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GPS-Guided Autonomous Robot with Obstacle Avoidance and Path Optimization 

Thesis Abstract – Idaho State University (2020) 

This thesis discusses the design of an autonomous agricultural robot, including its 

mechanical components, autonomous navigation system, and waypoint path planning algorithm. 

This autonomous robot is a prototype and a test platform that can navigate to potato plants 

previously identified as infected with Potato Virus Y (PVY). This prototype is the first step 

leading up to a larger, full scale, field-ready robot that will be equipped with an advanced robotic 

arm for plant removal. This prototype is in-line with emerging technologies in the field of 

precision agriculture. The navigation system is based on a Pixhawk™ microcontroller and a 

Real-Time Kinematic (RTK) GPS module. This thesis also covers in detail the mechanical and 

electrical subsystems of the prototype. Due to potato field size and PVY prevalence, an 

adjustment to popular optimization algorithms is explored to find the shortest route between each 

identified sick plant in a center-pivot-irrigated field. 

Keywords 

Navigation, Obstacle Avoidance, Agricultural Robot, Autonomous Ground Vehicle, RTK 

GPS, Pixhawk, Traveling Salesman Problem, Precision Agriculture 
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1 Introduction 

1.1 Agricultural Autonomous Ground Vehicle (AGV) 

Potato Virus Y (PVY) can devastate crops with losses up to 80%, depending on the 

specific type of potato [1]. While there are many methods currently being used to generate PVY 

resistant cultivars, the virus has quickly evolved in the last ten years and continues to have a 

negative impact on farmers [2]. Potato seed crops are rigorously tested to avoid planting already-

infected plants, but PVY identification efforts are not perfect. Even when potato seeds are 

certified PVY free, testing for susceptibility to PVY vectors is not normally performed 

adequately [3]. Mechanical removal of infected plants remains a full-proof, albeit currently 

inefficient, method to prevent the spread of PVY once it is already present in a field. 

Current processes for mechanical removal consist of trained field crews identifying the 

infected plants and then manually removing them, a process known as crop roguing. The major 

drawback to this process is that identifying PVY correctly by sight is difficult. An experienced 

roguer may be accurate but is slow and the plants must be mature [4]. Because of this, remote 

sensing techniques are often employed [5]. In this study, we have partnered with the Geosciences 

department at Idaho State University (ISU), where researchers have been successful using 

hyperspectral cameras that can sense ranges of the electromagnetic spectrum that human eyes 

cannot [6]. In hyperspectral remote sensing, the electromagnetic spectrum is split into hundreds 

of narrow “bands” of light, making hyperspectral imaging able to detect infections in plants even 

before physical symptoms are manifested [7][8]. Hyperspectral cameras can be mounted on 

Unmanned Air Vehicles (UAV), making remote sensing a powerful technique at a leaf scale 

resolution. This identification strategy combined with Autonomous Ground Vehicles (AGV) 
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allows entire crops of potatoes to be scanned and remedial measures to be implemented quickly. 

See Figure 1 for how these two types of vehicles could work in tandem to achieve this. 

 

Fig 1. UAV and AGV working in tandem. This figure illustrates the acquisition and delivery of 

a sick plant’s GPS coordinates, labeled “target”, using a UAV with hyperspectral imaging 

capability. The UAV then sends the coordinate to an AGV that can remove the plant. 

This UAV-AGV system would streamline both the identification effort and the physical 

removal. This thesis/research deals with designing a Global Positioning System (GPS) guided 

AGV that would serve as a prototype for a final platform that would carry a robotic arm to each 

identified plant and mechanically remove it. 

Robots have been increasingly researched for agricultural applications, whether it be for 

fertilization, pesticide application, or inspection [9]. Robots can be superior to large machinery 

as they can be more selective where they spray, conserving resources and reducing crop inputs 

that may have an environmental impact on soil and water. In addition, in some applications it is 

more cost efficient to send a robot than a manual operator [10]. 

In recent years, GPS has been a popular solution for autonomous robot navigation [11]. 

Being that the environment at hand is agricultural, the GPS antenna will benefit from having 
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minimal obstructions blocking the sky such as buildings and trees. Because the bulk of the 

growing season for potatoes is during summer months, clouds and storms that can cause GPS 

systems to have problems will be relatively minimal.  

The GPS network is just one of many in the Global Navigation Satellite System (GNSS). 

GNSS receivers work by measuring the time needed for a signal to reach the receiver from a 

satellite. Transferred signals traversing through the atmosphere may be slowed down or 

interfered with, causing error. The average error of commercially implemented GPS is 2-4 

meters. In the field, the distance between two potato plants is around 0.3 m (12 inches). A 2-

meter resolution would fall well short of the resolution required for an individual plant in the 

field. Therefore, to improve the accuracy of the navigation system for this AGV, a Real-Time 

Kinematic (RTK) GNSS system with an error less than 10 centimeters (3.93 inches) was utilized. 

An RTK system contains two main units: a base station unit and a rover unit. Both receive 

signals from satellites, but the base station unit is stationary while the rover unit is mounted on 

the AGV. The base station transmits position information in real-time to the rover, which helps 

the rover make corrections to its location, thereby achieving higher accuracy. 

1.2 Optimizing Path Distance Considering Irrigation Obstacle 

In Idaho, the leading producer of potatoes in the USA [12], many potato fields span 

across a circular area of 0.5 km² (124 acres). For reference, 0.5 km² is equal to 78 Fédération 

Internationale de Football Association (FIFA) regulation soccer fields. In a potato field of this 

size, there may be hundreds of sick plants spread across it. Choosing the shortest path possible to 

visit each sick plant is necessary to conserve battery power and therefore cost, and will also 

reduce wear on mechanical parts. To find the shortest route between sick potato plants, it is 

proposed to treat sick potato plants as cities in a Traveling Salesman Problem (TSP). The TSP 
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deals with finding the shortest possible route between all cities in a given set of cities, visiting 

each one only once and returning to the starting city. The TSP has been thoroughly studied over 

the last century and many algorithms can effectively find near-optimum solutions [13][14]. 

To add complexity, these fields are irrigated with a center pivot system rotating about the 

field’s center. As seen in Figure 2, these irrigation lines can block robot movement underneath 

them due to low ground clearance. In addition, immediately after the irrigation line passes over a 

section of ground, that ground becomes impassable to any machine due to mud. Many research 

articles discuss obstacle avoidance but all deal with small obstacles that take up only a small 

percentage of the robot’s working area [15][16]. A center-pivot irrigation line is the length of the 

crop circle’s radius. For a half a square kilometer field, the radius is 400 meters. Navigating 

around this irrigation/mud obstacle would cause an optimization algorithm’s proposed solution 

to become extremely inefficient.  

 

Fig 2. Example of a low clearance irrigation line. Irrigation lines of these types are common in 

potato fields. Source: https://wikifarmer.com/potato-water-requirements-and-irrigation-systems/ 

https://wikifarmer.com/potato-water-requirements-and-irrigation-systems/
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The complexity increases even further when considering that AGV movement across 

rows will cause some plant damage. The AGV could be restricted to only moving along a row 

but this would be very slow and inefficient. Instead, it is proposed that the AGV be used in the 

early growing season when plant size is minimal but hyperspectral remote sensing techniques are 

still effective. The beginning of June is optimal – this gives the plants enough time to grow 

leaves for the hyperspectral cameras but leaves the rows less crowded. Even as early as July, 

rows become impassable due to heavy vine growth, see Figure 2. By avoiding the vine growth, 

the AGV will do less damage. It is then of interest to use an algorithm not only to minimize 

distance while avoiding the irrigation/mud obstacle, but to also minimize the number of times the 

AGV crosses rows in the field. 

A solution is proposed to address the irrigation/mud obstacle and row crossing problem. 

The proposed solution is to adjust a normal TSP’s cost function to reflect a new path around the 

irrigation line and let the optimization routine converge to the optimum route based on this new 

information. In addition, another cost function will be added to account for number of rows that 

need to be crossed. To address this novel problem, this thesis presents how to use the popular 

Genetic Algorithm (GA) and Multiple Integer Linear Programming (MILP) optimization 

routines [17][18].  
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2 Agricultural AGV 

2.1 Methodology 

2.1.1 Components 

A four-wheel drive system was chosen for the robot, and to increase durability a bearing 

was mounted to the frame of the robot for the motor shaft to run through. This increased the total 

payload the robot could carry. SuperDroid Robots™ was the source of most robot hardware (see 

Table 1). A robot chassis was designed to fit these mechanical components and manufactured at 

ISU labs. 

TABLE 1. LIST OF MECHANICAL COMPONENTS 

Item Description Quantity USD/item 

IG42 24VDC 078 RPM Gear Motor 24 Volt motor with planetary gears 4 $52.95 

Wheel and Shaft Set Pair 8mm bore 

- 10-inch Traction Lug 

Wheel and shaft with connecting 

hardware 

2 $72.58 

Electric Power Hookup Kit Wires, fuses, and switches 1 $17.95 

Misc. mounting hardware Motor mount plate, fastener kit, 

electrical hookup kit 

4 n/a 

 

Calculations were done to ensure the motors would accomplish the desired propulsion 

over rough terrain. The rated speed of the selected motor/gearbox is 78 RPM. For the 10-inch 

diameter wheels used that is equivalent to 3.7 linear km/hour (2.3 mph). While this is slow for a 

wheeled robot, the higher gear ratio provides more torque, a significant advantage over rough 

terrain, so this rated speed was deemed sufficient. The rated torque of the motor was 0.05814 

N·m (570 g·cm). With a 1:84 gearbox ratio that is equal to 4.88 N·m. To determine if this was 

sufficient, equation 1 was derived from a simple free body diagram. It solves for 𝑡, the time it 

takes to reach angular velocity 𝑉 from a stopped position. 

 𝑡 = 𝑉 (
𝐼𝑤ℎ𝑒𝑒𝑙∙𝐼𝑚𝑜𝑡𝑜𝑟

𝑇𝑚𝑜𝑡𝑜𝑟−𝑊𝑟𝑠𝑖𝑛(𝜃)
) (1) 
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The moment of inertia of the motor was assumed to be 0. The moment of inertia of the 

wheel was calculated to be 
1

2
𝑚𝑟2 = 0.018 𝑘𝑔 ⋅ 𝑚2. 𝑉 was set to the rated speed of 5.18 rad/s 

(3.7 km/hr) and 𝑟 was the radius of the wheel. Lastly, 𝑊 was ¼ the total weight of the robot. For 

𝜃 = 0, 𝑡 = 0.02 seconds. See Figure 3 for the results when the equation is solved for all values of 

𝜃 (0° to 90°). From Figure 3, an asymptote occurs at about 43.5°, indicating that is the maximum 

theoretical incline possible. It is unlikely this prototype will face terrain for testing that includes 

inclines greater than 43.5°. 

 

Fig 3. Graph of motor torque calculation showing an asymptote at 43.5°, the theoretical limit of 

the selected motor. 

2.1.2 Enclosure and Bottom Plate 

It was important to design an enclosure that protected the electrical components from 

mud, water, and the elements given its operating environment. Because this robot was a 

prototype, easy access to the components was also essential. It was designed first in 

SolidWorks™ and then acrylic sheets were laser cut and glued with Weldon #4 acrylic glue 

(Dichloromethane). Acrylic was used because it can be easily laser cut, allowing the enclosure to 
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fit snugly onto the robot thereby increasing protection from the elements. Acrylic is also readily 

available at hardware stores if repairs were needed. 

The enclosure’s joints were reinforced with high temperature hot glue. When the acrylic 

sheets were cut out, holes were included in optimum positions for cables, antennas, etc. Once 

assembled, these holes were tested and then the enclosure was spray painted white to lower heat 

transfer from the sun. See Figure 4 for the final result. 

 

Fig 4. Ensembled and painted enclosure, with electrical components mounted and placed on top 

of robot chassis. 

The enclosure is held down by four bolts, and can be lifted off with external electrical 

components still attached. The components are connected/disconnected through the easy access 

holes in the enclosure. 

In addition to an enclosure, a bottom acrylic plate was laser cut for mounting the 

electrical components that did not transmit signals and were not waterproof. This could be 

removed easily and independently from the enclosure for debugging. For calibrating the 
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magnetometers in the equipment, this bottom plate can stay bolted to the enclosure but lifted off 

the chassis. 

2.2 Results 

TABLE 2. ROBOT SPECIFICATIONS 

Specification Description 

Weight 25 kg (55 lbs.) 

Size 43 x 54 x 46 cm (17 x 21 x 18 in) 

Cost (Parts/Machining) $ 855.00 (USD) 

Theoretical Speed 3.7 km/hr (2.3 mph) 

 

The final specifications of the robot can be seen in Table 2. Because this prototype robot 

is not full size, it was not driven in an actual potato field. Potato fields have roughly 30 

centimeter (1 foot) deep ruts left by the irrigation equipment. A large vehicle with wheels the 

same diameter or larger than the ruts would be required to drive in the field. 

2.3 Conclusion 

This robot can handle inclines with ease and will not be slowed down by lack of 

pavement or flat areas. It is an effective test bed for systems that will be used on a larger, full 

scale robot. For the final AGV platform, the wheel diameter would need to be at least 30 cm (1 

ft) and the size of the chassis would be need to be determined by other future work such as the 

robotic arm. 
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3 Autonomous Navigation 

3.1 Methodology 

For this robot, an RTK GPS system was combined with magnetometers to provide the 

robot with its position and heading. A Pixhawk was used for the microprocessor, which 

calculates the error between current position/heading and desired position/heading and then 

adjusts wheel speed to correct itself. The Pixhawk also contains onboard magnetometers. The 

Piksi Multi Evaluation Kit from Swift Navigation was chosen for the RTK GPS. The Piksi Multi 

has powerful Xilinx Zynq 7020 dual-core ARM Cortex processors and a 666 MHz clock speed. 

This allows it to perform RTK calculations quickly, obtaining an RTK fix in seconds. It can use 

several different satellite networks for RTK measurements, including GPS L1/L2, GLONASS 

G1/G2, BeiDou B1/B2, and Galileo E1/E5. It is also relatively inexpensive as compared to other 

RTK GPS solutions. The base station and rover (AGV) units each contain four major parts, an 

evaluation board, lithium ion battery, Free Wave™ radio modem, and a survey grade GNSS 

antenna. See Figure 5 for wiring. Table 3 has a comparison of similar systems and their most 

recent prices. 
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Fig 5. Piksi Multi Evaluation Kit Main Parts – Both the base station and rover contain these 

four parts.  Item 1: Evaluation Board. Item 2: lithium ion battery. Item 3: , Free Wave™ radio 

modem. Item 4: survey grade GNSS antenna 

TABLE 3. COMPARISON OF RTK GPS SYSTEMS 

Name Cost 

Piksi Multi Evaluation Kit $ 2,295.00 

Trimble R8s $ 10,200.00 

Spectra Precision SP80 $ 12,495.00 

Geomax Zenith35 Pro $ 9,995.00 

3.1.1 Evaluation of RTK GPS Components 

Before being used on the actual AGV, the components were tested using the radios that 

Swift Navigation provided. To set up the Piksi Multi in RTK mode, the base station and rover 

radios had to be programmed to communicate with each other. Then, all components in Figure 5 

were wired to each other as shown. The survey grade GNSS antenna and Free Wave radio 

modem were connected to the evaluation board. The radio modem and evaluation board were 

powered by a lithium ion battery. Finally, the evaluation board was connected with a USB cable 

to a computer. Swift Navigation provides a free software called Swift Console™ to configure 

and interface with the Piksi Multi. 900 MHz or 2.4 GHz radios can be used during evaluation of 

the GNSS receivers. The evaluation was successful and the next step was integrating the Piksi 

Multi with the Pixhawk and a Ground Control Station. 
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3.1.2 Integration with Pixhawk and a Ground Control Station 

The radios provided by Swift Navigation were only used during evaluation. The 

telemetry radios for the Pixhawk were used on the AGV so that RTK corrections could be sent 

over the same radio link that the Ground Control Station (GCS) shared with the Pixhawk. The 

GCS had to retrieve the corrections from the Swift Console, a process outlined in Swift 

Navigation’s documentation. For a brief summary of this process see Figure 6. 

 

Fig 6. Flowchart of Piksi & GCS integration. The evaluation kit should be used before hand to 

ensure that all components are working correctly. 

Once the observations are sent to the Pixhawk, the Pixhawk can theoretically navigate 

autonomously with centimeter level accuracy. Without an RTK GPS fix, the Pixhawk performs 

to the accuracy level of a normal GPS unit (2-4 meters). 

Connect Rover Piksi to 
Pixhawk and configure to 

get observations from 
telemetry radio via GCS.

Configure Pixhawk to use 
Piksi as primary GPS.

Optimize telemetry 
radios for RTK 
performance.

Configure base station 
Piksi to send RTK 

observations to GCS via 
Swift Console.

Set precise, known, base 
station location

Broadcast base station 
observations from Swift 

Console to GCS.

In GCS, inject 
observations into 

telemetry link.

Verify with Piksi's LED's 
that a Fixed RTK 

connection is established.
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The Pixhawk can be set to multiple modes. For this project only three were used: 

“manual”, “smart RTL”, and “auto.” Manual mode allows an RC transmitter to control the AGV 

with user input. More on how that was set up is covered in section 3.1.3. When in auto mode, 

navigation is done by the firmware loaded onto the Pixhawk. In smart RTL mode the robot will 

trace its path back to its starting location. 

Waypoints are chosen in the GCS, usually installed on a laptop, and sent to the Pixhawk 

via telemetry radio link. When auto mode is turned on, the Pixhawk begins navigating from its 

current position to the first waypoint in a straight line. Once it gets within a programmable radius 

from the waypoint, it moves on to the next one. When finished, it returns to its “home” location 

which is programmed with the GCS. 

In Figure 7, the process for setting waypoints is overview. “H” is for home location. Each 

waypoint has a number next to it to determine the order of navigation. Notice, there is no 

waypoint number 2 on the map but there is one in the list. This is because a waypoint can be 

changed from a simple navigational goal, to a trigger event via a drop-down menu. In this case 

the event named DO_GRIPPER was chosen just as an example. The event triggered could be a 

camera shutter, grasping mechanism, etc. The event is only triggered when the AGV is within 

the programmed radius of the trigger’s associated GPS coordinate. In this case DO_GRIPPER 

lies halfway between waypoints 1 and 3. 
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Fig 7. Screenshots of the chosen GCS’s navigation planning feature. 

3.1.3 Electrical Components 

The electrical components all support the Pixhawk in its central role of autonomous 

navigation. The Pixhawk was paired with a GCS called Ardupilot Mission Planner™ (or Mission 

Planner, for short) for affordable, customizable, and trusted performance. Along with the 

Pixhawk a suite of electrical and mechanical hardware was used to have manual as well as 

autonomous navigation (see Table 4 and Figure 8). Although autonomous navigation is the goal, 

being able to control the robot manually provides convenience for positioning the robot while 

testing and also acts as a safety mechanism in case the autonomous navigation malfunctions and 

the robot deviates from its course or poses a danger to bystanders. 
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TABLE 4. LIST OF ELECTRICAL CONNECTIONS 

# Component Name/Model  Pixhawk Port Used Other Connections 

1 3S Lithium Polymer (LiPo) 

battery  

Power Piksi Multi Power  

2 Pixhawk n/a n/a 

3 mRobotics™ SiK Telemetry 

Radio V2 915Mhz  

Telem 1 n/a 

4 X4RSB FrSky receiver Servo rail: ground, power, and 

signal of SBUS pin 

n/a 

5 WASP-200 LRF  Telem 2 n/a 

6 Sabertooth™ 2x12 Motor 

Controller  

Servo rail: Signal and ground of 

PWM output pins 1 and 3 

Batteries to B- and B+. 

7 (x2) 12 Volt 8 Amp hour 

Sealed Lead Acid Battery 

n/a Motor Controller 

8 Buzzer and Safety Switch Buzzer and Switch  

9 LiPo battery voltage alarm  n/a 3S LiPo battery 

10 ReadytoSky™ GPS/Compass  GPS and I2C  

11 Piksi Multi from Swift 

Navigation 

Serial 4/5 port Battery (via voltage regulator), 

GNSS survey grade antenna 

12 Survey grade GNSS antenna n/a Piksi Multi 

13 FrSky Taranis Q X7 transmitter 

(not pictured) 

n/a Radio linked to X4RSB receiver 

 

 

Fig 8. Electrical connections displayed in a 3D CAD model. All components except for the 

transmitter are shown here.  
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A LiPo battery was chosen because of its high current output and compatibility with 

Pixhawk’s provided power module. Everything on the AGV, apart from the motors, was 

powered with this battery. 

An onboard voltage alarm is an affordable and easy way to ensure that the LiPo battery 

does not go below its allowable voltage, preventing damage. The alarm can be programmed to 

trigger at different voltages, alerting the user when a return to base is needed. 

The ReadytoSky GPS/Compass was used as a backup GPS so that the AGV could find its 

way home if the Piksi failed. It uses a NEO-8N GPS module from u-blox™, and has an 

advertised maximum accuracy of 0.6 meters (24 inches). 

Communication between the Pixhawk and Mission Planner was done through the SiK 

Telemetry Radios. These radios are designed specifically for Pixhawk/Mission Planner and have 

a range of 300 m. 

A X4RSB FrSky receiver, and FrSky Taranis Q X7 transmitter were used to send 

commands from the user to the robot. The X4RSB receiver has SBUS capabilities which was 

necessary to send multiple channels over a single wire that connects into the Pixhawk RCIN pin. 

The Q X7 is an inexpensive but a highly capable transmitter. It is reliable and has 16 channels, 

two control sticks, and several switches all programmable in Mission Planner to perform 

different tasks. One of these switches was programmed to switch the Pixhawk between manual, 

auto, or Smart RTL mode. The channels for the two sticks on the transmitter were Aileron, 

Elevator, Throttle, and Rudder. Each of these corresponds to one of the two sticks in either 

vertical or horizontal movement. In the mixing menu, they were put in an AETR channel 

configuration. That and the switch used can be seen in Figure 9. 
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Fig 9. Configuration for channel mixing on the Taranis transmitter. The switch used channel 6. 

In Mission Planner the parameters for the Pixhawk were also configured accordingly, as 

seen in Figure 10. 

 

Fig 10. Mission Planner configuration. Roll = Aieleron. Pitch = Elevator. Yaw = Rudder. 

Only roll and throttle were used by the Pixhawk and sent to the motor controller. Roll 

controlled the tank style steering (left, right) and throttle controlled the speed of the wheels. 

The Sabertooth motor controller is robust, and is able to supply two separate channels of 

12 continuous amps each, has overcurrent and overheat shut down prevention, several input 

modes, synchronous regenerative technology (batteries are charged when going in reverse), and 

has a 5 V, 1A power output for peripheral devices if needed. 
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For the LIDAR, a WASP 200-LRF was chosen because it is compatible with Pixhawk. It 

has a range of 0.2-300 meters and an accuracy of < 10 cm. Most importantly it uses a DF13 

connector which is what makes it compatible with the Pixhawk. 

With the exception of the Piksi multi, all these components required very little 

programming. Parameters in the Pixhawk had to be programmed to function in the necessary 

way, but otherwise these components were a plug and play solution. This ease of use is a major 

reason the Pixhawk was chosen. 

3.1.4 Obstacle Avoidance 

Besides irrigation equipment and the potato plants themselves, there are not many 

vertically protruding obstacles in a potato field. Possible obstacles include sudden breaks in 

normal terrain features, rocks, trees, tractors, humans and animals. Obstacles such as mud and 

ruts can be partially handled by the design of the vehicle’s wheels and motor torque (see section 

2.2), and the path planning algorithm. After being watered the field is extremely muddy, and not 

even full-sized tractor equipment enters these areas. Chapter 4 will touch on how to avoid these 

areas. For the smaller obstacles that can be navigated around quickly, a simple range finding 

LIDAR will suffice.  

The firmware on board the Pixhawk can handle obstacle avoidance when a range finding 

LIDAR is connected. Figure 11 shows the parameters that configure the obstacle avoidance 

protocol known as “dodge”. Simply put, when the LIDAR detects an object that is too close, as 

defined by 𝑅𝑁𝐺𝐹𝑁𝐷_𝑇𝑅𝐼𝐺𝐺𝐸𝑅_𝐶𝑀, it stops, rotates 𝑅𝑁𝐺𝐹𝑁𝐷_𝑇𝑈𝑅𝑁_𝐴𝑁𝐺𝐿 degrees, and 

drives straight for 𝑅𝑁𝐺𝐹𝑁𝐷_𝑇𝑈𝑅𝑁_𝑇𝐼𝑀𝐸 seconds and then resumes a direct course for the next 

waypoint. 
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Fig 11. Graphic explaining the parameters involved in setting up “dodge” obstacle avoidance on 

the Pixhawk using a range finding LIDAR. 

3.2 Results 

3.2.1 Piksi Multi Accuracy 

The RTK GPS was true to its advertised accuracy (less than or equal to ten centimeters). 

Utilizing a National Geodetic Marker site, the Piksi Multi was accurate to 5.6 centimeters using 

our setup. 

There was significant difficulty finding a location with a GPS coordinate known 

accurately enough to verify the Piksi’s coordinates. A couple methods were considered. The 

easiest but most expensive is to survey a spot on the ground. This requires special equipment and 

training, but can be done practically anywhere outside. The more inconvenient method is to find 

a geodetic marker, a previously surveyed position marked with a permanent landmark. The 

online National Geodetic Survey Data Explorer gives access to all such publicly recorded 

markers. However, many are located on privately owned land and are difficult to access. Figure 

12 is an example of a marker. 
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A marker was found at the Pocatello Regional Airport. According to the marker’s data 

sheet, it has an 95% confidence interval accuracy of 1.29 cm. The Permanent Identifier (PID) 

was AA3682 and the datasheet can be found at the National Geodetic Survey’s website [19]. 

Using the evaluation boards from Swift Navigation, the base station Piksi was placed on this 

geodetic marker and the rover Piksi on another geodetic marker several hundred meters away 

(This marker’s accuracy was 1.41 cm, PID: AB8163). Fifty RTK GPS fixes (including latitude, 

longitude, and ellipsoidal height) were collected and converted into the UTM 12N projected 

coordinate system (for ease of calculation). Pythagorean's theorem was then used to find the 

difference between the rover’s average estimated GPS location and the coordinates listed on the 

geodetic marker’s datasheet. Because the calculated distance was relatively short and the terrain 

was flat this is an acceptable assumption [22]. The average error was 5.6 centimeters (see Table 

5). The airport could only accommodate testing for a short period of time and so only this test 

was performed.  

TABLE 5. PIKSI ACCURACY TESTING 

Accuracy 

(cm) 
Geodetic Marker Location PID 

Geodetic Marker 

Accuracy (cm) 

5.6 
42° 54' 47.03909'' N, 112° 35' 

26.36463'' W 
AB8163 1.41 
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Fig 12. A photograph of a geodetic marker, taken by the author.  

3.2.2 Autonomous Navigation 

The performance of the autonomous navigation was satisfactory. The AGV visited the 

waypoints as commanded in Mission Planner, and all three modes functioned satisfactorily. At 

times the AGV had problems finding its heading, and would spin around until finding it again. 

This was a minor issue, though, and higher quality magnetometers or more careful calibration 

may fix this. 

There does exist a limitation related to the waypoint radius parameter described earlier. 

During testing it was discovered that the lowest value that can be stored in the parameter is 1 

meter, so as soon as the AGV is within 1 meter of the next waypoint it would move on to the 

next waypoint. This radius is not small enough to navigate the AGV next to the sick potato plant. 

This could possibly be solved many ways. First, because mission planner is open source, code 

could be written to change the resolution to centimeters instead of meters. Second, a trigger 

event could be added so that a third-party computer handled the precise navigating within 1 

meter of the infected potato plant. 
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3.2.3 Small Obstacle Avoidance 

The WASP 200-LRF LIDAR listed in Table 4 was also tested. In this test, the SiK 

telemetry radios were bypassed with a usb cable and an object was placed at a measured distance 

away from the LIDAR. The LIDAR readout in Mission Planner was the same as the measured 

distance, with a couple centimeters of error on average. This amount of error for dodge 

avoidance is acceptable and is within the 10-centimeter accuracy described in the manufacturer’s 

specifications.  

Obstacle avoidance was not successfully tested with the telemetry connection due to 

undiscovered issues. Future testing will need to be conducted to troubleshoot the WASP when a 

telemetry connection is being used. 

3.3 Conclusion 

The AGV designed and built in this project has an accurate RTK GPS, and combined 

with the Pixhawk is a suitable testing platform for an autonomous agricultural robot. The robot 

and components were relatively inexpensive, but robust enough to handle typical terrains the 

robot will be operational in. Since it uses the Pixhawk it is extremely customizable as well. 

Mission Planner is a capable GCS and allows for easy waypoint-guided navigation. These 

features make it useful not just for this project but for many agricultural robot applications. 

Because it is open source, a solution to its limited waypoint radius should be obtainable whether 

by programming or triggering a third-party computer. Obstacle avoidance when using telemetry 

connection will need to be troubleshooted. It is recommended that communication with the 

manufacturer be established to receive input on the problem. 
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4 Path Optimization 

4.1 Methodology 

To find the shortest path between a given number of sick potato plants in a field, first the 

problem needs to be simplified. Only fields that form an entire circle are considered, as some 

smaller fields can be semi-circles. In addition, it is assumed there is one center-pivot irrigation 

line rotating about the crop circle’s center. Some irrigation lines can extend up to a public road, 

as shown in Figure 13. To avoid cars, fences, etc. the option for the robot to go around the 

outside of the irrigation line is removed. This removes risk of collision and also has the benefit of 

making it simple to apply the TSP and solve it accordingly. 

 

Fig 13. Screenshot from Google Earth ™ of a potato field in Idaho. An irrigation line is clearly 

visible extending to (and even watering) a road. 

The problem statement is as follows: given n sick potato plants, what is the shortest path 

to visit each plant once and return to the starting position? A path that visits each plant, or point, 

exactly once and returns to its starting point is called a Hamiltonian circuit. As the number of 

sick plants, 𝑛, becomes large the number of Hamiltonian circuits increases with 
(𝑛−1)!

2
. For 𝑛 =

 20, there are 6.08 × 1016 possible Hamiltonian circuits. Nevertheless, the aforementioned 
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algorithms, GA [20] and MILP [21], can effectively handle the TSP even with 𝑛 >  200. These 

algorithms use a cost function to find the fitness of a solution. When the set of 𝑛 points are given 

in UTM coordinates (or any x-y coordinate system) the cost function is simply the distance 

formula [22]. See Equation 2, where E represents Easting and N represents Northing, analogous 

to longitude and latitude, respectively. 

 𝑑 = √(𝐸2 − 𝐸1)2 + (𝑁2 − 𝑁1)2 (2) 

This cost function will only work for paths between plants that are not obstructed by the 

irrigation line. For pairs of points, whose direct line of sight is obstructed by the irrigation line, 

the shortest path between the two must intersect with the middle of the crop circle to go around 

said obstacle (see Figure 14). If the cost is increased for this pair of points it will be less likely to 

be chosen by the algorithm as part of the final path. In other words, the distance formula isn’t 

changed, rather it is used twice (on obstructed paths only) to find this new distance. 

 

Fig 14. Image showing an example of two waypoints, blocked by an irrigation line (red path), 

and the next shortest path between them (green). 
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In order to change the cost associated with pairs of points whose line of sight is 

obstructed by the irrigation line, first each pair of points under this condition needs to be found. 

See Table 6. 

TABLE 6. LISTING ALL POSSIBLE QUADRANTS FOR TWO WAYPOINTS 

Point 1’s Quadrant Point 2’s Quadrant Obstructed 

1 1 NEVER 

1 2 NEVER 

1 3 SOMETIMES 

1 4 ALWAYS 

2 2 NEVER 

2 3 NEVER 

2 4 SOMETIMES 

3 3 NEVER 

3 4 NEVER 

4 4 NEVER 

 

To accomplish this, the field was split into four quadrants. The irrigation line was 

positioned in the 0° (or 3 o’clock) position. A rotation matrix was applied to the points when the 

irrigation line was at any other angle. From Table 6 the only case which needs inspection is for 

points who lie in quadrants I and III, or II and IV. In these two cases, depending on where in 

each quadrant the points are, the direct path between them may or may not be obstructed. A 

mathematical test was employed to determine if the points were obstructed or not (see Figure 

15). 
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Fig 15. Image illustrating the angles and quadrants used in the mathematical test employed to 

discover if a pair of waypoints need to be rerouted or not. 

This test uses two imaginary lines. One is a direct line in between the two points. The 

angle between this line and waypoint 1’s horizontal is called 𝑇ℎ𝑒𝑡𝑎. The second line is drawn 

between point 1 and the center of the circle. The angle between this line and point 1’s horizontal 

is called 𝐴𝑙𝑝ℎ𝑎. If 𝐴𝑙𝑝ℎ𝑎 <  𝑇ℎ𝑒𝑡𝑎, the points have a direct path available between them. If 

𝐴𝑙𝑝ℎ𝑎 >  𝑇ℎ𝑒𝑡𝑎, then the points cannot be connected by a direct line and the cost of this 

specific path needs to be increased to reflect the distance between point 1, the center of the 

circle, and point 2. This same test can be adapted for the case where the points are in quadrants II 

and IV, respectively. As with the Piksi accuracy testing, the distance formula is used with x and 

y components and the height (z) is ignored. Agricultural fields are flat and distances are 

relatively short compared to the curvature of the earth and so this is a good assumption in order 

to keep calculations simple. 
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The cost function takes the form of an 𝑛 𝑥 𝑛 matrix. The value of each element in the 

matrix corresponds to a distance between two points. For example, the element in the 4th row 

and 8th column is the distance between the fourth and eighth waypoint . The diagonal is all 

zeros. MatLab™ code was written to use the 𝐴𝑙𝑝ℎ𝑎/𝑇ℎ𝑒𝑡𝑎 test to identify which elements in 

this matrix needed to change and then those elements were updated with the new distance. Care 

was taken to avoid for loops and use instructions that act on vectors instead. This was to ensure 

the above mathematical test did not add a significant amount of run-time to the algorithm. 

 

Fig 16. Illustrated in red are the paths whose distances in the cost matrix needed to be increased. 

The thick black line represents the irrigation line. In this instance, because the irrigation line was 

not at 0 degrees, a rotation matrix had to be used. Notice some obstructed points will have much 

larger rerouted paths than other pairs of points. 

All of the paths that needed to be routed (red paths in figure 16) were updated in the cost 

matrix before sending the list of points and their cost matrix to the GA and MILP algorithms. 

Then a solution of the optimal order was found and could be sent to the Pixhawk for navigating. 

Sending the optimal order of waypoints from MatLab to Mission Planner was not automated. All 
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that is necessary is to export from MatLab to a .txt file and import from the Mission Planner 

interface. 

Up to this point it has been assumed that the irrigation line is not actively watering and 

therefore not moving. If the AGV was used while the irrigation line was watering then a simple 

solution was explored: 

1. Find the shortest distance as if the irrigation line wasn’t watering and use the 

robot's known linear speed to calculate total trip time 

2. Use the irrigation line’s known angular velocity to calculate how large of a 

segment will be watered during the amount of time calculated in step 1. 

3. Temporarily eliminate any waypoints in this section 

4. Have a technician or farm worker identify the point behind the irrigation line’s 

starting point at which the muddy terrain becomes passable. Use this point to 

identify another section in which to eliminate all points 

5. Rerun the algorithm for the remaining points. 

6. Visit these points, and when done rerun the algorithm for the eliminated sections. 

Once the robot is done with the first waypoints it can visit the newly watered ones 

after they have dried sufficiently. 

Step 4 includes manual labor and is inefficient. However, with time, a farmer could keep 

record of how quickly each field dries based on how much water it receives and can come up 

with accurate tables for this without the need  of a technician in the field. 

In order to add a cost function for minimizing row crossing, it was assumed that rows ran 

vertically, or North/South. The row width was set to 75 cm (2.5 ft). The distance formula was 
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again used to form an 𝑛 𝑥 𝑛 matrix as described before, but only the x-component of distance 

was considered. When the x-component distance was divided by the row width the number of 

rows necessary to cross was obtained. This matrix, called 𝑟𝑜𝑤𝑠𝐶𝑜𝑠𝑡 was added to the original 

matrix, called 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝐶𝑜𝑠𝑡. This total cost matrix was then used in the GA. The MILP 

algorithm was not used as it uses a cost matrix in the same way the GA does and would not 

provide insight into the proposed method that the GA could not. 

4.2 Results and Discussion 

The proposed adjustment to the cost matrix was effective for both algorithms. The MILP 

consistently found shorter routes but had an inconsistent runtime (higher standard deviation) 

when compared to the GA. The specific GA used required a deeper understanding of how it 

functioned in order to avoid irregularities. This is referring to the fact that sometimes the GA 

found shorter routes with the adjusted cost function than with the original cost function. When 

combining cost functions for distance and row crossings, the GA algorithm was, again, 

successful. 

The proposed method of finding which routes were blocked by the irrigation line did not 

add a significant amount of calculation time to the algorithms (see Table 7). Test D did add a 

significant amount of time but 10,000 instances of PVY is unlikely.  
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TABLE 7. CALCULATION TIME TO FIND REROUTED PATHS 

Test Number of 

points 

Avg Time 

(seconds) 

Standard 

Deviation 

A 100 1.2417e-04 6.8009e-04 

B 500 0.0028 0.0154 

C 1000 0.0103 0.0566 

D 10000 24.3 3.4 

 

Before examining the effectiveness of the proposed change to the distance cost function, 

testing was done to find near-optimal parameters for the GA. Test A, B, and C all consisted of 

running the GA 30 times, each using a randomly generated set of points. The average distance 

and time were calculated. The number of points used was 150 for all tests. For test A, the 

population size started at 152 and iterations was 10,000. The new distance cost matrix was used. 

As both parameters increased, route distances decreased and run time increased. See Table 8. 

TABLE 8. DIFFERENT PARAMETERS’ EFFECTS ON GA RUN TIME/AVERAGE DISTANCE  

Test AVG Distance (m) Time (s) Pop. Size Iterations 

Test A 7557 8 152 10,000 

Test B 7298 16 152 20,000 

Test C 7219 77 752 20,000 

 

Using the parameters from Test C, the GA and MILP were both compared in terms of 

how well they chose paths that navigated around the irrigation line. Both resulted in paths that 

navigated around the irrigation line effectively. In cases where the number of waypoints was 

greater than 50, the algorithms often didn’t select any paths which corresponded to ones whose 

distance had been altered in the distance cost function. See Figure 17. 
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Fig 17. While calculation time and path distance were different, both optimizations converged on 

solutions that avoided rerouted paths. 

Comparing the algorithms with and without the adjusted distance matrix for a smaller 

number of points more readily shows the effectiveness of said technique. See Figure 18. 

 

Fig 18. The top row is the GA algorithm with and without (left to right) the adjusted distance 

matrix to account for the irrigation line. The bottom row shows the same, but for the MILP 

algorithm. Notice that for so few points the GA and MILP converged to the same solutions. 
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For a moving irrigation line, the proposed set of steps also performed well, see Figure 19. 

  

Fig 19. The black line is the starting position of the irrigation line, and it is moving counter 

clockwise. The area in between the brown lines is where the field would be too muddy for the 

AGV to operate. The brown line behind the irrigation line’s movement was arbitrarily set to be 

45° behind the irrigation line’s original position. The blue line is the route first path taken and the 

green line is the second path taken. 

The next set of simulations, outlined in Table 9, compared the GA to the MILP in terms 

of distance and calculation time. 30 test runs were conducted using 150 points. The same set of 

points was used for the GA and MILP for each test. For the GA the population size was 752 with 

20,000 iterations. A t-test for paired means was performed and the p-value for both optimum 

distance and time the algorithm needed to run was found. The MILP found 4% shorter routes, an 

average distance of 318 meters. With regards to the standard deviations in run time, the MILP 

had much more variation. 
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TABLE 9. COMPARING GA TO MILP 

 Distance (m) Time (s) P-value P-value 

 AVG STD AVG STD Dist. Time 

GA 7219 171 77 0 
0 0.253 

MILP 6901 136 65 54 

Throughout each test an interesting phenomenon was noticed: the GA algorithm 

sometimes found a shorter route when the irrigation line was considered compared to when the 

irrigation line was not considered. This goes against intuition - an obstacle of this size would 

seemingly result in a longer route, not a shorter one. Why would the GA be unreliable in this 

regard? The GA requires optimization of its input parameters such as population size, iterations, 

mutation rate, and crossover strategy [23]. Depending on how future generations are chosen, the 

GA can have different characteristics. The truncation method, used in Joseph Kirk’s GA and for 

the testing in this paper, can lead to premature convergence [24]. Therefore, to converge to an 

optimum route, there must be a certain number of original population members that start out with 

characteristics of the optimum solution. To test this (see Table 10), 3 sets of 30 tests each was 

done. Test A showed a high number of instances where the irrigation-line-solution was shorter. 

For test B the number of points was decreased to 25. The iterations were decreased only to help 

with computation time and did not affect convergence. With a decreased number of points there 

is a decreased number of mutations necessary to exhibit the required variation to find the 

optimum route, and so all irrigation-line-solutions were longer than none-irrigation-line 

solutions. However, in test C, the number of points was kept the same as in Test B but the 

population size was reduced. Even with the same low number of points, there were 3 tests where 

the irrigation-line-solution resulted in a shorter route. With so few population members, i.e. such 

little possibility for variation, changing the cost matrix happened to introduce beneficial variation 

3 out of 30 times. 
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TABLE 10. TESTING GA PARAMETERS ON VARIABILITY AND EFFECTIVENESS 

  

Number of irrigation line shorter 

solutions # Points Iterations 

Population 

size 

Test A 10 150 20000 752 

Test B 0 25 1000 752 

Test C 3 25 1000 25 

 

Using the average distance found by these algorithms, the total time to visit every plant is 

easily estimated. The robot’s speed is 3.7 km/hr (2.3 mph). For an average TSP solution of 6.9 

km, that is equal to 𝑡𝑖𝑚𝑒 =
6.9 𝑘𝑚

3.7
𝑘𝑚

ℎ𝑟
 
, or 1.9 hours. This time will be longer when the irrigation line 

is watering because of the time it would take to travel from the last waypoint in the first, dry, 

section, to the first waypoint of the recently watered section. It also doesn’t account for how long 

the robot will remain at each plant. Work on the robotic arm would need to be finalized before 

this is known accurately, but it could be estimated at 30 seconds (enough time to completely 

remove the plant and all its roots) For 150 points the total time becomes 1.9 ℎ𝑟𝑠 + 150 𝑝𝑙𝑎𝑛𝑡𝑠 ∗

0.00833
hrs

plant
= 3.15 ℎ𝑟𝑠, assuming the field wasn’t actively being irrigated. Seeing this number 

calls attention to the fact that the AGV needs to either have a large battery capacity or some 

method to quickly recharge.  

Finally, the described method for minimizing row crossings was tested (see Figure 20). 

The GA was run with just the original distance cost function, and then with just the rows cost 

function in order to see a baseline of how each cost function affects the algorithm. Then, the two 

cost functions were added together. Using the rows cost function only was undesirable because 

the algorithm would pick points which were closest to each other in the x-direction but were 

sometimes on opposite sides of the field from each other in the y-direction. When distance and 

rows crossed were weighted equally, the distance was much less than when the rows cost 
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function was used alone, but there were still fewer rows crossed than without the rows cost 

function. If it was desired to cross even fewer rows, the rows cost function could be weighted 

more than the distance cost function as seen in the bottom-right plot of Figure 20. 

 

Fig 20. For the testing shown in this figure, the parameters were 150 points, population size of 

752, and 20,000 iterations. Top left: Using just the distance cost function resulted in the lowest 

distance but highest number of rows crossed. Top right: Using just the rows cost function, the 

number of rows crossed was minimized but the overall distance was too long to be practical. 

Bottom left: combining both cost functions produced a mix of the first two results. Bottom right: if 

one parameter is desired over the other (rows crossed vs overall distance), they can be weighted as 

in this plot, with 𝑟𝑜𝑤𝑠𝐶𝑜𝑠𝑡 being multiplied by 2. 
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4.3 Conclusion 

Both GA and MILP algorithms only needed a small adjustment to the distance cost 

function to successfully account for the irrigation line. This simple change was effective and 

efficient and will be suitable for any algorithm that uses a cost matrix. Between the GA and 

MILP algorithms, the MILP would be the wisest choice for the robot because it found shorter 

routes with roughly similar calculation times. If calculation speed was the priority, the GA could 

be used with fewer iterations/population size to reduce calculation time but still obtain a solution 

within a few hundred meters of the MILP average solution.  

A new cost function was introduced successfully to also minimize the number of rows 

crossed. Future work could include optimizing motor size and battery life of the final robot. This 

would be good work because it would be undesirable for the AGV to have to return to its starting 

point to recharge in the middle of a run. Perhaps multiple charging stations around the field 

could be explored, as well as solar panels mounted on the AGV. 
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5 Future Work 

The AGV presented in this thesis, its navigation system, and path planning process 

performed its intended functions. As a prototype it is ready for further testing of features that will 

eventually be incorporated into the final platform. However, there were some shortcomings, one 

of them being the LIDAR functionality. Future work is needed to get the LIDAR to function 

properly when the Pixhawk is connected via radio to Mission Planner, not just when connected 

via cable. Another point of emphasis is the inability of the Pixhawk to get closer than 1 meter to 

a waypoint. This particular issue seems easy to solve: a trigger event could be used to turn on a 

third-party computer to handle navigation when within 1 meter of the waypoint. However, this 

begs the question that if a third-party computer must be used for this portion of the path, why not 

just use this computer for the entire navigation? A significantly large portion of background 

research would need to be done if the Pixhawk was to be replaced entirely. Alternatively, the 

open source code of the PixHawk could potentially be altered in order to reflect higher resolution 

than 1 meter. 

Another large topic of future work is optimizing robot speed and battery capacity for the 

final AGV platform. Research would need to be done to identify how many sick plants is 

expected, on average, in a typical potato field. This number will affect robot runtime which 

determines what size battery is needed. The AGV’s speed capability also effects the runtime: the 

faster the AGV the less time the batteries are running. However, more speed means more power 

consumption and higher required capacity. These constrains would need to be optimized in order 

to minimize the number of times the AGV needs to recharge, or potentially optimized so that it 

should never need recharging until an entire field is finished. Other considerations for battery 
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charging could include researching the cost effectiveness of solar panels and/or multiple 

charging stations around a field.  

Besides battery and motor parameters, there are a few other features that need to be 

researched in order to produce the final AGV. These features include the necessary robot arm 

technology, vision systems, and communication with a hyperspectral-equipped UAV. A robot 

arm needs to be developed that is capable of removing the entire plant without leaving any part 

of it in the field. Otherwise, remnants of removed plants would infect other plants around it. A 

vision system to identify where on the plant the robot arm needs to grab also needs to be 

developed. Also, a way to autonomously communicate between the UAV and the AGV needs to 

be explored. 

Lastly, this UAV-AGV system relies on RTK GPS, which in turn relies on precise, 

surveyed, locations existing in the field. An affordable way of providing these surveyed positions 

to farmers needs to be proposed. 

Despite the essential work that lies ahead, this thesis provides a strong, necessary 

foundation for future research. The aforementioned features were outside the scope of this 

Thesis. 
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