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Assessing Nuclear Power Plant Component Fragility in Flooding Events Using

Bayesian Regression Modeling with Explanatory Variables
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Nuclear power plants (NPPs) are at risk from various internal and external

flood hazards that can lead to extensive damage. Events such as the tsunami at

Fukushima NPP or the river inundation at Fort Calhoun NPP underscore the ne-

cessity of conducting flooding probabilistic safety assessments (PSA) for NPPs.

The response of components to flooding conditions can have considerable impact

on the stable operation of NPPs, however, flood PSA is not common and flood-

ing related risk analysis lacks data. To help address this shortcoming, compo-

nents were tested in the Portal Evaluation Tank (PET) to provide the necessary

data, initially preforming experiments on non-watertight doors . A Bayesian re-

gression model, utilizing explanatory variables, was developed for assessing NPP

component fragility in flooding events. The concluding model uses the binomial

distribution with a logistic regression model for probability of failure and uses

non-informative priors so the experimental data takes preference in the analysis.

The fragility model was validated using several metrics, including three types of

Bayesian p-values. Finally, an application of the component fragility model was

demonstrated to show how improvements might be made to 3D flooding simula-

tions.

xix



Chapter 1

Introduction

As of September 2019, nuclear energy provides approximately 10% of the world’s

electricity from about 450 power reactors operational in 30 countries, with nearly

100 residing in the Unites States to generate 1/5 of the country’s electrical ca-

pacity [1]. These nuclear power plants (NPP) withdraw vast amounts of water,

⇠25,000-60,000 gal
min , primarily for cooling to prevent reactor core overheating [2].

Due to these high water demands, NPPs are typically situated near reliable bod-

ies of water—rivers, lakes, estuaries, or oceans—and contain miles of water filled

pipes. This puts NPPs at an increased risk for various internal (e.g. broken pipes)

and external (e.g. heavy rainfall and swollen rivers) flooding events.

Flooding has long been recognized as a risk to manage with an array of protec-

tion measures [3] [4] [5]. However, the tsunami that struck the Japanese Fukushima

Daiichi NPP complex in March 2011 served as a severe reminder of the impact

flooding hazards can have on nuclear power plants [6] [7] [8]. An ⇠43-49 foot

tsunami struck the Fukushima site, as seen approaching in Figure 1.1, causing the

meltdown of three reactors and the release of radioactive materials into the envi-

ronment [9].

While tsunamis may not be a significant risk for all reactor locations, there are

other internal and external events that can lead to flooding. In June 2011, the

Fort Calhoun NPP in Nebraska declared a ”Notification of Unusual Event” due

to flooding [10]. Heavy spring rains and snowmelt caused the Missouri River to

overflow and inundate the plant, as seen in Figure 1.2. This event highlights the

economic and reliability impact of flooding risks since the total recovery cost as-

sociated with this single event exceeded $500 million USD and drove the plant’s

1
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Figure 1.1: Tsumani waves approaching the Fukushima-Daiichi Power Plant.

production costs to $71/MWhr, approximately double the industry average at the

time [11] [12]. This eventually led to plant closure, with decommissioning costs

estimated at $1.2 billion USD [13].

The above are just two examples of flooding events at NPPs, which forced off-

normal conditions and had significant economic impacts. NPP flooding events are

more common than may be thought. In the U.S., NPPs have faced various internal

and external flooding hazards. Further literature review and brief summaries of

some U.S. nuclear plant flooding may be found in Appendix A.

These events underscore the necessity of conducting flooding probabilistic

safety assessment (PSA) for NPPs. The four basic steps of external event PSA are:

1) hazard analysis, 2) component fragility evaluation, 3) plant response analysis,

and 4) risk quantification. The ASME/ANS Probabilistic Risk Analysis (PRA)
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Figure 1.2: Fort Calhoun NPP surrounded by Missouri River flood water.

Standard [14] outlines the technical requirements for performing the analysis.

An important task is the determination of component fragility. The fragility of

the component is the probability of it reaching a limit state condition at a given

demand [15]. However, flood PSA is not very common and flooding related risk

analysis lacks data. An improved and deeper understanding of the reliability

of NPP components under flooding conditions is needed to better inform risk

models.

To help address the shortcomings of component characterization, the Compo-

nent Flooding Evaluation Laboratory (CFEL) was developed at Idaho State Uni-

versity (ISU). The CFEL research group focuses on individual component perfor-

mance when subjected to flooding scenarios, beginning with rising water experi-

ments conducted in a custom designed tank. These experiments provide the nec-

essary data to develop component fragility mathematical models.
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Improved characterization of component fragility can be integrated into com-

prehensive NPP risk models to enhance the overall risk understanding. The fol-

lowing work presents the development of a Bayesian regression model for assess-

ing NPP component fragility in flooding events. This fragility model utilizes com-

ponent failure data, generated as part of the research from full-scale flooding ex-

periments, to introduce explanatory variables into the failure probability. The de-

veloped fragility model was validated using several metrics, including three types

of Bayesian p-values. An application of the fragility model is provided by coupling

the work to a flooding simulation. By analyzing the probabilistic risk associated

with component flooding, data informed flooding fragility can improve simulation

to realistically model component behavior before a flooding event occurs.



Chapter 2

Bayesian Data Analysis

The approach selected to analyze component failure in flooding scenarios are

fragility models. Most fragility modeling in the nuclear industry has been focused

on seismic component fragility determination. In a seismic fragility model, the

single vertical ground acceleration variable is used to completely characterize the

failure probability of structures or components of interest. These fragility models

have been simple monotonically-increasing functions that define the probability

of a certain failure mode as:

Pf (A) = f(
ln( A

Am
)

bR
) (2.1)

where f is the standard Gaussian cumulative distribution function (CDF), A is the

peak ground acceleration, Am is the median ground acceleration, and bR is the log

standard deviation of randomness [16]. An example of a seismic fragility model’s

plot is shown in Figure 2.1.

However, other observable parameters may be better indicators for the poten-

tial of failure. Expanding upon the seismic example, these observables could in-

clude the detailed characteristics of the earthquake such as X, Y, and Z components

of the ground motion; frequency of the waves; the age of the component; the an-

chorage of the component; the specifics of the component type; or any combination

of the above.

Limitations found in these traditional fragility models include simplistic (single

driving parameter) and excessive conservatism. Some flooding scenarios, such as

submersion or slow water-rise, may be sufficiently modeled with a simple one-

5
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Figure 2.1: Illustration of seismic fragility for an example component.

dimensional approach [16]. For complex flooding fragility modeling requiring

more observables, these issues will be avoided by moving to a more flexible, data-

informed approach—Bayesian fragility modeling through phenomena-driven re-

gression modeling. As stated by Box and Tiao [17], ”Bayesian inference alone

seems to offer the possibility of sufficient flexibility to allow reaction to scientific

complexity free from impediment from purely technical limitation.”

2.1 Overview of Bayesian Inference Process

Reverend Thomas Bayes’ famous paper, published in 1763, provides the basis for

the Bayesian inference method. He opened with the following [18]:

Given the number of times in which an unknown event has happened
and failed: Required the chance that the probability of its happening in a
single trial lies somewhere between any two degrees of probability that
can be named.

The problem contains two key parts. The first is the use of probability as a

means of expressing uncertainty about an unknown quantity of interest. The other
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is evaluating a conditional probability of failure in a single trial, given data on

previous failures. This implies one can learn about failure probability on the basis

of observed data. Bayes went on to propose a theorem combining conditional

and marginal probabilities of random variables in order to update a prior state of

knowledge.

2.1.1 Bayes’ Theorem

From the Bayesian perspective, both data and parameters can have probability dis-

tributions, and the task of Bayesian analysis is to build a model for the relationship

between parameters (q) and observables (y), and then calculate the posterior prob-

ability. The Bayesian method, therefore, relies on three items: an aleatory model,

a prior distribution for the parameter(s) of the aleatory model, and data associ-

ated with the aleatory model. An aleatory model pertains to stochastic or non-

deterministic events, the outcome of which is described using probability. The

posterior distribution for the model output function is developed in accordance

with Bayes’ Theorem [19], which is generally written as:

p(q|y) = p(q)p(y|q)
p(y)

(2.2)

where,

• p(q|y): Posterior distribution, which is conditional upon data (y) that is

known related to the hypothesis (q);

• p(q): Prior distribution, for knowledge of the hypothesis (q) that is indepen-

dent of data (y);

• p(y|q): Likelihood, or aleatory model, representing the process or mecha-
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nism that provides data (y);

• p(y): Marginal distribution, which serves as a normalization constant.

In Bayesian computation, it is not usually necessary to calculate the denomina-

tor p(y) to evaluate properties of the posterior, because it is a fixed constant that

does not affect inference. Bayes’ Theorem can be expressed simply as:

p(q|y) µ p(q)p(y|q) (2.3)

where proportionality is in relation to q [20].

In summary, the above equation takes our prior knowledge about the parame-

ters and updates this knowledge with the likelihood to observe the data for partic-

ular parameter values and gives the posterior probability. It essentially states:

posterior µ prior⇥ likelihood (2.4)

This process combines everything that is known about a particular data set and

model response to produce a posterior estimate of the output function’s probability

distribution.

2.1.2 Prior Distributions

A defining feature of Bayesian inference is the prior information taken into account

in the analysis. Therefore, a fundamental part of any Bayesian analysis is the prior

distribution. This distribution represents all that is known or assumed, including

uncertainty, about a parameter q before the observed data is analyzed. Prior dis-

tributions can be categorized several ways, with the basic division being between

informative and non-informative priors [21].
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An informative prior is not dominated by the likelihood and has an impact on

the resulting posterior distribution. Informative prior distributions can be either

objective, subjective, or a combination of both [20]. Objective input to the prior

distribution could include operational data, observational data from a previous

comparable experiment, or manufacturer provided information. In contrast, sub-

jective input can be based off of an analyst’s personal experience or judgements,

stating one’s beliefs regarding the parameter, the experiment, or opinions.

If the prior has minimal impact on the posterior distribution, it is non-

informative. The prior is also described as vague, flat, or diffuse. Non-informative

priors are intended to allow Bayesian inference when relatively limited infor-

mation is known about a parameter rather than there being a state of complete

ignorance as the name may suggest. The rationale for using a non-informative

prior is that a parameter’s prior information is not considered substantial relative

to the information provided by observed data [22]. In other words, inferences are

unaffected by information external to the current data.

2.2 Introduction to BUGS

Integration of functions plays an important role in Bayesian statistical analysis,

however, explicit evaluation of these integrals is only possible for a limited number

of special cases. When the posterior belongs to the same family of distributions as

the prior, meaning they are conjugate, the posterior distribution can be computed

analytically [20]. For example, a normally distributed prior on mean (µ) is conju-

gate with respect to a normal likelihood distribution [23]. The mathematics for this

Normal-Normal case are demonstrated below.

Assume the variance s2 is known, while the mean µ is unknown. For a

Bayesian analysis, a prior is specified for µ, p(µ). Suppose a normal prior,
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N(µ0, s2
0 ), such that

p(µ) =
1q

2ps2
0

exp

 
� (µ� µ0)2

2s2
0

!
(2.5)

where the mean and variance of the prior are specified by µ0 and s0. Additionally,

assume the data, y, is normally distributed with known variance such that the

likelihood function is given by

p(y|µ) =
n

’
i=1

1p
2ps2

exp
✓
� (yi � µ)2

2s2

◆
. (2.6)

Using Bayes’ Theorem, this gives a posterior, p(µ|y), of

p(µ|y) µ exp

 
� (µ� µ0)2

2s2
0

� Ân
i=1(yi � µ)2

2s2

!
. (2.7)

up to a constant of proportionality, which has been dropped for simplicity. In

fact, any term that does not include µ can be viewed as a proportionality constant,

factored out of the exponential, and dropped. Rewriting the terms inside the ex-

ponential using algebra gives

�1
2

"
µ2 � 2µµ0 + µ2

0
s2

0
+

Â y2 � 2nȳµ + nµ2

s2

#
(2.8)

�1
2

"
µ2s2 � 2s2µµ0 � 2s2

0 nȳµ + s2
0 nµ2

s2s2
0

#
(2.9)

�1
2

"
(ns2

0 + s2)µ2 � 2(s2µ0 + s2
0 nȳ)µ

s2s2
0

#
(2.10)
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�1
2

2

64
µ2 � 2µ

(s2µ0+s2
0 nȳ)

(ns2
0+s2)

s2s2
0

(ns2
0+s2)

3

75 (2.11)

�1
2

2

64
(µ� (s2µ0+s2

0 nȳ)
(ns2

0+s2)
)2

s2s2
0

(ns2
0+s2)

3

75 . (2.12)

Therefore, the posterior function of µ is normally distributed with mean

µn =
(s2µ0 + s2

0 nȳ)
(ns2

0 + s2)
(2.13)

and variance

s2
n =

s2s2
0

(ns2
0 + s2)

. (2.14)

Some additional information can be gained from the mean and variance. Rear-

ranging the variance gives

1
s2

n
=

n
s2 +

1
s2

0
. (2.15)

Thus, the inverse of the variance, know as precision l, of the posterior is the preci-

sion of the prior plus the precision of the data scaled by the number of observations

n. Likewise, applying the following substitutions for precision

l =
1
s2 l0 =

1
s2

0
(2.16)

the mean can be rewritten as

µn =
l0µ0

nl + l0
+

nlȳ
nl + l0

(2.17)
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The mean of the posterior is a weighted average of the prior mean µ0 and the data

mean ȳ. The weight on the prior mean is proportional to its precision. Also, the

weight on the data mean is proportional to its precision. Therefore, if the prior

mean is very precise relative to the data mean, it will be highly weighted. Alter-

natively, if the data mean is more precise relative to the prior mean, it is given a

larger weight.

While solving for the posterior distribution analytically is possible for conju-

gate cases, usually problems will involve complex distributions and explicit eval-

uation is not possible. Traditionally, statisticians would be forced to use numer-

ical integration or analytical approximation techniques. However, there are now

several powerful software programs that exist for full Bayesian inference. One of

the most widely used by statistical practitioners is the BUGS (Bayesian inference

Using Gibbs Sampling) family of programs. The most popular packages from the

BUGS family are WinBUGS and OpenBUGS. Both software packages are freely

available online, with the later being an open source version. A basic guide to run-

ning OpenBUGS is provided in Appendix B. There are several methods devised

for construction and sampling complex Bayesian posterior distributions. BUGS

software utilize Markov chain Monte Carlo (MCMC) methods.

2.2.1 Markov Chain Monte Carlo Method

MCMC is a general method based on randomly sampling values from a prior dis-

tribution to approximate the posterior distribution p(q|y). The sampling is done

sequentially, with the distribution of the sampled parameter depending on the

value from the previous step only, forming a Markov chain [22].

As defined in probability theory, a sequence of random vectors q0, q1, q2, ...

forms a Markov chain if, for any iteration t, the distribution of qt+1 given all
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previous q0s is given by

qt+1 ⇠ ptrans(y|q(t) = y(t)). (2.18)

where the right hand side is called the transition distribution of the Markov

chain [20]. It defines the conditional probability of moving to any particular

new value given the current value of the chain. With appropriate transition

probabilities, as t ! •, the Markov chain will converge to a unique stationary

distribution, the posterior distribution. Therefore, the key to MCMC method is the

approximate distributions are improved at each step in the simulation, and after

running the simulation long enough, converging to the posterior distribution. An

additional feature of Markov chains is that they are memoryless. Each variable in

the chain depends directly on its predecessor and no new knowledge comes from

knowing the history of events.

Many algorithms exist for performing sampling for a wide range of applica-

tions. OpenBUGS uses the following: Gibbs, Metropolis-Hasting, and slice sam-

pling [24]. Of these three, the Gibbs sampler is one of the mostly widely used

algorithms for simulating Markov chains.

2.2.2 Gibbs Sampling

The Gibbs sampler is a special case of the Metropolis-Hastings algorithms [20]

used in simulating multidimensional Markov chains by dividing the parameter

vector q into k subvectors, q = (q1, q2, ..., qk). For each iteration t, the subvector

is sampled, conditional on the most recent values for all other subvectors. The

algorithm proceeds as follows [22]:

1. Choose initial (t = 0) starting values for each component, q
(0)
1 , q

(0)
2 , ..., q

(0)
k .
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2. Sample, from the full conditional distribution, new values for each element

of q by cycling through the following steps:

(a) Sample a new value of q1, given the most recent values of all other ele-

ments of q and the data.

q
(1)
1 ⇠ p(q1|q

(0)
2 , q

(0)
3 , ..., q

(0)
k , y) (2.19)

(b) Sample a new value of q2, given the most recent values of all other ele-

ments of q and the data.

q
(1)
2 ⇠ p(q2|q(1)1 , q

(0)
3 , ..., q

(0)
k , y) (2.20)

Note that the most recent value for q1 is now q
(1)
1 .

(c) ...

(d) Sample a new value of qk.

q
(1)
k ⇠ p(qk|q

(1)
1 , q

(1)
2 , ..., q

(1)
k�1, y) (2.21)

This completes one iteration of the Gibbs sampler.

3. Repent step 2 for many iterations (t = 2, 3, ..., T), updating conditional on the

most recent values of all other components of q.

The power behind Gibbs sampling is that simulation of a complex, multivari-

ant posterior distribution is reduced to a sequence of algorithms for sampling a

simpler conditional distribution [20]. Figure 2.2 provides a graphical illustration

of the Gibbs sampler for a simple two-parameter case.
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Figure 2.2: (a) First iterations of the Gibb sampler for a two-parameter problem.
The contours show the target posterior distribution and the full conditional distri-
butions are above and to the right. (b) Gibbs sampler after five iterations [20]
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Model Checking and Comparison

After constructing a probability model and computing posterior distributions for

all estimated parameters, the next step of a Bayesian analysis includes checking

that the model adequately represents the data and is plausible for the purpose for

which the model will be used. Note, however, it is not a matter of selecting the

”correct” model or asking whether a model is ”true.” Probability models in most

data analysis use assumptions to reasonably approximate reality and will not be

perfectly true. British statistician George Box wrote the famous aphorism [25],

”All models are wrong, but some are useful.” Instead, model checking is used

to identify failings in the probability model that may limit its utility [19]. Model

criticism and comparison, therefore, involves a degree of judgement by the analyst

and cannot be strictly reduced to a set of formal rules [20].

3.1 Model Checking Procedures

There are multiple ways of assessing a model’s performance. Available model

checking procedures include pivotal discrepancy measures, prior and posterior

predictive checks, sampled predictive p-values, and predictive probability inte-

gral transform tests, to just name a few. Each approach possesses good statistical

properties, but many have limits in application. Some procedures require addi-

tional data from previous studies (prior predictive checks), while several other

approaches utilize double-sampling methods that increase the computational in-

tensity of a Bayesian analysis [26]. The approach selected in the presented work for

model checking is posterior predictive checking, a useful direct way of assessing

the fit of a model to various aspects of the data. A general approach to posterior

16
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predictive checking is discussed in the following section. Additionally, residual

tests are presented for informal model criticism and outlier identification.

3.1.1 Posterior Predictive Checks and Bayesian P-Value

Posterior predictive checks are a primary form of Bayesian model checking used

to assess the fit of the model to various aspects of the data. The procedure is based

upon the following assumption: if a given model fits, then data simulated or repli-

cated under the model should be comparable to the real-world observed data the

model was fitted to [22]. In other words, the observed data should be plausible

under the posterior predictive distribution. If any systematic differences occur be-

tween simulations and the data, it potentially indicates that model assumptions

are not being met.

Let q be the parameter of the aleatory model that generates the observed data

y. The notation yrep is used to denote a replicated data set under the model being

checked. This replicated data could have been observed or would be observed if

the experiment that produced y was replicated with the same model and q that

produced the observed data. The posterior predictive distribution is then defined

as [22]:

p(yrep|y) =
Z

p(yrep|q)p(q|y)dq. (3.1)

The above equation averages the likelihood function for the replicated data values

over the posterior distribution for q in order to obtain the posterior distribution for

the replicated data, given the observed values.

The model is checked for deviations from an assumed parameter form by

means of test quantities or discrepancy functions, T(y, q), that depend on both
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data and parameters. A check is made whether T(y, q) is compatible with the

simulated distribution of T(yrep, q) by calculating a Bayesian p-value [22]:

pB = Pr(T(ypred, q) � T(y, q)|y)

=
ZZ

I(T(ypred, q) � T(y, q))⇥ p(ypred|q)p(q|y)dypreddq,
(3.2)

where I is the indicator function. The p-value is obtained by seeing how often the

discrepancy function, based on predictive data, is less than the observed discrep-

ancy, as illustrated in Figure 3.1.

Figure 3.1: Graphical representation of predictive model checking.

Regarding the choice of discrepancy functions, focus is given to diagnosing

global lack of fit rather than discovering outliers [26]; a task given to residual

calculations. A brief summary of candidate discrepancy functions considered is
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provided in Table 3.1

Table 3.1: Discrepancy functions used for Bayesian model checking.

Name Definition

c2 T(y, q) = Âi
(yi�E(yi|q))2

Var(yi|q)

Likelihood ratio statistic T(y, q) = 2 Âi yi log( yi
E(yi|q)

)

Freeman-Tukey statistic T(y, q) = Âi(
pyi �

p
E(yi|q))2

Cramer-von Mises statistic T(y) = Ân
i (F(yi)� 2i�1

2n )2

Note that ideally model checking should be based on new data, although in

practice the same data is generally used for both developing and checking the

model. This means Bayesian p-values based on these checks tend to be conserva-

tive [20]. However, this does not imply that posterior predictive checks lack value.

Given that tests are conservative, small (less than 0.05) and large (greater than 0.95)

p-values strongly suggest lack of fit. P-values closest to 0.5 indicate a high degree

of predictive capability [19]. This concept of Bayesian p-value is graphically repre-

sented in Figure 3.2. Again, the checks are used to understand a model’s limits of

its applicability in reality and not for acceptation or rejection.

3.1.2 Residuals

Residuals measure the discrepancy between the observed data and an assumed

model. Informal tests based on Pearson and deviance residuals can be used to

identify obvious assumption violations. Note that these analyses are generally

carried out informally in Bayesian application, since all residuals depend on q and

have posterior distributions [26]. Therefore, they are not truly independent as re-
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Figure 3.2: Depiction of the Bayesian p-value predictability [19].

quired in unbiased application of goodness-of-fit tests.

A standardized Pearson residual is defined as:

ri =
yi � E(yi|q)p

Var(yi|q)
, (3.3)

where E(yi|q) is the expected value and Var(yi|q) is the variance. Since it is con-

sidered a function of random yi for a fixed q, Pearson residuals should generally

take on values between -2.0 and 2.0 [26]. Values falling outside of this range would

represent outliers.

Residuals can also be based on a saturated version of the deviance, defined as:

DS(q) = �2 log p(y|q) + 2 log p(y|q̂S(y)), (3.4)

where q̂S(y) are the saturated estimates. For example, the saturated deviance for a

binomial distribution is

Binomial : DS(q) = 2 Â
i

⇢
yi log


yi/ni

qi

�
+ (ni � yi) log


1� yi/ni

1� qi

��
. (3.5)
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Models for which saturated deviance is appropriate, such as Poisson and binomial,

the rule of thumb for a rough assessment of the fit is the mean saturated deviance

should approximately equal sample size n [20].

3.2 Model Comparison using Deviance

Following model checking, comparisons can be made on the performance of alter-

native hypothesized models. It is not an uncommon occurrence for more than one

probability model to provide an adequate fit to the data. These models may differ

in prior specification, link function selection, or which explanatory variables are

included in the regression, to name a few. Therefore, an analysis should not only

examine models to see how they fail to fit reality, but compare how sensitive the

resulting posterior distributions are to arbitrary specifications using any number

of model comparison or performance metrics.

There are a variety of Bayesian model comparison methods that can be broadly

divided into two different approaches. The first is based on Bayes factors, a like-

lihood ratio of two contending hypotheses, and the second is based on informa-

tion criteria, which are measures of the relative fit. Commonly discussed informa-

tion criteria are Bayesian Information Criteria (BIC) for non-hierarchical models

and Akaike Information Criteria (AIC) or Deviance Information Criteria (DIC) for

selecting among hierarchical models. Bayes factors require proper prior distri-

butions, which are not required for DIC or AIC. Additionally, Bayes factors are

known to be difficult to compute in MCMC. DIC is a generally straight forward

computation and no additional scripting is needed to calculate it in OpenBUGS,

making it the comparison approach selected for this work and discussed further

below.
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3.2.1 Deviance Information Criterion

Deviance Information Criteria is a measure of model fit that can be applied to

Bayesian models and is applicable when the parameter estimation is done using

techniques such as Gibbs sampling. It is particularly useful in Bayesian model

selection problems where the posterior distributions of the model have been ob-

tained by MCMC simulation. DIC is recommended for selection among hierar-

chical models. A hierarchical model, also referred to as a multilevel model, have

mutual dependence on the selected parameters that affect the modeling [27].

Mathematically, DIC is calculated as

DIC = Dbar + pD (3.6)

pD = Dbar� Dhat (3.7)

where pD is the effective number of parameters, Dhat is a point estimate of the

deviance, and Dbar is the posterior mean deviance [20]. In OpenBUGS, Dbar is

automatically monitored by the node called deviance and requires no additional

scripting [24].

As a rule of thumb, the model with the smallest DIC usually indicates the better

fitting model. Note, however, only differences between models in DIC are impor-

tant, not strictly absolute values. While it is not easy to define what constitutes

an important difference, the following rough guide can be used for DIC compari-

son [20]:

• Differences greater than 10 can be used to rule out the model with the higher

DIC.
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• Differences between 5 and 10 are substantial.

• Differences less than 5, there is uncertainly about choice of model. Other

methods may need to be considered, especially if models make different in-

ferences

Note that these considerations include negative values for the DIC, which occur

in cases where the deviance is negative. It must also be noted that since DIC is a

measure of relative fit, a model with the smallest DIC can still be a poor fit for the

data [19].
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Preliminary Example Analysis

To illustrate the possibility of a Bayesian approach for fragility modeling, the fol-

lowing preliminary example is provided from reference [19], which estimates the

probability of O-ring failure in the solid-rocket booster motors of a space shut-

tle. For this example, pressure and temperature may be leading indicators of

failure and information about these explanatory variables is incorporated into the

Bayesian inference.

4.1 Model for NASA O-ring Distress

An O-ring is a torus shaped mechanical gasket designed to seal field joints between

each fuel segment, as shown in Figure 4.1. Each shuttle had three primary and

three secondary O-rings with one of each type having to fail to cause a disastrous

failure at launch like the Challenger in 1986. Table 4.1 shows data taken from

the NASA Space Shuttle program related to O-ring thermal stress impacts. The

column labeled ”distress” represents erosion of the O-ring or blow-by of hot gases.

There are six field O-rings on a shuttle, so the number of distress events is an

integer in the interval [0,6].

To carry out the quantitative model analysis, two parts are required. First, a

model that represents the failure of an O-ring during a launch of the spacecraft.

A commonly-used model for failures-on-demand is the binomial. Second, the key

variable, p in a binomial model, is the failure probability on demand. However,

for the purposes of fragility modeling, it is desirous to determine if and what ob-

servable phenomena drives failure. Thus, the parameter p is turned into its own

model.

24
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Figure 4.1: Solid rocket cross section showing location of O-rings [28].

For the O-ring example, the number of stress events is modeled as binomial

with parameters p and n = 6 for the six O-rings potentially challenged during

each launch. In this model p is possibly a function of both temperature and applied

leak-test pressure. Additionally, since parameter p represents a probability, it must

be restricted between the interval [0,1]. A common approach to constrain this is to

use the logit relationship for p:
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Table 4.1: O-ring thermal stress data prior to launch of Challenger in January
1986 [19].

Flight Distress Temperature (�F) Pressure (psig)

1 0 66 50
2 1 70 50
3 0 69 50
5 0 68 50
6 0 67 50
7 0 72 50
8 0 73 100
9 0 70 100

41-B 1 57 200
41-C 1 63 200
41-D 1 70 200
41-G 0 78 200
51-A 0 67 200
51-C 2 53 200
51-D 0 67 200
51-B 0 75 200
51-G 0 70 200
51-F 0 81 200
51-I 0 76 200
51-J 0 79 200
61-A 2 75 200
61-B 0 76 200
61-C 1 58 200

logit(p) = ln(
p

1� p
) (4.1)

The fragility model in this case will look at three possibilities: that p is deter-

mined by both pressure and temperature, that temperature alone drives failure, or

pressure alone drives failure of the O-ring. The above cases are modeled as:

logit(p) = a + bT + cP (4.2)
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logit(p) = a + bT (4.3)

logit(p) = a + cP (4.4)

This example analysis is solved to obtain values for the coefficients of the ob-

servables, namely a, b, and c using OpenBUGS. The OpenBUGS script for the first

model in Equation 4.2, which includes both temperature and pressure, is shown in

Table 4.2 using the binomial distribution dbin(p[i], 6). Diffuse priors are used for

the model parameters. Additional information related to these parameters, such

as testing results or manufacturer specifications, could be included accordingly. To

solve the other fragility models show in Equations 4.3 and 4.4, the script would be

modified for the logit(p) line.

Table 4.2: OpenBUGS script for Bayesian regression model for O-ring fragility.
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In addition to the parameter estimate calculations, the Bayesian p-value for

each model is obtained. The Bayesian chi-squared statistic is used for this example

to calculate the p-value as a quantitative measure of the predictive model valid-

ity [19]. Again, p-values closest to 0.5 indicate a high degree of predictive capabil-

ity.

The mean values calculated for the applicable parameters in the O-ring fragility

models and corresponding Bayesian p-values are shown in Table 4.3. P-values

indicate that Equation 4.4, which is only a function of pressure, is slightly better

than the other two models. However, these p-values are all similar, which suggests

they all perform adequately. Equation 4.2 could be selected to afford additional

flexibility in case additional data was ever to become available.

Table 4.3: Summary posterior estimates of logistic regression parameters for pri-
mary O-ring distress.

Parameter Equation 4.2 Equation 4.3 Equation 4.4

a (intercept) 2.1 5.2 -5.0
b (temperature coefficient) -0.10 -0.12 n/a

c (pressure coefficient) 0.012 n/a 0.013
Bayesian p-value 0.19 0.21 0.26

The parameters and their corresponding coefficients in Table 4.3 can be used

with the fragility model to calculate the failure probability for an O-ring as a func-

tion of pressure and/or temperature. For example, using the Equation 4.2 fragility

model and setting it equal to the logit Equation 4.5, the probability p can be solved

to determine:

p =
1

e�(a+bT+cP) + 1
(4.5)

Figure 4.2 shows the plot of the failure probability, or fragility probability, ver-
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sus temperature for the three fragility models, also know as the O-ring fragility

curves. At low launch temperatures, the probability that one of the six O-rings

experiences thermal stress is higher. Note that the Equation 4.4 fragility model

is invariant to changes in temperature (p = 0.024), since the regression model in

that case does not have the temperature parameter in the model. Also, full uncer-

tainty on the fragility model can also be determined, since the uncertainties on all

parameters are quantified via OpenBUGS.

Figure 4.2: Fragility model curves for O-ring example.
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Component Flooding Performance Experiments

The objective of component flooding experiments is to acquire data that can be

incorporated into models representing component fragility. Initial experiments

performed in a custom designed tank provide both failure data and experience to

inform future testing and apparatus modifications to expand the range and type of

data collected. The following sections provide detail on experiment apparatuses,

procedures, and results, as well as future experiments that could be undertaken.

5.1 Portal Evaluation Tank

To better understand the failure characteristics of doors and conduct door per-

formance experiments, the Portal Evaluation Tank (PET) was designed and built

to facilitate testing of doors under flooding conditions [29]. The PET, shown in

Figure 5.1, is a steel semi-cylindrical tank with a height and diameter of 8 ft. Its

design includes a 62.4 ft2 opening to the outside for installation of components

to be tested, a front water tray with a 90-degree v-notch weir to determine leak-

age rates, and the ability to hold up to 2,000-gal of water. The PET was initially

connected through 3 in. PVC pipes to a 5-HP submersible pump, which is located

inside a ⇠8,000-gal water reservoir. The initial PET piping configuration is shown

in Figure 5.2. Accompanying instrumentation initially included an inlet electro-

magnetic flow-meter, an ultrasonic depth sensor, and a pressure transducer. The

top of the PET is also equipped with pressure and air relief valves and a digital

pressure gauge.

Multiple hollow core door tests were conducted using the initial PET piping

configuration. This allowed for testing and data recording methodology to be de-

30
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Figure 5.1: The Portal Evaluation Tank.

veloped for door and future component experiments. These tests also provided

the opportunity to determine limitations of the PET and identify upgrades for the

system.

Following the initial door experiments, design work was pursued to improve

the PET capabilities. The initial PET door tests were limited to a single inlet flow

rate of ⇠300 gpm. Additionally, the initial piping configuration did not allow

tests where the tank could be pressurized to provide additional hydrostatic head.

Limitations associated with data recording were also identified in the initial tests.

Modifications to the PET were performed to support variable inlet flow rates up to

⇠4,500 gpm by connecting to a 60-HP pump. The modifications also support com-

pletely filling the PET and then relying on the pump and pressure and air relief
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Figure 5.2: Initial PET piping configuration.

valves to provide hydrostatic head to simulate water depths up to 20 ft. Addi-

tional data recording instrumentation was also installed in the system. Figure 5.3

shows the modified PET piping configuration.

The modified piping configuration can be divided into two regions: upstream

and downstream of the PET. The upstream region is the piping from the 60-HP

pump to the PET. It contains two electromagnetic flow-meters, a 12 in. and an 8 in.,

with accompanying butterfly valves to direct the water through each flow-meter.

The two different flow-meters allows for accurate measurement of a wide range

of flow rates. A recirculation valve and return line are also part of the upstream

region and can redirect water flow back into the reservoir when needed as a pump

return line. The upstream region ends at a tee joint located at the top of the PET.
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Figure 5.3: Modified PET piping configuration.

Water can then flow into the tank via a perforated center column. The circular

perforations evenly distribute water towards the walls of the tank, as seen in Fig-

ure 5.4, but avoid applying additional water jet force to the installed component.

Remaining water flows across the tee joint into the downstream region. This sec-

tion of piping contains an additional set of 12 in. and 8 in. flow-meters and three

distinct piping lines (12 in., 8 in., and 6 in.) with matching sized butterfly valves.

The downstream configuration serves two functions. The first function is to adjust

the water flow into the tank during filling and the second function is to adjust the

water pressure and flow rate in the system once the PET is filled. After the water

exits the downstream region, it returns to the reservoir. The overall PET piping

and instrumentation diagram for the modified piping configuration is shown in

Figure 5.5.
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Figure 5.4: Perforated center column inside modified PET configuration.

Figure 5.5: Modified PET piping and instrumentation diagram.

5.2 Measurements and Procedure

Besides the piping differences between the initial and modified PET configura-

tions, the measurements recorded for each configuration were also different. The

measurements recorded with the initial PET configuration included the flow rate
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into the PET, tank water depth, and water temperature. The modified PET configu-

ration measurements include upstream and downstream flow rates with multiple

pipeline sizes, two water depths for averaging, and water temperature. The PET,

regardless of the configuration, can also measure small leakage rates that do not

exceed the v-notch weir barrier and pressures for simulated hydrostatic head once

the PET is filled.

For both configurations, a testing procedure needed to be identified. First, each

test was started with pre-set valve positions. While the initial piping configuration

contained only one filling configuration, the modified PET configuration allowed

for water regulation to be adjusted by valves in both the upstream and down-

stream piping regions. These adjustments were done to set a filling rate or reach a

failure state. The measurements phase was started followed by the water supply

pump activation. The test concluded when either a failure state occurred or the

water leakage rate equalized or exceeded the filling rate and measurement ended.

Figure 5.6 shows the PET testing procedure.

5.3 Experiments and Data

Once the configuration, measurements, and procedure were identified, a door

performance experiment could be conducted. The following subsections provide

an explanation of each experiment performed in the order they were performed.

Therefore, the experiments start with wooden hollow core, outward swinging

doors and end with steel, inward swinging doors. This experiment order was

used based on the anticipated door performance. It was predicted that the

outward swinging hollow core door would fail with a lower water depth and little

potential damage where the inward swinging steel door would fail with a higher

water depth and potentially catastrophic damage. By conducting the experiments
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Figure 5.6: Flowchart for testing procedures.

in increasing order of anticipated water depth and potential damage, it allowed

for the testing procedure and experiment setup to be perfected to ensure safety

during the potentially high-water depth tests.

5.3.1 Hollow Core Door Experiments

The first components to undergo testing in the PET were wooden hollow core

doors, typically installed inside residences. These doors were selected for acces-

sibility and price to increase the number of tests that could be conducted. A

wall was built to support the pre-hung doorframe using decreased stud spacing

to strengthen the wall and ensure the door was the weakest component subjected

to testing. A constructed wall ready for installation is shown in Figure 5.7. The
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experimental approach subjected each door to a water rising scenario until catas-

trophic failure of the door occurred or the leakage rate equalized with the filling

rate.

Figure 5.7: Hollow core door set within constructed wall for installation.

The first experiments used an outward swinging door configuration. These

outward swinging door tests exhibited excessive bowing at the base of the door,

which resulted in the equalization of incoming water flow and leakage occurring

around the door. The bowing effect was temporarily addressed by securing a

2.4 in. plywood strip to the bottom section of the door frame, eliminating the door

bowing effect and reducing leakage around the door. For subsequent tests, the ori-

entation of the door was changed to an inward swinging arrangement. Since the

rising water inside the tank presses the door against the frame doorstop, a reduc-
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tion in the water leakage rate occurred. The results of the outward swinging door

tests (Test 1H and Test 2H) utilizing a plywood strip are shown in Figure 5.8(a) and

the results of the inward swinging door tests (Test 3H and Test 4H) are shown in

Figure 5.8(b).

The hollow core door for Test 1H failed at a height of 42.3 in. after 372 seconds

and the door for Test 2H failed at a height of 35.4 in. after 180 seconds. Both doors

failed when the latch released from the strike plate and the door was forced open,

allowing the water to flood from the PET. For the inward swinging door tests, the

hollow core door for Test 3H failed at a height of 40.8 in. after 392 seconds and

the door for Test 4H failed at a height of 38.9 in. after 256 seconds. Changing

the orientation of the hollow core doors meant the doors failed catastrophically

during testing, as seen in Figure 5.9. The hollow core doors broke laterally from the

approximate height of the handle, with the bottom portion of the door completely

disconnecting in Test 3H.

After modification of the PET, two additional inward opening hollow core door

experiments were performed. These two experiments served as trials to allow

acquaintance with the new equipment and capabilities and provided additional

testing data that increased the range of flow rates.

The two experiments, identified as Test 5H and Test 6H, were run through the

new 12 in. lines of the modified piping configuration. For Test 5H, the recircu-

lation valve was positioned open and the valves directing the flow through the

12 in. lines were also aligned open; all other valves were closed. The only valve

configuration change for Test 6H was the closure of the recirculation valve, which

caused the flow through the upstream region to achieve 4,000 gpm. Both doors

failed catastrophically during testing. The results of both experiments, showing
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(a) Outward opening, Test1H and 2H.

(b) Inward opening, Test 3H and 4H.

Figure 5.8: Water depth vs. time plots for hollow core door tests.
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Figure 5.9: Hollow core door at moment of failure in Test 3H (left) and Test 4H
(right).

the water depths achieved inside the PET, are shown in Figure 5.10.

Test 5H failed at a height of 32.3 in. after 40 seconds and Test 6H failed at a

height of 43.3 in. after 16 seconds. For hollow core door Test 6H, the closure of

the pump recirculation valve resulted in a short experiment time due to the high

flow rate and caused the door to rupture before the flow-meters reached steady-

state. The importance of allowing the flow-meters to reach a steady-state before

failure for data recording purposes was considered in subsequent experiments. A

summary of the hollow core door results, including non-failure tests, is given in
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Figure 5.10: Water depth vs. time plot for inward opening hollow core door exper-
iments, Test 5H and 6H.

Table 5.1.

Table 5.1: Summary of results for hollow core door experiments.

Test Depth (in) Flow Rate ( gal
min ) Temp. (F) Failure Orientation

– 23.2 291.5 66 0 Outward
– 20.8 292.5 67 0 Outward

1H 42.3 292.5 66 1 Outward
– 21.1 297 68 0 Outward
– 24.2 294.5 67 0 Outward

2H 35.4 292.5 67 1 Outward
3H 40.8 291 68 1 Inward
4H 38.9 294 68 1 Inward
5H 32.3 1038 62 1 Inward
6H 43.3 837 63 1 Inward

Due to the design of the PET and the metal frame necessary for securely in-

stalling walls, the bottom of the doorway is raised several inches. A simple sub-

traction of the bottom frame height from the water depth gives the corrected failure

depth of the door. Table 5.2 provides a summary of the hollow core door corrected
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depth results.

Table 5.2: Summary of corrected depth results for hollow core door experiments.

Test Depth (in)

– 18.7
– 16.3

1H 37.8
– 16.6
– 19.7

2H 31.9
3H 36.2
4H 34.3
5H 28.0
6H 39.0

5.3.2 Steel Door Experiments

Following the hollow core door experiments and modifications to the PET, water

rise tests progressed to industrial steel doors. Additional doubled studs were used

in the wall structure to ensure stability against greater volumes of water in the

tank applying pressure to the wall. The aim of these experiments was to test the

steel door to failure only and not the supporting wall structure. A complete wall

installation is shown in Figure 5.11

The first three outward swinging steel door experiments were run using the fol-

lowing valve configuration: the recirculation valve was open; all 12 in. lines were

open; the valves to the 8 in. and 6 in. lines were closed. The door was closed with

the door latch, but the deadbolt was disengaged. Figure 5.12 shows the resulting

water depths achieved for these three experiments. The calculated water flow rate

into the PET was 1,148 gpm for Test 1S, 1,130 gpm for Test 2S, and 1,120 gpm for

Test 3S.
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Figure 5.11: Steel door and wall installed in the PET.

The steel door in Test 1S failed at a height of 46.1 in. In Test 2S and Test 3S, the

door latch released at a similar time and water depth just above the height of the

door handle at 39 in. and 37.1 in., respectively. In each of the three experiments,

the door latch received enough force from the water to push the latch bolt inwards

and release from the strike plate, allowing the door to open as seen in Figure 5.13.

An additional five outward swinging steel door tests were conducted with only

the latch bolt engaged during testing. The 8 in. and 6 in. valves remained closed.

The upstream 12 in. valve configuration for Test 4S was half-open and the valve

configuration for Test 5S was three-quarters open. For the last three tests (6S, 7S,

and 8S), the upstream 12 in. valve configuration was positioned one-quarter open.
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Figure 5.12: Water depth vs. time plot for outward opening steel door, Test 1S, 2S,
and 3S.

Figure 5.13: Steel door at the moment of failure in Test 1S.

These valve adjustments varied the water flow entering the PET. The flow rates

in were 979 gpm for Test 4S, 1,133 gpm for Test 5S, 604 gpm for Test 6S, 593 gpm

for Test 7S, and 598 gpm for Test 8S. The water depths achieved before failure of

Tests 4S and 5S are shown in Figure 5.14. Figure 5.15 shows the PET water depths

achieved during Tests 6S through 8S.
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Figure 5.14: Water depth vs. time plot for outward opening steel door, Test 4S and
Test 5S.

Figure 5.15: Water depth vs. time plot for outward opening steel door, Test 6S, 7S,
and 8S.

The PET water depths at time of failure are similar for the last five tests; 37.8 in.

for Test 4S, 37.5 in. for Test 5S, 37.6 in. for Test 6S, 37.7 in. for Test 7S, and 37.1 in.

for Test 8S, regardless of the duration of experimentation. The difference in time
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is simply the result of the varied flow rates used to fill the tank. By comparing

results from these experiments, it is possible to conclude that outward swinging

steel doors have constant water depth failure behavior when only the latch bolt is

holding the door closed. The possible cause for higher water depths in the first

two steel door tests is discussed later.

The next three tests (9S, 10S, and 11S) were performed with the deadbolt lock

engaged. Test 9S was performed with the same constant valve configuration as Test

4S with a flow rate of 949 gpm, but unlike previous experiments, Tests 10S and 11S

valve configurations were not held constant throughout the testing duration. In

Test 10S, the recirculation valve and the downstream 12 in. valves were closed in

steps until all water flow was directed into the PET. Test 11S opened the upstream

12 in. valve and closed the downstream 12 in. valve in steps during testing to again

direct all water flow into the PET. The water depth achieved inside the PET can be

seen in Figure 5.16 for Tests 9S, 10S, and 11S. Using the deadbolt produced a slight

increase in the maximum depth before failure.

The step changes to the valves during Tests 10S and 11S are reflected in Fig-

ure 5.16. The decrease in water depth during Test 10S was the result of increased

upstream flow increasing the water velocity in the pipe. This was an expected

phenomenon due to the higher velocity water failing to separate into two streams

at the tee junction. Net water flow into the PET momentarily decreased while the

tank water continued to leak out around the door. PET water flow and filling was

restored when the downstream section was closed.

The results of the three individual deadbolt tests demonstrated some interest-

ing occurrences. Tests 9S and 10S experienced two failure stages, with each stage

corresponding to the failure of the bolt. After the tank had filled to a sufficient
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Figure 5.16: Water depth vs. time plot for outward opening steel door, Test 9S, 10S,
and 11S.

depth, the latch bolt failure occurred with an accompanying audible pop. The

door was then held closed only by the deadbolt until it failed from bending, as

shown in Figure 5.17, allowing the door to be pushed open by the water.

Figure 5.17: Deadbolt failure from Test 10S.

While Test 11S was also performed with the door latched and deadbolt en-

gaged, it is important to note that the deadbolt was not from the same manufac-
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turer as used in the previous two experiments. It was an aftermarket deadbolt

with a different internal assembly design. The original deadbolts are connected to

a hardened metal rod that failed, allowing the deadbolt to bend out of the strike

plate. The aftermarket deadbolt, however, connects to a metal U-shaped channel.

The channel twisted marginally, but kept the deadbolt set in the strike plate.

As stated previously, the valve configuration for Test 11S was not held constant

during the test. The water depth inside the PET initially stabilized at ⇠32 in. Up-

stream and downstream valves were adjusted and this led to the latch bolt failure

observed before, increasing the leakage rate around the door while only the dead-

bolt held the door in place. With further valve changes over time, all water flow

was eventually directed into the PET. While the deadbolt held for the entire test,

the door suffered a permanent bend. The bend at the bottom of the door caused

the flow into and out of the PET to equalize, and the test concluded. The final re-

sults were a failed latch bolt; a successful, but damaged deadbolt; and a bent steel

door at the level of the handle, see Figure 5.18.

Figure 5.18: Test 11S steel door bending during testing (left) and post testing
(right). The original position is indicated by a solid line and bent position by a
dotted line.

Test 12S and Test 13S were performed without a deadbolt and new latch han-
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dles. Test 12S had the same upstream valve configuration to Tests 6S, 7S, and 8S,

but only the 8 in. valve was opened downstream. Test 13S was conducted through

the upstream 8 in. line, with all other lines closed. These experiments served to

confirm the greater depth achieved in Test 1S could be attributed to dry untested

latches rather than an outlier anomaly. Test 12S and Test 13S results are shown in

Figure 5.19.

Figure 5.19: Water depth vs. time plot for outward opening steel door, Test 12S
and Test 13S.

The results, shown in Figure 5.19, recorded a maximum depth of 44.5 in. for

Test 12S and 41.4 in. for Test 13S; which are approximately 3.7% and 8.4% lower

than Test 1S, but ⇠15% higher than depths achieved from Tests 2S through 8S.

This demonstrates a slight degradation in the latch after initial testing with water,

although further testing with future latches will be necessary to confirm this claim.

Having initially tested steel doors oriented to open outwards from the tank,

the next test (14S) was performed with an unbolted inward opening steel door.

Rising flood water in this type of experiment will push the door against the steel

doorstops of the frame, preventing some bowing previously seen in experiments
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and decreasing the leakage rate around the door frame, but increase the likelihood

of damage to the door and its surrounding frame. Also, the force on the door latch

and/or deadbolt alone will not produce a failed state. Therefore, greater water

depths were expected to occur in the PET and a reinforced wall was designed

and installed for testing. The test used the 12 in. lines only, with the recirculation

valve positioned to half-open and the 12 in. upstream valve varied to control fill

time. Figure 5.20 shows the door during testing along with resulting damage.

Figure 5.21 shows the resulting water depths achieved for this experiment.

Figure 5.20: Inward swinging Test 14S at moment of failure (left) and post testing
(left).

The steel door in Test 14S failed at a height of 83.5 in., when the water reached

the top of the door. As expected, the change in door orientation significantly in-

creased the water depth and damaged the door. Further tests will be necessary to

fully characterize how inward opening steel doors fail. A compiled summary of

the steel door results, including non-failure tests, are given in Table 5.3 for non-

deadbolt doors and Table 5.4 for deadbolt doors. Depths corrected for the raised
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Figure 5.21: Water depth vs. time plot for inward opening steel door, Test 14S.

frame for all experiments are summarized in Table 5.5.

5.4 Future Experiments

Further component experiments can be conducted in the PET. To have accurate and

improved modeling, sizable data sets are required, including non-failure informa-

tion. Additional door experiments with the deadbolt engaged are necessary to ex-

panded the currently limited data set. Also, having only tested one inward open-

ing steel door to failure, additional experiments on inward opening steel doors

would also be needed to generate data. Using calculated leakage rates from pre-

vious tests, a step approach will be used to adjust the incoming water flow until

a failure state is reached, populating the data set. This step process could be con-

ducted for both deadbolt and inward opening testing scenarios.

Future experimentation using the PET could also subject a wall containing

feedthroughs to water incursion. Design specifications for feedthroughs used in

NPPs have already been acquired. These experiments would be the first exper-

iments to test several components at the same time. All feedthroughs would be
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Table 5.3: Summary of results for steel doors experiments, non-
deadbolt.

Test Depth (in) Flow Rate ( gal
min ) Temp. (F) Notes

1S 46.1 1148 67.4
2S 39.0 1130 63.3
3S 37.1 1120 63.1
4S 37.8 979 63.0
5S 37.5 1133 63.0
6S 37.6 604 63.0
7S 37.7 593 63.0
8S 37.1 598 63.1

12S 44.5 975 64.0
– 25.7 248 61.6 Non-Failure
– 17.0 117 59.0 Non-Failure
– 27.4 285 59.3 Non-Failure
– 30.9 397 59.4 Non-Failure
– 32.3 484 59.6 Non-Failure
– 24.3 247 60.2 Non-Failure
– 34.8 593 60.7 Non-Failure
– 37.5 696 61.0 Non-Failure
– 38.0 734 61.2 Non-Failure

13S 41.4 1025* 61.3
14S 83.5 1025* 61.3 Inward swinging
* Flow rate varied

Table 5.4: Summary of results for steel doors experiments,
deadbolt.

Test Depth (in) Flow Rate ( gal
min ) Temp. (F) Notes

9S 43.6 949 63.2
10S 42.6 2790* 63.3
11S 42.2 3858* 63.3 Non-Failure
* Flow rate varied

packed according to the standards and regulations necessary to create a fire bar-

rier between areas in a NPP.
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Table 5.5: Summary of corrected depth results for steel door experiments.

Test Depth (in)

1S 42.1
2S 35.0
3S 33.5
4S 33.9
5S 33.9
6S 33.5
7S 33.5
8S 33.1
9S 39.4

10S 39.4
11S 39.4
12S 41.5

– 22.7
– 14.0
– 24.4
– 27.9
– 29.3
– 21.3
– 31.8
– 34.5
– 35.0

13S 38.6
14S 80.5
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Developing a Model to Assess Component Fragility

Having conducted the flooding experiments and collected observational data on

door failures, development proceeded on stochastic models that analyzed the

fragility of components using explanatory variables. An explanatory variable

is a type of independent variable that is possibly predictive of a component’s

fragility in a regression analysis. As part of this development process, Figure 6.1

was created as a visual roadmap to the avenues of research that were taken over

the course of the work. The illustration begins with the door data. The following

sections of this chapter provide details on each branch and findings for developing

component fragility models dependent on explanatory variables. After checking

the regression models, a model selection is made. The final avenue of the roadmap

is applying the component fragility model to a flooding simulation, covered

in the next chapter. Places where a branch ends are potential areas for future

research and development, but fall outside of the scope of this work. Lastly,

OpenBUGS scripts and summary result tables of the posterior distributions for

models discussed below are provided in Appendix C.

6.1 Generalized Linear Regression Model

6.1.1 Background Analysis with Binomial Distribution

This section contains a summarized background on the binomial model develop-

ment work conducted alongside research colleague Sneha Suresh [30].

Using the example Bayesian regression analysis model presented in Chapter 4,

a flooding fragility model was developed using the then current data collected

54
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Figure 6.1: A visual roadmap to the model development process.

on hollow core door failure (Table 5.1) based on the assumption that the water’s

depth, flow rate, and temperature are potential variables to affect the door fragility.

This initial mathematical modeling uses the discrete binomial distribution to rep-

resent failure of a door installed in the PET during a rising water flood event. This

is a commonly used model for failure on demand with key parameters p, the prob-

ability of failure on demand, and trials n = 1 (only a single door is potentially

challenged during testing). Following the preliminary example and since param-

eter p represents a probability, it is constrained between 0 and 1 with the logit

function, defined in Equation 4.1.

The fragility regression model examined seven possibilities, with each of the

variables alone driving the model to failure, a combination of two variables driving

the model to failure, and a combination of all three variables driving the model to

failure. These regression models are:



Chapter 6: Developing a Model to Assess Component Fragility 56

logit(p) = intercept + aD (6.1)

logit(p) = intercept + bF (6.2)

logit(p) = intercept + cT (6.3)

logit(p) = intercept + aD + bF (6.4)

logit(p) = intercept + aD + cT (6.5)

logit(p) = intercept + bF + cT (6.6)

logit(p) = intercept + aD + bF + cT (6.7)

where a, b, and c are the coefficients of the covariate parameters represented as D,

F, and T for depth, flow rate, and temperature respectively.

A script for OpenBUGS was written for the above seven equations. Due possi-

bly to the small variation in the flow rates and water temperatures between tests,

the outcome of failure is random with respects to these variables. Therefore, there

is no predictive capability on flow rate and temperature and the model had to be

reduced to the depth variable alone to run when the logit function was used. This

script is shown in Table 6.1.
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Table 6.1: OpenBUGS Script for binomial model using depth variable.

The results, the depth coefficient and intercept posteriors summaries, are given

in Table 6.2. The Bayesian p-value was unavailable, possibly due to the number of

samples obtained being insufficient for the calculation.

Table 6.2: Results for Binomial model with logit function using the depth variable.

Parameter Mean Standard Dev. 97.5% Interval

intercept -126.3 64.8 (-272.9, -26.74)
a (depth coeff.) 4.39 2.32 (0.91, 9.73)

Bayesian p-value – – –

If the necessary coefficient posterior distributions are estimated, the failure

probability for the hollow core door can be calculated. Equation 6.7, for exam-

ple, would give the probability of failure for the case of the all three explanatory

variables as:
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p =
1

e�(intercept+aD+bF+cT) + 1
(6.8)

which is an ”S”-shaped sigmoid function and a fragility curve could be plotted.

Link Functions

Since no conclusive results were initially obtained using the logit function, other

available link functions that could provide complete results were researched. The

available link functions that are supported by OpenBUGS are log, logit, cloglog,

and probit [24]. They are defined as:

• log(p): natural logarithm of p

• logit(p) = ln( p
1�p )

• cloglog(p): complementary log log of p, ln(� ln(1� p))

• probit(p): inverse of standard normal cdf f(p)

For the binomial distribution specifically, alternatives to logit are the comple-

mentary log-log (cloglog) and probit. Scripts using the logit function encountered

errors running the combined flow rate and depth model, the combined depth and

temperature model, and the model using all three parameters. After verifying that

all seven models ran using the alternative link functions, cloglog was chosen for

further modeling.

A means of comparing models, since the Bayesian p-value was unavailable

initially, is the DIC discussed in Chapter 3. The rewritten cloglog scripts where run

using 100,000 samples, skipping the first 1,000 samples, and after the first update

the DIC monitor was set and a second update run (see Appendix C). According to
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the summarized results, shown in Table 6.3, the best fit model is the last column

with all three parameters driving the model to failure. It is also noted that the

models that incorporated water depth as a variable have significantly lower DICs.

Using the DIC comparison guide, the flow, temperature, and combined flow and

temperature models could be ruled out while the remaining models would need

validation metrics.

Table 6.3: Summary of coefficient estimates and DIC for Binomial model using
cloglog function for hollow core doors.

Parameter D F T D,F D,T F,T D,F,T

intercept -129 8.69 -13.09 0.75 -4.83 29.81 3.97
a

(depth coeff.) 4.46 n/a n/a 40.55 37.39 n/a 42.57

b
(flow rate coeff) n/a -0.03 n/a -4.13 n/a -0.23 -5.18

c
(temp. coeff.) n/a n/a 0.19 n/a -16.53 0.54 3.61

DIC 0.34 12.58 12.92 0.028 0.026 11.01 0.023

6.1.2 Alternative Continuous Distribution Models

The initial mathematical modeling discussed in the background section used a bi-

nomial regression model to represent failure of a door installed in the PET during a

raising water flood event. While trying to resolve some shortcomings of the Open-

BUGS script use of the logit function, it was found that the binomial model was

not running the complete number of samples assigned when a single component

was put on demand (n = 1). While only one door was challenged during PET

experiments, the logit script successfully ran all samples when n was any value

greater than one (n > 1). Since the binomial model was not executing when a sin-

gle door was put on demand, alternative models were investigated. The binomial
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might still be a useful aleatory model when the number of failure events is a posi-

tive integer in the interval [0, n+ 1] or the script can be altered to accommodate the

single trial case. The following alternative distributions are continuous and have

one or two parameters. In some cases, either of these parameters can be turned

into a regression model to represent different test environments.

Analysis with Exponential Distribution

Re-evaluating how demand was put on a door over a period of time while the

water raised inside the tank, the model interpretation could take a specified time

period into account. The observed data will then be in the form of door failure

times in addition to depth, flow rate, and temperature. The failed hollow core

door data, including time to failure, is given in Table 6.4.

Table 6.4: Data on inward swinging failures for hollow core doors.

Time (min) Flow Rate ( gal
min ) Depth (in) Temperature (F)

3.533 290.6 40.74 69.63
2.667 294.07 38.77 69.02

0.8667 1038 32.28 62.18
0.4667 837 43.34 63.49

The simplest aleatory model for such data, when time is a random variable of

interest, is an exponential distribution with unknown parameter l. Before apply-

ing the possible influencing variables to the model, a standard exponential script

was run using only the door failure times given in the first column of Table 6.4. The

script for the exponential aleatory model is shown in Table 6.5 with Cramer-von

Mises statistics for calculating the Bayesian p-value.

The parameter l has a specified prior distribution that represents the possible

state of knowledge about values of l based on past or vendor provided informa-



Chapter 6: Developing a Model to Assess Component Fragility 61

Table 6.5: OpenBUGS script for exponential aleatory model for door failure with
Jeffreys prior.

tion. Initially a Jeffreys non-informative prior was used in the script. For expo-

nential data, the Jeffreys prior is like a gamma distribution with both parameters

equal to zero. This is entered into OpenBUGS as dgamma(0.0001, 0.0001) and an

initial value must be provided for l. Table 6.6 shows the results using the Jeffreys

prior distribution.

Table 6.6: Results for standard exponential script with Jeffreys prior.

Parameter Mean Standard Dev. 97.5% Interval

l ( 1
min ) 0.53 0.27 (0.15, 1.16)

Bayesian p-value 0.63 n/a n/a
DIC 15.13 n/a n/a
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The prior distribution was then changed in the standard model script to a dif-

fuse normal prior, as used in the previous binomial regression model. Running the

script in Table 6.5 with the normal prior distribution dnorm(0, 0.0001) gives the

results found in Table 6.7. Checking and comparing both the p-value and DIC, the

fitting capabilities of the model are improved using the normal prior. This com-

parison also illustrates the possible influences prior distribution selection has on

any given model. The change in l could mean there is unexpected sensitivity to

the prior selection even though they are non-informative. This would need to be

addressed in a sensitivity analysis if chosen as the developed model.

Table 6.7: Result of standard exponential script with diffuse normal prior.

Parameter Mean Standard Dev. 97.5% Interval

l ( 1
min ) 0.66 0.296 (0.21, 1.36)

Bayesian p-value 0.6 n/a n/a
DIC 14.93 n/a n/a

Further improvement could be made to the exponential model by including

additional information, such as the environmental conditions. To determine what

observable phenomena drive failure, l is not specified by a prior distribution, but

turned into its own model. The seven potential explanatory regression models are:

lambda = intercept + aD (6.9)

lambda = intercept + bF (6.10)

lambda = intercept + cT (6.11)
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lambda = intercept + aD + bF (6.12)

lambda = intercept + aD + cT (6.13)

lambda = intercept + bF + cT (6.14)

lambda = intercept + aD + bF + cT (6.15)

The OpenBUGS script for all possible regression equations is shown in Table 6.8

and includes the Bayesian model check, p-value. Diffuse normal priors were used

for the coefficient prior distributions. It should be noted that while initial values

were provided, the chain still contained uninitialized variables, and OpenBUGS

was allowed to generate these values.

The model was analyzed with 1,000 burn-in iterations, followed by 10,000,000

iterations for parameter estimation. The code was run with the same number of

samples as outlined with the binomial model background. The results for each

coefficient, in addition to p-value and DIC, are summarized in Table 6.9 with full

summaries found in Appendix C.

The Bayesian p-value for the depth model (0.47) indicates a better fit than the

standard exponential model (0.6) and is close to the ideal 0.5 value. Taking into

consideration the environment at failure improved the model without over-fitting

the observed data. However, with calculated Bayesian p-values of 0.86, 0.34, 0.04,

0.37, 4.02E-5, and 8.54E-5 for the other respective six model equations far enough

from the ideal value, it is worth looking at different aleatory models. Changing the
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Table 6.8: OpenBUGS script for exponential aleatory model with Bayesian p-value
calculation.

model could give better predictive ability and there are several alternatives to the

exponential model.

Analysis with Lognormal Distribution

A lognormal aleatory model has two unknown parameters, commonly denoted by

µ and s. The shape of the distribution is fixed with the median determined by µ
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Table 6.9: Summary of coefficient estimates, p-value, and DIC for exponential
model for hollow core doors.

Parameter D F T D,F D,T F,T D,F,T

intercept 2.49 -42.92 3.55 -16.44 17.09 -6.16 -12.32
a

(depth coeff.) -0.04 n/a n/a -0.74 0.21 n/a -0.99

b
(flow rate coeff) n/a 0.15 n/a 0.16 n/a 0.49 0.29

c
(temp. coeff.) n/a n/a -0.04 n/a -0.36 -1.97 -0.44

p-value 0.47 0.86 0.34 0.04 0.37 4.02E-5 8.54E-5
DIC 15.61 41.02 13.12 56.35 13.89 213.8 115

and the other parameter, s, determines the spread of the distribution. This model

could possibly be improved by including the additional testing environment in-

formation. The parameter µ will capture these influences on the results.

The example OpenBUGS script shown in Table 6.10 implements a lognormal

aleatory model, time[i] ⇠ dlnorm(µ[i], t), with diffuse normal priors on the pa-

rameters of the µ regression model. Note that t is equal to 1
variance or 1

s2 . The

model was analyzed with 1,000 burn-in iterations, followed by 10,000,000 itera-

tions. The posterior distributions of the parameters are summarized, along with

Bayesian p-value and DIC, in Table 6.11.

From the lognormal consideration, all of the regression models perform reason-

ably well. The combined flow rate and water temperature model under-predicted

by approximately the same margin that flow rate over-predicted. The flow rate

model has the significantly smaller DIC in this consideration, 1.69 versus 10.79

and greater, so it would be selected under this comparison criterion.
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Table 6.10: OpenBUGS script for lognormal model.

Analysis with Normal Distribution

Like the lognormal distribution in the previous section, the normal distribution is

characterized by the same two parameters, µ and s. Therefore, the OpenBUGS

script will be similar to Table 6.10 with the influencing variables applied to µ, but

the aleatory model is input as time[i] ⇠ dnorm(µ[i], t). Table 6.12 summarizes the
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Table 6.11: Summary of coefficient estimates, p-value, and DIC for lognormal
model for hollow core doors.

Parameter D F T D,F D,T F,T D,F,T

intercept 0.67 4.22 -15.33 4.16 -12.3 0.85 10.81
a

(depth coeff.) -8.57E-3 n/a n/a 2.28E-3 -0.08 n/a 0.04

b
(flow rate coeff) n/a -0.01 n/a -0.01 n/a -8.73E-3 -0.01

c
(temp. coeff.) n/a n/a 0.24 n/a 0.24 0.04 -0.10

p-value 0.33 0.55 0.45 0.42 0.41 0.46 0.44
DIC 20.25 1.69 13.43 12.37 12.6 10.79 11.92

results from running the normal distribution script.

Table 6.12: Summary of coefficient estimates, p-value, and DIC for normal model
for hollow core doors.

Parameter D F T D,F D,T F,T D,F,T

intercept 0.34 7.46 -20.98 4.43 -20.77 -2.10 5.73
a

(depth coeff.) 0.04 n/a n/a 0.08 -0.08 n/a 0.07

b
(flow rate coeff) n/a -0.02 n/a -0.02 n/a -0.01 -0.016

c
(temp. coeff.) n/a n/a 0.35 n/a 0.39 0.12 -0.012

p-value 0.33 0.45 0.41 0.41 0.41 0.45 0.42
DIC 20.76 11.11 11.83 16.12 15.73 14.08 14.22

The Bayesian p-values are all reasonable choices, with all models under-

predicting the failure time. From this consideration, the flow rate model and the

combined flow rate and water temperature models are closest to 0.5. Next looking

at the calculated DIC for comparison, the flow rate model also has the smaller

DIC, 11.11 vs 14.08, so it would be selected under this criterion.
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Analysis with Weibull Distribution

The Weibull distribution is another alternative aleatory model for random dura-

tions, with two unknown parameters denoted as b and a. Unlike the lognormal

or normal distribution, where the shape of the distribution is fixed, b is a shape

parameter. If b equals 1, the Weibull distribution reduces to the exponential distri-

bution. The second parameter, a, is a scale parameter. OpenBUGS uses a slightly

different parameterization with the scale parameter as l = a�b.

Allowing either parameter to be turned into a model and applying the influ-

encing environment data could potentially improve upon this model. Therefore,

two scripts for the Weibull distribution were created which alternated between one

parameter capturing the influence of testing information and the other parameter

being given a prior distribution and monitored by OpenBUGS. The example script

shown in Table 6.13 sets b as its own model, b[i], and a prior to l. Note that to

run the code, the prior for the monitored Weibull parameter was set to a Jeffreys

non-informative prior. The results of Table 6.13 script are given in Table 6.14, and

the results from the alternate script that switched the roles of b and l are given in

Table 6.15.

For both Weibull considerations, the water depth model would be selected,

with the environment impact on l returning closer p-value of 0.46 to the ideal

target. It is also of interest that the b value of this model is 1.03, within rounding

of 1 where the Weibull reduces to the exponential distribution. Depth was also the

best-fit model for the exponential distribution.
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Table 6.13: OpenBUGS script of a Weibull distribution with influence on the beta
parameter.

Summary of Alternative Models

The following Bayesian p-values were closest to the ideal value, usually under-

predicting the failure time, for each distribution: exponential, 0.47; lognormal,

0.55; normal, 0.45; Weibull(b), 0.34; Weibull(l), 0.46. These are all reasonable

choices that divide between including water depth information (exponential,
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Table 6.14: Summary of coefficient estimates, p-value, and DIC for Weibull model
with environment impact on beta parameter for hollow core door.

Parameter D F T D,F D,T F,T D,F,T

intercept 10.24 -79.1 -6.38 -68.59 -1.13 -94.76 -102.1
a

(depth coeff.) -0.21 n/a n/a -0.44 -0.096 n/a -0.84

b
(flow rate coeff) n/a 0.28 n/a 0.3 n/a 0.26 0.295

c
(temp. coeff.) n/a n/a 0.13 n/a 0.11 0.31 0.74

l ( 1
min ) 0.24 0.57 0.22 0.40 0.22 0.61 0.32

p-value 0.34 0.29 0.38 0.18 0.27 0.28 0.15
DIC 15.43 63.56 16.09 64.05 15.73 49.37 49.38

Table 6.15: Summary of coefficient estimates, p-value, and DIC for Weibull model
with environment impact on lambda parameter for hollow core door.

Parameter D F T D,F D,T F,T D,F,T

intercept 1.986 -44.93 2.07 -52.66 2.78 -47.73 -4.26
a

(depth coeff.) -0.03 n/a n/a -0.79 -0.02 n/a -1.44

b
(flow rate coeff) n/a 0.15 n/a 0.29 n/a 0.39 0.38

c
(temp. coeff.) n/a n/a -0.02 n/a -0.01 -0.94 -0.697

b 1.03 2.38 1.34 1.82 1.155 2.22 1.67
p-value 0.46 0.98 0.36 2.36E-4 0.35 8.98E-3 5.03E-6

DIC 17.27 36.67 13.89 104.0 13.71 123.6 166.6

Weibull) and water flow rate information (lognormal, normal) in the modeling.

The flow rate model returned the significantly smallest DIC criterion for all

models with the lognormal distribution, justifying the additional complexity

of distributions with more than one parameter and the inclusion of additional

experimental information. Factoring in the environment at failure has also shown

to enhance a model’s reliability predictions.
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Using a continuous aleatory model is a fertile area for future dissertation re-

search. If work is continued looking into continuous distribution models as an

alternative model development path, a next step would be to include censored

data. A data point is a censored observation when the exact value is not known,

but some knowledge is know about possible values (e.g. lies above a point c or

within a specific interval). The most common application is in survival analysis.

The non-failure data collected during experiments should be included in the con-

tinuous distribution models as censored data. This would mean a larger data set

which is more ideal for model fitting.

For the next step of model development, working with several models high-

lighted the importance of prior distribution selection and it’s importance in de-

veloping a binomial regression model. Priors distributions play an important role

in Bayesian analysis and could have an impact on a models ability to run with-

out error. Taking this knowledge, the next phase of development returned to the

binomial distribution.

6.1.3 Returning to the Binomial Distribution

The Special Case of n=1

The initial shortcomings of using the binomial distribution was its apparent in-

ability to consistently run all possible logistic regression models for a single com-

ponent (n = 1). While changing the link function provided a workaround, the

cause of run error remained unknown. Work on alternative model distributions,

presented in the Section 6.1.2, highlighted the possible importance of prior distri-

bution selection to this problem and a possible solution approach.

While the logit function should transform the parameter p onto an appropriate
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scale, in this case probability of failure is between 0 and 1, in practice this was not

always occurring. Periodically, illogical or extreme values are being selected by the

sampler from the prior distribution. This can cause errors such as numerical over-

flow or, within the logistic regression, results in negative parameter values which

cannot be log transformed. The improper value prompted a binomial calculation

that OpenBUGS is unable to perform, causing the run to crash. One possible solu-

tion would be priors that are only distributed or truncated over positive values.

To test the influence positive priors have on the model execution, a simple bino-

mial model with only failure data and a water depth regression model were run us-

ing gamma distributions (dgamma(a, b)), uniform distributions (dunif(a, b)), and

beta distributions (dbeta(a, b)) with varying parameter values for each distribu-

tion (see Appendix C). At this time both hollow door and steel door data was

available for these investigatory trials. A flat distribution (dflat()), a non-proper

distribution available in OpenBUGS, was also tested, but was unable to produce a

complete run. From the options above, the uniform distribution was selected for

further testing. It allows precise cutoff options for comparing different spans of

values and gave reasonable p-values for the regression models.

The uniform distribution looked at the positive diffuse priors such as

dunif(0, 1000) and smaller more informed uniform priors (dunif(�10, 10) and

dunif(�50, 50)). These slightly informed priors with steel door data failed to pro-

duce results with the three explanatory variables case, depth and temperature case,

and for dunif(�50, 50) failed to run the flow regression model. The above tests

used the same prior distribution for all unknowns. A few mixed cases were run

where the intercept prior was assigned either dunif(�10, 10)or dunif(�50, 50) and

the covariate coefficients were assigned the positive diffuse dunif(0, 1000) prior
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distribution. Both mixed prior tests worked using the steel door data, but only the

first successfully ran using the hollow core door data.

While using the different uniform priors produced complete batches of runs

with calculated p-values, comparing the results revealed an introduced sensitiv-

ity in the model to the priors. Tables 6.16 and 6.17 present the depth coefficient

posterior results from several prior tests using the two data sets. The change in

posterior mean shows that the prior is taking preference in the analysis over the

experimental data. This is not the desired outcome when using non-informative

priors. Since no prior knowledge regarding a door’s performance in a flooding

scenario is being taken into account, data should take the preference.

Table 6.16: Comparison of depth coefficient posterior results for several prior cases
using steel door data.

Prior Mean Standard Dev. 97.5% Interval

dunif(0, 1000) 0.013 0.0095 (4.79E-4, 0.035 )
dunif(-10,10) intercept

dunif(0, 1000) coeff. 0.23 0.05 (0.11, 0.3)

dunif(-50,50) intercept
dunif(0, 1000) coeff. 0.91 0.29 (0.32, 1.35)

Table 6.17: Comparison of depth coefficient posterior results for several prior cases
using hollow core door data.

Prior Mean Standard Dev. 97.5% Interval

dunif(0, 1000) 0.028 0.02 (0.001, 0.07)
dunif(-10,10) intercept

dunif(0, 1000) coeff. 0.28 0.07 (0.12, 0.41)

Continued research into prior selection as a solution for the n = 1 case could

produce working results with additional development given to slightly informed

priors, along with improved initial values. This development path could provide
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future dissertation work. It should also be noted that subtle differences in pro-

grams could resolve some of these problems. Not all available programs, for in-

stance, use the same sampling approach. A similar model setup in R or JAGS could

run without additional considerations for the case of n = 1.

A more robust path was sought that could use non-informative priors and eas-

ily accommodate data sets from various component experiments without excessive

change. Rather than adjusting priors, the found solution focused on the parame-

ter that was failing to meet specifications. The binomial probability of failure , p,

needs to take on values between 0 and 1 in order for OpenBUGS to perform the

calculation, as referenced earlier. This requirement can be achieved by restricting

p using a couple of built in scalar functions, max and min. They are defined and

operate as follows:

• max(e1, e2) e1 if e1 > e2; e2 otherwise,

• min(e1, e2) e1 if e1< e2; e2 otherwise.

For the probability of failure to be properly scaled, the following criteria need

to hold true:

• return 1 if probability of failure is greater than 1,

• return 0 if probability of failure is less than 0,

• otherwise p.

The quantity p.bound[i]  max(0, min(1, p[i])) performs all three listed criteria.

Inserting p.bound into the the model script restricts the probability to lie between

0 and 1 and prevents OpenBUGS from crashing [31]. A logistic link function can

now be used when n = 1 for all regression models.
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Centering and Predictive Significance

At the beginning of model development, the water temperature data was in-

cluded as an explanatory variable that was expected to be eliminated as part of

the Bayesian analysis. Contrary to this assumption, some models explicitly using

temperature or a combination including temperature data have some of the small-

est DIC amongst the compared regression models (see Table 6.9 and Table 6.15).

To address the possibility of temperature as a failure influence, centering was used

on the covariates.

Interpreting coefficients in models with interactions can be simplified by sub-

tracting the mean, x = N�1 Â xi, of each input variable xi [20]. For example, the

temperature T in Equation 6.3 would be subtracted by T and the following logistic

regression would be fit:

logit(p) = intercept + c(T � T), (6.16)

where the data is now centered at zero.

Centering also typically increases the speed of convergence. MCMC conver-

gence issues can occur when the covariates are used directly. High posterior corre-

lation between the intercept and coefficients cause the Gibbs sampling algorithm to

run slowly. Centering the predictor variable essentially relocates the y-axis to the

average x = x, reducing the correlation and decreasing the number of iterations to

converge [31].

First using the hollow core door data, the single explanatory variable models

(D, F, and T) were run as a standard logit regression. The results are given in

Table 6.18. The predictor variables were then centered and the models run again
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for comparison, with results given in Table 6.19.

Table 6.18: Coefficient results for standard logit regression models using single
variables for hollow core doors.

Model Mean Standard Dev. 97.5% Interval

Depth 4.61 2.38 (0.97 , 10.02)
Flow Rate 0.16 0.13 (0.01 , 0.48)

Temperature -0.44 0.47 (-1.47 , 0.37)

Table 6.19: Coefficient results for centered logit regression models using single
variables for hollow core doors.

Model Mean Standard Dev. 97.5% Interval

Depth 87.23 59.37 (9.81 , 229.1)
Flow Rate 0.199 0.17 (0.008 , 0.64 )

Temperature -0.51 0.52 (-1.68 , 0.35)

The main effects of using explanatory variables are now interpretable based on

comparison to the mean of the data. While the coefficients of the flow rate and tem-

perature variables stayed small and relatively the same, the posterior mean of the

depth coefficient increased from 4.61 to 87.23. For hollow core doors, the predictive

difference is clearly higher than the comparison of flow rate or temperature.

The DIC for both sets of results are shown in Table 6.20. While the DIC for flow

rate and temperature models slightly increased by 2.9% and 1.1% respectively, the

DIC for the depth model decreased by 13.1%. Again, centering has increased the

predictive difference of water depth over flow rate and temperature.

Overall, the results of single variable hollow core door regression models in-

dicate water depth as the leading indicator of component failure. Also addressed

in these results is that water temperature is not important to the failing of a door.

It could possibly aid in improving a model with its inclusion along with another
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Table 6.20: DIC results for single variable regression models using hollow core
door data.

Model Stand. DIC Centered DIC

Depth 0.50 0.066
Flow Rate 14.48 14.9

Temperature 16.81 17.0

explanatory variable, but it would not be recommended for predictive analysis on

its own.

Looking at the steel door data, using the same single explanatory variable mod-

els, leads to a different discovery. Table 6.21 gives the results for the standard

models, and Table 6.22 gives the results when centering is applied. Again, depth’s

predictive difference is greater than flow rate, but the highest is temperature. Ad-

ditionally, temperature has the smallest DIC between the three models (Table 6.23).

Table 6.21: Coefficient results for standard logit regression models using single
variables for steel doors.

Model Mean Standard Dev. 97.5% Interval

Depth 1.66 0.91 (0.42 , 3.89)
Flow Rate 0.013 0.006 (0.004 , 0.028)

Temperature 2.56 0.88 (1.10 , 4.51)

Table 6.22: Coefficient results for centered logit regression models using single
variables for steel doors.

Model Mean Standard Dev. 97.5% Interval

Depth 2.05 1.26 (0.46 , 5.21)
Flow Rate 0.013 0.006 (0.005 , 0.028)

Temperature 7.85 4.69 (2.04 , 19.74)

To understand why temperature appears to be the leading indicator of failure,

the steel door data, along with its collection process, must be examined. Of the
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Table 6.23: DIC results for single variable regression models using steel door data.

Model Stand. DIC Centered DIC

Depth 13.86 14.39
Flow Rate 16.0 15.98

Temperature 8.294 8.98

nineteen test results recorded in Table 5.3, the first nine tests all resulted in door

failures. These nine tests were conducted exclusively during the spring. The re-

mainder of the tests, nine non-failure and one failure, where conducted in a single

day during the winter when the reservoir water was cooler. The results could

mean that warmer water temperatures cause steel doors to fail in flooding events,

implying a correlation of variables observed together. It is noted, however, that

correlation does not necessarily mean causation. The relationship could have al-

ternative explanations, such as a third-cause fallacy, where a spurious correlation

is mistaken for causation. A spurious correlation is a relationship in which events

or variables are associated, but not causally related, due to the presence of a third

factor [32]. Seasonal weather changing the interior temperature of the lab is a hid-

den third factor. Therefore, steel door flooding failure and water temperature may

be correlated with each other only because they are correlated with the weather

when testing was conducted. By conducting all non-failure tests in the cooler win-

ter conditions and majority of failures in the warmer spring, an unintentional bias

was introduced into the temperature data. This bias, that temperature impacts

failure, becomes apparent when looking at the centering comparison.

There is another means of verifying the introduced bias in temperature by look-

ing at the residuals. As explained in Chapter 3, Pearson residuals should take on

values between -2.0 and 2.0. Any data point with values outside this range repre-
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sent an outlier. If there is a bias introduced from when the tests where conducted,

the last data point, a failure during winter testing, should be considered an outlier.

Figure 6.2 shows the residual box plot for the temperature regression model. Note

that the last data point has an outlier residual value of 3.53 ± 6.037, confirming the

bias.

Figure 6.2: A box plot of the residuals for the temperature regression model using
steel door data.

Since the steel temperature data is biased, it will be dropped from considera-

tion as an explanatory variable for now. In experiments, spurious correlation can

be identified by controlling and extensively testing the relationship between de-

pendent and independent variables. For component flooding experiments, steps
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could be taken to control the temperature of the reservoir water. If future testing

corrects for this bias, temperature data could again be considered as part of the

Bayesian analysis for steel doors. Of the remaining depth and flow rate data, cen-

tering simplified interpreting coefficients and again indicated depth as a significant

indicator of failure.

Bayesian P-value Numerical Error

With the logit error resolved, there was one piece of model script that still occa-

sionally caused runs to crash that needed addressing. The c2 discrepancy function

used to calculate the Bayesian p-value would periodically have to be commented

out, effectively removing if from the script, to allow the coefficient’s posteriors to

be estimated. There was no notable pattern for which regression model would

run with the p-value calculation, so the execution of the discrepancy function was

looked at closer to resolve the error.

For the binomial distribution, the c2 discrepancy function is expressed as:

T(y, q) = Â
i

(yi � npi)2

npi(1� pi)
, (6.17)

where p and n are the binomial parameters for probability of failure and number of

trials, and y is the number of failures in n trials. One approach to find a numerical

error is to input extreme values into the equation and see how it behaves. In this

case, the extremes for probability of failure are p= 0 or 1. First looking at p= 0,

the denominator is multiplied by p and would become zero. For p= 1, the term

(1� pi) ! 0 and again the denominator would become zero. In both cases the

discrepancy function is attempting to divide by zero.

To avoid numerical errors if p= 0 or 1, a small # = 0.00001 can be added to the
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denominator. This prevents a division by zero without affecting the outcome and

allows a complete run with a p-value calculation. The c2 discrepancy function is

now given as:

T(y, q) = Â
i

(yi � npi)2

npi(1� pi) + #
. (6.18)

In addition to the c2, two additional discrepancy functions were researched for

p-value calculations. The likelihood ratio statistic and the Freeman-Tukey statis-

tic [26], listed in Table 3.1, for the binomial distribution are as follows:

Likelihood ratio : T(y, q) = 2 Â
i

yi log
✓

yi + #

npi + #

◆
, (6.19)

Freeman-Tukey : T(y, q) = Â
i
(
p

yi �
p

npi)
2 . (6.20)

Note the # has been included on the likelihood ratio statistic to avoid any numerical

errors. There are now three robust metrics for comparison when checking models.

Introducing Variability in the Model

Development of the logistic regression models so far has been interpreting directly

the failure response given some predictor(s) data. It is also possible to interpret in-

directly by incorporating an additional random variability. These models assume

that besides the observed variables, there could be an unobserved variable or ran-

dom effects. Therefore, the probability of the binomial distribution is allowed to

adjust by some small amount, li, for each observation.

Using the steel door observed data, a script was written where logistic regres-

sion equations contain a random or latent effect. Table 6.24 shows the model por-
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tion of the script. In the case of the depth model, previously given by Equation 6.1,

it would now be defined as follows:

logit(p) = intercept + aD + li, (6.21)

with li ⇠ N(0, s2) and unknown variance. A prior distribution is specified for s.

By allowing the probability to vary on an observation by observation bases, more

variability should be accounted for.

The resulting p-values and DIC for the depth, flow rate, and combined regres-

sion models are given in Table 6.25. The larger p-values (all greater than 0.95)

strongly suggest lack of fit. The regression models without variability are favorable

over the inclusion of unobserved effects for their better fit. Regression coefficients

are the main interest, especially for later simulation, over the random effects.

Table 6.25: P-values and DIC of logistic regression model with an added latent
variable using steel door data.

Model c2 Likelihood Ratio Freeman-Tukey DIC

Depth 0.97 0.97 0.97 0.41
Flow rate 0.99 0.99 0.99 0.13

Depth, Flow rate 0.99 0.99 0.99 0.08

6.2 Verification Case

As part of the model development process, several adjustments were applied to

the OpenBUGS script to increase the robustness. These changes included placing

a bound restriction on probability and adding a small e to p-value calculations so

numerical errors are avoided. To assure that these adjustments are not affecting

the results of the model, a verification case is needed. The NASA O-ring example

presented in Chapter 4 can be used to verify the developed model, as well as the
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Table 6.24: Script showing model portion of logistic regression model with an
added latent variable.
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model checking and comparison metrics.

Reference [19] recommends the temperature regression model for predictive

analyses. Using this model for verification, the OpenBUGS script for this model

is shown in Table 6.26. One thousand burn-in iterations were used, followed by

100,000 iterations to estimate the parameters. Table 6.27 shows the posterior mean,

standard deviation, and 95% credible interval for each parameter in the logistic

regression. Table 6.28 shows the same summary provided from Reference [19]. The

posterior distributions for a and b are approximately the same in both analyses.

The bound restriction does not appear to affect the posterior results.
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Table 6.26: Portion of developed OpenBUGS script for logistic regression on tem-
perature using primary O-ring distress data.
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Table 6.27: Summary posterior estimates of logistic regression on temperature us-
ing developed model.

Parameter Mean Standard Dev. 95% Interval

a (intercept) 5.215 3.18 (-0.01 , 10.45)
b (temp. coeff.) -0.12 0.049 (-0.20 , -0.04)

Table 6.28: Summary posterior estimates of logistic regression parameters, temper-
ature included as explanatory variable [19].

Parameter Mean Standard Dev. 95% Interval

a (intercept) 5.225 3.16 (-1.00 , 11.48)
b (temp. coeff.) -0.12 0.049 (-0.22 , -0.025)

The original analysis used the Bayesian c2 statistic to calculate the p-value and

DIC for model comparison (Table 6.29). The developed model analysis calculates

two additional p-values using the likelihood ratio and Freeman-Tukey statistics.

Table 6.30 shows the p-value and DIC from the verification analysis of the tem-

perature regression model. The c2 p-value and DIC are within rounding in both

analyses, verifying the small e does not affect results. The likelihood ratio and

Freeman-Tukey statistics calculate a larger p-value, closer to the ideal value. These

p-values still suggests that the temperature model performs adequately.

Table 6.29: Model-checking results for logistic regression of primary O-ring dis-
tress [19].

Explanatory Variables DIC c2

p-value

Temperature 35.75 0.21
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Table 6.30: Model-checking results for logistic regression on temperature using
developed model.

Explanatory Variables DIC c2

p-value
Likelihood ratio

p-value
Freeman-Tukey

p-value

Temperature 35.7 0.22 0.42 0.56

Finally, making use of the residual information, a box plot of the standard Pear-

son residuals is show in Figure 6.3. The 21st data point collected on flight 61-A has

a value outside the [-2.0, 2.0] interval and therefore represents an outlier in the

temperature data. The saturated deviance has posterior mean 20.16 (95% interval

18.19 to 24.26), and comparison with the sample size of 23 suggests that this model

fits adequately.

The results from the model verification show the developed model performs as

expected with the O-ring example data. The added robustness measures do not

affect the posterior results or create sensitivities. Also, the additional quantitative

measures of predictive model validity metrics provide further insight into the O-

ring data and model fit. The developed model is ready for final analysis of the

experimentally collected door data.

6.3 Model Results

The Bayesian model developed for the assessment of component fragility uses the

discrete binomial distribution with a logistic regression model for probability of

failure, p. It uses diffuse normal prior distributions (dnorm(0, 0.000001)) and has a

restrictive bound on probability to allow complete performance of the OpenBUGS

script. Model checking makes use of posterior predictive checks to calculate three

types of Bayesian p-values and a saturated deviance to assess adequacy of the
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Figure 6.3: A box plot of the residuals for the temperature regression model for
primary O-ring distress.

model fit. Comparison between regression models is based on the DIC.

Since each of the possible logistic regression models must estimate more than

one parameter, it is recommended that at least two chains are run in OpenBUGS.

Running multiple parallel chains that start at dispersed initial values around the

estimate of the posterior distribution allows diagnosis of convergence [19] [24].

Any values prior to convergence should not be included to estimate a parameter

and burn-in set accordingly.

A quantitative convergence check built into OpenBUGS is the Brooks-Gelman-

Rubin (BGR) diagnostic. It assesses convergence by comparing variance within-
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and between-chains. A normalized ratio, R, of these estimates tends towards 1 as

convergence is approached. For practical purposes, the ratio should be less than

approximately 1.2 to signify convergence [19].

The BGR diagnostic gives a plot showing the R ratio as red, the within-chain

estimates as blue, and the between estimates as green. R should start out greater

than 1 if the initial values are suitably dispersed and converge towards 1, indicated

on the plot by a dashed black line. The green and blue plotted estimates should

also converge to stability. A table listing the plot values can also be obtained from

the plot properties [24].

BGR convergence plots for each regression model are provided in Appendix D.

To ensure proper convergence of all parameter estimates, ten thousand burn-in it-

erations were used for the hollow core door results, except for the combined flow

rate and temperature model that required 20,000 burn-in iterations. Five thousand

burn-in iterations were used for all steel door results. The number of sample iter-

ations generated in updates after burn-in is specified below with each result.

6.3.1 Hollow Core Doors

When performing the model fit using the hollow core door data, the burn-in itera-

tions were followed by 110,000 iterations to estimate the parameters, except for the

combined flow rate and temperature regression model which used 120,000 itera-

tions. A second update followed after the DIC calculation was set. The OpenBUGS

script with regression models, prior distributions, and dispersed initial values is

shown in Table 6.31. A specific regression model is run by uncommenting the

script line and selecting its corresponding initial values.

Tables 6.32, 6.33, and 6.34 show the posterior mean, standard deviation, and

95% credible interval for each parameter for the single explanatory variable re-
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Table 6.31: Model portion of final developed OpenBUGS script for logistic regres-
sion using hollow core door data.
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gression models in the following order: depth, flow rate, and temperature. The

next cases considered the combination of two explanatory variables in the regres-

sion model. Table 6.35 shows the summary posterior estimates with depth and

flow rate as explanatory variables, Table 6.36 shows the summary posterior esti-

mates with depth and temperature as explanatory variables, and Table 6.37 shows

the summary posterior estimates with flow rate and temperature as explanatory

variables. The final case considered is the most complex regression model, which

includes all three variables as indicators of failure. Table 6.38 shows the summary

posterior estimates using the three observables. Included in each of these tables is

also the saturated deviance for checking the model fit. The remaining model check-

ing and comparison results for hollow core door failure are given in Table 6.39.

Table 6.32: Summary posterior estimates of logistic regression parameters for hol-
low core doors, water depth included as explanatory variable.

Parameter Mean Standard Dev. 95% Interval

intercept -1252.0 654.5 (-2444.0, -322.9)
depth coeff. 45.23 24.01 (11.53, 89.3)

sat. deviance 0.03 0.29 (0.0, 0.01)

Table 6.33: Summary posterior estimates of logistic regression parameters for hol-
low core doors, water flow rate included as explanatory variable.

Parameter Mean Standard Dev. 95% Interval

intercept -63.1 55.28 (-173.2, -4.33)
flow rate coeff. 0.22 0.19 (0.01, 0.59)
sat. deviance 13.83 2.32 (11.41, 18.45)
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Table 6.34: Summary posterior estimates of logistic regression parameters for hol-
low core doors, water temperature included as explanatory variable.

Parameter Mean Standard Dev. 95% Interval

intercept 34.2 34.58 (-15.36, 96.77)
temp. coeff. -0.51 0.52 (-1.44, 0.24)

sat. deviance 15.02 2.25 (12.87, 19.52)

Table 6.35: Summary posterior estimates of logistic regression parameters for hol-
low core doors, water depth and flow rate included as explanatory variable.

Parameter Mean Standard Dev. 95% Interval

intercept -1589.0 670.6 (-2790.0, -584.8)
depth coeff. 39.61 23.41 (8.82, 82.97)

flow rate coeff. 1.59 1.61 (-0.21, 4.82)
sat. deviance 0.04 0.41 (0.0, 0.01)

Table 6.36: Summary posterior estimates of logistic regression parameters for hol-
low core doors, water depth and temperature included as explanatory variable.

Parameter Mean Standard Dev. 95% Interval

intercept 5.05 999.2 (-1634.0, 1653.0)
depth coeff. 1142.0 596.7 (295.5, 2241.0)
temp. coeff. -501.8 266.4 (-989.9, -128.3)

sat. deviance 9.25E-4 0.05 (0.0, 0.0)

Table 6.37: Summary posterior estimates of logistic regression parameters for hol-
low core doors, water flow rate and temperature included as explanatory variable.

Parameter Mean Standard Dev. 95% Interval

intercept -124.6 91.96 (-286.6, 8.38)
flow rate coeff. 0.21 0.19 (0.02, 0.58)

temp. coeff. 0.93 1.09 (-0.74, 2.81)
sat. deviance 14.32 2.86 (11.05, 19.91)
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Table 6.38: Summary posterior estimates of logistic regression parameters for hol-
low core doors; water depth, flow rate, and temperature included as explanatory
variable.

Parameter Mean Standard Dev. 95% Interval

intercept -8.73 991.5 (-1633.0, 1627.0)
depth coeff. 1118.0 567.9 (335.9, 2168.0)

flow rate coeff. 129.1 109.4 (2.37, 341.9)
temp. coeff. -1061.0 528.6 (-2046.0, -346.8)

sat. deviance 0.001 0.07 (0.0, 0.0)

Table 6.39: Model checking and comparison results for logistic regression for hol-
low core doors using developed model.

Explanatory Variables DIC c2

p-value
Likelihood ratio

p-value
Freeman-Tukey

p-value

Depth 0.06 1.0 1.0 1.0
Flow Rate 15.08 0.08 0.38 0.24

Temp. 17.07 0.18 0.36 0.29
Depth and Flow Rate 0.06 0.99 0.99 1.0

Depth and Temp. 0.002 1.0 1.0 1.0
Flow Rate and Temp. 16.6 0.09 0.29 0.17

Depth, Flow Rate, Temp. 0.002 1.0 1.0 1.0

The saturated deviance for the flow rate model, the temperature model, and

the combined flow rate and temperature model compared with the sample size

of 10 suggests that these three models fit adequately. The saturated deviance for

models using depth as an explanatory variable indicate that the models’ fit fails to

represent the data. In contrast to the saturated deviance, the models that incorpo-

rated water depth as an explanatory variable have significantly lower DICs. Using

the DIC comparison guide, the flow, temperature, and combined flow and tem-

perature models, which have similar DICs, could be ruled out by the significant

difference.
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Next comparing the Bayesian p-values, the regression model with only flow

rate as an explanatory variable has the largest Bayesian p-value closest to 0.5 us-

ing the likelihood ratio (0.38). It also has nearly the same average p-value as the

model with only temperature. Again, the p-values for models using depth as an

explanatory variable indicate poor predictive capabilities.

Recommending a model for predictive analyses is not a straight forward de-

cision. As covered in the discussion on centering and predictive significance (see

Section 6.1.3), the water depth is a leading indicator of component failure over

flow rate and temperature. The significantly smaller DIC for models including

depth verifies the importance of water depth. However, model checking metrics

would recommend the model with only flow rate as a variable. It has the slightly

larger p-value closest to the ideal and from among the non-depth models it also

has the slightly smaller DIC. Looking back at the experiments conducted on hol-

low core doors, the majority (8/10) of tests were conducted using the initial PET

configuration limited to a single inlet flow rate. Additionally, no tests were specif-

ically conducted where the flow rate was less that the leakage rate to collect non-

failure data. Therefore, it is recommended to perform analyses with the flow rate

regression model until additional data may become available that’s collected over

a larger range of flow rate, including non-failure tests.

6.3.2 Steel Doors

For the case of steel doors, the burn-in iterations were followed by 105,000 itera-

tions to estimate the parameters. A second update followed after the DIC calcu-

lation was set. The OpenBUGS script with regression models, prior distributions,

and dispersed initial values is shown in Table 6.40. A specific model is run by

uncommenting the script line and selecting its corresponding initial values.
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Table 6.40: Model portion of final developed OpenBUGS script for logistic regres-
sion using steel door data.

Table 6.41 and 6.42 show the posterior mean, standard deviation, and 95% cred-

ible interval for each parameter when only a single observable, water depth and

flow rate respectively, are the explanatory variables in the regression model. Recall

that temperature has been eliminated due to an identified bias in the data for now.
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The third case considered is the more complex regression model, which includes

both depth and flow rate as explanatory variables. Table 6.43 shows the summary

posterior estimates for the two variable case. Included in each of these tables is also

the saturated deviance for checking the model fit. The remaining model checking

and comparison results for hollow core door failure are given in Table 6.44.

Table 6.41: Summary posterior estimates of logistic regression parameters for steel
doors, water depth included as explanatory variable.

Parameter Mean Standard Dev. 95% Interval

intercept -75.68 46.99 (-167.0, -20.48)
depth coeff. 2.05 1.26 (0.57, 4.5)

sat. deviance 12.88 2.27 (10.65, 17.43)

Table 6.42: Summary posterior estimates of logistic regression parameters for steel
doors, water flow rate included as explanatory variable.

Parameter Mean Standard Dev. 95% Interval

intercept -8.51 4.05 (-16.27, -3.39 )
flow rate coeff. 0.01 0.006 (0.005, 0.03)
sat. deviance 14.29 2.37 (12.07, 18.92)

Table 6.43: Summary posterior estimates of logistic regression parameters for steel
doors, water depth and flow rate included as explanatory variables.

Parameter Mean Standard Dev. 95% Interval

intercept -72.5 50.5 (-170.8, -13.02)
depth coeff. 1.83 1.36 (0.19, 4.46)

flow rate coeff. 0.007 0.006 (-0.002, 0.02)
sat. deviance 13.31 2.82 (10.1, 18.82)
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Table 6.44: Model checking and comparison results for logistic regression for steel
doors using developed model.

Explanatory Variables DIC c2

p-value
Likelihood ratio

p-value
Freeman-Tukey

p-value

Depth 14.42 0.19 0.38 0.33
Flow Rate 16.01 0.26 0.36 0.23

Depth and Flow Rate 15.66 0.14 0.29 0.21

The saturated deviance for all three models compared with the sample size of

19 suggests that all three models fit adequately. The DIC is nearly the same for

all three models, the smallest belonging to the depth model by a non-significant

amount. The model with only depth as an explanatory variable has the largest

Bayesian p-value using the likelihood ratio (0.38). It also has the slightly larger

average p-value than the regression model with only flow rate and the combined

model with both variables. Given the results, the model with only depth is recom-

mended for predictive analyses. This selected steel door fragility regression model

will also be used in Chapter 7 to demonstrate an application.

With depth selected as the explanatory variable regression model, the param-

eters in Table 6.41 are used with the fragility model to calculate the failure prob-

ability for a steel door as a function of water depth. The probability p is given

by:

p =
1

e�(�75.68+2.05x) + 1
(6.22)

where x is the given water depth. Figure 6.4 shows the plot of failure probability

versus water depth with 95% credible intervals. It should be noted that the mean,

shown in red, is close to the bound at low probabilities. This is due to a couple of

non-failure tests reaching water depths greater than some observed failure depths,
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bringing the mean near the credible interval at low fragility probabilities. This

fragility curve and probability of failure equation can now be applied to practical

applications, such as simulating a door failure during a flooding event.

Figure 6.4: Fragility curve showing probability of failure versus water depth plot-
ted in OpenBUGS. Blue curves reprsent the 95% credible intervals.

Prior Distribution Sensitivity Analysis

Before applying the chosen depth fragility model to a simulation, a sensitivity anal-

ysis to alternative prior distributions should be made. There is no such thing as the

true prior. If a specific choice of non-informative priors is influential, it could sug-

gest that a conclusion cannot be drawn from the data alone and more informative

priors based on background should be considered. At a minimum, a weakly infor-

mative prior would need to be determined.

For the sensitivity analysis of the non-informative priors, two alternatives

are considered: a flat distribution and a uniform distribution. A flat distribu-

tion, dflat(), is an improper uniform distribution that extends over the whole

real number line available in OpenBUGS. The proper uniform distribution, how-
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ever, can have explicit limits and should have large variance, for this case

dunif(�5000, 5000), to be non-informative.

A summary of the sensitivity analysis on the depth coefficient posterior is given

in Table 6.45 and illustrated in Figure 6.5. The coefficient’s posterior distribution

mean is unchanged by the alternative priors. Therefore, the posterior distribu-

tion of the depth coefficient does not have unintended sensitivities to the non-

informative prior distribution.

Table 6.45: Summary posterior estimates of depth coefficient; normal, flat, and
uniform distributions used as non-informative priors.

Prior Mean Standard Dev. 95% Interval

Normal 2.05 1.26 (0.57, 4.5)
Flat 2.05 1.27 (0.57, 4.5)

Uniform 2.05 1.27 (0.57, 4.5)

Figure 6.5: Box plot of the depth coeffificient estimates using normal, flat, and
uniform priors.
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Linking a Component Fragility Model to Simulation

7.1 Smooth Particle Hydrodynamics

Smooth Particle Hydrodynamics (SPH) is a method for modeling 3D fluid flow and

rigid body interactions. The particle-based method obtains approximate numerical

solutions to the equations of fluid dynamics, the Navier Stokes equations. SPH

was originally developed for solving astrophysical problem [33] [34], and later its

range of application extended to be used in fluid dynamics [35].

Two approaches are generally used for solving the Navier Stokes equations:

a grid based Eulerian approach or a particle based Lagrangian approach. Tradi-

tional computational fluid dynamics (CFD) requires an underlying stationary grid

when solving fluid equations of motion to determine properties at a fixed grid loca-

tion. SPH uses the mesh-free Lagrangian method to simulate flow. The Lagrangian

method tracks a particle as it moves through the simulation [36].

SPH works by representing the fluid particles, where the physical properties

and equations are based on the continuum equations of fluid dynamics. Physical

quantities are estimated by interpolation, meaning the property of one particle will

depend on the surrounding particles. The integral representation of a field variable

A at location r is defined as:

Ai(r) =
Z

A(r0))W(r� rj, h)dr0, (7.1)

where i denotes the particle of interest, W is the smoothing kernel, and h is the

smoothing length. In order to solve Equation 7.1, the integral can be rewritten into

numerical form as:

100



Chapter 7: Linking a Component Fragility Model to Simulation 101

Ai(r) = Â
i

Aj
mj

rj
W(r� rj, h), (7.2)

where j denotes the surrounding particles, m is the mass of the particle, and r is

the density of the particle. Also, the gradient and Laplacian of the summation

interpolate as follows:

rAi(r) = Â
i

Aj
mj

rj
rW(r� rj, h) (7.3)

r2Ai(r) = Â
i

Aj
mj

rj
r2W(r� rj, h) (7.4)

assuming the smoothing kernel(W) is first and second order differentiable [37].

The SPH approximation is illustrated in Figure 7.1. The smoothing kernels are

weighting functions that determine how much a neighboring particle affects the

particle of interest. Closer neighbors will have a larger influence than those farther

away. The smoothing length specifies a radius from the particle of interest. Any

surrounding particles in the radius will influence the particle of interest. Increasing

the smoothing length increases the number of influencing particles.

The smoothing kernel and smoothing length are incorporated into the equa-

tions of motion. When considering an incompressible flow of a Newtonian fluid,

the momentum conservation equation is given as:

dvi
dt

= �Â
j

mj

 
Pj

r2
j
+

Pi

r2
i
+ Pij

!
riWij + g, (7.5)

where v is the velocity vector, P is the pressure, Pij represents the viscosity term,

and g is gravity. It calculates the change of momentum of the particle of interest,
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Figure 7.1: Illustration of SPH approximation for the particle of interest using
smoothing kernel and smoothing length [38].

accounting for pressure, viscosity, and other external forces.

Fluid density is also an important field variable of SPH simulation, since pres-

sure force arises as a result of changes in the fluid density. The mass continuity

equation is as follows:

dri
dt

= Â
j

mj(vi � vj) ·rWij, (7.6)

which contains the density rate of change based on the relative motion of the par-

ticles [37].

Finally, compressibility is important when dealing with fluids. There are mul-

tiple methods that account for compressibility. The Implicit Incompressible SPH
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(IISPH) is a technique that uses an SPH approximation of the continuity equation

to obtain a discretized form of pressure Poisson equation:

r2ri(t) =
r0 � r⇤i

Dt2 , (7.7)

where r⇤ are intermediate densities. IISPH takes into account the pressure force

and is computed based on particle velocities instead of position. Once the Pois-

son equation is iterated until relative density is below a specified threshold, new

positions and velocities are computed [35].

Neutrino

Neutrino is a general purpose simulation and visualization environment devel-

oped by Neutrino Dynamic Initiative as a proprietary code available to universi-

ties for research [38]. The Neutrino fluid solver is based on IISPH. It also factors in

accurate boundary handling and adaptive time stepping to increase accuracy and

calculation speed [39].

Neutrino has a graphical user interface (GUI) for the creation of 3D models.

These models can include: rigid bodies, such as boxes, cuboids, and planes; parti-

cle emitters; and particle killers to name a couple. Neutrino also provides a variety

of tools to measure parameters during simulation. This includes measurement

fields that give the average fluid height in a specified area/volume.

An additional feature of Neutrino are custom Python dynamic expression

scripts. A Python script can be loaded in for a specific component, such as a

rigid body, and executed during model simulation. This means a Python dynamic

expression script can be utilized to couple Neutrino with a component fragility

model and dictate how a rigid body responds to the fluid flow interaction.
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To demonstration the ability to link component fragility modeling to simula-

tion, Neutrino VC 141 was used. This version was released on 22 February 2019.

7.2 Simulation Build

To show how the fragility model could be coupled to a simulation, a basic Neutrino

model was created. A simplified PET environment was chosen that consists of a

room that water floods, a wall with a door, and a channel to direct water away.

Figure 7.2 shows the setup of the model.

Figure 7.2: Simplified PET setup for simulation.

A rigid box is partitioned into a room and channel by the wall constructed

with rigid planes. Another rigid plane is placed over the room to prevent sprayed

particles from leaving the box. The door is modeled by a static rigid cuboid. A

gap was left under the door to simulate the leakage observed during experiments.

A flow particle emitter inside the room creates the fluid particles. It was placed

off-center from the door to prevent inaccurate fluid height measurements. A mea-

surement field is placed over the door to read the average fluid height. The end of
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the channel is an extent particle killer. The particle killer decreases the run time by

removing particles from the system that no longer matter.

For this setup, the fluid particles fall from the emitter at a specified flow rate

and begin to fill the room. Some particles will flow under the door gap and down

the channel. When the particles reach the end of the channel they are killed, much

like the water flowing through floor grating back to the reservoir. As the fluid rises

in the room, the door fails at a water depth prescribed by the fragility model.

7.3 Sampling the Fragility Curve

To determine a water height at which a door would fail and then have a Neutrino

simulation respond accordingly, two Python scripts where developed. The first

is used prior to simulation to sample the fragility curve and write a failure depth

to file. Neutrino loads in the second Python script to read the failure depth file

and set conditions for when the door will fail during simulation. Together the two

scripts link the fragility model and the simulation model. Figure 7.3 depicts the

flow of the fragility/simulation coupling described below.

For the first script, referred to as the fragility script, the probability equation

for p is defined and the intercept and depth coefficient posterior means are set

according to Equation 6.22. The total height of the space being flooded, a room

94.5 inches tall, is divided into evenly spaced intervals using the linspace function.

In this case, each increment increases by a tenth of an inch. Inputting the string of

possible depth values into the probability of failure equation calculates a fragility

at each depth increment. Plotting the results produces the fragility curve, as seen

in Figure 7.4.

Next, iterating through each depth interval, the corresponding fragility prob-

ability is input into a binomial distribution and a single sample is taken. If the
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Figure 7.3: Fragility model and Neutrino coupling flow chart.

binomial returns a 0 the iteration continues, but if it returns a 1 the door has failed.

Once the door fails, a failure depth is set at the current iteration depth and sam-

pling ends. The determined failure depth is converted from inches to meters to

conform to Neutrino’s default units. Lastly, the fragility script writes the failure
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Figure 7.4: Fragility model curve for steel doors plotted in Python.

depth to an output file that can be called upon by the second Python script. Ta-

ble 7.1 shows the full Python fragility script. Running the fragility script a suffi-

ciently large number of times develops a distribution of failure depth results with

variance dependent on the fragility model uncertainty.

The second script, referred to as the failure script, is loaded into Neutrino as a

Python dynamic expression script for the rigid cuboid door. At each time step of

the simulation, Neutrino reads the failure depth file and compares the value to the

current average fluid height at that frame of the simulation. If the average fluid

height is greater than or equal to the calculated failure depth, the door is removed

from the scene and the fluid is released from the room. This represents a door

failure in the simulated model. Table 7.2 shows the Python script for executing the

door failure.

As stated in Section 6.1.2, analysis with continuous aleatory models is a valu-
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Table 7.1: Python fragility script for determining the failure depth.

able area for future research. To generate a flowchart similar to Figure 7.3 for use

with continuous distributions, the fragility script would require modification. This

would necessitate further investigation and research, including thought into gen-

eralizing the approach for use with different NPP configurations.

7.4 Simulation Results

For the resulting simulation, the default fluid properties provided by Neutrino

for water were used. A user is allowed to change parameters, such as viscosity

or temperature. Such adjustments were not necessary for coupling demonstration.

The flow rate on the particle emitter was set to 0.32 cubic meters per second (⇠ 5000
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Table 7.2: Python failure script for setting door failure when corresponding depth
is reached.

gal/min). This higher flow rate was chosen to reduce the length of the simulation

and guarantee the room fill rate was greater than leakage under the door. Another

variable that can be changed is the particle spacing size. Setting a large particle

spacing would prevent particles leakage under the door, while very small particle

spacing increases the simulation runtime. For this simulation, the particle spacing

was set to 0.05 m.

The run was simulated for 2000 frames, where each frame represents 0.02 sec-

onds of actual time. The total run time is 40 seconds. The fragility script calcu-

lated a failure depth of 0.919 meters (36.2 in.) and Neutrino compared this value

against the average fluid height obtained from the measurement field. The door

failed and was removed from simulation at time step 1429. Figure 7.5(a) shows the

simulation one frame before failure and Figure 7.5(b) 20 frames after failure. The

resulting fluid depths achieved in the room during the simulation run are shown

in Figure 7.6.
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(a) Simulation one frame before door failure.

(b) Simulation 20 frames after door failure.

Figure 7.5: Water depth vs. time plots for hollow core door tests.
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Figure 7.6: Fluid height versus time frame for SPH simulation.

The resulting simulation plot replicates the shape and behavior of the door fail-

ure plots presented in Chapter 5. The inclusion of the experiment based compo-

nent fragility in flooding simulation improves the simulation, although more work

needs to be done with SPH and specifically Neutrino to increase the ability of SPH

to model flooding scenarios realistically. This simulation result is only presented

as a demonstration of how component fragility modeling can be linked the 3D

flooding simulation.



Chapter 8

Conclusions

The response of components to flooding conditions can have a considerable im-

pact on the stable operation of NPPs. This work set out to establish a protocol

for assessing NPP component fragility in flooding events. This first required con-

ducting full-scale experiments to provide the necessary data on component perfor-

mance when in contact with floodwater. These experiments focused on two types

of non-watertight doors: hollow core and steel.

A Bayesian analysis featuring experiment-driven regression modeling was cho-

sen to assess if and what observable phenomena drive failure. The availability of

modern software tools like OpenBUGS, which utilizes MCMC methods, makes

these types of calculations straightforward and tractable. For the case of doors, the

water depth, flow rate, and temperature were included as possible indicators of

failure.

Background analysis using a discrete distribution model found that models

incorporating water depth as a primary explanatory variable had a better fit.

However, initial shortcomings from using the binomial distribution meant alter-

native continuous aleatory models were also considered for assessing component

fragility. The concluding developed Bayesian model uses the binomial distribution

with a logistic regression model for probability of failure and uses non-informative

priors so experimental data takes preference in the analysis. Added robustness

measures were implemented for when demand was placed on a single component

and to prevent illogical results from the discrepancy functions when calculating

p-values. A verification of the developed model was performed using the prelim-

inary example data.

112
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Analysis of the experimental door data further established how component

tests should be conducted. Hollow core doors were initially tested to gain ex-

perience and developed testing methodology for future experiments. The final

analysis highlighted that observables, such as flow rate, should be tested over a

large range of values. This includes specifically carrying out tests to obtain non-

failure results. The quality of data affects the ability of the regression to adequately

represent a components fragility. Additionally, analyzing the steel door data re-

vealed that biases can be introduced during testing. Careful consideration should

be given to all observables before experiments are performed and what additional

tests need to be conducted to prevent an observable bias during fragility modeling.

Finally, an application of the component fragility model was demonstrated to

show how improvements might be made to 3D flooding simulations. For a steel

door, the depth regression fragility model was coupled to the SPH simulation code

Neutrino via Python dynamic expression scripts. A simplified version of the PET

was built inside the simulation environment and door failure was determined by

sampling the fragility curve. When the average fluid height reached the predeter-

mined failure depth, the door is removed from the simulation. No longer a barrier

against the water particles, the remaining water flooded out. The resulting simu-

lations replicate the observed door failures in experiments.

The work presented is a significant step towards better characterization and im-

proved understanding of the reliability of NPP components in flood events. Com-

ponent flooding experiments should continue to be conducted and analyzed using

Bayesian regression methods established in this work. By analyzing the probabilis-

tic risk associated with component flooding, data informed fragility modeling can

be used to improve simulation and be integrated into comprehensive NPP risk
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models to enhance the overall risk understanding.



Appendix A

Nuclear Power Plant Flooding Events

To more clearly establish the need for CFEL and to provide a working level knowl-

edge of the types of potential NPP flooding events and the components that merit

selection for testing, an open literature review of US NPP flooding events was

performed. Brief summaries of eighteen NPP flooding or near flooding events is

provided below to help establish the framework of potential scenarios and to help

identify high priority components to be tested. The listing is not considered all

inclusive, rather the listing is intended to demonstrate the broad scope of actual

nuclear power plant flooding events and the identification of configurations that

could be vulnerable to flooding events.

A.1 Indian Point Energy Center, Unit 2 (New York) [40]

On October 24, 1980 workers entered the containment building to repair a nu-

clear instrument. It was discovered that several inches of water, amounting to

over 10,000 gallons, had accumulated on the containment floor. This accumulation

flooded the reactor vessel pit and submerge the lower nine feet of the reactor ves-

sel while the reactor was at operating temperature. This put thermal stress on the

vessel and increased its chance of rupturing.

The flooded condition resulted from the following combination of conditions.

There were numerous leaks from containment piping and fan coolers, which had

a history of leaking. Both containment sump pumps were inoperable-one due to

blown fuses and the other due to binding of its float switch. There was no high-

level water alarm and the range of the sump level indicating light failed to indicate

the overflowing sump level. The moisture level indicators for the containment did
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not reveal the flood, because they were calibrated and/or ranged to sense high

humidity caused by hot water or steam and were insensitive to the moisture levels

resulting from small cold water leaks. The rising water was eventually detected

when it submerged a power range nuclear detector, causing it to short out and

workers entered containment to repair it.

A.2 Sequoyah Nuclear Plant, Unit 1 (Tennessee) [41]

On February 11, 1981, the Unit 1 reactor was in cold shutdown. An auxiliary unit

worker, who did not have adequate training or orientation at the particular duty

station involved, misunderstood a verbal instruction and opened a single valve in

the residual heat removal system. A rapid primary system depressurization to the

atmospheric pressure occurred. A total of about 110,000 gallons of water sprayed

into the containment from the primary system and from the refueling water stor-

age tank. The open valve was not detected for at least 35 minutes, because several

alarm lights were already on as part of the shutdown cooling.

A.3 Cooper Nuclear Station (Nebraska) [42]

On April 4, 1984, construction workers used a bulldozer to do some landscaping on

the plant’s grounds. The worker sheared off a fire hydrant from the fire protection

system. The flow from the broken hydrant caused the pressure in the fire header

piping to drop. When the hydrant was isolated and the system re-pressurized, a

water hammer forced the standby gas treatment (SBGT) system fire suppression

deluge valve open and released water into the area. The water pouring in flooded

the SBGT’s charcoal filters. Both trains of the SBGT system were rendered inoper-

able.
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A.4 Connecticut Yankee Nuclear Power Plant (Connecticut) [43]

On August 21, 1984, workers prepared to remove equipment from the reactor ves-

sel during a refueling outage, and filled the reactor cavity with water. The planet

experienced a failure of the refueling cavity water pneumatic seal when it was

forced out of the normal position by static water pressure. The cavity water level

decreased to the level of the reactor vessel flange in approximately 20 minutes.

This flooded the containment with about 200,000 gallons of water.

If reactor fuel had been in transfer at the time, it could have been partially or

completely uncovered. This could have lead to possible high radiation levels, fuel

cladding failure, and release of radioactivity. Additionally, if the fuel transfer tube

had been open, the spent fuel pool could have drained to a level that would have

uncovered the top of the fuel assemblies stored in the pool.

A.5 LaSalle County Nuclear Generating Station (Illinois) [44]

On May 31, 1985 a 108-inch circulating water pump expansion joint failed due to

water hammer in the Lake Screen pump house. It resulted in a 2000 GPM flood

until the water level reached approximately 15 feet, matching the lakes level.

A.6 Edwin I. Hatch Nuclear Power Plant, Unit 1 (Georgia) [45]

On December 21, 1985, the Unit 1 reactor was shut down for a refueling outage

with a residual heat removal (RHR) loop suction valve also disassembled for re-

pairs. A maintenance isolation switch, located between the RHR value and the

torus, was shut. The maintenance isolation valve is air-operated and opens on loss

of power to its solenoid valve.

Power to the solenoid valve was lost when the station conducted a planned
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loss-of-offsite-power test. An emergency core cooling system pump room at the

plant was flooded to a level of 14 feet when the maintenance isolation valve lost

power and opened. The water level in the pump room stopped rising when the

depth equalized with the torus water level. Both RHR pumps and one core spray

pump were disabled when they became submerged.

A.7 River Bend Nuclear Generating Station (Louisiana) [46]

On April 19, 1989 a freeze seal was used to allow repair on two manual isola-

tion valves that connected to a safety-related auxiliary building cooler. The freeze

failed when the flow of nitrogen through a specialized blanket, placed around the 6

inch service waterline, stopped. The standard precaution of moderating the frozen

seal’s temperature has not been followed by workers. The failure resulted in ap-

proximately 15,000 gallons of service water being discharged through the disas-

sembled isolation valve, covering about 4 inches of the auxiliary building’s upper

floor.

A portion of the water seeped through holes in the floor and into nonsafety-

related cabinets containing disconnect links and a transformer. Several circuits

shorted and caused a fire that damaged one cabinet and its components. A supply

breaker opened and de-energized the cabinet and two others, causing the loss of

the operating residual heat removal (RHR) system, spent fuel cooling, and light-

ing in the auxiliary building, the control building, and the reactor building. The

operators isolated the service water system in 15 minutes and restarted the RHR

system in 17 minutes.
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A.8 Perry Nuclear Power Plant (Ohio) [47]

On December 22, 1991, a 36 inch fiberglass auxiliary circulating water line failed.

The failure occurred in a non-isolable section located in the yard area just before

the line enters the heater bay building. The piping originated in the pump House

located on the shores of Lake Erie. An estimated 2.9 million gallons of water was

pumped out of the lake before workers turned off the pumps.

A small percentage of this water enter the auxiliary building, the heater bay,

the service pump house, and the emergency service water pump house. The water

flowed through two electrical manholes that had previously leaked during rain.

These manholes were not designed to be leak tight against standing water. Con-

duits within formed a direct path into the buildings. Specifically, water entered the

emergency water pump house through a series of conduits and ran down a cable

into a compartment of a motor control center. A short circuit then occurred in a

space heater transformer.

A.9 Sequoyah Nuclear Generating Station (Tennessee) [48]

On July 11, 1994, heavy rainfall (1 inch in 15 minutes) caused the storm drainage

system to backup and flood the turbine building railroad bay (TBRB), cable tun-

nels, electrical manholes, and other areas on site. Water intruded into the 6.9 kV

unit boards to approximately 2 inches deep and poured through the conduits,

dousing the distribution boards and the distribution panels. The electrical equip-

ment, however, remained functional.

A similar flooding event occurred on June 30, 1999 when the storm drainage

system was unable to accommodate the combined demands of a heavy rainfall

(0.67 inches in 15 minutes) and the estimated 800 GPM discharge flow from a tem-
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porary plant modification. Both units’ main generator bus duct coolers’ were dis-

charged to the storm drain at the entrance of the TBRB. Inadequate performance of

the storm drain system caused water to backup and again flood the TBRB. Water,

about 1 inch deep at the base of the unit boards, came to within 3 to 4 inches of

contacting energized control circuitry and came within approximately 5 inches of

contacting the board insulators. Equipment remained functional and no trip, tran-

sient, or engineered safety feature actuation occurred. Both units operated at 100%

power throughout the event.

The flooding condition was determined to be a result of improper surface grad-

ing, ground water in-leakage, and failure to perform preventive maintenance on

the storm drain system.

A.10 Columbia Generating Station (Washington) [49]

On June 17, 1998, WNP-2 was in cold shutdown and preparations were under-

way for plant startup. This event was initiated by workers performing cutting

and grinding activities in the diesel generator building. The fire detectors, sensing

smoke from the maintenance activities, activated a fire protection station. Three

main fire pumps automatically started, but no water sprayed from the fire sprin-

klers. The nozzles were still blocked by metal caps that normally melt during an

actual fire.

A resulting water hammer caused a 12 inch, cast-iron, fire protection isolation

valve to rupture in the fire protection system riser in the northeast stairwell of the

reactor building. Water from the stairwell entered a residual heat removal (RHR)

pump room through a watertight door that had not been adequately secured and

began flooding the room. A reactor drains system valve failed to close as designed

and allowed water to flow into the low-pressure core spray (LPCS) pump room.
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The flood water completely submerged a RHR pump and motor and the Division

II keepfill pump also located in the room. Water in the LPCS pump room rose to

a level just below the pump motor and also completely submerged the minimum

flow valve and the Division I keepfill pump. Approximately 163,000 gallons of

water were introduced to these three areas.

A.11 Susquehanna Steam Electric Station (Pennsylvania) [50] [51]

On July 16, 2010, operators had to manually scram the Unit 1 reactor due to a non-

isolable circulating water leak in the main condenser bay. Two large gasketed man-

way hatches were dislodged an extruded from the manway joint when a system

pressure spike was experienced. The control room received a maintenance con-

denser bay flooding alarm and responding workers observed water in the lower

level, near the vicinity of the main condenser waterbox. After manually down-

powering and unsuccessful attempts to isolate the leak, Unit 1 was scrammed in

order to secure the circulating water pumps, isolate the circulating water system,

and isolate the main condenser. After approximately 3 1
2 hours, the circulating wa-

ter motor-operated valves were manually shut, isolating the leak. Approximately

12 feet of water entered the main condenser bay, corresponding to about 950,000

gallons of river water.

A.12 Calvert Cliffs Nuclear Power Plant (Maryland) [52] [53]

On January 21, 2014, a dual reactor trip from 100 percent power occurred at the

plant after a loss of power to a 13 kV service bus. Ice and snow from a winter storm

had caused a ventilation filter on the bus to push in and allow snow and water to

contact with breakers inside. Loss of the service bus resulted in a loss of the Unit 2

motor generator sets for the control element drive mechanisms. This likely cause



Appendix A: Nuclear Power Plant Flooding Events 122

the automatic reactor trip on Unit 2. It also resulted in the loss of power to the Unit

2 circulating water pumps, and the main condenser was unavailable.

Additionally, due to the bus loss, power was lost to one safety-related 4kV bus

on both units. One emergency diesel generator on each unit started as expected

to supply power to its respective 4kV bus until offsite power was restored. The

loss of the service bus also caused an unexpected automatic reactor trip of Unit 1.

The preliminary cause of the Unit 1 trip was a malfunction of the digital turbine

control system during the electrical transient following the loss of the service bus

and the Unit 2 plant trip. The plant operators brought both units to a stable hot

shutdown condition in accordance with plant operating procedures with no other

complications.

A.13 Indian Point Energy Center, Unit 3 (New York) [54]

On May 9, 2015, a main transformer exploded and caught on fire. The heat from the

transformer fire caused activation of the fire protection systems, and fire brigades

were brought in. When the majority of the fire was out, the brigade leader ordered

the fire deluge valves to be closed in order to apply foam to the fire. The respond-

ing worker reported water on the floor of the switchgear room and took steps to

stop the flooding.

The valves that opened to spray water onto the transformer failed to operate

properly and discharged water to the floor at a rate of 50 GPM for approximately

30 minutes. The floor drains were restricted and could only pass a maximum of

25 GPM. The water flooded the deluge valve room to a height of 4 to 6 inches and

flowed underneath the door to the switchgear room, where it pooled to approxi-

mately 1 inch in depth. Later inspection found that if the floor flooded to a depth

of about 5 inches, the water intrusion into the switchgear room could have chal-
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lenged the reliability of the safety-related electrical equipment required to respond

to a reactor transient and would have resulted in a station blackout.

A.14 LaSalle County Nuclear Generating Station (Illinois) [55]

On March 11, 1997 an unusual event was declared. It was determined that the lake

level was above the maximum level given in the safety analysis report and used in

flooding potential analysis.

Contributing factors included the lake blowdown valve was partially closed

and made unavailable due to reliability concerns. Two of the three lake make-up

pumps were in operation and the lake level began to steadily increase. Addition-

ally, heavy rain and melting snow added about 8 inches to the lake level.

As cautious measures, workers monitored lower elevations of the plant, and

increase the flood wall height with sand bags. The lake blowdown valve was re-

paired and lake levels begin to decrease and return to normal operating levels, ter-

minating the unusual event. Operating procedures were revised after this event.

A.15 Oconee Nuclear Station (South Carolina) [56]

On August 13, 2003, workers removed a 6” x 10” access cover from a flood barrier

to route temporary power cables into the standby shutdown facility (SSF) for an

SSF outage. The bottom edge of the opening created was located 4.6 feet off the

ground. The plant’s safety studies reported site flooding capabilities of 4.71 feet.

During an external flooding event, the breached flood protection barrier could

have provided a flowpath for water to enter the SSF, and render the equipment

inoperable.

On June 2, 2005, NRC inspectors notify the licensee of the condition and issue

and Problem Investigation Program report (PIP). Corrective action was not taken
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and in August the licensee was issued a further PIP. The opening was sealed on

August 3, 2005.

A.16 Vermont Yankee Nuclear Power Plant (Vermont) [57]

On May 24, 2012, workers discovered the potential for water intrusion into the

vital switchgear rooms via an underground spare conduit, a metal tube encasing

electrical cables. The flood seal used in this spare conduit was not adequate to

prevent dislodgment. The flood seal could allow water flow into the interior flood

design controls for the switchgear rooms. Were flooding of the switchgear rooms

to occur, the operability of switchgear providing electrical power to engineered

safety feature systems and emergency core cooling systems could be affected. This

could threaten the capability to shut down the reactor and maintain it in a safe

shutdown condition.

A.17 Three Mile Island Nuclear Generating Station (Pennsylvania) [58]

On August 10, 2012, a Unit 1 flood inspection walkdown found that conduits carry-

ing cabling from yard electrical vaults through the air intake tunnel to the auxiliary

building did not contain internal seals for flood protection. The conduit seals were

never installed during the plant’s construction. The unsealed conduits could have

potentially provide a leak path during flood conditions to the auxiliary building,

where flood waters could impact the decay heat removal function.

A.18 Millstone Nuclear Power Stations, Unit 2 (Connecticut) [59]

On October 15, 2012 during a beyond design basis flooding walkdown, it was

discovered that a total of 20 four-inch and two-inch diameter electrical conduits

were lacking flood seals as specified in the plants original design. These unsealed
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electrical conduits connected the service water pump room of the intake structure

and the turbine building. Since these conduits were unsealed at both ends, this

condition could have resulted in flooding of the turbine building such that it would

have rendered all the auxiliary feed water pumps inoperable. Upon discovering

this condition, the openings on both ends of the conduits were sealed to restore the

design basis for flood protection.
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Basic User Guide to OpenBUGS

OpenBUGS is the open source version of the BUGS software for implementing

Markov chain Monte Carlo (MCMC) sampling. The freely available software can

be found at www.openbugs.info.

The following provides basic guidance for running OpenBUGS scripts and is

not intended to be a complete operating guide. The OpenBUGS user manual [24]

comes with the program, accessible from the Help menu, and offers further infor-

mation and tutorials. Additional resources are also available to provide introduc-

tion to this program and examples [20] [19] [31].

B.1 OpenBUGS Script

An OpenBUGS script can be divided into three sections: model, data, and initial

values. A sample script is provided in Table B.1. The model includes the likeli-

hood function, prior distributions, and any derived quantities, such as residuals

or Bayesian p-values. The data and initial values can be listed within the script or

loaded from separate text files. Additionally, initial values can also be generated

by OpenBUGS rather than loading in provided values.

B.2 Running OpenBUGS models

To begin, make a new document (File!New) and type in the BUGS model code

or open a document with an already written code (File!Open). Figure B.1 shows

a script document open in the OpenBUGS screen.

The first step is checking the syntax of the model specification. Open Spec-

ification Tool from the Model menu. This may appear as Specification... on the

126
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Table B.1: An example OpenBUGS script for a Binomial model.

drop-down menu. A window like the one shown in Figure B.2 will appear. High-

light the word ”model” in the BUGS script by double-clicking the word. Click on

”check model” in the Specification Tool screen. Status messages are displayed at

the bottom left of the OpenBUGS screen. If there are no errors, the message ”model

is syntactically correct” will appear.

Now any provided data is loaded. Highlight the word ”list” in the data section

of the script and click ”load data” on the Specification Tool. The status message

will display ”data loaded.”

Next the BUGS model needs to be compiled, which means the program con-

structs an internal representation and works out sampling methods to be used for

each stochastic node. First, input the number of parallel chains to run in the ”num

of chains” box. The default value is 1. Click ”compile” and the status message will
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Figure B.1: OpenBUGS screen with an open script.

Figure B.2: The Specification Tool.

now report ”model compiled.”

The simulation is started at set values for unknown quantities by loading initial

values. Highlight the word ”list” in the initial value section of the script, then click
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the ”load inits” button on the Specification Tool. The status message will display

”initial values generated, model initialized” if only one chain is run. If more than

one chain is being run, advance the ”for chain” number by clicking the up arrow

and repeat loading initial values for each chain until the model initialized message

appears. As noted before, OpenBUGS can generate the initial values by clicking

the ”gen inits” button instead.

The next step is to select the nodes for the program to monitor. Open Samples

from the Inference menu and the Sample Monitor Tool (Figure B.3) will appear.

Type the name of the node in the ”node” box that will be monitored or type * to

monitor all available nodes. In order to discard samples for burn-in, change the

value in the ”beg” box to the iteration at which monitoring starts. Click the ”set”

button to save the setting. Enter any additional nodes to monitor in the ”node”

box, clicking ”set” after each one.

Figure B.3: The Sample Monitor Tool.

Now open Update from the Model menu. The Update Tool will appear, as

shown in Figure B.4. Enter the number of updates to preform and click ”update.”

The status message will read ”model is updating.” The iteration box in the Update

Tool will display the iterations according to the increment specified by the refresh
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box. Once the update has completed, the status message will display ”...updates

took X s.”

Figure B.4: The Update Tool.

Back in the Sample Monitor Tool, type the name of the node, select the node

from the drop-down list of monitored nodes, or type * to select all nodes mon-

itored. Click ”stats” to see summary statistics such as posterior mean, standard

deviation, and selected percentiles. Click ”density” to display a graph of the em-

pirical distributions. These summary statistics and plots can be copied and pasted

into other programs.
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OpenBugs Scripts and Results

C.1 Scripts and Statistical Summaries from Section 6.1.1

C.1.1 Binomial depth model with logit regression and hollow core door data.

131
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C.1.2 Binomial model using cloglog and hollow core door data.

Depth Model:
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Flow Rate Model:

Temperature Model:

Depth and Flow Rate Model:
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Depth and Temperature Model:

Flow Rate and Temperature Model:
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Depth, Flow Rate, and Temperature Model:
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C.2 Scripts and Statistical Summaries from Section 6.1.2

C.2.1 Simple exponential model with hollow core door failure data only.

Using Jeffreys Prior:
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Using Normal Prior:
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C.2.2 Exponential model using hollow core door data.

Depth Model:
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Flow Rate Model:

Temperature Model:
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Depth and Flow Rate Model:

Depth and Temperature Model:

Flow Rate and Temperature Model:
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Depth, Flow Rate, and Temperature Model:
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C.2.3 Lognormal model using hollow core door data.
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Depth Model:

Flow Rate Model:

Temperature Model:
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Depth and Flow Rate Model:

Depth and Temperature Model:
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Flow Rate and Temperature Model:

Depth, Flow Rate, and Temperature Model:
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C.2.4 Normal model using hollow core door data.
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Depth Model:

Flow Rate Model:

Temperature Model:
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Depth and Flow Rate Model:

Depth and Temperature Model:
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Flow Rate and Temperature Model:

Depth, Flow Rate, and Temperature Model:



Appendix C: OpenBugs Scripts and Results 150

C.2.5 Weibull model with influence on beta using hollow core door data.
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Depth Model:

Flow Rate Model:

Temperature Model:
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Depth and Flow Rate Model:

Depth and Temperature Model:
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Flow Rate and Temperature Model:

Depth, Flow Rate, and Temperature Model:
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C.2.6 Weibull model with influence on lambda using hollow core door data.
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Depth Model:

Flow Rate Model:

Temperature Model:
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Depth and Flow Rate Model:

Depth and Temperature Model:
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Flow Rate and Temperature Model:

Depth, Flow Rate, and Temperature Model:
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C.3 Scripts and Statistical Summaries from Section 6.1.3

C.3.1 Testing gamma, uniform, and beta prior distributions using a binomial

depth regression model and steel door data.

dgamma(0.0001, 0.0001):

dunif(0,100000):

dbeta(0.0001, 0.0001):

dbeta(0.5, 0.5):
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dbeta(1, 1):

C.3.2 Testing gamma, uniform, and beta prior distributions using a binomial

depth regression model and hollow core door data.

dgamma(0.0001, 0.0001):

dunif(0,100000):

dbeta(0.0001, 0.0001):
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dbeta(0.5, 0.5):

dbeta(1, 1):

C.3.3 Summaries from testing uniform prior distributions on binomial depth

regression model using steel door data.

dunif(0, 1000) for all priors:

dunif(-10, 10) for intercept prior, dunif(0, 1000) for covariate priors:
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dunif(-50, 50) for intercept prior, dunif(0, 1000) for covariate priors:

C.3.4 Summaries from testing uniform prior distributions on binomial depth

regression model using hollow core door data.

dunif(0, 1000) for all priors:

dunif(-10, 10) for intercept prior, dunif(0, 1000) for covariate priors:

C.3.5 Summaries for single covariate regressiong models comparing the use of

centering on hollow core door data.

Standard depth regression model:
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Centered depth regression model:

Standard flow rate regression model:

Centered flow rate regression model:
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Standard temperature regression model:

Centered temperature regression model:
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C.3.6 Summaries for single covariate regressiong models comparing the use of

centering on steel door data.

Standard depth regression model:

Centered depth regression model:

Standard flow rate regression model:
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Centered flow rate regression model:

Standard temperature regression model:

Centered temperature regression model:
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C.3.7 Calculated residuals of temperature regression model using steel door

data.
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C.3.8 Logistic regression model with an added latent variable using steel door

data.

Depth model:

Flow rate model:
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Depth and Flow Rate model:
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C.4 Scripts and Statistical Summaries from Section 6.2

C.4.1 Summaries for O-ring verification case using the developed assessment

model.
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C.5 Scripts and Statistical Summaries from Section 6.3

C.5.1 Summaries for hollow core door cases using the developed assessment

model.

Depth model:
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Flow Rate model:

Temperature model:
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Depth and Flow Rate model:
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Depth and Temperature model:

Flow Rate and Temperature model:
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Depth, Flow Rate, and Temperature model:
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C.5.2 Summaries for steel door cases using the developed assessment model.

Depth model:
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Flow Rate model:
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Depth and Flow Rate model:

C.5.3 Summaries for steel door depth regression model sensitivity analysis on

prior distributions.

Flat prior distribution (d f lat()):
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Uniform prior distribution (duni f (�5000, 5000)):
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OpenBUGS Convergance BGR

D.1 BGR convergence plots for hollow core door results

Depth regression model

Figure D.1: Depth coefficient convergence plot (HCD-D Model).
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Figure D.2: Intercept convergence plot (HCD-D Model).

Flow rate regression model

Figure D.3: Flow rate coefficient convergence plot (HCD-F Model).
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Figure D.4: Intercept convergence plot (HCD-F Model).

Temperature regression model

Figure D.5: Temperature coefficient convergence plot (HCD-T Model).
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Figure D.6: Intercept convergence plot (HCD-T Model).

Depth and Flow rate regression model

Figure D.7: Depth coefficient convergence plot (HCD-DF Model).
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Figure D.8: Flow rate coefficient convergence plot (HCD-DF Model).

Figure D.9: Intercept convergence plot (HCD-DF Model).
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Depth and Temperature regression model

Figure D.10: Depth coefficient convergence plot (HCD-DT Model).

Figure D.11: Temperature coefficient convergence plot (HCD-DT Model).
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Figure D.12: Intercept convergence plot (HCD-DT Model).

Flow rate and Temperature regression model

Figure D.13: Flow rate coefficient convergence plot (HCD-FT Model).
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Figure D.14: Temperature coefficient convergence plot (HCD-FT Model).

Figure D.15: Intercept convergence plot (HCD-FT Model).
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Depth, Flow rate, and Temperature regression model

Figure D.16: Depth coefficient convergence plot (HCD-DFT Model).

Figure D.17: Flow rate coefficient convergence plot (HCD-DFT Model).
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Figure D.18: Temperature coefficient convergence plot (HCD-DFT Model).

Figure D.19: Intercept convergence plot (HCD-DFT Model).
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D.2 BGR convergence plots for steel door results

Depth regression model

Figure D.20: Depth coefficient convergence plot (SD-D Model).

Figure D.21: Intercept convergence plot (SD-D Model).
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Flow rate regression model

Figure D.22: Flow rate coefficient convergence plot (SD-F Model).

Figure D.23: Intercept convergence plot (SD-F Model).
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Depth and Flow rate regression model

Figure D.24: Depth coefficient convergence plot (SD-DF Model).

Figure D.25: Flow rate coefficient convergence plot (SD-DF Model).
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Figure D.26: Intercept convergence plot (SD-DF Model).
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