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BACTERIAL POPULATION DIFFERENCES IN MUS MUSCULUS CECUM IN 

RESPONSE TO PROBIOTIC ADMINISTRATION 

Thesis Abstract-Idaho State University (2015) 

Within the mammalian gut, the cecum is the site containing both the highest 

metabolite absorption and abundant populations of microbes that maintain homeostasis 

and host health. Various disease states, of which there is no standard medical treatment, 

result from the dysbiotic disruption of the microbial populations in either presence or 

relative abundance due to various environmental and host factors. Supplementation with 

probiotics, prebiotics, and synbiotics has shown promise as a therapeutic intervention to 

combat dysbiosis. Many gut microbiota cannot be isolated by culture-dependent 

techniques. Utilization of culture independent techniques such as 16S rRNA T-RFLP, 

corresponding diversity indices, and paired-end analysis of the V3/V4 hypervariable 

region shows the effective establishment of probiotic strains while maintaining diversity 

and homeostatic balance within the cecum under the additional supplementation of 

prebiotics to meet conditions for therapeutic use. Additional research with other 

combinations of synbiotics is needed to further investigate effectiveness of this treatment 

option. 
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I. Microbial Diversity of Gut Microbiome 

 

More than 1030 individual species are present within the microbial world. The 

immense and unexplored microbial universe is roughly 109 times greater in number than 

stars within the universe. Among archaea, viruses, bacteriophage, fungi, and other 

Eukarya, this environment is composed primarily of bacteria, which attributes more than 

1 kg of weight in the human body and over 1100 species. From birth to death, unique 

communities of microbes are found within and on the human host as well as other 

vertebrates: be it the skin, G.I. tract, or mucosal surfaces, with the highest populated 

region being the lower intestine. The human body externally and internally houses 10-

100 trillion microbial cells, which outnumbers the amount of human eukaryotic cells by 

tenfold. Many of these microbes, which provide the host with metabolic and genetic 

features that are not innate, develop a synbiotic relationship with the host, reside within 

the confines of the intestine, and are collectively referred to as the “human gut 

microbiota” and its xenobiotic genome, the “gut microbiome” is often denoted to in 

literature as being a bodily organ. Resistance to pathogenic colonization is supplied by 

the host’s native microbiota (7, 8, 19, 21, 22, 32, 49, 69, 79). Host health is mediated in 

part by the 1014 of cells and over 1000 species that comprise the gut microbiome, in that 

it affects a variety of factors such as: immune response regulation (immunomodulation), 

resistance to pathogens and pathogen colonization, endotoxemia resistance, epithelial 

development, development of mature mucosal and systemic immunity, regulates motility 

of the gastrointestinal tract, fortification of intestinal epithelium barrier integrity, 

stimulating angiogenesis, blood circulation, energy production and homeostasis, nutrition 
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and nutrient extraction, metabolism and digestion, metabolic profile regulation (ie. Fatty 

acids), peptide secretion variation, vitamin and micronutrient synthesis and development 

(8, 21, 36, 41, 50, 54, 57, 66, 84). Amongst other activities, the metabolites produced by 

this population of microbes mediate the host-microbe interactions (60). There is a high 

metabolic potential due to the vast population that compromises this microbiome (11, 

26).  

Many of these microbes cannot be isolated and cultured by traditional culture-

dependent techniques, therefore the study of this microbiome is dependent on developing 

technologies that are culture-independent in nature in order to combat the previously 

imposed limitations on analysis. Various initiatives in both the US and Europe have been 

employed to increase the knowledge base through characterization of the microbes and 

their genomes within the human body for assessment of their impact and role in states of 

health and disease (Human Microbiome Project and MetaHIT Consortium, respectively) 

(8). Due to the “Great Plate Count Anomaly,” there has been a noted decline in the rate of 

accession in novel identity of reference sequences. This can be expected by sample size 

issues for accurate community representation being that two randomly selected samples 

derived from a lognormal community may have differing compositions thus require 

thousands of sampling events for all metacommunity representatives to be present in a 

sampled, new community. This correlates to environments that are physically identical 

being composed of differing compositions when formed at random from large 

metacommunities. This may result in a variety of reactions within the environment to 

variations in present conditions. When a microbial community forms, its composition is 

dictated by the surrounding environmental structure. There have been observed 
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differences in the human fecal flora that can be extended to any part of the intestine 

within a variety of organisms. Diversity differences can result from host selection, or 

partially from nutritional intake differences within commensal communities, to chaotic 

dynamics as is seen in bacterial within small biological treatment systems (intestines are 

stable). Often times, specific environmental factors cannot be traced to the presence, or 

lack thereof, of a given phylotype. A smaller reservoir of diversity in the metacommunity 

(less metacommunity diversity to drive change) will yield smaller diversity and possibly 

greater reproducibility in its daughter communities. Despite having greater diversity 

stability, there is a potential of having less functional stability due to a lack of functional 

redundancy. The observed diversity could correlate to the relative stability and 

reproducibility of a sample. Diversity studies are imperative to analysis of community 

structure and function, especially in relation to development of pharmaceuticals, 

probiotics, bioaugmentation, or substrate presence (19). 

These co-evolved interactions can be detrimentally affected by the administration 

of antibiotics and may lead to chronic or acute illnesses. Various health-related disorders 

can cause perturbations of bacterial communities associated with host health including 

the following: colorectal cancer, artherogenesis, Crohn’s disease, asthma, hay fever, skin 

allergies, cancer, type II diabetes mellitus, functional diarrhea, inflammatory bowel 

disease, functional dysbiosis, ulcerative colitis, pseudomembranous colitis, necrotizing 

enterocolitis, hyperglycemia, toxic megacolon, gastrointestinal traction functional 

diseases, irritable bowel and metabolic syndromes, antibiotic-associated diarrhea, 

behavior and psychological illness, Asperger disorder, childhood disintegrative disorder, 

Rett disorder, pervasive developmental disorder, autism, dysbiosis-related infections such 
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as Clostridium difficile infections, anorexia nervosa and obesity, cardiovascular events 

and disease, multiple sclerosis, autoimmunity, and atopic disease pertaining to the change 

in intestinal microbiota communities. All are mitigated by chemical transformations 

within the gut as a result of the disturbance of the microbial norm (4, 6, 8, 21, 41, 44, 48, 

55, 57, 59, 62, 71, 84). Reversing this alteration from the diseased state will alleviate and 

reduce said pathologies. Many of these diseases show a decrease in bacterial diversity. 

Various other axes of involvement with the gut microbiota have been confirmed such as 

gut-brain, gut-lung, and gut-liver (8, 41). 

Other notable changes in bacterial composition found in inflammatory bowel 

diseases include a reduction in overall diversity, change in the ratios of bacteria from the 

healthy state (i.e. an increased ratio of Firmicutes to Bacteroidetes in the obese, and the 

transplantation of these communities into healthy mice increased the relative fat-mass 

significantly, and the presence of mucin-degrading Akkermansia muciniphilia directly 

relating to the onset of obesity), adaptations of the Firmicutes present, decreased 

abundance of Roseburia hominis and Faecalibacerium prausnitzii butyrate-producing 

bacteria, and other shifts in bacterial abundance and distribution. Alterations of gut 

microbiota in patients suffering from irritable bowel syndrome showed changes in the 

expression of host genes for amino acid synthesis, inflammatory response, and cell 

junction integrity. Small intestinal bacterial overgrowth (of most commonly Escherichia 

coli, Streptococcus, Lactobacillus, Bacteroides, and Enterococcus species) has been 

shown to factor into this disease’s etiology due to the increased degradation of 

carbohydrates which magnify the symptoms of the disease. Alterations in the 

composition also affects the function and metabolic potential of the gut as is evident in 



 5 

type 2 diabetes where the dysbiosis from decreased butyrate-producing bacteria and 

enriched functions for sulfate reduction and oxidative stress resistance are apparent. The 

third most common cause of cancer mortality, colorectal cancer, has shown links to E. 

coli being 100 times more abundant than in the healthy host, and that tumorigenesis is 

promoted while selecting for genotoxic bacteria from alterations within the gut 

microbiota from the healthy norm (84). 

The human microbiome is very volatile and can influence and be affected by various 

aspects of life, health and development; the relative effect that the gut microbiome has on 

host health is dependent on the interactions between the two. Urbanization, 

socioeconomic status, dietary changes, food availability, housing and residency, 

medications, stress, and traveling are a few facets of the “Modern Lifestyle” that can 

disrupt or change these vital interactions (21, 44, 57). Additional contributing factors 

include ethnicity, age, gender, body mass index, genetics, sex, genotype, drug use, and 

birthing mode (11, 19, 57, 84, 86). Country of origin, including the geological, 

traditional, nutritional, social, and emotional aspects that correlate to it have shown to 

influence the composition of the gut microbiota under healthy and diseased states (53). 

Fifty-seven percent of variation in the gut microbiota can be attributed to diet while 

genetic accounts for a mere 12%. The diversity and social differences among humans 

make it extremely difficult to determine the molecular origin of these diseases. 

Regardless of current insights into the human genome and its mutations, no global 

application has resulted. Pangenomic association studies have allowed for the discovery 

of candidate genes to aid in identification of genes related to some disease states 
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resistance and sensitivity. Analysis of epigenic and environmental factors may also aid 

determining the origin of metabolic diseases (57). 

Bidirectional communication between the enteric nervous system (ENS, which is 

composed of the nerves, hormones, and other related molecules including neuropeptides 

and cytokines that control the functions of the gastrointestinal tract), or “second brain,” 

and the central nervous system (brain and spinal cord) connecting the brain’s cognitive 

and emotional centers to functions of the peripheral intestine is mediated by the gut-brain 

axis. The autonomic nervous system (sensory and motor neurons between the CNS and 

internal organs comprising parasympathetic and sympathetic systems) is highly 

involuntary and is also affected by the gut-brain axis through changes in homeostasis by 

gut peristalsis inhibition though a sympathetic system activation.  This is the primary 

focus of the neurogastroenterological field. The gut brain axis facilitates environmental 

effects (stress, emotions, and hunger) in relation to gut functions. The ENS extends from 

the esophagus to the anus and contains thousands of ganglia, roughly 400 million neurons 

(equivalent to the number present in the spinal cord) which are responsible for 

gastrointestinal motility control, fluid exchange regulation, defense reactions, local blood 

flow, GI endocrine functions, gastric and pancreatic secretion, and entero-enteric 

reflexes. The ENS is segregated from luminal content by the intestinal barrier which 

prevents ion and small solute diffusion across epithelial cells from the lumen with the 

help of tight junctions and transmembrane proteins. Permeability across the intestinal 

membrane is also influenced by mucus, IgA, water secretion, chloride, glycocalyx, 

antimicrobial peptides, and intestinal microbiota. Increase in permeability is associated 
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with increased inflammation. The gut microbiota affects various aspects of host health 

including immune response and physiological and metabolic functions (71). 

 Innate and adaptive immune cells of the gut immune system interact with the 

intestinal microbiota (including Bacteroides fragilis, Lactobacilli, and Bifidobacteria 

amongst others) in order to provide a homeostatic balance within the intestinal 

ecosystem. The modifications of these systems with age contribute to a state of low-grade 

inflammation which may potentially progress into pathological conditions of increased 

severity. When applying to the gut associated lymphoid tissue, epithelial cells in the 

intestine or enterocytes act as the primary barrier against invasive microbes by either 

secreting the antimicrobial peptides mucin and/or defensin or utilizing Toll-like receptors 

to ‘sense’ pathogens. Additional immunological responses within the gut include 

specialized intestinal epithelial cells and microfolding cells collecting and transferring 

microbial antigens to the lamina propria immune cells, such as dendritic cells, which in 

turn trigger a polarized host response toward T helper 17 cells by acting as antigen 

presenting cells in the presence of abundant interleukins -6 and -1β and transforming 

growth factor-β. This particular immune response occurs when suffering from 

inflammatory bowel disease. The intestinal mucosa also secretes the IgA from B cells in 

order to counter bacterial adhesion to mucosal surfaces while neutralizing toxins. 

However, in the gut associated lymphoid tissue of the elderly, the previously described 

gut immune response can be impaired through the reduction of mucus and α-defensin 

secretion and the ease at which pathogens enter the mucosal layers to generate an 

inflammatory response, which is often referred to as “inflamm-ageing”, that is low grade 

and is propagated by increased growth intestinal pathobionts (53). 
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There is a direct relationship between the gut microbiota composition and 

gastrointestinal and extradigestive diseases. Various therapeutic approaches have been 

developed for correction and alleviation of microbial dysbiosis of the gastrointestinal 

tract. As there is no current accepted treatment option for combating a state of dysbiosis 

within the gut microbial flora, various options have been utilized without much success 

or study. These include: antibiotic treatments, nasopharyngeal fecal-oral transplants and 

bacteriotherapy, and administration of pro-, pre-, and synbiotics. 

Antibiotics, although being the most common course of combat against infectious 

diseases, may cause harm by severely altering the gut microbiota and may result in the 

development of antibiotic resistance with continued use via phage-encoded genes that 

confer resistance. At introduction of the antibiotic to the host, both pathogenic and 

healthy bacteria are reduced. Even absorbable antibiotic can detrimentally affect the gut 

microbiome due to the systemic diffusion that is widespread throughout the body (8).  

Therapeutic antimicrobial application is dependent on the target in question. Overuse 

of broad spectrum antibiotics to treat unidentified strains causing infections has resulted 

in wide-spread antibiotic resistance which may lead into other chronic pathologies. 

Helicobacter pylori infection from overuse of antibiotics indicated a relationship to the 

development of asthma, hay fever, and skin allergies while C. difficile overgrowth from 

the same cause has links to toxic megacolon, pseudomembranous colitis, and antibiotic-

associated diarrhea. A mere two week application of cefoperazone had long-term effects 

of reduced community microbial diversity (84). The severity of the effects of antibiotics 

are dependent on the mode of action, microbial structure and distribution of antibiotic 

resistance genes, and the decree of antimicrobial effect- either bactericidal or 
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bacteriostatic (84). The antibiotic treatments have shown to effect roughly one third of 

the bacterial taxa within the gut by decreasing richness and diversity as well as 

community evenness. Community taxonomic composition closely resembled the 

pretreatment state of the human host within four weeks of treatment application. 

However, at 6 months, several taxa failed to recover to the similar state.  These results 

contrast to the prior assumption that antibiotic had modest effects on healthy individuals 

and support the hypothesis of “functional redundancy” in the gut microbiome (38). A 

metabolomics study of 2000 murine metabolite features in fecal samples showed that a 

single high dose of streptomycin can cause significant changes in roughly 90% of the 

features analyzed (41). Additionally, 20% of patients have a recurrent episode of C. 

difficile infection (CDI) after initial antibiotic treatment, and patients having a recurrent 

episode are 40% more likely to experience another. There is no standardize treatment for 

recurrent CDI patients; usually patients have to undergo several antibiotic courses (10).  

Through 16S rDNA sequencing, it was found that there was a reduction in the 

diversity of bacterial species within fecal microbiota of patients with initial CDI in 

relation to healthy patients, with a notable decrease in Bacteroides and an increase in 

Proteobacteria (10). The loss in diversity in intestinal microbiota in developed countries 

can be attributed to the use, or overuse of antibiotics in addition to antibiotic resistance 

and therefore proliferation of specific bacterial strains over others. Although the affected 

taxa vary by subject, some are not recovered months after initial treatment and a long 

term reduction of bacterial diversity usually ensues (23).  

A correlation has been made between weight gain or obesity in humans and increased 

use of antibiotics. Weight gain in malnourished children, neonates, and adults has been 
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linked to some antibiotics, however the mechanisms of antibiotic weight gain have not 

yet been characterized. However, such mechanisms many include an exertion of selective 

pressure on Gram-positive bacteria and gut colonization by Lactobacillus spp.  Metabolic 

abnormalities in obese mice treated with antibiotics included reduced glucose intolerance, 

body weight gain, metabolic endotoxemia, and markers of oxidative stress and 

inflammation; all of which were shown to reduce gut microbiota diversity (57). The in 

vivo effects of a single course of administration of antibiotics on microbial populations 

can persist for years (21, 38). Additional research is required in order to examine and 

characterize intestinal microbial communities at the species and strain level where 

diversity is the greatest (21, 48, 84).  

Antibiotic intervention in infants has shown to have a negative impact on host health 

by decreasing overall microbial diversity and the proportion of obligate beneficial 

anaerobes thus resulting in possible asthma, allergic sensitization and rhinitis, obesity, 

weight gain, and peripheral blood eosinophilia. The mechanism of modulation of 

microbiota by antibiotics remains unknown but various hypotheses have been proposed, 

such as altering microbial metabolism (SCFAs associated with cell differentiation, 

growth, proliferation, and apoptosis) and the ability to transport metabolites, hormones, 

micronutrients, and other circulating molecules; instigating homeostatic imbalance of the 

intestine and therefore impacting the integrity of its defenses; causing a decrease in 

diversity resulting in a distribution to the innate immune response; and T-cell 

differentiation and activation regulation. Replacing antibiotic use with pre- and probiotics 

can alleviate many disease states and may aid in preventing necrotizing enterocolitis, 

atopic eczema, and other infant diseases (11). 
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The rising administration of fecal microbiota transplants, also referred to as “fecal 

infusions” and “fecal bacteriotherapy,” serves as treatment for specific diseases by the 

introduction of donor liquid filtrate of fecal samples. The method of administration 

ranges from nasogastric or nasojejunal tube, retention enema, and colonoscopy to upper 

endoscopy. Administration through the lower GI has shown higher eradication rates and 

effectiveness than upper delivery at a rate of 81-86% to 84-93% (6, 8, 39).  

The earliest description of this therapeutic method by Ge Hong relates to roughly 

1500 years ago, and is followed by Li Shizhen in the 16th century when applied as 

“transfaunation” to alleviate various gastrointestinal ailments and in veterinary medicine 

by Fabricius Acquapendente in the 17th century for animals unable to ruminate. Camel 

stool was known to be consumed by the Bedouins in the Second World War to cure 

dysentery. In the late 1950s, Colorado surgeon Eiseman utilized fecal enemas to treat 

pseudomembranous colitis which later resulted in effective C. difficile infection treatment 

by restoring microbiota community composition to a healthy state. The epidemiology of 

many of these ailments has changed with time in relation to the mortality, severity, and 

frequency of the disease course requiring adaptations to therapeutic methods currently 

employed (8).  

Fecal bacteriotherapy administration in intestinal microflora for CDI infection has 

shown to result in a smaller amount of Firmicutes and Bacteroides. Two weeks after the 

treatment, Bacteriodes dominated the bacterial composition as seen in healthy individuals 

(39). Microbiota transplantation has been utilized to treat various diseases including: 

inflammatory bowel disease, irritable bowel and metabolic syndromes, anorexia nervosa 

and obesity, multiple sclerosis, and autoimmunity (6). The cost of bacteriotherapy is less 
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than repeated administration of antibiotic courses, hospitalization, loss of work, etc. (39). 

However, participants of this intervention must face the “yuck” factor and invasiveness 

of the application in addition to the relative time consuming and costly screening process 

for potential diseases such as HIV, Hepatitis B and/or C, Viral Hepatitis, and other 

functional abnormalities from donor to recipient, high risk sexual behaviors, drug usage, 

tattoo and/ or body piercing presence and number within 6 months, incarceration history, 

communicable disease exposure and presence, risk for Creutzfeldt-Jakob disease, 

diarrheal illness, IBD and IBS history, antibiotic use history, history of GI malignancy or 

polyposis, immunosuppressant chemotherapeutic exposure, consumption of potential 

allergens, atopic disease, chronic pain syndrome, autoimmune disease, metabolic 

syndrome, and possible transfer of other pathogens (6, 8, 11, 39, 84). 

 Eradication effectiveness has shown to be dependent on the relation of the donor to 

the recipient. Familial relationships resulted in a 93% effectiveness in comparison to an 

84% effectiveness rate in non-related individuals. Effectiveness is also dependent on the 

microbial composition of the donor, and any discrepancies between donor and recipient 

may lead to a transition back to the dysbiotic state with the necessity of further future 

treatments. The microbiome of related individuals has increased resemblance in 

comparison to unrelated individuals, thus indicating genetic background as a molding 

factor for the gut flora, and host genetic variation via quantitative trait loci detection of 

genomic markers has correlation to relative taxa abundance of the following: 

Bacteroidetes, Firmicutes, Proteobacteria, and Actinobacteria (8, 11, 84).   
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Normal Microbiota of GI Tract in Mammals 

 

Now considered as “superorganisms” due to the genetic potential contained in the 

microbial communities and the human genome (encoding greater than 100 times more 

genes than the human genome), the microbiota endogenous to the human body develops 

with the host and may adapt the expression of its genes in concordance with its 

composition pending stress and adaptations within the local environmental conditions. 

Despite the inherent inter-individual variation in the community structure of the gut 

microorganisms, functionality over composition is assumed at highest importance due to 

there is a shared, conserved portion of encoded functions among individuals’ that are 

commonly referred to as the “gut microbiome” which encode functions that are essential 

but not encoded within the human genome.  These encoded functions and subsequent 

pathways are essential to the host and may be employed to assume correct gut function 

(84). 

The main bacterial phyla comprising the human gastrointestinal microbial 

community include the Gram-positive Firmicutes, which is the most abundant at 60% and 

is composed of over 200 genera including: Mycoplasma, Bacillus, and Clostridium, and 

Actinobacteria which is representative of roughly 10% of the total population (47, 57). 

Other abundant phyla include Proteobacteria, Fusobacteria, Cyanobacteria, and 

Verrucomicrobia (84). A large proportion being 2-3 orders of magnitude more abundant 

than facultative anaerobes and aerobic bacteria of the gut microbiota are strict anaerobes. 

Many of which are gram negative rods in the Bacteroides genus which represent roughly 

30% of the measured fecal flora. Other dominant groups include: Bifidobacteria, 
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Eubacteria, Clostridia, Lactobacilli (all gram positive rods), and gram positive cocci. 

Less abundant groups include the dissimilarity sulfate-reducing bacteria, methanogens, 

coliforms, and enterococci. The heterogeneity of the gut in both microbial and substrate 

diversity allows for an immense range in nutritional patterns (saccharolytic, nitrogen 

utilizing, and hydrogen metabolizing) and metabolic functions. The gut microbiota can be 

separated into salutary and harmful bacteria where pathogenic effects include 

putrification and carcinogenesis of the intestine, infection, inflammation, liver and other 

organ damage, and diarrhea; while beneficial effects can result from immunological 

stimulation, decrease of distention problems related to gas, digestion and absorption of 

essential nutrient improvement, vitamin synthesis, and inhibition of growth or dominance 

of pathogenic bacteria (31). Lactobacillus spp. and Bifidobacteria have increased 

abundance where lipids and simple carbohydrates are absorbed in the small intestine. 

However not all Lactobacillus and Bifidobacterium are the same or have the same 

function, as L. planatarum and L. paracasei are associated with lean individuals while L. 

reuteri has been linked with obese body types. Lactobacillus spp. related to weight 

modulation in lean individuals have developed defense mechanisms for enhanced 

glycolysis and defense against oxidative stress while strains associated with weight gain 

contain a limited ability to break down fructose or glucose and might reduce ileal brake 

effects. A change in gram negative bacteria can change gut permeability and affect 

metabolic function (57, 84). 

Research has shown that there is a higher degree similarity in bacterial 

community composition at a specific body site between various individuals than various 

sites within the same individual even with inter-individual variability being noted (57). 
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Metagenomic analysis of said variability has also shown shared function amongst 

bacterial groups. Despite large studies such as the Human Microbiome Project, MetaHIT, 

and other current studies of the gut microbiota, the bacterial component form and 

function remains to be elucidated in its entirety. However, research including the analysis 

of the intestinal microbiota of healthy twins, which at the species level have less than 

fifty percent of shared bacterial taxa, has shown a genetic role in the establishment and 

regulation of the gut flora due to the influence mitigated by host-specific genome locus 

and the highly-debated possible enterotype categories for all individuals (each enterotype 

dominated by a different genera: Bacteroides, Prevotella, and Ruminococcus, 

respectively) independent of age, gender, ethnicity or body mass index (57). 

Fluctuations and disturbances in the gut microbiota occur from birth until death. 

Sterile pre-birth, the fetal intestinal tract begins to be established through colonization of 

microbes present during the birthing process as the delivery type determines initial 

colonization as those born vaginally possess intestinal microbial flora consisting of the 

maternal vaginal and fecal flora (facultative anaerobic microbial dominance including 

Escherichia coli or enterococci) and an environment selecting for reduced conditions for 

anaerobic growth while those born by Caesarian section have bacteria characteristic to 

the skin such as Staphylococcus and Propionibacterium spp. in addition to having less 

populated and diverse bacterial counts. Initial and subsequent feeding also affects 

microbial establishment as breast-fed infants’ microbiota is characteristically dominated 

by fecal flora highly comprised of Bifidobacterium and Ruminococcus with notably lower 

rates of colonization by Escherichia coli, C. difficile, Bacteroides fragilis, and 

Lactobacillus (roughly 1% of Enterobacteria) than those observed in exclusively formula 
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fed infants which was less complex and included enterobacterial genera. With the 

integration of solid food, the bacterial community begins to be similar to the adult 

counterpart as Firmicutes and Bacteroidetes begin to predominate. During adulthood, 

bacterial community variation ceases until stability declines contingent with old age. 

Temporal longitudinal studies show that the relative stability of microbial community 

composition is only altered as an adult transiently via external disturbances as previously 

mentioned (31, 57). 

 Although there is a correlation between the microbial composition of the gut 

microbiome and host age (as is evident with the phylogenetic observations of shifts from 

Bifidobacterium and Lactobacillus to the Bacteroidetes and Clostridia genera from 

infancy to middle age due to the change in dietary intake from a lactate-based metabolism 

to short-chain fatty acid yield from plant polysaccharide intake and vitamin production 

from carbohydrate metabolism), the microbiome alterations occurring due to age remain 

elusive, especially when correlating to any present effects of frailty due to the presence of 

other confounding variables that are also under alteration with age. Research has shown a 

decrease in Clostridia and increase in Bacilli and Proteobacteria and associated decrease 

in short chain fatty acid producers and increase in opportunistic pathogens and facultative 

anaerobes in the gut microbiomes in centenarians in relation to middle aged. This may 

correlate to symptoms of frailty-associated inflammation. Past noted trends in 

composition in the elderly may be linked to other variables that also change with age, 

however, differences in the functions relative to pharmacology and nutrition of the host 

are age dependent. Alistipes genus of the Rikenellaceae family has highest significant 

overrepresentation according to data generated utilizing 16S rRNA followed by 
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Ocillibacter and a decrease in abundance of Eubacteriaceae, Faecalibacterium, and 

Lactobacillus in middle aged and elderly test subjects; this trend may be associated with 

alterations in microbial metabolism and host interactions due to the role of various 

microbial taxa on molecular and ecological functions within the gastrointestinal tract. 

However there is at present uncertainty of implication. Other notable trends included the 

young having more Lactobacillaceae, Prevotellaceae, and Porphyromonadaceae while 

the middle and old aged groups have shown to have increased amounts of  Rikenellaceae, 

Lachnospiraceae (associated with beneficial short chain fatty acid production), 

Ruminococcaceae, and Clostridiaceae and a complete lack of the Akkermansia (linked to 

healthy microbiomes) genus (in the elderly). Young and old subjects also have a higher 

degree of phylogenetic similarity than either did with the middle aged group.  Host age 

and frailty also have an effect on the gut microbiome function profile as an 

underrepresentation of vitamins cobalamin (B12) and its corresponding biosynthesis 

protein and biotin (B7) biosynthesis in the large intestine, in addition to bacterial 

nucleotide excision repair and mutagenesis via SOS genes (increased mutagenesis rates 

may lead to antibiotic resistance in gut microbiota as well as increased inflammation). 

Other carbohydrates such as fructooligosaccharides and raffinose, which are commonly 

used as prebiotics in the elderly for Lactobacilli and Bifidobacteria, have shown to have 

underrepresented utilization in the elderly comparative to the other two age groups and 

could contribute to disturbing the populations of beneficial bacteria populations and thus 

increasing the risk of opportunistic infection. The decline of host lactase activity with age 

can be detrimental to host health due to lactate accumulation within the colon which is 

generally moderated by lactate metabolizing bacteria via lactases and is linked to 
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inflammatory bowel diseases and ulcerative colitis. Obesity also leads to microbial 

composition alterations within the gut with an increase in Firmicutes and subsequent 

increase in inflamm-aging propensity (44, 53, 84). 

Both host and bacterial nutrients are provided by diet, and changes in microbiota 

composition in relation to diet occur due to the fact that certain bacterial species are 

better equipped genetically to utilize metabolic substrates more efficiently than others. 

Diets comprised of an increase of fat intake yield an increase in the “Gram-

negative/Gram-positive index” of microbiota. Humanized germ-free (GF) mice 

administered a diet rich in sugar and fat and low in plant polysaccharide (western diet) 

from a diet low in fat and rich in plant polysaccharides have increased Firmicutes and 

decrease in Bacteroidetes phylum abundance. Murine studies switching to a high-fat diet 

have shown a decrease in Bacteroidetes and increase in both Firmicutes and 

Proteobacteria phyla, while carbohydrate rich diets yield higher populations of 

Bacteroidetes, and calorie restricted diets prevent colonization of C. coccoides, 

Lactobacillus spp., and Bifidobacteria spp which are major butyrate producers that are 

required for colonocyte homeostasis  as butyrate is the preferred source of energy, repair 

and maintaining cell health in the human digestive system. A decrease in these bacteria 

have shown to correlate to an increase in the abundance of opportunistic pathogens. 

Studies have shown that dietary changes can result in notably rapid microbiota 

community changes within just 24 hours. Low dietary fiber intake has shown to relate in 

a decrease in Bacteroidetes and increase in Enterobactericeae. The gut microbiota may 

coevolve with diet thus allowing a maximization of energy extraction and protection from 

non-infection intestinal diseases and inflammation. Vegan/vegetarian diets have also been 
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shown to produce stool with a lower pH and Bacteroides spp., Bifdobacterium spp., E. 

coli, and Enteroacteriaceae spp. culturable counts. A decrease in the quantity as well as 

diversity of Clostridium cluster IV, XIV, and XVII is also associated with a vegetarian 

diet (57, 84).  

Increased research has been performed as of late on the interplay between the 

content of the gut microbial flora and host health. Yet, due to the numerous variables at 

play, research has not been able to directly utilize humans for study; thus the mouse 

model and other human flora associated animals have become widely used for direct 

application to humans as mouse models allow for increased control during analysis as 

well as a decrease in the number of confounding variables while providing representation 

to the human microbiome. Recent developments in this research model have improved 

their use due the existence of inbred, genetically modified lines, ease of breading and 

transmission of gut floral community, and the comparative similarities that they hold to 

the model human physiology as they are confirmed to be consistently humanized. In the 

case that the two microbial environments differ, similar metabolic pathways could take 

place in both the mammalian and mouse gut to compensate for the metabolites produced. 

Also, studies have shown that only a subset of the same microbial profile integrated from 

the donor into the mouse strains, but it was at a different ratio than expressed previously 

in the host.  They suggest that this could be due to the different genetic backgrounds of 

the hosts. It is to be noted that within these studies, bacterial diversity measures between 

human host and mouse model were consistent with the exception of measured species 

richness (19, 26, 44, 86). 
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Diversity and Variation of Microbiota among Intestinal Sections 

 

 The colon, intestine, stomach, esophagus, oral cavity, and mouth comprise the 

human gastrointestinal tract. The cecum, ascending, transverse, descending, and sigmoid 

colon are the distinct anatomical regions of the heterogeneous large intestine, which starts 

at the ileocecal junction and is responsible for electrolyte and water absorption and 

secretion in addition to waste excretion and storage (31). The large intestine houses a 

majority of the present 1.5Kg of intestinal microbiota which represents roughly 10^14 

organisms. This immense mass of bacteria is often considered a “superorganism,” as 

there is a higher abundance of genes present in the gut microbiome than within the 

entirety of the human genome. Heterogeneity of the gut flora correlates to individual host 

variations that occur on a regular basis. The two most prevalent phyla in the human gut 

microbiome consists of the Gram-positive Firmicutes and the Gram-negative 

Bacteroidetes, however it has been shown that both Proteobacteria and Actinobacteria 

can also be the most predominant in a portion of individuals (53).  

Functional activity of the colonic microbiota is directly affected by the 

composition of the hindgut as the present microbiota fluctuate in function according to 

the relative availability of substrates, redox potential, oxygen distribution, and pH in the 

local environment. For example, the proximal colon houses a rich supply of nutrients 

which allows for an increased rate of growth of local bacterium, decreasing pH due to 

short chain fatty acid production while the distal colon has a decreased substrate 

accessibility and therefore a decreased rate of growth and more neutral pH (31). Research 

has shown a higher proportion of bacterial metabolite production within the cecum and 
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colon compared to that of the jejunum and ileum. Observed endogenously produced 

metabolites, pending dietary supplementation, accumulate predominantly in cecal tissue, 

confining their effect on host physiology at that intestinal ecological level where 

microbiota is most abundant (26). There are more bacteria in the distal region of the gut 

with 1011-1012 bacteria per gram of colon content in comparison to the upper region 

which has 103-104 bacteria/ gram of jejunum material (15, 26, 57, 63, 72). Although high 

in bacterial population, the potential contribution of the cecum and colon remains poorly 

studied.  

There is an outstanding assumption that under physiological conditions, 95% of 

dietary lipids are absorbed in the proximal region of the gut (61). This conclusion 

correlates to past studies that have shown inadequate absorption of an overflow of 

prebiotic molecules within the jejunum and ileum (20, 26). Additionally, a majority of 

bacterial metabolites were proportionally lower within the jejunum and ileum (proximal 

gut) in relation to the cecum and colon (distal gut), which had the highest density of gut 

microbiota. The increased abundance of these bacterial metabolites within the cecum 

tissue in comparison to that of the colon also corresponds to the increased capacity of 

metabolic uptake within that site in relation to its counterpart. This could be due to the 

comparably thicker mucus layer in the colon which could potentially interfere with 

intestinal cell fatty acid up-take (82). The bacterial metabolites accumulate and are found 

within the cecum tissue have shown to exert local ecological effects in host intestinal 

tissues when rather than direct systemic effects (26). Additional research has postulated 

that metabolites are produced via bacterial metabolism, not by diet supplementation. For 

example, PUFA-derived bacterial metabolites are mainly produced in the distal portion of 
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the gut, however lipid absorption occurs in the small intestine, and fatty acids present in 

the intestinal lumen are essentially absorbed in the jejunum.  The activation of receptors 

by bacterial metabolism within the gut can affect host metabolism and inflammation, and 

under pathologic conditions bacterial metabolites could cross the gut epithelium to reach 

the bloodstream at a higher rate than if under physiological conditions and could possibly 

reach the lymphatic or portal circulation (26, 84). 

 

Natural Products and the Effects thereof on Normal Flora 

 

The restoration of the gut microbiota from a state of dysbiosis or the prevention or 

treatment of the resulting disease state can be mediated by dietary intake of the host 

through the use of prebiotics (nondigestable nutritional components to be utilized by the 

current microbiota to increase function or presence), probiotics (supplementation with 

‘beneficial’ bacteria), and/or their combined use as synbiotics for direct compositional 

and metabolomics manipulation of the gut microbiota. Dysbiosis occurs in various 

degrees of progression where ‘acute dysbiosis’ is generally regarded as being non-life-

threatening and does not require the use of high risk drugs for treatment, while ‘chronic 

dysbiosis’ is linked to more severe diseases or functional disease states and can been 

deemed as life-threatening (41). Microbial ecology analyses include the inherent 

hypothesis that microbial community structure changes directly affect the function within 

the community (78). 

Fermentation within the gut by gut microbiota allows for the production of a 

variety of compounds that influence gut physiology and other systemic effects in both a 
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beneficial and detrimental means (i.e. The production of short chain fatty acids, or 

SCFAs, from complex carbohydrates that have escaped digestion in the upper GI tract 

[roughly 10-60 g/d of carbohydrate reaches the colon with 8-40 g/d being resistant starch, 

8-18 g/d non-starch polysaccharides, 2-10 g/d unabsorbed sugars, and 2-8 g/d 

oligosaccharides] and protein metabolism for energy). Although relatively stable 

overtime, the gut microbiota and its metabolic functions can be affected by various 

physiochemical parameters such as nutrient competition, environmental composition, 

host condition, bacterial metabolic interactions, and dietary intake and preference which 

can effect fermentation and other metabolic functions. The small intestine is the area of 

absorption for most of the sugars and oligosaccharides; sans fructooligosaccharides 

(oligofructose or inulin), lactose, stachyose, and raffinose which can reach the colon 

intact along with many other sugar alcohols and food additives. Fermentable 

carbohydrates such as glycoproteins, mucins, and other polysaccharide derivatives such 

as chondroitin sulfate can also innately be produced by the host. Endogenously produced 

substrates are most readily metabolized by Bifidobacteria, some Bacteroides 

(polysaccharide utilizers), and Ruminococci. The metabolic products from metabolism 

from one species can later serve as a substrate for another. In addition, saccharolytic 

species (Bifidobacterium, Ruminococcus, Eubacterium, Clostridium, and Lactobacillus) 

allow for direct growth on polymerized carbohydrates via polyhydrolases and 

glycosidases yielding SCFAs from the Embden-Meyerhoff Pathway (hydrogen, methane, 

and carbon dioxide gases removed or excreted). Those that may not be able to directly 

degrade this substrate can cross-feed on the fragments produced by those who do, and 

carbohydrate metabolism is regarded as being a cooperative interaction of enzymes from 
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multiple species. Ethanol, lactate, succinate, and pyruvate are intermediates of 

carbohydrate metabolism which can be later fermented to SCFA allowing increased 

energy gain. Proteolytic species can cause accumulation in amines, phenolic compounds 

and ammonia end products (31, 84). 

The International Scientific Association for Probiotics and Prebiotics (ISAAP) 

has confirmed the relationship between pro- and prebiotics on brain functions, the enteric 

nervous system and the central nervous system through investigating epithelial cell 

function, gastrointestinal motility, visceral sensitivity, perception, and behavior in 

addition to neural, neuroendocrine, neuro-immune, and humoral functions. Behavioral 

impacts in the developing mammal from initial gut colonization is also apparent, and 

psychological co-morbidities have been linked to dysbiosis and diseases including 

inflammation in the bowel. Probiotics can improve intestinal barrier and tight junction 

development while improving mucin expression, IgA production, epithelial cell apoptosis 

of the intestine, enteric pathogen colonization inhibition, ion absorption, and upregulation 

of the immune response. Probiotics have also shown to target intestinal sensory nerves 

and decrease pain (analgesic effect by increasing the abundance of opioid intestinal 

mucosa and cannabinoid receptors) perception and prevent stressed-induced 

hypersensitivity in individuals with dysbiosis. Many of these effects have been observed 

with heat-killed or conditioned probiotic mediums not only viable cultures.  

Bifidobacterium infantis has demonstrated a decrease in pro-inflammatory cytokines, 

increase polyunsaturated fatty acids (PUFAs), and exhibited anti-inflammatory effects 

when used in conjunction with α-linoleic compounds. Increased inflammation leads to 

increased behavioral anxiety, therefore a decrease in the inflamed state has promise, and 
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has confirmed preliminary results, in reducing stress, corticosterone anxiety, and 

depression. Treatment of L. rhamnosus probiotics also alters brain neurochemistry by 

changing GABA mRNA in cortical regions with the addition of a reduction of expression 

in the locus coeruleus, amygdala, and hippocampus. Patients in a state of stress have 

alterations in specific bacterial groups, motility within the GI tract, immune function, and 

hormone and mediator release within the gut (71). The gut microbiota has its own innate 

antimicrobial effect through the production of ribosomally synthesized peptides 

bacteriocin from the present bacteria. Ingestion of bacteriocin-producing strains has 

shown promise therapeutically as a probiotic (84). 

Probiotic use also decreases memory dysfunction and may have application in the 

treatment of neurodevelopmental disorders including autism spectrum disorders 

(Asperger disorder, childhood disintegrative disorder, Rett disorder, pervasive 

developmental disorder). GI disturbances and GI system dysfunctions show a direct 

correlation with the severity of the disorders listed above. A noted increase in diversity in 

microbiota was present in patients suffering from severe autism when compared to a 

control. Gut barrier function can be improved by the use of Streptococcus thermophiles, 

Lactobacillus bulgaricus, Lactobacillus acidophilus, and Bifidobacterium longum 

probiotics. Prebiotic supplementation can improve the inflammatory response, decrease 

putrefactive activity of the gut lumen, prevent GI infections, modulate gut transit, and 

improve the quality of life by decreasing flatulence and bloating. However, studies of this 

nature show conflicting results in respect to the identity of the strains undergoing an 

abundance shift (71). 



 26 

The use of pre- and probiotics has to overcome a qualitative intrinsic gap as oral 

administration generally has a three order of magnitude difference from the native 100 

trillion bacteria present in the gastrointestinal tract which may result in only temporary 

colonization in the gut lumen. The mode of entry may also dictate effectiveness in 

colonization of beneficial bacteria as many Firmicutes are best established through and 

upper gastrointestinal route while a lower route is more ideal for Bacteroidetes due to 

gastric acid secretion (8). 

 

Probiotics 

 

The human gut microbiota has an immense impact on host health, and thus the 

direct manipulation of the microbiota to relieve a diseased state and establish a remedial 

community is of utmost interest. Probiotics are defined by 2001 FAO/WHO as being 

“organisms and substances which contribute to intestinal microbial balance” or “a live 

microbial feed supplement which beneficially affects the host animal by improving its 

intestinal microbial balance (8).”  In order to fit this criteria, which does not include 

antibiotics, the probiotic needs to be stable and viable and remain as such under storage 

and during use, survive the intestinal ecosystem, prepared on a large scale, and 

beneficially effect the host after its integration. Surviving the acidic environment within 

the gut and then colonizing and becoming active in the colon can be problematic as 

adherence to the intestinal epithelium may be necessary. Competition of nutrients and 

ecological sites as well as stress can also cause a decrease in effectiveness in this 

treatment. Additionally, the probiotic must also remain present after the consumption of 



 27 

the product initially containing the strain has end. Lactobacilli (Lactobacillus 

acidophilus, L. casei, L. delbruekii) and Bifidobacteria (Bifidobacterium adolescentis, B. 

bifidum, B. longum, B. infatis), and Streptococci (Streptococcus salivariius ss. 

Thermophiles, S. lactis) are commonly used in probiotic treatments and have shown to 

alleviate, hepatic encephalopathy, carcinogenesis, diarrhea, colitis, pathogen 

colonization, constipation, gastroenteritis, immunostimulation, flatulence, gastric acidity, 

expression variations in microbiome-encoded enzymes in regards to the metabolism of 

plant polysaccharides, maintain the structure of the gut microbial community, inhibit 

pathogen invasion via secretion of mucus, improve mucosal integrity, and act on the gut 

immune system by improving the sensitivity of immune and epithelial cells to microbes 

within the gut lumen and reduce the permeability of the gut (8, 11, 31, 71). The benefits 

of the use of these two strains have been summated by the following points: pathogenic 

growth and survival interference in the gut lumen, mucosal barrier function improvement, 

gut influence via the systemic immune system and other organs. Application of 

Lactobacillus strains has resulted in a reduction of body weight gain, fat accumulation, 

plasma insulin, leptin, total-cholesterol, and liver toxicity biomarkers in addition to 

down-regulation of fatty acid oxidation-related genes and altering gut microbial diversity 

(84). Lactobacillus rhamnosos and Lactobacillus paracasei decrease fat storage and a 

circulating lipoprotein lipase inhibitor to control triglyceride deposition into adipocytes. 

Bifidobacteria is known to reduce the endotoxin levels of the intestine and improve gut 

barrier function (11). Probiotics are a promising therapeutic supplementation tool for the 

alleviation and prevention of many diseases and pathologies. 
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Establishment or increase of presence of beneficial organisms such as 

Bifidobacterium (saccharolytic colonic bacteria comprising 25% of the adult gut 

microbial population and 95% of the population in newborns) and Lactobacillus through 

introduction and implantation of exogenous bacterium has shown to have health-

promoting activities (31). Bifidobacterium yields highly acidic end products such as 

lactate and acetate which may lower the pH of the local environment enough to have an 

antibacterial effect (bacteriocin-type substance secretion against clostridia, E. coli, 

Listeria, Shigella, Salmonella, Vibrio cholerae and other pathogens) and yielding end 

products which may inhibit pathogenic bacteria. They are also known to reduce blood 

ammonia levels, not form aliphatic amines, hydrogen sulfide or nitrites, produce vitamins 

(B group and folic acid) and digestive enzymes such as casein phosphatase and lysozome, 

restore intestinal flora to its normal standard during antibiotic usage, lower blood 

cholesterol, and promote the attack against malignant cells and improve host resistance to 

pathogens by acting as immunomodulators. Therefore, addition of live cultures of these 

exogenous bacteria can have a range of desirable health effects upon reaching the colon 

where they can become active and grow due to the appropriate and selective 

physiochemical conditions. These bacteria are responsible for the digestion and 

metabolism of nutrients as well as the energy generation though fermentation of 

indigestible carbohydrates to SCFAs by the present enzymes. Probiotics have shown to 

aid in the restoration of the metabolic profile of the bacterial composition within the gut 

as well as ameliorating infant antibiotic-associated diarrhea, reducing irritable bowel 

symptoms (through B. bifidum supplementation) and small bowel injury due to IBS 

(Lactobacillus casei introduction), treat behavioral alterations due to stress (Lactobacillus 
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rhamnosus) as well as regulate the γ-aminobutyric acid receptor expression. Although the 

effects of probiotic use may be transient, probiotics have been utilized to shift the 

presence of intestinal microbial balance to change the overall composition of the gut 

microbiome (31, 41). 

 

Prebiotics 

 

Prebiotics are defined by 2001 FAO/WHO as being “a non-digestible food 

ingredient that beneficially affects the host by selectively stimulating the growth and/or 

activity of one or a limited number of bacteria in the colon, and thus improves host health 

(8).” Additional criteria must also be met for a food item to be considered a prebiotic: it 

cannot be absorbed or hydrolyzed in the upper GI tract, it must serve selectively as a 

substrate for specific commensal, beneficial bacteria for growth or metabolic activation, 

alter the microbial composition to that of a healthy state, and cause systemic or luminal 

effects that benefit host health. Non-digestable foods such as oligosaccharides, 

polysaccharides, fructooligosaccharides, and other naturally occurring non-digestable 

carbohydrates (resistant starch, nonstarch polysaccharides [hemicellulose, pectins, gums, 

plant cell wall polysaccharides]), peptides, proteins, and lipids) have been shown to 

improve host gut microbiota health by stimulating growth and activity and specific 

endogenous microbiota, changing the microbial composition of that local, due to the 

nutrients and metabolites provided. They have been shown to particularly benefit host 

colonic health, and can directly manipulate metabolism of lipids via products of 



 30 

fermentation. The chemical structure of these compounds is the cause of lack of digestion 

and absorption for the use of bacteria (8, 31, 71).  

Fructooligosaccharides are a natural non-digestible oligosaccharide that are 

mainly used as prebiotics. They are short and medium length chains of beta-D fructans 

which contain a glucose molecule in their initial moiety due to their synthesis in plant 

cells from fructosyl moiety transfer between sucrose molecules. Mammalian digestive 

enzymes cannot hydrolyze the glucose-fructose bond or beta-2,1-osidic bond of 

fructooligosaccharides. The selective anaerobic fermentation of this substrate over other 

carbohydrates substrate by colonic bacteria (Bifidobacteria) also caused a reduced acidity 

by lactate and acetate production and inhibit the growth of some pathogenic bacteria. 

Fermentation of carbohydrates to SCFA and lactate in the colon has also shown to 

increase the absorption of various essential ions including calcium, magnesium, and iron. 

SCFAs can be used by a number of tissues and organs and also affects endogenous 

metabolism in addition to lipid and cholesterol metabolism (and decrease VLDL particles 

in circulation). They have also been shown to decrease total body fat deposition, 

triglyceridemia, and phospholipidemia (31). Residential status of aged individuals has 

also shown to have an effect in the bacterial and metabolic composition of the gut 

microbiota in the elderly. Firmicute and SCFAs quantity were higher and Bacteroidetes 

lower in community-dwelling when compared to long-stay facility individuals. 

Inflammatory molecules correlating to a state of systemic inflammation was also higher 

in the latter category (53). Prebiotic applications have resulted in reduced inflammation 

markers in the colon and visceral adipose tissue by initiating the growth of 

Bifidobacterium spp. (in a high fat diet by applying polyphenol-rich extracts) as well as 
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the inhibition of growth of pathogenic strains and initiating the growth of non-pathogenic 

strains of Clostridium (polyphenol use). Prebiotics have also shown to provide increased 

stress resistance and anti-inflammatory and anti-allergic responses (fructooligosaccharide 

supplementation) (25, 26, 41). Prebiotics have shown to have profound effects on the 

benefit of insulin sensitivity and phytochemical release during fermentation in the colon 

in the prevention of colorectal cancer through the delivery of fermentation acids to the 

distal colon. They have also shown beneficial effects in relation to obesity, metabolic 

diseases, type 2 diabetes, and several cardiovascular diseases. Possible mechanisms of 

action revolve around the modulation of gut peptides, increasing specific endogenous 

glucagon-like peptide production, improving the tolerance to glucose, targeting 

enteroendocrine cell activity, and leptin sensitivity, promoting fermentation in the gut, 

and regulating the gut inflammatory response (11). 

 Past studies have shown a restoration of microbiota proportions after high fat 

treatment via the supplementation of metabolites to decrease weight gain.  

Dietary supplementation with chemically produced isomers of conjugated fatty acids in 

both rodents and humans led to variously notable properties, such as: anti-obesity, anti-

atherogenic, and anti-inflammatory properties (33, 58, 87). It is to be noted that the 

metabolic effects could be isomer-specific (29).  

 

Synbiotics 

 

The combined use of probiotics and prebiotics as synbiotics (“a mixture of 

probiotics and prebiotics that beneficially affects the host by improving the survival and 
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implantation of live microbial dietary supplements in the gastrointestinal tract, by 

selectively stimulating the growth and/or by activating the metabolism of one or a limited 

number of health-promoting bacteria, and thus improving host welfare”) shows promise 

in combating the diseased dysbiosis state by supplementation with functional and health 

enhancing nutrition by maintenance of the colonic flora in the healthy, balanced state (8). 

They can also increase the shelf life, viability, and effectiveness, and functional activity 

of exogenous and endogenous bacteria of one another when used in conjunction than 

alone. Pharmaceutical application can be made to the following intestinal disease states: 

colitis from antibiotic use, Crohn’s disease and ulcerative colitis among other 

inflammatory bowel diseases, colorectal cancer, ileocecitis, necrotizing enterocolitis, 

systemic disorders, septicemia, pancreatitis, and multiple organ failure syndrome. Further 

use to combat pathogenic bacterial overgrowth, parasite growth, viral infections, burn 

treatment, stress, and antibiotic therapy effects also applies as these are associated with 

the translocation of bacteria due to the failure of the intestinal barrier. Bifidobacterium 

has shown to negate bacterial translocation (31).  

The production of short chain fatty acids (SCFAs) including butyrate, acetate and 

propionate contribute to an anti-inflammatory and anti-neoplastic response while 

protecting the intestinal epithelia through energy supply (to counter atrophy and 

inflammation in diversion colitis caused by SCFA deficiency) and mucin secretion. The 

reduction of SCFA may be due to a decrease of specific bacterial strains 

Faecalibacterium prausnitzii, Eubacterium hallii and rectal/Roseburia group in the 

elderly. The impairment of mucin secreting can cause increased colonization of 

pathogens, such as Gram-negative Enterobacteriaceae, in the intestinal mucosa. Release 
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of lipopolysaccharides or endotoxins by these pathogens can perpetuate the existing 

inflammatory response. For example, IBD patients having abnormal intestinal microbiota 

also experience instability in the abundance of dominant species in comparison to their 

healthy counterparts. There is also decrease of F. prausnitzii in Crohn’s disease and 

ulcerative colitis while the abundance of adherent-invasive E.coli increases. Colorectal 

cancer has also shown to relate to an increase of colonization of the bowel by the 

toxigenic microbes Helicobacter pylori, Bacteroides fragilis and E. coli. Prebiotics, as 

components in many fruits, vegetables, and grains, in addition to probiotics and their 

combined use as synbiotics have shown to enhance the production of mucus, defensins, 

and IgA by intestinal epithelium and upregulate the immunological response of 

phagocytic and natural killer cells.  In order to benefit from this application in its entirety, 

increased research into gut mucosal immunity and function in addition to phylogenic 

identification of microbial community should be pursued. Application of synbiotics has 

also shown to reduce frequency of the common cold and other winter infections in the 

elderly while increasing the frequency of micronutrients (vitamins and minerals), thus 

aiding in overall host health. The relation of gut microbiota to the diseased state as being 

either the cause or the result remains elusive (31, 53).  

The use of synbiotics is best applied to alleviate acute dysbiosis while decreasing 

development of chronic dysbiosis. However, due to the lack of information pertaining to 

the composition of the gut microbiota under both healthy and diseased states, 

supplementation of effective pre- and probiotics has been challenging. Species shifts 

between the two states of health have remained elusive despite the current knowledge of 

phyla level changes. This current lack of information further limits the understanding of 
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microbial community interactions on the supplemented treatments as bacterial spatial 

distribution within the GI tract is heterogeneous due to environmental differences and 

different pre- and probiotics may have varying activities at different locations. Within a 

local environment, the metabolic products of one bacteria can be modified and utilized by 

another bacterial species so increasing the availability of a molecule in its active form can 

be mitigated by community level biotransformation reactions. These cooperative 

interactions directly affect the degree of effectiveness of a prebiotic (as the necessary 

active form may never reach its target location) or a probiotic (which may contain a strain 

that does not yield the desired, beneficial effect on microbial composition and function). 

Further research is needed to investigate and characterize the intestinal communities of 

microbes to increase the efficiency and effectiveness of synbiotic treatments (31, 41). 

 

II. 16S rRNA and Bacterial Diversity Analysis 

 

Within the three domains of life, a large proportion of the present ribosomal RNA 

structure is preserved, and designated regions of said structure are specific to at least one 

of the three domains. The secondary structure of the prokaryotic SSU rRNA consists of 

various regions that differ to the analogous regions in eukaryotes (some regions are 

uniformly conserved across the tree of life while others are specific to each domain and 

differ across the three). Being required for life, all of the phylogenetic domains contain 

organisms having large insertions of many of the nine major variable regions of SSU 

rRNA which contain both constant and hypervariable regions and do not participate in 

horizontal gene transfer events (46). Surveying the distribution of the small subunit 
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rRNA gene allows for an alternative profiling approach due the genes ubiquity across the 

domains of life (18S in Eukarya, and 16S in Archaea and Bacteria), the information it 

provides relevant to phylogenetic identification, relevance to current database 

compositions (3). 

Even prior to the establishment of next generation sequencing as a primary 

method of analysis, the 16S rRNA gene was the most represented gene present in the 

GenBank database. However utilization of the 16S rRNA gene results in various 

limitations including the following: decreased evolutionary rate, lack of correlation to 

organism function, and the variable copy number. However, there is no other molecular 

marker, at present, that is found in all organisms while having a low rate of 

recombination and transfer of horizontal genes, or can differentiate closely related 

organisms according to the information it includes. There is no universally employed 

region of the gene currently being analyzed allowing for one or more of the present 9 

variable regions within the 16S gene to be targeted and analyzed via specifically designed 

PCR primers (3, 9, 14, 16, 30, 37, 42, 45, 46, 67, 74-78, 83, 85).  

Various biases (microbial population relative abundance misrepresentation in a 

given sample) and errors (actual sequence misrepresentation as a result of PCR 

sequencing and amplification) are employed when utilizing the 16S rRNA gene in 

sequence survey. Whether the relative abundances of  the gene being sequenced are equal 

to the bacterial presence in the sample is affected by the DNA extraction method, DNA 

purification protocol, selection of PCR primers, PCR cycling conditions, community 

composition within the sample, and copy number of the 16S gene within the genome as 

PCR polymerases erroneously result in substitution in 1 of 105 to 106 bases, and 
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amplification of heterogeneous templates can result in formation of chimeras and not a 

sequencing error when incomplete amplification products are present to serve as primers 

for related fragments at a rate of 5-45%. Sequencing also results in errors due to the 

homopolymer under-representation at a rate of 0.01-0.02. Undetected chimeras resulted 

in an increase spurious OTU and phylotypes on the genus level to be identified. 

Trimming sequences at break points can reduce the overall error rate when identification 

of breakpoints where’re criteria pertaining to quality scores is not met. These biases 

confound the representation and application of data collected (7). 

Due to recent sequencing and molecular-based technological improvements, 16S 

rRNA phylogenetic analysis have alluded to an exponential increase in the number of 

unique bacterial species  to be that of 107 to 109. This estimate bypasses the estimate 

calculated by utilizing culture-based isolation techniques as is evident in the discussion of 

the great plate count anomaly as only ~1% of total bacterial can be selectively cultured 

and isolated within a given sample  as corresponds to the saying that “everything is 

everywhere ; but the environment selects.” This is apparently due to the differing groups 

of bacterial species found within geographically different yet ecologically similar 

environments. It is proposed that as bacteria are a large source of bioactive, natural 

products, they could be utilized pharmaceutically in future drug therapies. However, it 

remains unknown if the increase in species diversity will correspond to a like increase in 

the biosynthetic diversity of secondary metabolites. Therefore, metagenomic and culture 

independent methods can be utilized to elucidate the potential secondary metabolite 

source present within the newly-found microbial diversity (67). 
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Many of the culturable microbes were unfortunately considered “microbial 

weeds,” and did not provide quality or representative results for the diversity being 

studied. This also leads into the issue that a species being selected for in a controlled 

environment differing from the conditions where the sample was extracted may not even 

be a major contributor of the microbial community within its native environment (an 

extremely minor player of low relational abundance to the whole) (16). 

The 16S rRNA gene, though representative of low sequence diversity libraries, is 

highly conserved, and is considered universal and has greatly increased the rise of 

complex, novel microbial consortia (27, 30). Species analysis of diversity can be based 

on the nucleotide sequence identity in mitochondrial DNA within the species. 16S 

ribosomal RNA coding region of partial nucleotide sequences can discriminate amongst 

species identity in order to achieve specificity and sensitivity with increased resolution of 

the results. The nucleotide regions analyzed are highly conserved and many were located 

in the ribosomal RNA coding region (37). As there are sufficient data available pertaining 

to the composition and identity of 16S rRNA genes, they can be applied to multiple 

techniques utilizing next-generation phylogenetic identification of abundant microbes in 

addition to measures of similarity and or distance, spatial and temporal assessment of 

microbial diversity changes, or the exploration in treatment effects and disturbances in 

microbial community composition. Also, microbial ecology analyses include the inherent 

hypothesis that microbial community structure changes directly affect the function within 

the community (1, 40, 78). 
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Alpha and beta diversity measurements, which cannot be obtained in their 

entirety, can be applied to general changes within a given community and can be effected 

by sampling (78). 

 

What is Diversity? 

 

Unparalleled taxonomic diversity exists within microbial communities of both the 

host and environment. Though improved dramatically with current available technologies 

including the 16S rRNA gene sequencing, analysis and interpretation of the spatial 

distribution, organization and composition of these communities remains elusive. Alpha 

(species richness measurement), beta (analysis of diversity comparisons between samples 

such as Bray-Curtis methods that are based on relative OTU abundance or Unifrac that 

integrates phylogenetic structure and is separated by being weighted [where phylogenetic 

structure is based on OTU abundance on a binary scale and showed higher alpha diversity 

in PE data compared to single direction sequencing reads of the 5’ end] and unweighted 

[which has shown no difference in PE data and single direction sequencing), and gamma 

diversity analysis progress as facilitated this issue, however current sequencing coverage 

is lacking for comprehensive analysis of single samples or microbial community 

comparisons. Rare biosphere taxa include those microorganisms that can live at relative 

low abundance, have yet to be discovered. Taxonomic diversity has shown to be 

increasing in lower dominant distributions (3, 74, 78). 

Diversity indices of Margalef Species Diversity (species abundance and 

frequency), Shannon Diversity (entropy or proportional abundance of a given species 
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amongst a whole), and Simpson Diversity (probability of two randomly selected 

‘samples’ belonging to the same species) can all be elucidated by alpha and beta 

measures (12). 

Species richness is characterized by the number of species within a given 

community or sample and species evenness is the size of the species population within 

that same community. Both of which are used as parameters to investigate diversity and 

structure within a community and are limited by conventional culture-dependent 

methodology due large fractions (85-99.9%) of microorganisms present in nature being 

refractory to cultivation. Lack of identical environmental parameters composing the exact 

environmental structure as is found in nature during cultivation imposes an additional 

limitation by altering the community structure by the new selective conditions introduced 

to the environmental sample. This results in an evolved community structure that may not 

represent the initial structure present during sampling (51). 

Host-associated samples have shown to be diverse due to beta diversity analysis 

of environmental samples as it measures the degree of similarity, or phylogenetic 

relatedness, between community samples. This type of diversity metric can be used in 

measuring shifts in the composition and structure of microbial communities across 

environmental samples. Beta-diversity studies of communities and genus level taxonomic 

distinctions has insisted that extensive sequence curation and contig formation is 

unnecessary. However beta-diversity studies, though useful in community comparisons, 

have limited use to only communities exhibiting clear differences and it does not provide 

information the details of these differences (9, 43). 
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In silico digestion can now be accomplished to investigate the efficiency of 

restriction enzymes in discrimination among sequences and provide information 

pertaining to the following about an ‘ideal enzyme’: best estimate of diversity by 

discriminating between present phylotypes, best phylogenetic group resolution, best 

paring with primers for a given dataset. However, there are various limitations to the 

programs that perform this analysis in regards to condition limitations and application 

and data interpretation. Additionally, this tactic is only done if a specific sequence is in 

mint and is not ideal for community analysis or overall diversity studies as only a small 

fraction of bacterial diversity is represented in the databases utilized and generated 

phylotypes may not correlate to those present within any given database. Primers must be 

general enough to apply to all bacterial populations of interest yet specific to a given 

taxonomic group; i.e. bacterial 8f is not as universal as though as it has been shown by 

the probe match tool in the ribosomal database project to amplify at most 76-98% of the 

bacterial 16S rRNA genes contained on that database (which only include a fraction of 

the extant bacterial diversity) and is not specific to bacteria alone (as it also matched 

various archaeal 16S rRNA gene sequences (73). 

OTU assignments are made according to the derived genetic distance between 

sequences. Distribution of sequence abundances among OTUs allows for general 

estimates of ecological richness, evenness, and diversity (a combination of the two 

previous) of the community in addition to measurements of the like between 

communities. Phylogenetic methods investigate differences in communities according to 

sequence difference. OTU application allows for quantitative measurements to be 
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collected but is limited due to the increased number of sequences needed to combat the 

underestimation of richness that is caused by inadequate sampling (74). 

Accurate distance based threshold for taxonomic level definitions can be created 

and therefore consensus-based methods of OTU classification should be employed. This 

is due to the inability to define bacterial taxonomic levels resulting from the lack of 

adequate bacterial taxa being cultured or culturable. Many of the present taxonomic 

outlines and requirements are based on previously cultured organisms causing candidate 

phyla and non-culturable phyla are lacking in taxonomy identifying to the level of genus 

or species. No accepted and employed definition of a bacterial species exists, which also 

increases the difficulty in appropriate taxonomic classification according to phylotype or 

even define the genera, family, class, order, or phyla of bacteria (77). 

There is no biological significance pertaining to alpha diversity when using either 

the one or each gap calculator. However, when performing analysis according to OTU 

metrics, an overestimate of similarity between communities resulted when ignoring gaps, 

and an underestimate resulted when counting each gap. Adjustments in the OTU cut off 

resulted in a parallel effect in some beta diversity measures; for example, ignoring gaps 

while increasing the threshold lessens the sequence differences between each other and 

incorporate additional sequences within an OTU yielding an increased number of OTUs 

to be shared while increasing the stringency of an OTU resulted in the opposite. 

However, there was no significant difference between 0.03 and 0.05 OTU cutoffs when 

using either the one or each gap calculation for distance. A 0.03 OTU threshold (6 

differences) used in 200 base reads reduces the application of results when artifacts 

introduced in PCR, alignment, and sequencing are taken into consideration (76). 
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Methods of bacterial diversity measurement 

 

The simplest approach of trace analysis is binary comparison of different sample 

peak presence. Although valid, this approach lacks appropriate quantitative analysis. 

PCA, or Principal Component Analysis, and other multivariate statistical methods have 

been used to employ the needed statistical rigor for complex data set analysis. An 

additional benefit to multivariate analyses is the use of numerous variables that are not 

constrained to species identification. Shifts in ordinations can be determined by vector 

distance from the ordinate or from other data points (68). 

PCA can be used to show trends in distances in community patterns. However, 

PCA data is not normally distributed. Additionally, non-linear data from large gradients 

can cause PCA ordination arching and thus obscure any patterns (68).  

More than one group or the influence of various factors are generally integrated 

into studies of applied microbiology. ANOVA, or analysis of variance, allows analysis of 

this as well as establishing whether either factor influences the microbial composition on 

an individual basis or may result from a contribution interaction amongst factors present. 

For complex data sets, analysis of variance is the most appropriate statistical analysis 

method. There are multiple variations concerning this analysis and each apply to a 

particular experimental context. Also, various assumptions concerning the sample set 

need to be ‘approximately’ true for the ANOVA to be validly applied such as errors 

being distributed normally among a mean of zero and a standard deviation, and that all 

variation from group to group is constant in all measured groups. Additionally, individual 
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treatments are additive instead of multiplicative. Experiments are generally too small to 

test the validity of these assumptions, which a failure in such can affect both significance 

and sensitivity. In microbiology applications, quantity is generally estimated and the 

assumptions may not hold true as there are two common problems: normal distribution is 

often unlikely among small whole numbers, and heterogeneous variances within different 

groups may result from a large range of bacterial quantity. If there is doubt in these 

assumptions, the validity and significance are considered more of approximations. If 

assumptions are not met, transformations of the data cannot be achieved, making 

ANOVA impossible (34, 65).  Most post hoc tests are available in software packages, 

however many do not address the ANOVA assumptions. Various different post hoc tests 

can lead to the same conclusions. The type of test that you use is dependent on the 

intention of the analysis. However, none of the tests effectively substitute a pre-planned 

experiment having specific analysis to test in mind (35). 

The additive ANOVA model identifies but does not analyze the interaction 

source. Multiplicative formulations such as AMMI, or Additive Main effects and 

Multiplicative Interaction, are an alternate to this model and can be used to identify the 

contribution of genotype vs. environment interaction sensitivity (34, 65, 68).  

 

III. Techniques and Statistical Analysis 

 

Culture Dependent 

Microbiology’s Golden Age, the early 1900’s, had a severe dependency on 

culture-based isolation and characterization techniques despite the apparent limitations 
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relative to this methodological practice. Culture-based techniques have led to novel 

insights into the study of bacterial community structures of culturable organisms within a 

given environmental sample. However, there is limited application in revealing the 

complete diversity or phylogenetic assignment of many of the environments being 

studied. The ex situ presence and growth of organisms, culture dependent methodology 

utilized, has shown to be highly unrepresentative and lacking in relation to the diversity 

present within the microbial populations being studied. DNA-based molecular methods 

have facilitated this and circumvent the limited scope of culture dependent techniques by 

identifying sequence diversity according to genes present within a sample. With the 

introduction of the Polymerase Chain Reaction, analysis of microbial communities was 

facilitated while avoiding culture biases by creating a unique amplified nucleic acid 

profile or pattern reflecting the microbial community structure of the sample (1, 5, 40, 

68).  

 Traditional microbial ecological investigations integrated clone library generation 

where every clone consists of a conserved primer PCR amplification product and 

sequencing of that clone. Many sequence collections are generally necessary for 

comparison, and intensive sampling of each library is required for accumulation of 

adequate coverage of a microbial community sample. Due to the log of microbial 

population in the sample, complete analysis of every cell in the community cannot be 

performed, and thus analysis relies on statistical integration to generate general diversity 

measurements (74). 
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Culture Independent 

 

Biochemical compound analysis from an environmental sample source can be 

achieved by means of culture-independent methods investigating microbial community 

composition. Purified, ribosomal nucleic acid or genomic DNA isolates are utilized in 

said analysis by paring molecular genetic techniques to phylogenetics and integrates 

species that are related phylogenetically to species that are cultivatable as well as those 

who have yet to or cannot be isolated by culture-dependent means (1, 5). Many of these 

molecular techniques are based on the use of PCR amplicon separation by targeted 

functional or phylogenetic genes, namely the highly conserved region within prokaryotes, 

the16S rRNA. However, diversity cannot be studied at a level of high resolution within 

these methods pending the relative simplicity of the community structure due to the 

limited species designated by observed DNA hybridization rates or sequence visible on a 

gel. Yet insights into diversity can be obtained in terms of relative abundance of a 

common species as these rapid, robust methods depict major differences amongst 

community composition and structure while testing comparative hypotheses. 

Characterization of complex microbial community samples is an arduous process that 

limits many microbial ecology studies due to the difficulties of identification and 

quantification of microorganisms present within any given sample. Culture-dependent 

methods are restricted due to the limited information collectable from morphological data 

and the intricacies of isolation. As such, diversity can be more adequately assed by 

genetically-based techniques due to its application to a wider range of organisms. 

However, they are not without their inherent biases such as those present during 
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amplification due to annealing temperature discrepancies as well as poor primer-template 

homology which skewed relative abundances measures as well as may lead to a loss/lack 

of amplification in some community members, template concentration, DNA extraction, 

pipetting, reproducibility, etc. which result in the lack of reflection of TRF abundance 

and an organisms’ abundance. Utilizing a well-homogenized sample and PCR master mix 

and integrating replication of samples can alleviate some of the associated biases (13). 

Construction, screening, and analysis of clone libraries is both time and cost 

intensive. Other techniques have been developed (such as DNA melting behavior and 

single-strand conformation) to circumvent clone library use and assess community 

structure while providing a crude qualitative assessment of species diversity. However, 

they are limited by the lack of sensitivity of the materials employed in the procedure (ie 

staining) and to not contribute data relative to phylogenetic assignment or identity of a 

given microbial community (51). 

Most PCR-based techniques utilize 16S rRNA genes from sample DNA for 

amplification, cloning, and sequencing and can be applied to diversity studies. Cloning is 

both time and financially exhaustive as several thousand clones must be analyzed from a 

single sample to definitively characterize a 4000 species/gram soil sample, and the 

resulting phylogenetic assignment of individual members within the microbial 

community is not necessary for substantive studies of microbial communities. Other 

analyses (i.e. Amplified Ribosomal DNA Restriction Analysis [ARDRA], Single 

Stranded Conformation Polymorphism analysis [SSCP], Thermal and Denaturing 

Gradient Gel Electrophoresis [TGGE and DGGE], Length Heterogeneity analysis [LH}, 

etc.) are highly dependent on manual visual resolution and may not supply the sufficient 
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fragment resolution as restriction fragment analysis divides an organisms visual signal 

thus omitting organisms having an increased amount of restriction sites or provide 

adequate amounts of data (13, 40).  

A common technique amongst those discussed that has proven effective in 

comparative studies of microbial communities within several environments is that of the 

TRFLP analysis (5). It is a replacement of RFLP analysis (ARDRA) for comparison of 

rDNA due to limitations of species richness and evenness estimation as well as 

identification of specific phylogenetic groups present. The use of fluorescent dye is 

employed to differentiate between past technologies and circumvent the limitations 

imposed by said technologies. ARDRA also has limitations as sample complexity 

increases, resolution decreases (patterns become too complex to measure diversity). 

TRFLP has a higher resolution (51). 

TRFLP analysis was introduced nearly two decades ago and quickly became an 

ideal molecular tool in microbial community analysis due to its nature at being high 

throughput and having relatively high phylogenetic resolution and application (51, 52, 

81). It quickly replaced the culture dependent methodology that was utilized based on 

extensive characterization and isolation of pure bacterial cultures during the golden age 

of microbiology circa 1900 due to its inherent limitations. Numerous genetic based 

approaches based on the production of a pattern or profile of nucleic acids from an 

amplified sample have been developed and utilized since that era, of which TRFLP 

analysis stands at the forefront despite its flaws and limitations. The development of 

TRFLP statistical applications have allowed for adequate noise elimination in TRF 

profiles as well as retention of information for representative profile interpretation of 
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microbial community dynamics. PCR-based methodology has proven to yield 

reproducible data in relation to the abundance of a given amplicon while being in direct 

proportion to template abundance in a sample of increased diversity (1, 5, 13, 18, 40, 52, 

81). 

 

T-RFLP 

 

Rapid, high throughput and robust analysis of microbial community composition, 

diversity, and structure can be achieved and validated through TRF (Terminal Restriction 

Fragment) analysis of the 16S rRNA gene. It has been successfully utilized in bacterial 

community differentiation amongst a wide variety of sample sources and has been 

compared to denaturing gel electrophoresis and 16S rRNA gene cloning for this purpose. 

In addition to community differentiation, it can also be applied to analysis of the relative 

structure and phylotype richness of a community in addition to specific organism 

identification. This method bypasses the limitations present in cultivation-dependent 

methods by comparing PCR amplified DNA sequences from environmental samples. Its 

application has broadened to include analysis of fungal ribosomal genes, 16S rRNA 

genes, archaeal 16S rRNA genes, functional genes, and physiochemical cycle and 

metabolic product encoding genes. Small subunit (16S or 18S) rRNA genes from total 

community DNA is the most commonly targeted gene for amplification and study (1, 5, 

13, 18, 40, 51, 52, 73, 81). 

 T-FRLP (Terminal Restriction Fragment Length Polymorphism) analysis is 

based on restriction site location variations among generated sequences while the lengths 



 49 

of fluorescently labeled TRFs are precisely determined on automated DNA sequencers by 

high-resolution gel electrophoresis and the use of internal size standard in every profile. 

Detected TRF profiles are quantitatively measured in terms of size in base pairs, 

fluorescence intensity (peak height), presence, and width (length of fluorescence), etc. 

Theoretically, the composition of the generated data can be extrapolated from available 

sequence databases (there was a correlation between a decrease in predicted 

phylogenetically informative TRFs and TRF bins as the number of available reference 

sequences decreases) (5, 27, 51).  

TRF data is high throughput and easily obtained in comparison to other 

community profiling methods. It can also confidently have application in community 

structure analysis of spatial and temporal shifts. Analysis of the data is also greatly 

facilitated through the use of current fragment analysis and software packages allowing 

for statistical precision and increased application in microbial community dynamics on a 

scale previously unobtainable. The use of 16S rRNA amplicons in the production of TRF 

patterns also have applications related to diversity studies of the community profile. 

Additionally, the TRF patterns are generated by electrophoresis systems integrated into 

DNA sequencing platforms and thus allow greater precision and higher resolution that 

any other current community profiling method available (1, 2, 40, 51). 

Many TRFLP methodologies utilize fluorescently labelled universal primers 

which will anneal to prokaryotic 16S rRNA gene conserved regions for PCR 

amplification to yield genomic DNA of a microbial isolate or community sample. Only 

using one fluorescently tagged primer can lead to a sever underestimation of microbial 

diversity as various bacterial species may have the same terminal restriction fragment 
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length for a given primer combination; thus resulting in a lack of resolve in comparison 

to the use of two tagged primers. Multiplexing can be used for communities that contain 

different taxa. PCR, restriction enzyme digestion, and gel electrophoresis are integrated 

in the process of TRF pattern generation. A PCR of extracted sample DNA is performed 

using fluorescently tagged primers that are homologous to the target gene’s conserved 

region of interest before fluorescently labeled amplicons that are specifically designed for 

a given tetranucleotide recognition sequence present within the amplicon product are 

subjected to restriction enzyme digestion to produce a pattern of different fragment 

lengths after which. Purification of digested amplicons is later performed to remove 

excess salts that were introduced during the reaction processes. Electrophoresis 

integrating fluorescence detection of labeled terminal restriction fragments (TRFs) in a 

DNA sequencer is then accomplished. Automated software programs for fragment 

analysis generates TRF profile peak data based on TRF peak retention time in relation to 

a DNA size standard (ROX 1000) to generate electropherograms that can later be 

analyzed via multivariate statistical methods. Most literature supports that the despite the 

ladder used, accuracy can only be achieved up to 700 bp. From this data, binary 

measurement of fragment data in addition to profile abundance within samples can be 

utilized in comparison of differing communities based on distance and similarity 

measurements (1, 2, 40, 51, 52, 73).  

There are PCR biases possible in T-RFLP community analysis including those 

introduced during amplification that could skew estimates of organism abundance 

relative to gene copy number. As such, the resulting TRF patterns can only accurately be 

applied to describe the relative abundance to specific amplicons and not to relative 
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organism abundance. The appropriate primer size must also be taken into consideration 

as resulting patterns may misrepresent the actual diversity present if amplicons do not 

contain the targeted restriction site. The best possible estimation of diversity can be 

achieved with an optimal amplicon length is between 400 and 700 bp. This will avoid the 

data loss apparent with long amplicon use (1, 40).  

Other biases that may skew data representation include any inconsistencies in 

loading the same DNA quality as well as quantity across samples for comparisons. 

Neglect of sample preparation fidelity therefore resulting in a decrease in overall 

representation as increased amounts of DNA is to be loaded for a TRF pattern with a 

large number of similarly sized peaks due to the signal being diluted across the peaks. In 

contrast, less DNA can be used for patterns with few or unevenly distributed peaks in 

order to avoid saturation of the fluorescence detector. Also, a lack of sample size 

consistency may result in skewing abundance and presence results of ensuing data in 

addition to introducing random bias. This is especially applicable to gut microbiome as 

specific bacterial are present based on location due to the physiological conditions of the 

system. Unfortunately, these patterns cannot be ascertained in advance and require trial 

and error or the use of an idea, equal purity DNA quantity range of 50-200 ng digested 

DNA in 20-50 ul reactions. Again, the use of differing DNA quantities can also lead to 

errors within the TRF pattern analysis as well as similarity profiles derived on 

presence/absence data. Inconsistencies among replicate preparation, the disparity of cell 

lysis, DNA adhesion and presence of extracellular DNA can also introduce error (1, 5, 

13, 18, 40, 52, 81).  
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Manual interpretation and manipulation has shown to reduce overall data 

representation and introduce additional error as well as bias. Additionally in manual TRF 

manipulation, sample identity and PCR replication already considered, random lane-to-

lane variability is attributed to residual variability and sample variability in small peak 

detection can be reflected by TRF rarity and not the expected rarity of a given genotype 

(5). 

Peak size discrimination is generally set to 1 base pair during peak alignment. 

Manual alignment is subjective and should be avoided. Euclidean coefficients are not 

ideal as data with blocks of double zeros or fragment absences. A 1% threshold during 

peak filtering can be statistically relevant for community analysis (68). There can be 

discrepancies in fragment sizes due to the relative error apparent from sequence identity 

on migration within a polyacrylamide gel. This factor can contribute to an alteration in 

seemingly phylogenetically specific TRFs and the use of ‘binning’ for comparative TRF 

sizes. inconsistencies among replicate preparation, the disparity of cell lysis, DNA 

adhesion and presence of extracellular DNA Binning is employed to account for TRF 

drift caused by improperly sized TRFs due to differences in fragment migration and 

purine content. DNA standardization can decrease replicate TRF profile variation. The 

use of differing baseline thresholds can decrease reproducibility. DNA standardization 

can alter branch lengths (18, 27). 

Despite the relative simplicity of the TRF procedure, profile reproduction among 

sample replicates has yet to be achieved in its completeness. Past research has shown that 

upwards of 85% of all generated TRF peaks can be irreproducible artifacts. Replication is 

imperative especially if peak representation to a specific phylogenetic assignment is to be 



 53 

considered. Past TRFLP research has also been based on the mere presence or absence of 

peak pattern profiles in characterizing the similarity of profiles of a specific sample (the 

number of peaks to TRF patterns have in common).  This contributes to a lack of precise 

community fingerprint and phylogenetic diversity. However, it may still provide 

information pertaining to estimated community richness. Complex community structure 

has also led to incongruences phylotype richness and structure assessment. The inference 

of phylogenetic composition based on the TRF profile depends on the TRFs phylogenetic 

resolution, or the similarity of organisms responsible for a specific TRF size, as well as 

the quality and quantity of comparative reference sequences available. Sequence 

discrimination by a specific TRF is generally inconclusive and generally yields a skew in 

sequence distribution for a specific TRF, as extremely few TRFs are specific for a given 

species or genus. Comparative diversity within a community can still be deduced from 

phylogenetically relevant TRFs if a larger scale is as well as analysis focusing on a single 

bacterial division (27, 40). 

Various inherent biases are apparent in relation to applications based on DNA and 

PCR usage that limit TRF pattern interpretation and relevance though the introduction of 

error and artifact. For example, lack of consistency of fragmentation across samples can 

skew representation of data, and specificity and bias is also affected by the lack of 

completeness of ribosomal housekeeping and functional genes in databases for adequate 

primer design and phylogenetic capture as it is more probable to amplify dominant 

groups of target sequences than their less abundant counterparts in any given 

environmental sample. Therefore, in a community having 108 cells, only up to 0.1% of 

populations within the microbial community will be detected. Other sources of error 
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occur if there is production of single-stranded pseudo-terminal restriction fragments due 

to incomplete amplification which is cycle number dependent as well as production of 

secondary structures that are less common for functional genes than 16S rRNA genes due 

to the difference in complexity. Incomplete digestion due to presence of trace PCR 

enhancers and additive, template purity and complexity, and PCR salt interference, 

differential electropherogram migration from resulting fragment length differences, lack 

of consistency in fragment lengths observed at separation and those sequenced are caused 

by the differential migration patterns of the fluorophores present on internal ladder sizing 

standard and the labeled fragments (i.e. ROX ladder has an additional twelve carbon 

atoms than the six carbon FAM label, also FAM and HEX fluorescein dye labeled DNA 

migrate faster than ROX labeled DNA containing the fluorescein rhodamine dye. 

Therefore, HEX and FAM generated fragments can be underestimated; there is no current 

resolution for this problem) also are problematic. Some ladders may result in double 

peaks after separation be double stranded causing miscalls by software algorithms. Size 

variation may also be attributed to fragment purine (A/G) content due to the 

discrepancies in molecular weight. Inconsistencies in gel composition and running 

conditions, such as temperature and time, may also mitigate migration changes), and data 

set alignment (peaks are measured in base pair units while the height of each peak is 

measured in fluorescence units) also result in a lack of representation in the data 

produced (40, 52, 73). 

However this is not unique to this profiling method but also applies to other 

microbial community analysis methods currently used which also have capabilities of 

identification of unique profile patterns in relation to the organism responsible for that 
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result that TRF profiling methods cannot accomplish. 16S rDNA consists of a variable 

conservation of restriction site positions and thus can lead to a reduction in the resolution 

achieved by using TRFLP analysis on a species level (unique restriction site position in 

each species) to that of higher order groups and reduces the TRF profile complexity 

generated from the community sample limiting the diversity estimates that can be made. 

The use of a database for phylogenetic assignment of TRF patterns is often nonspecific 

and imprecise (which is why MiSeq, Mothur, and MG-RAST was performed). Lack of 

completeness within the database can also lead to incorrect phylogenetic assignment 

especially applicable for target sequences other than the 16S rRNA gene. The extensive 

rRNA sequence database has been utilized to determine unique TRF peaks in nearly all 

reports integrating 16S rDNA TRF patterns with several applying taxonomic assignments 

to TRF patterns and concluded that often a single TRF can represent several general. 

Therefore the resolution is lacking and further sequencing and analysis is needed for 

accurate, high resolution phylogenetic assignment as is apparent in the use of Mothur and 

MG-RAST software packages. Additionally, it was shown in RDP database analysis that 

several unrelated organisms can produce the same TRF size (40). Also, despite having 

developed immensely since its introduction T-RFLP analysis still lacks a consensus in 

which statistical analyses should be ideally employed (1, 18, 51, 52). 

Recent developments in data processing and analysis of TRF profiles has aided in 

obtaining a reduced-bias, objective analysis of unique, rare, and common profiles which 

can be applied phylogenetically to aid in diversity studied (1, 5, 13, 18, 40). Various 

methods have been employed within the literature, however the most ideal method to be 

utilized is one that reduces the presence of type II errors which concern the lack of 
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detection of differences in actually different profiles and therefore rejecting the null 

hypothesis. Actual relationships amongst profiles can be facilitated by the used of 

analytical replicates and statistical tests in addition to automated software packages that 

reduce the biases introduced by manual data manipulation while determining significant 

differences between samples by standardizing data and integrating statistically sensitive  

algorithms for treatment of outliers, distinguishing ‘true peaks’, binning, grouping, 

comparisons, measurements of size, distance and peak area, and noise separation,  and 

other means of differentiating between T-RFLP profiles if derived from the same sample. 

This is accomplished in spite of errors and innate biases introduced during the procedure 

(1, 5).  

However, there still remains limitations for presumptive assignment of bacterial 

group identification within a community, and the extent of phylogenetic application is 

dependent of extent of universalness and specificity of the primers used. No known 

universal primers can hybridize or amplify all sequences available.  The sequences 

present in the database used to generate said universal primers represent only a portion of 

the total species diversity present in the natural microbial world and therefore lack 

complete resolution. Interpreting data should be done cautiously and only as an 

estimation of diversity as population presence is dependent on rank abundance and those 

microbial populations that are not dominant numerically are often not represented and 

therefore species diversity of the environmental sample is vastly underestimated. Also, 

gene copy number among species and biases introduced though out the procedure can 

yield skewed, unrepresentative products in relation to rank abundance of the original 

DNA sample template. Only very general phylogenetic inferences can be drawn and the 
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degree of phylogenetic information obtainable from this method is dependent on the 

limited performance of the PCR primer used. Distinct community signatures cannot be 

produced (51). 

 

Processing and analysis 

 

Capillary or polyacrylamide gel electrophoresis is generally used to determine 

differences in fragment abundance and length according to a size standard while actual 

measurements are a mere estimation by algorithm interpolation (abundance is due to 

fluorescence intensity) and are later assigned to OTU bin categories which may include 

multiple phylotypes pending primer and enzyme resolution of species complexity and 

phylogenetic relatedness within the sample. The degree of accuracy in fragment data 

collection directly relates to its applicability of accurate community composition 

representation. As noise varies by run, an automated objective procedure is required to 

determine this baseline threshold (either by peak height or area) by an arbitrarily chosen 

value of fluorescence units. The use of high threshold noise decreases noise but may lose 

data related to small reproducible peaks. The use of a threshold also assumes that there is 

little experimental variation in sample preparation. Run-to-run variability also affects size 

estimations of the same bacterial phylotype (73). 

The operational definition for a species cites a 3% dissimilarity, but is not widely 

accepted.  Methods employing OTU approaches avoid many of the limitations implicit to 

phylotype analysis due to the lack of bin restrictions since taxonomy outlines are not 

applied. Sequences can thus be assignment and clustered with equal basis regardless of 
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reference sequence representation or restrictions issued in outline classifications. OTU 

assignment is depended on the presence of other sequences in the dataset. However, this 

methodology assumes that the 16S bacterial rRNA gene evolves at the same rate among 

all taxonomic affiliations. Analysis and clustering algorithms are also computationally 

intensive for OTU-based methodology. Mothur utilizes a neighbor joining algorithm that 

is taxonomy-independent and performs better than deterministic and heuristic methods 

available. OTUs can represent sequences from multiple lineage assignments due to there 

being no taxonomic level threshold commonly employed (77). 

As TRFLP analysis is increases in popularity, the range of methods for data 

analysis has also increased. Many of these processes have shown to lack appropriate 

statistical testing. The Bray-Curtis coefficient can be employed for ideal construction of 

similarity matrices of TRF profiles (68). 

Sequenced data is imputed into Peak Scanner (Applied Biosystems) where 

defaults are altered to represent the use of ROX 1000 size standard and NPP analysis 

method. After which, all poor or bad peak signals being weak or noise are removed and 

remaining data is exported to Microsoft Excel where all peaks that did not represent the 

fluorophores used were removed from downstream analysis according to 

electropherogram patterns, or traces, presented within this program that display an array 

of TRF peak sizes in relation to variable fluorescence intensities produced by the 

fluorophores used (68).  

 Remaining data was formatted for diversity analysis via Primer 6 software by 

using program defaults with the exception of 'samples as rows,’ and Shannon, Simpson 

and Margalef values were generated for each of the imported peaks. After which, 
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averages and standard deviations of the replicates of each of the sample points were 

found and plotted in Microsoft Excel based on primer direction and sample site pairing 

(12). 

The same quality Peak Scanner data was also utilized for PCA and AMMI 

analysis via T-REX after formatting in Microsoft Excel. Default settings were utilized 

with the exception of settings regarding "using peak area" and setting the clustering 

threshold at 0.5 when aligning the peaks. Data type was designated as TRF presence. 

Each site was analyzed by including both reference and village samples while 

considering directionality of each TRFLP primer individually as well as together. 

Configured data was utilized to produce PCA graphs (interaction component analysis) for 

the AMMI study. 

Fragment analysis of the TRF data is first achieved via Peak Scanner software and 

then exported into the proper format for the T-REX database. Raw data files are 

generated by the size-calling software, peak scanner. The other file required for analysis 

by TREX software is a labeled file containing data describing each of the samples and 

correspond to factors within variable design (such as dye/sample peak, sample name, 

size, height, area, and data point). Samples having more than one fluor were processed by 

treating the same fluor as a unit of peaks to distinguish between data produced from other 

fluors. 

 

T-REX 

Due to being highly parallel, robust, and automated in nature, use of the microbial 

fingerprint technique T-RFLP is ideal in developing comprehensive data sets that are 
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required for adequate study of microbial communities. Past peak recognition algorithms 

were problematic in discriminating between shoulders and smaller, individual peaks 

when on the edge of or in close proximity to larger peaks. Additionally, broad peaks were 

miscalled as multiple sub-peaks having an apex of less than one base pair. These issues 

have resulted in the use of base binning for approximate peak sizes. Though reducing 

error, this practice also decreases resolution and introduces the problem of an incorrect 

assignment into a bin which can result in an alteration in similarity profiles, 

presence/absence analysis, and individual TRF peak abundance analysis amongst 

generated patterns. Instituting a similarity coefficient, which is instituted in many 

databases and current software packages, can correct for this; however dissimilarity and 

unique peaks cannot be distinguished by this application. To circumvent all of these 

problems in addition to subjectivity and time consuming factor related to manual 

alignment, utilization of the raw electrophogram data (as is generated by peakscanner 

software) in the analysis of programs with more integration algorithms that are more 

flexible can be performed (TREX). Analysis of peak area surpasses peak height for 

accurate DNA abundance analysis in an electropherograms due to peak width increasing 

functionally according to retention time (a standard amount of short DNA will have the 

same width but a different height compared to a longer fragment of the same amount) 

(40).  

T-RFLP analysis expedited (http://trex.biohpc.org/), or T-REX, is a software 

package that was utilized in this study for the rapid, flexible, and consolidated processing 

of raw data into a format matrix for interpretation and analysis via the AMMI, or additive 

main effects and multiplicative interaction model (17). The use of the AMMI program to 

http://trex.biohpc.org/
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analyze the results of the T-REX program allows for the determination of the primary and 

secondary drivers of the microbial community samples, sample heterogeneity, and 

interaction effects as given by pattern signals and noise. The program is a free, web-based 

molecular-based microbial community fingerprinting technique that allowed for 

labelling, uploading, and processing raw data while bypassing various barriers that were 

previously existent in manual T-RFLP analysis such as unwanted variability of error 

prone steps that are time intensive and subjected researcher bias and variability including 

difficulty in distinguishing true peaks from “noise,” peak alignment across samples, 

matrix creation and manipulation from raw data of TRFs, and deciding the best 

multivariate analysis for the given dataset in order to analyze environmental variable 

effects and treatments on the present microbial community composition (17).  

Benefits provided by the use of this program  that allow for the specialized and 

customizable analysis of the applied sample set consist of the following: raw data can be 

labeled in relation to the attributes of the sample’s experimental design and TRFs can be 

aligned/binned in the same manner, true, active peaks in the corresponding data results 

can be distinguished from noise via a baseline threshold (that for this study was derived 

empirically to be 50 relative florescent units, and past applications sub-optimally applied 

an arbitrary threshold for peak delineation from noise which does not account for any 

variation of noise within samples according to discrepancies in DNA amount utilized, or 

sample bias), the data matrix produced via several built-in filtering mechanisms can vary 

on several complexity measures such as variance distribution among main and interaction 

effects and sample heterogeneity, and users can manipulate data sets with multiple fluors 

such as HEX and FAM, for more statistically applicable and representative analysis. 
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Additionally, within the filtering process, “environments” are established from samples 

that are replicates or conceptually equivalent groups with designated values, while 

“replicates” denotes samples attributes in the file are all identical. In aligning T-RFs, the 

size (base pairs) is determined by utilizing an internal size standard in referencing the 

TRF, such as ROX1000 (17).  

In T-REX, true peaks are those that, assuming a zero mean, exceed the standard 

deviation generated among all peaks and multiplied by a factor provided that is based on 

original electropherogram results. TRF alignment is accomplished based on binning 

according to base pair size in relation to an internal size standard; however, analytical 

errors may result due to random fluctuations, purine content and fluorophore behavior 

yielding TRF drifting. There is no standard treatment of these errors. The effect of the 

alignment used, manual or automated, can only be determined by downstream 

multivariate analysis (17).  

Production of various degrees of data matrices (typically two-way) from tabulated 

or listed data generated by PEAKSCANNERTM software which produces column specific 

data per variable; i.e. one column representing all TRF sizes and another for all peak 

heights, which allows for accurate data representation and algorithmic processing 

including variance distribution among interaction and main effects in addition to 

heterogeneity within the samples and AMMI analysis of the resulting data matrices. This 

yields ordination scores and other tables: the first table is a full ANOVA table, the second 

consists of estimations of interaction sum of squares for patterns and noise for replicated 

data, the third pertains to percentages of variation from interaction and main effects, and 

the fourth summarizes interaction signal variation percentage generated by the first 
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interaction principal component axes. The second axes (IPCA 2) represents secondary 

drivers of community structure such as site differences. AMMI analysis shows variation 

contributions according to: TRFS (variability in the means of different TRFs), 

environments (number of peaks or overall signal strength in TRFLP profiles), and TRF 

environments (how TRFs respond differently with environments (17). 

Most software applications are not equipped with the processing capacity to 

thoroughly analyze datasets by all data matrix manipulations where the primary data 

types consists of the following: presence/absence, peak height and area, replicate sample 

averages, experimental factor examination, spurious TRF deletion. Bay-Curtis or other 

ordination statistics are used to analyze profiles, and binary matrix assignment can be 

compared via Jaccard’s Correlation. Binary data had the lowest measure of main effects 

variation and the highest interaction effects in 90% of the analyzed datasets. The lack of 

processing power can often lead to a lack of representative data including signal and 

noise differences which can result in obscured ordination patterns. Additionally, most 

software packages are not exploratory in multivariate analysis and rely heavily on 

available sequence databases (17, 18). 

The web-based free software package, T-Align (http://inismor.ucd.ie/~talign/), 

which T-REX implements, replaces the time intensive and error prone manual 

comparison of TRF profiles  for identification of microbial community factors and the 

changes they may produce on community structure. It integrates an automated algorithm 

for peak alignment and to facilitate in exploratory analysis. The algorithm uses replicate 

TRF profiles of a given sample to generate a sample profile to remove pseudo TRFs. 

Later, sample profiles and their relative fluorescence are compared. Those TRF profiles 

http://inismor.ucd.ie/~talign/
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differing by less than 0.5 bp are considered to be the same and are aligned as such 

according to the moving average algorithm. Each profile represents only one TRF in the 

overall alignment, and those profiles that do not contribute a TRF are analyzed again 

within a greater than 0.5 bp average TRF size. When a new TRF is identified, sa new 

average will be utilized until all TRFs have been binned. Default alignment rounds to the 

nearest nucleotide size integer. Peaks are then clustered and grouped with a TRF 

assignment according to size according to a clustering. Other packages similar to T-Align 

are expensive and fluctuate in available features. T-Align results in a 2.7% average 

difference in area percentage of each peak among duplicates while other software can 

rage up to 7 or 11%. Grouping samples into environments allows for replicate analysis. 

Rare TRFs generated by the quality control factors within the program can also be 

omitted (17, 80). 

The data produced in T-RFLP analysis can be applied to clone libraries or 

databases of 16S rRNA sequences for phylogenetic assignment or be interchanged with 

other techniques that are PCR based. T-RFLP has been applied to analysis of all domains. 

Bacterial community analysis is generally performed to identify species of a given 

sample, determine sample diversity, or compare community samples that have been 

separated according to space and or time. Peak quantity and area of TRF profiles relate to 

the richness and evenness of a bacterial population. Problems have often risen in relation 

to profile comparison which is needed for spurious peak elimination as well as species 

assignment (80). 
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AMMI 

 

Of the ordination methods that are not those that test a specific hypothesis such as 

‘two microbial communities being significantly different’ or apply collected data to 

environmental variables i.e.canonical correspondence analysis, AMMI, also known as 

‘doubly-centered PCA’, and T-RF centered PCA (not environmentally centered as subtle 

treatment differences are not consistently captured) are among the most robust methods 

analyzed by yielding consistent ordinations (1, 18). 

AMMI has increased utility as it can be applied to interactions that are non-linear 

in a complex model while discarding a noise rich residual by decomposing a matrix of 

residuals produced by fitting the additive main effects according to single decomposition 

value. Interactions are graphically represented in a biplot. A bilinear AMMI model can be 

constructed by differential genotypic sensitivity to the most discriminating hypothetical 

environmental variables that are estimates of the data. A biplot with the first PCA axis 

(IPCA 1) can be generated by plotting genotypic and environmental PCA scores against 

their means. If the PCA score is nearly zero, the interaction effect is small. If a genotype 

and environment have the same sign on the PCA axis, the interaction is positive; if 

different, it is negative. A biplot can also be employed to describe yield and stability if 

IPCA 1 comprises a large amount of the interaction SS (34, 65).  

Biplot use is most successful when the GxE interaction, or the genotype being 

under the major environmental effects of genotype by environmental interactions, is 

concentrated most heavily in the first or the first two PCA axes (IPCA 1 and or 2). 

Reliable stability conclusions can be elucidated by biplots when the interaction of a 
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sample is represented by the first or the first two PCA axes (IPCA 1 and or 2) as mainly 

noise was captured in further interaction principal component axes and thus did not 

provide any contribution to observations predicting validation of results. It has been 

noted that the stability increases (according to the Wricke’s ecovalence stability measure, 

Wi(AMMI)) with increased implementation of PCA axes. The use of biplots to describe the 

interaction is limited by the dataset (what percentage each IPCA contains separately as 

well as together). Interactions better represented by a biplot of genotypes and 

environments of the first two PCA axes by plotting the second PCA scores against their 

respective first PCA scores. The interaction between the two factors, genotype and 

environment, is obtained by a projection of either vector on the other. In any given 

quadrant, the interaction between the two is positive. The end point of the vector from the 

origin (0,0) determines the stability of a variety or environment. If the vector is in closer 

proximity to the origin, there will be reduced interaction effects and can thus be labeled 

as stable. Stability according to this biplot is more precise than a biplot comprised of only 

the first PCA axis. A significant amount of interaction must be contained within the first 

two axes for this biplot to be successfully representative (34, 18, 70).  

The additive model can still retain structure in the terms representing the 

interaction and can be modeled by both residual error and multiplicative components, or 

the number of components chosen so that white noise is represented by the residual. A 

combination of both of these expressions yields the AMMI model for data organized in a 

two-way table. Parameters for this model can be projected by use of column and row 

main effect means and decomposition of the value of the interaction parameter residual 
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matrix.  If the interaction has at least one term, an assumption is made that errors are 

homogeneous in variance after nonadditive effects have been considered (24). 

Higher interaction effects are regarded as unstable and the means of the two factors will 

result in high variability. Stability increases with proximity to the origin. Interaction of a 

given variable to another is obtained by projecting one variable’s vector on to the other 

and analyzing the length of the vector where the projection occurs. If one variable is in 

the same quadrant as another, the interaction is positive (34).  Even distribution can lead 

to low interaction (24).   

However, the variation in results pending method used provided analysis that is 

qualitative in nature instead of quantitative as conflicting recommendations for the 

number of interactions to retain and use vary by dataset (24). The AMMI Stability Value 

(ASV) can be obtained by integrating results produced by both IPCA 1 and IPCA 2. A 

large sum of squares for environments correlates increased diversity among 

environments, and the cause of generated variation among the dataset.  If the magnitude 

of the sum of squares for the genotype to environmental interaction is larger than that of 

the genotype alone, a significant difference in genotypic response is evident across 

environments. The percent capture of interaction sum of squares correlates to the degrees 

of freedom for each IPCA. The combined percentages for each shows the representation 

of the genotypic environmental interaction. Variability in both main effects and 

interactions in relation to environments can be shown by scattered data among 

environmental locations on a biplot. High potential environments are evenly distributed 

in a given quadrant with minimum interaction effect. Lower potential environments 

cluster in a given quadrant with high PCA value where lowest yielding environment have 
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the highest positive scores. Independent of direction, the greater the IPCA score, the more 

specifically adapted the genotype is to the environment. Higher interaction with 

environments can also be concluded by high ASV and rank which show erratic, unstable 

yield across environments. Positive interactions are due to interaction scores having 

similar signs. A score close to zero and ranked first (least) is ASV value correlates to 

minimum GEI or stable yield over environments, and negative interaction scores allow 

increased performance in environments having negative interaction values (70). 

The biplot, generated by using genotypic and environmental scores of the first 

two AMMI components utilized, identifies genotype assignment to a given unique 

location. The magnitude of the genotype to environment interactions or differential 

responses dictates varietal ranking across the measured environments. ANOVA can 

describe the main effects and quantify interactions through an analysis of variance; 

however, unlike AMMI, this analysis cannot be applied to genotype-environmental 

interaction identification. When equally studying main effects and interaction, 

employment of the AMMI model can increase accuracy by incorporating both ANOVA 

and PCA into a single methodology. Refinement of a given location is made by 

adjustments composed from information pertaining to other locations within the dataset 

with the addition of removal of residual or noise variation from the interaction of 

genotype and environment (70).  

The only experimental design requirement is the use of a two-way data matrix to 

provide a graphical representation in the form of a biplot to simultaneously summarize 

interaction and main effect data of both environment and genotypic data. Within the 

AMMI model, ANOVA analysis separates interaction from the additive component of the 
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data to which PCA is then applied as a multiplicative model for analysis of the interaction 

generated from the additive ANOVA. PCA scores are then plotted against one another to 

yield a visual representation of components of the genotype to environment interaction in 

the resulting biplot. Applying stability statistics to this biplot yields genotypic grouping 

according to performance across the present environments. Disparity amongst the 

resulting genotypic responses to the various environments within the genotype to 

environment interaction can place a limitation on the estimates of accurate yield and the 

identification of genotypes with high comparative yield. Both biotic and abiotic stressors 

can cause genotype to environmental interaction, and increased resistance or tolerance of 

the genotype to these stressors can reduce the interaction if needed (70).  

 

Paired-end 16S rRNA (V3/V4) 

  

Utilization of 16S rDNA sequencing (of two hyper variable regions of the gene, 

the V3 and V4 regions, respectively) has allowed for circumvention of various hurdles 

that were present in past analysis (poor resolution and sensitivity as well as an increased 

financial burden) as well as an in-depth analysis of this “rare biosphere” while 

maintaining breadth of coverage. The shorter sequences yielded allow diversity 

indication (21). Paired-end analysis is completed when sequencing both the 5’ and 3’ 

ends, which in turn doubles the number of base pair reads on the Illumina platform. The 

V3 region of the 16S rRNA gene overlaps, while the V4 region does not due to being 

greater than 200 bp in length. However, both V3 and V4 regions can be utilized to 

identify OTUs while constructing phylogenetic assignments in tree form. Overlapping 
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reduces error rate (85). Base pairs in the conserved structures of all the domains and the 

non-canonical base pairs are present in irregular helices and the V3 region. Secondary 

structures that are conserved across all domains have shown to form the same three-

dimensional structure. Comparative analysis has allowed for the accurate prediction of 

the secondary structure as well as a number of tertiary structure interactions within many 

RNAs. Most of the tertiary stricter interactions observed in eukaryotes are also present in 

prokaryotes. Protein synthesis, and essential function for all life, occurs at the ribosome. 

Peptidyl transferase and decoding relates to ribosomal RNA. The V4 region at position 

588-652 (as present in E. coli) forms a compound helix of 55 nucleotides in SSU rRNA 

within bacteria. There are three base pairs in the pseudoknot in bacterial SSU rRNA at 

505-507/524-526, and 3D folding in the 540 region is similar in both prokaryotes and 

eukaryotes (46). 

Paired-end (PE) sequencing is an improvement on the previous 16S rRNA 

studies; it has 2 PCR steps with different pairs of primers where initially the two primers 

contain a primer for Illumina specific sequencing, an index, or barcode, sequence, and a 

gene-specific primer followed by  the use of two primers that contain an Illumina adapter 

and primer sequence for sequencing) although it is limited in that sequencing is based on 

built in Illumina sequence primers and requires two PCR cycles thus increasing the 

possibility of artifacts and requiring 20-25 nt for the sequencing index and gene-specific 

primer (43).  

However, an additional method of 16S analysis exists which utilizes only one 

PCR cycle, primers that contain an index (reverse primer) and Illumina adapter sequence, 

hairpin formation preventing 10-nt pad, 16S non-complementary 2-nt linker, and a gene-
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specific primer. The combination of pad, linker, and primer is used as the sequencing 

primer for the 5’end, the reverse complement of the pad-linker-primer combination acts 

as the sequencing primer for the 3’ end to sequence the index region, and the combination 

primer also acts as the 3’ sequencing primer to yield an index sequence and 2 250 nt 

reads after 500 cycles (43).  

The assembly of paired-end ~125 base reads advantageously incorporates quality 

control steps for generation of 16S rRNA gene sequence reads while allowing 

unprecedented access to reduced abundance microbial DNA. The high number of 

sequence generation for libraries utilizing the Illumina sequencing methodology allow for 

high levels of completeness in regards to sampling efficiency in addition to replication 

abilities. The paired-end analysis technique is advantageous to other high-throughput 

sequencing techniques in that it reduces the amount of erroneous sequences that are 

included in downstream analysis (imposing a quality control step) while providing 

enormous data sets. A smaller quantity of sequences may provide sufficient data for 

extrapolating underlying patters between highly differing communities, however larger 

data sets are mandatory for the identification of more acute, subtle responses to 

environmental factors within less abundant populations for increased sequence coverage 

of the rare biosphere. The length (two fold coverage), and therefore quality of generated 

libraries, of the reads is also increasing and index sequence use allows for parallel 

sequencing of samples. Illumina base calling is improved due to the existing algorithm 

for optimal cluster identification within the flow cell when there is maximum diversity of 

nucleotides across the first four bases sequenced in the forward read. It can have issue 

with low abundance phenotype identification and alpha diversity exact measurements (3).  
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The V3 and V4 regions of the 16S rRNA gene overlap. A total of 2168 reverse 

primers with differing indices have been published for the V4 region, and taxonomic 

groups can be assigned easier to longer sequences when employing a classifier (43).The 

V3 hypervariable region consists of roughly 200 nucleotides (170-190), has high 

taxonomic resolution, and consists of a conserved flanking region. It is also compatible 

with paired-end sequencing which allows for overlapping 3’ end sequencing, reduction of 

sequencing errors, and generation data applicable to pipelines of computational analysis 

that are publically available. When assembling paired end reads by aligning the 3’ ends 

of both forward and reverse reads, additional quality control is provided. Discarding 

reads that do not assemble as contigs due to sequencing errors of mismatches between 

complementary reads, decreases artificial sequence number (3).  

When the V3/V4region is sequenced, a 0-7 bp heterogeneity spacer is applied to 

the index sequence for equal sample proportions to be sequences out of phase to mitigate 

the set back of ‘low sequence diversity’ amplicons produced in 16S analysis by allowing 

the 16S gene amplicons from an equal proportion of samples to be sequenced out of 

phase thus reducing this issue. Both 250 bp and 300 bp paired end MiSeq protocols for 

analysis of the low sequence diversity, conserved 16S rRNA gene allow for flexible, 

cost-efficient sequence options. The V4 hypervariable region is targeted in the most 

widely used dual-indexing MiSeq paired end approach. There are 9 hypervariable regions 

flanked by conserved sequence regions in the 16S rRNA gene. A 469 bp region is 

required to contain both the V3 and V4 regions while maximizing the length of the 

generated MiSeq reads. This region provides sufficient data for microbial community 

taxonomic classification of specimens associated with the human microbiome (as is 
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employed in the human microbiome project). Strict filtering can alleviate error rates that 

tend to increase at the ends of reads and thus improve the accuracy of taxonomic 

assignment while avoiding spurious read assembly (30).  

 

Next-Gen sequencing 

 

Next generation sequences has facilitated the interest and understanding of 

human, animal, and environmental microbial community structure and function in 

addition to increasing the knowledge of novel pathogens and functionality and effect of a 

consortia of microbes on a myriad of other ailments and disease states (78). The past 

employed observational phylogenetic analysis of yet to be cultured novel taxa has shifted 

to characterization of microbial community taxonomic shifts through experimental 

techniques. Previously utilized Sanger sequencing has not provided the sufficient 

coverage for adequate community analysis. 16S gene libraries achieved by Illumina 

technologies denote the immense increase in sequence number and insights into diversity 

and composition of community samples proved by extant next-gen sequencing of serial 

analysis of ribosomal sequence tags (SARST) (previous sequencing capabilities were 

limited to less than 101 base reads while yielding lack-luster error rates). Illumina is 

better because it has higher resolution, higher sequence read lengths, and is cheaper than 

the Roche/454 pyrosequencing platform (Branford, CT, USA). The Illumina platform 

produces up to 1.5 billion reads per run in comparison to the 1 million reads per run on 

previously primarily used 454 Pyrosequencing platform at a comparable cost Led by the 

expanding field of bioinformatics, technological advancement within the last decade has 
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transitioned the past focus on 16S gene fragment sequencing within the hundreds via 

clone libraries to next-generation sequencing of millions of fragments through 

sequencing technologies such as the Illumina MiSeq platform (3, 30, 43, 85). 

  Capable of generating at least 250 nucleotide paired reads, the MiSeq sequencing 

platform is adept at multiplexing a large number of samples in addition to sequencing 

shotgun metagenomes in parallel while maintaining a reduced rate of error, higher 

sequence coverage, and reduced cost ($1000/lane and $125,000 for the instrument 

compared to the HiSeq, 300 cycler, $1500/lane and $740,000 instrument cost, and 

Illumina is 50-12000 fold less expensive per sequenced megabase than pyro and Sanger 

sequencing) comparable to other available platforms. Also, it employs a chip-based 

bridge amplification procedure prior to reversible terminator dye nucleotide synthesis 

mediated sequencing with up to 500 cycles of sequence data where each cycle is split into 

two individual reads which provides paired reads of the same DNA fragment template. 

The MiSeq platform has high sequencing throughput as it is capable of utilizing paired 

250 nt reads to generate 8.5Gbp (i.e. 17 million read pairs). Although the HiSeq has been 

generally utilized for metagenomics shotgun sequencing, the MiSeq suits 16S rRNA 

studies due to the increased length of reads it yields in addition to the performance and 

cost standards. Genomic and metagenomics sequencing on this platform has shown, 

recently, to be an sufficient complement to 16S rRNA gene sequencing due to its ability 

of generating high quality reads that can be distributed across a range of samples with 

ease (43).  

 Despite the increased affordability and high-throughput nature of available next-

generation sequencing technologies for analysis and characterization of the composition 
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of microbial communities, technical limitations inherent to the sequencing platforms 

utilized provide obstacles for adequate data analysis and processing during culture-

independent profiling techniques. This shift in analysis from culture-dependent 

methodology is due to the realization that the amount of microbes from an environmental 

or human sample visible during direct staining exceeds by multiple orders of magnitude 

the number that could be cultured, termed “the great plate count anomaly” (30). 

 Past pitfalls for utilizing this platform revolves around the lack of sequencing 

ability when analyzing samples having low genetic diversity as is commonly apparent 

with 16S rRNA gene amplicon studies. However, technological and methodological 

updates in platform performance has improved the software for image analysis that was 

utilized, thus bypassing this issue. Also, only 5-10% of PhiX phage DNA is required in 

comparison to the past 50% that was used to artificially increase genetic diversity of 

reads. The platform software has also improved its ability to perform adequate cluster 

discrimination thereby improving the quality of results of cluster density and data quality 

is affected by the quantity of DNA loaded into the flow cell. Initial error rates vary 

according to cluster density. Usage of a pre-clustering step can reduce sequence error and 

unique sequence number through the brief sorting of sequences according to decreasing 

abundance prior to comparison of the rare sequences in a sequential manner. If the rare 

sequence consists of less than a set amount of bases away from a more abundant 

sequence, it is removed from the data and its abundance added to the more abundant 

sequence (43).  

 The low sequence diversity alluded to in regards to the 16S gene applies to the 

beginning cycles of the MiSeq run where successful cluster identification and pre-
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phasing/phasing  calibration depend on the composition of targeted amplicon 

heterogeneous bases in that they require a balanced composition of bases in the initial 12-

18 cycles. Due to the inherent nature of the 16S gene, amplicon pools are highly 

homogenous and need to be sequenced along with a heterogeneous control library 

(commonly PhiX phage DNA in a 1:1 ratio) to improve the quality of the sequence reads, 

however there is a possibility of losing half of the reads to a template that is non-targeted 

(30). 

 There is a co-evolutionary arms race between new sequencing platforms and new 

software tools for the acquisition and analysis of data on an emerging, unprecedented 

scale. In Illumina analysis, a diverse set of environmental samples with an exceedingly 

large depth of >3million reads/sample can be sequenced, thus allowing for an exceptional 

level of consistency in respect to taxonomic recovery and the recapture of diversity 

patterns previously reported in relation to meta-analysis. This provides the possible future 

applications of analysis of large-scale studies of simultaneous analysis of thousands of 

samples to provide a survey of the microbial communities and identification of microbial 

phylotypes at an unparalleled spatial and temporal resolution. The improvement in 

sequencing technology and well as the programs available for analysis has allowed for a 

higher degree of relation between data samples to yield clearer, more accurate biological 

patterns as well as a boom in 16S rRNA gene analysis (9, 14, 83). 
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Processing and Analysis 

 

 Processor time and memory requirements must be minimized by algorithms due 

to the exponential growth of database content. Algorithms for sequence comparison are 

generally based on pairwise alignments. The degree of relatedness among sequences 

according to expectation values derived from local alignments is performed by methods 

available within databases, such as BLAST. Distance measures according to pairwise 

identity within the alignment are integrated in both neighbor-joining and UPGMA 

algorithms. CLUSTAL programs create binary trees via clustering prior to pairwise 

alignment for tree nodes (28). Despite technical advances in microbial community 

analysis on spatial, temporal, and taxonomic scales, inconsistencies in data interpretation 

in regards to genetic diversity of the 16S rRNA gene remain (77). High sample 

throughput, phylogenetic information pertaining to the species or present phylotypes at 

varying abundance, and economic affordability is necessary in methodology. RDP 

Bayesian classifier can be utilized to assign data to taxonomic groups for the generation 

of taxonomic profiles (3). 

Amplicon pools prepared with AMPure XT beads (Beckman Coulter Genomics, 

Danvers, MA, USA) and Library Quantification Kit for Illumina (Kapa Biosciences, 

Woburn, MA, USA), and the streamlined Illumina MiSeq platform (San Diego, CA, 

USA), which is scalable and high-throughput and has application to various 

environmental samples were utilized for sequencing due to distance values and 

downstream analyses are impacted significantly by alignment quality (76). 
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In analysis of the produced data, there are two ways to bin sequences, by 

phylotype (similarity to reference sequences) or by OTU (similarity to other sequences 

present in the community sample). Phylotyping allows for a label to be issued on 

sequence according to relationship of past cultured and characterized microbes. However, 

innumerable organisms belonging to the same species have differing phenotypes, and 

some organisms with the same phenotype may belong to differing taxonomic lineage 

assignments. The phylotype approach is also not advisable for community samples that 

contain novel sequences that are yet to be identified or contain lineages that are 

previously unidentified. 6.6% of the reference sequences in the RDP database lack a 

genus-level assignment. Therefore, classification is limited to the available reference 

taxonomies as species level assignments are impossible due to taxonomies ending at 

genus. Phylotype-based methodology is also sensitive to sequencing errors. Additionally, 

the genus-level cutoff masks the sequencing error (77). OTU based approaches reduces 

the sequencing error rate from 1.08 to 0.01% (43). 

Database-dependent methods are limited due to the lack of representation of rare 

and novel populations when analyzing the deep coverage existent in many environmental 

samples (43). Pre-clustering followed by clustering at 3% (equivalent to 97% sequence 

identity) allows for increased accuracy in OTU characterization, reduction of singleton 

sequence proportion, and minimally affects the distribution and presence of microbial 

taxa. Single nucleotide errors also had minimal effect on classification of sequences. 

However, a 97% sequence identity taxonomic classification standard can show shifts in 

clusters of higher and reduced dominance (3). However, filtering sequences reduced the 

genetic diversity between sequences when compared to unfiltered sequences due to the 
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fact that filtering increases the similarity among sequences and communities. Filters 

remove sequence information for community population differentiation despite their 

application to broad scale phylogenetic application at the phylum or kingdom level (76).  

Greengenes, one of the many software data packages employed by MG-RAST, 

performs an alignment that poorly treats variable regions due to a higher prediction of 

genetic diversity, richness and phylogenetic diversity than produced via the SILVA and 

RDP-based alignments as employed by Mothur software. However, the RDP alignment 

does not align variable regions within samples. Data pertaining to variable regions cannot 

be easily related to full-length genes within the parent genome. A reduction from 1500bp 

to 200 bp sequence reads affects the application of any phylogenetic observations and 

OTU assignments made according to the limitation in read size.  Most studies assume 

that partial sequence distances are not significantly different from full-length sequence 

distances despite the fact that the 16S rRNA gene lacks uniform evolution throughout its 

length. When employing the proxy species definition specific to full length sequences 3% 

distance cut off, the variability in evolution within the 16S rRNA gene becomes apparent. 

Genetic diversity also decreases along the 16S rRNA gene length. Regression coefficients 

do not adequately explain variation between regions in comparison to the whole gene. 

Longer reads increase the relation of segmented analysis to the whole gene. The 16S gene 

is a marker for diversity within a genome and follows a well-determined secondary 

structure. Sequence alignments also contain various innate biases including that relation 

by common decent results when same characters are treated as equivalent, and the more 

shared, the more related. This is treated for by many alignment algorithms by optimally 

achieving the maximum number of identities. Treatment of gaps in sequence content can 
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also affect the alignment produced. Phylogenetic analysis of these alignments can be 

accomplished via maximum likelihood (having a transition-transversion ratio of 2 and 

focus on variable characters for nucleotide sequence data), maximum parsimony, 

(assuming evolution is achieved by the most efficient, shortest path, and analyzes 

variable characters for both nucleotide and protein data), and distance, or neighbor 

joining, methods (which utilizes both constant and variable characters for establishing the 

most closely matched sequences, binning those as one, and continuing on throughout the 

rest of the sequences included in the data for both protein and nucleotide information). 

Gene analysis via next gen sequencing allows for replicates to be analyzed in addition to 

increased complexity of experimental designs to be investigated while increasing the 

breadth and depth of sampling. Pairwise comparisons and multiple sequence alignments 

are not as beneficial due to the fact that they ignore the secondary structure of the 16S 

gene (76).  

 

Mothur 

 

Mothur (www.mothur.org/wiki/MiSeq_SOP) utilized an rRNA gene sequence 

naïve Bayesian classifier to classify each sequence against the Ribosomal Database 

Project (RDP) 16S rRNA gene training set (version 9). Groups of sequences were 

generated according to the applicable taxonomic units (OTUs) at a 3% dissimilarity level 

(43). 

  Utilization of the simple nearest alignment space termination algorithm allows for 

quick, flexible generation of a quality alignments independent of the reference alignment 

http://www.mothur.org/wiki/MiSeq_SOP
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used while integrating the secondary structure of the sequence- thus increasing the 

possibility that positional homology is conserved between sequences. No difference in 

alignment quality between full-length sequences and variable region fragments has been 

shown. Multiple sequence alignments allow for the calculation of pairwise sequence 

distances and phylogenetic identification for the assignment of sequences to OTUs (78). 

 Unfortunately, the memory and time requirements for paired-end analysis by this 

program was extremely extensive compared to other programs and analysis methods 

integrated in this study. This is due to the scale of the code commands according to space 

and time for sequence length and quadratically to the third power in time for sequence 

number. As such as the length of sequences is exceeded by the quantity, the memory 

required for doubling the number in the alignment increases at minimum of four-fold and 

the time by eight-fold, realistically limiting alignments to less than 5000 sequences due to 

the limitations placed on RAM. Pairwise calculations of distances to circumvent this 

issue and provide sequence homology is even further time intensive. The aligners within 

the program also do not predict secondary structure of the 16S rRNA molecule making 

comparisons impossible without further re-alignment steps (78). 

 

MG-RAST 

Microbes housed in differing environments and the community dynamics thereof 

are commonly studied through use of metagenome, or random community genome, 

analysis by directly sequencing DNA from an environmental sample. As technology 

advances, the challenge with this methodology has shifted from sample sequence 

generation to sequence analysis (56). Metagenomic analysis has application for 
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investigating the community profile of abundant and rare populations, however it cannot 

be applied to most environmental samples due to limitations of sequencing and 

computation (3).  

Metagenomics may allow insights into all genes, and thus a possible higher 

understanding of gene function, within a microbial community. 16S rRNA-based analysis 

allows for insights pertaining the detection of rare phylotypes as well as to past-

unexplored biodiversity and ecological characteristics of either individual taxa or while 

microbial communities in addition to  the relationship of trends and patterns observed at 

the species level to those of the host or environmental parameters evident (9, 42, 45).  

MG-RAST serves as a high-throughput pipeline for high performance computing and 

annotation allowing low cost, next generation means of worldwide metagenomics 

sequence analysis. The functional sequence assignments of the metagenomics input 

produced by this software package are automated and are generated from both nucleotide 

and protein database comparison allowing for functional summaries and comparative 

phylogenetic analysis. This sequence analysis approach can replace the costly and time 

and labor intensive DNA plasmid cloning that precedes sanger, or dideoxy chain 

termination, sequencing (which produces longer reads but includes inherent cloning 

biases) (56). 

The first step in either sequencing technique for analysis is to compare the generated 

data to known sequences existing on present databases. This computationally intensive 

task can be extremely time consuming if done manually, however it does provide data for 

the following analysis: phylogenetic comparison and profiling, functional annotations and 

metabolic reconstruction, and sequence binning MG-RAST allows for the analysis of raw 
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environmental sequence data for analysis by first performing a normalization step for 

unique internal ID generation and processing and prior to data summary generation. 

Sequence screening by use of BLASTX against the comprehensive non-redundant SEED 

database (and INSDC databases, rDNA databases [GREENGENES, RDP-II, and the 

European 16S database], as well as the chloroplast, mitochondrial, and ACLAME 

database of mobile elements) for protein encoding genes. Matches to existing databases 

are then computed to derive comparative data (56). 

 Phylogenetic reconstruction of the metagenomics sample is generated by application 

of the data provided in the SEED nr database and the ribosomal RNA database. 

Functional assignments are also generated by application of appropriate database 

information for the generation of metabolic reconstructions. The software was 

preemptively designed for later modifications such as the integration of new datasets and 

algorithms to allow for more extensive and new analysis steps or means of data 

comparison for any stage within the analysis process. The pipeline is executed in Perl 

through usage of the SEED framework, NCBI BLAST, SQLite, and Sun Grid Engine. 

However, the datasets that are currently available are not completely exhaustive and there 

has been shown to be as few as 10% or as high as 98% lack of sequence matching from a 

sample to a dataset. Accuracy of annotations is dependent on the quality of the data used. 

However, unique to this system, samples of differing sequence length can also be 

analyzed by this means due to the algorithms employed. Assembled sequences are 

generally longer and allow for increased accuracy in gene function or phylogenetic 

binning identity than sequences that are initially submitted without first being assembled 

(56). 
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ABSTRACT: The cecum aids in maintaining homeostasis and host health by having the 

highest metabolite absorption and housing the most abundant population of microbes. 

Various disease states, for which there is no standard medical treatment, result from the 

disruption of the microbial populations in either presence or relative abundance due to 

various environmental and host factors. Supplementation with probiotics, prebiotics, and 
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synbiotics has shown promise as a therapeutic intervention to combat dysbiosis. Many 

gut microbiota cannot be isolated by culture-dependent techniques. High throughput, 

culture independent 16S rRNA T-RFLP analysis of cecum samples from mice fed a 

control or synbiotic diet showed conservation of homeostatic balance in synbiotic-

supplemented samples according to Shannon, Simpson, and Margalef indices and insights 

into possible phylogenetics when further processed by AMMI analysis. Additional 

research is needed to more directly determine the diversity and phylogenetic effects of 

synbiotic supplementation on cecum content for the alleviation of dysbiosis among the 

present microbial populations. 

KEYWORDS: dysbiosis, prebiotic, probiotic, synbiotic, T-RFLP, microbial diversity, 

AMMI 

INTRODUCTION 

 Unique microbial communities are found within and on the human host as well as 

other vertebrates, such as the skin, gastrointestinal tract, mucosal surfaces, or the most 

largely populated region being the lower intestine, namely the cecum (11, 36, 53). Many 

of these microbes, which provide the host with metabolic and genetic features that are not 

innate and therefore develop a synbiotic relationship with the host, reside within the 

confines of the intestine and are collectively referred to as the “human gut microbiota,” 

and its genome, the “gut microbiome,” is often denoted to in literature as being a bodily 

organ (14, 15). 

 Host health is mediated largely by the microbiota existing within the 

gastrointestinal tract in that it affects various physiological factors such as: resistance to 

pathogen colonization, immune response regulation, nutrition, metabolism, and 



 86 

development, and host homeostasis (8, 12, 13, 50). Being co-evolved, these interactions 

can be detrimentally affected due to administration of antibiotics  and alterations of 

chemical transformations within the gut and may lead to acute and/or chronic illnesses 

including, though not exhaustively, the following: digestive, bowel, eating and weight 

disorders, cancer, cardiac events, allergies and asthma, type 2 diabetes, atopic diseases 

relating to the change in microbial community composition, and neurodevelopmental 

disorders (3, 10, 14-26, 32, 35, 37, 39, 43-45, 51, 58, 59). The gut microbiota also 

moderate the programing and control of various physiological functions such as epithelial 

development, blood circulation, as well as innate and adaptive mechanisms of immunity 

and energy homeostasis regulation. Therefore, in response to environmental factors that 

disrupt the host-gut interactions, metabolic diseases may ensue.  Various aspects of the 

‘modern lifestyle’ including traveling, dietary changes and restrictions, use of 

medications, age, as well as urbanization, geographic location, and stress level can 

contribute a disruption in this essential host-microbe interaction (6, 14-25, 32, 35, 37, 39, 

44-46).  

Although there is no standard medical treatment, various methods such as fecal-

oral transplantations, bacteriotherapy, and antibiotic administration, have been employed 

to treat severe alterations in gut microbial populations upon the development of a disease 

to a chronic state (6, 7, 14-16, 42, 44). The lack of treatment options usually result in 

antibiotic administration, which is often unsuccessful. For instance, 20% of patients 

suffering from a Clostridium difficile infection (CDI) have a recurrent episode after initial 

antibiotic treatment, and patients having a recurrent episode are 40% likely to experience 

another (7). Also, metabolomics studies of 2000 murine metabolite features in fecal 
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samples have shown that a single high dose of streptomycin can cause significant 

changes in roughly 90% of the features analyzed (25). 

  The use of fecal-oral transplantations is a highly invasive, extensive process 

including various donor and recipient screenings for compatibility amongst other factors 

despite potential use (2, 7, 14, 42). In light of such, the use of probiotics, prebiotics and 

the combined use as synbiotics as a treatment method shows potential (14-26, 37, 39, 44, 

45, 47, 59). 

Probiotics are defined as being “organisms and substances which contribute to 

intestinal microbial balance” or “a live microbial feed supplement which beneficially 

affects the host animal by improving its intestinal microbial balance (6).”  In order to fit 

this criteria, which does not include antibiotics, the probiotic needs to be stable and viable 

and remain as such under storage and during use, survive the intestinal ecosystem, 

prepared on a large scale, and beneficially effect the host after its integration. Surviving 

the acidic environment within the gut and then colonizing and becoming active in the 

colon can be problematic as adherence to the intestinal epithelium may be necessary. 

Competition of nutrients and ecological sites as well as stress can also cause a decrease in 

effectiveness in this treatment. Additionally, the probiotic must also remain present after 

the consumption of the product initially containing the strain has end (14, 25, 32, 35).  

Lactobacilli, Bifidobacteria, and Streptococci are commonly used in probiotic 

treatments and have shown to alleviate, hepatic encephalopathy, carcinogenesis, diarrhea, 

colitis, pathogen colonization, constipation, gastroenteritis, immunostimulation, 

flatulence, and gastric acidity among other diseased states (25, 35). L. acidophilus is the 

most commonly used and tolerated probiotic, it has been shown to synthesize vitamin K 
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which is necessary for the conversion of the bone matrix osteocalcin to the active form 

and may thus aid in improving bone integrity (14, 16-25, 32, 35, 37, 39, 45, 59). 

Prebiotics are defined as being “a non-digestible food ingredient that beneficially 

affects the host by selectively stimulating the growth and/or activity of one or a limited 

number of bacteria in the colon, and thus improves host health (6).” Prebiotics must 

serve selectively as a substrate for specific commensal, beneficial bacteria for growth or 

metabolic activation while not being absorbed or hydrolyzed prior to reaching its final 

destination. Its application must also result in microbial composition alterations to 

achieve a state of health while also providing systemic or luminal effects that benefit host 

health (14, 25, 32). 

Non-digestible foods, or prebiotics, such as oligosaccharides, polysaccharides, 

fructooligosaccharides, and other naturally occurring non-digestible carbohydrates 

(resistant starch, nonstarch polysaccharides [hemicellulose, pectins, gums, plant cell wall 

polysaccharides]), peptides, and lipids (aid in cation absorption [Ca, Fe]) have been 

shown to improve host gut microbiota health by stimulating growth and activity of 

specific endogenous microbiota by changing the microbial composition of the local 

environment. Lack of absorption and digestion of these compounds is due to their 

chemical structure (25).They have been shown to particularly benefit host colonic health, 

and can directly manipulate metabolism of lipids via products of fermentation.  

The combined use of probiotics and prebiotics is referred to as synbiotics, or “a 

mixture of probiotics and prebiotics that beneficially affects the host by improving the 

survival and implantation of live microbial dietary supplements in the gastrointestinal 
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tract, by selectively stimulating the growth and/or by activating the metabolism of one or 

a limited number of health-promoting bacteria, and thus improving host welfare (6).” 

They have shown promise in combating the diseased dysbiosis state and can also increase 

the shelf life, viability, and effectiveness, and functional activity of exogenous and 

endogenous bacteria of one another when used in conjunction than alone. Further use to 

combat pathogenic bacterial overgrowth, parasite growth, viral infections, burn treatment, 

stress, and antibiotic therapy effects also applies as these are associated with the 

translocation of bacteria due to the failure of the intestinal barrier (14, 25, 32, 35). 

However, due to the lack of information pertaining to the composition of the gut 

microbiota under both healthy and diseased states, supplementation of effective pre- and 

probiotics has been challenging. Species shifts between the two states of health have 

remained elusive despite the current knowledge of phyla level changes. This current lack 

of information further limits the understanding of microbial community interactions on 

the supplemented treatments due to the heterogeneity of bacterial spatial distribution 

within the GI tract according to environmental differences. This results in differing 

activities of the components of synbiotic at diffing locales within the gut microbiome. 

Within a local environment, the metabolic products of one bacteria can be modified and 

utilized by another bacterial species so increasing the availability of a molecule in its 

active form can be mitigated by community level biotransformation reactions. These 

cooperative interactions directly affect the degree of effectiveness of a prebiotic, as the 

necessary active form may never reach its target location, or a probiotic, which may 

contain a strain that does not yield the desired, beneficial effect on microbial composition 

and function. Further research is needed to investigate and characterize the intestinal 
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communities of microbes to increase the efficiency and effectiveness of synbiotic 

treatments (25, 35). 

Many of these microbes cannot be isolated and cultured by traditional culture-

dependent techniques, as characterization of complex microbial community samples is an 

arduous process that limits many microbial ecology studies due to the difficulties of 

identification and quantification of microorganisms present within any given sample. 

Culture-dependent methods are restricted due to the limited information collectable from 

morphological data and the intricacies of isolation. As such, diversity can be more 

adequately assed by genetically-based techniques due to its application to a wider range 

of organisms (30). Therefore, the study of this microbiome is dependent on developing 

technologies that are culture-independent in nature in order to combat the previously 

imposed limitations on analysis. Various initiatives in both the US and Europe have been 

employed to increase the knowledge base through characterization of the microbes and 

their genomes within the human body for assessment of their impact and role in states of 

health and disease (Human Microbiome Project and MetaHIT Consortium, respectively) 

(14, 15, 25, 35).  

Although progress has been made, the gut microbiome has yet to be characterized 

to its entirety. Among archaea, viruses, bacteriophage, fungi, and other Eukarya, this 

environment is composed primarily of bacteria, which attributes more than 1.5kg of 

weight and over 1100 species (14, 15, 25, 35). The exponential amount of species being 

analyzed consisting of 1011-1014 bacteria per gram of intestinal content, requires a high-

throughput means of DNA analysis due to the lack of accurate representation of diversity 

from culture-dependent methods of analyses (25, 35, 53).    
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Terminal restriction length polymorphism (TRFLP) is ideal for utilization as a 

cultural-independent means of rapid, high throughput, robust and quantitative analysis 

(statistical as well as molecularly) of the microbial community composition, diversity, 

and structure present within the mouse cecum tissue culture by means of fluorescent dyes 

that attach to PCR primers and the resolution achievable in current sequencing 

technologies (33, 54, 57).  

Analysis of the data is also greatly facilitated through the use of current, improved 

fragment and sequence analysis and software packages allowing for statistical precision 

and a higher degree of resolution between data samples yielding a clearer, more accurate 

representation of biological patterns and increased application in microbial community 

dynamics on a scale previously unobtainable (28, 38). It has been successfully utilized in 

bacterial community differentiation amongst a wide variety of sample sources. In 

addition to community differentiation, it can also be applied to analysis of the relative 

structure and phylotype richness of a community in addition to relative organism 

identification thus bypassing the limitations present in cultivation-dependent methods. It 

can also confidently have application in community structure analysis of spatial and 

temporal shifts. The use of 16S rRNA amplicons in the production of TRF patterns also 

has application related to diversity studies of the community profile by providing insights 

pertaining to the detection of rare phylotypes as well as past-unexplored biodiversity and 

ecological characteristics of either individual taxa or whole microbial communities. This 

is due to it being present in all organisms, being large enough for informatics purposes (at 

roughly 1500bp) while containing both conserved and hypervariable loop regions and not 

being transferred horizontally (4, 9, 38). Additionally, the TRF patterns are generated by 
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electrophoresis systems integrated into DNA sequencing platforms and thus allowing 

greater precision and higher resolution that any other current community profiling 

method available (34, 55, 56, 57). 

The most simple approach of trace analysis is binary comparison of different 

sample peak presence. Although valid, this approach lacks appropriate quantitative 

analysis. ANOVA, which provides a description of the main effects and quantification of 

interactions through analysis of variance, allows analysis of this as well as establishing 

whether either factor influences the microbial composition on an individual basis or may 

result from a contribution interaction amongst factors present (27, 31, 48). It is integrated 

in AMMI analysis to separate variation into interactions and main effects (TRF and 

environmental, or E, variation) and then it later applies PCA to the interactions to create 

and interaction principal components (IPCs) thus focusing on  effects of treatments and 

environments on resulting TRFs (46). Relative stability conclusions in addition to 

identification of genotype assignment to a given location while simultaneously 

summarizing interaction and main effects can be elucidated by biplots and is most 

successful when the genome-environmental interaction is concentrated most heavily in 

the first or the first two PCA axes as use of more than two did not contribute to 

observations or validate results as noise was predominantly captured in subsequent PCAs 

(27, 31, 46, 49). When equally studying main effects and interaction, employment of the 

AMMI model can increase accuracy by incorporating both ANOVA and PCA into a 

single methodology. Within the AMMI model, ANOVA analysis separates interaction 

from the additive component of the data to which PCA is then applied as a multiplicative 
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model for analysis of the interaction generated from the additive ANOVA. Both biotic 

and abiotic stressors can cause genotype to environmental interaction (31).  

PCA and other multivariate statistical methods have been used to employ the 

needed statistical rigor for complex data set analysis. An additional benefit to 

multivariate analyses is the use of numerous variables that are not constrained to species 

identification. PCA can be used to show trends in distances in community patterns. 

However, PCA data is not normally distributed. Additionally, non-linear data from large 

gradients can cause PCA ordination arcing and thus obscure any patterns, yet AMMI has 

increased utility as it can be applied to interactions that are non-linear in a complex 

model while discarding a noise and also aids in variation measures within a dataset 

including IPC interaction signals (27, 46, 49). 

Mouse models allow for increased control during analysis as well as a decrease in 

the number of confounding variables while providing representation to the human 

microbiome, and beta diversity results showed that there was no significant difference in 

the generated means (14, 37, 40). Diversity studies are imperative to analysis of 

community structure and function, especially in relation to development of 

pharmaceuticals, probiotics, bioaugmentation, or substrate presence (24). As such, it is 

proposed that an intensive study of microbial flora within the cecum, the source of 

highest metabolite absorption (14-23, 44, 45, 52, 53, 59), in response to probiotic 

administration be performed. The administration of different probiotic diets will lead to a 

measureable change in the microbial populations within the cecum, where shifts in 

diversity and frequency of the bacterial lineages will be detected.  
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METHODS 

Sample Preparation: 

 Three samples each of harvested cecum from male 9 month old mice (Harlan), 

Mus musculus, grown and provided by Dr. Cynthia Blanton, following either a controlled 

(B, C, F) or synthetic (H, J, L) diet were chosen at random.  Based on a powdered form of 

American Institute of Nutrition (AIN)-93M purified rat diet (Dyets, Inc., Bethlehem, PA), 

the diets administered to the mouse model were modified to utilize cornstarch in place of 

sucrose and dextrin in order to reduce the susceptibility of osmotic dehydration of the 

bacteria studied within the synthetic diet. The isocaloric diets administered were 

composed based on carbohydrate ingredient manipulation by “assuming energy densities 

of 4, 0, and 2 kcal/g for cornstarch, cellulose, and fructooligosaccharide, respectively 

(1).” Nutraceutix, Redmond, WA, provided fructooligosaccharide and lyophilized 

probiotic cultures (1x1011 CFU/g of equal parts Lactobacillus acidophilus and 

Lactococcus lactis lactis). The diets were made fresh three times a week with addition of 

probiotics immediately prior to feeding each morning for 18 weeks (1).  

The harvested diet-specific cecum samples were then sterilely dissected both 

laterally and vertically,  and rehydrated using 6mL 10mM TRIS,pH~8.0, 1% Triton after 

being stored at -20°C. Samples were then incubated at 80°C for one hour, and a pellet 

was obtained by a low-speed spin (1000rpm) for five minutes. Residual supernatant was 

removed (the amount of supernatant produced was not consistent among the samples as 

the initial dryness of the tissue varied greatly when thawed to room temperature) after 

centrifugation at 16,000xg for 10 minutes. The cell pellet obtained from half of the initial 
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cell suspension solution was resuspended by addition of 250uL 10mM TRIS. The second 

pellet from the remaining original cell suspension was stored at -20°C.  

DNA Isolation: 

 Genomic DNA of the cecum samples was obtained by a mechanical sheer forces 

protocol utilizing 100μL Lysozyme (100mg/mL) added to the rehydrated cell suspension 

solution and incubated for 30 minutes at 37ºC. After which, 100μL Proteinase K 

(10mg/mL in 10mM TRIS) was added, incubated for 30 minutes, and brought up to 

volume with Herwigs Lysis buffer in a bead-beating tube. Prior to supernatant being 

drawn off and added to isopropanol, tubes were then bead-beated for 5 minutes, boiled at 

80ºC for 10 min, microcentrifuged at 3000xG for 5 minutes, and stored at -20ºC for 12 

hours. Samples were then centrifuged at 13000xG for 10 min, and the pellet washed with 

200μL 70% ethanol (4ºC) prior to centrifugation at 13000xG for 10 minutes. Ethanol was 

removed by drying at 37ºC for 60 minutes before DNA was rehydrated in 10mM TRIS, 

pH ~8.0.  

T-RFLP and PCR Amplification: 

A bacterial SSU rDNA T-RFLP polymerase amplification with the fluorescently-

tagged universal bacterial 1492R (5’-FAM/TTACCTTGTTACGACTT-3’) and 8F 

(5’HEX/AGAGTTTGATCCTGGGCTCAG-3’) primers (1mM) and 1U (0.5μL) Vent exo 

(-) (New England Biolabs, Ipswich, MA) was set up and ran in triplicate in 50μl reactions 

for each of the genomic DNA samples with each reaching containing the following: 1x 

ThermoPol Buffer (New England Biolabs, Ipsich, MA), 400μM per each deoxynucleotide 

triphosphate (New England Biolabs, Ipswich, MA), and 1μL genomic DNA template. 

Individual master mixes and negative controls were used for each sample in a program 
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consisting of the following steps:10 minute denaturation at 95ºC, followed by 30 cycles 

of 95ºC/ 1 minute, optimized annealing for 2 minutes at 52.3ºC, and 4 minutes at 72ºC. 

The final cycle of the previously listed steps is immediately followed by a concluding 10 

minute elongation stet at 72ºC. After visualization via low EEO 1% agarose gel stained 

with ethidium bromide, the TRFLP PCR product was purified by GeneJET PCR 

Purification kit (Thermo Scientific) and standard protocol.  

10uL of the purified TRFLP amplicons were then digested with 5U 

(0.25uL/reaction) of restriction endonuclease TaaI I (Thermo Scientific), 20uL 10X 

Tango buffer, and 18.75uL nuclease-free water at 65°C for 2 hours. The T-RFLP digests 

were then purified by precipitating the fragments with 5μL 3M sodium acetate and 100μL 

70%, and resuspending the pellet in 10uL nuclease-free water. 1μL purified terminal 

restriction fragments (T-RFs) were then submitted to the Idaho State University 

Molecular Core Facility for size determination utilizing GeneScan™ 1000 ROX™ Size 

Standard (Applied Biosystems) for fluorescently labeled DNA on a 3130 XL Genetic 

Analyzer (Applied Biosystems, Foster City, CA).   

Statistical and Data Analysis: 

Raw terminal restriction fragment size and peak area data generated for each 

sample was analyzed using NPP analysis in PeakScanner Software V.1.0 (Applied 

Biosystems). Fragments exceeding the threshold value (50 RFU) and designated as 

representative peaks and not noise in comparison to the size standard were collected and 

imputed in Primer 6 software (PRIMER-E Ltd, Plymoutoh, United Kingdom) following 

all default settings with the exception of ‘samples set as rows’ in order to generate 

respective statistical diversity indices of Margalef Species Diversity (species abundance 
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and frequency), Shannon Diversity (entropy or proportional abundance of a given species 

amongst a whole), and Simpson (probability of two randomly selected ‘samples’ 

belonging to the same species) Index values for comparison amongst the diets and 

individual cecum samples. 

AMMI: 

Additive Main Effects and Multiplicative Interactions (AMMI) analysis 

investigating microbial community variation and environmental effects on microbial flora 

within the cecum ecosystem of the mouse intestinal microbiome was performed using T-

RFLP peak values and the web based T-REX, or T-RFLP analysis expedited) 

(http://trex.biohpc.org/) program due to its capabilities in labelling and uploading raw 

data, processing of molecular-based microbial community fingerprinting techniques, and 

providing a flexible, rapid, and consolidated analysis specific to T-RFLP data (5). A 

clustering threshold of 0.5 was selected in addition to analysis according to peak height. 

All other default settings were utilized. An analysis of variance (ANOVA) was generated 

and interaction principal component analysis (IPCA) was then performed on resulting 

ANOVA data through use of the same software to reduce the dimensionality of the 

multivariate data. This analysis allowed for the visualization of the main effects and 

interactions of microbial environment and genotypes simultaneously, and IPCA values 

corresponding to primary and secondary axes were then graphed (Microsoft Excel) for 

the generation of representative peak variability in relation to the 5’ and 3’ T-RFLP 

fragments. Analysis was performed in nine ways: individual analyses was performed on 

the control diet of each the forward and reverse primer and then both primers together; 

this was then replicated for the synthetic diet and for both diets together. 

http://trex.biohpc.org/
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RESULTS 

Data are presented by means of the AMMI model, which partitions variation 

measured into main effects and interactions during the analysis of variance through 

Additive Main Effects and Multiplicative Interactions (ANOVA), and then applies PCA 

(principal component analysis) to the interactions to create interaction principal 

components axis (IPCAs) amongst the samples analyzed allowing for simultaneous 

visualization of microbial environment and genotype main effects and interactions. PCA 

allows for a reduction of dimensionality in multivariate data by the creation of key 

variables that characterize the variation within the complete dataset by serving as a 

composite of various original variables. The new variables generated do not correlate 

with one another and are utilized without resulting multicolinearity. T-RFLP data was 

initially analyzed nine different ways according to differing diet and fragment (HEX or 

FAM) combinations. 

Control 

The control forward fragment TFR profile depicts the two dimensional 

interactions and variations produced by analyzing the forward HEX fragment of the 

control diet fed mice (B, H, J) (Figure 1).  A significant total of 74.09% variation has 

been captured in this analysis thus providing adequate representation of the data. Greater 

than twice as much variation was generated among the x-axis (IPCA 1) than the y (IPCA 

2). The replicates of each of the mice are not all located in proximity of one another and 

relates to increased variation and interaction amongst sample replicates, as shifts in 

ordination are determined by relative vector distance from the ordinate or other data 

points present (48). 66% of the data points are located in quadrants one and two of the 
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figure. High similarity and overlap is evident in respect to mouse H only.  Those points 

having a position less than or close to 0 on the y-axis have a negative correlation or 

interaction to the other points and can also be considered more stable due to the relative 

reduction in interaction effects present on those data points, as the end point of the vector 

from the origin determines the stability of the genotype in the given environment. Those 

farther from the origin, as can be determined by vector projection, are more sensitive and 

adaptable to the environmental parameters applied through the application of the diet. 

The most ideal genotypic content can be found in quadrant 1, as there is a positive 

interaction in regards of both IPCA 1 and 2. Quadrant 2 represents a low yielding, stable 

genotype, quadrant 3 an unstable, low- yielding genotype, and 4 an unstable high-

yielding genotype. This data produced a mean square error rate of 0.03571, 36.32% TRF 

main effects percent variation total, interaction percent variation total composed of 50.6% 

pattern and 13.08% noise, and an 88.96825 total sum of squares value correlating to 

increased diversity among environments and thus the cause of generated variation I this 

dataset (data not shown). 

The analysis of the reverse fragment of the control diet analysis represents 

285.15% measured variation amongst the replicates of these samples (Figure 2). The 

cumulative percentage exceeding 100% corresponds to complete capture and complete 

recovery of all predicted signal. No variation was generated on a two-dimensional basis 

as there is no variation value represented on the y-axis. Not all replicates share the same 

location or are in close proximity within the figure. The exception lies with samples J and 

H. Replicates 1 and 2 of H and 1 and 3 of J share the exact position within the fourth 

quadrant of the graph. This correlate to decreased variation and a high interaction 
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amongst these replicates due to a lack of projected vector shared by each of the data 

points. The second replicate of J is within the same quadrant as the other two replicates of 

that sample. The location of data points belonging to all of the replicates of J and the first 

two replicates of H have a positive interaction due their presence in the same quadrant.  

 Both samples H and B have two replicates within the same quadrant with the 

remaining replicate in another quadrant. This shows increased, positive interaction 

between replicates 1 and 2 of each sample independently and decreased interaction with 

its remaining replicate. Replicates from sample B all have positive interactions with the 

environment due to their location on the y-axis. The scatter of replicates from sample B 

correlate to variability in both main effects and interactions. Those samples closer to the 

origin are less adaptive and less sensitive to the environmental influences wrought on by 

the diet, and can therefore be characterized as more stable. This data produced a mean 

square error rate of 0.10741, 48.78%TRF main effects percent variation total, interaction 

percent variation total composed of 8.81% pattern and 42.41%noise, and a 30.70833 total 

sum of squares value correlating an overall lack of diversity among environments (data 

not shown). 

Figure 3 shows an interesting ‘mirrored relationship of the sample replicates in an 

analysis of the control samples for both forward and reverse fragments. In some cases, 

one direction (either forward or reverse) of the sample replicate is found in the mirrored 

opposite relative position of the graph as is seen in B2, B3, H1, H2, and H3. J2 is close to 

following this pattern. Shared data points, represented by stacked replicates, show a 

positive, increased interaction and decreased variation due to the lack of vector distance 

between the data points. A total of 69.39% variation of the sample replicates is 
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represented in the two dimensional analysis above.  There is more variation in the x-axis 

than in the y-axis as is represented by the relative percentages listed. Those points that are 

closer to the origin are less sensitive and are less adaptable to the environmental effects. 

Those points having a negative value (contributed by a position having a negative value 

from either the y or x axis) have a negative interaction and correlation to the environment 

tested against. Those samples with the most ideal genotype are found in quadrant 1, as 

their position is relative to a positive value in regards to IPCAs 1 and 2. This data 

produced a mean square error rate of 0.02673, 21.05% TRF main effects percent 

variation total, interaction percent variation total composed of 65.78% pattern and 

13.17% noise, and a 168.69399 total sum of squares value correlating to increased 

diversity among environments and variation (data not shown). The scatter of data points 

across the biplot correlate to variability in both main effects and interactions. 

Synbiotic 

The two-dimensional analysis of the synbiotic forward fragment captures a total 

of 59.56% variation (Figure 4). There is slightly more variation correlated to the x-axis 

(IPCA 1) than the y-axis (IPCA 2) as is represented by the listed percent variations on the 

axis legends. There is no overlap of data points within this figure. However, there seems 

to be increased localization of data points amongst the origin thus demonstrating 

increased stability of variety and environment due to the reduced interaction effects. 

Sample replicates do not share close proximity with the exception of the slight closeness 

within the F sample replicates. The samples are spread out showing increased variation 

and less interaction and stability among sample replicates. Increased dimensional analysis 

could include a higher degree of variation. Those points having a negative value 
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(contributed by a position having a negative value from either the y or x axis) have a 

negative interaction and correlation to the environment tested against. Replicates in the 

same quadrant share a positive interaction comparable to one another. Those samples 

with the most ideal genotype are found in quadrant 1, as their position is relative to a 

positive value in regards to both axis. Replicate L1 is the most unstable as its vector from 

the origin is the largest and its overall value is negative relative to its position in quadrant 

4. This data produced a 26.57%TRF main effects percent variation total, a 70.58% 

interaction percent variation total, and 42043682.93 total sum of squares value 

correlating to immense diversity among environments and variation (data not shown). 

Data corresponding to the reverse 3’ FAM fragments yielded by T-REX analysis 

of the synbiotic mice is shown in Figure 5. A total of 89.92% is captured by both IPCA 1 

and 2 values. Increased variation can be found in IPCA 1 compared to IPCA 2 as is 

evident in the value listed on the axis. The most ideal genotypes can be found in quadrant 

1 as there is an overall positive value for the point relative to being greater than 0 in 

relation to both IPCA 1 and 2 values. Clustering of data points as is evident in both 

quadrant 1 and 2 refers to increased interaction and decreased variability of those data 

points. Data having a negative value in respect to axis location, have a negative 

interaction and correlation to the other points and environmental conditions imposed 

from the diet. Those points farthest from the origin are more sensitive and adaptable to 

environmental effects due to the projected vector from the origin, and points located 

about or near the origin have increased stability. L1 is the most isolated of all the rest of 

the data points. Quadrant 1 houses the most replicates. However, 7 of the 9 data points 

are either on or very near to the origin or have a close to 0 value in terms of IPCA 2 
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value. The lack of shared location corresponds to increased variation amongst samples. 

This data 42.27% TRF main effects percent variation total, 42.27% interaction percent 

variation total, and a 4715170.35069 total sum of squares value correlating to increased 

variation and diversity among environments (data not shown). 

A 54.63% total variation is captured from analysis of IPCA 1 and 2 of the forward 

and reverse TRF profiles of synbiotic mice (Figure 6). However, this does not contribute 

to a significant amount of interaction capture within the biplot to be considered fully 

representative of the dataset. More variation can be found in IPCA 1 than 2 as is relative 

to the value listed on the axis. The most ideal genotypes can be found in quadrant 1 (5 

replicates present) as there is an overall positive value for the point relative to the origin 

in relation to bother IPCA 1 and 2 values. Those that have a negative value, from either 

of the axis, have a negative interaction and correlation to the other points and 

environmental conditions imposed from the diet. Those points farthest from the origin are 

more sensitive and adaptable to environmental effects. However, many of the replicate 

data points are found among the origin or across the x-axis, correlating to increased 

stability. The clustering of data points, when regarded in terms of ordination shifts 

according to vector distance from the ordinate or from other data points yields decreased 

interaction across data within the same general location. L1f has the most negative 

interaction relative to the rest of the data points. The reverse fragments are more clustered 

than the forward, and with the exception of l3f, there is separation of the fragments on the 

graph. The forward fragments are found further from the origin than the reverse. 

Scattered data across the biplot corresponds to variability in both interactions and main 

effects to the environment. This data produced a 12.77% TRF and 3.72% environmental 
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main effects percent variation total, 83.52% interaction percent variation total, and 

51663738.15435 total sum of squares value correlating to increased diversity among 

environments and thus the cause of generated variation within this dataset (data not 

shown). 

Combined Diet  

A lack of significant interaction capture to be considered fully representative of 

the dataset applies to this analysis of the forward fragment of both of the diets combined 

as only 56.41% variation is captured by both IPCA axis values (Figure 7). IPCA 1 has the 

most variation and also has increased replicate clustering about its axis. The clustering of 

data points about the origin relates to increased stability, and less adaptability of the 

replicates within the effects of their given environmental changes imposed by the diet or 

other factors within the analysis. The diets do not separate from one another or follow 

any distinct patterns. All replicates of a given sample are not found within the same area. 

Quadrant 1 houses no replicates, and therefore there is no positive interaction or 

correlation amongst the replicates present. C3 is the largest outlier, having the largest 

ordinate vector to the origin or other data samples, as it is isolated and found furthest 

from all other samples. Some of the replicates (H1 and 2 as well as F1 and 3) share a 

location on the graph. The overlap or shared location of data points corresponds to 

decreased variability and increased interaction amongst those of the data points. This data 

analysis yielded a mean square error rate of 0.02857, 33.09%TRF main effects percent 

variation total, interaction percent variation total composed of 54.13% pattern and 

12.78%noise, and a 172.21587 total sum of squares value correlating to the diversity 

among environments and variation (data not shown). 
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A complete capture in variation as is evident in an IPCA value of 958.57 % in the 

first axis was generated in when investigating the reverse fragment of the combined 

analysis of both the control and synbiotic diets (Figure 8). 14 of the 18 replicates share 

data point, or location on the graph. This correlates to an increase in interaction and lack 

of overall variation amongst all of the samples sharing this pattern. Only 2 of all of the 

replicates measured are found in quadrant 1. These 2 data points have a positive 

correlation and variability. The rest of the data points have negative variation due to their 

location given a negative value contributed by IPCA 1, 2, or both. None of the replicates 

share the same location for a given sample. Those replicates furthest from the origin 

having the largest ordinate vector are more sensitive and adaptable to environmental 

conditions such as alterations caused by diet supplementation. Data points closer to the 

origin are more stable to environmental effects caused by diet supplementation than those 

farther away with a larger vector. This data analysis yielded a mean square error rate of 

0.089027, 58.95% TRF main effects percent variation total, interaction percent variation 

total composed of 2.1% pattern and 38.94% noise, and a 62.35985 total sum of squares 

value correlating to the diversity among environments and variation (data not shown). 

A total of 63.5% variation in represented in the two dimensional graphic analysis 

of both the forward and reverse fragments of both diets combined (Figure 9). This value 

does not contribute to adequate representation of the sample summary by the analysis 

provided. There is more variation about the x-axis (IPCA 1) than the y (IPCA 2) as 

correlates to relative percentage value listed. Stacked replicates designations show shared 

data point position, increased interaction, and decreased variation amongst replicates 

included. 27 of the data points share data share the same location with at least one other 
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data point. 14 of the 27 are reverse replicates.  Replicate data points having a shared 

locale interestingly have the same fragment designation, either forward or reverse. There 

are no shared data points between both of the fragment types. Additionally, each quadrant 

only contains one fragment designation. The graph is split with forward fragments on the 

right side (quadrants 1 and 4) and reverse fragments on the left side (quadrants 2 and 3). 

The forward fragments are clustered more around the x-axis than the reverse. Increased 

proximity could correlated to decreased variation and increased interaction between the 

sample data points. Those data points located in quadrant 1 have a positive interaction 

and correlation to variability. Data points closer to the origin are less adaptable and 

sensitive to environmental factors and are therefore more stable due to the projected 

ordinate vector from the origin. This data analysis yielded a mean square error rate of 

0.02158, 22.77% TRF main effects percent variation total, interaction percent variation 

total composed of 64.89% pattern and 12.34% noise, and a 341.95604 total sum of 

squares value correlating to the diversity among environments and variation (data not 

shown). 

Representative Diet Samples 

The two dimensional interactions and variations produced by analyzing the 

forward HEX fragment of the “best” representative control (H) and synbiotic (L) diet as 

determined by Peak Scanner absorbance plots of TRFLP data are graphically represented 

in Figure 10. None of the data points included in this figure are clustered about the origin. 

This represents increased sensitivity and adaptation to environmental conditions and 

therefore decreased stability of the variety or environment due to an increase in 

interaction effects. However, each representative sample produced two of its three 



 107 

replicates within the same general area. The higher interaction effects are unstable 

causing the measured variability in the produced means. The closeness, as measured from 

a projected vector connecting the data points, correlates to decreased variation and 

increased interaction. Those with a positive correlation to variation, provided by a 

positive value from IPCA 1, 2, or both, can be found in Quadrants 1 and 2 on this graph. 

Quadrant 1, which houses a shared data point for H replicates 1 and 2, has the most 

positive correlative values. L2 in quadrant 3 has the most negative correlative value due 

to negative value contribution from both IPCA 1 and 2. Neither sample has all of its 

replicates clustered about a given data point. There is more variation in IPCA 1 than 

IPCA2, and a total of 138.23% is represented by both axis, which cumulatively captures 

all interaction within this dataset. This data analysis yielded a mean square error rate of 

0.06667, 40.32%TRF main effects percent variation total, interaction percent variation 

total composed of 30.79% pattern and 28.9%noise, and a 32.15 total sum of squares value 

correlating to the diversity among environments and variation (data not shown). The 

relatively small sum of squares for the environments of this dataset coincide with 

decreased diversity among the environments and the general lack of generated variation 

among the dataset.  

A depiction of the reverse 3’ FAM fragments yielded by T-REX of the control 

(H) and synbiotic (L) mice is shown in Figure 11. Each sample has triplicate forward and 

reverse data points. The number after the initial sample letter designation depicts the 

replicate number.  There is an overall negative variation among both IPCA 1 and 2 as is 

evident with the cumulative -147.7 % variation from the axis totals. The negative values 

listed by the axis correlate to the difference in sign between the genotype and 
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environment and can allow increased performance in environments having interaction 

values that are negative. IPCA 1 has more negative variation than IPCA 2. Four of the 6 

replicates share the same data point due to a lack of variation and increased positive 

interaction amongst those samples. For either sample, all of the replicates are not grouped 

together. Quadrant 1 houses the most positive correlational replicates and quadrant 3 the 

most negative. Samples furthest from the origin, L1, have increased sensitivity and 

adaptive properties to environmental changes, such as diet, as can be measured by the 

relative small length a projected vector from the origin to the data point. This data 

analysis yielded a mean square error rate of 0.14286, 69.51%TRF main effects percent 

variation total, interaction percent variation total composed of -20.64% pattern (a 

negative interaction) and 51.14% noise, and an 18.38095total sum of squares value 

correlating to the diversity among environments and variation (data not shown). The 

relatively small sum of squares for the environments of this dataset, which is the smallest 

measured value of all of the datasets, is due to decreased diversity among the 

environments and the general lack of generated variation.  

Figure 12 depicts the 5’ forward HEX and reverse 3’ FAM fragments yielded by 

T-REX of the control (H) and synbiotic (L) mice “best” sample designated by data 

collected by Peak Scanner. Each sample has triplicate forward and reverse data points. 

The number after the initial sample letter designation depicts the replicate number and the 

concluding f or r forward and reverse, respectively. Complete variation capture among 

the first two PCA values yielded a total of 90374.3% variation is represented by both 

IPCA 1 and 2 with increased variation in IPCA 1. Out of the 12 replicates present, half 

share a common location, or data point, on the graph. This corresponds to decreased 
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variation and increased interaction amongst those samples as would be evident from a 

projected vector connecting the data points. The lack of clustering about the origin is 

representative of increased sensitivity and adaption of the samples to their environment in 

addition to an increased lack of stability to interactions and measured multivariate effects. 

Of the 12 samples, 10 have at least one positive contributing value from either IPCA 1 or 

2. The most positive correlational values in terms of variation are found in quadrant 1 as 

both IPCA 1 and 2 supply positive values, thereby contributing positive variation effects. 

Quadrant 3 is the most negative due to negative supplied values. Reverse fragments 

cluster more amongst each other and away from forward fragments. . This data analysis 

yielded a mean square error rate of 0.04545, 24.56% TRF main effects percent variation 

total, interaction percent variation total composed of 47.54%pattern and 27.89% noise, 

and a 63.64091 total sum of squares value correlating to the diversity among 

environments and variation (data not shown). This is relatively small sum of squares 

comparable to all other datasets and contributes to decreased diversity among the 

environments and the general lack of generated variation among the samples measured. 

Diversity Indices 

Diversity indices representing the average Margalef species richness (d) of TRF 

profiles generated by cecum content of control (B, H, J) and synbiotic (C, F, L) diet fed 

mice is represented in Figure 13.  This diversity index measures species abundance and 

frequency. A larger standard deviation is represented by the relative size of the error bars 

for the control mice in relation to the synbiotic. This correlate to a lesser degree of 

consistency amongst the individual sample replicates. In contrast, the small standard 

deviation evident in sample C, a synbiotic diet fed mouse, reflects replicated results with 
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less variation, and thus the value derived being more reflective of the present species 

richness within the sample.  There is a consistency of measured species richness among 

the control samples as is evident by their relative position on the graph. However, 

analysis of the data points correlating to the symbiotic diet shows a slight decrease in 

diversity comparative to the control samples, there is a noticeable spike in the average 

measured species richness within the synbiotic sample F, and sample L produced the 

lowest value. Overall trend analysis correlates to a conservation of species richness 

during the administration of probiotics. Therefore, one can conclude that community 

composition is not inversely disturbed and function and homeostatic balance is 

maintained as is contrary to antibiotic administration, and there would be a decreased 

chance of dysbiosis occurring as a side effect to this diet treatment.  

Amongst the control samples, B has a greater measured standard deviation than 

the other two mice which both share a relatively small error bar size when analyzing the 

Shannon diversity measure for entropy or abundance of a species amongst a whole 

community sample (Figure 14). The relatively small standard deviation error bar size of 

H and J compared to B correlates to a higher degree of representation of the entropy or 

proportional abundance of a given species amongst a whole as is reflected by this index 

value. The control diet has the highest degree of variation as sample B also has the 

highest standard deviation and lowest Shannon diversity index value of all the mice while 

H yielded the highest Shannon value. The synbiotic mice contained the sample point with 

the least standard deviation, L. The other mice within this category had the second (F) 

and third (C) highest standard deviations amongst all of the mice analyzed. The measured 

Shannon diversity within this category was fairly consistent. When comparing all of the 
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samples together, the measured average Shannon diversity value for the replicates of each 

sample were similar to one another as differences were based on the hundredth. This 

correlates to a conservation of Shannon diversity after then administration of synbiotics 

when compared to the normal, control diet composition. The consistency across samples 

alludes to a maintenance and lack of disturbance of gut intestinal community composition 

and therefore activity upon synbiotic treatment. 

When analyzing the Simpson diversity Index (1-ʎ’), the probability of two 

randomly selected samples being composed of the same species identification, of both 

diet categories of cecum content, the control diet contained the top two highest standard 

deviations (B, J) amongst all of the samples, but it also contained the second smallest 

measured (H). Mouse H also had the highest diversity value. However analysis across 

samples showed a low degree of variation in the average diversity value obtained. Mice 

fed the synbiotic diet had small standard deviations with the exception of F. The lower 

standard deviation could correlate to a higher degree of representation to the actual 

community structure in relation to the species identity measured by this diversity index. 

The lack of measurable difference in the Simpson values obtained related to a 

conservation of homeostatic presence and balance after the administration of the 

synbiotic diet in comparison to the controlled diet. This correlates to a decreased chance 

of ensuing dysbiosis from the diet treatment and thus validates the treatment option when 

compared to the negative effects often resulting from antibiotic or other invasive 

treatments. 
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DISCUSSION 

Culture-based techniques have led to novel insights into the study of bacterial 

community structures of culturable organisms within a given environmental sample. 

However, there is limited application in revealing the complete diversity or phylogenetic 

assignment of many of the environments being studied. DNA-based molecular methods 

have facilitated this and circumvent the limited scope of culture dependent techniques by 

identifying sequence diversity according to genes present within a sample (49). Species 

richness is characterized by the number of species within a given community or sample 

and species evenness refers the size of the species population within that same 

community. Both are used as parameters to investigate diversity and structure within a 

community and can be qualitatively estimated based on the unique frequency of 

occurrence of ribotypes detected during TRFLP despite being limited by conventional 

culture-dependent methodology due large fractions (85-99.9%) of microorganisms 

present in nature being refractory to cultivation. Lack of identical environmental 

parameters composing the exact environmental structure as is found in nature during 

cultivation imposes an additional limitation by altering the community structure by the 

new selective conditions introduced to the environmental sample. This results in an 

evolved community structure that may not represent the initial structure present during 

sampling. Molecular approaches utilizing isolated total community DNA as a template 

for study, such as TRFLP which couples PCR and rRNA-based phylogeny, avoid these 

limitations by obviating the requirement for cultivation while providing useful insights 

into the sample identity by pairing results with database integration (29-31, 33, 34, 40, 

46, 55-57).   
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Construction, screening, and analysis of clone libraries is both time and cost 

intensive. Other techniques have been developed (such as DNA melting behavior and 

single-strand conformation) to circumvent clone library use and assess community 

structure while providing a crude qualitative assessment of species diversity. However, 

they are limited by the lack of sensitivity of the materials employed in the procedure (ie 

staining) and do not yield data relative to phylogenetic assignment or identity of a given 

microbial community. There is also a limitation for presumptive assignment of bacterial 

group identification within a community (29-31, 33, 34, 40, 46, 55-57).  

However, the extent of phylogenetic application is dependent of extent of 

universalness and specificity of the primers used. Currently, no known universal primers 

are present that can hybridize or amplify all sequences available.  And if utilizing cloning 

for phylogenetic identification, the sequences present in the database used to generate 

said universal primers represent only a portion of the total species diversity present in the 

natural microbial world and therefore lack complete resolution (33).  T-RFLP analysis 

therefore stands as a robust, high throughput, automated culture independent means of 

analysis that bypasses many of the limitations imposed by other techniques employed. 

The TRF profiles produces had no consistent patterns when analyzing either the 

forward or the reverse fragments across samples within a given diet or between diets. The 

shifts in ordinations, applied as the measured distance of projected vectors from the 

ordinate or from other data points, produced a range of variability, stability, and 

interaction amongst samples from a given environmental factor (such as diet) as is 

evident from the data point locations from the origin of the figures previously mentioned. 

An increased distance from the origin correlated to decreased stability where the means 
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of the measured factors contribute in increased measured variability. Those data points 

that shared a given quadrant had a positive interaction. The PCA scores or (IPCA%) 

generated on either axis of the figures represent the interaction intensity of the genotype 

to the environment; the smaller the score, the less interaction effect, and similarity in sign 

between these two factors correlates to a positive interaction shown while dissimilarity, 

the inverse. Stability according to the biplot utilized in this study is more precise than a 

biplot comprised of only the first PCA axis, though a significant amount of interaction 

must be contained within the first two axes to be successfully representative. Being 

relatively high despite ranging among the datasets, a large sum of squares for 

environments as generally reported in this analysis correlates increased diversity among 

environments, and the cause of generated variation among the dataset. Variability in both 

main effects and interactions in relation to environments can be shown by scattered data 

among environmental locations on a biplot, as was evident in many of the analysis 

performed, and those high potential environments are evenly distributed in a given 

quadrant with minimum interaction effect.  Lower potential environments clustered in a 

given quadrant with high IPCA value where lowest yielding environments had the 

highest positive IPCA scores (31, 40). 

Qualitative diversity measurements of the TRF profiles produced from the cecum 

content of each of the representative diets generated an overall trend corresponding 

species richness conservation during the administration of probiotics (Figure 13). This 

supports the conclusion that community composition is not negatively affected. Also that 

function and homeostatic balance is maintained, leading to a decreased probability of 

inducing a diseased state of dysbiosis as a result of probiotic administration which is 
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contrary to typical antibiotic administration. Also, Shannon diversity values for all 

samples were comparable due to differences observed according to the hundredth of the 

value observed (Figure 14). This correlates to a conservation of Shannon diversity 

between the diets. This consistency also correlates to a preservation and lack of 

disturbance of gut intestinal community composition and activity upon synbiotic 

treatment. A reduction in the probability dysbiosis and conservation of homeostatic 

balance from the diet treatment in addition to validation of the synbiotic treatment option 

when compared to the negative effects often resulting from antibiotic or other invasive 

treatments is shown by the lack of significant difference amongst measured Simpson 

diversity values and low generated standard deviation when compared to the control diet 

(Figure 15). These findings could also correlate to a higher degree of representation to the 

actual community structure in relation to the species identity 

Analysis based on peak area was accomplished due to relative peak height 

investigation resulting in the presence of the following error: deletion of the smallest 

peaks, often believed to be within the range of observed noise, causing variation in the 

level of effect it had on dendogram error rate and thus correlating that those peaks could 

represent frequently occurring, important TRFs in terms of distinguishing between 

samples (54). However, fragment is not technically representative of an OTU as multiple 

organisms can produce identical TRF profiles (46). There has also been difficulty 

reported in designating accurate identity to each TRF in complex gene profiles. Each 

peak in a complex microbial community sample is generally representative of multiple 

TRFs of the same size produced by multiple species (56). 
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 Despite its use and application, interpreting data generated during T-RFLP 

analysis should be done cautiously and only as an estimation of diversity as population 

presence is dependent on rank abundance and those microbial populations that are not 

dominant numerically are often not represented and therefore species diversity of the 

environmental sample is vastly underestimated. Also gene copy number among species 

and biases introduced though out the procedure can yield skewed, unrepresentative 

products in relation to rank abundance of the original DNA sample template. Only very 

general phylogenetic inferences can be drawn and the degree of phylogenetic information 

obtainable from this method is dependent on the limited performance of the PCR primer 

used. Distinct community signatures cannot be produced (29-31, 33, 34, 40, 46, 54-57). 

Also, the profile reproduction among sample replicates has yet to be achieved in its 

completeness, thus contributing to a lack of precise community fingerprint and 

phylogenetic diversity analysis while still providing information pertaining to estimated 

community richness. Complex community structure has also lead to incongruences 

phylotype richness and structure assessment. The inference of phylogenetic composition 

based on the TRF profile depends on the TRFs phylogenetic resolution (the similarity of 

organisms responsible for a specific TRF size) and well as the quality and quantity of 

comparative reference sequences available. Sequence discrimination by a specific TRF is 

generally inconclusive and generally yields a skew in sequence distribution for a specific 

TRF, as extremely few TRFs are specific for a given species or genus. Comparative 

diversity within a community can still be deduced from phylogenetically relevant TRFs. 

Additionally, there can be discrepancies in fragment sizes due to the relative error 

apparent from sequence identity on migration within a polyacrylamide gel. This factor 
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can contribute to an alteration in seemingly phylogenetically specific TRFs and the use of 

‘binning’ for comparative TRF sizes.  

Various inherent biases are also apparent in relation to applications based on 

DNA and PCR usage that limit TRF pattern interpretation and relevance though the 

introduction of error and artifact including those present during  sample preparation and 

DNA isolation, amplification, digestion, electropherogram migration and inconsistencies 

in gel composition and running conditions, and data set alignment. However this is not 

unique to this profiling method but also applies to other microbial community analysis 

methods currently used (56, 57). Further metagenomic studies are necessary to elucidate 

more exact measures of diversity and phylogenetic assignments for the activity and 

effectiveness of synbiotics as treatment options to combat dysbiosis and preserve 

homeostatic balance within he host as is mitigated by the gut microbial flora. 
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Data 

Figure 1. 16S bacterial amplicon T-RFLP analysis from the molecular-based 

microbial community fingerprinting technique, T-REX (T-RFLP analysis Expedited), 

on the forward 5’ HEX fragment of triplicate mouse cecum samples harvested from 

the cecum content of control (B, H, J represented by closed circles) diet fed mice. The 

letter for each data point represents the sample and the following the number the 

replicate number. Stacked point designations represent data having the save value and 

coordinate. 

 

Figure 2. 16S bacterial amplicon T-RFLP analysis on triplicate mouse cecum samples 

harvested from the cecum content of control (B, H, J represented by closed circles) diet 

fed mice where the letter represents the sample and number the replicate. Data is 

presented by means of the AMMI model, which organizes variations and interactions 

amongst data by means of ANOVA and PCA. The figure above depicts the reverse 3’ 

FAM fragments yielded by T-REX of the control mice. Stacked point designations 

represent data having the same value and coordinate. 
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Figure 3. 16S bacterial amplicon T-RFLP analysis on triplicate mouse cecum samples 

harvested from the cecum content of control (B, H, J represented by closed circles) diet 

fed mice. Data is presented by means of the AMMI model, which organizes variations 

and interactions amongst data by means of ANOVA and PCA. The figure above depicts 

the forward 5’ forward HEX and reverse 3’ FAM fragments yielded by T-REX of the 

control mice. Each sample has triplicate forward and reverse data points. The number 

after the initial sample letter designation depicts the replicate number and the concluding 

f or r forward and reverse, respectively. Stacked point designations represent data having 

the same value and coordinate. 

Figure 4. 16S bacterial amplicon T-RFLP analysis on triplicate mouse cecum samples 

harvested from the cecum content of synbiotic (C, F, L) diet fed mice where the letter 

represents the sample and number the replicate. Data is presented by means of the AMMI 

model, which organizes variations and interactions amongst data by means of ANOVA 

and PCA. The figure above depicts the forward 5’ HEX fragments yielded by T-REX 

analysis of the synbiotic mice which are designated as open circles. 
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Figure 5. 16S bacterial amplicon T-RFLP analysis on triplicate mouse cecum samples 

harvested from the cecum content of synbiotic (C, F, L designated as open circles) diet 

fed mice of the reverse 3’ FAM fragment where the letter of each data point corresponds 

to the sample and number the replicate. Data is presented by means of the AMMI model, 

which organizes variations and interactions amongst data by means of ANOVA and 

PCA.  

 

Figure 6. 16S bacterial amplicon T-RFLP analysis on triplicate mouse cecum samples 

harvested from the cecum content of synbiotic (C, F, L which are designated as open 

circles) diet fed mice. Data is presented according to AMMI analysis. The figure above 

depicts the forward 5’ HEX and reverse 3’ FAM fragments yielded by T-REX analysis of 

the synbiotic mice. Each sample has triplicate forward and reverse data points. The 

number after the initial sample letter designation depicts the replicate number and the 

concluding f or r forward and reverse, respectively. Stacked point designations represent 

data having the same value and coordinate. 
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Figure 7. 16S bacterial amplicon T-RFLP analysis on triplicate mouse cecum samples 

harvested from the cecum content of control (B, H, J designated by closed circles) and 

synbiotic (C, F, L represented by open circles) diet fed mice. Data is presented by means 

of the AMMI model, which organizes variations and interactions amongst data by means 

of ANOVA and PCA. This is a graphic representation of the 5’ forward HEX yielded by 

T-REX of the control and synbiotic mice. Stacked point designations represent data 

having the same value and coordinate. The letter in the label of each data point 

corresponds to the sample and the number the replicate. 

 
Figure 8. 16S bacterial amplicon T-RFLP analysis on triplicate mouse cecum samples 

harvested from the cecum content of control (B, H, J represented by a closed circle) and 

synbiotic (C, F, L designated as an open circle) diet fed mice. Data is presented by means 

of the AMMI model, which organizes variations and interactions amongst data by means 

of ANOVA and PCA. The figure above depicts the reverse 3’ FAM fragments yielded by 

T-REX of the control and synbiotic mice. Stacked point designations represent data 

having the same value and coordinate. Data labels correspond to the sample (letter) and 

replicate (number). 
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Figure 9. 16S bacterial amplicon T-RFLP analysis on triplicate mouse cecum samples 

harvested from the cecum content of control (B, H, J represented by a closed circle) and 

synbiotic (C, F, L designated as an open circle) diet fed mice. Data is presented by means 

of the AMMI model, which organizes variations and interactions amongst data by means 

of ANOVA and PCA. The figure above depicts the 5’ forward HEX and reverse 3’ FAM 

fragments yielded by T-REX of the control and synbiotic mice. Each sample has 

triplicate forward and reverse data points. The number after the initial sample letter 

designation depicts the replicate number, and the concluding f or r forward and reverse, 

respectively.  Stacked point designations represent data having the same value and 

coordinate. 

 
Figure 10. 16S bacterial amplicon T-RFLP analysis from the molecular-based 

microbial community fingerprinting technique, T-REX (T-RFLP analysis Expedited), 

on mouse cecum samples harvested from the cecum content of control (H, designated 

by a closed circle) and synbiotic (L, represented by an open circle) diet fed mice. 

Data is presented by means of the AMMI model. The figure above depicts the two 
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dimensional interactions and variations produced by analyzing the forward 5’ HEX 

fragment of the “best” representative control (H) and synbiotic (L) diet as determined 

by Peak Scanner absorbance plots of TRFLP data. Stacked point designations 

represent data having the same value and coordinate. 

 

 
Figure 11. 16S bacterial amplicon T-RFLP analysis on triplicate mouse cecum samples 

harvested from the cecum content of control (H) and synbiotic (L) diet fed mice. Data is 

presented by means of the AMMI model, which organizes variations and interactions 

amongst data by means of ANOVA and PCA. The figure above depicts the reverse 3’ 

FAM fragments yielded by T-REX of the control (H) and synbiotic (L) mice. Each 

sample has triplicate forward and reverse data points. The number after the initial sample 

letter designation depicts the replicate number. Stacked point designations represent data 

having the same value and coordinate. 

 
Figure 12. 16S bacterial amplicon T-RFLP analysis on triplicate mouse cecum 

samples harvested from the cecum content of control (H, closed circle) and synbiotic 

(L, open circle) diet fed mice. Data is presented by means of the AMMI model, which 

organizes variations and interactions amongst data by means of ANOVA and PCA. 
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The figure above depicts the 5’ forward HEX and reverse 3’ FAM fragments yielded 

by T-REX of the most representative sample of each the control and synbiotic mice. 

Each sample has triplicate forward and reverse data points. The number after the 

initial sample letter designation depicts the replicate number and the concluding f or r 

forward and reverse, respectively. Stacked point designations represent data having 

the same value and coordinate. 

 
 Figure 13. Diversity indices representing the average Margalef species richness (d) 

values produced by Primer 6 software during terminal restriction fragment length 

polymorphism analysis comparing cecum content of control (B, H, J designated as closed 

circles) and synbiotic (C, F, L represented as open circles) diet fed mice.  This diversity 

index measures species abundance and frequency.  

 

 
Figure 14. Average Shannon diversity indices (H’) values of sample replicates produced 

by Primer 6 software during T-RFLP analysis of mouse cecum tissue samples harvested 

from mice fed either a controlled (samples B, H, J designated as closed circles) or 

synbiotic diet (samples C, F, L represented as open circles). Error bars were generated 

from obtaining standard deviations of the averaged replicates.  
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Figure 15. Primer 6 generated average values depicting the probability of two randomly 

selected samples belonging to the same species, or the Simpson Index (1-ʎ’), from T-

RFLP data of mouse cecum tissue samples collected from mice fed either a controlled 

(samples B, H, J designated as closed circles) or synbiotic diet (samples C, F, L 

represented as open circles).  
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ABSTRACT: The cecum has the highest metabolite absorption and houses the most 

abundant population of microbes which are responsible for maintaining homeostasis and 

host health. Disruption of the microbial populations in either presence or relative 

abundance due to various environmental and host factors can result in various disease 

state that do not have a standard form of medical treatment. Supplementation with 

probiotics, prebiotics, and synbiotics has shown promise as a therapeutic intervention to 

combat dysbiosis. Many gut microbiota cannot be isolated by culture-dependent 

techniques. Culture independent, high resolution paired end16S rRNA genomic analysis 

of the V3/V4 hypervariable region shows the establishment of probiotic strains 

maintaining diversity within the cecum under the additional supplementation of 

prebiotics to meet conditions for therapeutic use in combating dysbiosis and maintaining 

host health and homeostatic balance as is mitigated by the gut microbial flora.  

KEYWORDS: paired end, prebiotic, probiotic, synbiotic, diversity, 16S rRNA, next-gen 

INTRODUCTION 

 Microbial communities abound in a range of environments including that of the 

human host which contains upwards of 100 trillion microbial cells, outnumbering human 

eukaryotic cells tenfold. The most densely populated environment is located in the lower 

intestine of the gastrointestinal tract, specifically the cecum, where the human gut 

microbiota and its genome is known collectively as the ‘gut microbiome.’ A variety of 

exogenous metabolic and genetic features bestowed from microbe to host are the result of 

a co-evolved, synbiotic relationship between these two entities (7, 18, 21, 38, 63). For 

example, the gut microbiome is largely responsible for the mediation of host health 

through means of moderating host homeostasis, development and regulation of the 
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immune response, contributing to pathogen colonization resistance, and actively 

participating in nutrition and metabolism (27, 39, 42, 51). Epithelial development, 

regulation of energy homeostasis, blood circulation, and adaptive and innate immunity 

mechanisms are also mitigated by the host gut microbiome. Disruptions in the normal 

activity of host interactions of this microbial community including adaptations to the 

various aspects of the ‘modern lifestyle’ including travel, diet, age, geographic locale, 

stress, and use of medications can therefore results in a diseased state (1, 7, 13, 15, 17, 

20, 24-26, 31, 45, 47, 49, 50, 53-55, 63, 65, 66). 

 Due to the nature of these interactions, pharmaceutical interventions to further 

moderate host health that inadvertently affect the microbial community composition of 

the gut microbiota can have detrimental effects. Lack of treatment can result in the 

development of many illnesses both acute and chronic with varying prognoses including 

the following: asthma, pseudomembranous colitis, functional diarrhea, as well as 

additional implications such as cancer, obesity and other eating disorders, cardiac events, 

inflammatory bowel disease, chronic low-grade inflammation, inflammatory bowel 

syndrome, Crohn’s disease, ulcerative colitis, type 2 diabetes, asthma, hay fever, skin 

allergies, antibiotic-associated diarrhea, pseudomembranous colitis, toxic megacolon, 

atopic diseases relating to the change in microbial community composition, and 

neurodevelopmental disorders including autism spectrum disorders (Asperger disorder, 

childhood disintegrative disorder, Rett disorder, pervasive developmental disorder). All 

of these disease states are mitigated by chemical transformations within the gut as a result 

of the disturbance of the microbial norm (1, 6, 7, 9, 13, 15, 20, 25, 26, 31, 37, 41, 43, 45-

50, 53-55, 63, 65, 66). 
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A number of interventions have been integrated into the management of the 

dysbiotic state in the gut microbiome as there is currently no standard or agreed-upon 

method for treatment due to the exhibited broad range of effectiveness. Such 

methodologies include antibiotic administration, bacteriotherapy, and fecal-oral 

transplantation (7, 17, 19, 30, 53, 63, 65).  Antibiotics are generally administered due to 

this lack of effective treatment and are often unsuccessful, resulting in recurrent 

infections and altering the microbial community composition at a rate of roughly 90% 

(19, 31). Promising, yet highly invasive and requiring an extensive screening process, 

fecal-oral transplantations are also employed but with varying success rates (5, 7, 19, 30). 

Utilization of the emerging pre-, pro-, post-, and synbiotics has shown increasing 

potential for correcting the dysbiotic state and maintaining host health (1, 7, 13-15, 20, 

25, 26, 31, 41, 45, 47, 49, 50, 53-55, 63, 65, 66). 

Probiotics are classified as “organisms and substances which contribute to 

intestinal microbial balance” or “a live microbial feed supplement which beneficially 

affects the host animal by improving its intestinal microbial balance” and must meet 

specific guidelines by remaining stable and viable under storage and use, be prepared on 

a large scale, and benefit host health after introduction in addition to surviving and 

remaining present in the integrated ecosystem after the product used for initial 

introduction has been depleted (7, 31, 54). Commonly used probiotics that show 

effectiveness in various pathologies include Lactobacilli (Lactobacillus acidophilus, L. 

casei, L. delbruekii) Bifidobacteria (Bifidobacterium adolescentis, B. bifidum, B. longum, 

B. infatis), and Streptococci (Streptococcus salivariius ss. Thermophiles, S. lactis) (31, 

41).  However, L. acidophilus is the most prevalently utilized and tolerated probiotic, and 
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it has been shown to synthesize vitamin K which is necessary for the conversion of the 

bone matrix osteocalcin to the active form and may thus aid in improving bone integrity 

(1, 7, 13, 15, 20, 25, 26, 31, 41, 45, 47, 49, 50, 53-55, 65, 66). 

Prebiotics are “a non-digestible food ingredient that beneficially affects the host 

by selectively stimulating the growth and/or activity of one or a limited number of 

bacteria in the colon, and thus improves host health (7).” Like probiotics, additional 

criteria must be satisfied. A prebiotic cannot be absorbed or hydrolyzed in the upper GI 

tract, and it must serve selectively as a substrate for specific commensal, beneficial 

bacteria for growth or metabolic activation. It also must alter the microbial composition 

to that of a healthy state, and cause systemic or luminal effects that benefit host health (7, 

31, 54). Compounds meeting these specifications include non-digestible foods such as 

oligosaccharides, polysaccharides, fructooligosaccharides, and other naturally occurring 

non-digestible carbohydrates, peptides, proteins, and lipids. Host health is improved 

through the stimulation of growth and activity of specific endogenous microbiota by 

altering the microbial composition in a given locale due to supplementation of nutrients 

and metabolites (31). 

The term ‘synbiotics’ includes the combined use pro- and prebiotics and is 

defined as “a mixture of probiotics and prebiotics that beneficially affects the host by 

improving the survival and implantation of live microbial dietary supplements in the 

gastrointestinal tract, by selectively stimulating the growth and/or by activating the 

metabolism of one or a limited number of health-promoting bacteria, and thus improving 

host welfare (7).” Synbiotics have shown to combat the diseased dysbiosis state via 

supplementation with functional and health enhancing nutrition by maintenance of the 
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colonic flora in the healthy, balanced state. The combined usage of pre- and probiotics 

has shown to increase the effectiveness of each individual component (7, 31, 41, 54). 

The current lack of information concerning the phylogenetic diversity and 

composition of the gut microbial flora both under a state of health and disease has 

introduced various challenges for the use of pre-, pro-, and synbiotics in treating 

dysbiosis. The exact identity of species shifts between the two states of host health has 

remained elusive despite the limited knowledge of phyla level changes which impedes 

understanding of microbial community interactions during treatments as spatial 

distribution within the GI tract is heterogeneous due to environmental differences, and 

different pre- and probiotics may have varying activities and cooperative interactions 

with other bacteria at different locations. Further research is needed to investigate and 

characterize the intestinal communities of microbes to increase the efficiency and 

effectiveness of synbiotic treatments (31, 41). 

Due to the uncultivable nature of the gut microflora, the lack of accurate 

representation of diversity and inherent biases and limitations present in culture-

dependent methods of analysis, and the exponential amount of species being analyzed (on 

the order of 1011-1014 bacteria per gram of intestinal content, more than 1.5kg total 

weight, and representing over 1100 species), a high-throughput means of DNA analysis 

was necessary (10, 21, 52).  The Human Microbiome Project and MetaHIT Consortium 

have both utilized emerging culture-independent technologies for the characterization of 

microbes and their genomes within the human body to assess its composition on various 

degrees of host health and disease states (7, 21, 31, 41, 63). Mouse models have been 

employed to decrease biases and confounding variables while providing representation to 
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the human microbiome (7, 25, 33, 63). Diversity studies are crucial for the development 

of pharmaceuticals and therapeutic interventions to alleviate a diseased host state (15). 

Being that the cecum is the source of highest metabolite absorption, analysis of its 

content is beneficial to determine the effectiveness of synbiotics (1, 7, 13, 16, 20, 21, 26, 

34, 45, 47, 49, 50, 53, 55, 63, 65, 66). 

Analysis of the gut microbiome is facilitated through the use of current, improved 

technologies, sequence analysis, and software packages by providing increased statistical 

precision, resolution between samples, and  accurate representation of biological patterns 

and applications in microbial community dynamics on a scale previously unobtainable 

(12, 35). In addition to community differentiation, relative structure, phylotype richness, 

organism identification, and identification of spatial and temporal shifts, species analysis 

of diversity can be based on nucleotide sequence identity in mitochondrial DNA within a 

species while achieving specificity and sensitivity with increased resolution and while 

avoiding the limitations inherent to cultivation-dependent techniques (29). The 16S 

rRNA amplicons commonly utilized in community profiles and diversity can aid in the 

detection of rare phylotypes, ecological characteristics, and taxonomic identification due 

to it being present in all organisms, being large enough for informatics purposes (at 

roughly 1500bp) while containing both conserved (the most highly conserved structural 

element in rRNA) and hypervariable loop regions, not being transferred horizontally, and 

being considered universal- thus greatly increased the rise of complex, novel microbial 

consortia (8, 23, 32, 35). Microbial community structure comparisons of hundreds of 

samples can be accomplished via 16S rRNA high-throughput gene sequencing. The 

Illumina platform produces up to 1.5 billion reads per run in comparison to the 1 million 
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reads per run on previously primarily used 454 Pyrosequencing platform at a comparable 

cost. This platform is also 50-12000 fold less expensive per sequenced megabase than 

pyro and Sanger sequencing (2, 34, 64). 

The V3/V4 loop region of the bacterial 16S ribosome can be analyzed through 

utilization of paired-end sequencing and annotation (36). The paired-end analysis 

technique is advantageous to other high-throughput sequencing techniques in that it 

reduces the amount of erroneous sequences that are included in downstream analysis 

(imposing a quality control step) while providing enormous data sets. The length at two 

fold coverage has increased quality of generated libraries. Paired-end analysis is 

completed when sequencing both the 5’ and 3’ ends, doubling the number of base pair 

reads on the Illumina platform. Both V3 and V4 regions can be utilized to identify OTUs 

(thus reducing the observed sequencing error rate from 1.08 to 0.01%) while constructing 

phylogenetic assignments in tree form.  The overlapping present in these regions also 

allows for a reduction in generated error (34, 64). The V3 hypervariable region consists 

of roughly 200 nucleotides and has high taxonomic resolution and a conserved flanking 

region. It is also compatible with paired-end sequencing which allows for overlapping 3’ 

end sequencing, reduction of sequencing errors, and generation data applicable to 

pipelines of computational analysis that are publically available (2). The MiSeq Illumina 

platform also provides a cost efficient means of paired-end analysis comparative to its 

HiSeq counterpart (23, 34). In addition, utilizing the V3/V4 and a 7bp heterogeneity 

spacer reduces the lower diversity measurements that were previously plaguing MiSeq 

data. There are 9 hypervariable regions flanked by conserved sequence regions in the 16S 

rRNA gene. A 469bp region is required to contain both the V3 and V4 regions while 
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maximizing the length of the generated MiSeq reads. This region provides sufficient data 

for microbial community taxonomic classification of specimens associated with the 

human microbiome (as is employed in the human microbiome project). Strict filtering 

can alleviate error rates that tend to increase at the ends of reads and thus improve the 

accuracy of taxonomic assignment while avoiding spurious read assembly (60). 

Advanced tools for analysis facilitate the detection of integral components of host 

homeostatic balance through mediation and integration of pre, pro, and synbiotics. 

Further research, specifically metabolomics, is required to identify the metabolic 

capabilities and activities of influential gut microbiota for sustaining human host health. 

MATERIALS AND METHODS 

Sample Preparation: 

 Harvested cecum from male 9 month old mice (Harlan), Mus musculus following 

either a controlled (B, C, F) or synthetic (H, J, L) diet were chosen at random.  The diets, 

based on a powdered form of American Institute of Nutrition (AIN)-93M purified rat diet 

(Dyets, Inc., Bethlehem, PA), were administered to the mouse model and were modified 

to utilize cornstarch in place of sucrose and dextrin in order to reduce the susceptibility of 

osmotic dehydration of the bacteria studied within the synthetic diet. These isocaloric 

diets were developed according to carbohydrate ingredient manipulation by assuming 

energy densities of 4, 0, and 2 kcal/g for cornstarch, cellulose, and fructooligosaccharide, 

respectively. Fructooligosaccharide and lyophilized probiotic cultures (Nutraceutix, 

Redmond, WA) were composed of 1x1011 CFU/g of equal parts Lactobacillus 

acidophilus and Lactococcus lactis lactis. The diets were made fresh three times a week 

with addition of probiotics immediately prior to feeding each morning for 18 weeks (4).  
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The triplicate diet-specific cecum samples were sterilely dissected both laterally 

and vertically and rehydrated using 6mL 10mM TRIS,pH~8.0, 1% Triton after being 

stored at -20°C. Samples were then incubated at 80°C for one hour, and centrifuged 

(1000rpm) for five minutes to achieve a pellet. Residual supernatant was removed after 

centrifugation at 16,000xg for 10 minutes. The cell pellet obtained was resuspended in 

250uL 10mM TRIS. 

DNA Isolation:  

Genomic DNA of the cecum samples was obtained by a mechanical sheer forces 

protocol utilizing 100μL Lysozyme (100mg/mL) added to the rehydrated cell suspension 

solution and incubated for 30 minutes at 37ºC. After which, 100μL Proteinase K 

(10mg/mL in 10mM TRIS) was added, incubated for 30 minutes, and brought up to 

volume with Herwigs Lysis buffer in a bead-beating tube. Prior to supernatant being 

drawn off and added to isopropanol, tubes were then bead-beated for 5 minutes, boiled at 

80ºC for 10 min, microcentrifuged at 3000xG for 5 minutes, and stored at -20ºC for 12 

hours. Samples were then microcentrifuged at 13000xG for 10 min, and the pellet washed 

with 200μL 70% ethanol (4ºC) prior to centrifugation at 13000xG for 10 minutes. 

Ethanol was removed by drying at 37ºC for 60 minutes before DNA was rehydrated in 

10mM TRIS, pH ~8.0. 

Paired End and PCR Amplification: 

A gradient bacterial paired end PCR (200μM/L 16S paired-end bacterial designed 

primers [forward primer: 5’-TCG TCG GCA GCG TCA GAT GTG TAT AAG AGA 

CAG CCT ACG GGN GGC WGC AG-3’ and reverse primer: 5’-GTC TCG TGG GCT 

CGG AGA TGT GTA TAA GAG ACA GGA CTA CHV GGG TAT CTA ATC C-3’] , 
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Vent polymerase, 40-60°C annealing temperature with a four minute extension time) was 

run on an Escherichia coli K12 (+) control which yielded an optimized temperature of 

41.5C for annealing. A 16S PCR was then run on the genomic DNA samples in triplicate 

in 50 μL reactions for each of the genomic DNA samples with each reaction containing 

the following: the same 16S paired-end primers (Integrated DNA Technologies), Vent 

polymerase (New England Biolabs, Ipswich, MA), 1x ThermoPol Buffer (New England 

Biolabs, Ipsich, MA), 400μM per each deoxynucleotide triphosphate (New England 

Biolabs, Ipswich, MA), and 1μL genomic DNA template. Individual master mixes and 

negative controls were used for each sample in a program consisting of the following 

steps:10 minute denaturation at 95ºC, followed by 30 cycles of 95ºC/ 1 minute, optimized 

annealing for 2 minutes at 41.5ºC, and 4 minutes at 72ºC. The final cycle of the 

previously listed steps was immediately followed by a concluding 10 minute elongation 

step at 72ºC. After a low EEO 1% agarose “check” gel verified the results, the best of 

each of the samples (dictated by present DNA concentration as verified by Image J 

software) was Nano Dropped (NanoDrop ND1000 Spectrophotometer, Thermo 

Scientific, Wilmington, DE) in triplicate to achieve a proper DNA concentration, and 

submitted to Idaho State University Molecular Research Core Facility (MCRF) for flow 

cell sequencing using the Illumina 16S Metagenomic Sequencing Library Protocol 

(Illumina), the Illumina Nextera XT Index Kit for PCR indexing, and the Illumina MiSeq 

Reagent Kit v.3 600 cycle chip and the MiSeq Software Suite for sequencing on the 

Illumina MiSeq 2 Instrument allowing automated generation of DNA clonal clusters via 

bridge amplification and analysis through utilization of a reversible dye terminator.  
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Annotation and Phylogenetic Analysis: 

MOTHUR 

The FastQ-formatted forward and reverse files of the 16S hypervariable gene 

reads of paired-end tags (PET) produced by sequencing and uploaded to the ISU Galaxy 

server were assembled by first making a stability file in .txt format and annotated 

according to the Mothur 1.33.3 MiSeq SOP default settings with the following 

exceptions: sequences shorter than 35nt and longer than 600nt (with a limit set at 500) 

having homopolymers longer than 8nt were omitted from further analysis in addition to 

reads with ambiguous base calls or incorrect primer sequences, a ‘pre.cluster’ command 

was utilized to denoise and identify OTUs by applying a pseudo-single linkage algorithm 

to remove sequences subjected to pyrosequencing errors (28, 62), putative chimeras were 

identified and removed utilizing the Chimera Uchime algorithm, ‘pcr.seqs’ command was 

run across the entire SILVA v.4 database, clustering was accomplished via the 

‘cluster.split’ command, taxonomic classification of each identified OTU was established 

by setting the distance matrix cutoff at .2 to avoid clustering below 80% similarity and a 

species cut off set at .03, and a final cut off was set at .1 for genus level identification at 

95% and species at 97% according to the RDP (Ribosomal Database Project) database 

(34, 59). 

Normalized average and standard deviations of taxonomic abundance values of 

significant phylogenetic identifications were obtained from the final file produced by the 

Mothur of 16S paired-end sequencing of control and synbiotic diet samples. An increase 

or decrease in abundance was determined from synbiotic values relative to their control 

counterpart to show the effects of the synbiotic treatment on the diversity and 
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phylogenetic profile of the gut microbial flora (Table 1). Significant values, as 

represented in the previously discussed table, are reflected on Figure 1, where an increase 

in abundance in synbiotic samples comparative to control samples is depicted by an 

closed diamond, and decrease an open diamond. 

A 1000 boot strap value maximum likelihood phylogenetic tree having a 50% 

majority rule of significance was then generated in Bio Edit software from collected 

genus level strain assignments produced by Mothur analysis of the 16S paired-end 

genomic DNA (PET sequencing) of the diet specific mouse cecum samples (Figure 1). 

Significant strain determined according to a T-test algorithm (data not shown) with all 

singletons, sequences having a threshold occurrence value less than 10, sequence lengths 

less than 1400 base or greater than 2300 bases of 16S paired-end sequencing according to 

type strains present on the Ribosomal Data Base (http://rdp.cme.msu.edu) removed were 

then truncated on the V3/V4 loop region of the ribosome. 16S was utilized to insure 

proper directionality (8-1492) on the correct strand while also keeping track of duplicates 

and the occurrence (frequency and distribution) of the nucleotide sequence. Maximum 

likelihood, and not the optimized model option available in Model Test software, with 

default values was utilized due to the large expanse of 14 billion years of evolution of 

which the database covers. Thermus aquaticus, the organism most closely related to the 

‘in group’ without being a member of such, was used as the outgroup and imputed first 

due to formatting requirements within the program. Clustal-X (sequence alignment), 

PAUP (analysis), and Model Test (selection of evolutionary model) software were 

utilized for the multiple alignment with pairwise comparisons initially generated between 

each followed by group comparison to the closest group. 
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MG-RAST 

The FastQ-formatted forward and reverse files produced by sequencing and 

uploaded to the ISU Galaxy server were subjected to the following commands on Galaxy 

prior to submission to Mg-RAST: “FASTQ Groomer” with input quality scores set to 

“Sanger” while all other options set to default, “NGS: QC and manipulation” in the 

FASTX-Toolkit for FASTQ data, “Rename sequences” to “numeric,” converting the file 

to ‘fasta’ format, and each sample’s forward and reverse file joined via “Joiner” with the 

appropriate sequence of file order left to right (3, 11). Once sequences were uploaded into 

MG-RAST (metagenomics.anl.gov), phylogenetic trees restricted to bacteria having 

maximum levels of order, genus, and species were generated in addition to analyses of 

rarefaction, PCOA, and heatmap. Comparisons were also made within diets and between 

synbiotic and control diets. MG-RAST utilizes M5NR e-values based on MD5 

checksums of sequences and annotations provided by a non-redundant data and base 

developed at Argonne National Laboratory that separate sequence from annotation data 

(sequence and potential species identifiers in addition to annotations) collected from 

public databases (protein data base sources: GO, IMG, KEGG, NCBI [RefSeq & 

GenBank], SEED, UniProt, eggnog, and PATRIC; ribosomal database sources: RDP, 

Silva, and greengenes). This allowed for the use of higher level functional groups from 

annotation sets to compare sequence sets and functional hierarchies. Protein coding and 

ribosomal gene prediction in MG-RAST was accomplished utilizing the protein 

FragGeneScan and ribosomal gene BLAT similarity searches. This in turn in was utilized 

to depict the alpha diversity, or description of species, within a given sample. BLAT was 

also utilized to identify homologous sequences in the M5NR database. Alignments were 



 148 

made according to sequence similarity comparisons, and amino acid alignments utilizing 

FragGeneScan to collect ORF predictions prior to BLAT integration for translated amino 

acid sequence identification within the M5NR database. Annotation within MG-RAST 

were based on putative gene function collected from the public databases previously 

discussed (44).  

RESULTS 

Control Diet Cecum Composition Comparisons 

Analysis via MG-RAST of control diet sample ‘B,’ uploaded on 9/24/14, 

produced a total of 567 identified ribosomal RNAs (from the predicted 758 predicted 

rRNA features) from 24,579 (4.7%) of the 521,139 sequences (205,384,411bps) that 

passed quality control filtering algorithms (pre-quality control bp count at 231,268,701 

bp). 608 sequences failed and were removed from downstream analysis. The uploaded 

mean sequence length was 443+/- 14bp and uploaded mean GC content 54+/- 2% which 

compares to 394+/-3% mean sequence length post quality control and GC percent post 

quality control of 54+/-3%. SILVA SSU database generated the highest identification of 

annotated ribosomal RNA genes (24418), followed by RDP (20096), Greengenes 

(19671), and SILVA LSU (1) all of which had an e-value raised to -30 and less. 

15,945,780 sequences are present in the M5NR protein database which include all unique 

sequences from applied protein databases, and 309,342 sequences in the M5RNA 

ribosomal database that contains unique sequences from the utilized ribosomal RNA 

databases. 97.1% of the detected sequences were of the bacterial domain. 

A total number of 316,307 sequences containing 189,417,901 bp, and having an 

average length of 589 +/- 7bp was initially uploaded for MG-RAST analysis of control 
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diet sample ‘H’ on 9/30/2014. 444 sequences, or 0.1%, failed to pass the imposed quality 

control pipeline imposed in this software. Post quality control mean sequence length was 

599bp and GC % 56+/-3%. Of those sequences that passed quality control, only 10,766 

sequences (3.4%) contained ribosomal RNA genes with 719 alignment identified rRNA 

features from the initially predicted 1,205. The number of features identifies were 

annotated by the datasets employed in this sample analysis including protein databases, 

protein databases containing functional hierarchy information, and rRNA databases. 

Different databases yield varying results due to the completeness of annotated data 

contained within the database. SILVA SSU database generated the highest identification 

of annotated ribosomal RNA genes (9758), followed by RDP (7394), and Greengenes 

(7183) with an e-value raised to -30 and less. 88.4% of detected sequences belonged to 

the bacterial domain. 

MG-RAST analysis of control diet mouse cecum sample J (9/30/2014) resulted in 

a total number of 774,847 sequences totaling 463,639,316bp with an average length of 

598bp+/-13bp and a mean GC content of 56+/-3%. 0.3% of the sequences (2,307 

sequences) failed to pass the quality control. The post quality control sequences (772,540 

and 462,750,694bp) had a mean sequence length of 598 +/- 1bp and a mean GC content 

of 56+/-3%. 35,277 sequences (4.6%) of the sequences that passed quality control 

contained rRNA genes with 1,194 rRNA features identified from the predicted 2,992. 

SILVA SSU database generated the highest identification of annotated ribosomal RNA 

genes (30887), followed by RDP (27684), Greengenes (23560), and SILVA LSU (1) with 

an e-value raised to -30 and less. 98.1% of the detected sequences belonged to bacteria. 
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Phylum level taxonomic hits distribution denotes the most abundant phyla in 

mouse cecum sample B as the following: Firmicutes, 30217 (68.3%); Verrucomicrobia, 

4990 (11.3%); Actinobacteria, 3674 (8.3%); Proteobacteria, 2321 (5.2%); Tenericutes, 

795; Unclassified (derived from bacteria), 474; Bacteroidetes, 327; Chordata, 73; 

Cyanobacteria, 69; Synerigistetes, 62; and Unclassified sequences, 57; where listed 

abundance of annotations were derived on a log scale and is representative of richness 

and evenness of that taxonomic level within the given sample. Phylum level assignments 

in sample H also lead with Firmicutes being the most abundant (13704 at 64.4%) while 

Actinobacteria (3799, 17.8%) were the following most prevalent assignments. Both 

samples contained ‘main players’ composed of many the same phylum but at different 

relative abundances (sample H also contained: Tenericutes, 460; Cyanobacteria, 302; 

Proteobacteria, 289; Bacteroidetes, 91; Unclassified (derived from bacteria), 77; 

Verrucomicrobia, 75; and unclassified (derived from other sequences), 41). Sample J also 

followed the same patterns previously expressed and was composed of the following 

‘main players’ on a phylum level: Firmicutes 64.3%, 33263; Verrucomicrobia 9.8%, 

5071; Actinobacteria 9.3%, 4834; Bacteroidetes 9.2%; 4775; Proteobacteria, 1270; 

Tenericutes, 756; Unclassified (derived from Bacteria), 463; Cyanobacteria, 292; and 

Unclassified (derived from unclassified sequences), 246 (data not shown).  

Class level taxonomic abundance between control diet mouse cecum samples B, 

H, and J also were composed of many the same assignments. The most prevalent class 

amongst the group was Clostridia (B: 26421, 59.7%; H: 7059, 33.2%; and J: 22672, 

43.8%). Class assignments of Clostridia dominated the most in both B and J while H was 

closely followed by Bacilli at 28.9% (6150). Bacilli was high in the other two samples 
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but not as such comparative proportions (8512 or 16.4% in sample J and 3283 or 7.4% in 

B).  Actinobacteria (3674 [8.3%], 3799 [17.8%], 4834 [9.3]) and Mollicutes (795, 460, 

756) were also relatively abundant in class assignments for the control diet B, H and J 

samples, respectively (Figures 10 and 12).  

Taxonomic abundance according to order level distinctions among the control 

mice B, H, and J was led by the most abundant Clostridiales (26421, 59.7%; 7056, 

33.1%; 22667, 43.8%). Other predominant order identifications included Lactobacillales, 

Bifidobacteriales, Bacillales, and Actinomycetales (data not shown). 

The lack of grouping exhibited by the three control diet samples in PCOA analysis 

demonstrates dissimilarity of taxonomic or functional abundance profiles amongst the 

control diet samples. The reduced dimensionality of this graphic depiction to limited 

variables simplifies the data contained within these samples. Neither axis demonstrates a 

high r2 value for the dataset (Figure 16).  Raw abundance counts relative to each control 

diet sample is illustrated in Figure 18 while normalized values for the control samples is 

depicted in figure 20. Distribution of these abundance counts is denoted as a positive 

integer between 0 and 1 (a uniform scaling that has no impact on the value differences 

within a single sample or between samples) for the number of times a particular taxon has 

been detected is explicative of comparisons of normality of the relative distributions of 

abundance. As raw abundance value distribution characteristically varies among samples 

(Figure 18), there is still enough similarity amongst the samples as is evident by the 

clustering at the bottom of each of the samples. The normalization of the values (Figure 

20) by a common variable allowing for data of different scales to be compared and 

generated for the samples, reduced the variation among the sample distributions of 
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abundance for a more concise analysis of the five number summary (the minimum, first 

quartile or 25% coverage, median, third quartile or 75% coverage, and maximum) of 

abundance values for each sample. Each of the samples had a median line at roughly 0.3, 

a first quartile of ~0.1, and a third quartile nearing 0.6. Some variation was evident in the 

minimum and maximum values, as J had the lowest, nearing zero, followed by B, and H 

had the highest maximum value being the closest to 1. J had the lowest maximum value. 

Rarefaction curves generated for control diet fed mouse cecum samples reflected 

annotated species richness where the annotation number total was derived as a function 

of the original number of sampled sequences. Species abundance is reflected by the initial 

curve evident in Figures 2, 3, and 4 for the control samples as the data generating the 

curve is calculated by the observed abundance of species within the utilized datasets 

subsample annotations. Each of the figures demonstrated a sharp initial slope indicative 

of novel species within the initiation of the analysis. The rounding off or eventual plateau 

observed from decreased slope steepness with increasing number of reads correlates to 

adequate sampling within each of the control samples where additional sampling is 

unlikely to result in a significant amount of detected novel species assignments. The 

general trend observed within this graphic analysis is a sharp initial rise followed by a 

plateau at an asymptote as demonstrative of decreasing detection of new species per unit 

of collected individuals. Figure 8 depicts this trend by superimposing all rarefaction 

curves for samples of the control diet. J had the largest slope, as is represented its higher 

alpha diversity value followed by B and H. However, sample H did have a larger alpha 

diversity than B but also contained less reads than B. 
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The alpha diversity, or relative organism diversity with a single number in a 

sample, of control diet cecum sample B is 36.412 species within the range of two 

standard deviations and is estimated from species level annotation distribution which is a 

measure of species richness.  Shannon diversity is reflected by the average weighted 

abundance of the logarithmic value of relative abundance of the generated annotated 

species within this sample as collected by annotation source databases utilized in MG-

RAST. Mouse B had the lowest observed alpha diversity among the control diet cecum 

samples followed sample H (44.185 species) and the highest value of 55.725 species in 

sample J (data not shown). 

K-mer profile of the k-mer rank abundance of 15-mer coverage according to 

sequence size for sample B yielded a decrease of optimal coverage of 1202604 after 67 

sequences from the initial generated plateau until 1.2e^6 sequences when no detectable 

coverage was measured (data not shown). This correlates to a decrease in abundance of 

high-coverage, repetitive sequences as analysis progressed within this sample set. In 

comparison, sample H yielded a decrease of optimal coverage of 442413 after 25 

sequences from the initial generated plateau until 8.89e^6 sequences when no detectable 

coverage was measured.  Sample J also produced a decrease of optimal coverage from a 

value of 1202604 after the pattern exhibited by mouse H (22). 

Synbiotic Diet Cecum Composition Comparisons 

A total number of 664,839 sequences containing 398,224,212 bp, and having an 

average length of 598 +/- 5bp was initially uploaded for MG-RAST analysis of synbiotic 

diet sample ‘C’ on 9/26/2014. 417 sequences, or 0.1%, failed to pass the imposed quality 

control pipeline. Post quality control mean sequence length was 599bp and GC % 55+/-
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3%. Of those sequences that passed quality control, only 20,139 sequences (3.0%) 

contained ribosomal RNA genes with 1,145 alignment identified rRNA features from the 

initially predicted 2,502. SILVA SSU database generated the highest identification of 

annotated ribosomal RNA genes (17820), followed by RDP (17710), and Greengenes 

(16170) with an e-value raised to -30 and less. 94.6% of detected sequences belonged to 

the bacterial domain. 

MG-RAST analysis of synbiotic sample ‘F’ on 9/30/14 contained 1,079,526 

sequences having 646,611,472bp and an average length of 598+/-5bp from which 650 

sequences, or 0.1% failed quality control filtering pipelines within the software package. 

66,505 (6.2%) of the post quality control sequences which had  a mean sequence length 

of 599bp and GC% of 54 +/-3% contained ribosomal RNA genes with 2,291 of the 

predicted 4,322 aligned rRNA features being identified. SILVA SSU database generated 

the most identified ribosomal RNA genes (61126) with RDP (60122), Greengenes 

(59102), and SILVA LSU (1) following. 98.5% of the detected sequences were of the 

bacterial domain. 

Analysis of the synbiotic diet sample ‘L’ on 9/30/2014 was performed on 926,558 

sequences totaling 554,892,258 bp having an average length of 598+/- 6bp. 721 

sequences (0.1%) failed to pass the quality control. Post quality control sequences had a 

mean sequence length of 599bp and a mean GC percent content of 56+/-3% with 2,335 

rRNA features identified of the initially predicted 3,573. Source hits distribution was 

highest with the SILVA SSU database (24964) followed by RDP (23587), and 

Greengenes (22592) databases. 96.4% of the detected sequences were of the bacterial 

domain. 
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Phylum level taxonomic hits distribution for individual synbiotic diet cecum 

samples result in the most abundant classification, measuring at 74.6% (30249), of the 

phyla assignments generated for synbiotic mouse C belonged to Firmicutes. 

Actinobacteria (11.1%, 4488), Verrucomicrobia (1665), Proteobacteria (748), 

Tenericutes (366), and Cyanobacteria (420) then followed as the most abundant 

identifications for this sample. Samples F and L also resulted with many of the same 

phyla being the most prevalent, respectively: Firmicutes (69.6%, 67777; 66.1%, 37812), 

Actinobacteria (13.2%, 12891; 22.9%, 13106), Verrucomicrobia (12.3%, 11981), 

Proteobacteria, (1669, 1151), Cyanobacteria (567, 863), and Tenericutes (410, 1765). 

Many of the following phyla assignments also correlated, just at differing abundances per 

sample (data not shown).  

Class level taxonomic abundance between synbiotic diet mouse cecum samples C, 

F, and L also were composed of many the same assignments. All lead with Bacilli 

(37.6%, 15263; 46.7%, 45447; 41.3%, 23625) and had many of the same following class 

assignments at relatively high abundance including: Clostridia (29.8%, 12103; 21.9%, 

21328; 17.55%, 9993), Actinobacteria (29.8%, 4488; 13.2%, 12891; 17.5%; 13106), 

Erysipelotrichi (7.1%, 2866; 299; 7%, 4008), Verrucomicrobiae (1665; 12.3%, 11981; 

79), and Gammaproteobacteria (540; 848; 675) (Figures 11 and 13).  

Order level distinctions of taxonomic abundance among the synbiotic mice C, F, 

and L were led by Lactobacillales (30.5%, 12374; 41.5%, 40376; 34.4%, 19702) and 

followed by Clostridiales (29.8%, 12093; 21.9%, 21324; 17.5%, 9986), Bacillales (7.1%, 

2889; 5.2%, 5071; 6.9%, 3923), and Bifidobacteriales (6.5%, 2639; 9.3%, 9018; 18.2%, 

10390) as the most prevalent distinctions. Comparative to assignments based on the level 
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of class, order distinctions are less in agreement across the three samples of the synbiotic 

diet samples (data not shown).  

PCOA analysis of the synbiotic samples (Figure 17) demonstrates reduced 

dimensionality and dissimilarity of taxonomic or functional abundance profiles through 

the lack of clustering in the position of the samples on the figure. Comparative to the 

results of the control data previously discussed, neither axis contained a high r2 value for 

the dataset (PCO1, 0.61386; PCO2, .38614).  Raw abundance counts relative to each 

control diet sample is illustrated in Figure 19 while normalized values for the control 

samples is depicted in Figure 21. Distribution of these abundance counts depicts 

normality of the taxon detection amount as explained previously. There was variation 

among the raw abundance count distribution despite the similarity exhibited among the 

samples (Figure 19). Each sample had two data points distributed higher than the rest of 

the data and mean numbers which were clustered at the bottom of the graphic. However, 

sample F, listed as the first sample on the figure, had higher placement of the top two 

data points comparative to the other two samples. The remaining data points were similar 

across samples. Normalized values (Figure 21) generated a median line similar to the 

control diet at roughly 0.3. However, the first quartile of the synbiotic diet samples was 

higher at roughly 0.2, but the third quartile was similar to the control diet by being 

located at roughly 0.6 for each of the samples. Although all of the samples had a 

minimum value less than 1, C was the highest, and F was the lowest. C also produced the 

highest maximum value of the diet samples, nearing 1, while both F and L were closer at 

roughly 0.9.  
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Synbiotic diet fed mouse cecum samples rarefaction curves (figures 5, 6, and 7 for 

samples C, F, and L, respectively) depicting the species richness of the annotations within 

the samples is shown by the initial steep with high relative slope and curve produced in 

each of the figures. Each the curves produced a plateau with increasing read number to 

show adequate sampling were detection of novel species assignments would be unlikely 

with integration of additional samples in the analysis. Figure 9 depicts this trend by 

superimposing all rarefaction curves for samples of the synbiotic diet. F had the largest 

slope and most reads followed by C and L. However, sample L contained more reads 

than that of sample C.  

Measured alpha diversity also differed amongst the samples. Although it had the 

largest slope, sample F had the lowest alpha diversity of the synbiotic diet at a value of 

25.40 species, while C had the highest generated alpha diversity measurement at 43.36 

followed by L at 38.17. 

K-mer rank abundance of 15-mer coverage according to sequence size yielded a 

profile in sample C depicting a decrease of optimal coverage of 1202604 right before the 

plateau formed by the initial 25 sequences until 8.89e^6 sequences when no detectable 

coverage was measured (data not shown). The level of coverage of rare sequences 

followed by high-coverage, repetitive sequences is shown by this decreasing value across 

sequences. Sample F yielded a decrease of optimal coverage of 3269017 after 25 (further 

than sample C) sequences from the initial generated plateau until 2.2e^7 sequences when 

no detectable coverage was measured.  Sample L also produced a decrease of optimal 

coverage at the same value of C but at the same point in sequencing as F.  
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Cecum Composition Comparison between Diets 

The normalized average of taxonomic abundance values of significant 

phylogenetic identifications of control and synbiotic diet samples showed an increase in 

strain abundance in all taxons listed in Table 1 with the exception of Nocardioides genus, 

Clostridia class, Clostridiales order, and Lachnospiraceae family while comparing 

synbiotic treatment results to control diet results. The measured increase in abundance 

was determined from synbiotic sample values relative to the control (Table 1). Not all 

significant genus level assignment abundances were included in the Mothur-based tree. 

Included within the table were higher level taxonomic classifications which showed 

significant abundances that may not have included the genus level assignments such as 

Sphingomonas or higher levels of taxonomic classification beyond the designation 

included in the figure. 

 A 1000 bootstrap 16S paired-end genus level phylogenetic rectangular consensus 

cladogram according to a 50% majority rule of significant singletons as derived from a T-

test (data not shown) and containing sequences with a less than 10 threshold occurrence 

value, length between 1400 and 2300 bases was generated from data produced by the 

Mothur software package for type strains present in the Ribosomal Data Base (Figure 1). 

Firmicutes and Actinobacteria were among the most prevalent phylogenetic assignments, 

followed by Gammaproteobacteria, Alphaproteobacteria, Bacteriodetes, and 

Betaproteobacteria, Increased statistical significance is integrated by use of 100 

bootstraps for resampling. The shorter the branch lengths, the increased relation among 

the designations, as is evident among the proteobacteria. Both of the supplemented 

probiotic genus were detected and are present among the Firmicutes. Other commonly 
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utilized strains of probiotics, as previously discussed, are also present. As this figure is 

representative of the type strains present in RDP, exact phylogenetic identity is unknown. 

However, this figure is representative of the immense diversity present within the cecum. 

Figure 1 is limited compared to the phylogenetic analyses generated by MG-RAST in 

that assignments are not depicted according to individual sample or diet but collectively 

according to the integration of all samples from both analyzed diets. The Mothur-based 

tree contained more strain abundance increases when comparing synbiotic to the control 

diet, however not all designations included on the table appeared on the figure.   

Comparative MG-RAST analysis of all of the samples from both the control diet 

mice B (MG-RAST accession 4581535.3), J (4582209.3), and H (4582210.3) and 

synbiotic C (MG-RAST accession 4581845.3), F (4582170.3), and L (4582211.3) diet 

was performed on 11/19/2014 and finished on 2/10/2015. The 16S paired-end 

phylogenetic trees of the cecum microbiome of the samples yielded the following color 

designations for the samples as is depicted in the center of the figure: B, silver; C, blue; 

F, red; H, gold; J, purple; and L, green (Figures 22-24). Data for each of the figures was 

compared to M5NR according to a maximum e-value of 1e-5, 60% minimum identity, 

and an alignment minimum length of 15 (amino acid measurement according to protein 

and bp in RNA databases). Each of the figures also contained stacked bar leaf weights but 

differed in the maximum phylogenetic level and taxonomic coloring assignments (figure 

22 contained a genus maximum and class coloring, Figure 23 species maximum and class 

coloring, and Figure 24 species maximum and order coloring). Figure 22 showed the 

highest abundance of class level identification among Clostridia followed by 

Gammaproteobacteria, Bacilli, and Actinobacteria. Many of the samples amongst both 
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diets contained the same genus level identifications. It is notable that all of the strains 

contained the Lactobacillus probiotic which was added to the synbiotic diet. Unlike 

Figure 1, Lactococcus was not detected in this figure. Bifidobacterium, a common 

probiotic utilized, was also present in all of the samples. Figure 23 provides species level 

classification in concordance to the trends depicted in Figure 22. However, the 

supplemented probiotics utilized in the synbiotic diet were not detected through analysis 

utilizing MG-RAST. Many of the commonly utilized strains of probiotics are present, 

however. The most prevalent order, as depicted by Figure 24, is that of Clostridiales 

followed by Bacillilales and Lactobacillilaes- all of which are present in each of the 6 

analyzed samples. Analysis of these figures shows that there is not a designated 

prevalence of genus or species according to diet, as assignments are not limited to the 

three samples composing the diet, but include at least one sample of the opposing diet. 

There are phylogenetic identifications listed that are specific to a given sample, however, 

as is depicted by the singular bar coloring found at the center of the figure.  

A normalized bar chart comparing the detected bacteria according to groups 

designated by diet with corresponding p-values is provided in Figure 25. The data was 

compared to M5NR with a 1e-5 e value maximum, minimum identity at 60%, and 

minimum alignment length of 15bp according to RNA database hits. The smallest p 

value, which indicates the most distinct difference between the diet groups, was found in 

Actinobacteria with a value of 0.104, and the highest p value in Spirochaetes with a value 

of 1. Probiotic-containing Firmicutes was the most abundant and had a p value of 0.1165, 

followed by Actinobacteria and Cyanobacteria (0.1628). 
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DISCUSSION AND CONCLUSION 

The exact identity of species shifts between the two states of host health has 

remained elusive despite the limited knowledge of phyla level changes. This impedes 

understanding of microbial community interactions during treatments of dysbiosis due to 

the heterogeneity of the GI tract as a result of differences within microenvironments and 

spatial distribution of flora and metabolites. This can cause variations of effectiveness 

and activity of pre- and probiotics by location within the gut microbiome as the metabolic 

products of one bacteria can be modified and utilized by another bacterial species, 

increasing the availability of a molecule in its active form can be mitigated by community 

level biotransformation reactions. These cooperative interactions directly affect the 

degree of effectiveness of a prebiotic, as the necessary active form may never reach its 

target location, or a probiotic, which may contain a strain that does not yield the desired, 

beneficial effect on microbial composition and function (31, 41).  

Next-gen high resolution, automated DNA based technologies have replaced time 

and labor extensive traditional microbial ecological investigations that integrate clone 

library generation where every clone consists of a conserved primer PCR amplification 

product and sequence of that clone. As many sequence collections are generally 

necessary for comparison, intensive sampling of each library is required for accumulation 

of adequate coverage of a microbial community sample. Due to the log of microbial 

population in the sample, complete analysis of every cell in the community cannot be 

performed, and thus analysis relies on statistical integration to generate general diversity 

measurements (60). Next generation sequencing has facilitated the interest and 

understanding of human, animal, and environmental microbial community structure and 
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function in addition to increasing the knowledge of novel pathogens and functionality and 

effect of a consortia of microbes on a myriad of other ailments and disease states. The 

structure-function hypothesis, when applied in a biomedical standpoint, consists of the 

concept that structural and stability alterations within microbial communities can results 

in changes in the health and disease states of the human host. This is generally applied 

across the Human Microbiome Project (National Institute of Health and MetaHit funded 

in the US and European Commission) while investigating the effects of microbial 

diversity on health and disease (61). Diversity analysis integrating alpha (species 

richness), and beta (between sample comparisons), though not obtainable in their entirety, 

can aid in determining these elusive ecological trends and assignments while integrating a 

quality threshold that reduces potential biases from filtering (61, 64).  

OTU assignments were utilized in this study according to the derived genetic 

distance between sequences. Distribution of sequence abundances among OTUs allowed 

for general estimates of ecological richness, evenness, and diversity of the community in 

addition to measurements of the like between communities of differing diet 

supplementation. Phylogenetic methods employed investigated differences in 

communities according to sequence difference. The application of the OTU approach 

allowed for quantitative measurements to be collected (60). However, it is noted that 

employing the OTU definition can result in an overestimation in similarity amongst 

community comparisons (58). Past research has claimed that accurate distance based 

threshold for taxonomic level definitions can be created through consensus-based 

methods of OTU classification. This is due to the inability to define bacterial taxonomic 

levels resulting from the lack of adequate bacterial taxa being cultured or culturable (60). 
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Many of the present taxonomic outlines and requirements are based on previously 

cultured organisms causing candidate phyla and non-culturable phyla that are lacking in 

taxonomy identifying to the level of genus or species. However, there is currently no 

accepted and employed definition of a bacterial species which increases the difficulty in 

appropriate taxonomic classification according to phylotype or even the genera, family, 

class, order, or phyla of bacteria. The operational definition for a species cites a 3% 

dissimilarity, but it is not widely accepted.  Also, preclustering followed by clustering at 

3% (equivalent to 97% sequence identity which shows shifts in clusters of higher and 

reduced dominance) as employed in this study,  allowed for increased accuracy in OTU 

characterization in addition to providing a reduction of singleton sequence proportion  

and minimally affecting the distribution and presence of microbial taxa. Single nucleotide 

errors also had minimal effect on classification of sequences. Methods employing OTU 

approaches avoid many of the limitations implicit to phylotype analysis due to the lack of 

bin restrictions since taxonomy outlines are not applied. Sequences can thus be 

assignment and clustered with equal basis regardless of reference sequence representation 

or restrictions issued in outline classifications. OTU assignment is depended on the 

presence of other sequences in the dataset. However, this methodology assumes that the 

16S bacterial rRNA gene evolves at the same rate among all taxonomic affiliations which 

is disputed (61, 64).  

Despite the varying sequences produced in each of the samples within the two 

diets, sequences had similar length (roughly 600bp) and contained comparable GC % 

content (between 50 and 60%) after the quality control pipelines imposed during analysis 

via MG-RAST. SILVA and RDP databases produced the most hits among all samples. 
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Phylogenetic analysis results produced by the extensive filtering and quality control 

pipelines employed by both Mothur and MG-RAST were comparable but varied to some 

degree. Data produced from Mothur analysis was later graphically represented based on 

type strains collected on the Ribosomal Data Base of statistically relevant sequences 

based on OTU assignments due to the computational, memory, and time limitations 

imposed by the Mothur (57) software- a methodology not applied to the same sequencing 

files imputed into MG-RAST, as previously discussed. It is also due to these limitations 

that individual phylogenetic assignments could not be designated to the separate samples 

or between the diets studied. Mothur identified Firmicutes and Actinobacteria as the most 

prevalent phylogenetic assignments, followed by Gammaproteobacteria, 

Alphaproteobacteria, Bacteriodetes, and Betaproteobacteria. Also shorter branch lengths 

and therefore increased relationship between designations was most evident among 

Proteobacteria. Additionally, both of the genus contained in the synbiotic diet 

supplementation were detected among the generated Firmicutes. Other commonly 

utilized strains of probiotics were also present on the Mothur-generated phylogenetic 

analysis of identity among all of the samples. However, as Mothur-generated results were 

representative of the type strains present in RDP, exact identity is unknown, limiting the 

data compared to the phylogenetic analyses generated by MG-RAST in that assignments 

are not depicted according to individual sample or diet but collectively according to the 

integration of all samples from both analyzed diets. Yet, immense diversity present 

within the cecum is still apparent from the results generated.  

The normalized average of taxonomic abundance values of significant 

phylogenetic identifications of control and synbiotic diet samples showed an increase in 
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strain abundance in all taxons listed in Table 1 with the exception of Nocardioides genus, 

Clostridia class, Clostridiales order, and Lachnospiraceae family when comparing 

synbiotic sample values relative to the control (Table 1). Indigenous gut flora determine 

C. difficile colonization and infection. Clostridia bacterium have shown to induce various 

degrees of dysbiosis on the gut microbiome, detrimentally affecting host heath as 

previously discussed. A reduction of abundance, but not complete removal of presence, 

conserves microbial diversity within the gut microbial community while decreasing the 

propensity of disease development. Nocardioides has not shown any involvement in 

human pathology. Dominant colonization with Lachnospiraceae bacterial family is 

common in the diseased mammalian host, and has shown to have an inverse relationship 

with Clostridia. The significant increase in abundance of the strains included in the 

probiotic supplementation within the synbiotic diet contribute to the effectiveness of the 

probiotic by achieving the requirements previously discussed. Not all significant genus 

level assignment abundances were included in the Mothur-based tree. Included within the 

table were higher level taxonomic classifications which showed significant abundances 

that may not have included the genus level assignments such as Sphingomonas or higher 

levels of taxonomic classification beyond the designation included in the figure. 

Application of the Mothur data can be made to the results generated to MG-RAST 

as comparative analysis of all of the samples from both the control and synbiotic diets (as 

capable of the MG-RAST software) (Figures 22-24) showed the highest abundance of 

class level identification among Clostridia followed by Gammaproteobacteria, Bacilli, 

Actinobacteria, similar genus level identifications, and the presence of probiotic 

Lactobacillus which was added to the synbiotic diet. Unlike Mothur results, Lactococcus 
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was not detected. However, the common probiotic Bifidobacterium was identified in all 

of the samples. The supplemented probiotics utilized in the synbiotic diet were not 

detected through analysis utilizing MG-RAST by species level classifications; yet, like 

Mothur results, many of the commonly utilized strains of probiotics were identified. The 

most abundant order in all of the samples was identified as Clostridiales followed by 

Bacillilales and Lactobacillilaes. However, individual analysis of these figures shows 

that there is not a designated prevalence of genus or species according to diet, as 

assignments are not limited to the three samples composing the diet, but include at least 

one sample of the opposing diet. The smallest p value indicating the most distinct 

difference between the diet groups was found in Actinobacteria with a value of 0.104, 

and the highest p value in Spirochaetes with a value of 1. Probiotic-containing Firmicutes 

was the most abundant and had a p value of 0.1165, followed by Actinobacteria and 

Cyanobacteria (0.1628) (Figure 25). The distance between branches within the trees 

correlate to the relation of the identifications included. 

Individual MG-RAST mitigated analyses of both the control and synbiotic diet 

samples identified Firmicutes as containing the highest number of phylum level 

taxonomic hits with the same phyla assignments following in abundance though not 

always in the same order among samples. Class level taxonomic abundance between 

control diet mouse cecum samples also were composed of many the same assignments as 

Clostridia dominated and less prevalent assignments were among the same groupings of 

Class. Despite class level taxonomic abundance between synbiotic diet mouse cecum 

samples containing of many the same assignments within that diet, the most abundant 

was not the same as the control diet samples as all lead with Bacilli. Abundance 
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according to order level distinctions within the control yielded Clostridiales as the most 

abundant compared to synbiotic samples which identified Lactobacillales as the most 

abundant. This is notable as it correlates to the supplemented strain of probiotic within 

the diet, and supports the effectiveness of the synbiotic treatment combination as 

successfully establishing and  selectively cultivating the probiotic strain through the 

presence of the prebiotic compounds contained in that diet (data not shown).  

PCOA analysis of the control and synbiotic samples demonstrates reduced 

dimensionality and dissimilarity of taxonomic or functional abundance profiles through 

the lack of clustering in the position of the samples (Figures 16, 17). Comparative to the 

results of the control data, neither axis contained a high r2 value for the dataset. The 

distribution of raw abundance and normalized depicts normality of the taxon detection 

amount as previously mentioned. Variation among the raw abundance count distribution 

was evident in both diets due to clustering patterns despite the similarity exhibited among 

the samples. Normalized values generated a median line at 0.3 for both diets. However, 

the first quartile of the synbiotic diet samples was higher at roughly 0.2 compared to the 

control diet at ~0.1, and the third quartile location was roughly 0.6 for both diets. 

Although all of the samples had a minimum value less than 0.1, there was variation 

amongst the samples of each of the diets. This trend was also evident in analysis of the 

maximum value, where all sample locations were less than 1, but varied to some degree 

among diets. Transformation of data to achieve a normal Gaussian distribution via 

Normalization resulted in the reduction of variation or biases introduced throughout 

sample preparation and analysis that are not under experimental control in addition to 

decreasing their impact on interpretation of results (Figures 20 and 21). This also improve 
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the results exhibited in other comparative analyses (PCA, heatmap, etc) that assume a 

normal distribution of data for applicable, statistically relevant data interpretation. Means 

of data normalization are discussed in further detail on the MG-RAST V 3.0 database. 

The comparable results evident between the diets is represented of the stability of the gut 

microbiomes in both of the diets. This could represent a general homeostatic balance 

required for functionality in a healthy host. The variations observed correlate to the 

individual differences in the profiles analyzed which could be attributed to the difference 

in taxonomic or functional abundances produced by the supplementation of probiotic 

strains in the synbiotic diet as previously discussed.  

Rarefaction curves reflecting annotated species richness where the annotation 

number total was derived as a function of the original number of sampled sequences 

produced an initial steep slope representing species for each of the diets. This sharp initial 

slope indicates of novel species within the initiation of the analysis of both of the 

samples. Both diets also yielded an eventual plateau at an asymptote from decreased 

slope steepness with increasing number of reads correlating to adequate sampling among 

diets where additional sampling is unlikely to result in a significant amount of detected 

novel species assignments. Each of the samples within each diet produced variation in the 

steepness of the initial slope with varying read amounts. The slope of the samples did not 

correlate to alpha diversity levels among diets as is evident in the variation among 

samples. The control diet generated a higher average alpha diversity among samples at 

44.441 compared to the synbiotics 35.643 species. This could be due to the difference in 

the number of available reads between samples, however as this measure is dependent on 

that variable. 
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The k-mer rank abundance profile of 15-mer coverage according to sequence size 

yielded a decrease of optimal coverage at less than 70 sequences for all samples 

contained in both diets from the initial generated plateau until no detectable coverage was 

measured (data not shown). Redundancy, or repetitiveness, of sequences within each 

sample according to occurrence of distinct 15 bp patterns is representative of rare, or low 

coverage sequences being initially depicted, followed by high-coverage, repetitive 

sequences (the decrease on coverage previously discussed). The rank abundance plot is a 

function of abundance rank with the most abundant sequences being first listed. This 

represents a decrease in abundance of high-coverage, repetitive sequences as analysis 

progressed within this sample set. Use of k-mer applications allows for the identification 

of the closest sequence template for the generated data pertaining to a given sample. 

These results could represent taxonomic diversity increasing in lower dominant 

distributions (2, 22, 57, 59). 

As technology advances, the challenge with phylogenetic analysis methodology 

has shifted from sample sequence generation to sequence analysis. MG-RAST serves as a 

high-throughput pipeline for high performance computing and annotation allowing a low 

cost, next generation means of worldwide metagenomic sequence analysis. The 

functional sequence assignments of the metagenomic input produced by this software 

package are automated and generated from both nucleotide and protein database 

comparison allowing for functional summaries and comparative phylogenetic analysis 

(59, 64). Biological databases are growing exponentially, and algorithms that minimize 

processor time and memory requirements are becoming increasingly important, which 

was problematic while utilizing Mothur. Analysis and clustering algorithms are also 
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computationally intensive for OTU-based methodology. Mothur utilizes a neighbor 

joining algorithm that is taxonomy-independent and performs better than most 

deterministic and heuristic methods available. However, the generated OTUs can 

represent sequences from multiple lineage assignments due to there being no taxonomic 

level threshold commonly employed. The genetic distance between full 16S gene 

sequences in a given taxonomic assignment were continuous in each hierarchy level (60). 

Even prior to the establishment of next generation sequencing as a primary 

method of analysis, the 16S rRNA gene was the most represented gene present in the 

GenBank database. However, various biases such as a microbial population relative 

abundance misrepresentation in a given sample and errors including actual sequence 

misrepresentation as a result of PCR sequencing and amplification can be present when 

utilizing the 16S rRNA gene in sequence survey. The DNA extraction method, DNA 

purification protocol, selection of PCR primers, PCR cycling conditions (PCR 

polymerases erroneously result in substitution in 1 of 10^5 to 10^6 bases, and 

amplification of heterogeneous templates can result in formation of chimeras (not a 

sequencing error) when incomplete amplification products are present to serve as primers 

for related fragments at a rate of 5-45%. Sequencing also results in errors due to the 

homopolymer under-representation at a rate of 0.01-0.02), community composition 

within the sample, and copy number of the 16S gene within the genome can effect 

whether the relative abundances of the gene being sequenced are equal to the bacterial 

presence in the sample. These biases confound the representation and application of data 

collected.  Additionally, microbial ecology analyses include the inherent hypothesis that 
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microbial community structure changes directly affect the function within the community 

(56, 61). 

Most studies assume that partial sequence distances are not significantly different 

from full-length sequence distances despite the fact that the 16S rRNA gene lacks 

uniform evolution throughout its length. When employing the proxy species definition 

specific to full length sequences 3% distance cut off, the variability in evolution within 

the 16S rRNA gene becomes apparent. Genetic diversity also decreases along the 16S 

rRNA gene length. Regression coefficients do not adequately explain variation between 

regions in comparison to the whole gene. Longer reads increase the relation of segmented 

analysis to the whole gene. The 16S gene is a marker for diversity within a genome and 

follows a well-determined secondary structure. The analysis of this gene via next gen 

sequencing allows for replicates to be analyzed in addition to increased complexity of 

experimental designs to be investigated while increasing the breadth and depth of 

sampling. Technical limitations are based on conserved PCR primer availability, 

fragment length, and gene quality generation while analytical limitations are dependent 

on accurate sequence classification and genetic diversity within a region availability. This 

necessitates the use of only a select region of a gene to be studied. Differing regions will 

be selected until analysis becomes standardized (58). However, the datasets that are 

currently available for comparison are not completely exhaustive as there has been shown 

to be as few as 10% or as high as 98% lack of sequence matching from a sample to a 

dataset. The accuracy of annotations is dependent on the quality of the data used (44). 

This also applies to beta-diversity studies, though useful in community comparisons, 

have limited use to only communities exhibiting clear differences and does not provide 
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information pertaining to the details of these differences due to database-dependent 

methods that are limited according to the lack of representation of rare and novel 

populations when analyzing the deep coverage existent in many environmental samples 

(34, 40). 

The results generated in this study conclude that there was a measurable phylogenetic 

difference in microbial community composition between the two diets administered, thus 

supporting the use of probiotics as an effective means of establishing homeostatic balance 

of beneficial bacteria within the cecum content of the host in addition to having an 

application in regards to pharmaceutical intervention for correcting a dysbiotic state in 

the gut microbial flora of a diseased host over the alternative, invasive and possible 

harmful choices of intervention. However, it is noted that competition of nutrients and 

ecological sites as well as stress can also cause a decrease in effectiveness in this 

treatment (7, 31, 54). Further research is needed to investigate and characterize the 

intestinal communities of microbes, their metabolic activity, and functionality to increase 

the efficiency and effectiveness of synbiotic treatments.  
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DATA 

 

Table 1. Normalized average taxonomic abundance values from Mothur analysis of 16S 

paired-end sequencing of control and synbiotic diet samples. An increase or decrease in 

abundance is determined from synbiotic values relative to their control counterpart. 

 

Taxanomic 

Level  Taxon

Control 

Average

Control 

Standard 

Deviation

Synbiotic 

Average

Synbiotic 

Standard 

Deviation Increase Decrease

6 Unclassified Acidobacteria 0 0 1.300861804 2.253158738 *

6 Unclassified Acidimicrobiales 0 0 0.525978471 0.911021435 *

6 Kocuria 0 0 0.983764235 0.975747665 *

5 Nocardiaceae 0 0 1.051956941 1.822042869 *

6 Rhodococcus 0 0 1.051956941 1.822042869 *

6 Aeromicrobium 0 0 0.333333333 0.577350269 *

6 Nocardioides 1.474009324 1.609876591 0 0 *

4 Nitriliruptorales 0 0 1.826840274 1.963162868 *

5 Nitriliruptoraceae 0 0 1.826840274 1.963162868 *

6 Nitriliruptor 0 0 1.826840274 1.963162868 *

4 Solirubrobacterales 0 0 1.176409372 1.035762123 *

5 Conexibacteraceae 0 0 1.176409372 1.035762123 *

6 Conexibacter 0 0 1.176409372 1.035762123 *

5 Prevotellaceae 0 0 1.176409372 1.035762123 *

6 Prevotella 0 0 1.176409372 1.035762123 *

5 Sphingobacteriaceae 0 0 0.666666667 1.154700538 *

6 Sphingobacterium 0 0 0.666666667 1.154700538 *

6 Chelatococcus 0 0 1.176409372 1.035762123 *

6 Agromonas 0 0 0.333333333 0.577350269 *

4 Sphingomonadales 3.43529961 0.249407594 6.038970823 1.917194353 *

5 Sphingomonadaceae 3.43529961 0.249407594 5.388539921 1.224108691 *

6 Acinetobacter 0 0 0.666666667 1.154700538 *

6 Pseudomonas 0.980645143 0.882758007 3.228366313 1.405243312 *

6 Moraxella 0 0 0.525978471 0.911021435 *

3 Bacilli 7693.249296 4193.816257 22078.15274 2393.512187 *

4 Lactobacillales 7666.847041 4177.209249 22034.67544 2372.19706 *

5 Aerococcaceae 0 0 0.666666667 1.154700538 *

6 Aerococcus 0 0 0.666666667 1.154700538 *

5 Enterococcaceae 3.85089896 5.257604443 20.68721768 12.64405135 *

6 Enterococcus 3.85089896 5.257604443 19.70345345 11.66832969 *

5 Lactobacillaceae 7326.48491 4182.193139 13659.47212 785.1739086 *

6 Lactobacillus 6926.249723 4327.384756 13085.72426 792.5078663 *

5 Streptococcaceae 156.6942946 57.45560938 8014.39676 2483.549268 *

6 Lactococcus 17.5148527 6.451849537 7943.217961 2490.62685 *

6 unclassified 2.294081843 2.002301437 12.21862984 2.983466826 *

5 unclassified 172.436285 85.70878406 328.5511499 78.23330943 *

6 unclassified 172.436285 85.70878406 328.5511499 78.23330943 *

3 Clostridia 24984.25364 4590.072698 10322.34422 2991.153003 *

4 Clostridiales 24956.43237 4591.263597 10299.22301 2992.641808 *

5 Eubacteriaceae 11.61933553 2.677567758 35.00220898 4.604352731 *

6 Anaerofustis 10.63869039 3.291712254 34.66887564 4.53162293 *

5 Lachnospiraceae 17512.64269 5257.16041 7585.27055 2141.076544 *

6 Moryella 0 0 1.051956941 1.822042869 *

6 Faecalibacterium 0 0 0.666666667 1.154700538 *
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Figure 1. Maximum likelihood 1000 boot strap value phylogenetic rectangular consensus 

cladogram with 50% majority rule of significant (according to a T-test algorithm [data 

not shown] with all singletons, sequences having a threshold occurrence value less than 

10, sequence lengths less than 1400 base or greater than 2300 bases removed) genus level 

strains reported by Mothur analysis of 16S paired-end sequencing according to type 

strains present on the Ribosomal Data Base. Significant taxa increase from normalized 

averages as shown in Table 1 is depicted by a closed diamond and decrease by an open 

diamond. 
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Figure 2.  Rarefaction curve generated by MG-RAST of control diet cecum sample B 

pertaining to annotated richness of species. The distinct species annotation total number 

is a function of the original sampled sequence number. Curve data is calculated from 

generated species abundance, and curves are representative of the complete dataset’s 

subsample annotations of the average number of differing species.   

 
Figure 3.  Rarefaction curve of control diet cecum sample H generated by MG-RAST 

pertaining to annotated richness of species. The distinct species annotation total number 

is a function of the original sampled sequence number. Curve data is calculated from 

generated species abundance, and curves are representative of the complete dataset’s 

subsample annotations of the average number of differing species.

 
Figure 4.  Rarefaction curve generated by MG-RAST of control diet cecum sample J 

pertaining to annotated richness of species. The distinct species annotation total number 

is a function of the original sampled sequence number. Curve data is calculated from 

generated species abundance, and curves are representative of the complete dataset’s 

subsample annotations of the average number of differing species. 
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Figure 5.  Rarefaction curve of control diet cecum sample C pertaining to annotated 

richness of species. The distinct species annotation total number is a function of the 

original sampled sequence number. Curve data is calculated from generated species 

abundance, and curves are representative of the complete dataset’s subsample annotations 

of the average number of differing species. 

     

 
Figure 6.  Rarefaction curve of control diet cecum sample F pertaining to annotated 

richness of species. The distinct species annotation total number is a function of the 

original sampled sequence number. Curve data is calculated from generated species 

abundance, and curves are representative of the complete dataset’s subsample annotations 

of the average number of differing species. 
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Figure 7.  Rarefaction curve generated by MG-RAST of control diet cecum sample L 

pertaining to annotated richness of species. The distinct species annotation total number 

is a function of the original sampled sequence number. Curve data is calculated from 

generated species abundance, and curves are representative of the complete dataset’s 

subsample annotations of the average number of differing species. 

 
Figure 8. Rarefaction curve of 16S bacterial paired-end fragments of cecum microbiome 

of control diet mice, B, F, and J generated by MG-RAST. Data was compared to M5NR 

according to a maximum e-value of 1e-5, 60% minimum identity, and an alignment 

minimum length of 15 (amino acid measurement according to protein and bp in RNA 

databases).The top, blue line is representative of sample J, having an alpha diversity 

value of 55.72; middle, orange line is representative of sample B, having an alpha 

diversity value of 36.41; and bottom, red line mouse H, having an alpha diversity of 

44.18 (data not shown). 
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Figure 9. Rarefaction curve of 16S bacterial paired-end fragments of cecum microbiome 

of synbiotic diet mice, C, F, and L. Data was compared to M5NR according to a 

maximum e-value of 1e-5, 60% minimum identity, and an alignment minimum length of 

15 (amino acid measurement according to protein and bp in RNA databases).The top, 

orange line is representative of sample F, having an alpha diversity value of 25.40; 

middle, blue line is representative of sample C, having an alpha diversity value of 43.36; 

and bottom, red line mouse L, having an alpha diversity of 38.17 (data not shown). 
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Figure 10. 16S paired-end bacterial phylogenetic tree of cecum microbiome of control 

diet mice, samples B (MG-RAST accession 4581535.3), J (4582209.3), and H 

(4582210.3) having stacked bar leaf weights, a genus maximum level, and coloring 

according to class. Data was compared to M5NR according to a maximum e-value of 1e-

5, 60% minimum identity, and an alignment minimum length of 15 (amino acid 

measurement according to protein and bp in RNA databases). Order membership was 

indicated by the color of the species names. 
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Figure 11. 16S paired-end bacterial phylogenetic tree of cecum microbiome of synbiotic 

diet mice, samples C (MG-RAST accession 4581845.3), F (4582170.3), and L 

(4582211.3) having stacked bar leaf weights, a genus maximum level, and coloring 

according to class. Data was compared to M5NR according to a maximum e-value of 1e-

5, 60% minimum identity, and an alignment minimum length of 15 (amino acid 

measurement according to protein and bp in RNA databases). Order membership was 

indicated by the color of the species names. 
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Figure 12. 16S paired-end bacterial phylogenetic tree of cecum microbiome of control 

diet mice, samples B (MG-RAST accession 4581535.3), J (4582209.3), and H 

(4582210.3) having stacked bar leaf weights, a species maximum level, and coloring 

according to class. Data was compared to M5NR according to a maximum e-value of 1e-

5, 60% minimum identity, and an alignment minimum length of 15 (amino acid 

measurement according to protein and bp in RNA databases). Order membership was 

indicated by the color of the species names. 
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Figure 13. 16S paired-end bacterial phylogenetic tree of cecum microbiome of synbiotic 

diet mice, samples C (MG-RAST accession 4581845.3), F (4582170.3), and L 

(4582211.3) having stacked bar leaf weights, a species maximum level, and coloring 

according to class. Data was compared to M5NR according to a maximum e-value of 1e-

5, 60% minimum identity, and an alignment minimum length of 15 (amino acid 

measurement according to protein and bp in RNA databases). Order membership was 

indicated by the color of the species names. 
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Figure 14. 16S paired-end bacterial phylogenetic tree of cecum microbiome of control 

diet mice, samples B (MG-RAST accession 4581535.3), J (4582209.3), and H 

(4582210.3) having stacked bar leaf weights, a species maximum level, and coloring 

according to order. Data was compared to M5NR according to a maximum e-value of 1e-

5, 60% minimum identity, and an alignment minimum length of 15 (amino acid 

measurement according to protein and bp in RNA databases). Order membership was 

indicated by the color of the species names. 
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Figure 15. 16S paired-end bacterial phylogenetic tree of cecum microbiome of synbiotic 

diet mice, samples C (MG-RAST accession 4581845.3), F (4582170.3), and L 

(4582211.3) having stacked bar leaf weights, a species maximum level, and coloring 

according to order. Data was compared to M5NR according to a maximum e-value of 1e-

5, 60% minimum identity, and an alignment minimum length of 15 (amino acid 

measurement according to protein and bp in RNA databases). Order membership was 

indicated by the color of the species names. 
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Figure 16. A 16S paired-end  Bray-Curtis PCOA analysis of control diet mouse cecum 

microbiome content of samples B (MG-RAST accession 4581535.3), J (4582209.3), and 

H (4582210.3). Data was compared to M5NR according to a maximum e-value of 1e-5, 

60% minimum identity, an alignment minimum length of 15 (amino acid measurement 

according to protein and bp in RNA databases), and having normalized data values 

between 0 and 1. PCO1 is listed on the x-axis and has an r2 value of 0.62852 while PCO2 

is represented on the y-axis and has an r2 value of .37148. 
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Figure 17. A 16S paired-end  Bray-Curtis PCOA analysis of synbiotic diet mouse cecum 

microbiome content of samples C (MG-RAST accession 4581845.3), F (4582170.3), and 

L (4582211.3). Data was compared to M5NR according to a maximum e-value of 1e-5, 

60% minimum identity, an alignment minimum length of 15 (amino acid measurement 

according to protein and bp in RNA databases), and having normalized data values 

between 0 and 1. PCO1 is listed on the x-axis and has an r2 value of 0.61386 while PCO2 

is represented on the y-axis and has an r2 value of .38614. 
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Figure 18. Raw abundance counts of control diet mouse cecum samples B (MG-RAST 

accession 4581535.3), J (4582209.3), and H (4582210.3) based on the PCOA analysis of 

figure 18. 

 
Figure 19. Raw abundance counts for synbiotic diet mouse cecum microbiome content of 

samples C (MG-RAST accession 4581845.3), F (4582170.3), and L (4582211.3). 
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Figure 20. MG-RAST normalized abundance counts of control diet mouse cecum 

samples B (MG-RAST accession 4581535.3), J (4582209.3), and H (4582210.3). 

 
Figure 21. Normalized abundance counts for synbiotic diet mouse cecum microbiome 

content of samples C (MG-RAST accession 4581845.3), F (4582170.3), and L 

(4582211.3). 
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Figure 22. 16S paired-end bacterial phylogenetic tree of cecum microbiome of control 

diet mice B (MG-RAST accession 4581535.3), J (4582209.3), and H (4582210.3) and 

synbiotic C (MG-RAST accession 4581845.3), F (4582170.3), and L (4582211.3) having 

stacked bar leaf weights, a genus maximum level, and coloring according to class. Data 

was compared to M5NR according to a maximum e-value of 1e-5, 60% minimum 

identity, and an alignment minimum length of 15 (amino acid measurement according to 

protein and bp in RNA databases). Order membership was indicated by the color of the 

species names. 
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Figure 23. 16S paired-end bacterial phylogenetic tree of cecum microbiome of control 

diet samples B (MG-RAST accession 4581535.3), J (4582209.3), and H (4582210.3) and 

synbiotic C (MG-RAST accession 4581845.3), F (4582170.3), and L (4582211.3) having 

stacked bar leaf weights, a species maximum level, and coloring according to class. Data 

was compared to M5NR according to a maximum e-value of 1e-5, 60% minimum 

identity, and an alignment minimum length of 15 (amino acid measurement according to 

protein and bp in RNA databases). Order membership was indicated by the color of the 

species names. 
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Figure 24. 16S paired-end bacterial phylogenetic tree of cecum microbiome of control 

diet mice B (MG-RAST accession 4581535.3), J (4582209.3), and H (4582210.3) and 

synbiotic samples C (4581845.3), F (4582170.3), and L (4582211.3) having stacked bar 

leaf weights, a species maximum level, and coloring according to order. Data was 

compared to M5NR according to a maximum e-value of 1e-5, 60% minimum identity, 

and an alignment minimum length of 15 (amino acid measurement according to protein 

and bp in RNA databases). Order membership was indicated by the color of the species 

names. 
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Figure 25. A normalized bar chart of control diet samples B (MG-RAST accession 

4581535.3), J (4582209.3), and H (4582210.3) and synbiotic diet C (MG-RAST 

accession 4581845.3), F (4582170.3), and L (4582211.3) for detected bacteria in addition 

to the corresponding p-values according to diet groupings listed in brackets. M5NR was 

compared to the data with e-value maximum of 1e-5, 60% minimum identity, minimum 

alignment length of 15bp in RNA databases.   
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CHAPTER 4 

Future Directions 

 The purpose of this project was to analyze and determine any phylogenetic or 

diversity differences in mouse cecum 16S rRNA genomic DNA samples that were fed a 

synbiotic diet comprised of probiotics and prebiotics when compared to a control diet. 

This research showed preliminary diversity data based on culture-independent AMMI 

models and diversity indices obtained by terminal restriction length fragment 

polymorphism profile data that were later more acutely verified by next generation 

sequencing technologies utilizing the Illumina MiSeq platform for analysis of the 16S 

V3/V4 region of the same cecum samples. By said methodologies, it was concluded that 

the synbiotic composition utilized did indeed colonize, and affect the microbial 

community structure of the cecum while maintaining homeostatic balance and diversity. 

The verification of preliminary T-RFLP results by differing analysis methodology 

was required due to the inherent biases apparent within sample preparation, lack of 

universality of available primers, and errors resulting from T-RFLP analysis algorithms 

for the resulting data. Despite the error resulting from innate biases within next-gen 

sequencing, its high-throughput, high resolution, and robust nature in addition to an 

integration of a quality control pipeline make the process more reliable and representative 

of measured diversity and taxonomic assignment for the exponentially expanding 

prokaryotic sequence databases when compared to that of T-RFLP analyses. However, 

this analysis is still not exhaustive of the potential diversity present within the samples 

analyzed, as results are dependent on quality and completeness of available data bases 
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and computing capacity of software packages and algorithms for sequence annotation. As 

technologies improve, the variables apparent will become less influential. 

Although direct analysis of human host cecum is the most ideal to measure the 

effectiveness of synbiotic treatments as a therapeutic option to maintain a state of host 

health and combat dysbiosis, the numerous variables present in the human model 

confound results, making the mouse model applicable for further research. Additional 

samples could be integrated to verify the statistical significance of the results obtained in 

the present study. 

Although the synbiotic utilized seemed to colonize and affect the relative number 

of bacteria within the cecum, further research in additional synbiotic combinations of 

prebiotics and probiotic could be beneficial in deriving the most effective treatment. It 

would also be useful to test various combinations on differing degrees of dysbiosis and 

disease states or other host variables in order to test the rang of efficiency and optimal 

activity of the combination utilized on endogenous host gut flora. Integration of 

metabolomic studies to elucidate the metabolic profiles of the bacteria can provide 

insights in the potential metabolic activities of the gut microbial flora. The data resulting 

from these studies could be integrated to current treatment options in addition to the 

development of new, more effective means. 
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