noise in the reconstructed image. 

Hence, based on this analysis, the twentieth order PZM seems to be the best for an accurate 

image representation with full features and minimal noise.  

The PZM incorporates rotational invariance, meaning the rotation of the object does not 

affect the moments. However, the image can also be constructed using radial moments (RM) 

from the radial polynomials, which do not have the property of rotational invariance. Figure 4-5 

shows two distinct characteristics of PZM and RM representative vectors.  

The RM and PZM vectors are very different from each other due to rotational variance and 

invariance property, respectively.  These feature vectors are assessed independently to determine 

their suitability for fusion classification in Section 4.2.3.  

4.2 Fusion Classification 

The second stage of ACIP is fusion classification. Fusion classification involves defining 

reference classes, non-optimized classifiers, and fusion processes. Thirty-six classes of pre-

Figure 4-5 Feature vectors (20th order, 441 moments) of undefaced two based on two 

different polynomials, a) Pseudo-Zernike polynomials and b) Radial polynomials. The blue 

line represents 35%, green line represents 50% and green line represents 65%. 
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(4.11) 

defined alphanumeric characters (0-9 and A-Z) are studied. Thirteen classifiers, including six of 

them with tuning parameter windows and rest with no tuning parameter, are used. A sum fusion 

rule is used to combine classifiers with a fixed set of tuning parameter window at each object’s 

proportion independently. The sum fusion rule is applied across row normalized classifier values 

for each alphanumeric class. The number or a letter with the lowest sum value (lowest ranking) 

will be identified as a defaced serial number. For consensus identification, the majority vote of 

fusion outcomes among three different object proportions (35%, 50%, and 65%) is used to 

finalize the classification.    

4.2.1 Reference Classes 

The binary image of thirty-six alphanumeric characters (0-9 and A-Z) derived from 

Microsoft fonts are used. The twenty-five different fonts are used as instances for individual 

categories of numbers and letters.  The Microsoft font names are Gungsuh, Franklin Gothic 

Book, Segoe UI Black, Cambria Math, Arial, New Gothic MT, Abadi, Agency FB, Bahnschrift, 

Bookman Old Style, Baskerville Old Face, Bauhaus, Bernard MT Conc, Bodoni MT Posted, 

Bodoni MT, Rockwell, Comic Sans MS, Segoe Print, Showcard Gothic, Wide Latin, Goudy 

Stout, Cooper Black, OCRB, Biome, and Niagara Gold. Two font styles, regular and italics, for 

each font are included in a class. Thus, each class contains fifty representation vectors associated 

with the fonts and their styles, as shown in Appendix I. 

The intra-class variation based on the fifty instances in each class for three different 

object proportions is analyzed using PCA via SVD [95]. SVD factorizes a matrix (X), containing 

representation vectors, into three different matrices, as shown in Equation 4.11. 

T

m n m k k k n k   =X U Σ V     

where: 
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m is the number of representation vectors  

n is the length of the representation vector 

k is the rank of X (k ≤ full rank)  

U is the score matrix containing orthonormal eigenvectors (u) or principal components (PCs) 

  is the diagonal matrix of singular values,  

V is the loading matrix containing orthonormal eigenvectors (v) 

 The principal components (PCs) or scores describe the relationship between the feature 

vectors. Each principal component contains some percentage of variability among representation 

vectors. The first PC contains the highest percentage of X information since the first PC 

characterizes the mean representation vector of X. The percentage decreases successively at 

higher PCs. The first few principal components describe a large percentage of the overall 

variation in X; the first three principal components are used for the study.  

The PCA analysis is the preliminary study that provides necessary information outlining 

the suitability of different image representation vectors (RM or PZM), an object proportion 

(35%, 50%, and 65%) for classification. For the comparison, thirty-six alphanumeric classes are 

included in X. The variability among PZM and ZM is studied to assess the contrast between the 

moments. For this analysis, X contains RM and PZM vectors of all three object percentages. The 

first three PCs explain 74.3% of the variation that approximates overall variation. Also, the 

variability among the object’s proportion for PZM and RM are analyzed independently. The first 

three PCs explain 82.5% of the variation in X with RM vectors and 71.1% for PZM.  Figure 4.6a 
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shows the visual contrast between RM and PZM. Figure 4.6b and 4.6c represent the variation 

among three different object’s proportion of RM and PZM, respectively. 

The score plot indicates that there is a significant separation between RM and PZM. Also, 

there is good separation among the object’s proportion for RM and PZM, respectively. Based on 

this analysis, it would be better to use a particular situation (individual moment of a specific 

object’s size) as an independent reference library to classify the unknown defaced number with 

matching object proportion. Figure 4.6b and 4.6b suggests that the first PC captures significantly 

lower variance among classes with PZM (50.66%) compared to RM (75.21%). This observation 

Figure 4-6 Three-Dimensional (3-D) Score Plot; a) RM vs. PZM  

b) 35% vs. 50% vs. 65% (RM), c) 35% vs. 50% vs. 65% (PZM). 
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(4.13) 

(4.12) 

indicates classes with RM have more inter-class variation, which makes RM more suitable than 

PZM for classification.  

 PCA analysis for inter-class variation is studied between thirty-six alphanumeric 

characters for both RM and PZM. The study is performed on pairs of classes with all possible 

combinations. A total of 630 pairs of classes are determined for the study. Equation 4.12 

illustrates how PCA is performed for comparison of two classes. 

 
s n s k T

k k k n

s n s km k m k

 

 

  

   
=   

   

X1 U1
S V

X2 U2
  

where: 

X1 is the matrix containing representation vectors of a primary class compared to, 

X2 is the matrix containing representation vectors of a second class compared with, 

s is the number of instances in a single class which is fifty 

n is the number of representation vector in each class 

U1 is the score matrix for the base class (primary)  

U2 is the score matrix representing second class (secondary) 

For example, the comparison of number 6 and 9  

To measure the contrast, the average Euclidean distance (ED) between two classes of a pair, is 

calculated using Equation 4.12. 

2 2 2

,1 ,1 ,2 ,2 ,3 ,3

1

1
ED ( ) ( ) ( )

s

p p p p p p

ps =

= − + − + − u1 u2 u1 u2 u1 u2  

 The efficiency of inter-class variation is evaluated using ED based on the empirical 

threshold for Euclidean distance. The threshold defines which reference classes have minimal 

separation. The empirical threshold used for the analysis is the midrange of all paired classes ED 

values. Appendix II shows the tabulation of the similar classes to each category that satisfies the 
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threshold for RM and PZM individually. Using RM, there are seventeen alphanumeric characters 

as distinct classes, whereas PZM has fourteen classes, respectively. PZMs contributes to 

significantly small intra-class variation, which could be a function of rotational invariance 

associated with PZM. For example, numbers 6 and 9 are similar to 0 and O, which could have 

been caused by rotational invariance. Fixing the orientation of the character provides improved 

class partition. There is a better separation among classes using RM than PZM using a 35% 

proportion. However, the trend starts to reverse with increasing proportions. For 65% proportion, 

there are twenty-three distinct classes based on PZM and nineteen classes for PZM. The higher 

proportion gives an advantage for better separation between most classes. This study indicates 

RM and PZM with 65% to be more appropriate for classification. However, the confidence in the 

outcome of classification depends on the single classified classes. 

4.2.2 Classifiers 

There is a total of thirteen single classifiers, including six tuning parameter-based 

classifiers and seven distinct similarity measures. The standalone is used to compare a vector to a 

space defined by the class. In contrast, similarity measures are used to measure the similarity 

between a vector and a mean representation vector of each category. 

• Tuning Parameter based Classifiers 

The tuning parameter-dependent classifiers are kNN, PLS-DA, Mahalanobis distance 

(MD) [92], Q-residual (Q-res), sine, and divergence criterion (DC) [93]. Each method is based 

on comparing an image ( ix ), a representation vector with n number of moments to a category 

( X ), and a matrix containing image representation vectors of m reference images with several 

moments. MD, Q-res, sinβ, and DC are eigenvector-based classifiers where each class space is 

spanned with eigenvectors from the singular value decomposition detailed in Equation 4.11. 
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(4.14) 

(4.15) 

Classification for PLS-DA is based on the number of latent variables (LVs), and kNN is the 

number of neighbors. 

For eigenvector-based classifiers, the class membership is based on the maximum 

separation among the classes. The classifier value is transformed so that the class membership is 

based on the lowest value. Each predicted class value y
unk  for PLS-DA is transformed to a 

minimum value t
y = y y

max unk
− , where y

max is the maximum predicted value over all rows of the 

predicted values for individual windows. The minimum values are evaluated using 

NN = NN NNunk max −  for kNN algorithm. The NNmax  is maximum nearest neighbor (NN) value 

over all rows of NN values for specific windows. The list of the equations (4.14-4.19) to 

compute these six classifiers are mentioned below: 

1. kNN via Euclidean distance 

 ,   =1, ,unk j unk jd j n= −x x   

where: 

n is the number of nearest neighbors 

xunk is the representation vector of the unknown image 

xj is the representation vector of reference classes 

2. PLS-DA 

 Tˆ ˆˆ           m n m p p n k unk unk

+

  = = =Y X B B X Y y x B   

where: 

p is the length of the representation vector (441 moments) 

m is the total number of instances in thirty-six classes (1800 instances) 

n is the number of classes (36 alphanumeric characters) 
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(4.16) 

(4.17) 

(4.18) 

X is the augmented matrix of all 36 classes containing representation vectors 

Y is the augmented matrix of 36 blocks (represents 36 classes respectively) with dummy 

variables (1 and -1); each block has 50 rows, and 36 columns in which an individual column 

representing the class belonging to is denoted by one and rest of the columns are -1.  

k is the number of LVs 

+
X  is the pseudo-inverse of X. 

3. Mahalanobis Distance (MD) 

 
( ) ( )

T T 1 T

T

           

MD

k k k k

unk unk k unk

+ −

+

= = =

= − −

C X X C USV C V S U

x x C x x
  

where: 

X is the matrix containing representation vectors of each class 

X  is the column-wise mean-centered X 

x  is the mean representation vector of X 

C  is the covariance matrix of X  

+
C is the pseudo-inverse of C  

k is the number of eigenvectors 

4. Q- res 

 

T T( )

Q

unk k n
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⊥
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5. Sine 

 s in
unk

unk

i

⊥
x

=
x
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(4.19) 

6. Divergence Criterion 

 ( )( )( )

( )( )( )( )2

T

T

1
2

1

DCi unk unk k

unk k unk unk

tr

tr

+

+

=

= − −

+ + − −

+

+

C X X

x C x C

x C x x x x

  

where: 

tr is the sum of the diagonal elements of a matrix 

C is the covariance matrix of X 

C+ are the pseudo-inverse C  

• Similarity Measures (SM) 

All the similarity measures are subject to minimization for fusion classification. Cosine 

angle, ED, inner product correlation, and determinant measures the similarity or dissimilarity 

between two vectors [94]. Procrustes analysis (PA) [95] is transformed to account for additifonal 

two classifiers. 

 There are two types of PA; one is unconstrained PA, which determines the degree 

of difficulty based on the rotation and dilation contained in the transformation matrix ( )unkT  to 

map unkx onto x  by unk unk=x x T . The sample transformation matrix unkT ( unk unk

+=T x x  ) uses the 

pseudo inverse ( unk

+
x  ), which is derived by

T
T

2 4

1

|| || || || || || || ||

unk unk unk unk
unk

unk unk unk unk

+    
= =   
   

x x x x
x

x x x x
. In 

order to determine the degree of rotation and dilation information contained in unkT , a reference 

or unknown transformation matrix is required. The reference T ( )+=T x x   is an evaluation of 

self-transformation with the pseudo inverse (
+

x ) calculated similarly to unk

+
x .  The Frobenius 
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(4.20) 

(4.21) 

(4.22) 

norm of the difference between T  and unkT is evaluated as || ||unk unk F = −T T T where ||  ||F denotes 

the Frobenius norm.  

 The other type of PA is constrained PA, which involves separating the rotation and 

dilations into an orthogonally constrained rotation matrix ( unkH ) and a dilation constant ( unk ). 

These variables are used to transform unkx  to x   ( unk unk unk=x x H ). Similar to unconstrained PA, 

a reference H  and  are required for self-transformation.  The listed equation 4.23 shows how to 

compute the rotation matrix and dilation constant for both the target binary image and the mean 

reference classes. The Frobenius norm of the differences in rotation matrices and dilation 

constants are evaluated between the test serial number and means of the reference classes.  In 

both PAs’, the higher the degree of difficulty, the more likely the phase binary image does not 

belong to the particular class. The mathematical equations (4.20-4.26) for six similarity measures 

are presented below: 

7. Cosine 

 
T

1 cos 1 i
i

i

− = −
x x

x x
  

8. Euclidean distance 

 
unk unkd = −x x   

9. Determinant 

   ( )
2

T

T
Det sin θ

unk

unk u ink unkdet
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(4.23) 

(4.26) 

(4.24) 

(4.25) 

10. Procrustes Analysis (unconstrained) 
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11. Procrustes Analysis (constrained) 
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12. Inner Product Correlation 
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4.2.3 Fusion 

 Fusion is carried out using all thirteen classifiers with RM. The sum fusion rule is the 

most commonly used fusion process for classification [93,96,97]. The fixed tuning parameter 

window size close or equal to full rank is applied to avoid tuning parameter selection. The 

window size of forty-five is selected based on the minimum across full rank for each class used 

in eigenvector-based classifiers. The number of nearest neighbors for kNN is the same as the 

tuning parameter window used for eigenvector-based classifiers. Before fusion, classifier values 

were row normalized to unit length in order to eliminate magnitude differences between the 
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classifiers. The normalized row values are summed for each class, and the class with the lowest 

sum value is the classified number or letter. Each tuning parameter window for tuning parameter-

based classifiers has the same contribution as the individual similarity measures in the fusion 

process.   For each object proportion, the same window size is used for eigenvector-based 

classifiers. Figure 4-7 shows the normalized raw values of six tuning parameter-based classifiers 

at each window and SM along with sum fusion value for identification of phase image associated 

with undefaced 2 (35% proportion). 

 

Figure 4-7 Fusion Classification input matrix and sum fusion value (undefaced 2 - 

original) with RM of a specific proportion (35%) and tuning parameter window size of 

forty-five 
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Some classifiers look to misclassify the unknown two as a letter Z or R. PLS-DA, and 

kNN classifies the unknown as a letter Z. The sine, Q-residual, and some similarity measures 

look obvious that these classifiers would individually categorize the image as a number 2. 

However, the rest of the classifiers, including MD and DC, are visually inconclusive. The lowest 

sum fusion value indicates that the unknown is identified as number 2.  Figure 4-8 represents the 

normalized classifier values of undefaced 2 using PZM. 

Figure 4-8 Fusion Classification input matrix and sum fusion value (undefaced 2 - 

original) with PZM of a specific proportion (35%) and tuning parameter window size of 

forty-five 
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In figure 4-8, using PZM, PLS-DA, and kNN classify the unknown image as a letter Z. 

The sinβ and Q-res categorize the character as number 0 or 2, or a letter S.  Fusion process could 

not completely isolate the identity of the unknown number as classes belonging to number 2 and 

letter Z has very similar low sum fusion value. Figure 4-9 represents the normalized classifier 

values of undefaced 2 using RM at 65% proportion. 

 

Figure 4-9 Fusion Classification input matrix and sum fusion value (undefaced 2 - 

original) with RM of a specific proportion (65%) and tuning parameter window size of 

forty-five 
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In Figure 4-9, with sinβ and Q-residual for RM, the possibility of number two for correct 

identification increased with more tuning parameter windows identifies the number correctly. 

However, the unknown is categorized as a letter Z based on PLS-DA and kNN. The next best 

candidate is number 2. The selection between R M and PZM looks to affect the individual 

classifier’s performance. Figure 4-10 represents the normalized classifier values and sum fusion 

values of undefaced two based on PZM and 65% proportion. 

Figure 4-10 Fusion Classification input matrix and sum fusion value (undefaced 2 - 

original) with PZM of a specific proportion (65%) and tuning parameter 

 window size of forty-five 
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Comparing Figures 4-8 and 4-10, the object’s proportion does not change the 

identification of fusion classification with PZM. However, in Figure AIII-1 and AIII-2, with 65% 

proportion, the number is classified correctly. The more substantial proportion contributes to low 

fusion values with classified class; the number is still misclassified in both proportions for the 

original. For the replicate, the issue of misclassification is resolved. The outcome of the fusion 

classification based on PZM is entirely dependent on the object’s proportion. Also, using RM in 

both trials of undefaced 2, Figure 4-7,4-9, AIII-3, and AIII-4 shows a higher proportion of 

improving most classifiers' ability to categorize the unknown image as a number two 

conclusively. The two proportions, both high and low, classifies the number accurately, and the 

outcomes are more consistent and less dependent on object proportion. 

 The above findings provide evidence for the slight advantage of RM over PZM for better 

and consistent multi-class classification with fusion. Hence, for the defaced numbers on all test 

samples, RM is preferred for fusion classification due to its lower dependency on object 

proportion for robust pattern recognition than PZM. The fusion classification at each proportion 

using RM would solve a single method selection dilemma.  As observed in Figure 4-7, 4-8, 4-9, 

and 4-10, combining these thirteen classifiers is better than having to choose a single best 

classifier out of them for accurate identification. Additional classifiers can be incorporated 

without drastically changing the fusion outcome as long as the new classifiers are not redundant 

to the existing classifiers and maintain similar distribution of good and weak classifier values. 

 The analysis performed to find the optimal object’s proportion for fusion classification 

shows the classification performance with 65% is the best among three different proportion 

tested. Even though the higher proportion improves classification results, and there is a high risk 

of adding unnecessary features or noise while increasing the proportion, and removing essential 



67 

 

characteristics if the proportion is decreased.  The use of an optimal object’s proportion is very 

susceptible to misclassification, similar to choosing a single best classifier.  As a result, the 

majority vote across fusion classification outcomes of different proportions is used to avoid 

selection and find a reasonable consensus for identification. 

 Figures 4-11 and 4-12 show the identification of the lowest-ranked category based on the 

sum fusion of normalized classifiers values for each alphanumeric class at three different 

proportions for identification of undefaced number two using RM and PZM, respectively. 

 

Figure 4-11 Bar plot of Sum Fusion for original of undefaced two (SS) with RM 

and varying object percentage a) 35%, b) 50% and c) 65%. The magenta color bar 

represents the lowest sum fusion value (lowest rank) 
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With RM, the fusion classification identifies the serial number accurately for all three 

different proportions. Especially with a 65% object portion, even though most of the classifiers 

appeared to misclassify the number, fusion classification weighted all the available information 

equally and came to an accurate conclusion.  The serial number was correctly identified with the 

absolute majority.  However, using PZM, the only image with 50% proportion is identified 

accurately, and there is no majority vote on a classified class. A higher proportion does not 

necessarily classify the image to the designated class. These observations support better 

consensus classification with non-optimized classifiers using RM vectors. 

Figure 4-12 Bar plot of Sum Fusion for original of undefaced two (SS) with PZM 

and varying object percentage a) 35%, b) 50% and c) 65%. The magenta color bar 

represents the lowest sum fusion value (lowest rank) 
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 The study performed on undefaced two firmly indicates that the proposed automatic 

character identification protocol (ACIP) is practical for serial number restoration minimizing 

human bias. However, only undefaced two (treated as pseudo defaced) was studied entirely to 

develop the protocol; a study on actual defaced serial number is necessary to establish the 

method’s applicability.  The lock-in procedure with the optimal range of lock-in frequency along 

with ACIP is tested with an actual defaced serial number for authentication. 
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Chapter 5 

5.0  Results and Discussion 

5.1 Stainless Steel (SS) 

The stainless-steel plate, containing partially defaced six and completely defaced two, 

five, and zero, were processed through the proposed lock-in procedure at frequencies of 0.75Hz, 

1Hz, and 1.25Hz. The phase images were evaluated using image analysis to determine a single 

frequency to recover the defaced serial number, as mentioned in Chapter 3.  Table 5-1 shows the 

optimal frequency for each defaced number on the stainless-steel plate.  

Table 5-1 Defaced serial number on Stainless Steel plate and their selected lock-in frequency. 

Defaced Serial Number Lock-in Frequency (Hz) 

6 1 

2 0.75 

5 1 

0 1 

The enhanced binary images generated through image analysis on phase images are used 

in the automatic character identification protocol (ACIP) for pattern recognition.  

• Partially Defaced 6 (Replicate) 

Figure 5-1 Phase and Enhanced Binary images of partially defaced Six (SS) 
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As shown in figure 5-2, the fusion classification classifies the recovered serial number pattern as 

a number six with absolute majority vote. Also, the partially defaced six shows similar trend as 

undefaced two about fusion classification, the classifier sum fusion value for accurately 

classified number gets smaller relative to the other lower ranked classes, with increased object 

proportion. However, the trend starts to get complex with completely defaced serial numbers as 

the recovered phase images do not have a very definite pattern for an absolute number or letter 

representation.  

  

Figure 5-2   Bar plot of Sum Fusion for partially defaced six (SS) with RM and 

varying object percentage a)35%, b) 50% and c) 65%. The magenta color bars 

represent the lowest sum fusion value (lowest rank) 
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• Defaced 2 

 

Figure 5-3 Phase and Enhanced Binary images of defaced six (SS) 

Figure 5-4 Bar plot of Sum Fusion for defaced two (SS) with RM and  

varying object percentage a)35%, b) 50% and c) 65%. The magenta color bars 

represents the lowest sum fusion value (lowest rank) 
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• Defaced 5 

 

  

Figure 5-5 Phase and Enhanced Binary images of defaced five (SS) 

Figure 5-6 Bar plot of Sum Fusion for defaced five (SS) with RM and  

varying object percentage a)35%, b) 50% and c) 65%. The magenta color bars 

represents the lowest sum fusion value (lowest rank) 
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• Defaced 0 

 

 

Figure 5-7 Phase and Enhanced Binary images of defaced zero 

Figure 5-8 Bar plot of Sum Fusion for defaced five (SS) with RM and  

varying object percentage a)35%, b) 50% and c) 65%. The magenta color bars 

represents the lowest sum fusion value (lowest rank) 
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From figures 5-3 and 5-4, it can be observed that the lock-in procedure and ACIP 

protocol was able to correctly identify the defaced number two with an absolute majority vote 

(two out of three proportions). Figures 5-5 and 5-6, indicate that the lock-in procedure and ACIP 

protocol was able to correctly identify the defaced number five with a majority vote (two out of 

three proportions). 

Even though figure 5-7 may suggest the recovered number as the defaced number zero 

based on visual interpretation, the proposed identification pattern for serial number restoration 

was not able to provide correct identification on any proportion set-ups, as shown in figure 5-8. 

This anomaly could be caused by the minimal intra-class variation between 0 and Q, O, or D 

defined by the Euclidean distance, as shown in Figure 4-7. Although the majority vote for 

classification was inconclusive, fusion classification can classify the number to a particular 

group of classes that is very similar to the defaced number or letter. 

5.2 Gun Barrel (GB) 

The two defaced numbers on a gun barrel, one and two, were treated through the 

proposed lock-in procedure at frequencies of 1Hz, 1.25Hz, and 1.5Hz. The phase image analysis 

similar to stainless steel was applied to find a single frequency to recover the defaced serial 

number. The pattern recognition method (ACIP) was applied for the enhanced binary image 

obtained from the phase image at optimal lock-in frequency. Table 5-1 shows the optimal 

frequency for each defaced number on the gun barrel.         

Table 5-2 Defaced serial number on a Gun Barrel and their selected lock-in frequency 

Defaced Serial Number Lock-in Frequency (Hz) 

1 1.5 

2 1.5 
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• Defaced 1 

 

Figure 5-9 Phase and Enhanced Binary images of defaced one (GB) 

Figure 5-10 Bar plot of Sum Fusion for defaced two (GB) with RM and 

 varying object percentage a)35%, b) 50% and c) 65%. The magenta color bars  

represent the lowest sum fusion value (lowest rank) 
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• Defaced 2 

 

 

Figure 5-11 Phase and Enhanced Binary images of defaced two (GB) 

Figure 5-12 Bar plot of Sum Fusion for defaced two (GB) with RM and 

varying object percentage a)35%, b) 50% and c) 65%. The magenta color bars 

 represent the lowest sum fusion value (lowest rank) 
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Figures 5-9 and 5-10, show that the lock-in procedure along with ACIP protocol was able 

to correctly identify the defaced number one with the majority vote (two out of three 

proportions). For this particular scenario, the classifier sum fusion value for accurately classified 

number gets smaller relative to the other lower ranked classes, with decreased object proportion. 

This trend is reverse about the identity of the defaced serial number on stainless steel plate, 

warning the potential risk of using a fixed object’s proportion. The majority vote among 

independent fusion classification minimizes the risk of selection. With an absolute majority vote, 

defaced number two is classified, as shown in figure 5-11.  

5.3 Laser Engraved Needle Holder (NH) 

The procedure similar to the gun barrel sample was applied. Table 5-1 shows the optimal 

frequency for each of the two defaced numbers (3 and 4) on a laser engraved needle handler.  

Table 5-3 Defaced serial number on a needle holder and their selected lock-in frequency 

Defaced Serial Number Lock-in Frequency (Hz) 

3 1.5 

4 1.5 

 

• Defaced3 

  

Figure 5-13 Phase and Enhanced Binary images of defaced three (NH) 
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• Defaced 4 

Figure 5-14 Bar plot of Sum Fusion for defaced three (NH) with RM and 

varying object percentage a)35%, b) 50% and c) 65%. The magenta color bars 

 represent the lowest sum fusion value (lowest rank) 

Figure 5-15 Phase and Enhanced Binary images of defaced four (NH) 
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The two defaced numbers (three and four) on a laser engraved needle holder are 

accurately identified using ACIP on the developed phase images via lock-in. 

5.4 Discussion 

For serial number restoration, the lock-in procedure is the main engine. The 

determination of lock-in frequency is a crucial part of the procedure to avoid blind frequencies.  

The frequencies outside 0.5 – 2 Hz are blind frequencies where there is no contrast between 

plastic deformation and non-deformed area. At an optimal frequency, the features of the defaced 

serial number are extracted at maximum contrast. The ideal frequency for defaced serial numbers 

on stainless steel was 0.75Hz (defaced 2), and 1 Hz (undefaced 2; defaced 6,5, and 0) while the 

Figure 5-16 Bar plot of Sum Fusion for defaced three (NH) with RM and varying object 

percentage a)35%, b) 50% and c) 65%. The magenta color bars 

 represent the lowest sum fusion value (lowest rank) 
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other two test samples (Gun Barrel and Needle Holder) was determined to be 1.5Hz. Even 

though the contrast of the features is not feasible for visual interpretation, image analysis for 

feature enhancement helps to characterize the features' pattern efficiently. All the enhanced 

images for the defaced serial number on all test samples suggest that the enhanced binary image 

obtained from phase images via image analysis has more defined characteristics for visual 

interpretation and pattern recognition. 

The secondary engine is the automatic character identification protocol (ACIP). The 

protocol depends on the quality of the feature extraction. The enhanced image for undefaced and 

partially defaced numbers has a clear pattern, making it easier for ACIP to identify the numbers 

with high confidence. The quality of the defaced number phase images varies with minimal 

contrast, which made automation of the identification process very difficult to achieve. However, 

the developed ACIP can minimize the risk of misidentification of the recovered serial number by 

implementing fusion classification and a majority vote. All the defaced numbers used for testing 

except one were accurately identified with ACIP. The misclassified defaced number presents a 

limitation of the protocol caused by the small intra-class variation between some of the classes. 

The drawback can be observed while identifying defaced number zero. There was inconclusive 

identification, with all of the object's proportion not identifying the defaced number to be a zero. 

Instead, they were classified as Q, O and D. This issue can be handled by finding an overlapping 

class closest to all the misclassified numbers. The zero class is closest to each of those 

misclassified numbers, comparing individually to Q, O, and D using Euclidean distance. The 

application of fusion classification with the majority vote shows efficacy for pattern recognition. 

The developed lock-in procedure, primarily phase shift, can reliably extract the features 

of the defaced serial number within a specific range of lock-in frequency. Assuming the features 
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of an enhanced binary image has the pattern of obliterated serial numbers, the ACIP can be used 

as a standard method to identify a number or a letter. 

Even though there is a reproducibility for undefaced two, it is challenging to replicate the 

defaced serial number restoration.  For undefaced two, the temperature gradient is higher due to 

the significant difference between the thermal conductivity of the stamped region and the 

unstamped metal surface underneath the electric tape.  The presence of air in the stamped region 

contributes to a significant difference in thermal conductivity. However, for defaced numbers, 

there is a negligible temperature gradient between the deformed and non-deformed areas of 

metal since there is no air pocket. The reproducibility with feature extraction using lock-in 

thermography is a concern for defaced serial number restoration. The problem is addressed by 

fine-tuning the best lock-in frequency for the individual defaced number in a very controlled 

environment, such as a steady thermal energy wave. The depth of defacing can be used as a 

guideline to adjust lock-in frequency within the optimal range of 0.5 – 2Hz. The defaced 

numbers of a gun barrel and a need holder were restored at the higher end of the optimal range 

(1.5Hz). The depth of defacing for these samples is relatively small compared to the stainless-

steel samples. The extracted pattern is reproducible based on the study but does not necessarily 

resemble the defaced number accurately. Prior knowledge of exact deformed location on the 

metal surfaces increases the degree of accuracy and reproducibility for recovery of the defaced 

serial number.  



83 

 

Chapter 6 

6.0  Conclusion 

A primary motivation in this study was to develop a reliable experimental design and 

feature extraction for serial number restoration via infrared lock-in thermography. The 

experimental design was modified from the previously developed method. The essential 

modifications were sample surface preparation, use of black tape rather than paint to absorb the 

laser power and lower the emissivity. The experiment was carried out at room temperature rather 

than an elevated one.  Application of these techniques to a non-defaced serial number provided 

appropriate settings to find the best range of lock-in frequency for serial number restoration. The 

phase shift, a lock-in technique to compress thermal images, is the most fitting approach to 

extract plastic strain features underneath the metal surface. The surface temperature gradient has 

a very insignificant effect on the spatial distribution of phase shift compared to amplitude. This 

superiority allows performing feature extraction across all samples defaced serial numbers 

consistently.  The developed lock-in procedure in this study makes it possible for the feature 

extraction with the phase shift at the single best lock-in frequency for each defaced serial 

number. The feature extraction on the previously developed method was based on multivariate 

image analysis (MIA), performing PCA on multiple phase images. PCA requires determining the 

number of phase images for reliable feature extraction. The newly developed procedure 

eliminates the necessity of MIA and still extract useful features. The adjustment in experimental 

design enhances the efficacy of lock-in thermography for feature extraction without applying 

MIA on multiple temporal phase images. 

The other significant aim of this study was to develop an automatic character 

identification protocol (ACIP) for identifying phase image features that could be a defaced 
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number or letter. The protocol is proposed to be user friendly and independent of any human 

bias. Image analysis, including binarization, smoothing, segmentation, dilation, and erosion, was 

performed, which was able to enhance the features for identification. Both numbers and letters 

were used as references, making the identification process complex due to the presence of some 

references with similar patterns. Fusion classification was used as an alternative to library 

matching with fusion based on PZM. The applicability of PZM due to rotational invariant 

property diminishes with an increasing number of classes, whereas the use of RM with no 

rotational invariance is suitable for classification. In conclusion, fusion classification was able to 

consistently classify the features in the phase image as a number or letter that would be the 

identity of a defaced serial number. 

The success of the revised non-destructive method on all samples shows the possibility of 

its use as a standard method for serial number restoration. The experiments carried out in this 

study validates the flexibility and consistency of the lock-in procedure across varying defacing 

techniques, stamping, and samples. Assuming the extracted features are an accurate 

representation of the plastic deformation zone of the stamped serial number and non-stamped 

area regardless of the degree of contrast between them, ACIP is a robust method for features 

pattern recognition to identify the defaced serial number. With fusion classification, the risk of 

misclassification was minimized, assuring the correct identification of a number or a letter. 

6.1 Future Work 

The lock-in procedure and automatic character identification protocol (ACIP) developed 

in this study will be compared with the standard method of serial number restoration, chemical 

etching, performed by the Crime Lab on various types of samples.  
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Appendix I: Images of Reference Alphanumeric Characters 

Thirty-six alphanumeric characters (0-9 and A-Z) (25 distinct Microsoft Fonts) 

Font style: Normal and Italics 
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Index Fonts (a = normal and b = italics) 

1a. and 1b. Gungsuh 

2a. and 2b. Franklin Gothic Book 

3a. and 3b. Segoe UI Black 

4a. and 4b. Cambria Math 

5a. and 5b. Arial 

6a. and 6b. New Gothic MT 

7a. and 7b. Abadi 

8a. and 8b. Agency FB 

9a. and 9b. Bahnschrift 

10a. and 10b. Bookman Old Style 

11a. and 11b. Baskerville Old Face 

12a. and 12b. Bauhaus 

13a. and 13b. Bernard MT Conc 

14a. and 14b. Bodoni MT Posted 

15a. and 15b. Bodoni MT 

16a. and 16b. Rockwell 

17a. and 17b. Comic Sans MS 

18a. and 18b. Segoe Print 

19a. and 19b. Showcard Gothic 

20a. and 20b. Wide Latin 

21a. and 21b. Goudy Stout 

22a. and 22b. Cooper Black 

23a. and 23b. OCRB, 

24a. and 24b. Biome 

25a. and 25b. Niagara Gold 
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Appendix II: Similar reference class 

Table AII-1 Breakdown of similar classes within Microsoft font reference classes (0-9 and A-Z) 

Class Similar Class 

RM PZM 

35% 

(ED<0.137) 

50% 

(ED<0.138) 

65% 

(ED<0.128) 

35% 

(ED<0.132) 

50% 

(ED<0.133) 

65% 

(ED<0.132) 

0 D G O Q U D G O Q U D G O Q U 69DGOQR 6 9 G O Q 6 9 O 

1 I I I I I I 

2    S   

3       

4       

5 S S  S S  

6 G G  0 G O 0 G O O G O 

7       

8 B H S B H B B R S B S  

9    0 O 0 O 0 O 

A       

B 8 B H 8 B H 8 D 8 R S 8 D R U U 

C       

D 0 B O U 0 B O 0 B O 0 B R U B  

E       

F P P P    

G 0 6 O U 0 6 O 0 0 6 O U 0 6 O 6 

H 8 B M N R 8 B N R N R B R U R U R 

I 1 1 1 1 1 1 

J       

K   X R   

L       

M H   N N N 

N H H H M R M M 

O 0 D G Q U 0 D G Q U 0 D 0 6 9 G Q 0 6 9 G Q 0 6 9 

P F F F    

Q 0 O 0 O 0 0 O 0 O  

R H H H 08BDHKNS B H H 

S 5 8 5  2 5 8 R 5 8  

T       

U 0 D G O 0 D O 0 B D G H R B H B 

V    Y   

W       

X   K    

Y    V   

Z       
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Appendix III: Additional Results 

  

  Figure AIII-1 Fusion Classification input matrix and sum fusion value (undefaced 2 - replicate) 

with PZM of a specific proportion (35%) 
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Figure AIII-2 Fusion Classification input matrix and sum fusion value (undefaced 2 - replicate) 

with PZM of a specific proportion (65%) 



102 

 

 

Figure AIII-3 Fusion Classification input matrix and sum fusion value (undefaced 2 - replicate) 

with RM a specific proportion (35%) 
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Figure AIII-4 Fusion Classification input matrix and sum fusion value (undefaced 2 - replicate) 

with RM of a specific proportion (65%) 
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Figure AIII-5 Bar plot of Sum Fusion for a replicate of undefaced two with RM and 

varying object percentage a)35%, b) 50% and c) 65%. The magenta color bars represent 

the lowest sum fusion value (lowest rank) 
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Figure AIII-6 Bar plot of Sum Fusion for a replicate of undefaced two with PZM and 

varying object percentage a)35%, b) 50% and c) 65%. The magenta color bars 

represent the lowest sum fusion value (lowest rank) 
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Figure AIII-7 Bar plot of Sum Fusion for an original of partially defaced six with RM 

and varying object percentage a)35%, b) 50% and c) 65%. The magenta color bars 

represents the lowest fusion value (lowest rank) 
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Figure AIII-8 Bar plot of Sum Fusion for an original of partially defaced six with PZM 

and varying object percentage a)35%, b) 50% and c) 65%. The magenta color bars 

 represent the lowest sum fusion value (lowest rank) 


