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ABSTRACT 

This thesis deals with data analysis and dynamic modeling of an axial compressor 

system. The data processing includes filtering of the time domain data using a Bayesian 

filter, low pass Butterworth filter, and a notch filter. The output of each filter is analyzed 

and the purposed Bayesian filter is found to be the most suitable filter for this research. 

A few techniques used in estimating missing data are also discussed and an algorithm is 

developed in MatlabTM to estimate missing data. This algorithm is based on an 

autoregressive model with exogenous input having missing data. In most part of this 

thesis, the linear and nonlinear techniques of modeling a one - stage compressor system 

is discussed. The modeling is done using System Identification Toolbox in MatlabTM. The 

output error model and Non - Linear Hammerstein - Wiener (NLHW) models are used to 

capture the slow dynamics of the compressor. The NLHW model is used to model the fast 

dynamics of the compressor. 
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CHAPTER 1: INTRODUCTION 

Axial flow compressors are primarily designed to create a pressure rise across a 

flow moving parallel to the axis of rotation of the rotating compressor blades. In an axial 

compressor, the rotating blades or rotor blades are used to thrust the flow forward in 

order to increase the fluid velocity. Between each row of rotor blades is a row of 

stationary blades known as stator blades. Stator blades spread the fluid flowing through 

the compressor and consequently compress the fluid. The combination of one rotor and 

one stator blade rows is known as a compressor stage. The rotor and stator blade rows 

function together as a compressor stage in order to create the rise in the fluid pressure. 

Most types of axial compressors have multiple stages in which each stage produces a 

successive pressure rise for the flow. Axial flow compressors are currently used for a 

number of industrial, aerospace, and research applications, [1]. 

The schematics of a one stage compressor system is shown in Figure 1. Air gets 

sucked in though the inlet and is served to the compressor stage. Air is then compressed 

by the compressor stage and is sent into the plenum guided by the exit duct. A throttle is 

used to vary the operating point of the compressor and it is done by changing the size of 

the opening of the outlet to the atmosphere.  

 

Figure 1: One - Stage Compressor Schematics. 
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1.1: STALL AND SURGE 

Compression systems used in gas turbine engines and industrial processes 

undergo severe aerodynamic instabilities. During the normal operation of such a system, 

instabilities cannot be endured because they cause a large amount of mechanical load on 

the structure, [2]. Compression system instabilities are generally caused by either rotating 

stall or surge. The type and magnitude of these instabilities are dependent on the 

dynamics of the compressor, [2-4]. Rotating stall is a phenomenon which causes 

disturbances in the circumferential flow pattern of the compressor and is usually 

considered as a two or three dimensional phenomenon, [3, 4]. The rotating stall 

phenomenon is caused by a flow moving slower than the rotors (generally 30 percent to 

70 percent of the rotor speed) around the compressor annulus, [3-7]. Surge is a large 

amplitude oscillation which causes an overall reversal of the flow in the compressor, [2-

7]. The surge phenomenon is dependent on compressor geometry as well as the dynamic 

properties of the system such as inlet and outlet channels, volume, and throttle 

resistance, [2]. Surge can also be described by fluctuations in flow, rise in pressure, and 

the rotational speed of the compressor, [4]. 

In the design of axial compressors and other types of turbomachinery, it is of 

primary importance to consider the prevention of rotating stall and surge. Rotating stall 

causes severe uneven loading on the compressor blades. This uneven loading can then 

cause extreme blade vibration, decrease in pressure rise, decrease in compressor 

efficiency, overheat the burner, and sometimes surge, [3, 7, 8]. Surge is a highly 

undesirable phenomenon due to the severe damage it causes to the compressor as well 

as the flow system. Damage to a jet engine caused by compressor surge includes 

overstress on the compressor blades and a lack of air provided to the jet engine 

combustor which may lead to flame-out, [3, 4, 9]. The traditional way to avoid surge is to 

run compressors at an operating level away from the surge line, [4]. However, this limits 

the operating range and achievable efficiency of the machine, [4]. For obtaining extreme 

pressure ratios in every stage of the compressor, aircraft engines these days oftentimes 



3 

use transonic axial flow compressors. Engine weight and size can be reduced if high 

pressure ratios can be obtained from each stage of the compressor, which in turn reduces 

the cost of operation and investment, [10]. 

As mentioned earlier, it is necessary to operate compressor at a safe region away 

from the peak performance of the system. This operation avoids the flow perturbation 

while the system is running. The characteristics of the one – staged compressor is shown 

in Figure 2. In the Figure 2, the flow coefficient φ versus the pressure rise Ψ curve, also 

known as performance curve is depicted. The entire cycle of the compressor operation is 

shown at constant rotor speed. The cycle starts off with higher flow coefficients and the 

pressure gradually rises up to certain point. At the same time the flow coefficient 

gradually decreases to certain point, it is the point of the optimum performance of the 

compressor. The pressure rise beyond this point drives compressor to stall and surge.  

 

Figure 2: Characteristics of One - Stage Compressor. 

A number control schemes have been purposed to mitigate flow instabilities and 

increase the efficiency of the system without affecting the safety of the system. The 

purposed control methods are dynamic schemes. These schemes can be designed and 

applied only if one is familiar with the dynamics of the compressor. In these actuation 
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schemes, the operating point of the compressor is driven up along the performance 

curve. The performance increase of the compressor is depicted on the characteristic plot 

(as shown in Figure 3) of the system with controls applied, [3].  

 

Figure 3: Characteristics of a Compressor with Controls, [3]. 

As it can be seen in Figure 3, the operating point of the compressor is away from 

the surge line without controls. Once the control is implemented, the surge line is moved 

up along the performance curve along with the operating point. Therefore it can be seen 

that optimization and control of the flow in compressor can result in enhancements of its 

performance. This improvement results are also reflected in big economic and 

environmental improvement. A small improvement can results in large cost savings for 

the operation of compressors. As mentioned in [11], one compressor stage was reduced 

using active control in the jet engine which resulted in 1.5 % reduction in fuel 

consumption and 5 % increase in thrust – to – weight ratio. This saving is just for one 

engine, if the number of airplanes in the sky at a certain time is considered, this could 

result in huge amount of savings. The air pollution caused by airplanes reduces as the fuel 

consumption decreases. This gives motivation to understand the dynamics of the 

compressor and possibly design and implement controls.  



5 

1.2 HISTORY OF RESEARCH AND MODELING TECHNIQUES 

The research on flow inside the compressor started as early as the 1950’s. Since 

axial flow compressors were used on jet engines, it became a necessity to understand the 

stall and surge phenomenon in order to make jet engine safe and efficient. Emmons [12] 

presented a blade – passage level theory. This theory explained how the stall inception of 

stall occurs in the compressor. He theorized that the flow separation inside the blade 

passage was culprit to the instability in compressor. In 1970 at University of Tokyo, Saburo 

Nagano and Hiroyuki Takata [13] established a model to explain rotating stall. They took 

on finite difference method and applied it on blade row(s) to clarify the features of 

rotating stall.  Greitzer [8] in 1970’s developed a system - level model to define surge 

phenomenon. This model doesn’t incorporate any flow information within the blade 

passages of the compressor. Moreover, he also collected experimental results at 

Massachusetts Institute of Technology to verify his theoretical model. Moore and Greitzer 

[14] together in 1980’s integrated blade passage flow into Greitzer’s model and 

developed a new model. The resulting model was a highly conceptual 1-D model that can 

capture both rotating stall and surge in compressors. This Moore – Greitzer model was a 

huge success, a new engine type “smart engine” concept was purposed. New engine type 

concept and Moore – Greitzer model initiated a wave of research on active control of 

compressors. Mansoux et al. [15] in 1994 used nonlinear method of the Moore – Grietzer 

model to observe the nonlinearities responsible for the initiation of rotating stall. An 

experiment was conducted using three different compressors and the results were 

compared to the simulation results. The important features were similar in all 

comparisons but stall initiation manners were found to be different. 

A study done by Mc Dougall et al. [16] (1990) and Day [17] (1993b) in low speed 

compressors found two different forms of stall initiation. They are generally known as 

spike and Modal oscillation. Origination of Spike is regarded as a disruption of short length 

– scale, [18].  The first appearance of spike in the velocity traces indicates small stall cell 

in circumference which spreads its size around the perimeter quickly, [18]. Another type 

of stall initiation form is modal oscillation, it is an interference that is formed gradually in 
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long length – scale, [18]. It appears as small waves in the velocity traces which gradually 

initiates rotating stall, [18]. Among two type of stall initiation forms, modal initiation is 

supposed to be well understood however, spike initiation is not quite understood, [19]. It 

is required to understand flow behavior inside the blade passage to understand the spike 

initiation whereas it is not necessary for modal initiation, [19]. 

In 1976 Greitzer [8] developed a model to describe transitory behavior of 

compressors, it showed the relation between a Helmholtz oscillator and surge oscillation. 

Greitzer model did not describe the occurrence of acoustic waves in the system. Helvoirt 

and Jager [20] showed experimentally the occurrence of acoustic waves and has 

significant influence on the nature of surge oscillation in a compressor. Yoon et al. [21] in 

2011 presented similar work modeling compressor plenum as a pipe. They developed a 

mathematical model to describe the pipeline dynamics during the stable operation of the 

compressor. They confirmed their mathematical model with data while Helvoirt and Jager 

[20] failed to do so. Recently in 2013 Joseph Pismenny et al. [22] used the method of 

spectrograms to correctly understand pressure fluctuations, mistakenly identified as a 

beating effect in axial compressor during rotating stall. This method showed that the 

minor change in rotating stall frequency and the beats were absent during the process. 

Among the various ways to investigate the flow inside the compressor, numerical 

simulation is one of the method which is limited due to the instability in occurrence, [23]. 

Hwang and Kang [23] in 2010 used three dimensional and unsteady numerical simulation 

in the first stage with inlet guide vanes of a low speed axial flow compressor near the stall 

line. 

Venturini [24] established a non-linear mathematical model to capture the 

dynamics of the compressor. His approach is based on physics of phenomenon occurring 

inside the compressor. He used laws of conservation and heat balances to develop the 

model. To confirm the good quality of the calibration process influence of parameters 

such as “volume, friction factor, and heat transfer coefficient” on the model were 

analyzed.  A similar method was used by Morini et al. [25] in 2006 to model the 
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compressor transient characteristics. This model also used lumped parameter approach 

to account for rotating mass and this model is able to duplicate the system characteristics 

in occurrence of surge. 

1.3 FAST DYNAMICS 

The dynamics within the blade passages for different flow conditions is referred 

to as fast dynamics. As mentioned earlier in this Chapter, stall occurs on a compressor in 

two different modes. The blade geometry of the compressor and the angles associated 

with the incoming flow (rotor tip incidence angle) determine the type stall. The two 

modes of stall inception are modal stall inception and spike stall inception. The slope of 

the characteristic curve is zero for modal stall inception while it is not necessary for spike 

stall inception, [18]. In Figure 4 [18], modal and spike stall inception are shown on the 

compressor characteristics plot.  

 

Figure 4: Modal and Spike stall inception shown on compressor characteristic curve, 

[18]. 

This section will focus on spike stall inception phenomenon because the 

compressor located at CAS follows spike stall inception. Spike stall inception is a precursor 

to fully developed rotating stall and it has been used to implement controls on 

compressors, [18]. However, spike inception is measured only one to two rotations before 
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the stall occurs. Therefore, this precursor is not viable for control because controls system 

requires some time to react, as it needs time to detect, compute, and activate accordingly 

to the situation. In Figure 5 [18], spike stall inception is shown. In the plots of Figure 5, a 

spike suddenly appears and after one or two rotations more spikes are seen. Following 

the spikes compressor suddenly goes to stall after one or two rotations.  

 

Figure 5: Spike Stall Inception, [18]. 

The spike inception is followed by an unsteady flow pattern within the blade 

passage, [26]. Vo et al. [26] depicted that the interface between the incoming flow and 

the tip clearance flow can be used to characterize the flow within the blade passage. As 

shown in Figure 6 [26], an interface line is drawn graphically to show where the incoming 

and the tip clearance flow meet.  
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Figure 6: Interface between incoming flow and tip leakage flow, [26]. 

The various flow stages or conditions within the blade passage can be 

distinguished using the interface. This hypothesis describes the flow development within 

blade passage from stable to unsteady, to stall inception, and lastly to unstable flow 

condition. This hypothesis has been accepted by number of research teams however, a 

team in Japan has a different hypothesis. Their hypothesis indicates that the vortex 

growth behind the interface line is the cause of the problem, [27].  

The interface line can be used to identify the condition of the flow. The interface 

lies between the blade passages, it starts from the low pressure side of the first blade and 

extends into the blade passage area and falls short in reaching the high pressure side of 

the second blade. This creates a gap between the interface line and the high pressure side 

of the blade. This gap allows the incoming flow to pass through the blade passage without 

being blocked or disturbed. This process is depicted in the Figure 7.  
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Figure 7: Interface line depicting stable flow within blade passage. 

The flow becomes or is considered unsteady once the interface line meets the high 

pressure side of the second blade. The interface line can oscillate on its angle and move 

forward towards the leading edge as well as backward. The growth of the interface causes 

incoming flow blockage. This behavior of the interface line is shown in Figure 8. 
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Figure 8: Interface line depicting unsteady flow within blade passage. 

As the interface line reaches the leading edge, the incoming flow can escape and 

this causes the spike inception of the rotating stall, [26]. In Figure 9 [26], the unsteady 

flow behavior is depicted (a) and the spike inception of the rotating stall is depicted (b), 

where LE means leading edge. As it can be seen in Figure 9 (a) because of the interface 

line blockage there is back flow of fluid and leakage of the fluid through the tip. In Figure 

9 (b) the flow is spilling through the leading edge as the interface line has travelled out of 

the leading edge and the incoming flow is blocked.  
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Figure 9: (a) Unsteady flow and (b) Spike stall inception of rotating stall, [26]. 

1.4 TIP - CLEARANCE 

Tip clearance is the gap between the compressor blade tip and the casing of the 

compressor. As mentioned earlier, flow leaks through this gap. This leakage can induce 

the vortices on the suction side of the blades which in turn may disturb the incoming flow. 

Langston [28] identified the two parameters of tip leakage flow. One is the magnitude of 

the tip clearance gap and the other one is the pressure difference between pressure and 

suction side of the blade. One study found 5% decrease in efficiency just by increasing the 

gap by 1%. The performance of the compressor is highly affected by the tip leakage flow. 

Storer and Cumpsty [29] related the efficiency loss and flow instabilities within the 

compressor to the tip clearance and the resulting tip leakage. They developed a method 

to estimate efficiency loss due to tip leakage based on experimental data and numerical 

solutions. The relationship between tip clearance flow and the three - dimensional flow 

separation on the suction side of the blade was studied by Gbadebo et al. [30]. They 
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concluded that the interaction between the clearance flow and end wall boundary layer 

influences the separation.  

It is evident that the instabilities in the flow through a compressor drives the 

compressor to rotating stall and surge. To overcome this problem Tahara et al. [31] 

developed a simple technique to reduce the stall margin of an axial compressor. They 

purposed a way to compute correlation coefficients using the pressure measurements for 

the current and one previous rotations for each blade pitch. The correlation coefficient 

was used to relay a warning signal to allow corrective actions to act and prevent stall. 

They found out the correlation coefficient degraded as the flow was decreased in the axial 

direction. The significant degradation of the correlation was seen on the mid chord of the 

blade and as the stall was approached the degradation shifted gradually towards the 

leading edge. It was also distinguished from the experimental data that the flow 

fluctuation started on the pressure side of the blade and the cause of the tip leakage may 

be related to degradation of correlation coefficient. Experiments were conducted 

focusing on the circumferential direction of the compressor under uniform inlet flow and 

the same flow throttling, the time scale and origin placement. This experiment found that 

the degradation first appeared at the largest tip clearance location and spread in both 

circumferential direction. Therefore it was expected that the larger tip gaps causes larger 

leakage flow which may in turn degrade the correlation coefficient because of flow 

disturbance caused by tip leakage, [31].  

Some other experiments are done by other researchers to find out the effects of 

the unsteadiness of the flow at the tip clearance on stall inception. Tong et al. [27] 

experimented with as the compressor is throttled from fully open condition. At the open 

condition tip leakage vortices flow easily from the blade passages. As throttling increases 

the smooth flow remains until a critical value is reached and then the vortices starts to 

move across the blade passage and invade on the pressure side of the neighboring blade. 

The compressor is stable until the tip leakage vortices reaches the leading edge of the 

blade. As the vortex reaches the leading edge, there is flow reduction which induces spike. 

This originates at the largest tip clearance, [27].  
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1.5 MODELING OF THE COMPRESSOR  

The overall system dynamics of a compressor is described by slow and fast 

dynamics combined. Therefore, the system dynamics can be represented by a matrix 

composed of four distinct submatrices. This allows easy distinction between different 

flow conditions. Different flow conditions include stable flow, unsteady flow, pre – 

unstable flow where spike - stall inception occurs, and fully unstable flow. The elements 

of the matrix represent the fast and slow dynamics and the relationship between the 

disturbances. This matrix can describe the stable operation of the compressor, unsteady 

flow within blade passage, and linkage between slow and fast dynamics. The matrix can 

be written in the form as shown in Equation 1, [32]. 

 [
𝐴11 𝐴12
𝐴21 𝐴22

] (1) 

In Equation 1, 𝐴11 represents the slow dynamics, 𝐴22 represents the fast 

dynamics, and 𝐴12 including 𝐴21 represent relation between the slow and the fast 

dynamics and the disturbance. This matrix define the unsteady flow condition. The 

vectors inside the A – matrix contains five variables to define fast dynamics, slow 

dynamics, and the disturbances. The two variables of the vectors are 𝛹 and 𝜙 

representing non – dimensional pressure and flow coefficients, respectively. 𝛹̂ represents 

the pressure disturbance coefficients. The other two variables are 𝜃 and ω represents the 

angle of the incoming flow streams with respect to compressor blade and the frequency 

of the incoming flow streams oscillations, respectively. These two variables are 

representatives of the fast dynamics of the compressor. The vectors of the A – matrix for 

unsteady flow can be written as follows: 

 

𝐴11 =

{
 
 

 
 
𝛹(𝑡)
𝜙(𝑡)

𝛹̂(𝑡)
𝜃(𝑡)
𝜔(𝑡)}

 
 

 
 

   𝐴12 =

{
 
 

 
 
𝛹(𝜃, 𝑡)
𝜙(𝜃, 𝑡)

𝛹̂(𝜃, 𝑡)
𝜃(𝑡)
0 }

 
 

 
 

   𝐴22 =

{
 
 

 
 

0
0
0
𝜃(𝑡)
𝜔(𝑡)}

 
 

 
 

 (2) 
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The A – matrix for pre – unstable and unstable contains all the vectors however, 

the variables of the vectors must be determined.  

For the stable flow condition the A - matrix can be written as follows: 

 [
𝐴11 0
0 𝐴22

] (3) 

where, 𝐴12 and 𝐴21 are zero because the flow is stable and no disturbances are 

present.  
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CHAPTER 2: THEORY ON FILTERING 

In this Chapter, a few ways of filtration techniques are discussed. The filters are 

used to reduce noise influence in the data extracted during compressor operation when 

the compressor approaches stall.  

2.1 BAYESIAN FILTERING 

Bayesian filtering is named after the English mathematician Thomas Bayes. A 

theory of probability interference was developed by this mathematician which was used 

for development of the Bayesian filter. It is also known as a Bayes filter. It is a probabilistic 

method for estimating an unknown probability density function recursively over time. It 

uses online measurements and a mathematical process model for estimation, [33, 34]. 

A Bayesian filter inspects a data set which is identified to be unrelated (noise) to 

the measurement. It also observes a data set that is identified to be genuine and 

compares it and filters out the unrelated data (noise). These filters adapt to identify new 

patterns of noise. An added advantage of this filter is that it takes the entire data set into 

consideration before filtering out anything out of it [33-35]. In what follows, the method 

to prepare experimental data (𝑂𝑟𝑖𝑔𝑖𝑛𝑎𝑙𝐷𝑎𝑡𝑎) and filter theory are presented. The 

relationship between the filtered data and the original data is given by a conditional 

probability density function, [36]. 

 𝑃(𝑂𝑟𝑖𝑔𝑖𝑛𝑎𝑙𝐷𝑎𝑡𝑎|𝑥) (4) 

where, 

𝑥 = Average rate of events for the system. 

The number of events n is modeled as a Poisson process [36] as shown below: 

 𝑃(𝑂𝑟𝑖𝑔𝑖𝑛𝑎𝑙𝐷𝑎𝑡𝑎|𝑥) ≈ (𝑥𝑛𝑒−𝑥)/𝑛! (5) 

The data obtained from the experiment is rectified for the filtration purpose. This 

data is also defined as amplitude modulated zero – mean Gaussian noise, [36]. The 

expression for the rectified data is given by Equation 6. 
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𝑃(𝑂𝑟𝑖𝑔𝑛𝑎𝑙𝐷𝑎𝑡𝑎|𝑥) = 2 ×
exp (−

(𝑂𝑟𝑖𝑔𝑖𝑛𝑎𝑙𝐷𝑎𝑡𝑎)2

2𝑥2
)

(2𝜋𝑥2)1/2
 

(6) 

The density function of the original data set can be approximated using a Laplacian 

density, [36]. Mathematically it can be represented for rectified data as in Equation 7. 

 
𝑃(𝑂𝑟𝑖𝑔𝑖𝑛𝑎𝑙𝐷𝑎𝑡𝑎|𝑥) = exp (−

𝑂𝑟𝑖𝑔𝑖𝑛𝑎𝑙𝐷𝑎𝑡𝑎

𝑥
) /𝑥 (7) 

Assuming the rectified data be represented by 𝑂𝑟𝑖𝑔𝑖𝑛𝑎𝑙𝐷𝑎𝑡𝑎(𝑡) at a given t, 

where t is the discrete time index. The probability of each likely value of 𝑥(𝑡) can be 

specified by the function 𝑃[𝑂𝑟𝑖𝑔𝑖𝑛𝑎𝑙𝐷𝑎𝑡𝑎(𝑡)|𝑥(𝑡)] by using Bayes rule for posterior 

density [36] as shown in Equation 8.  

 𝑃[𝑥(𝑡)|𝑂𝑟𝑖𝑔𝑖𝑛𝑎𝑙𝐷𝑎𝑡𝑎(𝑡)]

= 𝑃[𝑂𝑟𝑖𝑔𝑖𝑛𝑎𝑙𝐷𝑎𝑡𝑎(𝑡)|𝑥(𝑡)] × 𝑃[𝑥(𝑡)|𝑂𝑟𝑖𝑔𝑖𝑛𝑎𝑙𝐷𝑎𝑡𝑎(𝑡)] 
(8) 

where, 

𝑃[𝑥(𝑡)] = Probability density for 𝑥(𝑡) instantly before the measurement 

of 𝑂𝑟𝑖𝑔𝑖𝑛𝑎𝑙𝐷𝑎𝑡𝑎(𝑡). 

Preceding 𝑃[𝑥(𝑡)] depends entirely on the past measurements and it can be 

estimated using Bayes’ rule [36] on recursive algorithm based on discrete time 

measurements as shown in Equation 9. 

 𝑃[𝑥(𝑡)|𝑂𝐷(𝑡), 𝑂𝐷(𝑡 − 1),… ]

= 𝑃[𝑂𝐷(𝑡)|𝑥(𝑡)]𝑃[𝑥(𝑡)|𝑂𝐷(𝑡 − 1), 𝑂𝐷(𝑡 − 2). . ]/𝐶 
(9) 

where, 

𝑂𝐷 = 𝑂𝑟𝑖𝑔𝑖𝑛𝑎𝑙𝐷𝑎𝑡𝑎 

The recursive algorithm to estimate the probability density function is derived by 

and can be used for the filtration of the recorded data, [36]. The mathematical form of 

this relation can be written as: 

 𝑃(𝑥, 𝑡 − 1) ≈ 𝛼𝑃(𝑥 − 𝜀), 𝑡 − 1) + (1 − 2𝛼)𝑃(𝑥, 𝑡 − 1) + 𝛼𝑃(𝑥 + 𝜀, 𝑡

− 1) + 𝛽 + (1 − 𝛽)𝑃(𝑥, 𝑡 − 1) 
(10) 
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where, 

𝛼 = Expected rate of gradual drift. 

𝛽 = Expected rate of sudden shifts in data. 

This filter can be implemented in MatlabTM based on the theory described above. 

MatlabTM implementation of this filter is done by modeling the measured data as a 

random process with a concentration in exponential group and desired signal rate, [35]. 

The filtered data is modeled as a collective diffusion and jump process. The signal rate is 

estimated by utilizing all past measurements to calculate the full conditional density. The 

filtered data, outcome of Bayesian estimation best describes the measured data. It is a 

nonlinear filter and it considerably decreases noise from the signal, [35]. The 

implementation of Bayesian filter on MatlabTM is included in Appendix A1, where ‘alpha’ 

is diffusion drift and ‘beta’ is the Poisson jump has to be chosen empirically. These 

parameters determine the amount of filtering done. 

2.2 LOW PASS BUTTERWORTH FILTER 

Classification of filters are done based on the function they accomplish. Range of 

frequencies are used to classify filters. A filter is called a low pass filter if it has the 

property of transmitting low frequencies up to a specified limit and blocking the higher 

frequencies above that limit up to infinity, [37]. A typical ideal low pass filter characteristic 

is shown in the Figure 10, [38]. 
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Figure 10: Ideal Low Pass Filter, [38]. 

However, a filter cannot behave ideally. The typical response of the low pass filter 

is shown in Figure 11, [38]. 

 

Figure 11: Typical Behavior of Low Pass Filter, [38]. 

The Butterworth filter was first presented by the British engineer and physicist 

Stephen Butterworth in his paper “On the Theory of Filter Amplifiers.”, [39]. This filter is 

mostly used in signal processing and the result of this filter has a flat frequency response 
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in a specified range of frequency. It is also called a “maximally flat magnitude 

filter.” Butterworth filter are identified with two parameters, the filter order and the 

cutoff frequency. The filtered output is dictated by filter order, higher filter order must 

be chosen if higher rate of filtering is necessary, [39]. This filter can be easily programmed 

in MatlabTM, in fact MatlabTM has a built-in command ‘butter’. The syntax for this filter to 

be implemented in MatlabTM is shown in Equation 11. 

 [𝑏 𝑎] = 𝑏𝑢𝑡𝑡𝑒𝑟(𝑛, 𝑤𝑛,′ 𝑙𝑜𝑤′) (11) 

where, 

[𝑏 𝑎] = Transfer function coefficients (b = numerator, a = denominator) 

𝑛 = filter order 

𝑤𝑛 = cutoff frequency 

𝑙𝑜𝑤 = tells MatlabTM that it is a low pass filter. 

Once the transfer function coefficients [𝑏 𝑎] are determined, the signal can be 

easily filtered using the MatlabTM command below: 

 𝑦 = 𝑓𝑖𝑙𝑡𝑒𝑟(𝑏, 𝑎, 𝑥) (12) 

where, 

𝑦 = filtered signal 

𝑥 = input signal 

This filter is programmed in MatlabTM and is included in Appendix A2.  

2.3 NOTCH FILTER 

A notch filter is a type of band - stop filter with a very slim stop band. These filters 

discard a portion of the frequency spectrum and passes all other wavelengths, [40, 41]. 

These filters can be designed by a slight variation on the band - pass filters. Band 

pass filters have the pole and zero relatively equidistant logarithmically from the unit 

circle. A slight modification to this i.e. moving that zero closer to or on the circle makes it 

a notch filter, [41]. A typical notch filter is shown in the Figure 12, [42]. 
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Figure 12: Notch Filter, [42]. 

A notch filter can be easily implemented in MatlabTM. The syntax for implementing 

this filter in MatlabTM is given by Equation 13. 

 𝑑 = 𝑓𝑑𝑒𝑠𝑖𝑔𝑛. 𝑛𝑜𝑡𝑐ℎ(′𝑁, 𝐹0, 𝑄′, 𝑣𝑎𝑙𝑢𝑒 𝑁, 𝑣𝑎𝑙𝑢𝑒 𝐹0, 𝑣𝑎𝑙𝑢𝑒 𝑄, 𝐹𝑠) (13) 

The command above creates a notch filter of specification‘d’. 

where, 

𝑁 = Filter order (should be even) 

𝐹0 = Center Frequency 

𝑄 = Quality Factor 

𝑣𝑎𝑙𝑢𝑒 𝑁 = Value of N 

𝑣𝑎𝑙𝑢𝑒 𝐹0 = Value of center frequency 

𝑣𝑎𝑙𝑢𝑒 𝑄 = Quality factor value 

𝐹𝑠 = Sampling frequency 
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The command below designs the filter H from the specification in d. 

 𝐻 = 𝑑𝑒𝑠𝑖𝑔𝑛(𝑑) (14) 

Once the above steps are completed, following command is used in MatlabTM to 

filter out data. 

 𝑦 = 𝑓𝑖𝑙𝑡𝑒𝑟(𝐻, 𝑥) (15) 

where, 

𝑦 = filtered data 

𝑥 = input data 

This filter is programmed in MatlabTM and is included in Appendix A3.  
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CHAPTER 3: SYSTEM IDENTIFICATION THEORY  

An object that yields evident signals because of the interaction of different 

variables at various time and space scales is considered to be a system. System 

Identification (SI) is a process of determining the mathematical model of a system using 

the measured input and output of the system, [43]. The application of SI can be used in 

any kind of systems where input and output data can be measured. This process can be 

easily done in MatlabTM. The SI toolbox in MatlabTM contains MatlabTM functions, Simulink 

blocks, and a Graphical User Interface (GUI) application for predicting mathematical 

models. A dynamic system can be modeled mathematically using SI toolbox in MatlabTM 

based on measured input – output data. It can be done by adjusting model parameters 

until it agrees best with the measured output. A test can be conducted to compare model 

output and the measured output by using a data set that was not used for model 

estimation. The SI toolbox allows use of linear and non –linear model for estimation. It 

can also be used to preprocess the measured data, [43-45].   

The main features of the SI toolbox includes continuous and discrete – time 

transfer functions, state – space models, and process model estimation utilizing 

frequency and time domain measured data. The SI toolbox also utilizes maximum 

likelihood, prediction – error minimization, and subspace system identification 

techniques to identify Autoregressive (ARX), Box-Jenkins, and Output – Error models. It 

can also be used to identify nonlinear ARX models and Hammerstein – Wiener models. 

These nonlinear models contain input – output nonlinearities such as piecewise 

polynomial, 1D polynomial, and dead zone, [43-45]. 

The general procedure involved in estimating a model of a dynamical system 

includes the input – output data, the model structure, and the identification method. SI 

is basically a cycle because it involves selecting various model structures until it best 

describes the system, [43, 44]. The basic steps in the cycle of SI are laid out as follows: 

1. Collect input – output data by designing an experiment to be identified using SI, [43, 

44]. 
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2. Process the collected data. Discard the un-necessary portion of data, filter data if 

noisy, remove trends and outliers, etc., [43, 44]. 

3. Select a relevant model structure to be used in describing the original system, [43, 

44]. 

4. Describe the model as required, [43, 44]. 

5. Obtain the best model fit to the original system by inspecting the fit percent and the 

resulting plot of measured output and estimated output, [43, 44]. 

6. Inspect if the properties of the identified model resembles the original system, [43, 

44]. 

7. If a good result is obtained, then discontinue. If not, go back to step three or try a 

different estimation model. If necessary, process input – output data differently or 

redesign experiment and collect another set of data, [43, 44]. 

The theory and procedure to estimate output – error model and non-linear 

Hammerstein – Wiener model using the SI toolbox are explained in what follows.   

3.1 OUTPUT ERROR MODEL 

The Output Error (OE) model is based on the difference between the measured 

output and the model’s simulated output. The OE model is a variant of an ARX model and 

its structure is given by, [43]: 

 

Figure 13: Output - Error Model Structure, [43]. 

 
𝑦(𝑡) =

𝐵(𝑞)

𝐹(𝑞)
 𝑢(𝑡 − 𝑛𝑘) + 𝑒(𝑡) (16) 
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where, 

𝑦(𝑡) = output 

𝑢(𝑡) = input 

𝑛𝑘 = input delay 

𝑒(𝑡) = error 

𝐵(𝑞) & 𝐹(𝑞) = polynomial with shift operator ‘q’. 

An OE polynomial model can be estimated using MatlabTM function [44] as shown 

in Equation 17. 

 𝑠𝑦𝑠 = 𝑜𝑒(𝑑𝑎𝑡𝑎, [𝑛𝑏 𝑛𝑓 𝑛𝑘]) (17) 

where, 

𝑠𝑦𝑠 = Estimated OE model 

𝑑𝑎𝑡𝑎 = ‘iddata’ object containing the input and output signal values. 

𝑛𝑏 = B polynomial order plus 1 

𝑛𝑓 = F polynomial order 

𝑛𝑘 = Input delay 

This model can be obtained using the SI GUI in MatlabTM. This GUI or application 

can be accessed by entering ‘ident’ command in MatlabTM command window. This 

application is capable of doing all the functions of SI such as import and employ input – 

output experimental data, estimate linear and non-linear models, inspect identified 

models, etc, [46].  

In what follows, it is shown how to obtain OE model using SI application of the 

given experimental data.  

As mentioned earlier, SI toolbox application can be accessed by entering ‘ident’ 

on workspace. The data that is to be imported to SI toolbox should be loaded by using 

‘load data’ command on MatlabTM workspace or other methods of loading data may be 

used too. Once the data is loaded, one can import data to the SI toolbox using ‘import 

data’ drop down menu in the SI dialogue box as shown in Figure 14. 
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Figure 14: SI Toolbox Application Window 

If the input – output data is time - domain then ‘Time domain data’ must be 

selected from the drop down menu. If the data is frequency – domain then ‘Frequency 

domain data’ must be selected. Once one selects the ‘Time domain data’ from down 

menu, a dialogue box appears where input – output data should be specified that is 

loaded into the workspace. The ‘starting time’ and the ‘sampling interval’ can be enter if 

applicable. Once all the boxes are filled with relevant data, one must click ‘import’ to 

import the data to the SI toolbox. The dialogue box is shown in Figure 15. 
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Figure 15: Import Data Window of SI Toolbox. 

After the data is imported to the SI toolbox, one is ready to estimate the OE model. 

1. Select ‘Polynomials Models’ from ‘Estimate’ drop down menu on SI dialogue box. Figure 

16 shows SI toolbox window where the specified selection can be made. 
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Figure 16: Finding Polynomials Model Menu. 

2. A new dialogue box appears as shown in Figure 17. In the box to the right of ‘orders’, 

polynomial orders i.e. B and P should be specified along with the time delay. As shown in 

the Figure (), ‘order’ box is filled with 2 2 1 inside the square brackets. The first ‘2’ is the 

order of the B polynomial, the second ‘2’ is the order of the F polynomial, and the ‘1’ is 

the time delay. They should remain inside the square brackets.  
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Figure 17: Polynomial Models Estimation Dialogue Box. 

3. To identify the OE model the ‘Estimate’ button at the bottom of the dialogue box should 

be pressed after the model orders are specified. 

4. MatlabTM requires some computation time depending on the input – output data size. 

Larger the data size results into longer computation time. MatlabTM estimates the OE 

model and the estimated model fit with the measured output which can be seen by 

checking a box left to the ‘model output’ in SI toolbox application window. It is shown in 

the Figure 18.  
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Figure 18: Viewing Estimated Model Fit. 

5. If the estimated model fit is low, one can go back to step two and follow the procedure 

again until a better fit is obtained.  

6. As shown in Figure 18, MatlabTM names the estimated model as ‘oe221, oe231, etc.’ To 

further investigate the properties of model, one can import this model to the workspace 

by clicking the model and dragging and dropping the model to ‘To Workspace’ square box 

in SI toolbox application window. 

7. After the model is imported to workspace, details on the estimated model can be seen by 

entering the name of the model in the workspace. In this case, the name of the model is 

‘oe221’ and the details of the model given by MatlabTM after entering ‘oe221’ in 

workspace is shown in Figure 19. 
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Figure 19: Estimated OE Model Details. 

3.2 NON – LINEAR HAMMERISTEIN – WIENER MODEL 

A non –linear system is any system that does not satisfy the superposition 

principle or that is not linear. In this case, the output of a system does rely non - linearly 

on its inputs. It is possible to differentiate the relationship between the input and output 

into two or more interrelated features. One of the possible method of doing this is using 

a Hammerstein – Wiener (HW) model in the SI toolbox to identify the system. In this 

method of modeling, dynamics of the system can be modeled by a linear transfer function 

and nonlinearities present in the input and output of the linear system are captured using 

non – linear functions, [44, 47]. The structure of a HW model is shown in Figure 20, [47]. 

 

Figure 20: Structure of Non-Linear HW Model, [47]. 

where,  
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𝑢(𝑡) = Input data 

𝑤(𝑡) = 𝑓(𝑢(𝑡)) is a non – linear function that transfers input data 

𝑥(𝑡) = (
𝐵

𝐹
)𝑤(𝑡) is a linear transfer function. Where B and F are as described in OE 

model. 

𝑦(𝑡) = ℎ(𝑥(𝑡)) is a non – linear function that transfer output of the linear block to the 

system output.  

In Figure 20 structure it can be seen that 𝑤(𝑡) and 𝑥(𝑡) are the internal variables 

defining the input and the output of the linear block, respectively. Function 𝑓 acts on the 

input of the linear system and the function ℎ acts on the output of the linear system. They 

are called input and output nonlinearity, respectively. If the model only consists of input 

non – linearity, it is called Hammerstein model and if the model only contains an output 

non – linearity, it is a Wiener model. Input and output non – linearity’s combined makes 

the HW model, [47].   

The HW model requires three steps in computing the output y, the steps are listed 

below: 

1. MatlabTM computes 𝑤(𝑡) at the first step and it is an input to the linear block. The 

input non – linearity can be captured using sigmoid network, wavelet network, 

piecewise linear function, 1D polynomial, etc, [47]. A brief description of these 

methods are as follows: 

a. Sigmoid Network: A sigmoid function is a curve of “S” shape. This function is 

generally is real – valued and differentiable, having a non – negative or non – 

positive first derivative, one local minimum, and one local maximum. This 

function is mostly used to induce nonlinearity in artificial neural networks, [47, 

48].  

b.  Wavelet Network: Wavelet is a ‘small wave’ function used for localize the 

position and scaling of a given function. These small waves grows and decays 

in certain time period, [49].  A wavelet network is obtained by cascading a 
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multi-dimensional wavelet. This network is utilized to approximate arbitrary 

nonlinear functions, [50].   

c. Piecewise Linear Function: Piecewise linear function is a function which is made 

by number of straight – line sections combined. The slope of the function is 

not constant throughout the graph, [51].  

d.  1D Polynomial: The sum of one or more monomials with positive integer 

exponents and real coefficients is called a polynomial. The order of a 

polynomial function is the highest exponent, [52].  

2. The second step involves computing 𝑥(𝑡) using the input 𝑤(𝑡), the polynomials in the 

numerator and denominator of the linear block should be configured, [47]. 

3. In the last step of the process, the output of the model is computed using the output 

of the linear block. As the input nonlinearity, the output nonlinearity can be captured 

using sigmoid network, wavelet network, piecewise linear function, 1D polynomial, 

etc. Both input and output nonlinearity’s are “static” function whereas the linear block 

is the dynamic function, [47].  

In what follows, the method to estimate HW model using MatlabTM function is 

described. The ‘nlhw’ command is used to estimate HW model in MatlabTM. The function 

as in Equation 18 estimates non – linear HW model using 1D polynomial of order 3 to 

capture the input and output non-linearity, [47]. The linear block has the numerator of 

2nd order and denominator of order 3 and input delay of 1. 

 𝑀1 = 𝑛𝑙ℎ𝑤(𝑑𝑎𝑡𝑎, [2 3 1], 𝑝𝑜𝑙𝑦1𝑑(3), 𝑝𝑜𝑙𝑦1𝑑(3)) (18) 

where, 

𝑀1 = Estimated non – linear HW model. 

𝑑𝑎𝑡𝑎 = ‘iddata’ object containing the input and output signal values. 

[2 3 1] = OE model (specified order for the linear model) 

𝑝𝑜𝑙𝑦1𝑑(3) = Input non-linearity captured using 1D polynomial of 3rd order.  

𝑝𝑜𝑙𝑦1𝑑(3) = Output non – linearity captured using 1D polynomial of 3rd order. 
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In the similar manner more than one model can be obtained and compared to 

each other to determine the best one. This can be done by using a MatlabTM function as 

shown in Equation 19. 

 𝑐𝑜𝑚𝑝𝑎𝑟𝑒(𝑣,𝑀1,𝑀2,𝑀3) (19) 

where,  

𝑐𝑜𝑚𝑝𝑎𝑟𝑒 = MatlabTM command to compare various model. 

𝑣 = ‘iddata’ object containing the input and output signal values to validate the model. 

𝑀1,𝑀2,𝑀3 = Three differently estimated models. 

Once the command as shown above is executed, a window with the plot of 

different models and measured input - output data appears. This plot also includes the fit 

percentage of each model to the measured output. Therefore, by inspecting plots and 

utilizing fit percent’s one can select the best model out of all the estimated models. The 

algorithm to estimate Non – linear HW model is programmed in MatlabTM and is included 

in Appendix A4. 

Non – linear HW models can be estimated using the SI application of MatlabTM. In 

what follows, the steps required to estimate model using the SI application is described.  

The procedure to open the SI application and importing data to the application is 

described in an earlier section of this chapter.  

After the data is imported to the SI toolbox, one is ready to estimate the nonlinear 

Hammerstein – Wiener model.  

1. Select ‘Nonliner Models’ from the ‘Estimate’ drop down menu on SI dialogue box. 

Figure 21 shows SI toolbox window where the specified selection can be made. 
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Figure 21: Estimate drop down menu. 

2. A new dialogue box appears as shown on Figure 22. 

 

Figure 22: Non-Linear Model Estimation Dialogue Box. 



36 

3. On the dialogue box as shown on Figure 23, under configure tab select 

‘Hammerstein – Wiener’ from the drop down menu located to the right of ‘Model 

Type’. The dialogue box appearance changes, and it is shown in Figure 23. 

 

Figure 23: Hammerstein - Wiener Model Estimation Dialogue Box. 

4. It is necessary to specify the type of model to estimate the nonlinearities present 

in the input and output data. Various types of models are available to do so.  In 

this case, one selects to use ‘One – dimensional polynomial’ model to estimate 

the nonlinearities. It can be selected by clicking ‘Piecewise Linear’ present on the 

‘Nonlinearity’ column under “I/O Nonlinearity” tab. Clicking ‘Piecewise Linear’ 

turns it into a dropdown menu and ‘One – dimensional polynomial’ can be 
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selected from the drop down menu. It is necessary to do this for both input and 

output. It is also necessary to specify the order of the polynomial to be used for 

estimating the nonlinearities. It can be specified by entering numbers in the white 

box to the right of the drop down menu used to select the polynomial model as 

shown in Figure 24. 

 

Figure 24: Specifying Model and Model Order. 

5. Similarly, the number of Zeros and Poles of the linear block or Output error model 

should be specified. Based on the formulation of the Hammerstein – Wiener 

model it must contain at least one Zero on its Output error model. To specify the 

number of Zeros and poles click on ‘Linear Block’ tab under ‘Configure’ tab on the 

nonlinear model estimation dialogue box. One should see a table after clicking on 

‘Linear Block’ tab where number of Zeros and Poles can be specified. See Figure 

25 for details. 

 

Figure 25: Configuring Linear Block. 
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6. After all the configurations are done, one is ready to estimate the model. It can be 

done by clicking the “Estimate” button located in the bottom of the dialogue box. 

7. The estimated model’s fit can be checked using the SI toolbox. If the fit percentage 

is low, one can re-configure the nonlinear model estimation dialogue box and 

estimate the model again.  

8. After the estimation is complete, MatlabTM names the model such as ‘nlhw1, 

nlhw2, etc.’ and it appears on the SI toolbox window. To further investigate the 

estimated model it can be imported to the MatlabTM workspace and extracted.  

9. It can be done by dragging the desired model from the SI toolbox window and 

dropping it to the ‘To Workspace’ box present in the SI toolbox window. 

10. The model can now be seen on MatlabTM work space window. In this case model 

is named ‘nlhw2’. If one enters ‘nlhw2’ command on the command window it 

displays the information about the model as shown in the Figure 26. 

 

Figure 26: Model Information. 

11. To extract the input nonlinearity and output nonlinearity of the estimated model 

in mathematical form, follow the commands as shown in Figure 27 which are 

entered in the MatlabTM command window. It presents the coefficients of the 

polynomials. 
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Figure 27: Input - Output Non - Linearity Model Extraction. 

12. Similarly, the Output Error model or linear model can be extracted by entering the 

command as shown in Figure 28. 

 

Figure 28: Linear Model Extraction. 

13. Beside extracting the models, one can also plot the entire model by entering 

‘plot(nlhw2)’ command on the command window. On the plot window, one can 

observe the input/output nonlinearities model plot as shown in Figure 29 and 30. 
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Figure 29: Input Non - Linearity Model Plot. 

 

Figure 30: Output Non - Linearity Model Plot. 

14. For the linear part of the model, one can view the step response plot, Bode plot, 

impulse response plot, and Pole – Zero map. It can be done by selecting ‘Linear 
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Block’ box on the plot window. The box turns green once the selection is made 

and displays the plot. A drop down menu appears on the top right corner of the 

plot window after the Linear Block box is selected. All the plots that can be 

generated are shown in Figure 31 through 34. 

 

Figure 31: Step Response Plot. 

 

Figure 32: Bode Plot. 
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Figure 33: Impulse Response Plot. 

 

Figure 34: Poles - Zeros Map. 
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CHAPTER 4: EXPERIMENTAL SET-UP  

The system used for the experiment is a one – stage axial compressor. It is located 

at the research facility of Chinese Academy of Sciences (CAS), Beijing, China. It is used for 

obtaining data through various experiments. This compressor is equipped with an array 

of transducers capable of capturing slow dynamics data, changes in axial direction across 

the compressor are measured and the fast dynamics data. The fast dynamics data are 

associated with the flow between individual blades. The major components schematics 

of the compressor are shown in Figure 1 of Chapter 1. 

The major components of the compressor as shown in Figure 1 of Chapter 1 are 

the inlet, the compressor stage, the exit duct, plenum, and the throttle. The one used for 

the experiment housed at CAS has one compressor stage. The overall compressor used 

for experimental purpose is shown in Figure 35. 

 

Figure 35: Side View of the Experimental Compressor. 

In the Figure 35, the inlet of the compressor is on the left hand side and the outlet 

is located to the right. However, the outlet (cone and outer cylinder) of the compressor 

as shown in Figure 35 has been modified and is now passed through the stationary wall. 

The outer cylinder also passes through the wall and slides back and forth. The new setup 

of the compressor is shown in Figure 36. The outlet consists of two pieces, a stationary 

throttle cone and a moveable throttle outer cylinder. The cylinder is used to regulate the 

flow rate and is controlled by a computer. The cylinder is connected to a stepper motor 
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(controlled by a computer) by a mechanism to help cylinder change its position with 

respect to the stationary cone creating small openings of the outlet, driving compressor 

to stall.  

 

Figure 36: Compressor Outlet Setup. 

The outer cylinder has the diameter of 540 mm and is made by using aluminum. 

The mechanism that moves the cylinder is a screw mechanism, connected to the stepper 

motor. The clockwise and anti-clock wise rotation of the stepper motor drives the cylinder 

in forwards and backwards directions. This mechanism is shown in Figure 37. As seen in 

Figure 37, the outer cylinder sits on a structure that moves along the rail and this structure 

is connected to the screw. The stepper motor drives the outer cylinder at a constant speed 

of 2mm/sec. 
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Figure 37: Throttle Actuation Mechanism. 

A different motor (blue color) as shown in Figure 36 is used to drive the 

compressor fan. The speed of this motor is controlled by using a variable frequency drive 

(VFD).  

In order to capture the fast dynamics and slow dynamics data, ten anemometer 

type pressure sensors are attached to compressor casing in the vicinity of blade passage. 

It can be seen in Figure 38. Variable DC power supplies are used to power these sensors. 

Sampling rates are set differently for acquiring fast and slow dynamics data. Higher 

sampling rate (e.g. 20,000 Hz) is set for fast dynamics data and low sampling frequency 

(e.g. 100 Hz, 200 Hz) is used for slow dynamics. 

 

Figure 38: View of Mounted Pressure Sensors. 
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The relative position of these sensors are shown in the Figure 39. The 

experimental compressor has 58 blades. The position of the first pressure sensor is just 

ahead of the tip of a blade and they are laid out so that they gradually pass over the span 

of the blade tip and ends little behind the edge of the tip. 

 

Figure 39: Distribution of Pressure Sensors. 

 (Include the dimension of the pressure sensor locations) 

4.1 SET – UP FOR AN OLDER EXPERIMENT 

This compressor was set-up differently when an experiment was conducted in 

2013. In order to capture the pressure data eight pressure sensors are used and a Hall 

Effect sensor to track the position of the compressor blades. Sensor one and sensor eight 

are arranged in the inlet and outlet of the compressor, respectively. Sensors two through 

seven are installed over the blade tip from the leading edge to the trailing edge. The 

arrangement of pressure sensor are shown in Figure 40. 
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Figure 40: Pressure Sensors Arrangements. 

The location of the sensors installed along the blade chord in axial and 

circumferential direction of the compressor is included in Table 1. The sensors location 

are with respect to the first sensor in the circumferential direction and for the axial 

direction, the leading edge of the compressor blade is used as reference. 

Table 1: Location of Sensors 

Sensors Axial Co – ordinate (mm) Circumferential Co – ordinate(mm) 

Sensor 2 -4.387 0 

Sensor 3 0.033 5.327 

Sensor 4 4.583 5.033 

Sensor 5 8.993 5.42 

Sensor 6 13.83 4.987 

Sensor 7 18.09 5.283 
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4.2 ALTERNATIVE METHOD OF THROTTLE ACTUATION 

As mentioned earlier, the stepper motor drives the outer cylinder at the speed of 

2mm/sec (axial speed). This is relatively slow and is not enough to perform experiments 

to excite the overall system dynamics. For System Identification purpose this is not 

sufficient because better result can be obtained if the input – output data’s are rich in 

information about the system. In order to achieve this, all the system modes should be 

excited and reflected in the output signal. Therefore, an alternative method of throttle 

actuation scheme prototype is designed and is being implemented on the compressor. 

This design will incorporate a wider range of throttle actuation input frequencies. In this 

new design prototype, a series of flaps are added around the throttle cylinder and a new 

mechanism to drive the flaps is designed. High frequency rotatory solenoids are used to 

drive the flaps back and forth in the axial direction of the compressor. A rack and pinion 

design with the flaps attached to it is also designed using SolidWorksTM and is shown in 

the Figure 41. 

 

Figure 41: Rack and Pinion Design with Flap. 

The final design of the rack and pinion with flaps attached to rotating solenoid in 

the throttle is shown in Figure 42. The overall weight of the module including rack, pinion, 

and flaps is 180 grams with 1060 aluminum used as material. The solenoid to drive this 

mechanism is manufactured by LEDEX. The particular solenoid used for this mechanism 
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is “Ultimag® Size 4EM”. This solenoid can produce maximum torque of 0.32 Nm and the 

maximum frequency response of this rotary solenoid is 78 Hz. The specification sheet of 

this solenoid is included in Appendix A5. 

 

Figure 42: Rack and Pinion Assembled in Throttle Cylinder, [53]. 
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CHAPTER 5: THEORY OF MISSING DATA  

The missing data problem arises in almost all research work and statistical 

analysis, [54, 55]. There are a number of ways for this problem to appear. The causes are 

briefly discussed below: 

 Missing Completely At Random (MCAR): In this case, the missing data doesn’t 

depend on the observation and other dependent variables. Any piece of data is as 

likely as any other piece to be missing, [56]. 

 Missing At Random (MAR): In this case, the missing data depends on the observed 

dependent variables. This is possible by controlling other variables, [56].  

 Missing Not At Random (MNAR): In this case, missing data depends on the dependent 

variables that are not observed, [56].  

5.1 TREATING MISSING DATA TECHNIQUES 

The traditional way of treating missing data is list-wise deletion or simply remove 

the pieces where the data is missing. However, this approach results in reduction of 

available data size for analysis purposes. Another traditional way of dealing with missing 

data is to substitute the mean of the available data for the missing data. This method is 

not very reliable because it does not add new information to the existing data. The overall 

mean of the data would be the same even after the missing data is filled, [54].  

Linear regression substitution method is also used to substitute missing data. This 

method predicts the missing values on the basis of other data that is present. This method 

is being used for a long time. It inputs a value to the missing place that is conditional on 

other available information which is advantageous over the mean substitution. However, 

there is no new information being added based on existing information. The problem due 

to variance error remains but this method definitely increases the sample size and 

decrease the standard error, [54].  
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In 1994, Cook and Stefanski [57] proposed a method of simulation extrapolation. 

This method is simulation based, utilized to do inference in non –linear models where 

measurements error exists in co-variates. This method is completed in two steps. First, 

the effect of increasing the measurement error magnitude on an estimator is revealed by 

simulation. As the measurement error increases, the estimator bias tends to increase too. 

The association of the estimator bias with measurement error is estimated in the first 

step. In the second step, the trend obtained from the first step is used to get the reduced 

biased estimate by extrapolation. Once, the measurement error is disappeared, a 

function to approximate true the parameters is estimated, [57].  

Gopaluni et al. [58] presented a novel way to deal with the missing data because 

of multi-rate sampled data systems. A common technique used in dealing with multi-rate 

data is to interpolate (linearly and quadratically) within the sampled data. However, with 

linear and quadratic interpolation the variation in the input during the period of 

interpolation is considered. Another way to deal with this situation is by using lifting 

techniques. In this technique, multi-rate identification problem is converted to 

multivariable identification problem using lifting operator. A novel idea forwarded by 

Gopaluni et al. is an iterative identification algorithm. In the first step of this approach, a 

simple model is identified using multi-rate data. By using this simple model and 

expectation maximization approach, missing data points in slow sampled data are 

obtained. The estimated data points and the original data points are converged to make 

a new model and this procedure is repeated until the models converge, [58].  

Various ways are used to analyze time series data and depending on the type of 

the data, appropriate method are used to find the missing values. Deterministic or 

stochastic methods are used in handling time series data. Deterministic modeling is also 

known as numerical analysis modeling. In this method, an appropriate way of fitting a 

function to the time series data is used. The resulting function is used to estimate the 

missing value. A variety of curves are used to obtain best fit to the time series data. 

Stochastic modeling is also known as time series modeling. Box – Jenkins’ Autoregressive 

Integrated Moving Average (ARIMA) models are most commonly used models in 
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modeling time series data. It is a statistical approach, it identifies the pattern of the 

available data and finds an appropriate procedure to generate data based on the 

identified pattern, [59].  

5.2 TREATMENT TECHNIQUES USED IN THIS RESEARCH 

The missing data problem for this research arises from the particular 

measurement setup employed. The compressor used in this research consists of one Hall 

Effect sensor to track the position of a compressor blade while it is rotating. One 

compressor blade is tracked out of 58 blades and the pressure data recorded when the 

compressor blade returns to the same position is used to analyze the dynamics of the 

compressor. About 30 – 34 data points are recorded once the compressor blade returns 

to the same position in every rotation. Due to the lack of more pressure sensors other 

positions of the compressors blades during rotations could not be tracked. Therefore, the 

events that are occurring all around the compressor are not captured. This creates a 

situation of missing data. In one rotation the number of data point captured at the 

sampling rate of 20000 Hz is about 480 – 490. Therefore, only a small chunk of data is 

available to analyze the compressor dynamics. 

An autoregressive model is programmed using MatlabTM to deal with the issue of 

missing data. This program estimates the missing data stochastically. This algorithm was 

developed based on autoregressive model with exogenous input (ARX) having missing 

data.  First, this programs separates the 30 data points captured when the compressors 

blade returns to the same position in every rotation and fills in zeros for rest of the data 

points.  Based on the model order selected it constructs matrices for estimation. Finally, 

the estimated data’s and the data set with the missing values are plotted to compare the 

result of the estimation with the original data set. The higher model order selection gives 

the better estimation of the missing data in expense of some computation time. This 

program (Newestmissdata_mod.m) is included in Appendix A6. The other MatlabTM file 

that relate to this algorithm is also included in Appendix A7. 
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In what follows, mathematical formulation of this algorithm is described. A model 

structure of the form as shown in Equation 20 is assumed. The output of this assumed 

model are missing. Therefore, an algorithm to estimate the missing parameters is 

formulated based on least – squares. 

 1 1

1 1

p p

i k i i k i k

i i

a y bu  
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    
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where,  y
n L

y


 ,   u
n L

u


 , are the input and output data vectors captured during an 

experiment. The sampling frequency of the experiment is 
s

f  and the number of discrete 

data points in input and output vector is L. 
yn  is the number of outputs, and 

un represents 

the number of inputs. Since the output is not recorded all the time, then 

      *my k y k g k  (21) 

where,  
1   if  is measured     

0   if  is not measured

y
g k

y


 


 

The probability of measuring the output, i.e.   gE g k P   defines the expected 

value of  g k . The parameters of the parametric model in Equation 20 can be written as 

in Equation 22. 
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The data vectors can be defined as follows:  
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(24) 

The least – squares approach as in Equation 25 could be used to compute the 

parameter vector given in Equation 22. 
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(25) 
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Assume,  2 2

yE y k     , the variance of the true output, the following quantities 

can be computed. 
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where implies an element by element multiplication. 
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Substituting the quantities derived above into Equation (25) gives 
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where, 1 1p p
x


 unity matrices multiplied by x. 

Few other ways of estimating missing data are investigated. Various commands 

that are used in MatlabTM to fill in missing data are investigated including ‘ecmlsrmle’, 

‘resample’, and ‘interp’. Command ‘ecmlsrmle’ is included in financial toolbox of MatlabTM 

and uses least square regression method to calculate missing data. The syntax for the 

command is as shown in Equation 32. 

 [𝑃𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠, 𝐶𝑜𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒] = 𝑒𝑐𝑚𝑙𝑠𝑟𝑚𝑙𝑒(𝐷𝑎𝑡𝑎, 𝐷𝑒𝑠𝑖𝑔𝑛) (32) 

where,  

𝑃𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠 = Vector of estimates. 

𝐶𝑜𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 = Matrix of estimates for the covariance of the regression model’s 

residuals.  

𝐷𝑎𝑡𝑎 = Data set where the values are missing and are represented by NaNs. 

𝐷𝑒𝑠𝑖𝑔𝑛 = The standard form for regression. 

This method didn’t prove any useful with existing problem because of the lack of 

the design matrix information. 

The next MatlabTM command that is investigated is ‘resample’. The syntax for this 

command in MatlabTM is given in Equation 33.   

 𝑦 = 𝑟𝑒𝑠𝑎𝑚𝑝𝑙𝑒(𝑥, 𝑝, 𝑞) (33) 

The above command resamples the vector 𝑥 at 𝑝/𝑞 times the original sampling 

rate. This method is only good for the data that has no missing values. 



56 

 

The other investigated MatlabTM command is ‘interp’, the syntax of this command 

is shown in Equation 34. 

 𝑦 = 𝑖𝑛𝑡𝑒𝑟𝑝(𝑥, 𝑟) (34) 

This command increases the sampling rate of 𝑥 (original data set) by a factor of 𝑟. 

The output vector 𝑦 is 𝑟 times as long as the original data. 

This method is not considered to be beneficial to the existing problem because 

the linear interpolation is not a good prediction for missing data. Also, increasing the data 

set by a factor doesn’t ensure accurate number of total data points because the number 

of data points captured in each rotations varies. Each correlation coefficient should be 

located in between each rotation data, which is not possible with this command. 
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CHAPTER 6: EXPERIMENTAL RESULTS  

This Chapter includes the results of the System Identification (SI) conducted on 

the slow and fast dynamics data. It also includes the procedure used for processing data 

prior to SI. 

6.1 SLOW DYNAMICS SYSTEM IDENTIFICATION AND RESULTS 

Experiments are conducted on a single stage compressor during the summer of 

2014 with the objective to capture its dynamics. The slow dynamics data of the 

compressor consists of eleven columns. Column one of the data file contains the flow 

coefficient data (input) and column two of the data file consists of pressure rise coefficient 

data (output). The data obtained from the experiment are corrupted with noise. 

Therefore, it is necessary to remove noise out of the data as much as possible. The 

sampling frequency of the data is 2000 Hz. The plot of input data (column 1) of flow 

coefficient 0.50 is shown in Figure 43. 

 

 

Figure 43: Input Data of Flow Coefficient 0.50. 

As it can be seen in the Figure 43, no compressor dynamics is captured until 70,000 

data points and it is just the noise. Towards the end of the plot, big magnitude data can 

be seen, it is noise caused during the stall of the compressor. The compressor dynamics 
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is represented by the data points located between 70,000 and 85,000 data points. That 

portion of the data is separated for filtration and system identification. 

Various filters are investigated to reduce the noise influence. A Bayesian filter as 

described in Chapter 2, is used in removing noise from the Electromayography (EMG) 

signal. This filter is programmed in MatlabTM used to filter the compressor data. The 

results of the filtration is shown in Figure 44. The abscissa of the Figure 44 is the number 

of data points and the ordinate is the magnitude of the data. The blue plot is of the original 

data whereas the red plot is of the filtered data. The following result is obtained by 

choosing “alpha” or the diffusion rate to be five and “beta” or the probability of sudden 

jumps to be eight. These are the two parameters of the Bayesian filter, which are changed 

in order to optimize the performance of the filter. A number of iterations is performed 

and the result is analyzed using the power spectrum plot. A combination of alpha and 

beta is chosen that cancelled most of the higher frequency data. In what follows, power 

spectrum plots of original data and filtered data are discussed. 

 

 

Figure 44: Input Data Filtered. 
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Figure 45: Output Data Filtered. 

As it can be seen from the Figures 44 and 45, the filtered data is less noisy than 

the original data. In order to verify higher frequencies are taken out from the 

input/output data, the power spectrum plot is used. Once the input/output data’s are 

imported to the SI toolbox, the power spectrum plot can be obtained by checking “Data 

Spectra” checkbox on the SI toolbox window. The power spectrum plot of the original 

data is plotted first and then compared it with the power spectrum plot of the filtered 

data. This procedure is applied to both input and output data and the filtered output is 

used to do the SI. The power spectrum plot of the data before filtration and filtered data 

are shown in Figures 46 and 47, respectively. In the Figures 46 and 47, “u1” is the input 

data and “y1” is the output data. As it can be seen in Figure 46, there is a peak at 40 Hz 

(marked with red circle) which is the blade passing frequency. 
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Figure 46: Power Spectrum Plot of Original Data. 

 

Figure 47: Power Spectrum Plot of Filtered Data. 

As it can be seen from the Figure 47, higher frequencies (marked with red circle) 

has been filtered out. It is necessary to understand that the number of data points of the 

input and output should match. Therefore, while cutting off the data points it is necessary 

to cut off the data for both input and output (in this case from 70,000 to 85,000). Linear 

Output Error (OE) model is used to model the compressor dynamics. The procedure 

explained in Chapter 3 is followed for SI. Figure 48 consists of simulated (green plot) and 
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measured (black plot) output obtained by using OE model. The simulated model is 

obtained by using three poles and two zeros, which produced the fit of 62.35 %.  

 

Figure 48: Measured and Estimated Output for 0.50 Flow Coefficient. 

A similar approach as described above is conducted with Low Pass Butterworth 

filter. As described in Chapter 2, Butterworth filters are commonly used to filter noisy 

EMG signals. As mentioned earlier compressor’s data is noisy too. This filter is 

programmed in MatlabTM as explained in Chapter 2. The data that is used for Bayesian 

filter is also used for this filter. Numerous attempts are made to optimize the filter. A filter 

order of 2 produced good result based on the power spectrum plot analyzation (discussed 

later) and the cutoff frequency is set to 50 Hz. The plot of the filtered data and the original 

data is shown in Figures 49 and 50. Figure 49 is the input data filtered, where the first plot 

is of the original data and the second plot is of the filtered data. Figure 50 is the output 

data filtered, where the first plot is of the original data and second of the filtered data. 

 



62 

 

Figure 49: Input Data Filtered Using Butterworth Filter. 

 

Figure 50: Output Data Filtered Using Butterworth Filter. 

Once the data is filtered, the filtered data is imported to the SI toolbox. To verify 

the higher frequencies are taken out by filtering, a power spectrum plot is generated as 

described earlier. The power spectrum plot of the filtered data is shown below. It can be 

seen that the higher frequencies are filtered out or reduced. In Figure 51, ‘u1’ is the plot 

of input data and ‘y1’ is the plot of the output data. 
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Figure 51: Power Spectrum Plot of Input/Output Data - Butterworth Filter Filtration. 

As before, an output error model is used to model the compressor dynamics. The 

result of the SI is shown in Figure 52. The green curve is representing the simulated model 

and the black curve is the measured output. The simulated plot is obtained by using two 

zeros and three poles for the assumed transfer function model structure. As it can be seen 

from the plots, the fit is very poor.  

 

 

Figure 52: Measured and Simulated Model - SI Butterworth Filter. 
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Analyzing the SI from two separate data filtrations, a few conclusions can be 

drawn. The low pass Butterworth filter may not be a viable filter to be used in this case. 

It may be because it is unknown what should be filtered out of the data. A lack of better 

understanding of compressor dynamics rules out the use of a low pass filter. The output 

error model with three poles and two zeros is able to model the dynamics with the 

accuracy of 62.35% model fit when the Bayesian filter is used, but the fit is very poor with 

the same model when Butterworth filter is used. This implies that the low pass filter has 

filtered out much of the compressor dynamics or the original data doesn’t contain much 

of the compressor dynamics. This may be due to the result of poor experiment or lack of 

enough excitation of the compressor to all the frequencies and a lack of sensors to 

capture enough dynamics of the compressor. 

In order to verify this, data from different experiments are used in filtration and 

SI. The data for the flow coefficient of 0.50 with the sampling rate of 2000 Hz is taken. As 

described earlier, noise at the beginning and toward the end of the data set are taken off. 

The remaining data belonging to compressor dynamics is filtered using Bayesian filter and 

is used for SI. The plot of the filtered data is shown in the Figure 53.  

 

Figure 53: Input Data Filtered - Bayesian Filter. 

In Figure 54, the red plot is of the filtered data and the blue plot is of the original 

data. To be consistent with the earlier filtration results, the parameters of the Bayesian 
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filter “alpha” and “beta” are set to be five and eight, respectively. Similarly, consistency 

is maintained on the output data filtration by keeping “alpha” and “beta” to be four and 

seven, respectively. The plot of the output filtered data (red) and original data (blue) is 

shown below. As it can be seen from both the plots the filtered data is cleaner than the 

original data. 

 

Figure 54: Output Data Filtered - Bayesian Filter. 

The output of Bayesian filter is used for SI. Filtered input/output data are imported 

to the SI toolbox and used to model an output error model with two zeros and three poles. 

The SI result is shown in the Figure 55. 
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Figure 55: Measured and Simulated Output - OE231 

It can be seen from the Figure 55, the simulated model fits poorly with the 

measured output. The calculated fit percentage is -36.38%. This makes it clear that the 

data does not contain actual dynamics of the compressor. If it models the dynamics, the 

SI results should be giving similar fit values with the same model type and same number 

of poles and zeros. The compressor behavior cannot be different every time at the same 

flow coefficient.  

In order to further verify this thought, a new SI approach is investigated. As 

discussed in previous Chapters, the compressor is a non-linear system, therefore the 

experimental data contains non-linearities. MatlabTM SI toolbox has models that are able 

to separate linear and nonlinear part. One of the model is called Nonlinear Hammerstein 

- Wiener (NLHW) model. As mentioned in Chapter 3, this model is able to capture non-

linearities present in the input and output data separately. It also gives the linear relation 

that exists between input and output data in the form of transfer function. This approach 

eliminates the need of data filtration this approach is also safe approach because filtration 

is not necessary. In this approach, the risk of filtering actual compressor dynamics along 

with noise is eliminated. 
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The same data as before from two different experiments is used for modeling the 

compressor dynamics using NLHW model. The input and output nonlinearities are 

modeled by using third order 1D polynomial and the linear model is given by an OE model 

with three poles and four zeros. The SI result is shown in Figure 56. The calculated fit of 

the simulated model (red) with measured model (black) is 15.73%. Although, the 

calculated fit is 15.73%, if the plots are examined closely the simulated model follows the 

measured model closely. The calculated fit is low may be because of the noise in the 

original data. 

 

 

Figure 56: Measured and Simulated Model Output - NLHW (Experiment 1) 

Now to verify, that the same model i.e. NLHW model with third order 1D 

polynomial and transfer function with three zeros and four poles produces the similar 

result for the data from the another experiment, a new SI for another set of data is done. 

The result of the SI is shown in Figure 57.  
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Figure 57: Measured and Simulated Output Model - NLHW (experiment 2) 

In Figure 57, the blue plot is the simulated model and the black plot is the 

measured model output. The SI produced the fit percentage of 3.99% which is less than 

the fit that is calculated before with the same model. This verifies that the experimental 

data lacks the compressor dynamics as mentioned earlier. 

In order to excite the compressor and capture enough dynamics a modification to 

throttle is purposed as mentioned in Chapter 4.  In this modification, series of flaps will 

be added around the throttle and a mechanism to drive those flaps will be designed. It is 

decided to use high frequency solenoids to drive those flaps back and forth in axial 

direction. This design will excite the compressor to higher frequencies, therefore the 

actual dynamics of the compressor can be captured. Until this installation is done on the 

existing throttle, it is decided to work on the fast dynamics data.  

6.2 FAST DYNAMICS SYSTEM IDENTIFICATION AND RESULT 

The fast dynamics data obtained from the experiment conducted in Summer of 

2014. The Hall Effect sensor is placed on the compressor casing above the blade passage 

to track the rotation of a particular compressor blade. 
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The data of fast dynamics consists of injection data which is the input to the 

system. A plot of the injection data for the flow coefficient of 0.52 is generated and is 

shown in Figure 58. 

 

Figure 58: Injection Data Plot. 

Figure 58 shows the plot of the injection pressure. At the beginning and towards 

the end of the plot it can be seen that the plot has no activity or the plot is just flat. In the 

middle of the plot, ups and downs can be seen. The area of no activity in the plot is just 

the time when no injection is administered. The data towards the end with no activity is 

separated and the plot is shown in the Figure 59. 

 

Figure 59: Plot of No Activity (no injection) Data. 
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In a similar way, the data of the injection pressure is plotted and is shown in Figure 

60. 

 

 

Figure 60: Injection Plot. 

The correlation coefficient of the compressor data is widely used to predict the 

compressor behavior and to implement active controls on the system, as mentioned in 

Chapter 1. Therefore, for the analysis the correlation coefficient is used by using the 

rotation data of a particular blade and the rotation data after one rotation for that 

particular blade. The particular blade here means the blade that is tracked by the Hall 

Effect sensor. The data is recorded once the blade comes to the same position as it was 

during its last rotation. Therefore, the pressure data that is collected by each sensors at 

the time of blade passage through the Hall Effect sensors are correlated from rotation 

one to rotation two, rotation two to rotation three, and so on. Each passage of the blade 

has at-least 30 data points that are captured by the sensors. As the blade passes below 

the Hall Effect sensor, the magnitude of the data recorded by the Hall Effect sensor are 

less than one and as the blade goes away the magnitude of data recorded is more than 

one. A MatlabTM program is written to extract the pressure readings from the pressure 

sensors at the time of the blade passage through the Hall Effect sensor. Thirty data points 

of the pressure readings are pulled out and correlated to one after another rotation. The 

MatlabTM program is included in the Appendix A8.  
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The mean and variance of the correlation coefficients of the data from the 

pressure sensors corresponding to the data of no injection (no activity) is examined. The 

column ten data of each flow coefficient are plotted and based on the plot the data of 

non-injection towards the end are separated. A MatlabTM program is written 

(AllFlowC.m), which separates the data from sensor one through nine corresponding to 

the non-injection data. This program is included in Appendix A9. The correlation 

coefficients for each sensor are calculated. Once the correlation coefficient is calculated, 

mean and variance of the correlation coefficient for each sensor are calculated using the 

trailing window of 100 data points of correlation coefficients. This procedure is followed 

for the flow coefficients of 0.50, 0.52, 0.54, 0.58, and 0.60 and a plot of mean and variance 

is generated for all the flow coefficients. Figure 61 shows the plot of the mean (red) and 

the variance (blue) for the all the flow coefficients. 

 

Figure 61: Plot of Mean and Variance. 

As it can be seen from the plot above that the mean value of correlation 

coefficients for sensor 7, 8, and 9 is lower than the other sensors. As the compressor goes 

to stall (i.e. low flow coefficient) the mean value is even lower. From the figure above, it 

can be said that as the compressor goes to stall value of the correlation coefficient 
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decreases. It can also be seen from the Figure 61 the variance of the sensor 7, 8, and 9 

increases when the compressor is near stall (near flow coefficient 0.52 and 0.50).  

Correlation coefficients are calculated using the readings from each sensors and 

are treated as the output for the purpose of SI. There is only one Hall Effect sensor which 

is tracking only one blade. The other 57 blades are left out and their data is not used to 

calculate the correlation coefficient. As mentioned in Chapter 5, a situation of missing 

data arises and only one correlation coefficient is computed for 30 data points. Therefore 

a large number of data points are missing i.e. one data point for one rotation. Injection is 

the input to the system and used as the input for SI purpose. About 480 - 490 data points 

are captured in each rotation. Injection has no missing data but the output will have only 

one data point. This arises the need of filling in missing data in the output. As explained 

in Chapter 5, an ARX model method of predicting missing data is proposed and used to fill 

in the missing data.   

The correlation coefficients of sensor one data are computed and the missing 

values are filled in with zeros. The algorithm of the written program estimates the missing 

data and replaces the zeros with the estimated values as stated in Chapter 5. The 

recorded data are in Volts (V) and has to be converted to pressure data before computing 

correlation coefficient. The calibration coefficients to convert pressure readings of 

pressure sensors in volts to pressure (Pa) is included in Table 2.  
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Table 2: Calibration Coefficients for Pressure Sensors 

Sensors Calibration Coefficients [Pa/V] - k 

Sensor 1 968.3 

Sensor 2 879.9 

Sensor 3 891.9 

Sensor 4 603.7 

Sensor 5 599.2 

Sensor 6 599.5 

Sensor 7 596.8 

Sensor 8 600 

Sensor 9 917.7 

 

 The estimated values along with correlation coefficient are plotted and are shown 

in Figure 62. 

 

Figure 62: Estimation of Missing Data Model Order 10. 

The plot shown in Figure 62 is generated by keeping the model order of 10 for flow 

coefficient of 0.52. The blue plot is of the estimated data and red plot is of the correlation 

coefficient with missing data.  The plot shown in Figure 63 is for a model order of 100 and 
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for a flow coefficient of 0.52. The estimation is better than it is for using a model order of 

10.  

 

Figure 63: Estimation of Missing Data Model Order of 100. 

By closely examining the estimated data plot in Figure 63, it is noted that the 

estimated data follows the pattern of the injection. By examining the plot as shown in 

Figure 64, it can be said that the estimation algorithm provides a correlation that fits the 

expected characteristics.  

 

 

Figure 64: Estimated Data Zoomed. 
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For the SI, the estimated correlation coefficient (output) and the injection data 

(input) is used. A non - linear model is obtained using Hammerstein - Wiener model 

structure. The result of the SI is shown in Figure 65. 

 

 

Figure 65: System Identification Result (Fit = 36%). 

In the Figure 65, the black plot is of the measured output and the blue plot is of 

the estimated model resulted from SI. This identified model has a fit of 36% to the 

measured output. Three poles and three zeros are used to produce this result. 

Nonlinearities are modeled using a third order polynomial. This model is imported to the 

workspace of MatlabTM to investigate the natural frequency of the estimated model. A 

MatlabTM program (conver_dc.m) is written to convert the linear model of Hammerstein 

- Wiener to the continuous time transfer function and obtain the natural frequencies of 

the model. This MatlabTM is included in Appendix A10. 

Estimating the missing data, SI, and obtaining the natural frequency of the 

identified model is done for various flow coefficients data including 0.51, 0.52, 0.54, 0.56, 

and 0.58. Natural frequencies of the model obtained for each SI for each flow coefficient 

are listed in Table 2. 
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Table 3: Experimental Results. 

Flow 

Coefficient 

Natural 

Frequency (Hz) 

# 

of Poles 

# of 

Zeros 

# of 

Polynomials 

Fit 

(%) 

0.51 276.3 3 3 3 42.5 

0.52 0.016 3 3 3 36 

0.54 1561 4 4 3 43.6 

0.56 260 3 3 3 31 

0.58 94.5 4 4 3 1.14 

 

Table 3 shows that the natural frequency of the system is not predictable, there 

are large fluctuations in different flow coefficients. 

It is known that the natural frequency of the compressor near stall is about 17 Hz. 

However, the SI model for the 0.51 flow coefficient (near to stall) produced the natural 

frequency of 276.3 Hz. This is higher than expected and as it can be noticed from the table 

above, the natural frequencies are random and are not increasing as flow coefficient is 

increased. The natural frequency of compressor increases as the flow coefficient 

increases but is not reflected on the identified models. It is suspected that estimation of 

missing data has induced all kinds of frequencies to the estimated data. Since, 98 percent 

of the data is being estimated, it is obvious that the estimation cannot be as good and it 

would induce random frequencies in the data. 

Since the above approach didn’t produce very exciting results, a new approach of 

down sampling the input data is conducted. The down sampling here means that making 

the input data as the same size as of the correlation coefficient data. This eliminates the 

need of estimating missing data. The correlation coefficient of thirty data point is placed 

in the middle of the thirty data points and the corresponding data point from column 10 
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is extracted to make the input data equal to the output data. A MatlabTM program 

(Resample.m) is written that places correlation coefficients in the middle of the thirty data 

points and extracts the corresponding row data from the column 10. This program is 

included in the Appendix A11. The input/output data obtained from this procedure is 

extracted to the MatlabTM SI toolbox and a non - linear model is identified using 

Hammerstein - Wiener modeling method. The SI is done for the flow coefficient of 0.52 

and the results are presented in Figure 66. The pressure data used to calculate the 

correlation coefficient is used from sensor 5.  

 

 

Figure 66: SI of Down Sampled Data. 

In Figure 66, the black plot is the measured data and the purple plot is the 

simulated model obtained through SI. The simulated model is obtained by using a third 

order polynomial to model its non-linearities. A linear model is obtained by using two 

zeros and five poles and it is the best estimate obtained by trial and error. The fit % of the 

simulated model is only 3 %. The model is imported into the MatlabTM workspace and the 

natural frequency is calculated as described earlier. The natural frequency of the 

estimated model is calculated to be 0.0002 Hz, this is very low. Therefore, it is concluded 

that this approach is not valid. 



78 

Another approach proposed in order to do better modeling with SI, is given by 

filtering the data with a notch filter. The notch filter is designed to take out the blade 

passage frequency from the data and the designed filter has the central frequency of 40.9 

Hz. Since the blade passing frequency is about 40.9 Hz, the central frequency of the notch 

filter is set to be 40.9 Hz. 

The output data or pressure data of sensor no 5 for a flow coefficient 0.50 is 

filtered using the purposed notch filter. The correlation coefficient is calculated. The 

missing data is estimated and the estimated data and the sensor 10 data are extracted to 

the SI toolbox. SI is conducted assuming a Hammerstein - Wiener model. The result as 

shown in Figure 67 is obtained.  

 

 

Figure 67: System Identification - Notch Filter. 

In Figure (67), the black plot represents the measured output and the blue plot 

represents the simulated model output. The simulated model is obtained using three 

poles and three zeros for the linear part and a third order polynomial is used to model the 

non-linearities. The natural frequency of the simulated model is calculated to be 4413 Hz. 

The natural frequency is very high compared to what it is expected to be. 
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6.3 SYSTEM IDENTIFICATION ON NEW DATA 

A different set of data from a different experiment is used to do the system 

identification and to obtain the natural frequency of the identified model. This 

experimental setup is described in Section 4.1 of Chapter 4. The data recorded by each 

pressure sensor are the voltage (V) data and this must be converted to actual pressure. 

The calibration coefficient for each sensor to convert the recorded data to Pascal’s (Pa). 

The calibration coefficient for each sensors are included in Table 3.  

Table 4: Calibration Coefficients of the Sensors. 

Sensors Calibration Coefficients [Pa/V] - k 

Sensor 1 599.7 

Sensor 2 752 

Sensor 3 760.5 

Sensor 4 665.4 

Sensor 5 781.1 

Sensor 6 757.8 

Sensor 7 737.7 

Sensor 8 598.7 

 

 Using the captured data in V and k, actual pressure can be easily computed using 

Equation (23). 

 𝑃 = (𝑉 − 𝑉𝑧𝑒𝑟𝑜)𝑘 (35) 

where, 

 𝑃 = actual pressure. 

 𝑃𝑧𝑒𝑟𝑜 = mean zero drift of each sensor. 

The SI is conducted on this new set of data in order verify if the resulting identified 

model has the natural frequency as of the compressor near stall. The SI is conducted with 
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the data of flow coefficient 0.52. The input in this case is from injection and output is the 

estimated correlation coefficient of sensor five. Same procedure as before is applied to 

obtain the correlation coefficient. The NLHW model is estimated with two poles and three 

zeros with the fit of 16.77%. The resulting plot of measured and simulated output models 

is shown in Figure 68. In Figure 68, the black colored plot is of the measured output while 

blue colored plot is of the simulated output. 

 

Figure 68: Measured and Simulated Model Output (0.52) - New Data. 

The linear model of NLHW model is extracted and the natural frequency is 

computed following the method as described earlier. The computed natural frequency of 

the estimated model is 4268 Hz, enormously higher than what it should be. Another SI is 

performed on flow coefficient 0.51 data, nearest flow coefficient to stall. The NLHW 

model is estimated using four poles and four zeros. This combination of zeros and poles 

produced the highest fit of 10.49 % compared to other combination. However, this is a 

poor fit. The linear model of the NLHW is extracted and natural frequency of the 

estimated model is computed. The computed natural frequency is 350 Hz, a lot higher 
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than expected value. Therefore, no acceptable results were obtained from the 

experimental data of the compressor. The modification in the compressor is vital. 
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CHAPTER 7: CONCLUSION AND FUTURE WORK 

This thesis discusses how the compressor works and the existing problem that 

arises during its operation. The work that has been done by many researchers to identify 

and mitigate the problems of rotating stall and surge are discussed. The theories and 

hypotheses in modeling the compressor dynamics forwarded by researchers are also 

discussed. A few ways of filtering noise out of the experimental data are explored and 

based on the power spectrum plot of the filtered data, the Bayesian filter is chosen to be 

used for this research. A problem of missing data arises because of the setup employed 

for the compressor. To resolve the problem of missing data, a few ways that are being 

used are discussed and a new algorithm based on autoregressive model with exogenous 

input having missing data is programmed in MatlabTM. This algorithm is formulated based 

on least – square estimation. The estimated results of this algorithm provided a 

correlation that fits the expected characteristics of the compressor. However, the natural 

frequencies of models obtained after System Identification (SI) are random and don’t 

match the original system’s natural frequency.  It is expected that the missing data 

estimation algorithm induced various frequencies that are not part of the compressor’s 

dynamics causing natural frequency of the system to become random. The SI conducted 

with linear (output error model) and non-linear model (Non – Linear Hammerstein – 

Wiener model) in slow dynamics data don’t produce any consistent model of the 

compressor. The identified models has different characteristics for each flow coefficients. 

This might be a cause of poor experiment or lack of equipment to excite all the modes of 

the compressor. The non – linear modeling of the compressor dynamics using fast 

dynamics data is affected by the problem of missing data. Since large number of data 

points are missing it is difficult to estimate those with high accuracy. However, the 

algorithm developed will be effective if there are less data points missing. Numerous SI 

with Non – Linear Hammerstein – Wiener model confirms that it is able to model 

compressor dynamics with higher accuracy than linear models.  
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To continue this research in future, it is concluded that it is necessary to make 

changes to the compressor in order to excite all of its modes during an experiment. In 

addition a few more pressure and the Hall Effect sensors must be added around the 

compressor to reduce the problem of missing data. With these modifications on the 

compressor, the data obtained from the experiments can be used to identify a model 

representing compressor dynamics with better accuracy. This model can be used to 

design controls system to be implemented on the compressor. The control will have the 

objective to reduce the problem of the rotating stall and surge and improve the overall 

efficiency of the compressor. 
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APPENDIX - A 

A1 – Bayesian.m 

% load -ascii exp1.lvm; % load the raw emg and force data 

% u1=exp1(:,3); % takes the loaded data and sperates them 

into three vectors 

% u2=exp1(:,4); 

% u3=exp1(:,5); 

  

% Preliminary section: load data, set constants, initialize 

variables 

%set parameters 

close all; clc; 

load I_50.mat; 

samplerate1 = 2000;  %samples per second 

noutputs1 = 50;      %output quantization levels 

ratemax1 = 1;        %rectified EMG is normalized to max 

value of 1 

inscale1 = 1;        %arbitrary input scaling  

alpha1 = 5 / samplerate1;                %sets diffusion 

rate 

beta1 =  8 / (noutputs1 * samplerate1);     %sets 

probability of sudden jumps 

  

%load the data 

 v1 = I_50; 

 biceps1=v1; 

%calculate rectified EMG after removing the mean, and 

normalize 

%here, we use only biceps and thus cannot approximate 

extensor torque 

emg1 = biceps1;% - mean(biceps1);               %essential 

to remove the mean before rectifying 

emg1 = inscale1 * ratemax1 * emg1 / max(emg1);       %input 

prescaling to use full output range 

%emg1(emg1>ratemax1) = ratemax1;                     %make 

sure we don't go over 

%figure 

%plot(emg1) 

  

%initialize variables 

%   x is the latent variable (the driving rate) 

%   MAP is the output estimate 
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x1 = linspace(ratemax1/noutputs1, ratemax1, noutputs1)';  

%don't start with zero because requires n=0 exactly to 

match 

MAP1 = zeros(length(emg1),1);                     %store 

the bayes estimates 

g1 = [(alpha1/2) (1 - alpha1) (alpha1/2)];          

%approximate spatial second derivative operator 

  

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% 

% Following is the main section of the algorithm; steps are 

numbered as in the text 

% 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  

%1. Initialize p(x,0) = 1; 

prior1 = ones(noutputs1,1) / noutputs1;            %start 

with uniform prior 

  

for t1=1:length(emg1) %iterate for each sample of EMG 

     

    %2. Forward propagate p(x,t-) Å 

    %           ?p(x-?,t-1)+(1-2?)p(x,t-1)+?p(x+?,t-

1)+?+(1-?)p(x,t-1); 

    prior1 = filtfilt(g1, 1, prior1);              %drift 

term by convolving with second derivative operator 

    prior1 = beta1 + (1-beta1) * prior1;            %sets 

probability of a sudden jump 

     

    %3. Measure the rectified emg; 

    emgval1 = emg1(t1);                            %if this 

were online, would read a new sample here 

     

    %4. Calculate the posterior likelihood function  

    %       P(x,t) Å P(emg|x)p(x,t-); 

    measurement_model1 = 2*exp(-

(emgval1).^2./(2.*(x1).^2))./(2.*pi.*x1.^2).^(1/2);   %half 

Gaussian model for P(emg|x) 

    posterior1 = measurement_model1 .* prior1;     

%calculate posterior density using Bayes rule 

     

    %5. Output the signal estimate MAP(x(t)) = argmax 

P(x,t); 

    pp1 = min(find(posterior1 == max(posterior1)));    

%find the maximum of the posterior density 

    if (pp1 > 1 && pp1 < length(posterior1)),          

%interpolate to find the zero  
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        dL1 = posterior1(pp1-1) - posterior1(pp1);   

        dR1 = posterior1(pp1) - posterior1(pp1+1);  

        PeakIndex1 = (pp1 - .5 - (dL1/ (dR1 - dL1)));   

%index runs from 1 to noutputs 

    else 

        PeakIndex1 = pp1;    %if maximum occurs at an 

endpoint do not interpolate 

    end 

    MAP1(t1) = (ratemax1 / (noutputs1-1)) * PeakIndex1;  

%convert index of peak value to scaled EMG value 

     

    %6. Divide p(x,t) by a constant C so that  º p(x,t) dx 

= 1; 

    posterior1 = posterior1 / sum(posterior1);        

%normalize the density 

     

    %7. Repeat from step 2; 

    prior1 = posterior1;                          %prior 

for next iteration is posterior from this iteration 

end 

  

%show results 

figure 

% subplot(2,1,1) 

% plot(emg1), title('emg') 

% %hold on 

% %plot(torque/max(torque)); 

% subplot(2,1,2) 

subplot(211),plot(MAP1/max(MAP1),'r'); 

%hold on 

subplot(212), plot(emg1); 

% hold off 

y = MAP1/max(MAP1); 

% G = spa(i); 

% plot(G) 
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A2 – LowButter.m 

% creating a low pass butterworth filter 

% band pass filter can be created tooo 

% type 'help butter' 

% for flow coefficient 

close all 

n = 2; % filter order 

w = 2000; % sampling frequency 

fc = 50; % cutoff frequency 

wn = fc/(w/2); % normalizing cutoff frequency 

  

[b a] = butter(n,wn,'low'); 

y = filter (b,a,i_50);% y is the filtered output 

  

figure 

subplot(211),plot(i_50); 

subplot(212), plot(y); 

  

% For pressure rise coefficient 

  

n = 2; % filter order 

w = 2000; % sampling frequency 

fc = 50; % cutoff frequency 

wn = fc/(w/2); % normalizing cutoff frequency 

  

[c d] = butter(n,wn,'low'); 

yy = filter (c,d,ii_50);% y is the filtered output 

  

figure 

subplot(211),plot(ii_50); 

subplot(212), plot(yy); 
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A3 – NotchFilter.m 

% Notch Filter 

  

d = fdesign.notch('N,F0,Q',4,40.9,10,20000); 

H = design(d); 

  

load dynamic_data_051.dat; 

datav=dynamic_data_051; 

  

datav = filter(H,datav); 
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A4 – NLhw.m 

% This program estimates Nonlinear Hammerstein Wiener Model 

at the Command 

% line 

% 12/31/2014 

% http://www.mathworks.com/help/ident/ug/identifying-

hammerstein-wiener-models.html 

  

clear; clc; close all; 

load i_50.mat; % flow coefficient (input) 

load ii_50.mat; % pressure rise coefficient (output) 

  

z = iddata(i_50, ii_50, 0.0005); 

  

[R C]= size(z); 

  

ze = z(1:7500); %taking half of the available data to 

create the model 

  

zv = z(7501:R); % using rest of the data to verify the fit. 

  

% all data can be used to create the model and all of it 

can be used to 

% verify. 

  

% Now estimating several models using differnt model 

orders, and 

% nonlineriy setting 

  

m1 = nlhw(ze,[1 3 1],poly1d(5),poly1d(4)); % first model 

  

m2 = nlhw(ze,[3 3 1],poly1d(2),poly1d(5)); % first model 

  

% now compare the resulting models by plotting the model 

outputs on the top 

% of the measured output 

  

compare(zv,m1,m2) % displays the plot and fit percentage. 

  

% Use commands below to display the Input/output 

nonlinearites and linear 

% model 

  

ON = m1.OutputNonlinearity % output nonlinearity 
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IN = m1.InputNonlinearity % input nonlinearity 

  

LM = m1.LinearModel % linear model 
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A5 – Ultimag_4EM.pdf 
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A6 – Newestmissdata_mod.m 

%                 estmissdata.m 

% 

%                 Marco P. Schoen/Sujan Prasai 

%                 December 10, 2014 

%                 version 1.0 

% 

% Estimating ARX model parameters with missing data (output 

data is 

% incomplete, input data is complete 

% 

___________________________________________________________

__________ 

  

clear;clc; close all; 

  

% 1. Define models 

Ts=0.00005; % Sampling time or 20000 Hz 

  

%[n,n]=size(An);[n,nu]=size(Bn); % n ... number of states, 

nu ... number of inputs 

%[ny,n]=size(Cn); % ny ... number of outputs 

  

load corcf.mat 

  

yc = corcf(:,1); % output - sensor 1 (correletion coef.) 

yc(isnan(yc))=0; 

ycmean=mean(yc);n=2; 

ny = 1; % number of outputs 

  

nu = 1; % number of inputs 

  

load dynamic_data_052.dat; 

  

data = dynamic_data_052; 

  

% implementing notch filter 

  

% d = fdesign.notch('N,F0,Q',4,2372.2,10,20000); 

% H = design(d); 

%  

% data = filter(H,data); 

  

u = data(:,9); % input - injection 
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[ru cu] = size(u); 

  

%___________ 

% Now 'NaNs' for the missing data on 'corcf' 

  

% B = zeros(488,1); % making a column vector with NaNs to 

fill in for missing data 

% z= zeros(1,1); 

% newy = []; 

% [row col] = size(yc); 

% for i = 1:row 

%     z(i) = yc(i,:); 

%     newy = cat(1,newy,z(i),B); 

% end 

  

count=1; 

newy=zeros(L,1); 

for i=1:L 

    x=data(i,11); 

    if x<1 

        if data(i+1,11)>1  

            newy(i-15,:) = corcf(count,1); 

            count=count+1; 

            newy(i,:)=0; 

        else 

            newy(i,:)=0; 

        end 

    else 

        newy(i,:)=0; 

    end 

end 

  

yo = newy; % assign yo to the NaN filled column vector. 

  

% yo should have equal number of row numbers as of the 

column 10 

%yo = yo(1:ru,:); 

  

% 3. Construct matrices for estimation 

p1=input('Model order: '); 

%Pg=input('Probability of available data: '); 

Pg = 1/58; % one blade data out of 58 blades. 

ymax=max(yo);ymean=mean(yo);dpg=round(100*Pg); 

y1=(yo-ymean)/ymax; 

counter1=1;counter2=1; 

%y1 = y1(1:100000,:); % reducing no of datas  

[L C] = size(y1); 
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% for k=1:100:L 

%     for j=1:dpg 

%         y(counter1,:)=y1(j+k-1,:); 

%         counter1=counter1+1; 

%     end 

% end 

  

y=y1; 

[L2,dc]=size(y); 

L=L2; 

sum=zeros(2*p1,2*p1);lphi=zeros(2*p1,ny); 

for k=p1+1:L 

    for i=1:p1 

        lphi(i,:)=y(k-i,:); 

    end; 

    for i=1:p1 

        lphi(p1+i,:)=u(k-i,:); 

    end; 

    lphilphit=lphi*lphi'; 

    sum=sum+lphilphit; 

end; 

  

for i=1:p1 

    for j=1:p1 

        sum(i,j)=sum(i,j)*(1/(Pg^2)); 

        sum(i,j+p1)=sum(i,j+p1)*(1/Pg); 

        sum(i+p1,j)=sum(i+p1,j)*(1/Pg); 

    end; 

end; 

suminv=pinv(sum)/L; 

sum2=zeros(2*p1,1);%lphiy=sum2; 

for k=p1+1:L 

    for i=1:p1 

        lphi(i,:)=y(k-i,:); 

    end; 

    for i=1:p1 

        lphi(p1+i,:)=u(k-i,:); 

    end; 

    lphiy=lphi*y(k,:); 

    sum2=sum2+lphiy; 

end; 

for i=1:p1 

    sum(i,:)=sum2(i,:)/(Pg^2); 

    sum(i+p1,:)=sum2(i+p1,:)/Pg; 

end; 

sum2=sum2/L; 
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Theta=suminv*sum2; % Theta = [a1 a2 ... b1 b2 ... b(p1)]' 

  

% 4. Check output of estimated model 

  

% Theta = [a(1) a(2) a(3) ... b(p1)], no D matrix 

identification 

% they need to be in Thetaarmax=[b(0) a(0) b(1) a(1) ... 

b(q) a(q)]' 

a=zeros(1:ny,1,nu,p1+1);b=a;Tha=Theta;count=1; 

for i=2:p1+1 

    a(:,:,i)=Tha(i-1:(i-1)*ny,:); 

end; 

for i=2:p1+1 

    b(:,:,i)=Tha(i+p1-1:(i+p1-1)*ny,:); 

end; 

count=1; 

for i=1:p1+1 

    Thetan(count:count*ny,:)=b(:,:,i); 

    count=count+ny; 

    Thetan(count:count*ny,:)=a(:,:,i); 

    count=count+ny; 

end 

  

yestarx=arxsim(n,nu,u,y,L,p1,Thetan); 

yest=yestarx/(max(yestarx));yest=yest+ycmean; 

  

yn=y/(max(y));yn = yn+ymean; 

[Ly,dc]=size(yest); 

for j=1:Ly %truncating 0 and 1 to make it mean value as 

best guess 

    if yest(j)>1 

        yest(j)=ycmean; 

    elseif yest(j)<0 

        yest(j)=ycmean; 

    else 

    end 

end; 

figure;plot(yest);hold; 

plot(yn,'r');grid;title('Estimated (b) and measured (r) 

output'); 

xlabel('Discrete Time Index 

k');ylabel('Magnitude');legend('Estimated ARX model 

output','Measured output'); 
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A7 – arxsim.m 

function yestarx=arxsim(n,no,u,y,L,q,Thetaarx); 

%Thetaarx=[b(0) a(0) b(1) a(1) ... b(q) a(q)] 

yestarx=zeros(L,no);yest_elarx=0; 

L0 = L-200; 

for i=L-L0:L 

    for j=1:q 

        m=2*j; 

        %yest_elarx=yest_elarx+Thetaarx(m-1,1)*y(i-

j,:)+Thetaarx(m,1)*u(i-j,:); 

        % using Theraarx = [a(1) b(1) a(2) b(2) ... a(p1) 

b(p1)], no D matrix 

        yest_elarx=yest_elarx+Thetaarx(m-1,1)*u(i-

j+1,:)+Thetaarx(m,1)*y(i-j+1,:); 

   end; 

   yestarx(i,:)=yest_elarx; 

   yest_elarx=0; 

end; 

figure 

plot(yestarx,'b');hold;plot(y,'k');grid;title('ARX (b) 

estimate and measured output (k)'); 

xlabel('Time (s)');legend('ARX model output','True measured 

output'); 
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A8 – CorrCoef.m 

clear;clc; 

% Conversion factors [Pa/V]: 

con(1)=968.3;con(2)=879.9;con(3)=891.9;con(4)=603.7;con(5)=

599.2; 

con(6)=599.5;con(7)=596.8;con(8)=600;con(9)=917.7; 

% read data in 

load dynamic_data_054.dat; 

datav=dynamic_data_054; % data in [V] 

[L,ca]=size(datav); 

Ts=1/20000; 

  

% correct for drift 

load dynamic_data_zero.dat; 

drift=dynamic_data_zero; 

[Ld,col]=size(drift); 

for i=1:col 

    driftmean(i)=mean(drift(:,i)); 

    datavm(:,i)=datav(:,i)-driftmean(i);% data with drift 

adjusted 

end 

  

for i=1:9 

    datapm(:,i)=datavm(:,i)*con(i); % data in [Pa] 

end; 

datapm(:,10:12)=datav(:,10:12); 

  

% % with the program below we can calculate correlation 

coefficient of each 

% % sensors for all the rotations. 

%  

% x = datav(:,11); 

%  

% s = find(x<1); 

%  

% xd = datapm(s,1:9); 

  

counter = 1; 

xd = zeros(34,3000,12); 

for i = 1:L 

    x = datav(i,11); 

    if x < 1 

       if datav(i + 1,11) > 1 

           xd(1:34,counter,:) = datapm(i-34+1:i,:); 

           counter = counter+1; 
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       else 

       end  

    else 

    end 

end 

     

% Compute correlation coefficient 

for sensor=1:9 

    for j=2:counter % count is the number of blade passages 

        xcf=corrcoef(xd(:,j-1,sensor),xd(:,j,sensor)); 

        corcf(j,sensor)=xcf(2,1); 

    end 

end 

  

figure 

subplot(3,3,1);plot(corcf(:,1));title('Correlation 

Coefficient for Sensor 1') 

xlabel('Rotation');ylabel('Magnitude');grid; 

subplot(3,3,2);plot(corcf(:,2));title('Correlation 

Coefficient for Sensor 2') 

xlabel('Rotation');ylabel('Magnitude');grid; 

subplot(3,3,3);plot(corcf(:,3));title('Correlation 

Coefficient for Sensor 3') 

xlabel('Rotation');ylabel('Magnitude');grid; 

subplot(3,3,4);plot(corcf(:,4));title('Correlation 

Coefficient for Sensor 4') 

xlabel('Rotation');ylabel('Magnitude');grid; 

subplot(3,3,5);plot(corcf(:,5));title('Correlation 

Coefficient for Sensor 5') 

xlabel('Rotation');ylabel('Magnitude');grid; 

subplot(3,3,6);plot(corcf(:,6));title('Correlation 

Coefficient for Sensor 6') 

xlabel('Rotation');ylabel('Magnitude');grid; 

subplot(3,3,7);plot(corcf(:,7));title('Correlation 

Coefficient for Sensor 7') 

xlabel('Rotation');ylabel('Magnitude');grid; 

subplot(3,3,8);plot(corcf(:,8));title('Correlation 

Coefficient for Sensor 8') 

xlabel('Rotation');ylabel('Magnitude');grid; 

subplot(3,3,9);plot(corcf(:,9));title('Correlation 

Coefficient for Sensor 9') 

xlabel('Rotation');ylabel('Magnitude');grid; 
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A9 – AllFlowC.m 

% Preparing data for all Flow coef. 

% First plot column 10 

% Obtain data where there is no injection 

% Cut the corresponding data from all sensors 1-9. 

% compute correlation coef. for each column 1-9 for each 

rotation 

% _______________________________________________ 

% compute Mean and Sample Variance for Each Corr. Coef. 

using trailing 

% window of 10 - 100 data point. 

% ________________________________________________________ 

  

clear; clc; close all 

  

load dynamic_data_050.dat 

datav = dynamic_data_050; 

[L,ca]=size(datav); 

Ts=1/20000; 

  

% Conversion Factors [Pa/V] 

con(1)=968.3;con(2)=879.9;con(3)=891.9;con(4)=603.7;con(5)=

599.2; 

con(6)=599.5;con(7)=596.8;con(8)=600;con(9)=917.7; 

  

% correction for drift 

load dynamic_data_zero.dat; 

drift=dynamic_data_zero; 

[Ld,col]=size(drift); 

for i=1:col 

    driftmean(i)=mean(drift(:,i)); 

    datavm(:,i)=datav(:,i)-driftmean(i);% data with drift 

adjusted 

end 

  

for i=1:9 

    datapm(:,i)=datavm(:,i)*con(i); % data in [Pa] 

end; 

datapm(:,10:12)=datav(:,10:12); 

  

x = datav(:,10); 

  

% figure 

% plot(x) 
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% Now separate data of non - injection by looking at the 

plot 

  

y = x(1.1*10^6:end); % cut off datas. 

  

% figure 

% plot(y) % to verify that injection data are excluded 

  

nonInj = datapm(1.1*10^6:end,1:12); % cut off datas. 

  

[R C] = size(nonInj); 

  

counter = 1; 

xd = zeros(30,3000,12); 

for i = 1:R 

    x = nonInj(i,11); 

    if x < 1 

       if nonInj(i + 1,11) > 1 

           xd(1:30,counter,:) = nonInj(i-30+1:i,:); 

           counter = counter+1; 

       else 

       end  

    else 

    end 

end 

  

% Compute correlation coefficient 

for sensor=1:9 

    for j=2:counter % counter is the number of blade 

passages 

        xcf=corrcoef(xd(:,j-1,sensor),xd(:,j,sensor)); 

        corcf(j,sensor)=xcf(2,1); 

    end 

end 

  

  

% compute Mean and Variance of the corr. coef. using a 

trailing window of  

% 10 - 100 data point 

% In this case choosing 100 coef. 

  

window = corcf(end - 101: end - 1,:); % Window of 100 corr. 

coef. 

  

% calculate Mean 

  

for i=1:9 
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   meanCorr050(i)=mean(window(:,i)); 

end 

  

% calculating Variance 

  

Variance050 = var(window); 

Colu = 1:1:9; 

  

% Now Plotting Mean and Variance 

  

figure 

subplot(5,1,1); title('Plot of Mean and Variance') 

plot(Colu,meanCorr050,'-ro',Colu,Variance050,'-

.b'),legend('meanCorr','Variance') 

xlabel('Sensors');ylabel('M & V (.50)'); 

  

% Now for Flow coef. .52 

%__________________________________________________________

____________ 

%__________________________________________________________

____________ 

  

clear; 

load dynamic_data_052.dat 

datav = dynamic_data_052; 

[L,ca]=size(datav); 

Ts=1/20000; 

  

% Conversion Factors [Pa/V] 

con(1)=968.3;con(2)=879.9;con(3)=891.9;con(4)=603.7;con(5)=

599.2; 

con(6)=599.5;con(7)=596.8;con(8)=600;con(9)=917.7; 

  

% correction for drift 

load dynamic_data_zero.dat; 

drift=dynamic_data_zero; 

[Ld,col]=size(drift); 

for i=1:col 

    driftmean(i)=mean(drift(:,i)); 

    datavm(:,i)=datav(:,i)-driftmean(i);% data with drift 

adjusted 

end 

  

for i=1:9 

    datapm(:,i)=datavm(:,i)*con(i); % data in [Pa] 

end; 

datapm(:,10:12)=datav(:,10:12); 
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x = datav(:,10); 

  

% figure 

% plot(x) 

  

% Now separate data of non - injection by looking at the 

plot 

  

y = x(1.05*10^6:end); 

  

% figure 

% plot(y) % to verify that injection data are excluded 

  

nonInj = datapm(1.05*10^6:end,1:12); 

  

[R C] = size(nonInj); 

  

counter = 1; 

xd = zeros(34,3000,12); 

for i = 1:R 

    x = nonInj(i,11); 

    if x < 1 

       if nonInj(i + 1,11) > 1 

           xd(1:34,counter,:) = nonInj(i-34+1:i,:); 

           counter = counter+1; 

       else 

       end  

    else 

    end 

end 

  

% Compute correlation coefficient 

for sensor=1:9 

    for j=2:counter % counter is the number of blade 

passages 

        xcf=corrcoef(xd(:,j-1,sensor),xd(:,j,sensor)); 

        corcf(j,sensor)=xcf(2,1); 

    end 

end 

  

  

% compute Mean and Variance of the corr. coef. using a 

trailing window of  

% 10 - 100 data point 

% In this case choosing 100 coef. 
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window = corcf(end - 101: end - 1,:); % Window of 100 corr. 

coef. 

  

% calculate Mean 

  

for i=1:9 

   meanCorr052(i)=mean(window(:,i)); 

end 

  

% calculating Variance 

  

Variance052 = var(window); 

Colu = 1:1:9; 

  

% Now Plotting Mean and Variance. 

  

subplot(5,1,2); 

plot(Colu,meanCorr052,'-ro',Colu,Variance052,'-.b'), 

%legend('meanCorr','Variance') 

xlabel('Sensors');ylabel('M & V (.52)'); 

  

% for flow coef. .54 

%__________________________________________________________

_________ 

% 

___________________________________________________________

_______ 

  

clear; 

load dynamic_data_054.dat 

datav = dynamic_data_054; 

[L,ca]=size(datav); 

Ts=1/20000; 

  

% Conversion Factors [Pa/V] 

con(1)=968.3;con(2)=879.9;con(3)=891.9;con(4)=603.7;con(5)=

599.2; 

con(6)=599.5;con(7)=596.8;con(8)=600;con(9)=917.7; 

  

% correction for drift 

load dynamic_data_zero.dat; 

drift=dynamic_data_zero; 

[Ld,col]=size(drift); 

for i=1:col 

    driftmean(i)=mean(drift(:,i)); 

    datavm(:,i)=datav(:,i)-driftmean(i);% data with drift 

adjusted 
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end 

  

for i=1:9 

    datapm(:,i)=datavm(:,i)*con(i); % data in [Pa] 

end; 

datapm(:,10:12)=datav(:,10:12); 

  

x = datav(:,10); 

  

% figure 

% plot(x) 

  

% Now separate data of non - injection by looking at the 

plot 

  

y = x(1.1*10^6:end); % cut off datas 

  

% figure 

% plot(y) % to verify that injection data are excluded 

  

nonInj = datapm(1.1*10^6:end,1:12); % cut off datas 

  

[R C] = size(nonInj); 

  

counter = 1; 

xd = zeros(34,3000,12); 

for i = 1:R 

    x = nonInj(i,11); 

    if x < 1 

       if nonInj(i + 1,11) > 1 

           xd(1:34,counter,:) = nonInj(i-34+1:i,:); 

           counter = counter+1; 

       else 

       end  

    else 

    end 

end 

  

% Compute correlation coefficient 

for sensor=1:9 

    for j=2:counter % counter is the number of blade 

passages 

        xcf=corrcoef(xd(:,j-1,sensor),xd(:,j,sensor)); 

        corcf(j,sensor)=xcf(2,1); 

    end 

end 
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% compute Mean and Variance of the corr. coef. using a 

trailing window of  

% 10 - 100 data point 

% In this case choosing 100 coef. 

  

window = corcf(end - 101: end - 1,:); % Window of 100 corr. 

coef. 

  

% calculate Mean 

  

for i=1:9 

   meanCorr054(i)=mean(window(:,i)); 

end 

  

% calculating Variance 

  

Variance054 = var(window); 

Colu = 1:1:9; 

  

% Now Plotting Mean and Variance. 

  

subplot(5,1,3); 

plot(Colu,meanCorr054,'-ro',Colu,Variance054,'-

.b'),%legend('meanCorr','Variance') 

xlabel('Sensors');ylabel('M & V (.54)'); 

  

% For flow coef .58 

%__________________________________________________________

____________ 

%__________________________________________________________

____________ 

  

clear; 

load dynamic_data_058.dat 

datav = dynamic_data_058; 

[L,ca]=size(datav); 

Ts=1/20000; 

  

% Conversion Factors [Pa/V] 

con(1)=968.3;con(2)=879.9;con(3)=891.9;con(4)=603.7;con(5)=

599.2; 

con(6)=599.5;con(7)=596.8;con(8)=600;con(9)=917.7; 

  

% correction for drift 

load dynamic_data_zero.dat; 

drift=dynamic_data_zero; 
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[Ld,col]=size(drift); 

for i=1:col 

    driftmean(i)=mean(drift(:,i)); 

    datavm(:,i)=datav(:,i)-driftmean(i);% data with drift 

adjusted 

end 

  

for i=1:9 

    datapm(:,i)=datavm(:,i)*con(i); % data in [Pa] 

end; 

datapm(:,10:12)=datav(:,10:12); 

  

x = datav(:,10); 

  

% figure 

% plot(x) 

  

% Now separate data of non - injection by looking at the 

plot 

  

y = x(1.07*10^6:end); % cut off datas 

  

% figure 

% plot(y) % to verify that injection data are excluded 

  

nonInj = datapm(1.07*10^6:end,1:12); % cut off datas 

  

[R C] = size(nonInj); 

  

counter = 1; 

xd = zeros(34,3000,12); 

for i = 1:R 

    x = nonInj(i,11); 

    if x < 1 

       if nonInj(i + 1,11) > 1 

           xd(1:34,counter,:) = nonInj(i-34+1:i,:); 

           counter = counter+1; 

       else 

       end  

    else 

    end 

end 

  

% Compute correlation coefficient 

for sensor=1:9 

    for j=2:counter % counter is the number of blade 

passages 
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        xcf=corrcoef(xd(:,j-1,sensor),xd(:,j,sensor)); 

        corcf(j,sensor)=xcf(2,1); 

    end 

end 

  

  

% compute Mean and Variance of the corr. coef. using a 

trailing window of  

% 10 - 100 data point 

% In this case choosing 100 coef. 

  

window = corcf(end - 101: end - 1,:); % Window of 100 corr. 

coef. 

  

% calculate Mean 

  

for i=1:9 

   meanCorr058(i)=mean(window(:,i)); 

end 

  

% calculating Variance 

  

Variance058 = var(window); 

Colu = 1:1:9; 

  

% Now Plotting mean and Variance 

  

subplot(5,1,4); 

plot(Colu,meanCorr058,'-ro',Colu,Variance058,'-

.b'),%legend('meanCorr','Variance') 

xlabel('Sensors');ylabel('M & V (.58)'); 

  

% For flow coef. .60 

%__________________________________________________________

_____________ 

%__________________________________________________________

______________ 

  

clear; 

load dynamic_data_060.dat 

datav = dynamic_data_060; 

[L,ca]=size(datav); 

Ts=1/20000; 

  

% Conversion Factors [Pa/V] 

con(1)=968.3;con(2)=879.9;con(3)=891.9;con(4)=603.7;con(5)=

599.2; 
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con(6)=599.5;con(7)=596.8;con(8)=600;con(9)=917.7; 

  

% correction for drift 

load dynamic_data_zero.dat; 

drift=dynamic_data_zero; 

[Ld,col]=size(drift); 

for i=1:col 

    driftmean(i)=mean(drift(:,i)); 

    datavm(:,i)=datav(:,i)-driftmean(i);% data with drift 

adjusted 

end 

  

for i=1:9 

    datapm(:,i)=datavm(:,i)*con(i); % data in [Pa] 

end; 

datapm(:,10:12)=datav(:,10:12); 

  

x = datav(:,10); 

  

% figure 

% plot(x) 

  

% Now separate data of non - injection by looking at the 

plot 

  

y = x(1.05*10^6:end); % cut off datas 

  

% figure 

% plot(y) % to verify that injection data are excluded 

  

nonInj = datapm(1.16*10^6:end,1:12); % cut off datas 

  

[R C] = size(nonInj); 

  

counter = 1; 

xd = zeros(34,3000,12); 

for i = 1:R 

    x = nonInj(i,11); 

    if x < 1 

       if nonInj(i + 1,11) > 1 

           xd(1:34,counter,:) = nonInj(i-34+1:i,:); 

           counter = counter+1; 

       else 

       end  

    else 

    end 

end 
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% Compute correlation coefficient 

for sensor=1:9 

    for j=2:counter % counter is the number of blade 

passages 

        xcf=corrcoef(xd(:,j-1,sensor),xd(:,j,sensor)); 

        corcf(j,sensor)=xcf(2,1); 

    end 

end 

  

  

% compute Mean and Variance of the corr. coef. using a 

trailing window of  

% 10 - 100 data point 

% In this case choosing 100 coef. 

  

window = corcf(end - 101: end - 1,:); % Window of 100 corr. 

coef. 

  

% calculate Mean 

  

for i=1:9 

   meanCorr060(i)=mean(window(:,i)); 

end 

  

% calculating Variance 

  

Variance060 = var(window); 

Colu = 1:1:9; 

  

%Now plotting all the mean and variance for comparision 

%________________________________________________________ 

  

subplot(5,1,5); 

plot(Colu,meanCorr060,'-ro',Colu,Variance060,'-

.b'),%legend('meanCorr','Variance') 

xlabel('Sensors');ylabel('M & V(.60)'); 
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A10 – conver_dc.m 

% This program converts discere time TF to Continuous time 

TF 

  

TFd = nlhw5.LinearModel; % linear model of Hammeristien 

Wiener model 

  

TFc = d2c(TFd) % converting discete to continuos time 

  

[wn,zeta] = damp(TFc); 

  

WnHz = wn./(2*pi) 
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A11 – Resample.m 

% This program resamples the injection data to match the 

number of  

% data points in the corcf.mat or match the number of 

correlation  

% coefficient 

% This program obtains the corresponding data point from 

injection column 

  

clear; clc; close all; 

  

load corcf.mat; 

  

% Last value of corcf is NaN so taking it off 

  

corcf = corcf(1:end-1,:); 

  

load dynamic_data_052.dat; 

  

data = dynamic_data_052; 

[L Col] = size(data); 

output = corcf(:,5); % making the output to be the 

correlation coefficient  

% of sensor 5. 

  

[R C] = size(output); 

  

% input data i.e. data must be resampled. 

  

input = zeros(R,1); 

  

count=1; 

newy=NaN(L,1); 

for i=1:L 

    x=data(i,11); 

    if x<1 

        if data(i+1,11)>1  

            newy(i-15,:) = corcf(count,5); 

            count=count+1; 

            newy(i,:)=3; 

        else 

            newy(i,:)=3; 

        end 

    else 

        newy(i,:)=3; 
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    end 

end 

  

% now find where the correlation coefficients lies 

  

[Rn,Cn] = find(newy >= -1 & newy <= 1 ); 

  

input = data(Rn,10); 

%  

% p = 20000; 

%  

% q = p * R / L; 

% y = resample(data(:,10),p,q); 




