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ABSTRACT 

 

System Identification and Modeling of the Dynamics of a One Stage Axial Flow 

Compressor System 

 

Thesis Abstract--Idaho State University (2015) 

 

The research presented in this thesis details the system identification and 

modeling methods used to characterize the dynamics of a one stage axial flow 

compressor system. Specifically, the system identification is focused on two primary 

areas, the dynamic relationship between the compressor flow coefficient and pressure rise 

coefficient as well as the pressure dynamics at and around the rotor blade passages. A 

method for optimizing filter parameters when performing system identification is 

proposed. An autocorrelation coefficient method is also used for processing the dynamic 

pressure data. Transfer function models are developed using a black-box system 

identification approach. The results of the system identified models are presented in 

complex plane pole plots and magnitude Bode plots that demonstrate consequential trend 

behavior as the compressor stall point is approached. 
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CHAPTER 1 INTRODUCTION 

1.1 Background and Motivation 

 Optimizing and controlling the flow in fluid machinery can result in vast 

improvements of its economic and environmental impact. Even small improvements of 

the efficiency in certain types of fluid machinery can result in significant cost savings. An 

example of such improvements is given by Przybylko in [1], where one stage of a 

compressor in an aircraft engine is eliminated through the use of active control of the 

flow in the engine. This reduction in the number of stages results in a 5 percent increase 

in the thrust-to-weight ratio and a 1.5 percent reduction in fuel consumption. The 

resulting improvement in fuel consumption becomes even more impressive if one 

considers the number of commercial and noncommercial jet aircraft being operated at any 

given time. In addition to aerospace applications, axial flow compressors are currently 

used for a number of industrial and research applications [2]. The engineering, economic, 

and environmental benefits of improving the efficiency of axial flow compressors gives 

rise to the motivation for researching control strategies for this type of fluid machinery. A 

necessary first step in implementing a control strategy is the development of a useful 

dynamic model, the primary objective of this thesis research.   

 For the research presented in this thesis, the concentration is on axial flow compressor 

systems, as used in a number of applications, including jet aircraft engines. System 

identification methods are primarily used for model development. The structure of this 

thesis is divided into seven chapters. Chapter 1 acts as an introduction with a problem 

statement and thesis goals as well as background information on axial flow compressor 

research and dynamics. Chapter 2 gives an overview of the experimental setup and the 

equipment used for data collection. Chapter 3 briefly discusses the theory behind the 

implementation of system identification. Chapter 4 and Chapter 5 provide in depth details 

on the use of system identification for the development of a slow and fast dynamics 

model, respectively. Chapter 6 summarizes the results of the system identification models 

and the results of the analysis of these models such as model pole trends. Lastly, Chapter 
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7 describes the conclusions that can be drawn from the research and future work that will 

be conducted on this project.  

 All data that is used in this research is collected from a one stage axial flow 

compressor. Figure 1.1 depicts a schematic of a one stage axial flow compressor system. 

The fluid is fed to the compressor stage through the inlet, which may include inlet guide 

vanes (IGV) for adjusting and guiding the flow. The flow entering from the inlet is then 

compressed as it passes through the rotor blade passages of the compression stage. After 

the compression stage, the exit duct guides the flow into the plenum. A throttle is used to 

manipulate the operating point of the compressor system by adjusting the flow rate of the 

fluid passing through the compressor system. 

 

 

 

 

 

 

 

 

 

   
The dynamics of an axial compressor system are generally excited by using a 

throttle, IGV, or other means to alter the flow through the compressor body. An alteration 

in the flow causes a corresponding change in the pressure rise from the inlet atmospheric 

pressure to the compressor plenum pressure. The flow is usually defined using a 

dimensionless parameter designated as the flow coefficient or the symbol,   [3].  

 xC

U
   (1.1) 

In this definition of the flow coefficient, xC  is the axial flow velocity and U  is the mean 

rotor velocity. Similarly, the pressure rise is defined using a dimensionless parameter 

designated as the pressure rise coefficient or the symbol,   [3]. 

Inlet                     Exit Duct         Plenum                 Throttle 

 

 

Compressor 

Figure 1.1: Diagram of a One Stage Axial Flow Compressor System 
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




  (1.2) 

For this definition of the pressure rise coefficient, P  is the change in pressure from inlet 

atmospheric pressure to plenum pressure,   is the density of the fluid passing through 

the compressor, and U  is once again the mean rotor velocity. For this research, the fluid 

is assumed to be incompressible. Thus, the density   of the fluid is taken as a constant 

value for the pressure rise coefficient calculations. Most modern research into what is 

defined here as the slow dynamics of an axial compressor system consists of developing a 

model that relates the behavior of the flow coefficient   to the corresponding behavior in 

the pressure rise coefficient  . The fast dynamics, as opposed to the slow dynamics, are 

defined as the pressure flow dynamics in and around a rotor blade passage and are also 

studied. 

The general relation between the flow coefficient and pressure rise coefficient can 

be represented by plotting the characteristic curve. Figure 1.2 shows the typical operating 

point trajectories along a pressure versus mass flow plot for an axial compressor 

characteristic curve. When an instability phenomenon known as rotating stall occurs, the 

compressor operating point moves from position (1) into the stall position at (3). When 

the throttle is completely opened, the operating point of the compressor moves to position 

(4). The plot in Figure 1.2 also shows the stall curve that is consistent with the cubic 

axisymmetric compressor characteristic curve as developed in the Moore-Greitzer model 

[3].  

 

 

 

 

 

 

 

  

[3]     

 

Figure 1.2: Compressor Characteristic Curve for Axial Compressor Undergoing Stall  
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 Under certain operating conditions, the compression systems that are used in aircraft 

turbine engines and industrial processes may develop severe aerodynamic instabilities. 

Compression system instabilities are generally caused by one of two phenomena known 

as rotating stall and surge. The type and magnitude of these instabilities are dependent on 

the dynamics of the compressor [4-6]. Rotating stall is a phenomenon which causes 

disturbances in the circumferential flow pattern of the compressor and is usually 

considered as a two or three dimensional phenomenon [5, 6]. This rotating stall condition 

is caused by a flow moving slower than the rotors (generally 30 percent to 70 percent of 

the rotor speed) around the compressor annulus [5-9]. Surge is a large amplitude 

oscillation which causes an overall reversal of the flow in the compressor [4-9]. The 

surge phenomenon is dependent on compressor geometry as well as the dynamic 

properties of the system such as inlet and outlet channels, volume, and throttle resistance 

[4]. Surge can also be described by fluctuations in flow, rise in pressure, and the 

rotational speed of the compressor [6]. 

 In the design of axial compressors and other types of turbomachinery, it is of primary 

importance to consider the prevention of rotating stall and surge. During the normal 

operation of the system, such instabilities can generally not be endured due to the large 

mechanical loads imparted on the structure [4].  Rotating stall causes severe uneven 

loading on the compressor blades. This uneven loading can lead to extreme blade 

vibration, a decrease in pressure rise, decrease in compressor efficiency, overheating in 

the burner, and sometimes surge [5, 9, 10]. Surge is a highly undesirable phenomenon 

due to the severe damage it causes to the compressor as well as the rest of the flow 

system. Damage to a jet engine caused by compressor surge includes overstress on the 

compressor blades and a lack of air provided to the jet engine combustor which may lead 

to flame-out [5, 6, 11]. The traditional way to avoid surge is to run compressors at an 

operating level away from the surge line [6]. However, this limits the operating range and 

achievable efficiency of the machine [6]. For obtaining extreme pressure ratios in every 

stage of the compressor, aircraft engines these days oftentimes use transonic axial flow 

compressors. Engine weight and size can be reduced if high pressure ratios can be 

obtained from each stage of the compressor, which in turn reduces the cost of operation 

and investment [12].  
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 For the reasons stated above, axial compressor systems must be operated at a safe 

region away from the peak of their performance curves to accommodate flow 

disturbances during operation. A number of different control strategies have been 

proposed to mitigate the instabilities and increase the efficiency without jeopardizing the 

operational safety of the system. The proposed control strategies to limit the instabilities 

are based on active control schemes, where actuation helps to safely move the operating 

point further up along the performance curve. In order to achieve active control, it is 

important to have both a working knowledge of the compressor dynamics and generally a 

dynamic model of the compressor system characteristics. 
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1.2 Problem Statement 

The fluid dynamics of an axial flow compressor are complicated and in some 

regards not well understood. A model of some sort, whether it involves the fast or slow 

compressor dynamics, is necessary for developing an efficient means of controlling the 

stall behavior dynamics and avoiding the onset of rotating stall and surge. Rather than 

approaching this problem from a fluid dynamics perspective and obtaining an analytical 

model, a system identification approach is used. This system identification approach is 

based on input and output data and minimal knowledge of the compressor dynamics. 

However, the development of this model has some inherent complications. Research into 

modeling the fluid dynamics of an axial compressor is a relatively open field and 

consequently, new methods and combinations of existing methods must be created to 

analyze data for system identification.   

Specific problems that must be dealt with include reducing random noise in 

measurement signals, creating a satisfactory input excitation, and analyzing the 

developed models to determine if they adequately model the system dynamics. The 

effects of signal noise can be reduced using techniques such as signal filtering and 

correlation coefficient calculations. Different excitation inputs can be applied to the 

system with limitation to inputs that can be physically produced at the experimental 

facility at the IET. Lastly, any developed model must be examined to understand whether 

this model can be appropriately used in a control system application. This model 

examination can be conducted based on some prior knowledge of the system dynamics.  

  If a satisfactory system identification model can be developed, the ability to then 

create a control system using this model would have a multitude of benefits for axial 

compressor technology in jet engines. For instance, a control system would allow for a 

compressor being throttled to the stall point to operate efficiently beyond this stall point. 

Operating beyond the stall point would allow for a higher pressure rise across the 

compressor which would in turn allow the jet aircraft engine to create a greater thrust 

force. Air injection actuators can be used to inject air into the tip gaps to prevent stall. By 

having a model to detect the approach of stall, the air jets could be actuated more 

efficiently to inject air for stall margin improvement, without expending unnecessary 

energy for air pressurization. In theory, these injectors can continuously inject air to 
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improve the stall margin, but an accurate model would allow a control system to 

determine when injection is necessary. Therefore, this research is conducted in hopes of 

developing a model for usage in subsequent control systems using an empirical system 

identification approach.  
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1.3 Thesis Goals 

 Develop a process for creating a model to characterize the slow dynamics 

(dynamic relation between the flow coefficient and pressure rise coefficient) of a 

one stage axial flow compressor system through the use of data filtering, filter 

optimization, and system identification. 

 Develop a model through the use of system identification to characterize the fast 

dynamics (dynamic flow behavior in and around the rotor blade passages) of a 

one stage axial flow compressor system using dynamic pressure data. 

 Relate developed models to a form that can be used for active flow control for an 

axial compressor.  
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1.4 Research History of Rotating Stall and Surge in Axial Flow 

Compressors 

 Research on rotating stall behavior in axial flow compressors has been a high priority 

research topic since the 1950s. As axial flow compressors came to be prominently used 

for jet engine applications, the necessity for research into stall propagation as well as the 

surge phenomenon in axial flow compressors became increasingly evident. Initial 

research into stall behavior was conducted at the California Institute of Technology 

among other research institutions. This research consisted primarily of collecting 

experimental data and observations to link stall propagation with specific operating 

conditions of the axial-flow compressors, such as the pressure drop across the compressor 

blade rows [13, 14]. 

 As the mechanism for the propagation of rotating stall and surge became better 

understood, research shifted to the development of a theoretical model for understanding 

stall and surge in axial flow compressors. A milestone in developing the model 

describing rotating stall and axial flow compressors occurred in the mid-1970s at the 

Massachusetts Institute of Technology. This research was conducted by E. M. Greitzer 

who published his work in 1976. Greitzer’s research consisted of developing a theoretical 

system model for the axial compressor using non-dimensional parameters on which the 

system response is dependent. Additionally, Greitzer collected experimental results in 

order to compare to and validate this theoretical system model. This theoretical model, 

published as Parts I and II, is now known as the Greitzer model [10, 15].  

 A subsequent collaboration between Greitzer and F. K. Moore of Cornell University 

led to further research into refining the theoretical model and developing a set of partial 

differential equations for describing the compressor system. Moore had previously 

conducted extensive research on rotating stall theory with a focus on the many blade row 

stages of axial compressors [16]. The Moore and Greitzer collaborative research centered 

on the development of equations that could express the growth and dissolution of stall 

cells in a mass flow compressor system over time. An important aspect of this research 

was demonstrating how these equations were coupled for rotating stall and surge motions 

within the compressor. The results of this research model were published in 1986 [3]. 

Greitzer and Moore’s collaborative work, known as the Moore-Greitzer model, proved to 
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be the basis for a mathematical model describing rotating stall and surge in axial flow 

compressor systems. This research has allowed for the development of a variety of 

methods for controlling and mitigating stall and surge in axial-flow compressors.  

 Verification and refinement of the Greitzer and Moore-Greitzer models as well as 

developing further models for flow perturbations in axial compressors soon became the 

next research priority in the late 1980s and early 1990s. Bifurcation theory was used by a 

number of researchers in order to determine whether the Greitzer model sufficiently 

models the physical phenomena of rotating stall and surge. An early research publication 

into bifurcation analysis is included in Brons [17]. Additionally, during this time the 

Moore-Greitzer model, which does not account for blade row time lags in flow dynamics, 

was refined to account for these time lags by Haynes et al. [18]. Other work on the 

modeling of rotating stall and surge was conducted by Paduano et al. [19]. Their research 

primarily focused on developing an analytical model based on spatial Fourier analysis of 

flow perturbations within axial compressors to be used for active control purposes. 

Research during the late 1980s and early 1990s had shown that proof of concept 

compressor stabilization could be achieved through the use of active control methods 

involving sensors and actuators by Simon et al. [20]. More practical techniques for active 

control were still in development. 

 During the mid to late 1990s, several major advances were made in active control and 

stabilization of surge and rotating stall in axial compressors. The research of Hendricks et 

al. on the inception of instability in axial compressors was useful in subsequent 

development of active control methods [21]. Another control research area that was 

developing at around this same time period was the use of air injection actuators as a 

means of actively stabilizing rotating stall and surge in order to increase the operating 

range of the compressor. This control scheme was based on obtaining data on the 

upstream static pressure of the flow entering the compressor and feeding this data to the 

air injection actuators, which in turn would be used for flow stabilization [22]. Weigl et 

al. [22] and D’Andrea et al. [23] present examples of the use of air injection for 

compressor stabilization. Alternative control methods being researched in the late 1990s 

are given by Humbert et al. [24], Haddad et al. [25], and Kang et al. [26]. Humbert et al. 

[24] put forth a simplified numerical analysis for the purpose of assessing the dynamics 
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and use of feedback controllers in axial compressors for stall and surge minimization. 

Haddad et al. [25] develop and compare a robustly stabilizing nonlinear control technique 

and compare this technique with existing controllers based on bifurcation stabilization. 

Lastly, Kang et al. [26] further develop a bifurcation stabilization method with a linear 

feedback control design and demonstrate the results through numerical simulation.  

 One of the leading approaches proposed for controlling surge and stall in the early 

2000s was put forward by Paduano et al. in 2001 [4]. Their research presented two 

approaches for use in feedback control methods. The first approach involved developing 

a way of actively damping the compressor system. The second approach utilizes system 

manipulation in order to keep the operating point of the compressor system near to the 

range of instability without become unstable. In addition to Paduano’s research, a variety 

of approaches for controlling stall and surge have been investigated and presented. More 

recently, methods have been researched to actively control surge of the compression 

system using compressor drive torque rather than mass flow measurements by Bohagen 

and Gravdahl [27]. Several other research publications that deal with the development 

and study of control systems for controlling stall and surge are given in Nayfeh and Eyad 

[28], Chaturvedi and Bhat [29], and Uddin and Gravdahl [6]. Nayfeh and Eyad [28] use a 

feedback control method to prevent stall by maintaining a steady-state pressure rise 

within the compressor. Similarly, Chaturvedi and Bhat [29] make use of an output-

feedback control for the prevention of hysteresis and surge in axial compressors. Uddin 

and Gravdahl [6] present a linear as well as a nonlinear method of feedback control that 

actuates pistons to control the system and stabilize surge. Feedback is obtained from 

values such as the pressure within the plenum and piston velocity.  

In addition to control and stabilization research, recent research by Sun et al. [30] 

also encompasses the determination of stall inception points and the onset of instability. 

Techniques are being developed by Tahara et al. [31] for creating warning signals before 

a spike in the stall inception occurs to aid in control methods. Furthermore, to better 

understand the effects of the aforementioned control approaches, high performance 

computing and computational fluid dynamics (CFD) are now being used to simulate fluid 

flow through compressor systems. These computational simulations can then be used to 

study the effects of different types of control methods and understand their effect on stall 
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and surge prevention and mitigation. Chen et al. [32] document an example of research 

using high performance computing codes for flow simulation with the implementation of 

a tip injection control system. CFD models have been increasingly used in the past few 

years for the determination of stability across blade rows within compressors as seen in 

Chima [33] and Cornelius et al. [34]. 
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1.5 Introduction to Axial Compressor Slow Dynamics 

1.5.1 Research Background of Slow Dynamics and Rotating Stall 

An early model of rotating stall dynamics was developed by Emmons et al. [35] 

in 1955 to explain the mechanism that induces rotating stall. The model included a study 

of the separation and blockage that occurs between blades and how the incidence of the 

incoming air affects these properties. Subsequently, the definitive Moore-Greitzer theory 

model was developed for two dimensional incompressible flow in 1986 [3]. Two 

dimensional flow is a flow in which the velocity directions at all points within the flow 

are parallel to a specified plane. The Moore-Greitzer model also included circumferential 

short-length disturbances. Long-length scale disturbances and perturbation were later 

introduced to the model by McDougall et al. [36] and Garnier et al. [37]. Long-length 

scale perturbations are flow disturbances of low frequency and low amplitude.  

In 1994, Paduano et al. [19] developed an analytical state-space model for the 

system and conducted research where the blade stagger was modified. More recent 

research began to focus on active control for the purpose of increasing the stall margin. 

For instance, Weigl et al. [22] enhanced the stall margin using actuators which inject air 

axially into the gap spacing between blade tips and casing. Specifically, they excited the 

compressor system using sinusoidal actuated air injection. The sinusoidal air injection 

was superimposed on a constant air injection of 3.6 percent of the main air flow that was 

also being injected. 

Although accepted as the definitive model for axial compressor slow dynamics, 

the Moore-Greitzer model has several limitations that are addressed in this section. These 

limitations include the fact that the model does not take into account phenomena such as 

tip leakage and rotor-stator flow interaction. Additionally, the Moore-Greitzer model only 

accounts for modal oscillation stall inception and does not include spike detection for 

stall warning. In addition, there are other more general limitations and restrictions to 

developing active flow control based on the Moore-Greitzer model for an axial 

compressor. These limitations include the fact that the Moore-Greitzer model is complex 

and requires a thorough understanding of the mechanisms involved to achieve active 

control. A high frequency actuator is also a necessity for control of the overall system in 
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order to prevent stall inception. Several other improvements and additions to the Moore-

Greitzer model and the research conducted to address these improvements are discussed 

in the following paragraphs.  

One addition to the Moore-Greitzer model includes the use of traveling wave 

energy to provide a warning that precedes stall inception. Traveling wave energy can be 

used as a measure of compressor stability according to the research of Tryfonidis et al. 

[38]. This research uses a spatial Fourier transform to analyze the dynamics of prestall 

traveling wave structures. The circumferential traveling wave energy is used to predict 

stall precursors based on the propagation velocity of the previous order spatial harmonic. 

Figure 1.3 [38] shows the relation between traveling wave energy and time in rotor 

revolutions prior to stall, as determined by Tryfonidis et al.  

 

 

 

 

 

 

 

 

 

[38] 

 

The data in Figure 1.3 is for a test compressor operating at 75 percent of the maximum 

rotor speed on the left and at 100 percent of the rotor speed on the right. As can be clearly 

seen in Figure 1.3, prior to stall inception there are significant increases in the magnitude 

of the traveling wave energy. These types of traveling wave energy plots allow for the 

observation and detection of small amplitude perturbations before stall occurs. 

The Moore-Greitzer model also tends to use a lumped representation approach 

and consequently ignores the interaction between certain components within the 

compressor. For instance, the effect of the interaction between individual blade-rows is 

not considered. According to Spakovszky [39], these interactions become important to 

Figure 1.3: Traveling Wave Energy versus Time in Rotor Revolutions near Stall Inception 
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the overall system dynamics for compressors with significant dynamic contributions from 

the inter-blade-row ducts. These interactions were addressed by Spakovszky specifically 

for centrifugal compressors and were used to improve the model and explain the 

mechanism for backward traveling rotating stall waves. 

Additionally, short length scale disturbances were not considered in the Moore-

Greitzer model. Studies of these short length scale disturbances found that these types of 

disturbances have an effect on stall precursors and the inception of stall. Day [40] found 

that the spreading of these small scale disturbances often leads to fully developed stall in 

the compressor system. Day’s experimental research also concluded that modal 

oscillation and stall cell formation (also known as spike stall inception) were two 

physically separate events. More specifically, modal oscillation is generally an 

axisymmetric circumferential disturbance, whereas spike inception is a localized 

disturbance that leads to the destruction of the symmetry of the flow field. Camp and Day 

[41] found that the inception of stall through spike and modal oscillation has a strong 

correlation to the critical incidence of the rotor blades. Figure 1.4 [41] demonstrates the 

relative location of the stall point for spike stall inception and modal oscillation stall 

inception events on the pressure rise coefficient versus flow coefficient characteristic 

curve. 

 

 

 

 

 

 

 

 

[41] 

 

As Figure 1.4 shows, stall tends to occur prior to the characteristic curve peak, when 

approaching the stall point, for spike stall inception. Conversely, stall tends to occur very 

near to or at the peak for modal oscillation stall inception.  

Figure 1.4: Relative Locations of Spike and Modal Stall Inception on the Characteristic Curve 

Spike Stall Inception Modal Stall Inception 
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1.5.2 Slow Dynamics Modeling for Compressor Systems 

A variety of methods have been developed for modeling the slow dynamics of 

compressor systems. Several of these methods, including a grey-box approach as well as 

a state-space model, are described in this section. A grey-box approach developed by 

Greitzer [42] is described in the following paragraphs.  

This grey-box approach makes use of a mass-spring-damper system model 

developed and adapted by Greitzer, among others, to represent the compressor system 

including the plenum and throttle components [42]. In this model, a mass block 

represents the mass of the air in the compressor duct. Similarly, another mass block is 

used to represent the air mass in the throttle. A spring can be used to model the 

interaction between the two masses that is proportional to the compressibility of the air in 

the plenum. A damping factor can be added to the mass representing the energy being 

added to the system from the compressor rotation. This damping factor is negative 

because energy is being added to the system rather than dissipated. Additionally, another 

damping factor can be added to the air mass in the throttle. 

Figure 1.5 [42] below shows the compressor or pumping system setup as well as 

the mass-spring-damper model representation for the grey-box approach. 

 

 

 

 

 

 

 

 

 

[42] 

 

In Figure 1.5, PM  is the mass of the air in the pump or compressor and TM  is the mass 

of the air in the throttle. The mass of the air in the throttle is assumed to be negligible and 

is consequently approximated as zero. This grey-box model is an idealized system and 

Figure 1.5: Mass-Spring-Damper System for Grey-Box Modeling Approach 
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consequently a more detailed model is necessary for accounting for certain phenomena in 

the slow dynamics data. 

In addition to grey-box modeling, comprehensive state-space models have also 

been developed to model the slow dynamics of compressor systems. Paduano et al. [19] 

developed an analytic state-space model based on the Moore-Greitzer model to describe 

the dynamic behavior of the axial compressor system. The experiments for this research 

were conducted using inlet guide vanes in order to excite the system dynamics. 12 inlet 

guide vanes (IGVs) were positioned upstream of the compressor rotor at angular 

locations around the compressor annulus and were actuated independently using DC 

motors. Although there are several alternative methods for affecting the fluid flow 

through a compressor, IGVs were chosen for the ease with which a variable input for 

modeling could be created, as well as their ability to be actuated using relatively 

inexpensive off-the-shelf hardware. The bandwidth of actuation was 80 Hz, which is 

significantly higher than the process bandwidth at approximately 10 to 14 Hz. These 

actuated IGVs synthesized a traveling wave to add an exogenous input to the system with 

a gain that must be quantified. This gain quantification is conducted using system 

identification. In these experiments, the blade stagger was also modified to determine its 

effect on the model.  

In the research of Paduano et al. [19], the state-space models were converted into 

a transfer function form. The conversion of the state-space model to a transfer function 

form was done to put the model in a form more suitable for frequency domain analysis. 

These transfer function models were subsequently used to study the frequency domain 

behavior of the state-space model that was originally obtained. Sinusoid inputs as well as 

a pseudo-random binary input were both used to excite the transfer function modeled 

system. The sinusoid inputs were used to excite the transfer function models in order to 

determine the values of the transfer functions for a specified excitation frequency. Figure 

1.6 [19] shows the Bode plots (magnitude and phase) of a transfer function model with a 

spatial sinusoidal wave with oscillating amplitude. 
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Further research into developing an analytical model for the slow dynamics was 

carried out by Feulner et al. [43]. This research yielded an analytical model, based on the 

Moore-Greitzer model, in a form that was more suitable for implementing a control 

system involving an input and output in the Laplace domain. The experimental 

compressor system used jet actuators to perturb the system. The Laplace domain model 

was also found to be an accurate representation of the system behavior near the instability 

region. Additional research was conducted by Frechette in reference [44]. 

  

                              [19] 

 

Figure 1.6: Bode Plots (Magnitude and Phase) for Transfer Function Model with Spatial 

Sine Wave Input 
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1.6 Introduction to Axial Compressor Fast Dynamics 

1.6.1 Research Background of Fast Dynamics 

As opposed to the slow dynamics which relate the overall compressor pressure 

rise coefficient to the flow coefficient, the fast dynamics of an axial compressor system 

are focused on the dynamic behavior of the fluid flow at and around the rotor blades and 

through the blade passages. Very little research has been conducted using system 

identification to characterize the behavior of an axial compressor’s fast dynamics. 

Consequently, the prospect of using system identification to model the fast dynamics of 

an axial compressor is a relatively open area of study. The details of fast dynamic 

behavior for axial compressor flow are explained in the following paragraphs. 

As stall is approached, tip leakage flow (TLF) begins to have a significant 

influence on the behavior of the main incoming flow through the blade passages. The 

research of Khalid et al. [45] and Vo [46] demonstrates that the flow within these blade 

passages can be characterized by an interface line created between the TLF and the main 

incoming flow. Figure 1.7 shows a graphical illustration of how TLF or tip clearance 

flow interacts with the incoming flow through the blade passage to establish a distinct 

interface line [46]. 

 

 

 

 

 

 

 

 

[46] 

 

This interface line generally extends from the low pressure side of the rotor blade near 

the leading edge. Although there is an alternative hypothesis for the occurrence of stall, 

this interface line is hypothesized to be linked to the onset of stall and is assumed to be 

true for the development of a model in the research described in this document.  

Figure 1.7: Establishment of the Interface Line for Flow in a Blade Passage 
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A detailed analysis into the relation between the momentum ratio, tip gap, and 

how these factors affect the route to stall was conducted by Lin et al. [47]. A graphical 

depiction of the routes to stall for an axial flow compressor is shown in Figure 1.8 [47]. 

As the compressor is throttled, the momentum ratio, represented by the vertical axis, 

increases. Figure 1.8 also shows that the tip gap between the rotor blade tip and the 

casing has a significant effect on how an axial compressor approaches the stall point. For 

a small enough tip gap, separation of blockage causes the compressor to stall as the 

compressor flow is throttled, without entering a stable yet unsteady flow region. 

However, for a tip gap larger than the empirically determined critical tip gap, the TLF has 

a much larger effect and can cause unsteady compressor flow as the compressor is 

throttled.  

 

 

 

 

 

 

 

 

 

 

 

 

[47] 

 

For an axial compressor with a larger than critical tip gap in which TLF is present, 

the flow interface line undergoes three status regions as stall is approached through flow 

throttling. The first region is where the flow is stable and steady. In this region of Figure 

1.8, the TLF is steady and the interface line does not reach the high pressure side of the 

adjacent rotor blade. The second region is where the flow is stable yet unsteady. This 

region of Figure 1.8 is the region of unsteady tip leakage flow (UTLF) and is reached 

Figure 1.8: Routes to Stall in Axial Compressor 
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when the interface line begins to make contact with the high pressure side of the adjacent 

rotor blade. The final region in the throttle direction is the region of stall. As the stall 

region is arrived at, the interface line has reached the leading edge of the high pressure 

side of the adjacent rotor blade and blockages begin to form in the blade passage.  

1.6.2 Correlation Coefficient for Fast Dynamics Analysis 

A well-established method of analysis for understanding the fast dynamics of an 

axial compressor is the calculation of the correlation coefficient of the output pressure 

data across the flow passing through the rotor blade passage. The autocorrelation 

coefficient is essentially a way of measuring the repeatability of the pressure at a 

stationary location along the rotor blade and reducing the effect of random noise in the 

pressure signal measurement. The research of Tahara et al. in [48] and [31], first 

developed the use  of the calculation of the autocorrelation coefficient for usage in stall 

warning signals for active stall control techniques. Additionally, this research found the 

mid-chord location on the rotor to approximately be the location of the initial correlation 

degradation as stall is approached.   

Since then, other researchers have also used the correlation coefficient method 

and further refined this method. Dhingra et al. [49] uses a stochastic model to better 

understand the stochastic behavior of the correlation coefficient or correlation measure as 

applied to the management of compressor stability. A primary conclusion of the research 

of Dhingra et al. was that the dynamic pressure sensor location relative to the rotor has an 

important effect on the usefulness of the technique. They found that a pressure sensor 

placed at the mid-chord of the rotor produced the best results for their technique. The 

work of Christensen et al. [50] builds on the method developed by Dhingra et al. and 

further expands the method. Christensen et al. developed a robust real-time algorithm for 

monitoring compressor stability. The results of this research showed that the correlation 

measure can be used in a control system for effectively managing stall using existing 

control software. 

A more recent use of the correlation coefficient in active stall techniques for stall 

margin improvement is in the research conducted at the CAS by Li et al. [51]. This work 

makes use of the cross-correlation coefficient as a stall warning and uses air injection 

actuators to inject air into the tip gap in order to delay stall. The control scheme involved 
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a proportional control valve on the air injection jets to proportionally increase air 

injection as the stall point is approached. The compressor characteristic line as compared 

with the no injection line as well as a constant steady injection line is shown below in 

Figure 1.9 [51]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

[51] 

 

The horizontal axis in Figure 1.9 represents the flow coefficient and the horizontal axis 

represents the pressure rise coefficient. As can be seen in the above figure, the 

proportional valve air injection provides a significant stall margin improvement. The 

research provided in references [31, 48-51] clearly show that usage of the correlation 

coefficient is a practical means of analyzing and examining the dynamic pressure sensor 

data across the rotor blades for use in active stability control methods for axial 

compressors.  

 

 

 

Figure 1.9: Compressor Characteristic Lines for Several Injection Methods 
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1.7 Relation of Slow Dynamics to Fast Dynamics Overview 

It is believed that there is a direct link between the slow and fast dynamics of the 

compressor system. In addition to modeling the behavior of the slow dynamics, observing 

and linking the behavior of the slow dynamics to the behavior of the fast dynamics is also 

of key importance. A future objective of this research is to use system identification to 

obtain a black-box model of the compressor slow dynamics that can be linked through a 

disturbance variable to the fast dynamics. The relation through a disturbance variable 

between the compressor’s slow and fast dynamics is explained in this section.  

There are four cases for the flow through the compressor. These cases include the 

stable case, unsteady case, the pre-unstable case where spike-stall inception occurs, and 

the fully unstable case. The dynamics of the system can be represented by the A  matrix 

of a state-space equation, where the elements represent the fast and slow dynamics, as 

well as how the dynamics and disturbances interact. This dynamic matrix allows for the 

determination of a system output based on the varying of the slow dynamics (using an 

oscillating throttle ring) and the varying of the fast dynamics (using air injection 

actuators). The proposed model structure of the system is as follows, 

      11 12

21 22

1
A A

x k x k Bu k
A A

 
   

 
 (1.3) 

      y k Cx k Du k   (1.4) 

where  x k  is the vector containing the state variables or set of system parameters and 

 y k  is the output.  u k  is the input to the system of which there are two types 

available, throttle oscillation and air injection. The A  matrix that is of interest for 

relating the fast and slow dynamics of the system is of the form: 

 
11 12

21 22

A A
A

A A

 
  
 

 (1.5) 

where the elements of this matrix are each a distinct matrix. Specifically, 11A  represents 

the slow dynamics, 22A  represents the fast dynamics, and 12A  as well as 21A  represent the 

disturbance and link connection between the slow and fast dynamics. B  and D  are also 

matrices and may need to be similarly partitioned depending on the selected inputs to the 
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system. Additionally, C  is the observation matrix and can be chosen based on the 

variables desired for observation and analysis.  

In other words, the elements of the matrix A  are each matrices that contain the 

six variables for defining the slow dynamics, pressure disturbance, and fast dynamics.   

and   are the non-dimensional pressure rise and flow coefficients, respectively, that 

define the slow dynamics of the system.   is the pressure disturbance coefficient. 

Additionally,  , S , and s  are the variables that define the fast dynamics of the 

compressor.   is the angle that the flow streams make with the chord line of  the 

compressor rotor blades. S  is the signature frequency of the oscillation movement of 

the angle of the flow streams   relative to the compressor blades. Lastly, s  represents 

the distance from the tip of the rotor blade to the incidence point of the flow stream with 

the blade. Li et al. [52] make use of this s  variable in their research. For the stable flow 

case, the dynamic matrix can be written as: 

 
11

22

0

0

A

A

 
 
 

 (1.6) 

where 12A  and 21A  are the disturbances and are equal to zero for the stable case. For the 

unsteady case, the matrix contains all of the elements and is written in the following 

form. 
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In the unsteady case, the elements of the matrix are equal to the matrices shown below. 
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 (1.8) 

The matrices for the pre-unstable and unstable matrices also contain all of the A  

elements, but the values of the variables contained in the element vectors have to be 
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determined. Lastly, the output of the observation equation  y k  contains each of the 

variables and is of the following form. 

  
T

Sy k s     
 

 (1.9) 

 The primary challenge in using this model structure is the determination of the pressure 

disturbance variable that links the fast and slow dynamics. Two methods are being 

considered for determining the disturbance variable  . A cross-correlation method could 

be used and additionally a traveling wave energy method could also be used for 

determining this variable. The traveling wave energy method is used by Tryfonidis et al.  

[38] and utilizes spatial Fourier transforms to predict stall precursors based on the 

propagation velocity of previous order harmonics. In order to implement these methods, a 

slow dynamics model as well as a fast dynamics model must first be obtained. 
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CHAPTER 2 EXPERIMENTAL SETUP AND DATA 

COLLECTION 

2.1 Axial Flow Compressor Specifications 

Before analysis and modeling can be performed, data must first be collected. The 

experimental compressor system that is used to obtain data for this research is a one stage 

axial flow compressor situated at the Advanced Energy and Power Technology 

Laboratory at the Institute of Engineering Thermophysics (IET), Chinese Academy of 

Sciences (CAS), located in Beijing, China. The one stage rotor touts a total of 58 blades 

spaced evenly around the rotor at a fixed angle of attack. A photograph of the axial 

compressor system at IET is shown in Figure 2.1. Figure 2.2 shows the axial compressor 

when the casing is removed to expose the rotor blades. The operating rotation frequency 

of the compressor’s rotor is approximately 40 Hz or 2400 revolutions per minute. This 

research compressor also has several casings that can be switched out in order to alter the 

tip clearance around the compressor blades. The parameters for the experimental axial 

compressor are summarized in Table 2.1, below. 

Table 2.1: Parameters for Experimental Axial Compressor at the IET, CAS   

Parameter Numeric Value Units 

Design Speed 2400 rpm 

Rotor Blade Number 58 - 

Outer Casing Diameter 500 mm 

Mass Flow Rate  2.9 kg/s 

Rotor Tip Chord 36.3 mm 

Rotor Tip Stagger Angle 39.2 deg 

Hub-tip ratio 0.75 - 

 

The compressor casings that are used for this research are smooth, meaning the 

casings do not have any type of grooves machined into the inner side of the casing. The 

typical tip clearance for most tests that have been conducted at IET is around 0.7 mm 

with the smallest diameter casing able to produce the minimum tip clearance of 0.5 mm. 

The casing can be switched out in a matter of minutes, which allows for tests to be 

conducted at a variety of tip clearance values. Although stall is believed to be heavily 

influenced by the tip clearance, several other factors also affect the occurrence of stall. 

These factors include flow separation, the inlet velocity of the air flow, the angle of 

attack of the compressor blades relative to the incoming air flow, as well as the tip 
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incidence of the blades. Modal inception oftentimes occurs due to the blade angle of 

attack. However, the research compressor at IET does not allow for the variation of the 

blade angle of attack and thus the blade angle is not altered in this study. Instead, the 

research compressor at IET follows spike inception as a precursor to fully developed 

rotating stall. Therefore, the focus of the research described in this document is focused 

on spike stall inception rather than modal inception.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.1: Experimental Axial Compressor Setup at the Advanced Energy and Technology 

Laboratory at the Institute of Engineering Thermophysics, CAS 

Figure 2.2: Compressor with Casing Removed (Left) and Compressor Rotor Blades (Right) 
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2.2 Compressor Throttle Actuation 

The throttle valve for the experimental compressor setup at the IET consists of 

two primary pieces. The first of these pieces is the stationary throttle cone. The second 

piece is the mobile throttle ring. Currently, a stepper motor is used for the actuation of the 

throttle ring. This stepper motor is capable of moving the throttle ring at a constant speed 

of 2 mm/sec and producing a frequency oscillation of up to approximately 2 Hz. While 

this stepper motor is adequate for performing experiments in which a low frequency air 

flow oscillation is sufficient, this stepper motor cannot perform the wide input frequency 

range necessary for more useful system identification. The overall setup for the cone 

throttle valve is shown below in Figure 2.3. Note that the blue motor shown in the left of 

the picture is used for the compressor blade rotation and not the throttle actuation. 

 

 

 

 

 

 

 

 

 

 

 

 

The moveable ring of the throttle is made from aluminum, and is 10 mm in thickness. 

The outer diameter of this ring is 540 mm and the width of the ring is 118 mm. The edge 

of the ring is chamfered on the side that is in direct contact with the flow. 

In order to move this throttle ring, a screw mechanism is used for movement in 

the forward and backward directions. The throttle ring is bolted to a support structure that 

moves along a rail. This structure is directly connected to the actuation screw. The 

stepper motor rotates this screw and causes the throttle ring and support structure to move 

along the rail. The clockwise or counter-clockwise rotation of this screw determines 

Cone (Stationary) 

Outer Throttle Ring 

(Mobile) 

Base (Stationary) 

Figure 2.3 : Cone and Ring Throttle Valve Setup 
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whether the throttle outer ring moves forward or backward. The left side of Figure 2.4 

below shows this screw mechanism as seen from the side of the compressor when a 

section of the casing is removed. Additionally, the right side of Figure 2.4 shows a more 

frontal view of the same screw mechanism. 

 

 

 

 

 

 

 

 

 

 

 

 

The stepper motor that is used to actuate the screw mechanism for throttle 

movement is mounted on the exterior of the compressor setup. A small hole was created 

in the compressor exterior through which the stepper motor could be mounted. A sealing 

adhesive was used to attach and mount the motor in position. A photograph of the stepper 

motor used to actuate the throttle ring is pictured in Figure 2.5. The torque shaft from the 

motor is on the interior of the compressor and attaches to the screw for rotation. A power 

cord is attached to the exterior side of the stepper motor and is plugged into a power 

source. The laboratory has outlets for 220 V as well as variable DC power supplies that 

are being used for purposes such as powering the dynamic pressure sensors.   

  

Figure 2.4: Screw Mechanism for Throttle Actuation Side View (Left) and Frontal View (Right) 
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Figure 2.5: Stepper Motor for Throttle Ring Actuation (Mounted on Compressor Exterior) 
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2.3 Design of High-Frequency Throttle Modules 

Through research into the development of a slow dynamics model, it is found that 

high frequency throttle actuation may be required to adequately excite the system to 

obtain a useful dynamic model. From the pole variation investigation in section 6.1.2, it is 

concluded that the slow dynamics models are unable to adequately capture the signature 

or natural frequency and show accurate trends as the stall point is approached. The 

natural frequency of the axial compressor system at the IET is found during the 

occurrence of rotating stall to be between 16 and 17 Hz. Prior to stall, this frequency may 

be in the frequency band range of approximately 13 to 19 Hz. Therefore, an actuator that 

can excite the system above this natural frequency should be able to excite this frequency 

as well as several modes of this frequency. The slow dynamics data from the system can 

then be collected and used to create a dynamic model that includes this natural frequency. 

The throttle modules are mounted on the outer throttle ring (see Figure 2.3). The 

outer throttle ring is mobile and is used to control the flow coefficient set point. Rather 

than oscillating the outer throttle ring, which is only capable of reaching a frequency of 

approximately 2 Hz, the throttle modules are oscillated using a rack and pinion gear setup 

actuated using an Ultimag 4EM high frequency rotary solenoid. The solenoid is mounted 

on a bracket, which is attached to the outer throttle ring. A pinion gear is mounted on the 

rotary shaft of the solenoid. This pinion gear interfaces with a gear rack that is directly 

attached to the throttle module. The individual throttle modules are separated by dividers 

or T-braces. Figure 2.6 and Figure 2.7 demonstrate the throttle module design. In these 

figures, the bracket is highlighted in green, the throttle modules are highlighted in blue, 

and the T-braces are highlighted in red. The black arrow in Figure 2.6 represents the 

oscillatory motion of the throttle module.  
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Figure 2.6: Throttle Module Design (Top View) 

Figure 2.7: Throttle Module Design (Demonstrative View) 
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The modules are placed side to side around the outer throttle ring annulus. The 

modules and T-braces are sized so that 12 throttle modules can fit around the annulus. 

The chamfer angle along the edge of the throttle module is at the same angle as along the 

edge of the outer throttle ring or approximately 29.05
o
. The throttle modules are 

intentionally designed to be low mass in order to reduce the load on the rotary solenoid. 

See Figure 2.8 for a design sketch of the throttle module with dimensions included in 

units of millimeters. The speed of the Ultimag 4EM rotary solenoid is greater than 78 Hz 

with no load applied. However, this speed can decrease depending on a number of factors 

such as the mass of the throttle module, the coefficient of friction between the throttle 

module and outer throttle ring, etc. Additionally, the solenoid net starting torque is equal 

to 2.8 lbF-in and the stroke angle is equal to ±22.5
o
. These solenoids are controlled using 

an H-Bridge setup with a microcontroller.  

 

 

 

 

 

 

 

 

 

 

 

 

 

The pinion gears have 18 teeth, a diametral pitch of 32 (0.562 inch or 14.275 mm 

pitch diameter), and a pressure angle of 14.5
o
. The racks interface with the pinion gears 

and therefore also have a diametral pitch of 32 and a pressure angle of 14.5
o
. With these 

dimensions and pitch diameters, the throttle modules can oscillate with a maximum 

amplitude of approximately 2.8 mm. The gears as well as the throttle modules are 

manufactured from a low density material in order to minimize the load on the solenoid. 

Figure 2.8: Throttle Module Design Sketch with Dimensions in Millimeters 
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The primary candidate materials for this application are aluminum as well as aluminum 

alloys. Anodizing the surface of the aluminum material for the throttle module has also 

been proposed to reduce corrosion and wear along the bottom surface of the module 

during oscillation. The throttle module design parts are currently being manufactured at 

the machine shop located at the IET.  
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2.4 Fast Dynamics Data Collection 

There are ten dynamic pressure sensors, manufactured by Kulite, located in 

positions that span the length of a rotor blade along the longitudinal axis of the 

compressor. The sampling frequency for each individual dynamic pressure sensor is 20 

kHz. These sensors are designated CH1 through CH10, with CH1 being the leading 

sensor ahead of the blade leading edge and CH10 being the trailing sensor just behind the 

blade trailing edge. Figure 2.9 shows the ten pressure sensors from two side angles to 

better illustrate the sensor positioning on the compressor casing. For experiments 

discussed in this thesis, only sensors CH1 through CH9 are used. The calibration factors 

between the sensor voltage signal and the pressure in Pascals (Pa) are included in                   

Table 2.2. Additional pressure sensors are included within the air injection actuators to 

monitor the air flow into the tip gap.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.9: Ten Kulite Type Pressure Sensors for Fast Dynamics Data Collection (Both Sides) 
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                  Table 2.2: Fast Dynamics Pressure Sensor Calibration Factors 

Sensor Number Sensor Calibration Factor (Pa/V) 

Sensor CH1 (Leading) 968.3 

Sensor CH2 879.9 

Sensor CH3 891.9 

Sensor CH4 603.7 

Sensor CH5 599.2 

Sensor CH6 599.5 

Sensor CH7 596.8 

Sensor CH8 600.0 

Sensor CH9 (Trailing) 917.7 

 

In addition to fast dynamics pressure data collection, the experimental compressor 

also has the ability to alter the tip leakage flow near the compressor blades. In order to 

alter the flow through the system, eight air injection actuators are used. These air 

injection actuators are equally spaced around the compressor casing and are capable of 

micro-injection or macro-injection depending on the desired experiment. These actuators 

simultaneously inject air through jets into the tip gap between the top of the rotor blade 

and the casing. The angle of the jets can be adjusted to angles such as 15
o
 and 45

o
, in 

order to alter the angle at which the air is injected into the tip gap. Figure 2.10 shows two 

different views of several of the air injection actuators. As seen in the figure, a tube is 

used to carry pressurized air into the actuator from a nearby pressurized storage vessel.  

  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.10: Two Views of Several of the Air Injection Actuators 
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For the purpose of phase locking and average rotor speed calculations, a magnet 

and Hall effect sensor combination is used. The magnet is embedded within the rotor 

blade shaft upstream of the rotor. At each revolution of the rotor, the magnetic field of 

this magnet can be detected by the Hall effect sensor. Figure 2.11 shows the Hall effect 

sensor voltage signal versus time for approximately 10 rotor revolutions. The signal 

fluctuates between a voltage value of 5 V and a value of approximately 0 V. When the 

signal is near 0 V, this indicates that the rotor has completed a revolution and returned to 

a specific position relative to the dynamic pressure sensors. Data collected when the rotor 

is at or near this location can subsequently be used for system identification. For the sake 

of data consistency, the rest of the data between revolutions may have to be interpolated 

or ignored when performing system identification. 
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Figure 2.11: Hall Effect Sensor Voltage Signal versus Time for 10 Rotor Revolutions 



38 
 

CHAPTER 3 THEORY ON SYSTEM IDENTIFICATION 

3.1 Overview of System Identification 

The majority of the research presented in this thesis is based around the 

application of system identification. Hence, a comprehension of the principles behind 

system identification is a necessity for understanding the presented research and its 

implications. System identification is defined as “approximate modeling for a specific 

application on the basis of observed data and prior system knowledge [53].” In other 

words, system identification is the development of a model based on data collected from 

the measurement of specific behavioral parameters of a system. For some systems, a 

previously developed analytic model of the system can aid in developing the system 

identified model, but this is not always feasible. 

There are two major approaches for using system identification to develop a 

model. These approaches are designated as grey-box and black-box modeling. Grey-box 

modeling makes use of a preconceived knowledge of a system such as an analytic model. 

On the other hand, black-box modeling requires no assumptions about the analytic 

system behavior and instead relies on data from the inputs and outputs of a system in 

order to produce a model. For some systems, the analytical behavior may be unknown or 

not well understand. Often this is due to complicated system behavior and intricate 

system geometries. For the slow and fast dynamics of an axial compressor system, the 

analytical system behavior is only marginally understood. Therefore, the black-box 

system identification approach is used for the research presented in this document. 

When using system identification for modeling, it is generally necessary to have 

data for the system input or inputs as well as data for the system output or outputs. Some 

systems may have multiple inputs and multiple outputs. More commonly, one input is 

used with one corresponding output. However, this is not always the case. System 

identification involves applying a model to these input and output data sets and 

determining the model parameters that best relate the input and output. Generally, the 

model parameters are chosen based on some type of fitness criterion such as a goodness 

of fit test or correlation. The model parameters that produce the best fit between the 

actual output data and the output data obtained from the model are the ones that should 
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generally be used. However, other considerations such as whether the model captures the 

important system frequencies may be more important than a high fitness criterion value.  
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3.2 System Identification Calculations 

The relation between the input and output can be represented by the following 

convolution integral equation in continuous time [53].  

      
t

y t g t u d  


   (3.1) 

In this equation,  u   represents the input,  y t  represents the output, and  g t   is 

the impulse response of a system at time t .   is a “dummy” variable that acts as a place 

holder for time during integration. This equation is known as the impulse response model 

representation for a single input, single output (SISO) system. For discrete time systems, 

which most non-theoretical systems are, Equation (3.1) can be rewritten in the summation 

form shown below [53], 

      
t

k

y t g t k u k


   (3.2) 

where k  is the time index. The Laplace transform of the impulse response model 

representation results in: 

      Y s G s U s  (3.3) 

where  U s  and  Y s  are the Laplace transform as a function of the complex variable 

of the input  u t  and output   y t , respectively.  G s  is the system model that relates 

the input and output. Figure 3.1 shows the basic block diagram representation of the 

relation between input and output data using a system model.  

 

 

 

 

 

 

System identification calculations for producing a system model are carried out 

using the Matlab
TM

 [54] system identification toolbox. The system identification toolbox 

uses an iterative numerical approach to match a selected model type to a set or sets of 

given input and output data based on the goodness of fit test between the model and the 

 
 

System Model  

  

 

 

Figure 3.1: Block Diagram Representation of Relation between Input and Output 
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output data. The system identification toolbox allows for several types of linear as well as 

nonlinear model types. Linear model types that are included in the system identification 

toolbox include continuous and discrete time transfer function models with variable 

numbers of zeros and poles, state-space models, and polynomial models including 

autoregressive with exogenous input (ARX) models. Nonlinear models incorporated into 

the system identification toolbox include the Hammerstein-Wiener as well as a nonlinear 

ARX model. In this research, transfer function models and linear ARX models are 

primarily used. Once a model is identified for the system, this model can ideally be used 

in control system applications.  
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3.3 Excitation Input for System Identification 

When performing system identification, it is important to excite the system by 

choosing the proper input. There are several types of input that can be used such as 

impulse and step inputs. However, the most effective means of exciting a system for 

system identification is to use a periodic signal that involves one or more frequencies. A 

sinusoidal input of the form shown below, with frequency 0 , can be useful for certain 

purposes. 

    0sinu t t  (3.4) 

The main limitation of using a simple sinusoidal input is that it can only excite the system 

at a single frequency. A sinusoidal input is used for the slow dynamics research because 

sinusoidal oscillation of the throttle ring is the only means of exciting the system with the 

current equipment at the IET. However, multiple excitation frequencies are possible 

when the throttle modules are put in position around the throttle ring. 

An excitation input that is generally the most useful for comprehensive system 

identification is the random binary sequence (RBS). The RBS alternates between two 

values, generally -1 and 1 or open and closed, depending on the actuator producing the 

input. The primary usefulness of using a RBS as an input for system identification comes 

down to the wide range of frequencies that this type of signal can excite. The frequencies 

of the RBS are produced randomly and generally encompass a broad range dependent on 

the pseudo-random algorithm used to produce the RBS sequence. A general equation for 

the RBS alternating between -1and 1 is shown in the equation below [53].  

       01u t u t sign w t p     (3.5) 

In this equation, sign  is the signum function,  w t  is a uniform random process for time t

=1, 2, …, N , and 0p  is the switching probability with a value in the range of 0 to 1. The 

excitation input used in the fast dynamics data research attempts to mimic an RBS by 

semi-randomly opening and closing the air injection valves. Of course, the actuation air 

injection is performed by a human operator and is only semi-random with a much smaller 

range of frequencies than a true RBS.   
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3.4 Signal Noise in System Identification 

When performing system identification, it is important to reduce the amount of 

random noise in the input and output data signals. A system identified model that 

primarily models the system noise is essentially useless. Unfortunately, most sensors 

used to measure the dynamics of a system pick up some amount of noise. This noise may 

be due to error inherent to the sensor signal or to environmental background noise picked 

up by the sensor. For the data collected in the presented research, the noise generally 

manifests approximately as Gaussian distributed white noise with zero-mean and a near 

uniform power spectral density.  

There are several methods for dealing with this noise. A signal filter may be 

applied in order to reduce the magnitude of specific noise frequencies in the signal. Some 

types of signal filters include low-pass filters, high-pass filters, band-pass filter, and 

notch filters. More specialized filters include the Bayesian filter, which is specifically 

used for filtering the slow dynamics data by setting the probability of random jumps in 

the data to correspond to that of the signal noise. Averaging windows can also be applied 

to a data set to average out the noise over a specified time period. However, the window 

size of the averaging window must be chosen such that the noise is effectively averaged 

without altering the actual behavior of the signal.   

An alternative method of dealing with noise is the use of correlation coefficients. 

Rather than looking at a signal by its discrete points, correlation coefficients allow for the 

observation of changes in a signal or between signals over time. An example of an 

autocorrelation coefficient  XXR t  that is used in the analysis of the fast dynamics data is 

shown in the equation below. 

  
         

         

1

2 2

1 1

1 1

1 1

n

i i

i
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n n

i i

i i

X t X t X t X t

R t

X t X t X t X t



 

   



   



 

 (3.6) 

In the previous equation,  iX t  is a data point collected at time t  and n  is the number of 

data points collected at this time.  1iX t   is a data point collected from the same sensor 

signal at the previous time step 1t  . The purpose of the autocorrelation coefficient is to 
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determine how well the data points correlate between these two time steps. Further 

explanation of this equation is provided in later sections. Use of the autocorrelation 

coefficient method is particularly useful for capturing the system frequencies and 

reducing the effects of the noise for the output data signals obtained from the dynamic 

pressure sensors.  
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CHAPTER 4 DEVELOPMENT OF SLOW DYNAMICS 

MODEL 

4.1 Slow Dynamics Model Development Method 

In this section, a method for developing a slow dynamics model for an axial 

compressor system through the use of Bayesian signal filtering and system identification 

is proposed. This method also attempts to use an optimization method to optimize the 

filter parameters to produce a model to better fit or correlate to the filtered data obtained 

from the raw test data measurements. Figure 4.1 demonstrates in flow chart form the 

process that can be undertaken to identify a model through system identification as well 

as to optimize the filter parameters. 
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Figure 4.1: Flow Chart of Optimization Method for Data Filtering and System Identification  
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The first step in the process is to obtain the raw test data from the experimental 

compressor setup at the IET. Measurements are taken for the axial flow velocity and the 

change in pressure from inlet atmospheric pressure to plenum pressure and can 

subsequently be used to calculate the flow coefficient   and the pressure rise coefficient 

 , respectively. At this point a frequency amplitude spectrum analysis is conducted to 

observe the frequency modes occurring in the non-filtered data. The next step is to reduce 

noise in the data in order to get a better picture of how the actual system dynamics 

behave. A Bayesian filter is chosen for this purpose. The Bayesian filter is modified using 

two parameters designated as   and  . These filter parameters have a physical 

meaning, where   represents the diffusion rate and   is a measure of the probability of 

sudden jumps in the data. These two parameters are optimized using a particle swarm 

optimization (PSO) method, which is discussed below. See Sanger [55] for a detailed 

description of how the Bayesian filter is used. 

After the Bayesian filter is applied to the data, another frequency amplitude 

spectrum analysis is carried out to determine the effect on the noise frequencies that are 

filtered. At this point, further data conditioning may be applied. This includes the use of 

low pass filters to eliminate high-frequency data noise, notch filters to eliminate specified 

frequencies that do not add to the dynamic model, etc. Other filter types or methods of 

data conditioning may be applied at this point as necessary. An additional frequency 

amplitude spectrum analysis can be carried out at this point to observe the effects of the 

additional data conditioning past the standard Bayesian filtering. After data conditioning, 

the next step is to use system identification to develop a dynamic model for the 

conditioned compressor data.  

The system identification consists of applying a variety of models including 

transfer function, state-space, autoregressive with exogenous (ARX), autoregressive-

moving-average with exogenous (ARMAX), etc. The continuous time transfer function 

model tends to have the best goodness of fit for the data of the model types that are 

attempted. For the system identification, the filtered and conditioned flow coefficient is 

taken as the input and the filtered and conditioned pressure rise coefficient is taken as the 

output. After a model is developed, a comparison between the measured output data and 

the output data obtained using the model simulation is conducted. This comparison can 
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be performed one of two ways, either a goodness of fit comparison or a linear correlation. 

The goodness of fit comparison is calculated as a percentage using the equation: 

 1 100%
y y

Fit
y y

 
   
 
 

 (4.1) 

where y  is the measured output, y  is the simulated model output, and y  is the average of 

the measured output.  designates the Euclidean norm of the argument. The alternate 

method of comparing the measured and model simulated output is to calculate the linear 

correlation between the two data sets. The linear correlation equation used to compare the 

data sets is equal to: 

  
  

,
y y

y y

E y y
corr y y

 

 

  
   (4.2) 

where 
y  and 

y
  are the expected values of   and  , respectively. The variables 

y  

and 
y

  represent the standard deviations of the data sets y  and y , respectively. Lastly, 

 E  is the expectation or first moment of the argument within the brackets. The 

goodness of fit comparison or linear correlation is used to create the cost function that is 

to be minimized. For these comparisons, the system identification output is the pressure 

rise coefficient  , which is substituted into these equations in place of the output 

variable y . 

The cost function is minimized using a particle swarm optimization (PSO) 

algorithm. The details of the particle swarm algorithm are outlined by Chen et al. [56]. 

The PSO algorithm is used specifically for optimizing the   and   parameters of the 

Bayesian filter. However, PSO can also be used for simultaneously optimizing certain 

characteristics of the model obtained from system identification. For instance, PSO can 

be used to determine the optimal number of zeros and poles to be used in a model transfer 

function. Each iteration of the PSO algorithm produces a new set of optimized 

parameters, which are fed back to the Bayesian filter and are subsequently used to filter 

the data to be used in the identification of a new model. The new simulated model is then 
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compared to the measured data and new optimal parameters are obtained from the PSO, 

thus completing the cycle of the optimization method shown in Figure 4.1.  
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4.2 Bayesian Filtering of Measured Data Signal 

The slow dynamics signal data collected from the compressor experiments has a 

significant amount of background noise in the signal. Consequently, this noise has to be 

filtered out of the signal before a useful model can be developed. A type of filter, known 

as a Bayesian filter, is used to eliminate a large portion of the background noise in the 

data sets for this analysis. The method of Bayesian filtering was developed by Sanger 

[55] primarily for use in the filtration of electromyogram (EMG) signals for biomedical 

engineering applications. However, the filter has a wide range of applicability and is 

useful specifically for signal data with amplitude-modulated zero-mean Gaussian noise. 

The pressure and flow transducer signals are believed to contain this type of noise, hence 

the Bayesian filtration method is chosen. A brief explanation of the method for Bayesian 

filtering, based on the work by Sanger [55], is described below.  

The relation between the measured pressure rise coefficient signal and the filtered 

signal can be described by the conditional probability density function (PDF),  |P x . 

In this PDF, x  is the driving signal of the pressure rise coefficient, which cannot be 

directly measured, and   is the measured pressure rise coefficient signal with noise. 

Assuming the noise in the signal is a result of random events in the signal, the average 

amplitude in a small time window is proportional to the number of these events during 

that time period [55]. In the following equation, n  represents the number of these random 

events. The number of these events can be modeled approximately as a Poisson process 

for the PDF. 

    | !n xP x x e n   (4.3) 

By empirically observing the behavior of the pressure rise coefficient data, it is believed 

that the signal noise can be described as amplitude modulated zero-mean Gaussian noise. 

For values of   greater than zero, the PDF can be written as shown in Equation (4.4).  

  
 2 22 2| 2 2

x
P x e x


 


   (4.4) 

For the case of   and  , the data is greater than zero for all values prior to filtering. 

Therefore the mean of the data can be subtracted after the filter is applied. When used 

with an EMG signal, the signal data must first be rectified and its mean must be 



50 
 

subtracted prior to filtering. The absolute value is then taken to rectify the signal and 

eliminate any values less than zero. However, for   and  , the signal does not need to 

be rectified because the signal is already greater than zero prior to filtering. 

Consequently, the mean should be subtracted after the Bayesian filter is applied.  

Based on further signal observation, a better approximation of the PDF is given 

by the Laplacian density function. 

    
| 2

x
P x e x





  (4.5) 

Similarly, for values of   greater than zero, the Laplacian density equation is of the 

following form. 

    
|

x
P x e x





  (4.6) 

If the pressure rise coefficient is given by  t  at a given time t , then the PDF given by 

   |P t x t    specifies the likelihood of each possible value of  x t  given the 

corresponding measurement. The posterior density is then given by Bayes’ theorem 

applied to the signal. 

            | |P x t t P t x t P x t P t                   (4.7) 

In this equation,  P x t    is the PDF for  x t  immediately before the value of  t  is 

measured. The prior  P x t    is generally dependent on the entire past history of the 

 t  measurements. An estimate for  P x t    can be obtained by using a recursive 

discrete time measurement algorithm. This recursive algorithm is obtained from Bayes’ 

theorem and is shown in Equation (4.8) below, where C  is a constant that allows the 

PDF to integrate to one.  

 
     

         

| , 1 ,

| 1 , 2 ,

P x t t t

P t x t P x t P t t C

 

  

   

            

 (4.8) 

In order to implement the recursive algorithm shown in Equation (4.8), the 

algorithm must first be put into a mathematical form. This can be done by numerical 

integration of the Fokker-Planck equation, which is a partial differential equation that 

describes the time evolution of the PDF. This equation is shown below in Equation (4.9). 
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        2 2, 1 , 1 / 1 , 1p x t p x t x p x t            (4.9) 

Equation (4.10) shows the mathematical form of the probability density algorithm 

derived in Sanger [55] by numerical integration.  

 
 

           

, 1

, 1 1 2 , 1 , 1 1 , 1

p x t

p x t p x t p x t p x t      

 

           
(4.10) 

Equation (4.10) involves two constant parameters,   and  . These parameters have a 

physical meaning for the filter, where   represents the diffusion rate and   is a measure 

of the probability of sudden jumps in the data. According to reference [55],   and   are 

chosen empirically. However, for this research, a particle swarm optimization algorithm 

is also used to compute the   and   parameters that produce the best goodness of fit or 

correlation for the developed model to the measured data. As a side note, these same 

equations are also applicable to the flow coefficient data when the variable   is replaced 

with the flow coefficient variable  . 

A comparison of the Bayesian filtered (BF) data to the sensor measured data for 

the pressure rise coefficient is shown in Figure 4.2 and Figure 4.3 for 5 throttle oscillation 

cycles and 1 throttle oscillation cycle, respectively. Similarly, a comparison of the BF 

data to the sensor measured data for the flow coefficient data is shown in Figure 4.5 and 

Figure 4.4 for 5 cycles and 1 cycle, respectively. For Figure 4.2 through Figure 4.4, the 

  parameter is set to 0.1 and the   parameter is set to 150. The most prominent effect 

of the filter is reducing the effect of high frequency random jumps and noise in the 

measured data. When choosing the filter parameters empirically, it is found that the   

parameter has a relatively small effect on the actual function of the filter when compared 

to the   parameter. The data for the filter comparison in the following figures has not 

yet been normalized to a maximum absolute value of one. This normalization is not 

performed in order to better show the comparison between the measured test data and the 

BF data. However, the BF data is subsequently normalized to one for the system 

identification analysis. The Matlab
TM

 [54] code that is used for the Bayesian filter 

calculations is included in Appendix A1. 
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Figure 4.2: BF Data Comparison to Measured Data for Pressure Rise Coefficient ( ) for 5 Cycles 
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Figure 4.3: BF Data Comparison to Measured Data for Pressure Rise Coefficient ( ) for 1 Cycle 
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Figure 4.5: BF Data Comparison to Measured Data for Flow Coefficient ( ) for 5 Cycles  
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Figure 4.4: BF Data Comparison to Measured Data for Flow Coefficient ( ) for 1 Cycle  
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4.3 Particle Swarm Optimization for Filter Optimization 

Particle swarm optimization (PSO) is used to optimize the filter and model 

parameters in order to best fit or correlate the simulated model to the filtered data. 

Particle swarm algorithms were originally inspired for use as mathematical operators by 

the social behaviors of bird flocks and fish schools [56]. This section provides some 

background information on the dynamics of particle swarm optimization and how this 

optimization method is applied to the compressor model. The explanation in this section 

is primarily based on information from Chen et al.  [56].  

The first step of the PSO is to input the parameters to be optimized. The number 

of input parameters determines the dimension of the search space. For example, two input 

parameters creates a search space with two dimensions. A minimum value bound as well 

as a maximum value bound must be specified for each of these parameters. The minimum 

and maximum value bounds correspond to the bound dimensions of the search space.   

The positions of the particles must then be initialized. Before the first iteration, 

this is done randomly using the Matlab
TM

 [54] “rand” command to create uniformly 

distributed random initial positions for the particles. Note that these random values are 

uniformly distributed between the minimum and maximum bounds specified for each 

parameter. Once the particles begin to change positions, the particles may exceed the 

specified bounds. If the particle exceeds the maximum bound of the parameter then the 

position is set to the maximum value bound. Similarly, if the initial position of a particle 

is less than the minimum value bound, the particle position is set to the minimum value 

bound.  

The next step after particle position initialization is to substitute the positions of 

the particles into the cost or fitness function. The cost or fitness function is a function that 

contains a certain equation or series of calculations that produces a single output. The 

primary goal of the particle swarm optimization algorithm is to minimize the output of 

this cost or fitness function and produce the parameter values that create this minimum 

output. The cost or fitness function is then iteratively evaluated at each of the particle 

positions. If the new position of the particle minimizes the cost function more than the 

previous particle position, then the particle assumes the new position.  
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In the following equations, the variable t  is time, the subscript i  is the component 

of particle dimension, and the superscript j  is the particle index. For instance,  j

ix t  is 

the i  position component of particle j  at time t . In order for the particle to reach a new 

position at each iteration, each particle is given a velocity based on the following 

equation of motion. 

 
 

           , ,

1 21 1 1 1 1

j

i

j j lbest j j gbest j

i i i i i

V t

V t c x t x t c x t x t



        
 (4.11) 

Once again, the variable t  is time, the subscript i  is the component of particle dimension, 

and the superscript j  is the particle index.  j

iV t  and  1j

iV t   are the i  component of 

the velocity of particle j , at times t  and 1t  , respectively. The superscript lbest  denotes 

the local best for the iteration and gbest  denotes the global best value. Therefore, 

 , 1j lbest

ix t   and  , 1j gbest

ix t   represent the particle position of the local best and the 

global best at time 1t  , respectively. Randomly specified values, designated by 1c  and 

2c , determine how much the local best and global best component positions affect the 

particle velocity  j

iV t  relative to the velocity from the previous iteration  1j

iV t  . 1c  

and 2c  are chosen randomly using either a uniform distribution or normal distribution.  

Equation (4.11) is used to update the velocity of each particle at each iteration at 

time t  based on position and velocity values from the previous time step iteration or time 

1t  . The position at time t  is then calculated by substituting the velocity  j

iV t  from 

Equation (4.11) into the position equation shown below. 

      1j j j

i i ix t x t V t t     (4.12) 

In this equation, t  is the increment time between each iteration. For simplicity, t  is 

set equal to one. For ease of comparison, the equations of motion listed in Equations 

(4.11) and (4.12) can be rewritten together in matrix form as shown below.  

 
 
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i i i
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i i i

c c c cV t V t x t

c c c cx t x t x t

                
         

                
 (4.13) 
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Figure 4.6 [56] shows a graphical depiction of how a single particle would move in a two 

dimensional search space from the previous position  1j

ix t   to the updated position 

 j

ix t . 

 

 

 

 

 

 

 

 

 

[56] 

 

As depicted in Figure 4.6, the updated position and velocity of the particle is influenced 

simultaneously by the previous particle velocity  1j

iV t  , the previous particle position 

 1j

ix t  , as well as the local best and global best previous positions.  

To make the algorithm more efficient, the particles must be prevented from 

leaving the search space too often. This is done by setting a constraint on the maximum 

and minimum velocities of the particles. With a maximum velocity constraint designated 

by maxV , a particle with a velocity magnitude that exceeds this maximum velocity 

constraint has its velocity readjusted to be equal to maxV . In other words, if   max

j

iV t V , 

then the velocity of particle at the position  j

ix t  is set to maxV . This prevents the 

particles from “exploding” outwards and creates a more efficient algorithm with the 

particles spreading out more evenly within the search space.  

For the particle swarm optimization, a specific swarm size as well as a specific 

number of iterations must be chosen. According to Chen et al. [56], for the search space 

dimensions and functions used, the “optimal” swarm size was found to be at 

approximately 40 particles. The “optimal” swarm size may vary depending on the 

Figure 4.6: PSO Particle Movement from Previous Position to Updated Position 
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dimensions of search space. However, a swarm size of 40 particles is deemed a 

reasonable size for these optimization calculations as well. The number of iterations is set 

to 100 which appeared to be a suitable number of iterations to produce the optimized 

parameters. The Matlab
TM

 [54] PSO code that is used is shown in Appendix A2 with a 

cost function code for transfer function filter optimization in A3 and a cost function code 

for ARX parameter and filter optimization in A4. 
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4.4 Slow Dynamics System Identification 

The system identification toolbox of Matlab
TM

 [54] is used to perform the system 

identification analysis for the slow dynamics data. Several model structure types are 

implemented to determine which model structure has the best goodness of fit for the data. 

For the system identification analysis, the input is the filtered flow coefficient data and 

the output is the filtered pressure rise coefficient. Through the use of the system 

identification toolbox, the best model structure is determined to be a continuous time 

transfer function model. Equation (4.14) shows the form of the transfer function relative 

to the input and output in the complex frequency domain. 

 
 

 
 

s
G s

s




  (4.14) 

In this equation,  s  is the flow coefficient or input in the frequency domain,  s  is 

the pressure rise coefficient or output in the frequency domain, and  G s  represents the 

system identified transfer function model that relates the input and output.  

Of the transfer functions that are attempted to be fit to the data, it is determined 

through the use of trial and error that a transfer function with three zeros and four poles 

would produce a model structure that would best fit the data and produce the highest 

goodness of fit. The form of this transfer function model is: 

  
3 2

3 2 1 0

4 3 2

3 2 1 0

b s b s b s b
G s

s a s a s a s a

  


   
 (4.15) 

where 0a , 1a , 2a , and 3a  represent the denominator coefficients and 0b , 1b , 2b , and 3b  

represent the numerator polynomial coefficients. These coefficients are determined 

iteratively through system identification to optimize the goodness of fitness of the 

transfer function model to the data. The transfer function of Equation (4.15) can be 

factored into a form where the zeros and pole values can be observed and the frequency 

domain behavior can be more clearly observed. The factored form of Equation (4.15) is 

shown below. 

  
   

    
3 1 2 3

1 2 3 4

b s z s z s z
G s

s p s p s p s p

  


   
 (4.16) 
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A thorough analysis of pole behavior, stability, and other frequency domain analyses can 

be carried out on the transfer function model using this form of the equation. 

A system identification analysis is performed in Matlab
TM

 [54] in order to develop 

a transfer function model for the slow dynamics. The data used in this analysis is first 

passed through a Bayesian filter with   equal to 0.1 and   equal to 150. The sensor 

sampling frequency for the test to obtain this data is set at 1000 Hz. The compressor 

throttle ring is oscillated at a rate of approximately 1.53 Hz for approximately 60 seconds 

at flow coefficient   set points of 0.60, 0.58, 0.56, 0.54, 0.52, and 0.51. Figure 4.7 

through Figure 4.11 show the comparison of the BF output data or BF pressure rise 

coefficient (black) data to the transfer function model data (blue) for each of the set 

points. These plots show the comparison for approximately 32 seconds of the throttle 

oscillation. Furthermore, Figure 4.14 through Figure 4.18 show this same comparison for 

approximately 5 throttle oscillation cycles between the time 8.76 seconds to 12 seconds 

after the throttle begins oscillation at the   set point. The BF pressure rise coefficient 

data as well as the BF flow coefficient data are both normalized to have a maximum 

absolute value of one after being filtered. Lastly, Table 4.1 shows the goodness of fit 

percentage values for the transfer function models that are developed at each flow 

coefficient set point.  

 
  Table 4.1: Transfer Function Model Goodness of Fit at Flow Coefficient Set Points 

Flow Coefficient ( ) Set Point Goodness of Fit: % 

0.60 73.38 

0.58 69.77 

0.56 76.57 

0.54 78.81 

0.52 74.89 

0.51 78.67 
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Figure 4.7: Transfer Function Model Comparison to the Measured Data, = 0.60 
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Figure 4.8: Transfer Function Model Comparison to the Measured Data, = 0.58 
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Figure 4.10: Transfer Function Model Comparison to the Measured Data, = 0.56 
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Figure 4.9: Transfer Function Model Comparison to the Measured Data, = 0.54 
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Figure 4.12: Transfer Function Model Comparison to the Measured Data, = 0.52 
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Figure 4.11: Transfer Function Model Comparison to the Measured Data, = 0.51  

5 10 15 20 25 30
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Time [sec]

P
re

s
s
u
re

 R
is

e
 C

o
e
ff

ic
ie

n
t 

( 
)

Transfer Function Model Comparison for  = 0.51

 

 

BF Measured Data

Transfer Function Model



63 
 

  

Figure 4.14: Transfer Function Model Comparison to the Measured Data, = 0.60 for 5 Cycles 
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Figure 4.13: Transfer Function Model Comparison to the Measured Data, = 0.58 for 5 Cycles 
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Figure 4.15: Transfer Function Model Comparison to the Measured Data, = 0.56 for 5 Cycles  
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Figure 4.16: Transfer Function Model Comparison to the Measured Data, = 0.54 for 5 Cycles  
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Figure 4.17: Transfer Function Model Comparison to the Measured Data, = 0.52 for 5 Cycles 
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Figure 4.18: Transfer Function Model Comparison to the Measured Data, = 0.51 for 5 Cycles 
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4.5 Amplitude Spectrums and Bode Plots for Slow Dynamics SI Models  

The section discusses the effect of signal conditioning and filtering as well as 

system identification on the frequency modes of pressure rise coefficient data and flow 

coefficient data. A frequency amplitude spectrum plot is created at each step of signal 

conditioning. An amplitude spectrum plot is created for the data at each of the following 

flow coefficient set points: 0.60, 0.58, 0.56, 0.54, 0.52, and 0.51. Additionally, Bode plots 

are included for the transfer function models at the same flow coefficients. The data in 

this section is obtained using a 1000 Hz sampling frequency and a flow coefficient that is 

perturbed by oscillating the compressor throttle ring at approximately 1.53 Hz. The 

frequency amplitude spectrums for the measured pressure rise coefficient   data and the 

measured flow coefficient   data are shown in Figure 4.19 and Figure 4.20, respectively.  

In Figure 4.19 and Figure 4.20, a distinct frequency peak can be observed at the 

throttle oscillation frequency of 1.53 Hz. Another frequency peak occurs at 

approximately 40.94 Hz due to the rotor shaft rotation. The rotor shaft rotates at 2400 

rpm meaning that the rotor rotates at a frequency speed of approximately 40 Hz. This 40 

Hz frequency is known as the blade passing frequency (BPF). Multiples of the BPF, 

occurring at around 81.9 Hz, 122.8 Hz, 163.8 Hz, etc., can also be observed in this data. 

Additional frequencies caused either by noise in the data or the natural compressor 

system dynamics also affect the measured test data signal for the pressure rise coefficient 

and flow coefficient and should appear in the amplitude spectrum.  
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Figure 4.19: Frequency Amplitude Spectrum for Measured Pressure Rise Coefficient Data 
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Figure 4.20: Frequency Amplitude Spectrum for Measured Flow Coefficient Data 
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  The next step after acquiring the measured data is to filter the data to eliminate the 

noise that occurs in the measured signals. The Bayesian filter that is applied to the data 

has parameter values of   equal to 0.1 and   equal to 150. These values are chosen 

empirically by testing out different parameters until a data signal with visibly less high 

frequency noise is obtained. Figure 4.21 and Figure 4.22 show the frequency amplitude 

spectrums for the BF pressure rise coefficient and BF flow coefficient, respectively. The 

BF data shows a clear decrease in the amplitude of some of the high frequency noise 

when compared with the raw measured data in Figure 4.19 and Figure 4.20. 
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Figure 4.21: Frequency Amplitude Spectrum for the Bayesian Filtered Pressure Rise Coefficient Data 
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The BF data with parameter values of   equal to 0.1 and   equal to 150 is then 

used to create transfer function models at each of the flow coefficient set points. For these 

transfer functions, the flow coefficient is used as the input and the pressure rise 

coefficient is used as the output. The system identification to determine these transfer 

functions is conducted using the system identification toolbox in Matlab
TM

 [54]. As 

mentioned before, the sampling frequency of this data is 1000 Hz and is perturbed by a 

throttle oscillation of 1.53 Hz. Figure 4.23 shows the magnitude Bode plots for the 

transfer function models obtained at each of the flow coefficient set points.  
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Figure 4.22: Frequency Amplitude Spectrum for the Bayesian Filtered Flow Coefficient Data 
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The natural frequency of the compressor system is believed to be approximately 

16 to 17 Hz. As seen in the magnitude Bode plots of Figure 4.23, there does not appear to 

be a significant peak at this frequency. Based on these Bode plots, it is concluded that the 

transfer function models for the data are insufficient for producing a useful model of the 

compressor dynamics because the natural frequency of the system is not excited. The 

throttle ring in the IET experimental setup is only able to be actuated at 1.53 Hz. Thus, it 

is necessary to create a throttle capable of being actuated at a frequency above 16 to 17 

Hz in order to excite the natural frequency as well as higher frequency modes of the 

compressor system.  
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Figure 4.23: Magnitude Bode Plots for the Model Transfer Functions obtained from the BF Data 
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CHAPTER 5 DEVELOPMENT OF FAST DYNAMICS 

MODEL 

5.1 Dynamic Pressure Sensors and Air Injection  

The research of Li et al. [51] provides a basis for which dynamic pressure sensors 

are the best suited for correlation coefficient calculations. The research in this document 

uses the same dynamic pressure sensor setup as was used by Li and his colleagues. An 

explanation of why specific sensors are chosen is described in the following paragraphs. 

The dynamic pressure sensors as they are positioned in the compressor casing relative to 

the rotor blades is shown in Figure 5.1. A photograph of these pressure sensors is 

previously shown in Figure 2.9. The exact axial distances of the pressure sensors relative 

to the leading edge of the blade are presented in Table 5.1 in units of millimeters (mm) as 

well as a percentage of the axial rotor length. Negative values in Table 5.1 indicate a 

distance axially ahead of the leading edge of the rotor blade. 

 

 

 

 

 

 

 

 

   Table 5.1: Dynamic Pressure Sensor Location Distances 

Sensor Number 
Axial Distance from Leading 

Edge of Rotor Blade (mm) 

Axial Distance from Leading Edge of 

Rotor Blade (% of Axial Rotor Length)  

Sensor CH1 (Leading) -5.33 -23.71 

Sensor CH2 -1.79 -7.96 

Sensor CH3 1.14 5.07 

Sensor CH4 4.295 19.10 

Sensor CH5 7.08 31.49 

Sensor CH6 10.99 48.89 

Sensor CH7 13.705 60.96 

Sensor CH8 17.09 76.02 

Sensor CH9 (Trailing) 19.76 87.90 

 

 

Figure 5.1: Dynamic Pressure Sensor Locations Relative to Rotor Blades 
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When modeling the compressor dynamics, it is important to ensure that the 

natural frequency of the compressor system is included in the model. For the axial 

compressor at IET, the natural frequency lies somewhere in the frequency band range of 

13 to 19 Hz. The dynamic pressure sensors in which the natural frequency is at its highest 

magnitude is consequently the best suited for collecting data for model development and 

system identification. The power spectral density (PSD) plot for sensors CH1 through 

CH10 for a point near stall is shown in Figure 5.2 [51]. 

 

 

 

 

 

 

 

 

 

 

 

 

[51] 

 

In Figure 5.2, the frequency is normalized to the blade passing frequency (BPF). 

The compressor natural frequency, when normalized to the BPF, is in the vicinity of 0.4. 

There is a sharp peak at 1 for all the sensors, which is of course the BPF normalized to 

itself. As can be clearly seen from Figure 5.2, there is also a relatively high peak at the 

normalized natural frequency near 0.4 for sensors CH4, CH5, and CH6 when no air 

injection is being used. This indicates that sensors CH4, CH5, and CH6 have the highest 

magnitude for the compressor natural frequency and are consequently chosen to collect 

data for system identification.  

In order to produce a useful set of pressure data for system identification, the 

system first has to be excited through the use of an input to the system. This excitation 

Figure 5.2: Power Spectral Density for Dynamic Pressure Sensors Near Stall Point 
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input is provided by eight air injection actuators located on the casing around the rotor 

blade section. The air injection actuators are intended to be semi-randomly activated in 

order to excite a multitude of frequencies in the system. However, the air injection jets 

are actuated by a human operator rather than a pseudo-random algorithm. This semi-

random excitation creates an approximation for a pseudo-random binary input and 

appears to excite the system frequencies reasonably well. An example of how the average 

air injection dynamic pressure signal looks for a typical experiment is shown in Figure 

5.3. As can be seen in this figure, when the air injection jets are opened, there is a large 

spike in the dynamic pressure signal. This spike then drops sharply and settles down to a 

constant value before the air injection jets are closed. 

 

 

 

  

0 5 10 15 20 25 30 35 40
-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

3

3.5

Time [sec]

A
ir
 I

n
je

c
ti
o
n
 P

re
s
s
u
re

 S
ig

n
a
l 
[V

]

Air Injection Pressure Signal verus Time

Figure 5.3: Typical Air Injection Pressure Signal versus Time 
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5.2 Autocorrelation Coefficient Calculation 

The next step in the fast dynamics analysis is to calculate the autocorrelation 

coefficient of the pressure sensor signals. The autocorrelation coefficient is calculated to 

determine the repeatability between consecutive data point groups in the pressure sensor 

signals along the rotor blades and is intended to reduce the effect of noise in the signals. 

In order to do this, the usable data collected from the dynamic pressure sensors must first 

be extracted. The Hall effect sensor signal, an example of which is shown in Figure 2.11, 

is used to determine when the rotor has completed a revolution and returned to the same 

rotor position relative to the pressure sensors. Approximately 490 data points are 

collected for each individual sensor over one revolution, with the sampling frequency of 

the dynamic pressure sensors being equal to 20 kHz. However, only 30 of these data 

points are collected from the specified rotor position in one revolution. These 30 data 

point groups, which are collected at each revolution, are subsequently used in the 

autocorrelation coefficient calculation.  

The equation for calculating the autocorrelation coefficient is shown below in 

Equation (5.1).  

  
         

         

1

2 2

1 1

1 1

1 1

n

i i

i
XX

n n

i i

i i

X t X t X t X t

R t

X t X t X t X t



 

   



   



 

 (5.1) 

In this equation,  XXR t  represents the autocorrelation coefficient as a function of time t  

between two consecutive data groups at time indices of t  and 1t  , each containing n  

points. These two consecutive n  point data groups are represented by X  at a given time t  

and at the previous time index 1t  . More specifically, iX  represents the i th data point in 

each respective data group and X  represents the average values of their respective data 

groups. For this analysis, the data groups at each time index contain 30 data points, which 

implies that n  is equal to 30.  

The autocorrelation coefficient is calculated for the data collected from sensors 

CH1 through CH9. Figure 5.4, Figure 5.5, and Figure 5.6 show the autocorrelation 

coefficient plots for sensors CH1 through CH9 for a flow coefficient equal to 0.56. The 

data observed in these figures is fairly typical of how the autocorrelation coefficient 
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behaves at each tested flow coefficient. Sensors CH4, CH5, and CH6 appear to have a 

mean value closest to unity, implying a high correlation, as well as the lowest variance. 

This is another reason sensors CH4, CH5, and CH6 are chosen for the system 

identification analysis. On the other hand, sensors CH8 and CH9 have the lowest mean 

autocorrelation value and the largest variance. This is most likely due to the fact that 

sensors CH8 and CH9 are located nearest to the trailing edge of the rotor blades and are 

consequently more susceptible to turbulence and vortices that may occur in the blade 

passage flow.  
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Figure 5.4: Autocorrelation Coefficient versus Time for Sensors CH1, CH2, and CH3 at = 0.56 
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Figure 5.5: Autocorrelation Coefficient versus Time for Sensors CH4, CH5, and CH6 at = 0.56 
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Figure 5.6: Autocorrelation Coefficient versus Time for Sensors CH7, CH8, and CH9 at = 0.56 
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5.3 Missing Data and Cubic Spline Interpolation 

Once the autocorrelation coefficient is calculated between each of the 30 data 

point groups, there is essentially one data point at each time index t  for every 490 points 

that are collected from each pressure sensor during one revolution. This creates a large 

deficiency in the amount of actual data that is used, with approximately only 0.2 percent 

of the data actually being used. This deficit leads to the problem of missing data. In order 

to deal with the missing data problem, several approaches are attempted. An ARX model 

is used to estimate points in between the autocorrelation data points. Another approach is 

to use down sampling of the data to only make use of the data points corresponding to the 

autocorrelation coefficient points and simply ignoring the data points in between. 

However, the method for dealing with the missing data that appears to be the most 

effective for system identification involves using a simple cubic spline curve to 

interpolate the data points in between the autocorrelation data points. The Matlab
TM

 [54] 

function “spline” is used to calculate this cubic spline interpolation for the missing data.  

This new spline curve can be resampled to produce a new data set. The resampled 

data set is then used in system identification, with the measured pressure signal from the 

air injectors being the input and the autocorrelation coefficient spline curve being the 

output.  Rather than using the original sampling frequency of 20 kHz, the sampling 

frequency is reduced to 1 kHz in order to reduce the time required for system 

identification computations. Figure 5.7 summarizes the approach that is used to prepare 

the fast dynamics data for system identification. Additionally, the mean of the spline 

curve is subtracted to more effectively produce a system identified model. Figure 5.9 

shows an example of the linear interpolated autocorrelation coefficient data for  = 0.56 

at sensor CH5 to compare with the spline interpolated data shown in Figure 5.8. The 

interpolated data in these figures is taken over a two second time interval. Lastly, the 

Matlab
TM

 [54] program that is used to remove unusable data, calculate the autocorrelation 

coefficient, and create and resample the cubic spline is included in Appendix B1. 
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Figure 5.7: Approach for Preparing Fast Dynamics Data for System Identification 
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Figure 5.8: Spline Interpolated Autocorrelation Coefficient versus Time for = 0.56 at Sensor CH5 
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Figure 5.9: Linear Interpolated Autocorrelation Coefficient versus Time for = 0.56 at Sensor CH5 



79 
 

5.4 Fast Dynamics System Identification  

As in the slow dynamics system identification, the Matlab
TM

 [54] system 

identification toolbox is used to carry out the system identification analysis. The system 

identification toolbox uses a numerical algorithm to iteratively optimize the goodness of 

fit (shown in Equation (4.1)) of a specified model for an input-output data set. For the fast 

dynamics system identification, the input is the pressure sensor signal from the air 

injection actuator jet designated by the variable U . The outputs for the system 

identification are the resampled data sets from the spline curve fitted to the 

autocorrelation coefficient data points for pressure sensors CH1 to CH9. The outputs for 

the system identification are designated by the variables nY  where n  is the sensor number 

and is equal to 1,2, ,9 . As there is only one input and multiple dynamic pressure sensor 

outputs, this system can be categorized as a single input, multiple output (SIMO) type 

system. It is hoped that a single input, single output (SISO) system can eventually be 

obtained through further research. 

Several types of models are attempted to be fitted to the input and outputs. These 

models included ARX, state-space, and primarily discrete and continuous time transfer 

function models. Several pole and zero combinations are also attempted for the transfer 

function models and it is found that a three zero and four pole transfer function produced 

the best fit for the data, while also including the compressor natural frequency. A transfer 

function  nG s  is developed at each of the 9 sensors. The form of these transfer 

functions, as a function of the complex frequency domain variable s , related to the input 

and output variables is shown in Equation (5.2). 

 
 

 
 n

n

Y s
G s

U s
  (5.2) 

The transfer function equation can also be written in terms of the numerator and 

denominator polynomials as shown below in Equation (5.3).  

  
3 2

3 2 1 0

4 3 2

3 2 1 0

n n n n
n

n n n n

b s b s b s b
G s

s a s a s a s a

  


   
 (5.3) 

The numerator is made up of a third order polynomial with constant coefficients of 0nb , 

1nb , 2nb , and 3nb , and the denominator is made up of a fourth order polynomial with 



80 
 

constant coefficients of 0na , 1na , 2na , and 3na . For these constant coefficients, n  is again 

the sensor number.  

The system identification block diagram structure for the SIMO system is 

represented in Figure 5.10. Of the 9 sensor outputs, CH4, CH5, and CH6 are chosen as 

the most suitable for capturing the compressor system fast dynamics in the system 

identification due to their location between the leading edge of the rotor blade to 

approximately the mid-chord length. Figure 5.11 shows the transfer function model of the 

spline interpolated autocorrelation coefficient data for  = 0.56 at sensor CH5. In this 

figure, the spline interpolated autocorrelation coefficient data (black) is compared to the 

transfer function model data (blue). The system identification plots clearly show that the 

goodness of fit for the transfer function model data is fairly low, generally around 10 

percent or less. However, this is to be expected as the data is based on a point source 

(spatially) within a very noisy environment. Observing the characteristics, in particular 

the compressor's stall frequency, and comparing these with the extracted system models, 

it is believed that the true system dynamics are likely captured in these transfer function 

models. This is because these models appear to be able to capture the compressor natural 

frequency and also appear to show certain pole trends as the stall point is approached.  
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Figure 5.10: Block Diagram Representation of the SIMO System 
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CHAPTER 6 RESULTS AND DISCUSSION 

6.1 Slow Dynamics Analysis Results 

6.1.1 Pole Behavior of Slow Dynamics Transfer Function Models 

In addition to Bode plot behavior, the pole locations of the slow dynamics transfer 

function models are also analyzed. Table 6.1 shows the four poles and three zeros that are 

obtained for each flow coefficient set point. The natural frequencies nf  of the transfer 

function model are also calculated from the magnitude of the poles p . The following 

equation shows the natural frequency calculation in units of Hz for poles with real and 

imaginary parts. 

    
2 21

2 2

n
nf real p imag p



 
    (6.1) 

In this equation, real and imag designate the real and imaginary portions of a pole, 

respectively. n  is the natural frequency in units of radians per second.  

 Further inspection of the pole and zero locations shows some interesting 

behavior. All poles for the transfer function models are in the left-half of the complex s-

plane. This implies that all models are stable. On the other hand, some zeros have a 

positive real part indicating that these zeros are in the right-half of the complex s-plane. 

All of the transfer function models have at least one pole in the left-half plane meaning 

that these models have zeros in both halves of the complex s-plane. Systems with zeros 

on both halves of the complex s-plane are called mixed-phase systems and can still be 

stable and causal. If a system has zeros only in the right-half plane, this is indicative of a 

non-minimum phase system which may lead to complications when developing a control 

system. However, this does not appear to be the case for the models that are developed.  
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       Table 6.1: Slow Dynamics Transfer Function Model Data 

Flow Coefficient Poles Zeros Natural Frequency (Hz) 

0.60 

  -93.14 +103.90i -59.7136 + 0.0000i 22.208 

  -93.14 - 103.90i   -3.9675 + 4.9705i 22.208 

  -1.05 + 8.81i   -3.9675 - 4.9705i 1.412 

  -1.05 - 8.81i - 1.412 

0.58 

-151.31 + 0.0000i  -2.6630 + 2.1010i 24.081* 

  -0.90 + 0.0000i   -2.6630 - 2.1010i 0.142* 

  -1.27 + 7.61i   -0.9387 + 0.0000i 1.228 

  -1.27 - 7.61i - 1.228 

0.56 

-98.7756 + 0.0000i  0.2180 + 3.3594i 15.721* 

  -0.0000 + 0.0000i    0.2180 - 3.3594i 0.000* 

  -0.4920 + 4.6978i   -0.0159 + 0.0000i 0.752 

  -0.4920 - 4.6978i - 0.752 

0.54 

-70.0642 +55.7367i -31.9806 14.249 

 -70.0642 -55.7367i -8.5732 14.249 

  -1.4062 + 7.1566i 0.1784 1.161 

  -1.4062 - 7.1566i - 1.161 

0.52 

  -99.12 +165.04i -277.8443 30.640 

  -99.12 - 165.04i -3.7397 30.640 

  -1.01 + 6.53i 0.627 1.052 

  -1.01 - 6.53i - 1.052 

0.51 

 -129.62 + 0.0000i  0.5255 + 2.9100i 20.629* 

  -0.69 + 0.0000i    0.5255 - 2.9100i 0.110* 

  -0.57 + 4.71i   -2.2965 + 0.0000i 0.755 

  -0.57 - 4.71i - 0.755 

* The natural frequency of a pole on the real axis is damped out 

 

In the pole location analysis, it is hoped that the transfer function model poles 

show some sort of trend as the flow coefficient approaches the stall point. Conversely, the 

actual pole behavior that is observed appeared to be fairly unpredictable and erratic in 

nature. Henceforth, the four poles are referred to as pole 1, pole 2, pole 3, and pole 4, 

where pole 3 and pole 4 are the low magnitude poles that are symmetric with each other 

across the horizontal real axis. Pole 1 and pole 2 are symmetric about the real axis for 

flow coefficient set points of 0.60, 0.54, and 0.52. For set points of 0.58, 0.56, and 0.51, 

pole 2 moves along the real axis in the vicinity of the imaginary axis and near instability. 

See Figure 6.1 for a plot of the pole behavior for pole 1 and pole 2. Pole 3 and pole 4 are 

symmetric about the real axis, but appear to oscillate erratically as the flow coefficient set 

point approaches stall. Figure 6.2  demonstrates the behavior for pole 3 and pole 4.  
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Figure 6.1: Pole Behavior of Poles 1 and 2 for Slow Dynamics Model 
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Figure 6.2: Pole Behavior of Poles 3 and 4 for Slow Dynamics Model 
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The erratic pole location trends in Figure 6.1 and Figure 6.2 are most likely 

caused by noise in the data as well as uncertainty of the actual measurements. In order to 

better understand this behavior, a pole variation investigation is conducted. This pole 

variation investigation attempts to create new models for the data and analyze the 

covariance estimate of the pole parameters of these models in hopes of quantifying error 

in the measurement of the data signals. The following section explains the steps taken in 

order to characterize the uncertainty in the experimental measurements and better 

understand the pole variation.   
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6.1.2 Pole Variation Investigation 

For the pole variation investigation, a new series of experiments are conducted 

using the axial compressor setup at the IET. Four flow coefficient set points are selected 

at 0.58, 0.55, 0.52, and 0.495. Seven throttle oscillation experiments M  are then 

conducted at each of the four flow coefficient set points. These experiments are each 

truncated to have an equal number of data points set to a value of L . The goal of this pole 

variation analysis is to develop M  autoregressive exogenous (ARX) models for each 

flow coefficient set point and compare the model parameter sets   of these ARX models. 

The details of this investigation are explained in the following paragraphs.  

Rather than looking at a realized (state-space or transfer function) system 

dynamics variation such as  G j , it is easier to investigate the variation of the 

deterministically obtained parameter coefficient matrix and the resulting pole variations. 

The proposed approach is outlined in Figure 6.3. 

 

 

 

 

 

 

The ARX model that is used for the pole variation investigation is of the following form. 

        
1 1

n n

p p

n i n i n n

i i

y k a y k i b u k i e k
 

       (6.2) 

The assumption is made that the error follows a Gaussian distribution,  ne k ~  20,N  , 

and    
 2  for 

0          for 

n

n m

n m
E e k e k

n m

  


 
     



, where n  is the experiment number. 

From this, it follows that the model parameters are a vector containing the ARX model 

coefficients.  

 1 1 2 2
ˆ

n n n n n n

T

n p pa b a b a b      (6.3) 

Use one flow coefficient 

operating point, with no 

variation in the 

environment. 

Collect data for set of M 

experiments with equal 

number of data points L. 

Create M-sets of from 

ARX models. 

Consequently, the estimate 

is a random variable. 

Figure 6.3: Approach for Pole Variation Investigation using Model Parameters of ARX Model 
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The model parameters are also assumed to follow a Gaussian distribution, ˆ
n ~  0 ,N   , 

where   is the covariance and 0  is the mean of the new random variable vector ˆ
n . 

Also, ˆ
n  and ne  are mutually independent n . 

The next step of the pole variation investigation is to conduct the M experiments, 

each collecting the same number of data sets containing L points. M ARX models can 

then be extracted from the M experiments. In order to keep the variation based only on 

the actual data scatter from the dynamics and noise, the order must be the same for all of 

the extracted ARX models. The most effective method of determining the model order is 

to use some type of statistical criteria to measure the relative quality of a specific model 

order. For this investigation, the Akaike Information Criterion (AIC) is used to determine 

the model order p, which is then set as a constant for all M models. The minimum AIC of 

an ARX model with model order p is used to determine the most statistically suitable 

model order. 

   minp AIC ARX k k     (6.4) 

The Matlab
TM

 [54] command “aic” is used to calculate the AIC for each of the ARX 

models.  

Once the model order p is determined, we set this value constant and apply the 

value to all M models. The average least-squares estimate 
0̂  of the model parameters 

can then be calculated as shown below. 

 0

1

1ˆ ˆ
M

LS

n

nM
 



   (6.5) 

In the previous equation, ˆ LS

n  represents the least-squares estimate of the nth 

model. The average least-squares estimate can then be used in the calculation of the 

empirical unbiased covariance estimate. The equation for the empirical unbiased 

covariance estimate is shown in Equation (6.6).  

   0 0

1

1 ˆ ˆ ˆ ˆˆ
1

M T
E LS LS

n n

nM
   



    
  

  (6.6) 
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Since ˆLS  is now also a random variable vector with its own covariance ˆ LSP , the  extra 

uncertainty in Equation (6.6) can be removed (or reduced) by subtracting the average of 

the covariance of each of the ˆLS random variable vectors. 

 ˆ

1

1 ˆˆ ˆ
n

M
E LS

n

P
M 



      (6.7) 

The new empirical unbiased covariance estimate ̂  can then be plotted around each of 

the ARX model poles for each flow coefficient.  

Figure 6.4 shows the circles representing the variation at each pole for the four 

flow coefficient set points (  = 0.58, 0.55, 0.52, and 0.495) as stall is approached. More 

specifically, these circles are plotted in the complex s-plane and centered at each of the 

model poles. The radii r of these circles is equal to three times the square root of the 

unbiased covariance estimate or ˆ3 Er   , where ˆ E  is calculated from Equation (6.6). 

An additional consideration that may need to be addressed with this estimate is the very 

finite number of data sets M, due to the limited number of experiments that are run. 

Ideally, M is large, but this is not practical for running experiments at the IET. If M is 

small, it may be necessary to modify  . For future pole variation investigations, either a 

larger number of experiments need to be conducted in order to obtain more data sets or 

some type of shrinkage estimate has to be used to compensate for the small number of 

data sets.  

The results of the pole variation investigation show that the covariance estimate 

does not appear to significantly increase as stall is approached. The AIC tends to be 

minimized at larger model orders, so a model order of 10 is chosen as a means of 

producing a reasonable estimate while also not being too large. Therefore, there are 10 

poles at each flow coefficient set point to investigate. The covariance estimates for the 

poles at a flow coefficient of 0.495 appear to increase due to the fact that only four data 

sets could be collected before stall occurred. However, even this increase in variation is 

fairly minimal. A more likely cause of the random erratic behavior of the transfer 

function model poles for the slow dynamics is that the models are not capturing the 

correct frequencies that are altered as the compressor stall point is approached. The pole 
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variation investigation program that is used to perform these calculations is included in 

Appendix A5. 
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6.2 Fast Dynamics Analysis Results 

6.2.1 Pole Behavior of Fast Dynamics Transfer Function Models 

Two similar experiments are carried out for the fast dynamics analysis. The first 

experiment (designated Experiment 1) was carried out on July 8, 2014. The second 

experiment (designated Experiment 2) was performed to compare to the results of 

Experiment 1 and was carried out on December 25, 2014. Experiment 1 involved 

collecting dynamic pressure sensor data at the following flow coefficients: 0.58, 0.56, 

0.54, 0.52, and 0.51. Experiment 2 involved the collection of dynamic pressure sensor 

data at the following flow coefficients: 0.58, 0.55, 0.52, and 0.51. Stall occurred for both 

of these experiments at a flow coefficient approximately equal to 0.50. In these 

experiments, the air injection actuators are semi-randomly activated during data 

collection to excite the system. The air injection actuators in Experiment 2 are actuated at 

a higher average frequency than in Experiment 1. The higher average actuation frequency 

of Experiment 2 may lead to extra turbulence in the compressor flow and the creation of 

more significant vortices within the rotor blade passages. This turbulence may add extra 

error to the data from some sensors.  

Sensors located near the leading edge of the rotor blade to approximately mid-

chord length are found to be best suited for the fast dynamics system identification 

analysis. Namely, sensors CH4, CH5, and CH6 are used to collect pressure data for the 

autocorrelation coefficient calculation and subsequent system identification. The pole 

behavior analysis of the simple spline curve interpolation of the autocorrelation 

coefficient points and re-sampling yields some interesting results when system 

identification is applied.  As stated before, the transfer function models empirically 

chosen to be best suited for modeling the data are three zero and four pole transfer 

functions. Table 6.2, Table 6.3, and Table 6.4 show the transfer function model data for 

the system identification of the data from sensors CH4, CH5, and CH6, respectively, for 

Experiment 1. Similarly, Table 6.5, Table 6.6, and Table 6.7 show the transfer function 

model data for the system identification of the data from sensors CH4, CH5, and CH6, 

respectively, for Experiment 2.  The natural frequency in this table is calculated from the 

real and imaginary portions of the transfer function poles using Equation (6.1). 
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   Table 6.2: Fast Dynamics Transfer Function Model Data for Sensor CH4 (Experiment 1) 

Flow Coefficient Poles Zeros Natural Frequency (Hz) 

0.58 

-0.0000 +86.8311i -133.71 + 0.0000i 13.820 

  -0.0000 -86.8311i   -1.80 + 55.55i 13.820 

  -7.8998 +20.4642i   -1.80 - 55.55i 3.491 

  -7.8998 -20.4642i - 3.491 

0.56 

 -34.7345 +88.9319i  2.1037 +32.1154i 15.195 

 -34.7345 -88.9319i    2.1037 -32.1154i 15.195 

  -0.0000 +30.7684i    3.4567 + 0.0000i 4.897 

  -0.0000 -30.7684i - 4.897 

0.54 

 -0.3740 +86.5791i -5.1659 +28.3489i 13.780 

  -0.3740 -86.5791i   -5.1659 -28.3489i 13.780 

  -0.0361 +21.9828i   13.1705 + 0.0000i 3.499 

  -0.0361 -21.9828i - 3.499 

0.52 

 -76.0179 +44.0606i  -0.0315 +23.5119i 13.984 

 -76.0179 -44.0606i   -0.0315 -23.5119i 13.984 

  -0.0347 +23.5191i    6.0286 + 0.0000i 3.743 

  -0.0347 -23.5191i - 3.743 

0.51 

 -79.9413 +30.8245i  1.6096 +26.0384i 13.636 

 -79.9413 -30.8245i    1.6096 -26.0384i 13.636 

  -0.4161 +25.3275i    1.1757 + 0.0000i 4.032 

  -0.4161 -25.3275i - 4.032 
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   Table 6.3: Fast Dynamics Transfer Function Model Data for Sensor CH5 (Experiment 1) 

Flow Coefficient Poles Zeros Natural Frequency (Hz) 

0.58 

 -110.61 + 58.57i  19.8603 + 0.0000i 19.919 

  -110.61 - 58.57i   -0.1802 + 7.5664i 19.919 

  -0.18 + 7.50i   -0.1802 - 7.5664i 1.194 

  -0.18 - 7.50i - 1.194 

0.56 

-16.70 + 113.78i  0.0191 +28.1214i 18.303 

  -16.70 - 113.78i    0.0191 -28.1214i 18.303 

  -0.0000 + 26.95i    9.7887 + 0.0000i 4.289 

  -0.0000 - 26.95i - 4.289 

0.54 

 -0.3206 +86.3066i  48.5023 + 0.0000i 13.736 

  -0.3206 -86.3066i   -0.8536 +31.2561i 13.736 

  -0.0000 +31.6615i   -0.8536 -31.2561i 5.039 

  -0.0000 -31.6615i - 5.039 

0.52 

 -88.0397 +32.0824i  46.9253 + 0.0000i 14.913 

 -88.0397 -32.0824i    0.6126 +22.8844i 14.913 

  -0.0226 +23.4365i    0.6126 -22.8844i 3.730 

  -0.0226 -23.4365i - 3.730 

0.51 

-70.2878 + 0.0000i  0.2443 +25.9897i 11.187* 

 -11.3883 + 0.0000i    0.2443 -25.9897i 1.813* 

 -0.1389 +25.3343i    0.7730 + 0.0000i 4.032 

  -0.1389 -25.3343i - 4.032 

* The natural frequency of a pole on the real axis is damped out 
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   Table 6.4: Fast Dynamics Transfer Function Model Data for Sensor CH6 (Experiment 1) 

Flow Coefficient Poles Zeros Natural Frequency (Hz) 

0.58 

-88.7959 +60.8620i  -0.5506 +18.1437i 17.133 

 -88.7959 -60.8620i   -0.5506 -18.1437i 17.133 

  -0.0006 +17.4192i   10.7467 + 0.0000i 2.772 

  -0.0006 -17.4192i - 2.772 

0.56 

-92.4162 +60.8268i -0.0011 +23.3122i 17.609 

 -92.4162 -60.8268i   -0.0011 -23.3122i 17.609 

  -0.0019 +23.3145i   10.7301 + 0.0000i 3.711 

  -0.0019 -23.3145i - 3.711 

0.54 

 -65.3445 +52.5376i  -0.2362 +91.8688i 13.344 

 -65.3445 -52.5376i   -0.2362 -91.8688i 13.344 

-0.0921 +88.6676i   73.4270 + 0.0000i 14.112 

  -0.0921 -88.6676i - 14.112 

0.52 

-12.9371 +15.0633i  -7.7264 +95.9229i 3.160 

 -12.9371 -15.0633i   -7.7264 -95.9229i 3.160 

-0.0797 +87.4101i  -11.6611 + 0.0000i 13.912 

  -0.0797 -87.4101i - 13.912 

0.51 

 -58.5959 + 0.0000i 4.4825 +76.3377i 9.326* 

  -0.8703 + 0.0000i    4.4825 -76.3377i 0.139* 

 -0.3802 +81.7580i   -0.0969 + 0.0000i 13.012 

  -0.3802 -81.7580i - 13.012 

* The natural frequency of a pole on the real axis is damped out 
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Figure 6.5: Pole Behavior of Poles 1 and 2 for Sensor CH4 (Experiment 1)  
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Figure 6.6: Pole Behavior of Poles 3 and 4 for Sensor CH4 (Experiment 1) 
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Figure 6.8: Pole Behavior of Poles 1 and 2 for Sensor CH5 (Experiment 1) 
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Figure 6.7: Pole Behavior of Poles 3 and 4 for Sensor CH5 (Experiment 1) 
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Figure 6.10: Pole Behavior of Poles 1 and 2 for Sensor CH6 (Experiment 1) 
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Figure 6.9: Pole Behavior of Poles 3 and 4 for Sensor CH6 (Experiment 1) 
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   Table 6.5: Fast Dynamics Transfer Function Model Data for Sensor CH4 (Experiment 2) 

Flow Coefficient Poles Zeros Natural Frequency (Hz) 

0.58 

 -0.0000 +91.8247i -5.7593 +35.8042i 14.614 

  -0.0000 -91.8247i   -5.7593 -35.8042i 14.614 

  -0.0866 +22.8682i    4.3735 + 0.0000i 3.640 

  -0.0866 -22.8682i - 3.640 

0.55 

-50.8872 +56.1665i  102.37 + 0.0000i 12.062 

 -50.8872 -56.1665i   -3.62 + 32.80i 12.062 

  -1.0834 +32.3166i   -3.62 - 32.80i 5.146 

  -1.0834 -32.3166i - 5.146 

0.52 

  -23.57 + 103.21i   17.5915 -91.3253i 16.849 

  -23.57 - 103.21i    0.3515 + 0.0000i 16.849 

 -111.94 + 0.0000i 17.5915 +91.3253i 17.815* 

  -2.97 + 0.0000i - 0.473* 

0.51 

 -15.6778 +86.7238i  65.81 + 231.51i 14.026 

 -15.6778 -86.7238i    65.81 - 231.51i 14.026 

 -59.6922 + 0.0000i   -0.10 + 0.0000i 9.500* 

  -0.2148 + 0.0000i - 0.034* 

* The natural frequency of a pole on the real axis is damped out 

 

 
   Table 6.6: Fast Dynamics Transfer Function Model Data for Sensor CH5 (Experiment 2) 

Flow Coefficient Poles Zeros Natural Frequency (Hz) 

0.58 

 -0.0494 +86.2249i  0.6613 +85.5851i 13.723 

  -0.0494 -86.2249i    0.6613 -85.5851i 13.723 

 -24.8661 +20.0039i  -45.6292 + 0.0000i 5.079 

 -24.8661 -20.0039i - 5.079 

0.55 

 -0.0761 +82.6960i  3.2461 +82.6426i 13.161 

  -0.0761 -82.6960i    3.2461 -82.6426i 13.161 

 -77.8056 + 0.0000i    0.4314 + 0.0000i 12.383* 

  -3.0339 + 0.0000i - 0.483* 

0.52 

 -39.9046 +77.9154i 79.0283 13.932 

 -39.9046 -77.9154i -13.5749 13.932 

  -8.0218 +11.8928i -6.3414 2.283 

  -8.0218 -11.8928i - 2.283 

0.51 

-36.2845 + 0.0000i   -0.0679 + 0.0000i 5.775* 

 -0.1209 + 0.0000i - 0.019* 

-0.2171 +38.8524i -1.1366 +40.1447i 6.184 

  -0.2171 -38.8524i   -1.1366 -40.1447i 6.184 

* The natural frequency of a pole on the real axis is damped out 
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   Table 6.7: Fast Dynamics Transfer Function Model Data for Sensor CH6 (Experiment 2) 

Flow Coefficient Poles Zeros Natural Frequency (Hz) 

0.58 

 -62.5110 + 0.0000i -63.0494 + 0.0000i 9.949* 

 -35.3722 + 0.0000i    0.2770 +12.2539i 5.630* 

  -0.0000 +13.4747i    0.2770 -12.2539i 2.145 

  -0.0000 -13.4747i - 2.145 

0.55 

-0.4476 +68.6131i  6.7801 +71.1216i 10.920 

  -0.4476 -68.6131i    6.7801 -71.1216i 10.920 

 -34.3090 + 0.0000i   -0.0225 + 0.0000i 5.460* 

  -1.5807 + 0.0000i - 0.252* 

0.52 

-0.1027 +77.4728i 145.8282 12.330 

  -0.1027 -77.4728i -50.392 12.330 

  -2.3111 +12.0673i -0.1081 1.955 

  -2.3111 -12.0673i - 1.955 

0.51 

-0.5820 +66.0659i  216.21 + 0.0000i 10.515 

  -0.5820 -66.0659i   -0.18 + 23.21i 10.515 

  -0.1746 +23.2212i   -0.18 - 23.21i 3.696 

  -0.1746 -23.2212i - 3.696 

* The natural frequency of a pole on the real axis is damped out 
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Figure 6.12: Pole Behavior of Poles 1 and 2 for Sensor CH4 (Experiment 2) 
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Figure 6.11: Pole Behavior of Poles 3 and 4 for Sensor CH4 (Experiment 2) 
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Figure 6.13: Pole Behavior of Poles 1 and 2 for Sensor CH5 (Experiment 2) 
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Figure 6.14: Pole Behavior of Poles 3 and 4 for Sensor CH5 (Experiment 2) 
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Figure 6.16: Pole Behavior of Poles 3 and 4 for Sensor CH6 (Experiment 2) 



102 
 

The natural frequency band of the compressor, approximately in the range of 13 

to 19 Hz for this specific compressor, appeared to be roughly captured in the system 

identified models (transfer functions with three zeros and four poles). Additionally, the 

poles of these transfer functions appear to produce a trend as the stall point is approached. 

These trends are hypothesized to take the form of a traditional root locus with the poles 

approaching the real axis and then “splitting” along the real axis as the flow coefficient 

nears the stall point. The poles also appear to edge toward instability as one of the poles 

on the real axis moves toward the origin of the complex plane. Figure 6.17 and Figure 

6.18 demonstrate the extrapolated root locus pole behavior for sensors CH5 and CH6, 

respectively, for Experiment 1. If root locus behavior can be confirmed for some of the 

model poles, this may aid in the development of a reliable and efficient control system for 

axial compressor stall margin improvement.  

 

 
 
  

Figure 6.17: Extrapolated Root Locus Behavior of Poles at Sensor CH5 
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An interesting aspect of the fast dynamics behavior that appears to be captured in 

the model is a region of instability at and around sensors CH4 and CH5 when the 

compressor is throttled to a flow coefficient near 0.54. This instability causes a spike in 

the compressor natural frequency at and around 0.54 and then settles back down as 

throttling continues. Currently, the impetus behind this instability is unknown. Further 

research conducted into determining the flow dynamics that cause this behavior would be 

a worthwhile area of study.  

Magnitude Bode plots are also created for each of the models obtained from 

sensors CH4, CH5, and CH6 from Experiment 1.These plots clearly demonstrate some 

interesting trend behavior of the system identified models that could not as easily be 

observed in the pole trend behavior plots. For the models obtained from sensor CH5, 

shown in Figure 6.19, the spike in the natural frequency at and around a flow coefficient 

of 0.54 is obvious. This same behavior is observed for the models obtained from sensor 

CH4. Additionally, for the models obtained from sensor CH6, shown in Figure 6.20, a 

small distinct spike in the natural frequency is observed at around 0.54. As the flow 

coefficient is throttled to the stall point there is a sharp increase in the magnitude of the 

compressor natural frequency. This increase in magnitude of the natural frequency, 

captured in the models of sensor CH6, could possibly be used as a stall inception warning 

indicator.  

Figure 6.18: Extrapolated Root Locus Behavior of Poles at Sensor CH6 
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Figure 6.19: Magnitude Bode Plots for the Fast Dynamics Model Transfer Functions (CH5)  
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Figure 6.20: Magnitude Bode Plots for the Fast Dynamics Model Transfer Functions (CH6)  
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CHAPTER 7 CONCLUSIONS AND FUTURE WORK 

7.1 Summary and Conclusions 

The research presented in this thesis provides a baseline for studying the fast and 

slow dynamics of an axial flow compressor through the use of system identification. The 

development of a model to characterize the flow dynamics is necessary to advance the 

efficiency of control systems for improving the stall margin of a jet engine axial 

compressor. System identification, signal filtering, filter parameter optimization, and pole 

behavior of transfer function models are applied or analyzed in this research. 

More specifically, in the presented research, a method is demonstrated for 

optimizing the noise filter parameters for system identification of the slow dynamics. 

This filter optimization method uses a particle swarm algorithm to produce the optimal 

Bayesian filter parameters based on the goodness of fit for the system identified model. 

This optimization method is not directly used in the research presented in this document, 

but can be employed in future slow dynamics system identification.  

For the compressor slow dynamics, the transfer function models with three zeros 

and four poles are found to produce very accurate fits for the pressure rise coefficient 

data. These transfer function models are found to have a high goodness of fit in the range 

of approximately 70 to 80 percent with obvious visual correlation. However, the poles of 

these transfer functions do not appear to have an obvious trend as the compressor stall 

point is approached. This is most likely due to noise and error in the signal or the inability 

of the models to capture the frequencies that capture the dynamics of the compressor 

system.  

The fast dynamics research produces more promising results in terms of pole 

behavior of the system identified models. Using the autocorrelation coefficient data with 

cubic splines to interpolate the missing data problem, system identification is used to 

create models. The system identification uses the air injection pressure signal as the input 

and the autocorrelation coefficient of the dynamic pressure data across the rotor blades as 

the output. From this system identification, transfer function models that also use three 

zeros and four poles are found to capture the dynamic frequencies of the system, in spite 

of fairly low goodness of fit values, generally less than 10 percent.   
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The pole behavior of the fast dynamics models appeared to roughly capture the 

natural compressor frequency, approximately around 17 Hz, and produced an apparent 

trend as the compressor stall point is approached. This trend appeared to take on the 

behavior of a traditional root locus, with a conjugate pole pair approaching the real axis 

and “splitting” along the real axis as the compressor flow coefficient approaches the stall 

point. In other words, as the compressor moves closer to stall (i.e. the flow coefficient is 

reduced from 0.58 to 0.51), the poles of the identified models move towards the 

imaginary axis of the complex plane, indicating an impending instability. Lastly, the 

magnitude Bode plots obtained from the transfer function models demonstrated behavior 

indicative of stall inception as well as highlighting a not well understood spike in the 

compressor natural frequency at and around a flow coefficient of 0.54. 
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7.2 Future Work 

Future work on this project includes the use of the solenoid actuated throttle 

modules, which are currently being manufactured at the IET, to excite the slow dynamics 

of the system. These throttle modules will be able to excite the compressor system at a 

higher frequency than was previously possible with the current equipment at the IET. The 

ability to excite the system at a frequency higher than compressor natural frequency of 

approximately 17 Hz is a necessary next step in modeling the slow dynamics of the 

compressor. With data from experiments using these new throttle modules, the noise 

filter optimization that is discussed previously can be used to produce more useful system 

identified models than are developed in this research.  

Additionally, the pole behavior of the fast dynamics transfer function models is 

another area that requires further study. More experiments to confirm the pole behavior 

as a function of the flow coefficient would be useful for validation purposes. Models 

obtained from an alternate system identification program or an analytical flow model to 

compare with the models developed form this research would also be useful for further 

validation. Applying some type of filter to the autocorrelation coefficient data in order to 

reduce random noise might be beneficial for performing future system identification 

research. Overall, the application of system identification to characterize the dynamics of 

an axial flow compressor is an emerging field with many new opportunities for dynamic 

model development.   



108 
 

REFERENCES 

[1] Przybylko, S. J., 1997, "Active-Control Technologies for Aircraft Engines," AIAA 97-

2769, IAA/ASME/SAE/ASEE 33rd Joint Propulsion Conference & Exhibit. 

[2] Boyce, M. P., 2012, Gas Turbine Engineering Handbook, 4th ed., Elsevier Inc., 

Waltham, MA, Chap. 7.  

[3] Moore, F. K., and Greitzer E. M., 1986, "A Theory of Post-Stall Transients in Axial 

Compression Systems: Part I-Development of Equations," Journal of Engineering for 

Gas Turbines and Power, 108, pp. 68-76. 

[4] Paduano, J. D., Greitzer, E. M., and Epstein, A. H., 2001, "Compression System 

Stability and Active Control," Annual Review of Fluid Mechanics, 33(1), pp. 491-

517. 

[5] Chi, J. N., and Paduano, J. D., 2008, "New Concepts for Active Control of Rotating 

Stall and Surge," American Control Conference, Seattle, WA, pp. 2435-2442. 

[6] Uddin, N., and Gravdahl, J. T., 2011, "Active Compressor Surge Control Using Piston 

Actuation," ASME 2011 Dynamic Systems and Control Conference and Bath/ASME 

Symposium on Fluid Power and Motion Control Arlington, VA, pp. 69-76. 

[7] Ohta, Y., Fujita, Y., and Morita, D., 2012, "Unsteady Behavior of Surge and Rotating 

Stall in an Axial Flow Compressor," Journal of Thermal Science, 21(4), pp. 302-310. 

[8] Saxer-Felici, H. M., Saxer, A. P., Inderbitzin, A., and Gyarmathy, G., 2000, 

"Numerical and Experimental Study of Rotating Stall in an Axial Compressor 

Stage," AIAA Journal, 38(7), pp. 1132-1141. 

[9] Du, W., and Léonard, O., 2012, "Numerical Simulation of Surge in Axial 

Compressor," International Journal of Rotating Machinery, pp. 1-10. 

[10] Greitzer, E. M., 1976, "Surge and Rotating Stall in Axial Flow Compressors, Part I: 

Theoretical Compression System Model," ASME J. Eng. for Power, 98(2), pp. 190-

198. 

[11] Chen, J. P., Hathaway, M. D., and Herrick, G. P., 2008, "Prestall Behavior of a 

Transonic Axial Compressor Stage via Time-Accurate Numerical Simulation," 

ASME Journal of Turbomachinery, 130(4). 

[12] Biollo, R., and Benini, E., 2013, "Recent Advances in Transonic Axial Compressor 

Aerodynamics," Progress in Aerospace Sciences, 56, pp. 1-18. 



109 
 

[13] Iura, T., and Rannie, W. D., 1953, "Observations of Propagating Stall in Axial-Flow 

Compressor," California Institute of Technology, Pasadena, CA. 

[14] Marble, F. E., 1953, "Propagation of Stall in a Compressor Blade Row," Journal of 

the Aeronautical Sciences, 22(8), pp. 541-554. 

[15] Greitzer, E. M., 1976, "Surge and Rotating Stall in Axial Flow Compressors, Part II: 

Experimental Results and Comparison with Theory," ASME J. Eng. for Power, 

98(2), pp. 199-217. 

[16] Moore, F. K., 1984, "A Theory of Rotating Stall of Multistage Axial Compressor: 

Part I, II, and III," Journal of Engineering for Gas Turbines and Power, 106(2), pp. 

313-336. 

[17] Brons, M., 1988, "Bifurcations and Instabilities in the Greitzer Model for 

Compressor System Surge," Mathematical Engineering in Industry, 2(1), pp. 51-63. 

[18] Haynes, J. M., Hendricks, G. J., and Epstein, A. H., 1994, "Active Stabilization of 

Rotating Stall in a Three-Stage Axial Compressor," ASME Journal of 

Turbomachinery, 116, pp. 226-239. 

[19] Paduano, J. D. e. a., 1994, "Modeling for Control of Rotating Stall," Automatica, 

30(9), pp. 1357-1373. 

[20] Simon, J. S. e. a., 1993, "Evaluation of Approaches to Active Compressor Surge 

Stabilization," ASME Journal of Turbomachinery, 115, pp. 57-67. 

[21] Hendricks, G. J., Sabnis, J. S., and Feulner, M. R., 1997, "Analysis of Instability 

Inception in High-Speed Multistage Axial-Flow Compressors," ASME Journal of 

Turbomachinery, 119, pp. 714-722. 

[22] Weigl, H. J., Paduano, J. D., and Frechette, L. G., 1998, "Active Stabilization of 

Rotating Stall and Surge in a Transonic Single-Stage Axial Compressor," ASME 

Journal of Turbomachinery, 120(4), pp. 625-636. 

[23] D’Andrea, R., Behnken, R. L., and Murray, R. M., 1997, "Active Control of an Axial 

Flow Compressor via Pulsed Air Injection," ASME Journal of Turbomachinery, 119, 

pp. 742-752. 

[24] Humbert, J. S., and Krener, A. J., 1998, "Dynamics and Control of Entrained 

Solutions in Multi-Mode Moore-Greitzer Compressor Models," Int. J. Control, 71(5), 

pp. 807-821. 



110 
 

[25] Haddad, W. M. e. a., 1999, "Nonlinear Robust Disturbance Rejection Controllers for 

Rotating Stall and Surge in Axial Flow Compressors," IEEE Transactions on Control 

Systems Technology, 7(3), pp. 391-398. 

[26] Kang, W. e. a., 1999, "Bifurcation Test Functions and Surge Control for Axial Flow 

Compressors," Automatica, 35, pp. 229-239. 

[27] Bohagen, B., and Gravdahl, J. T., 2008, "Active Surge Control of Compression 

System using Drive Torque," Automatica, 44, pp. 1135-1140. 

[28] Nayfeh, M. A., and Eyad E. H., 2002, "High-Gain Feedback Control of Rotating 

Stall in Axial Flow Compressors," Automatica, 38, pp. 995-1001. 

[29] Chaturvedi, N. A., and Bhat, S. P., 2006, "Output-Feedback Semiglobal Stabilization 

of Stall Dynamics for Preventing Hysteresis and Surge in Axial-Flow Compressors," 

IEEE Transactions on Control Systems Technology, 14(2), pp. 301-307. 

[30] Sun, X., and Liu, X., 2013, "A General Theory of Flow-Instability Inception in 

Turbomachinery," American Institute of Aeronautics and Astronautics. 

[31] Tahara, N., Kurosaki, M., Ohta, Y., Outa, E., Nakakita, T., and Tsurumi, Y., 2004, 

"Early Stall Warning Technique for Axial Flow Compressors," Proc. of ASME Turbo 

Expo 2004, Power for Land, Sea, and Air, Vienna, Austria. 

[32] Chen, J. P. e. a., 2009, "High Performance Computing of Compressor Rotating Stall 

and Stall Control," Integrated Computer-Aided Engineering, 16, pp. 75-89. 

[33] Chima, R. V., 2006, "A Three-Dimensional Unsteady CFD Model of Compressor 

Stability," Proc. of ASME Turbo Expo 2006, Power for Land, Sea, and Air, 

Barcelona, Spain. 

[34] Cornelius, C. e. a., 2014, "Experimental and Computational Analysis of a Multistage 

Axial Compressor Including Stall Prediction by Steady and Transient CFD 

Methods," ASME Journal of Turbomachinery, 136. 

[35] Emmons, H. W., Pearson, C. E., and Grant, H. P., 1955, "Compressor Surge and Stall 

Propagation," Trans. ASME, 79, pp. 455-469. 

[36] McDougall, N. M., Cumpsty, N. A., and Hynes, T. P., 1990, "Stall Inception in Axial 

Compressors," ASME Journal of Turbomachinery, 112(1), pp. 116-123. 



111 
 

[37] Garnier, V. H., Epstein, A. H. and Greitzer, E. M., 1991, "Rotating Waves as a Stall 

Inception Indication in Axial Compressors," ASME Journal of Turbomachinery, 

113(2), pp. 290-302. 

[38] Tryfonidis, M., Etchevers, O., Paduano, J. D., Epstein, A. H. and Hendricks, G. J., 

1995, "Prestall Behavior of Several High-Speed Compressors," ASME Journal of 

Turbomachinery, 117(1), pp. 62-80. 

[39] Spakovszky, Z. S., 2004, "Backward Traveling Rotating Stall Waves in Centrifugal 

Compressors," ASME Journal of Turbomachinery, 126, pp. 1-12. 

[40] Day, I. J., 1993, "Stall Inception in Axial Flow Compressors," ASME Journal of 

Turbomachinery, 115(1), pp. 1-9. 

[41] Camp, T. R., and Day, I. J., 1998, "A Study of Spike and Modal Stall Phenomena in 

a Low-Speed Axial Compressor," ASME Journal of Turbomachinery, 120(3), pp. 

393-401. 

[42] Greitzer, E. M., 1981, "The Stability of Pumping Systems," ASME Journal of Fluids 

Engineering, 103, pp. 193-242. 

[43] Feulner, M. R., Hendricks, G. J., and Paduano, J. D., 1996, "Modeling for Control of 

Rotating Stall in High-Speed Multistage Axial Compressors," ASME Journal of 

Turbomachinery, 118, pp. 1-10. 

[44] Frechette, L. G., 1997, "Implications of Stability Modeling for High-Speed Axial 

Compressor Design," M.S. Thesis, Massachusetts Institute of Technology. 

[45] Khalid, S. A., Khalsa, A. S., Waitz, I. A., Tan, C. S., Greitzer, E. M., Cumpsty, N. A., 

Adamczyk, J. J., and Marble, F. E., 1999, "Endwall Blockage in Axial Compressors," 

ASME Journal of Turbomachinery, 121, pp. 499-509. 

[46] Vo, H. D., 2001, "Role of Tip Clearance Flow on Axial Compressor Stability," 

Doctor of Philosophy, Massachusetts Institute of Technology. 

[47] Lin, F., Chen, J., Nie, C., and Zhang, H., 2009, "Unsteady Tip Leakage Flow and 

Perspectives to Stall Mechanism in Axial Compressors " 2nd Asian Congress on Gas 

Turbines Tokyo, Japan. 

[48] Tahara, N., Nakajima, T., Kurosaki, M., Ohta, Y., Outa, E.,and Nishikawa, T., 2001, 

"Active Stall Control with Practicable Stall Prediction System Using Auto-

Correlation," AIAA Paper No. 2001-3623. 



112 
 

[49] Dhingra, M., Neumeier, Y., Prasad, J. V. R., Breeze-Stringfellow, A., Shin, H. W., 

and Szucs, P. N., 2007, "A Stochastic Model for a Compressor Stability Measure," 

Journal of Engineering for Gas Turbines and Power, 129, pp. 730-737. 

[50] Christensen, D., Cantin, P., Gutz, D., Szucs, P. N., Wadia, A. R., Armor, J., Dhingra, 

M., Neumeier, Y., and Prasad, J. V. R., 2008, "Development and Demonstration of a 

Stability Management System for Gas Turbine Engines," ASME Journal of 

Turbomachinery, 130. 

[51] Li, J., Lin, F., Tong, Z., Nie, C., and Chen, J., 2015, "The Dual Mechanisms and 

Implementations of Stability Enhancement with Discrete Tip Injection in Axial Flow 

Compressors," ASME Journal of Turbomachinery, 137. 

[52] Li, C., Ke, K., Zhang, J., Zhang, H., and Huang, W., 2013, "Experimental and 

Numerical Investigation of the Unsteady Tip Leakage Flow in Axial Compressor 

Cascade," Journal of Thermal Science, 22(2), pp. 103-110. 

[53] Keesman, K. J., 2011, System Identification: An Introduction, Springer, New York. 

[54] MATLAB Release 2013a, The MathWorks, Inc., Natick, Massachusetts, United 

States. 

[55] Sanger, D. T., 2007, "Bayesian Filtering of Myoelectric Signals," Journal of 

Neurophysiology, 97, pp. 1839-1845. 

[56] Chen, C. H., Bosworth, K. W., and Schoen, M. P., 2007, "Investigation of Particle 

Swarm Optimization Dynamics," Proc. of ASME International Mechanical 

Engineering Congress and Exposition, Seattle, Washington. 

 

  



113 
 

APPENDIX A – Matlab
TM

 Files for Slow Dynamics Analysis 

A1 - Bayesian Filter  
This code is a modified version of a program developed by Sanger in [55].  

function [yf1,uf1] = bayes_filt(y1,u1,Fs); 

  
%  bayes_filt.m 
% 
%  Dane Sterbentz 
%  October 11, 2014, Version 1.0 
% This code was adapted from a program created in conjunction with the 
% following research paper: 
% Sanger, D. T., 2007, "Bayesian Filtering of Myoelectric Signals," 

Journal of Neurophysiology, 97, pp. 1839-1845.  
% 

_______________________________________________________________________

__ 
%  
% Computation of Bayesian filtered data of the input (u1) and output 

(y1)  
% with a specified sampling frequency (Fs) 
% 

_______________________________________________________________________

__ 

  

    
Fs;  % Samling Frequency 
Ts = 1/Fs;  % Sampling interval 

  
% Preliminary section: load data, set constants, initialize variables 
%set parameters 
samplerate1 = Fs;  %samples per second 
noutputs1 = 50;      %output quantization levels 
ratemax1 = 1;        %rectified EMG is normalized to max value of 1 
inscale1 = 1;        %arbitrary input scaling  
alpha1 = 0.1 / samplerate1;                %sets diffusion rate 
beta1 = 300 / (noutputs1 * samplerate1);     %sets probability of 

sudden jumps 

  
%calculate rectified EMG after removing the mean, and normalize 
y1 = inscale1 * ratemax1 * y1/max(y1);       %input prescaling to use 

full output range 
u1 = inscale1 * ratemax1 * u1/max(u1);       %input prescaling to use 

full output range 

  
%initialize variables 
%   x is the latent variable (the driving rate) 
%   MAP is the output estimate 
x1 = linspace(ratemax1/noutputs1, ratemax1, noutputs1)';  %don't start 

with zero because requires n=0 exactly to match 
y_Filt1 = zeros(length(y1),1);                     %store the bayes 

estimates 
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u_Filt1 = zeros(length(u1),1);                     %store the bayes 

estimates 
g1 = [(alpha1/2) (1 - alpha1) (alpha1/2)];          %approximate 

spatial second derivative operator 

  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% 
% Following is the main section of the algorithm; steps are numbered as 

in the text 
% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  
% Bayesian filtering for output (y1): 
%1. Initialize p(x,0) = 1; 
prior1 = ones(noutputs1,1) / noutputs1;            %start with uniform 

prior 

  
for t1=1:length(y1) %iterate for each sample 

     
    %2. Forward propagate p(x,t-) Å 
    %           ?p(x-?,t-1)+(1-2?)p(x,t-1)+?p(x+?,t-1)+?+(1-?)p(x,t-1); 
    prior1 = filtfilt(g1, 1, prior1);              %drift term by 

convolving with second derivative operator 
    prior1 = beta1 + (1-beta1) * prior1;            %sets probability 

of a sudden jump 

     
    %3. Measure the rectified emg; 
    yval1 = y1(t1);                            %if this were online, 

would read a new sample here 

     
    %4. Calculate the posterior likelihood function  
    %       P(x,t) Å P(emg|x)p(x,t-); 
    measurement_model1 = 2*exp(-

(yval1).^2./(2.*(x1).^2))./(2.*pi.*x1.^2).^(1/2);   %half Gaussian 

model for P(Pres1|x) 
    posterior1 = measurement_model1 .* prior1;     %calculate posterior 

density using Bayes rule 

     
    %5. Output the signal estimate MAP(x(t)) = argmax P(x,t); 
    pp1 = min(find(posterior1 == max(posterior1)));    %find the 

maximum of the posterior density 
    if (pp1 > 1 && pp1 < length(posterior1)),          %interpolate to 

find the zero  
        dL1 = posterior1(pp1-1) - posterior1(pp1);   
        dR1 = posterior1(pp1) - posterior1(pp1+1);  
        PeakIndex1 = (pp1 - .5 - (dL1/ (dR1 - dL1)));   %index runs 

from 1 to noutputs 
    else 
        PeakIndex1 = pp1;    %if maximum occurs at an endpoint do not 

interpolate 
    end 
    y_Filt1(t1) = (ratemax1 / (noutputs1-1)) * PeakIndex1;  %convert 

index of peak value to scaled value 

     
    %6. Divide p(x,t) by a constant C so that  º p(x,t) dx = 1; 
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    posterior1 = posterior1 / sum(posterior1);        %normalize the 

density 

     

    %7. Repeat from step 2; 
    prior1 = posterior1;                          %prior for next 

iteration is posterior from this iteration 
end 

  
% Bayesian filtering for input (u1): 
%1. Initialize p(x,0) = 1; 
prior1 = ones(noutputs1,1) / noutputs1;            %start with uniform 

prior 

  
for t1=1:length(u1) %iterate for each sample 

     
    %2. Forward propagate p(x,t-) Å 
    %           ?p(x-?,t-1)+(1-2?)p(x,t-1)+?p(x+?,t-1)+?+(1-?)p(x,t-1); 
    prior1 = filtfilt(g1, 1, prior1);              %drift term by 

convolving with second derivative operator 
    prior1 = beta1 + (1-beta1) * prior1;            %sets probability 

of a sudden jump 

     
    %3. Measure the rectified emg; 
    uval1 = u1(t1);                            %if this were online, 

would read a new sample here 

     
    %4. Calculate the posterior likelihood function  
    %       P(x,t) Å P(emg|x)p(x,t-); 
    measurement_model1 = 2*exp(-

(uval1).^2./(2.*(x1).^2))./(2.*pi.*x1.^2).^(1/2);   %half Gaussian 

model for P(Flow1|x) 
    posterior1 = measurement_model1 .* prior1;     %calculate posterior 

density using Bayes rule 

     
    %5. Output the signal estimate MAP(x(t)) = argmax P(x,t); 
    pp1 = min(find(posterior1 == max(posterior1)));    %find the 

maximum of the posterior density 
    if (pp1 > 1 && pp1 < length(posterior1)),          %interpolate to 

find the zero  
        dL1 = posterior1(pp1-1) - posterior1(pp1);   
        dR1 = posterior1(pp1) - posterior1(pp1+1);  
        PeakIndex1 = (pp1 - .5 - (dL1/ (dR1 - dL1)));   %index runs 

from 1 to noutputs 
    else 
        PeakIndex1 = pp1;    %if maximum occurs at an endpoint do not 

interpolate 
    end 
    u_Filt1(t1) = (ratemax1 / (noutputs1-1)) * PeakIndex1;  %convert 

index of peak value to scaled value 

     
    %6. Divide p(x,t) by a constant C so that  º p(x,t) dx = 1; 
    posterior1 = posterior1 / sum(posterior1);        %normalize the 

density 

     
    %7. Repeat from step 2; 
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    prior1 = posterior1;                          %prior for next 

iteration is posterior from this iteration 
end 

  

  
yf1 = (y_Filt1-mean(y_Filt1))/max(abs(y_Filt1(17:32000)-

mean(y_Filt1(17:32000)))); 
uf1 = (u_Filt1-mean(u_Filt1))/max(abs(u_Filt1(17:32000)-

mean(u_Filt1(17:32000)))); 

  
% Plots of non-filtered data (blue) and filtered data (red) for y1 and 

u1: 
time = (1:1:length(y1))*Ts; 

  
% Bayesian filtered output (y1) plot: 
subplot(2,1,1) 
hold on 
plot(time,y1-mean(y1),'b') 
plot(time,y_Filt1-mean(y_Filt1),'r') 
xlabel('Time [sec]') 
ylabel('Amplitude') 
title('Pressure Rise Coefficient (\psi) versus Time') 
legend('Measured Data','Bayesian Filtered Data') 
xlim([1 length(time)*Ts]) 
hold off 

  
% Bayesian filtered input (u1) plot: 
subplot(2,1,2) 
hold on 
plot(time,u1-mean(u1),'b') 
plot(time,u_Filt1-mean(u_Filt1),'r') 
xlabel('Time [sec]') 
ylabel('Amplitude') 
title('Flow Coefficient (\phi) versus Time') 
legend('Measured Data','Bayesian Filtered Data') 
xlim([1 length(time)*Ts]) 
hold off 

  
end 
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A2 – Particle Swarm Optimization for Optimizing Bayesian Filter 
This code is a modified version of a program developed in [56]. 

%  simplePSO_ab.m 

% 
%  Dane Sterbentz 
%  September 21, 2014 
%  Version 1.0 
% Basic PSO algorithm using global best methodology 
% This code is modified to calculate the optimal parameters for a 

Bayesian 
% filter (alpha and beta) that produce the maximum goodness of fit for 

a 
% transfer function system identification model. The cost function for 

the 
% transfer function system identification model is given in the file: 
% "cost_fit_tf.m" 
% 

_______________________________________________________________________

__ 

  
% Initialization of a ns x nx - dimensional swarm S 
c1=.1;c2=.1; 
input('Nominal 0, or specific 1: ');spec=ans; 
input('Input data (Flow Coefficient): ');Flow1=ans; 
input('Output data (Pressure Rise Coefficient): ');Pres1=ans; 
if spec==0 
    

nx=2;maxxalpha=10;minxalpha=0.01;maxxbeta=120;minxbeta=20;ns=3;nd=2; 
else 
    input('Dimension of particle nx: ');nx=ans; 
    input('Search space, maximum: ');maxx=ans; 
    input('Search space, minimum: ');minx=ans; 
    input('Number of particles ns: ');ns=ans; 
    input('How many iterations to be carried out nd: ');nd=ans; 
end 

  
tic 
S.x=[(maxxalpha-minxalpha)*rand(ns,1)+minxalpha,(maxxbeta-

minxbeta)*rand(ns,1)+minxbeta]; % uniform distribution of initial 

particles 

  
%S.x=rand(ns,nx); %uniform distribution within 0 and 1 
V=ones(ns,nx,nd); 

  
% Initial personal and global best computations 
for i=1:ns 
    y(i,:)=S.x(i,:); % Personal best 
    S.cost(i)=cost_fit_tf(S.x(i,:),Pres1,Flow1); % Fitness evaluation 
    costp(i,1)=S.cost(i); 
end; 
[gbestk,element]=min(S.cost); % Minimization problem 
yhat=S.x(element,:); % Global best 
costg(1)=S.cost(element); 
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% Main loop 
for k=1:nd 
    for i=1:ns 
        S.cost(i)=cost_fit(S.x(i,:,k),Pres1,Flow1); 
        if S.cost(i)<costp(i,k)%y(i,:) 
            y(i,:)=S.x(i,:,k); 
            costp(i,k+1)=S.cost(i); 
        else 
            costp(i,k+1)=costp(i,k); 
        end; 
        if S.cost(i)<costg(k)%yhat 
            yhat=S.x(i,:,k); 
            costg(k+1)=S.cost(i); 
        else 
            costg(k+1)=costg(k); 
        end; 
    end; 
    for i=1:ns 
        % Update velocity vector 
        V(i,:,k+1)=V(i,:,k)+c1*rand(1,nx).*(y(i,:)-

S.x(i,:,k))+c2*rand(1,nx).*(yhat-S.x(i,:,k)); 
        % Update position vector 
        S.x(i,:,k+1)=S.x(i,:,k)+V(i,:,k+1); 
        % Check border of search area 
        if S.x(i,1,k+1)>maxxalpha 
            S.x(i,1,k+1)=maxxalpha; 
        elseif S.x(i,1,k+1)<minxalpha 
            S.x(i,1,k+1)=minxalpha; 
        else 
        end 
        if S.x(i,2,k+1)>maxxbeta 
            S.x(i,2,k+1)=maxxbeta; 
        elseif S.x(i,2,k+1)<minxbeta 
            S.x(i,2,k+1)=minxbeta; 
        else 
        end 
    end; 
end; 
for i=1:ns 
    S.cost(i)=cost_fit(S.x(i,:,k+1),Pres1,Flow1); 
    if S.cost(i)<costp(i,k+1)% y(i,:) 
        y(i,:)=S.x(i,:,k); 
    else 
    end; 
    if S.cost(i)<costg(k)% yhat 
        yhat=S.x(i,:,k); 
    else 
    end; 
end; 
yhat 
toc 
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A3 – Transfer Function Goodness of Fit Cost Function (Includes 

Bayesian Filter) for PSO 
 

function [y] = cost_fit_tf(x,Pres1,Flow1) 

  
%  cost_fit_tf.m 
% 
%  Dane Sterbentz 
%  September 23, 2014, Version 1.0 
% 

_______________________________________________________________________

__ 
%  
% Computation of the cost function (y) for a transfer function system 
% identification model.  
% 

_______________________________________________________________________

__ 

  
y=0; 

    
Fs = 1000;  % Samling Frequency 
Ts = 1/Fs;  % Sampling interval 

  
% Preliminary section: load data, set constants, initialize variables 
%set parameters 
samplerate1 = Fs;  %samples per second 
noutputs1 = 50;      %output quantization levels 
ratemax1 = 1;        %rectified EMG is normalized to max value of 1 
inscale1 = 1;        %arbitrary input scaling  
alpha1 = x(:,1) / samplerate1;                %sets diffusion rate 
beta1 = x(:,2) / (noutputs1 * samplerate1);     %sets probability of 

sudden jumps 

  
%calculate rectified EMG after removing the mean, and normalize 
Pres1 = inscale1 * ratemax1 * Pres1 / max(Pres1);       %input 

prescaling to use full output range 
Flow1 = inscale1 * ratemax1 * Flow1 / max(Flow1);       %input 

prescaling to use full output range 

  
%initialize variables 
%   x is the latent variable (the driving rate) 
%   MAP is the output estimate 
x1 = linspace(ratemax1/noutputs1, ratemax1, noutputs1)';  %don't start 

with zero because requires n=0 exactly to match 
Pres_Filt1 = zeros(length(Pres1),1);                     %store the 

bayes estimates 
Flow_Filt1 = zeros(length(Flow1),1);                     %store the 

bayes estimates 
g1 = [(alpha1/2) (1 - alpha1) (alpha1/2)];          %approximate 

spatial second derivative operator 

  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% 
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% Following is the main section of the algorithm; steps are numbered as 

in the text 
% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  
%1. Initialize p(x,0) = 1; 
prior1 = ones(noutputs1,1) / noutputs1;            %start with uniform 

prior 

  
for t1=1:length(Pres1) %iterate for each sample 

     
    %2. Forward propagate p(x,t-) Å 
    %           ?p(x-?,t-1)+(1-2?)p(x,t-1)+?p(x+?,t-1)+?+(1-?)p(x,t-1); 
    prior1 = filtfilt(g1, 1, prior1);              %drift term by 

convolving with second derivative operator 
    prior1 = beta1 + (1-beta1) * prior1;            %sets probability 

of a sudden jump 

     
    %3. Measure the rectified emg; 
    Presval1 = Pres1(t1);                            %if this were 

online, would read a new sample here 

     
    %4. Calculate the posterior likelihood function  
    %       P(x,t) Å P(emg|x)p(x,t-); 
    measurement_model1 = 2*exp(-

(Presval1).^2./(2.*(x1).^2))./(2.*pi.*x1.^2).^(1/2);   %half Gaussian 

model for P(Pres1|x) 
    posterior1 = measurement_model1 .* prior1;     %calculate posterior 

density using Bayes rule 

     
    %5. Output the signal estimate MAP(x(t)) = argmax P(x,t); 
    pp1 = min(find(posterior1 == max(posterior1)));    %find the 

maximum of the posterior density 
    if (pp1 > 1 && pp1 < length(posterior1)),          %interpolate to 

find the zero  
        dL1 = posterior1(pp1-1) - posterior1(pp1);   
        dR1 = posterior1(pp1) - posterior1(pp1+1);  
        PeakIndex1 = (pp1 - .5 - (dL1/ (dR1 - dL1)));   %index runs 

from 1 to noutputs 
    else 
        PeakIndex1 = pp1;    %if maximum occurs at an endpoint do not 

interpolate 
    end 
    Pres_Filt1(t1) = (ratemax1 / (noutputs1-1)) * PeakIndex1;  %convert 

index of peak value to scaled value 

     
    %6. Divide p(x,t) by a constant C so that  º p(x,t) dx = 1; 
    posterior1 = posterior1 / sum(posterior1);        %normalize the 

density 

     
    %7. Repeat from step 2; 
    prior1 = posterior1;                          %prior for next 

iteration is posterior from this iteration 
end 
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%1. Initialize p(x,0) = 1; 
prior1 = ones(noutputs1,1) / noutputs1;            %start with uniform 

prior 

  
for t1=1:length(Flow1) %iterate for each sample 

     
    %2. Forward propagate p(x,t-) Å 
    %           ?p(x-?,t-1)+(1-2?)p(x,t-1)+?p(x+?,t-1)+?+(1-?)p(x,t-1); 
    prior1 = filtfilt(g1, 1, prior1);              %drift term by 

convolving with second derivative operator 
    prior1 = beta1 + (1-beta1) * prior1;            %sets probability 

of a sudden jump 

     
    %3. Measure the rectified emg; 
    Flowval1 = Flow1(t1);                            %if this were 

online, would read a new sample here 

     
    %4. Calculate the posterior likelihood function  
    %       P(x,t) Å P(emg|x)p(x,t-); 
    measurement_model1 = 2*exp(-

(Flowval1).^2./(2.*(x1).^2))./(2.*pi.*x1.^2).^(1/2);   %half Gaussian 

model for P(Flow1|x) 
    posterior1 = measurement_model1 .* prior1;     %calculate posterior 

density using Bayes rule 

     
    %5. Output the signal estimate MAP(x(t)) = argmax P(x,t); 
    pp1 = min(find(posterior1 == max(posterior1)));    %find the 

maximum of the posterior density 
    if (pp1 > 1 && pp1 < length(posterior1)),          %interpolate to 

find the zero  
        dL1 = posterior1(pp1-1) - posterior1(pp1);   
        dR1 = posterior1(pp1) - posterior1(pp1+1);  
        PeakIndex1 = (pp1 - .5 - (dL1/ (dR1 - dL1)));   %index runs 

from 1 to noutputs 
    else 
        PeakIndex1 = pp1;    %if maximum occurs at an endpoint do not 

interpolate 
    end 
    Flow_Filt1(t1) = (ratemax1 / (noutputs1-1)) * PeakIndex1;  %convert 

index of peak value to scaled value 

     
    %6. Divide p(x,t) by a constant C so that  º p(x,t) dx = 1; 
    posterior1 = posterior1 / sum(posterior1);        %normalize the 

density 

     
    %7. Repeat from step 2; 
    prior1 = posterior1;                          %prior for next 

iteration is posterior from this iteration 
end 

  

  
output1 = Pres_Filt1/max(Pres_Filt1)-mean(Pres_Filt1/max(Pres_Filt1)); 
input1 = Flow_Filt1/max(Flow_Filt1)-mean(Flow_Filt1/max(Flow_Filt1)); 
Pres_data1 = Pres1-mean(Pres1); 
Flow_data1 = Flow1-mean(Flow1); 
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% System identification transfer function, fit, and cost function 
% calculation 
%______________________________________________________________________

____ 
Data = iddata(output1,input1,Ts,'InputName','Flow 

Coefficient','OutputName','Pressure Rise Coefficient'); 

  
% Transfer function estimation:      
 Options = tfestOptions;            
 Options.Display = 'on';           

                                    
tf1 = tfest(Data, 4, 3,Options); 

  
% Fit calculation for measured and simulated transfer function model 

data: 
tf1_idss = idss(tf1); 
state1 = findstates(tf1_idss,Data); 
simOpt = simOptions('InitialCondition',state1); 
output1_sim = sim(tf1_idss,Data,simOpt); 
output1_model = output1_sim.y; 
fit = [1 - norm(output1 - output1_model)/norm(output1-

mean(output1))]*100; 

  
% Cost function calculation [%]: 
y = abs(100-fit);           % fitness evaluation (objective function) 
compare(Data,tf1); 
end 
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A4 – ARX Goodness of Fit Cost Function (Includes Bayesian Filter) for 

PSO 
function [y] = cost_fit_arx(x,Pres1,Flow1) 

  
%  cost_fit_arx.m 
% 
%  Dane Sterbentz 
%  September 23, 2014, Version 1.0 
% 

_______________________________________________________________________

__ 
%  
% Computation of the cost function (y) for an ARX system identification 
% model. 
% 

_______________________________________________________________________

__ 

  
y=0; 

    
Fs = 2000;  % Samling Frequency 
Ts = 1/Fs;  % Sampling interval 

  
% Preliminary section: load data, set constants, initialize variables 
%set parameters 
samplerate1 = Fs;  %samples per second 
noutputs1 = 50;      %output quantization levels 
ratemax1 = 1;        %rectified EMG is normalized to max value of 1 
inscale1 = 1;        %arbitrary input scaling  
alpha1 = x(:,1) / samplerate1;                %sets diffusion rate 
beta1 = x(:,2) / (noutputs1 * samplerate1);     %sets probability of 

sudden jumps 

  
%calculate rectified EMG after removing the mean, and normalize 
Pres1 = inscale1 * ratemax1 * Pres1 / max(Pres1);       %input 

prescaling to use full output range 
Flow1 = inscale1 * ratemax1 * Flow1 / max(Flow1);       %input 

prescaling to use full output range 

  
%initialize variables 
%   x is the latent variable (the driving rate) 
%   MAP is the output estimate 
x1 = linspace(ratemax1/noutputs1, ratemax1, noutputs1)';  %don't start 

with zero because requires n=0 exactly to match 
Pres_Filt1 = zeros(length(Pres1),1);                     %store the 

bayes estimates 
Flow_Filt1 = zeros(length(Flow1),1);                     %store the 

bayes estimates 
g1 = [(alpha1/2) (1 - alpha1) (alpha1/2)];          %approximate 

spatial second derivative operator 

  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% 
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% Following is the main section of the algorithm; steps are numbered as 

in the text 
% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  
%1. Initialize p(x,0) = 1; 
prior1 = ones(noutputs1,1) / noutputs1;            %start with uniform 

prior 

  
for t1=1:length(Pres1) %iterate for each sample 

     
    %2. Forward propagate p(x,t-) Å 
    %           ?p(x-?,t-1)+(1-2?)p(x,t-1)+?p(x+?,t-1)+?+(1-?)p(x,t-1); 
    prior1 = filtfilt(g1, 1, prior1);              %drift term by 

convolving with second derivative operator 
    prior1 = beta1 + (1-beta1) * prior1;            %sets probability 

of a sudden jump 

     
    %3. Measure the rectified emg; 
    Presval1 = Pres1(t1);                            %if this were 

online, would read a new sample here 

     
    %4. Calculate the posterior likelihood function  
    %       P(x,t) Å P(emg|x)p(x,t-); 
    measurement_model1 = 2*exp(-

(Presval1).^2./(2.*(x1).^2))./(2.*pi.*x1.^2).^(1/2);   %half Gaussian 

model for P(Pres1|x) 
    posterior1 = measurement_model1 .* prior1;     %calculate posterior 

density using Bayes rule 

     
    %5. Output the signal estimate MAP(x(t)) = argmax P(x,t); 
    pp1 = min(find(posterior1 == max(posterior1)));    %find the 

maximum of the posterior density 
    if (pp1 > 1 && pp1 < length(posterior1)),          %interpolate to 

find the zero  
        dL1 = posterior1(pp1-1) - posterior1(pp1);   
        dR1 = posterior1(pp1) - posterior1(pp1+1);  
        PeakIndex1 = (pp1 - .5 - (dL1/ (dR1 - dL1)));   %index runs 

from 1 to noutputs 
    else 
        PeakIndex1 = pp1;    %if maximum occurs at an endpoint do not 

interpolate 
    end 
    Pres_Filt1(t1) = (ratemax1 / (noutputs1-1)) * PeakIndex1;  %convert 

index of peak value to scaled value 

     
    %6. Divide p(x,t) by a constant C so that  º p(x,t) dx = 1; 
    posterior1 = posterior1 / sum(posterior1);        %normalize the 

density 

     
    %7. Repeat from step 2; 
    prior1 = posterior1;                          %prior for next 

iteration is posterior from this iteration 
end 
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%1. Initialize p(x,0) = 1; 
prior1 = ones(noutputs1,1) / noutputs1;            %start with uniform 

prior 

  
for t1=1:length(Flow1) %iterate for each sample 

     
    %2. Forward propagate p(x,t-) Å 
    %           ?p(x-?,t-1)+(1-2?)p(x,t-1)+?p(x+?,t-1)+?+(1-?)p(x,t-1); 
    prior1 = filtfilt(g1, 1, prior1);              %drift term by 

convolving with second derivative operator 
    prior1 = beta1 + (1-beta1) * prior1;            %sets probability 

of a sudden jump 

     
    %3. Measure the rectified emg; 
    Flowval1 = Flow1(t1);                            %if this were 

online, would read a new sample here 

     
    %4. Calculate the posterior likelihood function  
    %       P(x,t) Å P(emg|x)p(x,t-); 
    measurement_model1 = 2*exp(-

(Flowval1).^2./(2.*(x1).^2))./(2.*pi.*x1.^2).^(1/2);   %half Gaussian 

model for P(Flow1|x) 
    posterior1 = measurement_model1 .* prior1;     %calculate posterior 

density using Bayes rule 

     
    %5. Output the signal estimate MAP(x(t)) = argmax P(x,t); 
    pp1 = min(find(posterior1 == max(posterior1)));    %find the 

maximum of the posterior density 
    if (pp1 > 1 && pp1 < length(posterior1)),          %interpolate to 

find the zero  
        dL1 = posterior1(pp1-1) - posterior1(pp1);   
        dR1 = posterior1(pp1) - posterior1(pp1+1);  
        PeakIndex1 = (pp1 - .5 - (dL1/ (dR1 - dL1)));   %index runs 

from 1 to noutputs 
    else 
        PeakIndex1 = pp1;    %if maximum occurs at an endpoint do not 

interpolate 
    end 
    Flow_Filt1(t1) = (ratemax1 / (noutputs1-1)) * PeakIndex1;  %convert 

index of peak value to scaled value 

     
    %6. Divide p(x,t) by a constant C so that  º p(x,t) dx = 1; 
    posterior1 = posterior1 / sum(posterior1);        %normalize the 

density 

     
    %7. Repeat from step 2; 
    prior1 = posterior1;                          %prior for next 

iteration is posterior from this iteration 
end 

  

  
output1 = Pres_Filt1/max(Pres_Filt1)-mean(Pres_Filt1/max(Pres_Filt1)); 
input1 = Flow_Filt1/max(Flow_Filt1)-mean(Flow_Filt1/max(Flow_Filt1)); 
Pres_data1 = Pres1-mean(Pres1); 
Flow_data1 = Flow1-mean(Flow1); 
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% System identification ARX model, fit, and cost function 
% calculation 
%______________________________________________________________________

____ 
Data = iddata(output1,input1,Ts,'InputName','Flow 

Coefficient','OutputName','Pressure Rise Coefficient'); 

  
% ARX function estimation:      
Opt = arxOptions;   

   
arx20201 = arx(Data,[20 20 1], Opt); 

  
% Fit calculation for measured and simulated transfer function model 

data: 
arx20201_idss = idss(arx20201); 
% state1 = findstates(arx20201_idss,Data); 
% simOpt = simOptions('InitialCondition',state1); 
% output1_sim = sim(arx20201_idss,Data,simOpt); 
% output1_model = output1_sim.y; 
% fit = [1 - norm(output1 - output1_model)/norm(output1-

mean(output1))]*100; 
[y,fit,x0]=compare(Data,arx20201); 

  
% Cost function calculation [%]: 
y = abs(100-fit);           % fitness evaluation (objective function) 

  

  
% hold on 
% time = (1:1:length(Pres1))*Ts; 
% plot(time,output1_model,'b') 
% plot(time,output1,'k') 
% hold off 

  

end 
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A5 – Pole Variation Investigation 
 

% polevariation.m 
% February 8, 2015 
% Dane M. Sterbentz, Marco P. Schoen 
% 

_______________________________________________________________________

_ 
% Using a set of experiments on one operating-point, the variation of 

the 
% poles of the identified system is analysed. In particular, the 

empirical 
% unbiased covariance estimate of the parameter estimate is computed. 
% Circles are then plotted for each pole with a radius equal to 3 times 

the  
% square root of the unbiased covariance estimate. 
% 

_______________________________________________________________________

_ 
% 1. Load data 
 clear 
 load p58case1.txt; 
 u1=p58case1(60000:120000,1); 
 y1=p58case1(60000:120000,2); 
%  load p55case1.txt; 
%  u1=p55case1(60000:120000,1); 
%  y1=p55case1(60000:120000,2); 
%  load p52case1.txt; 
%  u1=p52case1(75000:135000,1); 
%  y1=p52case1(75000:135000,2); 
%  load p495case1.txt; 
%  u1=p495case1(60000:120000,1); 
%  y1=p495case1(60000:120000,2); 

  
% 2. Filter data 
 Fs = 2000; % Sampling frequency is 2000 Hz 
 d = fdesign.lowpass('Fp,Fst,Ap,Ast',100,120,0.5,80,Fs); 
 Hd = design(d); % filter with low pass 100Hz/120Hz 
 yf1=filter(Hd,y1); 

   
% 3. Compose iddata vector 
 data1=iddata(y1,u1,(1/Fs)); 
 dataf1=iddata(yf1,u1,(1/Fs)); 

  
% 4. Determine optimum order using AIC criteria 
min=100;ord=[0,0,0];ordf=ord;minf=min; 
 for na=1:10 
     for nb=1:10 
         for nk=1:2 
             tmodel=arx(data1,[na,nb,nk]); 
             tfmodel=arx(dataf1,[na,nb,nk]); 
             infcr(na,nb,nk)=aic(tmodel); 
             infcrf(na,nb,nk)=aic(tfmodel); 
             if infcr(na,nb,nk)<min 
                 min=infcr(na,nb,nk); 
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                 ord=[na,nb,nk]; 
             else 
             end 
             if infcrf(na,nb,nk)<minf 
                 minf=infcrf(na,nb,nk); 
                 ordf=[na,nb,nk]; 
             else 
             end 
         end 
     end 
 end 

  
% 5. Define models with optimum parameter order 
 model1=arx(data1,ord); 
 modelf1=arx(dataf1,ordf); 

  
 load p58case2.txt; 
 u2=p58case2(60000:120000,1); 
 y2=p58case2(60000:120000,2); 
%  load p55case2.txt; 
%  u2=p55case2(60000:120000,1); 
%  y2=p55case2(60000:120000,2); 
%  load p52case2.txt; 
%  u2=p52case2(60000:120000,1); 
%  y2=p52case2(60000:120000,2); 
%  load p495case2.txt; 
%  u2=p495case2(60000:120000,1); 
%  y2=p495case2(60000:120000,2); 
 yf2=filter(Hd,y2); 
 data2=iddata(y2,u2,(1/Fs)); 
 dataf2=iddata(yf2,u2,(1/Fs)); 
 model2=arx(data2,ord); 
 modelf2=arx(dataf2,ordf); 

  
 load p58case3.txt; 
 u3=p58case3(60000:120000,1); 
 y3=p58case3(60000:120000,2); 
%  load p55case3.txt; 
%  u3=p55case3(60000:120000,1); 
%  y3=p55case3(60000:120000,2); 
%  load p52case3.txt; 
%  u3=p52case3(60000:120000,1); 
%  y3=p52case3(60000:120000,2); 
%  load p495case3.txt; 
%  u3=p495case3(60000:120000,1); 
%  y3=p495case3(60000:120000,2); 
 yf3=filter(Hd,y3); 
 data3=iddata(y3,u3,(1/Fs)); 
 dataf3=iddata(yf3,u3,(1/Fs)); 
 model3=arx(data3,ord); 
 modelf3=arx(dataf3,ordf); 

  
 load p58case4.txt; 
 u4=p58case4(60000:120000,1); 
 y4=p58case4(60000:120000,2); 
%  load p55case4.txt; 
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%  u4=p55case4(60000:120000,1); 
%  y4=p55case4(60000:120000,2); 
%  load p52case4.txt; 
%  u4=p52case4(60000:120000,1); 
%  y4=p52case4(60000:120000,2); 
%  load p495case4.txt; 
%  u4=p495case4(60000:120000,1); 
%  y4=p495case4(60000:120000,2); 
 yf4=filter(Hd,y4); 
 data4=iddata(y4,u4,(1/Fs)); 
 dataf4=iddata(yf4,u4,(1/Fs)); 
 model4=arx(data4,ord); 
 modelf4=arx(dataf4,ordf); 

  
 load p58case5.txt; 
 u5=p58case5(60000:120000,1); 
 y5=p58case5(60000:120000,2); 
%  load p55case5.txt; 
%  u5=p55case5(60000:120000,1); 
%  y5=p55case5(60000:120000,2); 
%  load p52case5.txt; 
%  u5=p52case5(60000:120000,1); 
%  y5=p52case5(60000:120000,2); 
 yf5=filter(Hd,y5); 
 data5=iddata(y5,u5,(1/Fs)); 
 dataf5=iddata(yf5,u5,(1/Fs)); 
 model5=arx(data5,ord); 
 modelf5=arx(dataf5,ordf); 

  
 load p58case6.txt; 
 u6=p58case6(60000:120000,1); 
 y6=p58case6(60000:120000,2); 
%  load p55case6.txt; 
%  u6=p55case6(64000:124000,1); 
%  y6=p55case6(64000:124000,2); 
%  load p52case6.txt; 
%  u6=p52case6(60000:120000,1); 
%  y6=p52case6(60000:120000,2); 
 yf6=filter(Hd,y6); 
 data6=iddata(y6,u6,(1/Fs)); 
 dataf6=iddata(yf6,u6,(1/Fs)); 
 model6=arx(data6,ord); 
 modelf6=arx(dataf6,ordf); 

  
 load p58case7.txt; 
 u7=p58case7(60000:120000,1); 
 y7=p58case7(60000:120000,2); 
%  load p55case7.txt; 
%  u7=p55case7(60000:120000,1); 
%  y7=p55case7(60000:120000,2); 
%  load p52case7.txt; 
%  u7=p52case7(60000:120000,1); 
%  y7=p52case7(60000:120000,2); 
 yf7=filter(Hd,y7); 
 data7=iddata(y7,u7,(1/Fs)); 
 dataf7=iddata(yf7,u7,(1/Fs)); 
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 model7=arx(data7,ord); 
 modelf7=arx(dataf7,ordf); 

  

check_495 = exist('y5') 

  
if check_495 == 0 
     % 6. Find nominal Parameter Estimate, Theta0 
 [ma,nu]=size(model1.A); 
 for k=1:nu 
     

Theta0p(k)=model1.A(:,k)+model2.A(:,k)+model3.A(:,k)+model4.A(:,k); 
     

Theta0fp(k)=modelf1.A(:,k)+modelf2.A(:,k)+modelf3.A(:,k)+modelf4.A(:,k)

; 
 end; 
 Theta0=Theta0p/4; 
 Theta0f=Theta0fp/4; 

  
% 7. Compute empirical unbiased Covariance Estimate, GammaE 
GammaE=(1/3)*((model1.A-Theta0)*(model1.A-Theta0)'+((model2.A-

Theta0)*(model2.A-Theta0)')+((model3.A-Theta0)*(model3.A-

Theta0)')+((model4.A-Theta0)*(model4.A-Theta0)')); 
GammaEf=(1/3)*((modelf1.A-Theta0f)*(modelf1.A-Theta0f)'+((modelf2.A-

Theta0f)*(modelf2.A-Theta0f)')+((modelf3.A-Theta0f)*(modelf3.A-

Theta0f)')+((modelf4.A-Theta0f)*(modelf4.A-Theta0f)')); 

  
else 
% 6. Find nominal Parameter Estimate, Theta0 
 [ma,nu]=size(model1.A); 
 for k=1:nu 
     

Theta0p(k)=model1.A(:,k)+model2.A(:,k)+model3.A(:,k)+model4.A(:,k)+mode

l5.A(:,k)+model6.A(:,k)+model7.A(:,k); 
     

Theta0fp(k)=modelf1.A(:,k)+modelf2.A(:,k)+modelf3.A(:,k)+modelf4.A(:,k)

+modelf5.A(:,k)+modelf6.A(:,k)+modelf7.A(:,k); 
 end; 
 Theta0=Theta0p/7; 
 Theta0f=Theta0fp/7; 

  
% 7. Compute empirical unbiased Covariance Estimate, GammaE 
GammaE=(1/6)*((model1.A-Theta0)*(model1.A-Theta0)'+((model2.A-

Theta0)*(model2.A-Theta0)')+((model3.A-Theta0)*(model3.A-

Theta0)')+((model4.A-Theta0)*(model4.A-Theta0)')+((model5.A-

Theta0)*(model5.A-Theta0)')+((model6.A-Theta0)*(model6.A-

Theta0)')+((model7.A-Theta0)*(model7.A-Theta0)')); 
GammaEf=(1/6)*((modelf1.A-Theta0f)*(modelf1.A-Theta0f)'+((modelf2.A-

Theta0f)*(modelf2.A-Theta0f)')+((modelf3.A-Theta0f)*(modelf3.A-

Theta0f)')+((modelf4.A-Theta0f)*(modelf4.A-Theta0f)')+((modelf5.A-

Theta0f)*(modelf5.A-Theta0f)')+((modelf6.A-Theta0f)*(modelf6.A-

Theta0f)')+((modelf7.A-Theta0f)*(modelf7.A-Theta0f)')); 
end 

  
[nr,nt]=size(roots(model1.A)); % determine number of roots nr 
nomroots=roots(Theta0);nomrootsf=roots(Theta0f); 
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% Plot circles for each pole with a radius equal to 3 times the square 

root 
% of the unbiased covariance estimate (No Filtering) 
 figure 
 grid; 
 xlim([6.8, 7.8]); 
 ylim([-3, 3]); 
 title('Pole Variation for \phi = 0.58 (No Filtering)') 
 xlabel('Real Axis');ylabel('Imaginary Axis');hold 
 radius=3*(GammaE^0.5); 
 for k=1:nr 
     lambdanom(k)=log(nomroots(k)/(1/Fs)); 
     circle(real(lambdanom(k)),imag(lambdanom(k)),radius); 
 end; 

  
% % Plot circles for each pole with a radius equal to 3 times the 

square root 
% % of the unbiased covariance estimate (With Filtering) 
%  figure 
%  plot(lambdaf,'*'); 
%  grid; 
%  title('Pole Variation for \phi = 0.58 (With Filtering)') 
%  xlabel('Real Axis');ylabel('Imaginary Axis');hold 
%  radiusf=3*(GammaEf^0.5); 
%  for k=1:nr 
%      lambdanomf(k)=log(nomrootsf(k)/(1/Fs)); 
%      circle(real(lambdanomf(k)),imag(lambdanomf(k)),radiusf); 
%  end; 
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APPENDIX B – Matlab
TM 

 Files for Fast Dynamics Analysis 

B1 – Spline Interpolated Autocorrelation Coefficient Data Set 

Calculation 
%  splinecorr.m 
% 
%  Dane Sterbentz, Marco P. Schoen 
%  January 7, 2015, Version 1.0 
% 
% The steps for the "Fast Dynamics" data analysis that are executed in 

this program are as follows:  
%       1. Loads the dynamic pressure data collected at the IET 
%       2. Subtracts the mean of the sensor drift from each sensor 

signal 
%       3. Calibration factors are used to convert the pressure signal 

from volts 
%          (V) to Pascals (Pa) 
%       4. The Hall effect sensor data or "datav(:,11)" is 
%          used to collect 30 point pressure data groups for the same 

rotor 
%          position at each revolution 
%       5. Correlation coefficient is calculated between 30 point data 

groups using the Matlab function "corrcoef" 
%       6. Substitute the correlation coefficients back into the data 

array 15 points 
%          behind the end of the 30 point data group 
%       7. The missing data in between the correlation coefficient 

points is set to NaN 
%       8. Matlab "spline" function is used to fit a cubic spline curve 

to interpolate the missing data 
%       9. The spline curve is then resampled at 1000 Hz to produce 
%       10. Subtract the mean to obtain the output data set for system 
%       identification, "y_output" 
% 

_______________________________________________________________________

__ 
clear; 
clc; 
% Calibration factors [Pa/V]: 
con(1)=968.3; 
con(2)=879.9; 
con(3)=891.9; 
con(4)=603.7; 
con(5)=599.2; 
con(6)=599.5; 
con(7)=596.8; 
con(8)=600; 
con(9)=917.7; 

  
% 1. Loads the dynamic pressure data collected at the IET 
load dynamic_data_056.dat; 
% nstart_058 = 2.269e5; 
nstart_056 = 3.751e5; 
% nstart_054 = 2.63e5; 
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% nstart_054_s4_34 = 2.61e5; 
% nstart_052 = 2.402e5; 
% nstart_051_s6_24 = 2.78e5; 
% nstart_051 = 2.887e5; 
datav=dynamic_data_056(nstart_056:nstart_056+7.5e5,:); % data in [V] 
% datav=dynamic_data_054(:,:); % data in [V] 
[L,ca]=size(datav); 
Fs = 20000; 
Ts=1/Fs; 

  
% 2. Subtracts the mean of the sensor drift from each sensor signal 
load dynamic_data_zero.dat; 
drift=dynamic_data_zero; 
[Ld,col]=size(drift); 
for i=1:col 
    driftmean(i)=mean(drift(:,i)); 
    datavm(:,i)=datav(:,i)-driftmean(i);% data with drift adjusted 
end 

  
% 3. Calibration factors are used to convert the pressure signal from 

volts (V) to Pascals (Pa) 
for i=1:9 
    datapm(:,i)=datavm(:,i)*con(i); % data in [Pa] 
end; 
datapm(:,10:12)=datav(:,10:12); 

  

  
% 4. The Hall effect sensor data or "datav(:,11)" is used to collect 30 

point pressure data groups for the same rotor position at each 

revolution 
count=1; 
xd=zeros(30,3000,12); 
for i=1:L 
    x=datav(i,11); 
    if x<1 
        if datav(i+1,11)>1  % last point of injection 
            %take a window of 30 data points 
            xd(1:30,count,:)=datapm(i-30+1:i,:); 
            count=count+1; 
        else 
        end 
    else 
    end 
end 

  
% 5. Correlation coefficient is calculated between 30 point data groups 

using the Matlab function "corrcoef" 
for sensor=1:10 
    for j=2:count-1 % count is the number of blade passages 
        xcf=corrcoef(xd(:,j-1,sensor),xd(:,j,sensor)); 
        corcf(j,sensor)=xcf(2,1); 
    end 
end 

  
% 6. Substitute the correlation coefficient points back into the data 

array 15 points behind the end of the 30 point data group 
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% 7. The missing data in between the correlation coefficient points is 

set to NaN 
count=1; 
y_corcf=zeros(L,10); 
for i=1:L 
    x=datav(i,11); 
    if x<1 
        if datav(i+1,11)>1  
            y_corcf(i-15,:) = corcf(count,:); 
            count=count+1; 
            y_corcf(i,:)=NaN; 
        else 
            y_corcf(i,:)=NaN; 
        end 
    else 
        y_corcf(i,:)=NaN; 
    end 
end 

  
% 8. Matlab "spline" function is used to fit a cubic spline curve to 

interpolate the missing data 
% Determine index locations of correlation coefficients in data set. 
for sensor = 1:10 
count = 1; 
    for i = 1:length(y_corcf) 
        if isnan(y_corcf(i,sensor)) 
        else 
            yspline(count,sensor) = y_corcf(i,sensor); 
            xspline(count,sensor) = i; 
            count = count+1; 
        end 
    end 
end 

  
% Use spline function to create new data set and resample every 20 

points. 
u_input = datav(1:20:end,10); 
for sensor = 1:10 
% 9. The spline curve is then resampled at 1000 Hz to produce the 

output data set for system identification 
xxSI = 1:20:L; 
Y_spline(:,sensor) = spline(xspline(:,sensor),yspline(:,sensor),xxSI); 
% 10. Subtract the mean to obtain the output data set for system 
% identification, "y_output" 
y_output(:,sensor) = Y_spline(:,sensor)-mean(Y_spline(:,sensor)); 
end 

  
clearvars -except u_input y_output Y_spline yspline y_corcf datav 

 

 

 




