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Land Cover Change and Habitat Monitoring of Columbian Sharp-tailed Grouse in Southeast Idaho 

Thesis Abstract – Idaho State University (2019) 

 

Anthropogenic forces of land use and land cover change have affected Columbian 

Sharp-tailed grouse habitats in southeastern Idaho over the past century, with the 

assumption that the decline in bird counts at lek sites relates to the increase and distribution 

of agricultural operations. This study performed an analysis of areas surrounding lek 

locations to highlight the effect that land management practices have on grouse habitat. 

This work examines land cover change between 2001 and 2016 using the National Land 

Cover Dataset to evaluate the relationship between the change in bird counts at 69 lek sites 

and the reduction in habitat. For the time period there was a 5.8% change to agriculture 

resulting in no significant correlation between lek count numbers and land cover change. 

Small unmanned aerial systems (sUAS) equipped with hyperspectral sensors were 

deployed to map and classify the vegetative composition, resulting in high resolution 

habitat maps. 
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Chapter 1 Introduction 

1.1 Introduction 

Columbian Sharp-tailed Grouse (Tympanuchus phasianellus columbianus, CSTG) 

populations have been in decline, initially, because of overhunting in the mid to late 19th 

century and subsequently because of land conversion since the turn of the 20th century 

(Buss & Dziedzic, 1955; Connelly, Schroeder, Sands, & Braun, 2000; McDonald & Reese, 

1998). CSTG are a species of gallinaceous upland game bird (Andersen et al., 2015). 

Formerly, CSTG occupied a range from central British Columbia to California and 

Colorado (Marks & Marks, 1988). Currently, CSTG only occupy small areas within British 

Columbia, southeast Idaho, south-central Wyoming, northern Utah, and northwestern 

Colorado. Historically, the habitats of CSTG were dominated by grasslands consisting of 

bunch grasses and sagebrush steppe (McDonald & Reese, 1998). Early 20th century 

settlement of CSTG home range resulted in greater mechanization of farming practices and 

an increase of cultivated acres (Buss & Dziedzic, 1955). Intensive cultivation practices led 

to greater fragmentation of natural CSTG habitats. Habitat fragmentation has resulted in 

fewer CSTG populations that encompass multiple lek locations (McDonald & Reese, 

1998). A lek is a traditional dancing ground where male birds of the species congregate to 

display for reproductive purposes (Leupin, 2003). Excessive livestock grazing, overuse of 

herbicides, and burning of stubble fields has also had a negative impact on CSTG numbers 

(Giesen & Connelly, 1993). Idaho supports approximately 60-65% of the remaining CSTG 

in the U.S, and is home to one of three populations that make up 95% of remaining breeding 

populations (Andersen et al., 2015). 



2 
 

 

CSTG rely on a diversity of vegetation communities for all life stages. Female nest 

site selection is dependent on available vegetation and corresponds to sites with a dense 

shrub cover of species such as rabbit brush (Ericameria spp.) and sage (Artemisia spp.) for 

nesting success (Giesen & Connelly, 1993). For brooding, CSTG typically select areas with 

lower brush density that are dominated by species such as snowberry (Symphoricarpos 

albus) and sage (Artemisia spp.) (Klott & Lindzey, 1990). Male CSTG generally select lek 

sites located on knolls or ridgetops that are characterized by a high abundance of native 

bunch grasses such as Idaho Fescue (Festuca idahoensis), Mountain Brome (Bromus 

marginatus), and Snake River Wheatgrass (Elymus wawawaiensis), and typically include 

a much higher brushy component than sites selected by other sub-species of sharp-tailed 

grouse like plains sharp-tailed grouse (P. t. jamesi) and prairie sharp-tailed grouse (P. t. 

campestris) (Giesen & Connelly, 1993). There is limited evidence that dense cover on leks 

is detrimental to reproduction and survival of CSTG, but Klott & Lindzey (1990) reported 

less vegetative cover on lek sites than random sites.   

Small Unmanned Aerial Systems (sUAS) are improving the ability to capture high 

spatial resolution data concerning wildlife habitats at a relatively inexpensive cost 

(Gonzalez et al., 2016). Recent developments in sUAS technologies and relaxing 

operational regulations present new opportunities for environmental monitoring (Linchant, 

Lisein, Semeki, Lejeune, & Vermeulen, 2015). sUAS offers another level of hierarchal 

sampling; they provide visual imagery at a localized and a biologically distinguishable 

level (Jones, Pearlstine, & Percival, 2006). Because of the key advantages of high 

resolution and opportunities to fly more frequently, sUAS offers greater temporal and 

spectral resolution when fitted with multispectral or hyperspectral sensors. Experiments 
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have demonstrated that sUAS are capable of delivering georeferenced maps of biochemical 

and biophysical variables of vegetation at sub five centimeter resolution (Lucieer, 

Malenovský, Veness, & Wallace, 2014).   

Management decisions about habitat restoration demands an increasing level of 

accurate and precise data. As funds for habitat conservation are limited, it is imperative to 

employ cost effective and time saving methods for data collection, while at the same time 

increasing the amount of data available to researchers and managers so they can make the 

best possible decisions. This study aims to complete two major objectives: 1) Examine the 

relationship between land cover change and the number of CSTG that visit lek sites across 

southeast Idaho, and   2) determine the fine scale vegetation composition of brooding and 

nesting sites for CSTG as classified using a hyperspectral imager mounted on a sUAS. By 

generating vegetation models from sUAS flights, this project maps vegetative composition 

within 4 km of five lek locations found in southeastern Idaho.  

1.2 Study Area 

The study area for this project encompasses southeast Idaho. The focus is on 

Bannock, Oneida and Power counties, with attention given to Marsh, Arbon, Rockland and 

Malad valleys along with the area surrounding the community of Holbrook (Figure 1). The 

habitats in this study area receive 30-50 cm of rain annually. Upland habitats range from 

low to mid valley elevations, with moderately rolling terrain. Objective one includes the 

entirety of this area, using 2001 and 2016 land cover datasets from the Multi-Resolution 

Land Characteristics (MRLC) Consortium’s National Land Cover Dataset (NLCD). 

Yellow points on the map indicate all documented leks (317) within the three-county area. 

Blue dots indicate lek sites (69) used in chapter 3 for analysis with land cover change. The 
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Idaho Department of Fish and Game (IDFG) conduct yearly bird counts at lek sites across 

southeast Idaho. Bird counts occur in the spring when male CSTG are displaying at leks 

for reproductive purposes. The counts are the main indicator of the trend within CSTG 

populations.  Not all leks are counted every year due to staffing limitations. Out of the 870 

leks in the entire state, an average of about 200 have been counted every year for the last 

decade (2009-2018). Objective two focuses on a small area (388.5 ha), flown with a sUAS, 

located northeast of Downey, ID.  
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Figure 1. Study Area in southeast Idaho. Yellow dots are all 317 historical lek sites 

within Bannock, Oneida, and Power counties. Blue dots represent lek locations used in 

chapter 3 analysis. Area indicated by yellow ellipse is the study area for chapter 4. 
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1.3 Broader Impacts 

One of the aims of this research is to identify areas influenced by high levels of 

land cover change at a regional scale. Understanding land use conversion, and its effect on 

CTSG, at regional and landscape scales is paramount to informing management decisions 

and planning future rehabilitation efforts. The successful application of this knowledge will 

lead to the development of cost-effective ways to target conservation measures. Further, 

by introducing the use of sUAS for mapping fine scale vegetation composition, this 

innovative approach explores the functionality of this technology for agencies wanting to 

develop a greater understanding of CSTG habitat requirements. We are providing our 

collaborative partner, Idaho Fish and Game, with the outcomes from this study. 

This project contributes to the research efforts of the Idaho EPSCoR, GEM3, Genes 

by Environment program (NSF Award No. OIA-1757324).  Mapping land cover change in 

southeast Idaho and developing fine scale habitat maps supplies a foundation of data to the 

GEM3 mapping team to examine the spatiotemporal links between genomic diversity, 

phenotypic plasticity, and social ecological systems change. Further, the GEM3 team will 

teach workflows to plan and conduct sUAS flights and steps to process and analyze imaged 

hyperspectral data in Vertically Integrated Projects (VIP). VIP courses at Idaho institutions 

provide research-based educational opportunities to a diverse student body, covering both 

undergraduate and graduate levels in a range of disciplines including biological and natural 

sciences, engineering, and social sciences. This strategy offers students at all levels to 

benefit from this work through the development of lab modules, research opportunities, 

and mentoring from faculty and staff. It also supports workforce development and 
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professional training through interdisciplinary team collaboration, mentor training, and 

career mapping. 



8 
 

 

Chapter 2 Literature Review 

2.1 Columbian Sharp-tailed Grouse Range and Habitat Requirements 

Columbian Sharp-tailed Grouse (CSTG) is a lekking species of bird. A lek is an 

area in which male birds congregate to perform courtship displays to compete for females 

and the opportunity to mate. Giesen and Connelly (1993) stated that leks are established in 

grassy or weedy areas of shrub-land. These leks are usually 30 m in diameter, and are 

typically found in close proximity to suitable nesting and brood-rearing cover (Andersen 

et al., 2015). There is some consensus as to the distance from a lek that female CSTG will 

nest. Typically, females nest in areas that are within 2 km of the lek location (Andersen et 

al., 2015; Boisvert, Hoffman, & Reese, 2005; Leupin, 2003). Boisevert et al. (2005) found 

that 85% percent of females studied nested within 2 km of the lek. Leupin (2003) found 

that the largest proportion of females located in British Columbia, nest within 2.4 km of 

the lek. Geisen & Connelly (1993) state a shorter distance of less than 1.6 km, but they 

conceded that nests have been located at distances greater than 3 km from the lek site. 

Winter habitat range differs from nesting and brooding habitats. Boisevert et al. 

(2005) found that 100% of the birds they studied wintered at distances greater than 3 km 

from the lek site at which they were captured. Andersen et al. (2015) stated that Sharp-

tailed grouse travel anywhere from 0.5 km to greater than 40 km for wintering habitat. 

Giesen and Connelly (1993) noted that birds travel anywhere from 2.6 km to 4.5 km with 

some outliers travelling as much as 20 km to wintering habitats in regions that are lacking 

a broad distribution of winter food resources compared to regions where resources are 

plentiful. CSTG rely on deciduous trees and shrubs for their winter habitat. Marks & Marks 

(1988) found that Sharp-tailed grouse fed primarily on hawthorn (Crataegus douglasii) 
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fruits and on serviceberry (Amelanchier alnifolia) and chokecherry (Prunus virginiana) 

buds, when snow covered the ground. Leupin (2003) classified winter habitats dominated 

by quaking aspen (Populus tremuloides), Douglas fir (Pseudotsuga menziesii), mountain 

snowberry (Symphoricarpos oreophilus), prickly rose (Rosa acicularis), and red-osier 

dogwood (Cornus sericea). The consensus is that Sharp-tailed grouse rely on a brushy 

cover type habitat that includes a large number of fruiting bushes for all life stages, but 

most importantly in winter (Andersen et al., 2015; Boisvert et al., 2005; Giesen & 

Connelly, 1993; Leupin, 2003; Marks & Marks, 1988).  

Columbian Sharp-tailed grouse have declined in western North America since the 

beginning of the 20th century (Andersen et al., 2015).The historic home range of CSTG 

once stretched from central British Columba, through half of Oregon and Washington, 

covering all but the highest peaks in Idaho, and large portions of central Utah, the northern 

parts of California and Nevada, and the western edges of Colorado, Wyoming, and 

Montana (Andersen et al., 2015; Buss & Dziedzic, 1955) (Figure 2). Buss & Dziedzic 

(1955) stated that by 1920, CSTG were only sited in areas of Washington where prairie 

and brush systems persisted. McDonald & Reese (1998) supported this finding in the latter 

half of the 20th century when they found that the decline in CSTG numbers in Washington 

was due in large part to the fragmentation and subsequent loss of grassland/shrub habitat. 

They also found that this same loss of habitat occurred throughout the entire Palouse region 

including those parts found in Idaho. The Palouse is a distinct geographic region of 

grasslands that cover parts of Washington, Idaho, and Oregon.  Leupin (2003) reports 

similar findings in British Columbia, stating that Sharp-tailed grouse have been extirpated 

from grassland systems in the Pavillion ranges, east Kootenays (north and south of 
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Cranbrook), and from the Okanagan Valley. The core of the Canadian population is now 

isolated from populations in adjacent jurisdictions and confined almost entirely to the 

south-central interior of British Columbia. 

CSTG are dependent on a wide variety of vegetation and cover depending on the 

time of year (Andersen et al., 2015). Monitoring of Sharp-tailed grouse as they disperse 

throughout their range is difficult and often time consuming. Marks & Marks (1987) 

Figure 2. Map showing historic and current range of CSTG. Current occupied range is 

located primarily in southeast Idaho and British Columbia indicated by dark grey. The 

areas of lighter grey indicate areas currently unoccupied by CSTG. (Andersen et al., 2015) 
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utilized GPS position radio collars to track birds but found the birds that had been fitted 

with GPS had a 100% predation rate. This may have been due to what is now outdated GPS 

collaring technology that was large and cumbersome to the movement of small birds.  

2.2 Land Cover and Habitat Change  

Globally, land cover and habitat change is responsible for the decline of most 

threatened and endangered species in peril. Krauss et al. (2010) stated that the 

intensification of agricultural land has led to a severe decline in semi-natural habitats across 

Europe. Plieninger supported Krauss’ (2006) statements with a study in the south of Spain, 

finding that cultivated lands increased until 1975, when a shift was made to livestock 

production. Jetz et al. (2007) predicted that 950 to 1800 of the world’s 8750 known species 

of land birds could be imperiled by climate change and land conversion by the year 2100. 

Jetz stated that climate change may influence range contractions at higher latitudes but the 

principle driver for effects on species will be land cover change. Skinner and Majorowicz 

(1999) correlated land cover change, from deforestation in the last century, to rises in 

surface temperatures in north-western North America. Wright et al. (2013) documented the 

western expansion of corn/soybean cropping and its replacement of grassland dominated 

ecosystems. Land use and land cover change are the most important factors causing 

biodiversity loss (Falcucci, Maiorano, & Boitani, 2007). Lambin et al. (2001) noted that 

land use change is happening at a global level, often driven by regions expanding into 

global markets. Lambin et al. (2001) further argued that markets drive land use conversions 

and that population growth, poverty, and infrastructure are too simple when considered 

individually to provide a complete picture of the drivers influencing land use change. 
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2.3 Multispectral and Hyperspectral Remote Sensing 

Spectral imaging is a widely used tool for the detection and classification of 

vegetative communities. Vegetation yields a spectral response of reflected energy based on 

plant health, type, phenology, etc. Plant reflectance in the visible (400 – 700 nm), red-edge 

(680 – 730 nm), and infrared (700 – 1000 nm) wavelengths is typically used for vegetation 

classification. Numerous satellite platforms, including the National Aeronautics and Space 

Administration’s (NASA) Landsat (series 1-8), the European Space Agency’s Sentinel 2A 

and 2B, and Digital Globe’s WorldView 2 and 3 space-borne sensors, provide multispectral 

imagery suitable for classifying vegetation and detecting land use and land cover change. 

Multispectral imagers typically have 3 -10 bands that consist of a broadband width (tens to 

hundreds of nanometers). In contrast, hyperspectral remote sensing, (i.e., narrowband) 

provides >10 spectral bands with narrower bandwidths. Liu et al. (2017) demonstrated 

hyperspectral’s utility in the research of arctic vegetation, by discerning  percent vegetative 

cover across a varying landscape. 

Imagery from the Landsat TM, ETM+ and 8 and SPOT satellite instruments are 

able to separate land cover and vegetation types but insufficient at a fine scale for 

identifying individual plants on a species-by-species basis (Adam, Mutanga, & Rugege, 

2010). According to Adam et al. (2010), this is due to three factors: (1) the difficulties 

faced in distinguishing fine, ecological divisions between certain vegetation species, (2) 

the broad nature of the spectral wavebands, with respect to the sharp ecological gradient of 

narrow vegetation units, in wetland ecosystems, and (3) The lack of high spectral and 

spatial resolution of optical multispectral imagery, which restricts the detection and 

mapping of vegetation types beneath a canopy of vegetation in densely vegetated areas. 
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Yu et al (2006) found that the accuracy of detailed vegetation classification with 

very high-resolution imagery was dependent on the sample size, sampling quality, 

classification framework, and ground vegetation distribution. Imagery classification relies 

on successful extraction of pure spectral signature for each species, which is often dictated 

by the spatial resolution of the observing sensor and the timing of observation (Xie, Sha, 

& Yu, 2008). It is possible to generate quantitative remote sensing data by means of a 

sUAS equipped with commercial off-the-shelf (COTS) multispectral and thermal imaging 

sensors (Berni, Zarco-Tejada, Suárez, González-Dugo, & Fereres, 2009).  

Studies that apply the shortwave infrared (SWIR: 1400–2500 nm) wavelengths for 

estimating arctic biophysical variables are lacking (Liu et al., 2017). Further, spectral 

vegetation indices (VIs) designed for landscapes such as croplands, grasslands, and forests 

have seldom been tested for their utility in sparsely vegetated high arctic tundra with 

exposed soil/tills, large quantities of non-vascular plants (i.e. mosses, lichens), or large 

amounts of senescent vegetation (Liu et al., 2017). This is an important consideration when 

examining local Idaho landscapes. Vegetation in southeast Idaho is similar to arctic 

vegetation in that much of it consists of senesced, or dead, vegetation.  

Vegetation indices remain the most efficient way of quantifying vegetation traits 

based upon hyperspectral images. According to Lucieer et al. (2014), VI’s are the 

transformation of acquired reflectance spectra through mathematical combinations of 

purposely selected spectral bands that can maximize sensitivity towards biophysical or 

biochemical variables and simultaneously minimize effects of confounding environmental 

factors.  There are a plethora of VI’s that have been developed for classification (Table 1).  
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Table 1. Common Vegetation Indices 

 

The adoption of VI’s, including the most widely used Naturalized Difference Vegetative 

Index (NDVI) and its refined form, Enhanced Vegetative Index (EVI), provide methods to 

map vegetation using optical remote sensing devices. The principle of applying NDVI in 

vegetation mapping is that vegetation is highly reflective in the near infrared bands and 

highly absorptive in the visible red bands. Xie et al (2008) demonstrated that the contrast 

between these channels can be used as an indicator of the status of the vegetation. Leaf 

area index (LAI) is also a key variable in canopy reflectance. Adam (2010) found that 

canopies with a high LAI reflect more than the canopies with medium or low LAI. Using 

LAI as one means of identification can be useful to researchers in areas with a large 

variation in leaf size between differing species.  

2.4 Unmanned Aerial Systems and Wildlife 

Wildlife managers and professionals are widely adopting the use of sUAS for 

research and monitoring purposes in natural systems. Rango et al. (2009) demonstrated the 

Vegetation Indices Formula 

NDVI 

(ρNIR − ρRed)

(ρNIR + ρRed)
 

  

EVI 𝐺 ∗
(ρNIR − ρRed)

ρNIR + C1 ∗ ρRed + C2 ∗ ρBlue + 𝐿
 

  

LAI (3.16 ∗ 𝐸𝑉𝐼 −). 118) 

  

SAVI 

(1 + 𝐿)(ρNIR −  ρRed)

ρNIR +  ρRed + 𝐿
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ability of sUAS to acquire high resolution (<6 cm) imagery with a subsequent vegetative 

classification accuracy as high as 92%. Sarda-Palomera et al. (2012) showed that sUAS are 

capable of performing surveys of ground-nesting birds, providing georeferenced nest 

locations without disturbing nesting individuals, something that cannot be accomplished 

by on the ground surveys. The issues, identified by Jones et al. (2006), of dealing with 

georeferencing and deployment have been addressed by the latest sUAS models. Small 

sUAS are now increasingly deployable and are decreasing in cost, with the added benefit 

of onboard georeferencing and a growing number of sensors that can be deployed on an 

airframe. In their review of sUAS for wildlife monitoring, Linchant et al. (2015) concluded 

that, though sUAS could benefit wildlife monitoring, the biggest barrier to adoption and 

deployment of sUAS would be legislation and regulation. Currently changes in regulations 

make it easier for researchers to integrate sUAS into their wildlife and habitat studies. 
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Chapter 3: The Effect of Land Cover Change on Measured Counts at Columbian 

Sharp-tailed Grouse Lek Sites  

3.1 Introduction 

Columbian Sharp-tailed Grouse (Tympanuchus phasianellus columbianus, CSTG) 

populations have been in decline since the mid to late 19th century and subsequently from  

land conversion since the turn of the 20th century (Buss & Dziedzic, 1955; Connelly et al., 

2000; McDonald & Reese, 1998). Formerly, CSTG occupied a range from central British 

Columbia to California and Colorado (Marks & Marks, 1988). Historically, the habitats of 

CSTG were dominated by grasslands consisting of bunch grasses and sagebrush steppe 

(McDonald & Reese, 1998). Early 20th century settlement of CSTG home range resulted 

in increased mechanization of farming practices leading to an increase of cultivated acres 

(Buss & Dziedzic, 1955). An increase in cultivation leads to an increase of fragmentation 

of natural CSTG habitats. Habitat fragmentation has resulted in fewer CSTG populations 

consisting of multiple leks (McDonald & Reese, 1998). Excessive livestock grazing, 

overuse of herbicides, and burning of stubble fields has also had a negative impact on 

CSTG numbers (Giesen & Connelly, 1993). Idaho supports approximately 60-65% of the 

remaining CSTG in the U.S and is home to one of three populations that make up 95% of 

remaining breeding populations (Andersen et al., 2015). 

CSTG rely on a diversity of vegetation communities for all life stages. Female nest 

site selection is dependent on available vegetation and corresponds to sites with a dense 

shrub cover for nesting success (Giesen & Connelly, 1993). For brooding, CSTG typically 

select areas with lower brush density that are dominated by species such as snowberry 

(Symphoricarpos albus) and sage (Artemisia spp.) (Klott & Lindzey, 1990). Male CSTG 

select lek sites located on knolls or ridgetops that are higher than surrounding areas. These 
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sites have been characterized by a high abundance of native bunch grasses, and typically 

they include a much higher brushy component than sites selected by other sub-species of 

sharp-tailed grouse (Giesen & Connelly, 1993). There is limited evidence that dense cover 

on leks is detrimental to reproduction and survival of CSTG, but Klott & Lindzey (1990) 

reported less vegetative cover on lek sites than random sites.  

Counts of males attending leks in the spring have been the primary means employed 

by states to monitor the status of grouse species (Mayer, 2008). Data on the population 

structure and dynamics are primarily obtained from these counts (Storch, 2007). In Idaho, 

the Idaho Department of Fish and Game and its cooperating partners have invested a 

substantial effort in conducting bird counts at lek sites; but they acknowledge that 

increasing the number of leks counted each year could strengthen current knowledge of 

population status (Andersen et al., 2015). While lek counts are the most widely used 

method for an indication of population trends, they can be problematic when not all leks 

are counted and there is a chance that not all birds attending a lek  are recorded (Storch, 

2007). Females disperse from a lek after breeding to lay their eggs and raise their young. 

The distance traveled varies but it is generally within 4 km of a lek site (Andersen et al., 

2015). Many of the historic lek locations, and adjacent nesting and brooding areas lie 

within fields that are now under agricultural production (Andersen et al., 2015; Buss & 

Dziedzic, 1955; Giesen & Connelly, 1993; Storch, 2007).  

This chapter explores the spatiotemporal relationships between yearly counts of 

CSTG at 69 lek sites and corresponding land cover change, focusing on the increase of 

agricultural land use between 2001 and 2016 in southeastern Idaho. The null hypothesis is 

that increases in agricultural land cover within 4 km of lek sites has no relationship to 
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CSTG bird counts at these leks. A preliminary analysis indicated the apparent increase in 

agricultural production was a driving factor in the decline of counts collected at lek sites. 

A deeper spatial analysis conducted through this research has indicated that the levels of 

change in agricultural production, at this temporal scale (2001-2016) and based on cover 

change assessment using the NLCD, cannot be determined as the influential factor in 

decreasing bird counts at lek sites.  

3.2 Methods 

3.2.1 Idaho Fish and Game Lek Count Dataset  

The study area in southeastern Idaho includes Bannock, Oneida, and Power 

Counties (Figure 1). National Land Cover Dataset (NLCD) classifications from 2001 and 

2016 were selected to compare to the Idaho Fish and Game (IDFG) supplied bird count 

data from leks recorded in their state database extending back to 1969. Lek surveys, which 

occur in late April, coincide with the time that male birds display on the lek. Each lek is 

visited at least three mornings within the counting period. Surveys begin 30 minutes before 

sunrise and continue until an hour and a half after sunrise. The lek bird count database from 

IDFG includes data from 318 leks within the three-county study area. To correspond to the 

NLCD land classification datasets and to allow for lag in the response of CSTG to changes 

in the landscape, I averaged bird count values taken+/- 2 years on either side of the years 

2001 and 2016. If bird counts were completely missing in the dataset from 1999 to 2003 

or from 2014 to 2018, I eliminated them from the survey.  A minimum of one recorded 

count was needed during these two time periods to complete the analysis, even if the count 

was zero. The remaining number of leks for analysis was 69. The database consisted of 

information pertaining to state lek ID, longitude and latitude, and the values of the bird 



19 
 

 

counts by year. I imported the lek dataset into a geodatabase within Esri’s ArcGIS Pro. 

Projections for all data files within the GIS were set to the Idaho Transverse Mercator 

(IDTM) coordinate system, as this is the projection that IDFG utilizes for all GIS related 

data.  

3.2.2 Land Cover Data 

For this study, I used data from two national land cover programs. The Multi-

Resolution Land Characteristics (MLRC) consortium’s National Land Cover Datasets 

(NLCD) are 30 m resolution categorical data with a numeric value assigned to a pixel 

within the raster based on land cover type (e.g. Shrub/Steppe=52). The second dataset, the 

Rangeland Analysis Platform (RAP), was developed by the University of Montana, in 

collaboration with, the USDA’s Natural Resources Conservation Service and the 

Department of Interior’s Bureau of Land Management. This platform combines field plots 

from the land agencies’ vegetation monitoring programs with historical satellite imagery 

to produce land cover products (30 m resolution) through machine learning. Both NLCD 

and RAP are products derived from Landsat imagery.  

To prepare land cover change estimations within a regression analysis, I calculated 

the percentage of land cover type within a 4 km buffer of each lek site for 2001 and 2016.  

Female CSTG will travel an average of 4km distance from the time of lekking, to nesting 

and brooding, and then to wintering. I clipped The NLCD datasets for 2001 and 2016 to 

the lek buffers. Once clipped, I quantified the percentage of land cover type for cropland 

(agriculture), herbaceous cover, and shrub/steppe within each buffer.  
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3.2.3 Spatial Autocorrelation 

Global Moran’s I 

Spatial Autocorrelation was tested using the Global Moran’s I statistic. This 

statistic tests a dataset for clustering, randomness, or dispersion. This tool uses an attribute 

within the datasets, along with the geographic location to measure spatial autocorrelation. 

The five-year average bird count at lek sites around the target years of 2001 and 2016, as 

well as the percent change in agriculture production between the two time periods were 

tested to assess spatial autocorrelation. With all three runs, I selected the Euclidean distance 

method and a fixed distance band of 14 km to examine spatial autocorrelation within valley 

systems. Using Moran’s, I, if the datasets are clustered or dispersed, the null hypothesis is 

rejected.  

3.2.4 Regression Analysis 

I entered the lek locations from the IDFG database into ArcGIS Pro and used a 4 

km buffer to establish the area that is recognized as the nesting and breeding habitat for 

CTSG. The clipped NLCD raster for 2016 was subtracted from the clipped NLCD raster 

for 2001 to establish change classes for the time period. Performing a reclassification on 

the raster label values ensured that each subtraction would produce a unique value. The 

study area does not include all the classes that are available for the NLCD data, as only 

seven of the classes are present within the lek buffers. I built a table to record the change 

in class from 2001 to 2016.  Simplifying the 12 classes yielded four classes: No 

Change/Non-habitat, Change to Agriculture, Change to Herbaceous, and Change to 

Shrub/Steppe. I calculated the percent change for each of the classes using the counts for 
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each of the classes and the total cells within each lek raster. I then added values for percent 

change to the lek point feature class.    

Ordinary Least Squares (OLS) regression evaluates the relationships between a 

dependent variable within a feature class and one or more explanatory variables. I used the 

amount of change in the bird survey counts at lek sites from 2001 to 2016 as the dependent 

variable with the percent change in agriculture, herbaceous, and shrub/steppe as 

explanatory variables, as well as the average slope and roughness (standard deviation of 

the DEM) for the 4 km buffer. The average percent shrub cover for 2016 was calculated 

from the RAP dataset and used as an explanatory variable as well.  The DEM used for this 

analysis was the United States Geological Survey’s National Elevation Dataset (NED), 1 

arc-second (30 m resolution). OLS returned six assessments to validate the model, in this 

case the focus is on the correlations between the dependent variable and the explanatory 

variables.  

3.2.5 EBK Regression Prediction 

Empirical Bayesian Kriging (EBK) Regression Prediction is an interpolation 

method included with Esri’s ArcGIS Pro. This tool uses EBK with explanatory variable 

rasters that represent data that is known (or thought) to affect the value of the data in 

question. The average percent slope, calculated from the NED DEM, along with the 2016 

average percent shrub cover from the RAP, were utilized as explanatory rasters for this 

analysis. This tool also allows for moderately non-stationary data, thereby overcoming the 

considerations of normal kriging. The EBK Regression Prediction tool outputs a prediction 

layer as well as a geostatistical layer to generate rasters for standard error, quantile, or 

probability maps.  
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3.3 Results  

3.3.1 Land Cover Change 

Table 2 highlights the percent land cover change to agriculture, shrub steppe and 

herbaceous over the 2001 to 2016 time period. The table represents change across all 318 

leks in Oneida, Bannock and Power counties and the 69 leks for which count data was 

available. In the table, agriculture was denoted by “Ag”, shrub/steppe by “SS”, herbaceous 

by “Herb”, and “Other” which identified all other classes that appeared in any of the 

buffered areas other than “developed”. “Other” classes included forest and open water. 

“Developed” were those areas that contained structures and hard surfaces. The percentage 

change to developed and other (0.00 and 0.01%) were not used for any other analysis. 

Figure 3 shows the locations of the 69 leks with an increase or decrease in the average 

count between 2001 and 2016. Within the black outlined buffered area is land cover 

converted to agricultural production between 2001 and 2016. 
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Table 2. Percentage of land cover change for all 318 leks in the three-county area and for 

69 leks used for analysis 

Class Change (2001-2016) 318 Leks 69 Leks 

No Change 85.86 83.52 

Percent Change to 

Agriculture (Ag) 

3.90 5.80 

   Herb to Ag 0.61 0.68 

   SS to Ag 3.29 5.12 

   Other to Ag 0.00 0.00 

Change to Shrub Steppe 

(SS) 

3.22 3.78 

   Ag to SS 0.48 0.25 

   Other to SS 0.19 0.13 

   Herb to SS 2.55 3.40 

Change to Herbaceous 6.90 6.70 

   Ag to herb 0.03 0.01 

   SS to herb 6.86 6.86 

   Other to herb 0.01 0.00 

To developed 0.01 0.00 

Other to Other 0.10 0.01 

   



24 
 

 

 

Figure 3. Lek locations for 69 investigated leks along with areas of land cover change to 

agriculture. 

 There were 16 leks out of the 69 that had an increase in the average count (2001-

2016). One lek had an average value that remained unchanged between 2001 and 2016. 

Table 3 shows the values for the average of the counts for the two time periods (2014-2018 

and 1999-2003), as well as the values for change in the count numbers for those leks, both 

increasing and decreasing. 
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Table 3. Average values for birds counted at lek sites for 2016 and 2001 and the amount 

of change for those counts. 

 2016             

(2014-2018) 

2001          

(1999-2003) 

Leks with 

increased count 

Leks with 

decreased count 

n 69 69 16 52 

Min 0 (average) 0 (average) 0.15 (change) 0.25 (change) 

Max 33.5 (average) 30.6 (average) 26 (change) 29 (change) 

Mean 6.35 (average) 10.79 (average) 7.55 (change) 8.2 (change) 

σ 7.66 7.21 5.41 5.73 

σ2 58.95 50.96 29.32 32.85 

 

3.3.2 Spatial Autocorrelation Results 

Global Moran’s I  

 The distribution for the lek’s geographic location was random, the variable “Value 

of Change” represented the increase or decrease in averaged bird counts between 2001 and 

2016 and returned a random distribution when tested (z = 1.08, p = 0 .27). The variable for 

percent change in agriculture was the only tested variable indicating a significant clustered 

spatial distribution (z = 9.33, p = 0.00, n = 69) (Table 4). Variables for both the average 

count of 2016 and the average count of 2001 indicated a clustered distribution, but the 

values were not statistically significant.  
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Table 4. Results of Spatial Autocorrelation (Global Moran's I) 

Input Field z score p value Moran’s Index 

Value of Change 1.08 0.27 0.05 

Percent Change in 

Agriculture 

9.33 0.00 0.39 

Average of 2016 -0.62 0.53 -0.04 

Average of 2001 0.58 -0.54 -0.04 
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3.3.3 Regression 

 

Figure 4. Correlation charts for average change in number of birds counted at lek sites vs. 

explanatory variables. 

The regression analysis indicated that there was no strong relationship between the 

amount of change in the number of birds counted at lek sites and any of the tested 

explanatory variables (Figure 4). The percent change reported in change to agriculture, 

herbaceous, and shrub/steppe were all positive because they represent the percentage of the 

buffered areas that changed to their respective classes. The percent change in shrub/steppe 
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from the RAP dataset is both positive and negative because it is the average percent change 

(increasing and/or decreasing) within the buffered areas. 

3.3.4 EBK Regression Prediction 

Figure 5 is a display of the results of EBK Regression Prediction. This analysis 

used the average percent slope located within each of the buffers as well as the average 

percent shrub cover from the RAP dataset. The green areas of the map that indicated where 

the model predicted a possible increase to lek count numbers. Areas in yellow and red were 

locations where number of birds counted at lek sites may be decreasing at varying rates. 

Lek locations indicated where the 69 leks used for analysis were located and whether their 

average count from 2001 to 2016 was increasing or decreasing.  

Figure 5. Results of Empirical Bayesian Kriging Regression Prediction. 
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3.4 Discussion 

This chapter provides an investigation into the relationship between bird counts at 

lek sites and land cover change in southeastern Idaho. For this study, a visual comparison 

between the 30 m resolution NLCD datasets to corresponding years of 1m resolution 

National Agriculture Imagery Program (NAIP) data revealed poor accuracy in land cover 

classification. This level of discrepancy may be high enough to raise concern regarding 

assumptions about populations based upon NLCD data. For example, Figure 6 highlights 

one of many examples discovered in the 2001 and 2016 NLCD datasets where large areas 

misclassified agriculture and shrub/steppe.   

Landsat imagery, upon which the NCLD is based, has the one of the longest 

temporal records of space borne sensors (1972 to present).  The launch of Landsat 5 (1984), 

which carried with it a Multi Spectral Scanner (MSS) as well as a Thematic Mapper, nearly 

coincided with the passing of the 1985 Farm Bill and the introduction of conservation 

reserve programs in these areas. Because initial investigations have pointed heavily toward 

agricultural fields having the largest influence on the decline of bird counts at lek sites, it 

Figure 6. NLCD Classification (2011) vs. Natural Color NAIP (2011) image of same area. 

Location “a” is a crop field that is classified as shrub/steppe and location “b” is 

shrub/steppe classified as cropland. 
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is recommended that further work focus on accurately classifying land cover over this time 

period to better discern between areas that are in agricultural production and those that are 

not. Improved accuracy in land cover assessments will increase confidence in reported land 

cover change and response of bird populations. 

The NLCD only goes back until 2001. Recently the MRLC has supplemented the 

original time step of every five years by completing classifications every two or three years. 

Even so, the time span from 2001 to 2016 seems too small to measure the amount of land 

cover change as the amount of land cover change (2001-2016) from any class to agriculture 

was relatively low (3.9%). In fact, it was nearly as low as the amount of ground converted 

to shrub/steppe (3.2%) over the same time period. Concurrently, the areas that changed to 

herbaceous cover were nearly twice as high (6.9%). Several factors may account for this 

finding. 

 

Figure 7. Land conversion to herbaceous/grassy class is shown here in red. Most of the 

conversion in the southern part of Power county coincided with historical fire boundaries 

outlined in yellow 
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One is the misclassification of agriculture and shrub/steppe, already mentioned, and the 

other is the abundance of wildfire that has occurred in some of the historical shrub/steppe 

ecosystems.  Most of the conversion from shrub/steppe to herbaceous within the 4 km 

buffers surrounding the leks correspond to historic fire boundaries (Figure 7). CSTG 

population decline has spanned almost 1.5 centuries, but for this study, I only used data 

and imagery for the last two decades.  

Although the results from the OLS regression analysis returned low correlation 

values, I used the EBK Regression Prediction tool to examine change in bird counts at lek 

sites with the change in the percent of shrub cover as an explanatory variable. This process 

predicted the areas where lek count numbers were changing. A visual comparison of the 

areas where landcover change occurred suggested that there is a decrease in birds counted 

at those leks that are closer to areas that had an increase agriculture and to areas that had 

an increase in grassy cover. Those areas that have increasing average number of birds 

counted at lek sites correspond to areas that the EBK Regression Prediction was suggesting 

should have increasing lek count numbers and vice versa.  

The bird counts at lek sites database is problematic in that many leks have large 

gaps between years counted. The low number of lek locations (n = 69) used in this study 

is due to the lack of count records and may have skewed the regression analysis. I used 

Ordinary Least Squares regression and Empirical Bayesian Kriging Regression Prediction 

to test the correlation of the number of birds counted at lek sites with landcover change. 

The low number of lek sites that had data for the time period being investigated, limited 

the ability of OLS to correlate variables. I believe with a richer lek dataset and a more 

accurate imagery classification both OLS and EBK would be able to indicate the variables 
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responsible for CSTG numbers. This will inform future research regarding the use of 

NCLD classified imagery to explain lek locations and numbers. Research in this area will 

further the knowledge of past management to inform new approaches to site counts and 

land cover datasets to better manage CSTG populations.  
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Chapter 4: Utilization of Small Unmanned Aerial Systems to Map Columbian Sharp-

tailed Grouse Nesting and Brood Rearing Habitats in Fields Managed for 

Conservation 

4.1 Introduction 

Columbian Sharp-tailed grouse hens select areas for nesting and brood-rearing that 

are in close proximity to lek sites (Giesen & Connelly, 1993). For this reason, researchers 

often center habitat studies on the leks. A large number of leks occur in lands that are 

enrolled in conservation programs. The United States Department of Agriculture’s 

(USDA) Conservation Reserve Program (CRP) serves to reduce soil erosion, improve 

water quality, and create or enhance wildlife habitat by growing food and cover. There are 

several practices within CRP to promote higher quality natural habitats for wildlife species.  

An example is sowing fields with native cool season grasses along with forbs and legumes 

that grow primarily in spring, early summer, and fall. These grasses are generally stiff, 

upright and grow primarily in bunches, which provide excellent nesting and winter cover. 

Natural communities are also associated with native legumes, forbs, and shrubs. Legumes 

and forbs provide sources of food for pollinators, viable seeds, and insect sources for young 

birds. CSTG hens prefer these fields for their resources during nesting and brooding 

periods, as well as for winter habitat. 

Fields within the CRP program play an important role in the management of CSTG. 

Because southeast Idaho holds one of the last remaining breeding populations of CSTG, 

participation by landowners in land rehabilitation and restoration is key to the survival of 

CSTG. In order to make the best decisions for the longevity of CSTG, land managers need 

to have information about vegetative composition in areas utilized by the species.  This 

study utilizes a small unmanned aerial platform equipped with a hyperspectral imaging 
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system to map and quantify vegetation composition on CRP fields located within a 4 km 

radius of leks. The goal of this research is to validate the utility of mapping and classifying 

vegetation at high spatial resolution, and to generate best practices for the capture of high-

resolution imagery. 

Small Unmanned Aerial Systems (sUAS) have recently emerged as a new 

technology for use in wildlife and conservation management. sUAS platforms have the 

ability to carry sensors that include digital cameras, spectral imagers, LiDAR systems, and 

even radar (Costa et al., 2012; Jensen, Austin M.; Baumann, Marc; Chen, 2008; Zaugg, 

Edwards, & Margulis, 2010; Zhang & Kovacs, 2012). With the multitude of sensors 

available and a continual size and weight reduction of sensors and payloads, sUAS are 

replacing conventional observations and manned aerial surveys. For example, to obtain 

population size of Black Gull colonies, with similar accuracy to ground counts and without 

disturbing the colonies, researchers deployed sUAS to obtain georeferenced images from 

which they could identify and count individual birds in the colony (Sardà-Palomera et al., 

2012). Surveys from sUAS can bridge the gap between ground-based rangeland 

measurements and remotely sensed imagery from piloted aerial or satellite platforms, both 

in terms of image scale and image acquisition costs. sUAS have several advantages over 

piloted aircraft. sUAS can be deployed quickly and repeatedly (Laliberte, Winters, & 

Rango, 2011). Van Blyenburg (2013) identified 406 imaging and ranging instruments 

developed specifically for sUAS including active and passive systems, microwave systems, 

and optical sensors from visible band to Near Infrared (NIR) up to Thermal Infrared (TIR). 

sUAS presents an accurate and cost effective method for mapping critical ecosystems 

(Boon, Greenfield, & Tesfamichael, 2016).  Due to their low cost and operating expenses, 
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plus their suitability for remote sensing, predictions are for small sUAS to have broad use 

across the resource management sector Many of the image processing steps have their 

origins in traditional aerial image processing and analysis. Photogrammetric processes 

have been implemented with sUAS collected data to produce fine scale, high precision 

mapping products (Colomina & Molina, 2014). Inexpensive sUAS coupled with Structure 

from Motion (SfM) can also produce ultra-fine scale classification maps, which have the 

potential to drastically change the scientific understanding of ecological systems (Cunliffe, 

Brazier, & Anderson, 2016). Boon (2016) showed the utility of high resolution sUAS 

imagery to map critical wetlands  areas that would be difficult to access on foot. High 

resolution sUAS imagery has also been used to assess biodiversity in forested areas 

(Getzin, Wiegand, & Schöning, 2012).  

Although high resolution natural color imagery has lent itself to the development 

of many habitat assessment products, Hyperspectral imagers (HSI) are considered the 

sensors of choice for mapping and monitoring vegetation (Adam et al., 2010). Compared 

with multispectral systems, which only have a dozen spectral bands, hyperspectral imagers 

may have hundreds of spectral bands (Xie et al., 2008). The greater spectral resolution of 

hyperspectral sensors allows in-depth examination and discrimination of vegetation types 

that would be lost with other multispectral platforms (Adam et al., 2010). Ouerghemmi et 

al.(2018) demonstrated that the use of a hyperspectral imager resulted in a significantly 

better ability to differentiate between individual tree species.  

Hyperspectral imagers also have the ability to be tuned to examine specific 

wavelengths of the electromagnetic spectrum (Mozgeris et al., 2018). This “tunability” is 

a huge factor when dealing with vegetation that is highly responsive in the Red-Edge (680-
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730 nm) to Near Infrared wavelengths (780-2500 nm). Only in the last decade has 

hyperspectral imaging systems become small enough and light enough for deployment on 

a sUAS (Nackaerts, Everaerts, Michiels, Holmlund, & Saari, 2010).  

4.2 Methods 

4.2.1 Study area 

The study area is near Downey, Idaho. Six fields, roughly 65 hectares each (390 ha 

total) (Figure 8) were selected for their proximity to known lek locations and because they 

were in Idaho’s Conservation Resource Program (CRP), whose goal is to promote 

vegetation rehabilitation to a more natural state. Rehabilitation management of each field 

ranges from 2 to over 20 years (Table 5). The site is in a shrub steppe area with vegetation 

composition ranging from sagebrush (Artemisia spp.) and rabbit brush, (Chrysothamnus 

spp.) to large forbs such as sainfoin (Onobrychis viciifolia Scop.) and alfalfa (Medicago 

sativa) to small forbs and grasses. The ground surface is typically gently rolling hills with 

some steeper drainages. CRP has many practices that are available to property owners for 

land enrollment. The fields flown are managed under general CRP, pollinator habitat 

improvement guidelines, and the State Acres For wildlife Enhancement (SAFE) practices. 

All CRP practices originate in soil erosion control, but specialized practices like pollinator 

habitats and SAFE have the added benefit of establishing or enhancing wildlife 

communities.  
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Table 5. Fields flown by sUAS. 

Field Date Flown Area (hectares) First Year in 

CRP 

CRP Program 

Type 

H July 3, 5 59 1997 General 

DM July 17, 18 68 2015 Pollinator 

DS July 6, 9 60 2016 Pollinator 

DN June 11, 12 64 2010 Pollinator 

DB June 25, 27 65 2010 Pollinator 

T July 10, 11 65 1997 SAFE 
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Figure 8. Study area near Downey, Idaho. Fields flown are outlined in red. Lek sites are 

indicated by blue dots with 4km radius lek buffers being shown by yellow circles. Downey is 

seen in the center near the southern edge of the map. 
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Figure 9. DJI Matrice 600 Pro equipped with hyperspectral imager (a) and digital camera 

(b). 

 

4.2.2 Imaging system 

This project followed similar workflows established by Mozgeris et al. (2018) and 

Ouerghemmi (2018). The imaging system utilized in this study consisted of two sensors 

and a UAV platform (Figure 10). The UAV platform was the Matrice 600 Pro hexacopter 

(Figure 9) produced by DJI Technology Co., Ltd., (DJI, Shenzhen, China). An automatic 

piloting system, with a piloted backup, controlled the hexacopter. A Ricoh GR II 16-
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megapixel digital camera captured natural color images. The Ricoh GRII has a 23.7 x 15.7 

mm CMOS sensor and a 28 mm (35mm equivalent) focal length. Image capture was in 

RAW format with autofocusing and auto white balance control. The digital camera 

triggered every 2 seconds to capture an image. Image size for the digital camera was 

4928×3264 pixels producing a field of view (FOV) of 97.1 m x 63.9 m at 75 m above 

ground level (AGL).  

 

Figure 10. Workflow for HSI equipped sUAS 

The second sensor was the Rikola Hyperspectral Imager (HSI). The HSI is a frame 

type imager that provides a real spectral response in each pixel over a range from 500-900 

nm. I programmed the HSI to cover spectral bands from 599 to 870 with an average 

distance of 18 nm between bands. The HSI triggered every three seconds; the resulting 

image size was 1010x1010 pixels, producing a FOV of 45.8 x 45.8m at 75m AGL.  The 
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HSI has its own GPS receiver that plugs into the sensor body, allowing for georeferenced 

images. The digital camera does not have an internal GPS, so images are georeferenced 

after the flight using the UgCS built-in function to match the time stamp from the digital 

camera to the recorded telemetry from the UAV’s GPS location.  

Both sensors were hard mounted in nadir configuration, to the bottom of the UAV 

platform using an in-house fabricated mount (Figure 9).  

4.2.3 Ground Control Points and Scale Bars 

Prior to flying, ground control points were positioned in each field using paper 

plates as targets (Figure 11). These points were set near to the corners of the fields and 

randomly distributed throughout the interior of fields. The corners of the fields were 

georeferenced to reduce error and aid in the photogrammetric and structure from motion 

processing. Each field had eight to ten ground control points. After a flight, each plate was 

georeferenced using a Trimble GeoXH 6000 series, handheld GNSS device.  Inventory and 

layout of every 4 m2 and 10 m2 plot with each plot center marked with a paper plate. Placing 

1m scale bars on the ground during flights aided in imagery processing.  
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Figure 11. Ground control plate with 1m PVC frame used for plot inventory. 

 

4.2.4 Image Acquisition 

Image acquisition took place over several days in June and July of 2018 (Table 5). 

I divided each field into seven to ten flights. Because the HSI image FOV at 75 m AGL is 

smaller than the digital camera (45.8 x 45.8 m vs 97.1 x 63.9 m), I planned overlap and 

side-lap images based upon the smaller sensor size. Selecting an overlap of 75% and a side-

lap of 35% percent maximized the coverage of the HSI images. The overlap and side-lap 

on the digital camera exceeded 95% each. The resulting resolution for the acquired original 

images was 0.05 m for the HSI and 0.02 m for the digital camera. The HSI captured 16 

spectral bands, from 599 to 900 nm with an average distance between bands of 

approximately 18 nm (Table 6). 
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Table 6. Hyperspectral Camera Band Configuration 

Band Central 

Wavelength (nm) 

FWHM 

(nm) 

1 599 11.7 

2 617 10.5 

3 636 11.4 

4 653 10.1 

5 671 20.1 

6 690 18.2 

7 707 19.2 

8 726 17.6 

9 743 16.7 

10 761 15.2 

11 780 14.9 

12 798 15 

13 815 14.4 

14 833 14.4 

15 851 13.4 

16 870 13.5 

  

Prior to each flight, a series of spectral references had to be captured both for light 

and dark references. These references serve to normalize the radiometric signature as 

lighting conditions change in between flights and throughout the day. I captured light 

references by aiming the HSI at a Spectralon calibration target with a known 99% 

reflectance value. I captured dark references by covering the lens of the HSI so no light 

could infiltrate the image. Flight planning was done in Universal Ground Control Software 

(UgCS), developed by SPH Engineering, Latvia. I planned flights at an above ground 

altitude of 75 m. Each field was roughly 65 ha. Flights were approximately fifteen minutes 

each, consisting of four passes at 45.8 m in width to cover the length of the field (800m) 

using a simple grid pattern. Each flight would cover ten to eleven hectares. Most fields 

took two to three days to get complete coverage. Flights occurred from 10:00 am to 4:00 
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pm to minimize the amount of shadows in the imagery. Flight speeds were set to 4 m/s.  I 

flew on days with full sun and wind less than 4 meters per second. There were some 

instances when cumulous clouds would cover parts of the field during a flight, resulting in 

shaded areas in the imagery.  

4.2.5 Image Processing  

 I shot the images from the digital camera in RAW, which allows for correction of 

white balance and exposure errors in the imagery. I corrected the RAW images for tone 

and white balance in Adobe Lightroom and exported as tagged image file format (TIFF). 

Because the digital camera’s FOV is larger and I captured images at a shorter interval, there 

were almost twice as many images as were captured with the HSI. I removed blurry and 

poorly exposed images before processing without creating voids in the coverage. I used 

Agisoft Metashape for photogrammetric processing.  Georeferenced ground control points 

and scale bars provided a means to more accurately ortho-rectify photos and to generate 

ortho-mosaics and digital elevation models (DEM) for each field.  Images on the edges of 

the flight paths did not have adequate overlapping coverage to produce low error outputs. 

For that reason, I planned flight areas large enough to cover the entire field with over-run 

on the sides and ends so I could trim the resulting ortho-mosaic and DEM in ArcGIS Pro 

to remove areas that were distorted.  

The HSI camera produces k-type raw hypercubes with associated metadata, as well 

as the task file containing information needed to compile the hypercube from raw data. The 

k-type hypercube is a data cube consisting of images form all 16 bands captured when the 

camera is triggered one time. Hypercubes were pre-processed using the included software 

tools from the camera manufacturer. These tools convert the image digital number values 
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into radiance values.  I then converted each band into 16-bit TIFF files, resulting in 16 

images per hypercube. I combined the 16 hyperspectral bands into a 16 band GEOTIFF 

using the Composite Bands tool in ArcGIS Pro 2.3.  

4.3.5 Image Classification 

I imported the composite TIFFs, DEMs, and ortho-mosaics into Trimble’s 

eCognition Developer software for classification as image layers. eCognition allows the 

user to perform an object-oriented classification by defining a set of rules based upon 

observations made for each of the individual layers within the project. The first step within 

the process was multi-resolution segmentation. The segmentation looks at all the layers 

within the project and groups individual pixels that have similar attributes together into 

polygons with size and shape adjusted by the user.  

After the segmentation process, each segmented area had a mean value associated 

with it for each of the image layers within the project. Other layer attributes were user-

defined within the software, including proximity to other classes, band indices, shape, size, 

etc. I extracted and plotted spectral curves for individual plants (Figure 12). Each curve 

represented the spectral signal for one of the classes. I calculated class values for each of 

the images captured wavelengths by taking an average for each wavelength captured from 

50 polygon segments that had been assigned to each class.  
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Figure 12. Spectral signature of defined classes. 

 

Classes were defined based upon one or more attributes for physically and 

spectrally similar polygons (Table 7). I used the rule set to classify all the polygons within 

the project. This rule set classified each pixel into one of eight classes: tree, willow, sage, 

bare soil, green grass, forb, dry grass, and brush. Once the classification was completed, 

polygon shapefiles that contained the classification attributes were exported to be viewed 

in ArcGIS Pro.  

 

 



47 
 

 

Table 7. Ruleset used to define classes in eCognition software. 

Rule  Outcome 

First segmentation  Creates large segment polygons of Rough 

classes 

NDVI, Band 690, and Band 870 and 

Relative border 

 Defines rough class as Forb, Willow, or 

DryGrass 

Second Segmentation  Creates small segment polygons within each 

Rough class 

DEM Standard Deviation (SD) > 0.2 

and Height model > 1.5 m  

 Define Tree Final class  

Brightness < 35  Define Shadow Final class 

Brightness > 175 and DEM SD < 

0.02 

 Define Bare Final class 

DEM SD >= 0.02 and < 0.04  Shrub Secondary class 

DEM SD >= 0.04  Tall Shrub Secondary class 

Tall Shrub Band 671 > 115 and < 

160, and Band 690 >110 

 To Sage Final class 

Relative Border to Sage > 0   To Sage Final class 

Forb and DryGrass Band 653 > 180, 

671 > 180 and 690 > 180  

 Define GreenGrass Final class 

Relative Borders > 0.3  To respective final classes 

Merge Regions  Merges like classes into polygons for export 

Export  Exports segments as shapefile for ArcGIS Pro 

 

4.3.6 Accuracy Assessments 

The resulting classification polygons were brought into ArcGIS Pro and the 

georeferenced plot sites were imported, buffered, and had Feature Envelope to Polygon run 

on them to generate plots that measured 100 m2 and 4 m2, corresponding with the 

inventories taken at the time the plots were geolocated. A fishnet was generated that 

covered the entire field, with squares measuring 10 cm x 10 cm. The Fishnet was then 
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clipped to these plots and a spatial join was completed to associate the classification 

information with the individual 100 cm2 squares of the fishnet. The plot inventories were 

overlaid with a similar fishnet grid that matched the size of the classification fishnet. When 

plots were inventoried, the locations were such that there were no plots that contained the 

classes tree and willow. Pixel class values from fifty points were selected from the 

classification grid and compared to values of corresponding locations within the 

inventoried grid to generate a confusion matrix from each of the six remaining.  I chose a 

total of 300 pixels for each of the fields. The tree class and the willow class did not occur 

within the inventoried plots, but because of their unique spectral signature, their physical 

characteristics, and the ease of which these types of vegetation are visually identified, I 

was able to include these two classes in the classification. Confusion matrices were used 

to assess accuracy, or the percentage of pixels that were correctly predicted by the model.  

Accuracies were determined by identifying the number of true positives, true negatives, 

false positives, and false negatives (Table 8). 

To calculate accuracies, the number of pixels that were correctly classified (true 

positive + true negative) were divided by the sum of true positive, true negative, false 

positive and false negative predictions. I computed accuracies for all combined areas: each 

field, each class in all combined areas, and each class in each field. 
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Table 8. Definitions for matrix outcomes. 

Matrix Outcome Definition 

True Positive Pixels correctly classified as belonging to the class 

True Negative Pixels correctly classified as not belonging to the class 

False Positive Pixels incorrectly classified as belonging to the class 

False negative  Pixels incorrectly classified as not belonging to the class 

 

4.4 Results 

Each of the six fields in the study area produced several remote sensing products 

that included a three-dimensional elevation model and a natural color image from the RGB 

camera in addition to a sixteen-band composite, hyperspectral orthoimage. Agisoft 

Metashape minimized georeferencing errors with typical accuracies being less than 5 cm 

for the models generated from the digital camera. The spectral imagery had a wider range 

of accuracies, but still averaged near the 5 cm mark. Some of the composite band spectral 

images saw more distortion in areas where ground control was limited. 

Classification accuracies ranged for each of the fields (Table 9). The fields 

produced an average accuracy of 77.18%.  Field DB had the highest overall accuracy at 

86.16%. The overall accuracies considered all the classes in the model. When each class 

was considered on an individual basis, classification accuracies were greater than 74.5% 

on average for each class, with bare soil being the highest at 82.6%.  

The resulting classification images (Figure 13-Figure 16) illustrate the mapped 

vegetation across the four fields analyzed. Table 10 through Table 13 shows the area of 

each of the classes and the percentage of the field that the class occupies. 
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Table 9. Classification accuracies calculated from confusion matrices. 

 

 

 

 

  

 

  

Field Class  
Forb Sage DryGrass GreenGrass BareSoil Brush 

DB 86.5% 86.5% 85.8% 84.0% 90.9% 83.3% 

DM 77.2% 75.4% 76.8% 79.6% 79.6% 76.1% 

H 81.5% 80.7% 81.1% 81.1% 89.3% 80.7% 

T 71.2% 70.1% 70.8% 77.3% 74.3% 75.1% 

Mean 74.5% 75.4% 75.4% 78.9% 82.6% 76.3% 
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Figure 13. Classification result for field DB 

Table 10. Field DB classification results area and percentage of field. 

 

Class Area (ha) Percent of Field 

Bare 3.95 5.72% 

DryGrass 11.21 16.24% 

Forb 36.73 53.22% 

Green Grass 0.14 0.20% 

Sage 8.63 12.51% 

Shadow 0.14 0.20% 

Tree 0.37 0.53% 

Willow 7.86 11.38% 
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Figure 14. Field DM classification results. 

Table 11. Field DM classification results area and percentage of field. 

Class Area (ha) Percentage of Field 

Bare 3.80 5.52% 

DryGrass 11.30 16.40% 

Forb 44.74 64.92% 

Green Grass 0.01 0.02% 

Sage 7.81 11.33% 

Shadow 0.03 0.04% 

Tree 0.40 0.59% 

Willow 0.82 1.19% 
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Figure 15. Field H classification results 

Table 12. Field H classification results area and percentage of field. 

Class Area (ha) Percentage of Field 

Bare 1.41 2.44% 

DryGrass 16.55047 28.63% 

Forb 37.4268 64.74% 

Green Grass 0.004725 0.01% 

Sage 1.83532 3.17% 

Shadow 0.010953 0.02% 

Tree 0.244191 0.42% 

Willow 0.328156 0.57% 
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Figure 16. Field T classification results 

Table 13. Field T classification results area and field percentage 

 

Class Area (ha) Percentage of Field 

Bare 2.50 3.74% 

DryGrass 23.09 34.50% 

Forb 26.99 40.32% 

Green Grass 0.47 0.70% 

Sage 13.46 20.10% 

Shadow 0.00 0.00% 

Tree 0.00 0.00% 

Willow 0.43 0.64% 
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4.5 Discussion 

The map layer products created during the photogrammetric and structure from 

motion processes of this project have a resolution and repeatability that cannot currently 

be gained from satellite borne sensors. The ultra-fine scale resolution (xx cm) is a huge 

benefit for mapping and identification of plant communities. Individual plants as small as 

several centimeters can be identified from the imagery. The classification software and 

model can handle imagery at this fine scale. One limitation was problems in the co-

registering of spectral bands. In areas where the bands were nearly perfectly aligned, the 

classification model performed relatively well, but in areas where the bands were shifted 

in the geolocation of coincident pixels the classification model would fail. This is because 

the classification model is based upon looking at all layers at the same time and analyzing 

the layer characteristics of several layers for each of the classes developed.  

The model performed better on some classes than it did on others. Classes such as 

bare soil, which has a spectral signature that is distinct from any vegetation signal, had a 

higher accuracy in prediction than any of the other classes. Vegetation signals were hard 

to separate at some wavelengths because of the similarity between the spectral signal of 

some plant types. Segments that contained sage appeared to be spectrally different than 

segments that contained other types of brush. Segments that contained some sort of 

vegetation that was green were more difficult to distinguish between species.  

Ideally, one ruleset would classify all images. To test this, I applied the same 

classification rule set for all the fields. There were only slight modifications made to the 

algorithm in eCognition to get the model to run properly and classify the images. These 

refinements did not alter the basic ruleset.  Field DB, which was flown in late June, was 
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used to develop the initial ruleset, because I thought that it would provide a better 

representation of early summer vegetation’s spectral signal. The accuracies of the fields 

that flown closer to the date of that field were higher than the fields flown more than a 

week before or after that field was flown. This points to the changing of the spectral 

signature within vegetation as plants were greener in weeks prior to the model and drier in 

the weeks after. The very first field that was flown (Field DN), was flown in early June and 

had an observable difference in the amount of green growing vegetation than the 

subsequent flights. This field was the one that did not have plots inventoried and GPS’d 

within it, so quantification of accuracy was not possible, but just by comparing the 

classification to the digital camera imagery from the field, it appears that the model over-

classifies forbs and green grass and under-classifies brush vegetation, including sage. 

Presumably, this is because there was more green growing vegetation within all classes, 

yet I developed the model to perceive the differences in vegetation that had already begun 

to mature or had already begun to senesce.  Fields flown later in the season had an even 

higher percentage of senesced vegetation and tended to over-classify sage and dry grass 

and under classify green grass and forbs. This likely occurred because of the difference in 

flight dates. However, this time, there was more vegetation that had begun to dry out and 

senesce, making the spectral signatures brighter and more like dry types of vegetation.  

The compositions of the fields flown were a mosaic of shrub, forb, and grasses. The 

classifications on field DB indicated a dispersed mosaic of all the classes, except for where 

a stream cut through the field. Field DB also had the most diversity, with four or more 

classes over 5% each of the total field size. Field DB had several dozen CSTG flushed by 

researchers walking through while inventorying ground control points. During plot 
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inventories, Field T also had a dozen or more flushed CSTG. Fields H and T both had some 

distortions showing on the northern parts of the fields where it seemed there was an over-

classification of forbs. This was presumably because of atmospheric conditions on those 

days; there was a lot of smoke from area wildfires. The accuracy of the individual classes 

was higher for all classes within the model, even throughout the growing season. The 

model was better at predicting the classifications in a binary system or one where presence 

or not of any one species is being measured. This could be important when looking for the 

occurrence of a single species within the season. 

Overall, the classification worked to illustrate fine scale composition in the fields 

covered. It is important to remember that the leks for this area show an increase in the 

average count between 2001 and 2016. The ability to classify these areas and assess the 

success of the implemented CRP practices will be an important tool as managers continue 

to make recommendations to increase and rehabilitate CSTG numbers. The repeatability 

of classifications, with of the ability to deploy sUAS when and where needed, will aide 

managers in monitoring conservation practice efficacy and program compliance.    
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Chapter 5 Conclusion 

Columbian Sharp-tailed Grouse are dependent upon large areas of contiguous shrub 

and grassland to establish lekking sites and subsequent nesting and brood locations. This 

research has shown that lek sites, and the number of individuals that visit those sites, are 

not necessarily influenced by their proximity to a change in landcover to agricultural 

production. Future work should focus on generating better bird count datasets and a more 

accurate classification of land cover from satellite imagery, as well as an investigation into 

the effect of land cover change due to fire on CSTG. This will be necessary to develop 

conservation practices that are more efficient in implementation to improve and promote 

habitat suitable for the species. The study area for the analysis of lek sites encompassed 

much of the area currently inhabited by CSTG within Idaho, so it is within these areas 

where the most focus should be placed for conservation practices. This research may also 

help to identify areas that may be the most influenced by conservation rehabilitation work 

and where the most efficient use of limited funds may be applied. Further research with a 

longer temporal period is warranted and will serve to analyze how land use changes, from 

agriculture to restored systems, affects the location and number of individuals frequenting 

lek sites.  

The methodology implemented to map these fields can be implemented in future 

studies to generate fine scale vegetation classifications with an increase in temporal 

resolution. With increasing utilization of sUAS for ecological studies, the workflows 

presented herein will be applied to mapping and study at a fine scale level. It is 

recommended that the information and knowledge gained from this study will improve lek 

count numbers for these areas and for other leks in Southeast Idaho. Small unmanned aerial 

systems are a highly effective tool for natural resource researchers and managers, and many 
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other disciplines for that matter. This study has supported others’ works to show that the 

cost of deployment and richness of data acquired by sUAS makes them a great tool to be 

utilized by researchers and managers alike. Streamlining and refining of the workflows and 

processes employed by sUAS produces data products more quickly and efficiently than 

other comparable aerial or remote sensing platforms. As sensors continue to shrink, while 

at the same time improving in resolution and the amount of data captured, sUAS will 

become an invaluable part of wildlife and wildland research. 
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