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Abstract 

I used Landsat 5 TM and ETM+ sensor data, including thermal infrared (TIR), to 

detect geothermal anomalies using multivariate regression. I calculated the contributions 

of background variables such as elevation, slope, aspect, shaded relief, vegetation and 

bare earth to the emitted energy in order to isolate true geothermal signals from the raw 

TIR. I trained the model around Yellowstone National Park (YNP) and tested it inside 

YNP. I applied my model in Coso and Tendaho geothermal regions in California and 

Ethiopia, respectively, to understand how it responds in areas different from YNP.  

I determined the model coefficients by running the multivariate regression in 

training areas. The multivariate program was written using Fortran 90 code and was 

parallelized with openMP for faster solution. I calculated the background contribution 

using multivariate regression and Monte Carlo approaches to train the model to cool 

surrounding pixels. I subtracted the background from the raw emission calculated using 

thermal satellite bands and used standard deviation filtration to highlight the anomalies.  

The multivariate model in YNP detected geothermal anomalies confirmed by 

earlier studies and highlighted features not mapped by earlier studies. Landsat ETM+ 

provided results with less noise, higher temperature and emission than Landsat TM 5. 

The developed model is robust and accommodates with the varying sizes of test area 

without changing the results significantly. The model results were broadly consistent with 

established and potential geothermal zones in Coso and Tendaho geothermal areas. This 

model is economical technique to detect geothermal anomalies over large areas. The 

future investigation includes rock and mineral indices and complex relationship among 

variables that could account for false positive anomalies. 
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Chapter 1 

Introduction 

Geothermal energy is potentially widely available in areas of young volcanism 

and tectonically active regions and is considered good for electricity production if 

temperatures exceed 302oF (423 K) (Blackwell et al., 2007). It is a form of renewable 

energy that results from heat flow from within the interior of earth. Geothermal energy 

may also be economically viable for both direct use (e.g., to heat buildings) and for 

electrical power (DiPippo, 1991). It also reduces the demand for imported oil and 

decreases emission of carbon, sulfur and nitrogen oxides, and particulate matter into the 

atmosphere (Mock et al., 1997).  

Field based studies and remote sensing applications have been used to locate and 

study the geothermally active areas. Satellite thermal infrared (TIR) from Advanced 

Spaceborne Thermal Emission and Reflection Radiometer (ASTER), Moderate 

Resolution Imaging Spectroradiometer (MODIS), Landsat Thematic Mapper (TM) and 

Enhanced Thematic Mapper Plus (ETM+) sensors have been commonly used for 

geothermal resource exploration. Coolbaugh et al. (2006) and Eneva et al. (2006) used 

ASTER sensor coupled with field based studies to study geothermal areas. Hellman and 

Ramsey (2004) used ASTER and Airborne Visible/Infrared (IR) Image Spectrometer 

(AVIRIS) imagery to distinguish active and extinct springs in Yellowstone National Park. 

Savage et al. (2012) demonstrated the use of Landsat TM and ETM+ sensors. Vaughan et 

al. (2012) used ASTER and MODIS thermal infrared (TIR) images to monitor 

geothermal areas in the Yellowstone area and Watson et al. (2007) studied geothermal 

heat emittance using snowpack model inversion techniques and Landsat ETM+ sensor. 
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Satellite based remote sensing is less expensive than field based studies, as wide swath 

width and challenging topography can be covered in a single image. The quantification of 

geothermal energy emittance using remote sensing technology and statistical analysis has 

the potential to reduce cost by identifying the most promising potential geothermal 

targets for further field investigation.  

A. Problem Statement 

Background conditions have been a continuing problem for geothermal remote 

sensing applications (e.g., Hellman and Ramsey, 2004; Coolbaugh et al., 2006; Eneva et 

al., 2006; Watson et al., 2008; Savage et al., 2012; Vaughan et al., 2012; ). Since all 

objects emit electromagnetic radiation (Campbell, 2008), the interference from 

background features cannot be ignored while studying geothermal distribution using 

remote sensing technologies. Previous studies (Savage et al., 2012; Vaughan et al., 2012; 

Watson et al., 2008) measuring geothermal energy in Yellowstone National Park (YNP) 

did not investigate in detail the effects of individual background variables. Coolbaugh et 

al. (2006) and Eneva et al. (2006) corrected thermal images by subtracting the heat due to 

topography, thermal inertia and albedo. They selected the variables to reduce the 

background temperature noise contributed by other environmental variables to reveal 

thermal anomalies in the final processed image. Vaughan et al. (2012) calculated net heat 

emittance by subtracting heat from non-geothermal surrounding with similar topographic 

and land cover characteristics. The determination of terrestrial emittance from 

geothermally active areas has been limited to the study of a few variables: slope, aspect, 

albedo and inertia. Also, the relative impacts were not calculated towards contribution to 

background, so old models are fairly inflexible. To solve this, I studied the contribution 
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of each background variable including slope, aspect, elevation, shaded relief, and indices 

of vegetation and bare soil in selected training areas. By knowing the relative 

contributions of background variables in these training areas, I can develop a more 

adaptive model in other areas by more effectively eliminating their effects.  

Study Area 

I focus my study on YNP in western Wyoming, eastern Idaho and southwestern 

Montana (Figure 1) and apply the model developed in YNP to the Coso geothermal area 

in California and Tendaho geothermal area in Ethiopia. I selected YNP as my model 

development and testing area because of the relative abundance of data from previous 

studies (e.g., Watson et al., 2008; Savage et al., 2012; Vaughan et al., 2012), which 

makes it easier to compare and validate my results. YNP is one of the most active 

geothermal areas of the world. I selected the Coso and Tendaho geothermal areas because 

they are environmentally distinct from YNP, allowing me to evaluate the robustness of 

my model in different settings. 

 In this study, I developed a model for geothermal estimation of YNP by training 

the model via multivariate regression of data from geothermally cool areas around YNP. 

The model was subsequently used to investigate geothermal anomalies in YNP. I 

compared my modeled temperature with field measured temperature (Bergfeld et. al., 

2011 and USGS, 2015) to understand the influence of pixel mixing and saturation.  I 

applied the same model developed for YNP to examine Coso and Tendaho geothermal 

areas to investigate the 1st order robustness of my model in areas fundamentally different 

from YNP. To study the relative contributions of background variables to the total heat, 

training areas were chosen outside YNP, as shown in Figure 2. Data from IDWR and 
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USGS were used to identify non-geothermal training areas. No training areas were 

selected south of YNP in Wyoming because most of the area is classified as having 

geothermal potential, as identified by the Bureau of Land Management (BLM, 2012). 

The geothermal training areas were used to develop an algorithm for estimating emittance 

as a function of contributing variables.  
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Figure 1: Known geothermal areas inside YNP (Data Source: Wyoming State Geological Survey; 

Background image: NAIP 2012 Image Service). The orange colored line is the YNP boundary 

and the red polygons are the geothermal areas. 
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Figure 2:  Map showing areas around YNP used as model training areas. The red points represent 

the geothermal features from IDWR and US Geological Survey (USGS); background image is 

from NAIP, 2012). 

B. Objective of the Study 

The objective of the study was to quantify, via multivariate regression, the relative 

effects of elevation, slope, aspect, insolation (incoming solar radiation), vegetation, 

water, soil moisture, and bare soil as independent variables that determine the total 

background emission. After determining the relationship between dependent and 

independent variables in the training areas, the same model was used to calculate 
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emittance in YNP, Coso and Tendaho geothermal areas. The residual obtained by 

subtracting modeled from observed TIR values was used to identify areas of elevated 

emittance. I tested all of YNP to evaluate occurrence of false positives and false 

negatives in my approach and applied the model to Coso and Tendaho to evaluate its 

applicability in different geographic environments. 

The hypothesis driving this study is: 

Total TIR emittance is a result of all contributing variables on the earth’s surface. As 

such, it is possible to identify geothermal anomalies by modeling background emittance 

from elevation, slope, aspect, vegetation, etc., and subtract the calculated background 

from the measured total emittance. The resulting residual image would comprise a 

background signal of randomly distributed low magnitude noise, while geothermal 

sources would be emphasized as areas of higher magnitude emittance. 

This study attempted to isolate and identify TIR anomalies due to geothermal 

sources by analyzing the residual of the regression between emittance and background 

variables. The study differs from earlier studies in that it tries to quantify the relationship 

between thermal emission and background variables such as slope, vegetation, aspect and 

water. By taking into account the individual contribution, I developed a regression model 

that explained thermal anomalies and is more flexible in its application than previous 

studies that required direct background matching for successful subtraction.  

This research takes advantage of preexisting satellite remote sensing technologies 

and helps to harness optimum benefit for resource exploration. I investigated the role of 

background variables and developed a model to detect geothermal anomalies over large 

area. I employed a geo-statistical approach to establish well-defined relationships with 
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the background variables. This technique will increase the use of available remote sensor 

data without investing more financial resources in developing other platforms.  

C. Organization of the study 

As per the Master of GIS program thesis guidelines, my thesis consists of 

conventional thesis chapters such as introduction, literature review and conclusions in 

chapters 1, 2 and 5 respectively and two standalone papers in chapters 3 and 4. I used the 

first person pronoun “I” in these thesis chapters whereas the standalone papers follow the 

standard publication practice to use “we” to refer to the authors.  

 I studied YNP in two phase, first using Landsat TM and the second using Landsat 

ETM + sensors and analyzed the results in both phases. I present the first phase of the 

study in Chapter 3 and the second phase of the study and its application in other test areas 

in Chapter 4. These chapters represent the standalone publication document and contain 

some repeated background information. A glossary of terms and a copy of the final code 

are provided in the appendix. The code is also available for download from the ISU 

Geosciences website; it can be compiled and run from command line on Windows or 

Mac computers. 
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Chapter 2  

Literature Review 

Geothermal heat flux can be measured by installing shallow (1 – 100s of meters) 

thermal gradient holes, a high-quality but often expensive and time-intensive process. 

The investigation of large areas can be expedited by applying remote sensing 

technologies. Identifying geothermal features using satellite TIR imagery has the 

disadvantage that the desired signal is small relative to a large and variable background. 

This study focuses on quantifying emittance from geothermal features by accounting for 

background TIR emissions via multivariate regression. This approach can greatly reduce 

the contribution of background effects, making the model more robust. 

A. Yellowstone National Park 

YNP is a geothermally active area in northwest Wyoming (Fig.1). The geothermal 

area resides within a nested group of volcanic caldera, the most recent of which erupted 

640,000 years ago (Christiansen, 2001), with small effusive eruptions dating to 70,000 

Ka (Christiansen et al., 2007). The magma under the Yellowstone caldera is the source of 

crustal deformation and passive degassing (Aly and Cochran, 2011), with circulation of 

hot water through faults and fractures leading to the creation of over 10,000 thermal 

features at the ground surface, such as hot springs, geysers, mud pots, hot grounds of 

sizes ranging from centimeters to 10’s of meters (Fournier, 1989). This makes this site 

ideal for developing and testing a TIS emittance regression model. The water temperature 

in these features ranges from near freezing to boiling, influenced by seasonal change, size 

of the feature, nature of the water pathways feeding the hydrothermal feature, etc.  
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B.  Previous Work Using Geothermal Studies in Geographic Information 

System (GIS) and Remote Sensing to Detect Geothermal Features 

Watson et al. (2008) studied geothermal emittance through snowpack model 

inversion techniques. In the study, residual terrestrial emittance was calculated after 

accounting for elevation, soil/bedrock, latitude/longitude, solar effects and soil/bedrock, 

assuming that only those variables contributed the background emission in geothermally 

passive sites. Watson et al. (2008) measured heat energy sufficient to melt peripheral 

snow to estimate the lower bound of heat emittance, and used the snow boundary to 

identify geothermal zones. Their calculated emittance ranged from 0 to 94 W/m2, with 

good correlation between remotely sensed thermal anomalies and snowpack-inversion 

measurements (R2=0.82). The consideration of more variables could have increased the 

model performance by eliminating more of the TIR background emission.  

Vaughan et al. (2010) studied the saturation and pixel mixing thresholds for 

ASTER imagery where geothermal features are smaller. They identified many sources of 

uncertainty in sub-pixel thermal calculation such as pixel resampling, atmospheric 

correction, and background temperature and emissivity assumptions.  The saturation and 

mixing detection thresholds were dependent on the percentage of hot target area and the 

radiometric temperature difference. The contribution of atmospheric correction to 

temperature uncertainty was highest followed by the contributions from emissivity and 

background assumptions. Validating satellite based thermal results with field-based 

measurements reduces these uncertainties and improves the sub-pixel modeling of 

thermal features. 
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Vaughan et al. (2012) used ASTER and MODIS TIR images to estimate heat 

emittance from geothermal areas in YNP using background subtraction. They selected the 

snowing season for their study to identify geothermal areas from non-geothermal areas. 

This approach has the risk of classifying snow free, windy and steep areas as geothermal 

areas that are not actually geothermal in nature.  In that study, radiative heat emittance 

from proximal, non-geothermal areas with similar topographic and land cover 

characteristics of equal area was subtracted from total emittance to derive net emittance. 

Vaughan et al. (2012) assumed that thermal radiance emitted from non-geothermal areas 

is similar to the background heat from geothermal areas. There are several problems 

associated with this background emissivity subtraction technique: in a practical sense, it 

is difficult to find background areas with similar characteristics as test areas, and thermal 

areas will have little to no snow accumulation compared to background areas that are 

exposed to snow. Thus, the background emittance subtraction approach applied by 

Vaughan et al. (2012) is not appropriate in all conditions. Vaughan et al. (2012) estimated 

total heat emittance of around 2 GW (2.0 for ASTER and 2.3 for MODIS), which 

represents only about 30-45% of the geothermal heat emittance estimated from 

geothermometry and chloride flux balances (Fournier, 1989). One of the drawbacks of 

their study, however, is the poor spatial resolution of ASTER (90 m) and MODIS (1000 

m) thermal pixels, which are unable to detect many small and/or low-temperature thermal 

features on such pixel scales.   

Mia et al. (2012) used the Landsat 5 TM and ETM+ visible and near infrared 

(VNIR) bands to estimate vegetation cover as a proxy for ground temperature. They did 

not try to understand the contribution from background variables; instead, a 
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topographically similar area on the same latitude (for solar radiation) was chosen 20 km 

west of the study area to estimate the background thermal contribution from soil, 

topography and aspect. They calculated NDVI-based spectral emissivity to detect bare 

soil, mixed land and stressed vegetation.  

Warner and Chen (2001) attempted to suppress the effects of solar heating and 

topography in Landsat TM daytime thermal imagery of the Humboldt Range, Pershing, 

Nevada. They used a hyperspherical direction cosine (HSDC) transformation, with model 

correction, and statistical-empirical correction, but they could not find a single correction 

approach that could account for all the variables. In this sense, the use of multivariate 

regression has a clear advantage over individual variable correction techniques, and it 

also allows for cumulative effects to be modeled in a single equation. 

Eneva et al. (2006) studied the geothermal features in the region between the 

Mammoth Geothermal Power and Coso Geothermal Power projects in California using 

ASTER thermal infrared (TIR-90m) imagery. They calculated net heat flux at the surface 

by considering variables such as albedo, topography and thermal inertia (the rate at which 

an object can gain or lose heat). They integrated heat flux over time to account for heat 

dissipation, creating a pseudo temperature image. This pseudo temperature image was 

subtracted from an ASTER temperature image (AST-08). The residual, or thermally 

corrected, image enhanced the thermal anomalies, reduced noise, and suppressed the false 

anomalies that appeared in the uncorrected image. The residual calculated by Eneva et al. 

(2006), therefore, accounts for the effect of albedo, topography and thermal inertia but 

not for other environmental variables like vegetation, bare soil and water.  
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 Savage et al. (2012) examined the changing terrestrial emittance among spatial 

groups of thermal features from 1986 to 2007 in YNP. Relationships between thermal 

areas and factors such as such as distance to geologic faults, distance to large water 

bodies and distance to earthquake epicenters showed the strongest relationship with 

earthquake swarms, with 34% of the variation explained.  Savage et al. (2012) indicated 

that Landsat imagery might be useful for monitoring geothermal responses in YNP, but it 

cannot be used as the sole monitoring tool because many geothermal areas are smaller 

than a Landsat TM pixel. Since ASTER (90 m) and MODIS (1000 m) thermal pixels are 

too coarse for the study areas, I used Landsat TM and ETM+ sensors.  

Hellman and Ramsey (2004) used ASTER and Airborne Visible/IR Image 

Spectrometer (AVIRIS) imagery to distinguish active and extinct springs in Yellowstone 

National Park. Spring deposits have a distinct geometry and chemical signature, thus the 

study was done in VNIR, SWIR (Short Wave Infrared) and TIR bands. ASTER 

(spaceborne with 15, 30, 90 m pixel in VNIR, SWIR and TIR regions, respectively) and 

AVIRIS (airborne, hyperspectral, 20m resolution) images were analyzed to study 

reflectance, emissivity and temperature from thermal features, and band ratios 4/6 (for 

ASTER) and 139/195 (for AVIRIS) were used to identify minerals. Since, the AVIRIS 

data were acquired from airborne sources, they are not as consistently available as 

Landsat products, making it difficult to compare results over long periods of time and 

therefore were not selected for this study.  

 Sobrino et al. (2008) retrieved temperature and land surface emissivity from 

satellite and airborne sensors using a fractional vegetation cover (FVC) estimation 

technique and the temperature and emissivity separation. Retrieving surface emissivity is 
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important to study land surface temperature and map mineral resources as it provides the 

native thermal signature of the objects. Traditionally, multispectral TIR has been used to 

calculate temperature and emissivity using the TES algorithm, but Sobrino et al. (2008) 

estimated emissivity using the normalized difference vegetation index (NDVI). The 

emissivity separation requires considerable information, such as atmospheric corrections, 

at least 4 TIR bands, and only works well in situations with high spectral contrast. The 

NDVI method can compensate these needs; it does not require accurate atmospheric 

correction and needs no or only one TIR band. The downside, however, is that a priori 

knowledge of soil emissivity is required, and the model cannot be applied to areas of 

water, snow, ice and bare rock. Because of these constraints, the NDVI approach is not 

applicable to the present study. 

 

C. Multivariate Regression in GIS and Remote Sensing 

Multivariate regression in geographic information systems (GIS) data processing 

has the ability to combine information from multiple layers to solve complex problems. 

Coolbaugh and Shevenell (2004) used regression tools to define favorable and 

unfavorable geothermal areas in Nevada using young volcanic rocks, earthquakes, global 

positioning systems (GPS) measurement of strain, northeast-trending young faults and 

regional gravity anomalies. Areas favorable for geothermal exploration were identified 

using digital maps of geothermal wells, temperature gradient holes, oil wells, water wells 

and depth to the water table. They did not consider background geothermal heat flux in 

their study because very few geothermal systems were known in the study area and 
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because the inclusion of discovered geothermal systems based on subjective judgments 

contributed significant errors into their GIS-based predictions.   

To avoid subjectivity in this study, the background TIR signal contribution 

calculated using multivariate regression was subtracted from the raw thermal image in 

order to detect thermal anomalies systematically.  Multivariate regression can be used to 

develop a prediction model as well as reduce errors. Kunkel et al. (2011) developed a 

multivariate regression model for estimating soil and nitrogen stocks in semi-arid terrain 

in southwestern Idaho. They considered variables such as NDVI (vegetation index 

calculated using near infrared and red bands), insolation, precipitation, elevation, aspect 

and slope. They used univariate regression to investigate the relationship of individual 

variables to the dependent variable and to avoid multicolinearity (redundancy among 

variables). Though regression and cokriging produced similar results and were similar to 

field observations, the study found regression to be a simple and easy method of 

prediction at larger geographic scales. In contrast, kriging is more complex and cannot 

examine cause and effect relationships. Ranhao et al. (2008) demonstrated the use of 

interpolation to correct residual errors in multivariate regression. They performed 

multivariate regression to predict precipitation in the Daqing Mountains in northern 

China with latitude, longitude, and slope aspect as the determining variables. In my 

study, I investigated the dependency of temperature on several environmental variables to 

which kriging is not suitable because geothermal features do not represent continuous 

variables like snow depth, rainfall or temperature.  

Chang and Li (2000) compared multivariate regression results with traditional 

interpolation methods such as Thiessen polygons, linear interpolation, inverse distance 



16 

 

weighting (IDW) and kriging to construct snow water equivalent surfaces from snow 

course data by month in Idaho. Snow water equivalent was estimated using multivariate 

regression where topographic characteristics such as slope, aspect and curvature were the 

independent/determining variables. Multivariate regression outperformed the 

interpolations methods in the majority of the study area. In addition, interpolation 

techniques such as kriging or IDW are sensitive to the number and location of data points 

and therefore requires collecting numerous ground-temperature data, which is both 

impractical and expensive. 

 D. Application of Multivariate Regression to Quantify Background TIR 

Emission 

The reason I considered multivariate regression to account for background TIR 

emission is because other methods, such as the normalization technique used by Warner 

and Chen (2001) and background area subtraction used by Mia et al. (2012), cannot 

quantify the effects of background influences in different locations. Warner and Chen 

(2001) showed that none of the normalization techniques are sufficient to suppress the 

effect of albedo and topography completely, so the multivariate regression approach 

taken in this study attempts to account for slope, aspect, elevation and shaded relief, 

vegetation and bare soil indices independent variables to avoid problems of variable 

topography and solar insolation.   

 This study took into account more background variables than earlier studies 

considered (e.g., Eneva et al., 2006; Watson et al., 2007) and determined geothermal heat 

emittance by subtracting background emission from total emission. Coolbaugh et al. 

(2006) and Eneva et al. (2006) took into account topography, albedo and thermal inertia 
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but did not include variables like vegetation and water. Similarly, Weng (2009) 

accounted for vegetation and soil properties but did not consider other variables. 

Vaughan et al. (2012) did not study individual variables, but subtracted the emission from 

a geographically similar area nearby. None of these studies considered the individual 

determining variables or performed regression analysis to understand the effects on the 

dependent variable; instead, they calculated the contribution of a few limited variables 

and subtracted the effect of each individually.  Since more variables were considered in 

this study, the resulting multivariate regression model is considered more robust.  

Eneva et al. (2006) used albedo, atmospheric transmission and shaded relief to 

build a background heat energy model. Albedo was calculated using the satellite-derived 

reflectance after field correction. Since I am not collecting any field reflectance samples 

to correct my satellite measurements, I will not use albedo in my model. If I use satellite-

derived albedo without field correction, it causes multicolinearity because albedo is a 

component of my dependent variable, temperature. I used slope and aspect to account for 

topographic variation and calculated shaded relief to account for brightness contributed 

by topography and insolation.   

Savage et al. (2012) demonstrated that the use of Landsat TM and ETM+ sensor 

data, with 120 and 60 m spatial resolution in the thermal bands, respectively, are coarser 

to study small geothermal areas like those in YNP. Despite this, I used Landsat TM (120 

m) and ETM+ (60 m) data to develop temperature image for my study area because these 

are the best available free thermal dataset to study YNP dominated with geothermal 

features ranging from centimeters to several meters. Landsat TM and ETM+ thermal 

pixels are finer than MODIS (1000 m) and ASTER (90 m) thermal pixels, which are 
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more appropriate for studying large-scale geothermal features. The acquisition of finer 

resolution airborne thermal imagery is costly and comparative study over multiple years 

would be very difficult. The historical collection of Landsat TM (from 1982 to 2012) and 

ETM+ (1999 to 2003), makes it possible to compare my study to earlier studies done 

using the same sensors, as well as detect temporal changes and evaluate the results over 

long time spans.  

I use satellite imagery from snow-free days in late summer to avoid the problem 

Vaughan et al. (2012) had in their study. They selected the snowing season for their study 

to identify geothermal areas from non-geothermal areas. This approach led to the 

inclusion of steep areas and snow-free wind swept areas that were not necessarily 

geothermal in nature. Since I do not use snow as a filter, I did not run into the problems 

due to snowpack accumulation.   

Initially, univariate regression was used to identify and select the most statistically 

significant variables for multivariate regression. Kunkel et al. (2011) used univariate 

regression to investigate the relationship of individual variables to the dependent variable 

and to avoid multicolinearity. Though regression and co-kriging results were similar to 

field observations, Kunkel et al. (2011) found regression to be a simple and easy method 

of prediction at broader scales. In contrast, kriging is more complex and cannot examine 

cause and effect relationships.  In my study, I want to understand the dependency of one 

variable over another, which is not possible through kriging. Further, I cannot use kriging 

because geothermal features are not continuous variables like snow depth or temperature. 
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Abstract 

Geothermal anomalies of Yellowstone National Park (YNP) are identified and quantified 

using Landsat 5 TM thermal band data. Multivariate regression of independent 

background variables that effect thermal emissivity, including elevation, slope, aspect, 

insolation, vegetation, water, soil moisture, and exposed land, were utilized in this study 

to create a comprehensive background filter for the raw imagery. Subtracting the 

multivariate background model from raw Landsat 5 TM data accentuates large 

geothermal anomalies such as Grand Prismatic and less thermally evident features such 

as the Old Faithful Geyser while removing significant false anomalies from the imagery. 

Geothermal anomaly emittances within YNP were calculated with a range of 40-120 

W/m2. False positives for geothermal activity were reduced in the scene, with remaining 

ones focused on bare earth slope, consistent with other studies. A differencing between 

known geothermal pool temperatures and model residual temperatures at 25 sites 

indicates an average difference of 347 K (stdev 12 K), suggesting scalability from 

residual output to corrected temperature detection. The methodology employed for 
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detecting known geothermal anomalies in YNP could be utilized to detect unknown 

geothermal potential in underexplored geothermal regions. 

1. Introduction 

All objects on the earth’s surface emit electromagnetic radiation, which can be 

detected and measured using low-cost remote sensing techniques. Problematically, the 

raw emittance measured from satellite imagery includes the response from the target of 

interest as well as background or intervening features, which results in noise that can 

mask true anomalies. It is critical to differentiate signal sources when quantifying a 

specific thermal feature. In this work, we develop a multivariate background emittance 

model that we use as a filter for Landsat TM data across Yellowstone National Park 

(YNP).  

YNP is one of the most geothermally active and well-studied locations in the 

world, allowing us to validate our model against established records of geothermal 

anomalies of varying scale. Yellowstone is a large caldera in Wyoming, Montana, and 

Idaho, located at the western extent of the Snake River Plain. The volcano that last 

erupted cataclysmically 640Ka, depositing the >1000 km3 Lava Creek Tuff, an event that 

was followed by smaller effusive eruptions as recently as 70Ka (Christiansen and Blank, 

1972). The magmatic system underlying Yellowstone caldera remains active, as 

evidenced by continued passive degassing and ground deformation (e.g., Aly and 

Cochran, 2011). Faults and fractures in the crust in YNP provide pathways for water 

circulation from the surface to deep, relatively hot crust (Morgan et al., 1977; Bargar, 

1978). This hydrothermal circulation manifests itself at the surface as geysers, mud pots, 
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hot springs, and fumaroles; there are over 10,000 surficial geothermal anomalies within 

the park boundaries, with scales spanning centimeters to 10’s of meters and temperatures 

up to the boiling point of water. 

Despite the presence of such significant geothermal anomalies, thermal remote 

sensing analyses of the features have been hampered by noise from background 

emittance. Previous work by Coolbaugh et al. (2006) and Eneva et al. (2006) at YNP 

attempt to mitigate the noise problem in satellite-based remote sensing imagery by 

subtracting heat due to topography, thermal inertia and albedo. Similarly, Watson et al. 

(2008) calculated the geothermal emittance anomalies of YNP by correcting for solar and 

elevation effects using a snow covered Landsat 7 ETM+ scene to mask out other 

variables that emit thermal energy. While these approaches improve isolation of true 

positive thermal anomalies in satellite data, their success was limited by their a priori 

selection of a limited suite of contributing background variables. Following a different 

approach to noise filtering, Vaughan et al. (2012a and 2012b) calculated corrected net 

heat emittance at known geothermal sites in YNP by subtracting heat from nearby non-

geothermal areas. While this approach yielded excellent results, the method is inherently 

limited to use in areas of pre-defined, known anomalies from which the user can identify 

targets of interest and appropriate neighboring non-geothermal pixels for subtraction. 

These limitations are problematic given the impact of geothermal anomalies on their 

surrounding conditions; for instance, elevated geothermal emittance can be very 

damaging to local vegetative health, which, in turn, influences overall thermal emittance 

as measured via remote sensing (Mia et al., 2012). 
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In this work, we evaluate the relative contributions of slope, aspect, elevation, 

vegetation, soil, and water to thermal emittance in geothermally inactive areas 

surrounding YNP to establish coefficient ranges appropriate for multivariate analysis. 

Minimum and maximum coefficients for each of the significant background variables 

define the solution bounds used in a Monte Carlo-based background filter for thermal 

anomalies within YNP boundaries. By defining coefficient ranges using non-geothermal 

zones, we reduce the risk of overfitting the algorithm for the thermal areas, thereby 

yielding false negatives in the final image.  

2. Materials and Methods 

We focused our study in and around YNP in northwestern Wyoming, eastern 

Idaho and southern Montana (Fig. 1). Training zones A through J represent areas similar 

to those within YNP but geothermally cold, as determined using data from the Idaho 

Department of Water Resources and Derkey and Johnson (1995). Diverse land 

conditions, such as steep slopes, vegetated areas and barren lands, were included to 

ensure model accommodation to wide range of environmental variability typical of the 

region. The independent variables were evaluated in the training areas in order to 

minimize overfitting of the model to the geothermal anomalies present inside YNP. 

We used Landsat 5 TM satellite imagery (30 m spatial resolution, thermal 

resampled from 120 m), with imagery from September 24, 2011. The selected image did 

not contain snow or cloud cover, and was chosen to be outside of peak vegetation 

conditions; results from this image are consistent with output generated in August and 

October dates in other years. Although Landsat 7 ETM+ has 60 m resolution in the 
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thermal infrared bands, we did not use this sensor due to technical problems associated 

with it since 2003 (Sobrino et al., 2008).  

 

 

Figure 1: Map showing training areas (A to J; yellow boxes) around YNP (white outline) 

and test area (green outline) inside YNP. The red dots represent known geothermal 

anomalies. Points within the park boundary are from the polygons of R. Hutchinson 

(unpublished), points in Idaho are from Idaho Department of Water Resources (2001), and 

points in Montana are from Derkey and Johnson (1995).  Background image from NAIP 

2012/13 Image Services.  
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We examined elevation, slope, aspect, insolation, vegetation, water, soil moisture, 

and exposed land as independent variables to calculate the background emission via 

multivariate regression. The primary datasets used for calculating these derived variables 

were Landsat 5 TM imagery and National Elevation Datasets (NED). The Landsat 5 TM 

data were converted to radiance and temperature (for band 6) in ENVI software using 

standard calibration parameters (NASA, 2007; Chander et al., 2009).  

Normalized Difference Vegetation Index (NDVI) was used to measure vegetation 

greenness, a proxy for vegetation health and plant type from Landsat 5 TM imagery. 

NDVI values range from 1 to -1, with higher values representing more greenness. Near 

infrared (NIR) and red bands were used to calculate NDVI using the equation (Jensen, 

1986):     

NDVI =
NIR- red

NIR+ red
      (1) 

The Normalized Difference Bare Soil Index (NDBSI) uses Shortwave Infrared 

(SWIR) and NIR bands to measure bare soil area and it is expressed as (Roy et al., 1997):  

NDBSI =
SWIR-NIR

SWIR+NIR
     (2) 

NDWI, or Normalized Difference Water Index (NDWI) is used to delineate water 

features and enhance its presence in remotely sensed imagery (McFeeters, 1996). The 

equation for NDWI is given as:     

NDWI =
green-NIR

green+NIR
      (3) 
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We also calculated the modified-NDWI, which suppresses the noise from built-up 

land, soil and vegetation because of the use of SWIR instead of NIR (Xu, 2006). We 

included both indices at the outset of the study rather than making a priori decision 

regarding which would be more useful in the multivariate thermal algorithm; variables 

were evaluated for redundancy and significance before being included in the final model.  

The equation for modified-NDWI is given as:     

modifiedNDWI =
green- SWIR

green+SWIR
    (4) 

 National Elevation Datasets (NED; 10 m spatial resolution) were used to calculate 

slope, aspect, hillshade and insolation in ArcGIS.  Slope is the rate of change of elevation 

with distance, ranging from 0 to 90 degrees above horizontal. Aspect, or the direction of 

that the local slope is facing, is recorded as azimuthal compass direction. Hillshade is a 

function of solar azimuth and elevation. This study used the metadata associated with the 

corresponding Landsat image to calculate the hillshade for the day of the year and time of 

day the scene was collected. Slope, aspect and hillshade were calculated using the 

algorithms by Burrough et al. (1998) native to ArcMap 10. Insolation, or solar radiation, 

was calculated using the hemispherical viewshed algorithm introduced by Rich et al. 

(1994) and developed by Fu and Rich (2000, 2002); the Area Solar Radiation tool in 

ArcMap 10 was used to calculate the insolation in Watt-hour/meter2 at the time of day 

corresponding to the relevant Landsat image capture. Because date- and time-appropriate 

sun orientation was used in both the hillshade and insolation calculations, these variables 

are analogous to one another through they exist on different scales and use different units. 
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 We used univariate regression to establish the significance of the potential 

background variables on the total emittance, retaining significant variables for use in the 

multivariate calculation (Fig. 2). A p-test with 95% confidence identified background 

variables that do not significantly contribute to the total emittance; variables that failed 

the p-test for more than half of the training areas were removed from further evaluation in 

the study. 

Independent variables were evaluated for multicollinearity, or variable 

redundancy. NDWI and modified-NDWI, for instance, are similar approaches to 

measuring vegetation greenness; while those terms will clearly exhibit multicollinearity, 

other relationships between independent variables may be less clear. To test for 

multicollinearity, variables were combined into groups for multivariate analysis in 

ArcMap 10. Variable groups were built sequentially, adding one variable at a time, with 

Ordinary Least Squares (OLS) used to identify improved coefficient fits. Variance 

Inflation Factor (VIF) values determined from best-fit solutions indicated which variables 

demonstrated multicollinearity (O’Brien, 2007). In cases of redundancy, the variable with 

the highest coefficient of determination was preserved while the others were excluded 

from further analysis. NDVI, NDWI, and modified-NDWI tested positive for redundancy 

relative to one another, with NDVI retained. Similarly, insolation and hillshade were 

redundant to one another; inclusion of hillshade resulted in better model fit, so insolation 

was dropped from further analysis. In both cases of multicollinearity, removal of the 

redundant variable(s) did not have a significant effect on the overall coefficient of 

determination. 
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Figure 2: Figure showing the R-squared values corresponding to each background variables. 

Slope, elevation and NDVI have lower R-squared values than rest of the variables. NDBSI and 

shaded relief has the biggest influence on the total emittance as demonstrated by the color. 

 

The univariate best-fit coefficients in the training zones for the remaining 

variables were used to create upper and lower bounds in the multivariate solution for 

YNP. By establishing coefficient bounds in geothermally cold but otherwise consistent 

zones, we restricted the degree to which the multivariate solution can overfit the 

geothermally active park. We did not use any predetermined weighting in selecting the 

coefficient ranges, as that would prejudice the model toward one set of land conditions 

over another. Large, cold water bodies were excluded from the final analysis, however, as 

they would otherwise force the model to preferentially fit to them rather than the targeted 

terrestrial sites. The multivariate model used a Monte Carlo approach to coefficient 
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selection within the established bounds. Given the size of YNP and the number of 

iterations necessary to converge on a stable solution, the multivariate solution was 

calculated using Fortran90 code with openMP for thread-scale parallelism. The resulting 

best-fit solution, which describes the background temperature, is subtracted from the 

original raw image to leave a residual that highlights the geothermal anomalies in YNP 

(Fig. 3). The residual image is converted to emittance from degrees Kelvin using the 

Stefan-Boltzmann equation. 

 

Figure 3. Close-up of the Sulfur Hills Thermal Area in YNP showing a) the raw Landsat 5 TM, b) 

multivariate background calculation, and c) residual (raw-background) images expressed in 

temperature (K). The blue polygons in the images are mapped geothermal zones by Hutchinson 

(unpublished). Subtracting the background from the raw image significantly highlights the 

geothermal anomaly relative to the false positive visible on the right side of the raw image. 

Location within YNP denoted on Figure 4; final output for Sulfur Hills in Figure 5e. 

 

 The residual image produced by this method contains significant low-level 

background noise in addition to the emphasized thermal anomaly. This noise is 

minimized by removing all pixels with values less than 3 standard deviations above the 

average emittance, leaving only large anomalies. This filter approach can only be applied 
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in circumstances where there are a large number of regular pixels relative to geothermally 

anomalous pixels, such as the park-wide analysis.  

 

3. Results and Discussion 

Application of the multivariate background model and 3 standard deviation filters 

results in very good agreement between modeled anomalies and field-evaluated 

geothermal anomalies across the park (Fig. 4). False anomalies occur in the output, 

mostly concentrated along northeast-trending ridges, as well as true anomalies that are 

not represented in the YNP polygon data but have been confirmed by Watson et al. 

(2008). The false anomalies that appear in the model output suggest that one of the 

variables may be underfitting the solution in certain circumstances, perhaps as a result of 

complex interplay between two or more variables, or that there may be a significant 

variable yet excluded from the analysis. Future work in this direction should include 

investigation of rock unit exposures, as they may be responsible for locally increased 

emittance. 
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Figure 4: Residual emittance in YNP showing pixels greater than 3 standard deviations above the 

average for the zone. Blue polygons indicate geothermal zones as mapped by R. Hutchinson 

(unpublished). Red arrows indicate false anomalies in the image, while purple arrows denote 

positive identification of true anomalies consistent with ground truthing reports by Watson et al. 

(2008). False positives are preferentially located along northeast-trending ridges. Due to the scale 

of the test zone, presented here in overview, many of the positively identified thermal anomalies 

are not clearly visible in this image; see Figures 5 and 6 for closer views of anomalies. 

 

The approach yielded particularly good fits with individual geothermal features 

within the anomaly polygons of R. Hutchinson (unpublished), available from the 
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Yellowstone Center for Resources GIS geodatabase (Fig. 5). For example, the model 

distinguished between Grand Prismatic Spring and Excelsior Geyser Crater in the 

Midway Geyser Basin while minimizing the surrounding runoff zones in the polygon. 

Similarly, the model identified individual anomalies at the Violet Hot Springs, including 

both spring and mud pot features, and various geysers and pools in the Norris Geyser 

Basin. While large hot springs are most readily visible in the residual imagery, terrestrial 

anomalies with relatively small footprints are also identifiable; Old Faithful and several 

other individual geysers are distinguishable from the background in the Upper Geyser 

Basin though it appears cold in the park-scale view (Fig. 6). The close-up perspective 

also shows some park infrastructure, such as buildings and parking lots, as positive 

anomalies just above the display threshold (Fig. 6).  
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Figure 5: Close-up images of residual emittance for several geothermal anomalies in YNP. 

Features highlighted by the background filter model include hot spring pools, mud pots, and 

geysers. The method highlights the features within the broader mapped geothermal zones 
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denoted by the blue polygons (R. Hutchinson, unpublished). Locations within YNP are 

denoted on Figure 4. 

By subtracting background values in order to highlight true anomalies this model 

unavoidably reduces the output temperature to degrees in excess of background rather 

than real temperature. Twenty-five field temperature measurements of YNP pools by 

Bergfeld et al. (2011) were compared with spatially coincident model output to determine 

if there was a baseline offset that could be applied to the residual model pixels to convert 

them to true temperatures (Table 1). For the imagery presented here, the average 

difference between measured and modeled temperatures was 347 K, with a standard 

deviation of 12 K. Given the reported variability of YNP geothermal features over time 

(e.g., Friedman and Norton, 1981; Vaughan et al., 2012a; Savage et al., 2012) and signal 

mixing in coarse Landsat 5 TM 120 m pixels, this is a narrow distribution of differences. 

Evaluation of imagery from other dates will be necessary to establish whether this coarse 

scaling change is broadly appropriate or is strongly influenced by intermediate diurnal 

and seasonal effects. 

The background subtraction and 3 standard deviation pixel filter approaches used 

in this research pose a challenge for identifying relatively low-temperature thermal 

anomalies or anomalies with spatial footprints well under Landsat 5 TM pixel resolution. 

Comparing Figure 3c and Figure 5e, both of Sulfur Hills, illustrates the loss of low-grade 

thermal anomalies during the 3 standard deviation pixel filter used to minimize the visual 

impact of residual noise and low-confidence anomaly pixels. Further work will clarify the 

lower temperature and spatial limits of use for this model. 
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The ability of the method to identify relatively small spatial features despite the 

coarse pixel size available for thermal data through Landsat 5 TM suggests that the 

approach is worth investigating at higher resolution scales, such as the 1m resolution 

Forward Looking Infrared (FLIR) surveys used by Jaworowski et al. (2010). In their 

work, Jaworowski et al. (2010) identified significant relationships between park 

infrastructure and geothermal anomalies, with road construction resulting in diverted 

hydrothermal runoff and elevated temperatures on pavement. This interaction, located 

outside of mapped geothermal polygons, is also visible in our results as an anomaly 

located directly northeast of the Overpass Group (Fig. 6). Their high-resolution imagery 

was able to capture features below the visible threshold in this study, including the Circle 

Pool group approximately 500 m southeast of Grand Prismatic Spring.  

In contrast to the approach of Vaughan et al. (2012a and 2012b), which was 

designed for monitoring changes in YNP heat emittance, this method does not require a 

priori knowledge of geothermal anomalies and immediately proximal quiescent areas. As 

such, it can be more rapidly deployed as an exploratory tool over large areas. As 

presented, application of our proposed model requires identification of similar zones that 

are geothermally quiet for model coefficient training. This may be sidestepped, however, 

by processing large areas in which geothermally anomalous pixels make up a very small 

fraction of the total image, relaxing coefficient bounds, and allowing more iterations to 

achieve a convergent solution. In such an untrained case, the overwhelming number of 

cold pixels should prevent overfitting of the background model to the actual geothermal 
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anomalies; while conceptually sound, the untrained approach should be evaluated prior to 

extensive use. 

Table 1. Comparison points between measured field temperatures (Bergfeld et al., 2011) and 

residual temperature from this model. This table indicates an average baseline temperature of 347 

K offsetting residual from measured temperatures in the processed image. Note: field 

measurements occurred during Augusts and Septembers during the years 2003-2009 and do not 

indicate fluctuations that may have occurred during that period. 

Location Easting Northing 
Field 

Temperature (K) 

Residual 

Temperature (K) 

Difference 

(K) 

Back Basin 2 522963 4952193 340.4 5.1 335.3 

Back Basin 4 523011 4952171 360.4 7.5 352.9 

Bear Creek 558816 4932859 365.3 10.0 355.3 

Behind Congress 523655 4952727 365.7 7.5 358.2 

Black Pit 523588 4952139 355.3 1.7 353.6 

Black Sands 1 511542 4923259 363 10.2 352.8 

Black Sands 2 511628 4923190 349.1 3.1 346.0 

Chocolate Pots 520496 4950780 325.5 2.6 322.9 

Dishwater 523384 4952086 362.4 5.4 357.0 

Green Dragon 523196 4951898 361.6 7.5 354.1 

Hot Springs Basin 

2 
558553 4953761 364.9 2.0 362.9 

Hot Springs Basin 

5 
558925 4955398 349.9 5.0 344.9 

Hot Springs Basin 

8 
559347 4954788 341.1 8.2 332.9 

Hundred Springs 

Plain 
523113 4953330 362.1 3.5 358.6 

NR Gibbon R1 523658 4954007 357 0.5 356.5 

NR Gibbon R2 523680 4954101 345.8 4.5 341.3 

Obsidian Pool 544530 4939794 362.2 5.2 357.0 

Potts Basin 1 533421 4919761 341.8 1.0 340.8 

Potts Basin 2 533505 4919689 360.5 -0.3 360.8 

Potts Basin 3 533504 4919547 318.3 -5.0 323.3 

Smokejumper 1 503793 4917530 358 12.2 345.8 

Steam Valve 523494 4952561 341.8 2.4 339.4 

Sulphur Caldron 1 544992 4941758 341.9 3.7 338.2 

Terrace Springs 512184 4944102 336.3 10.0 326.3 
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W Nymph Lake 

Thermal Area 1 
520335 4954609 355 4.9 350.1 

 

Previous work by Vaughan et al. (2012a and 2012b) and Watson et al. (2008) use 

winter scenes in order to minimize the effects of intervening background emittance. 

While both clearly show the merits of this approach, their models are thereby limited in 

the regions in which they can be applied. While the multivariate background subtraction 

method presented here requires that more variables be constrained, it is accordingly more 

appropriate for use in areas without reliable winter snow accumulation. 
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Figure 6: Upper Geyser Basin of YNP. Though the anomalies are indistinct when viewed at the 

park-wide scale in Figure 4, closer inspection of the Upper Geyser Basin reveals that the method 

discussed here identifies individual geysers within the group, including Old Faithful. Orange dots 

south of the Old Faithful Group correspond to park infrastructure, including buildings and 

parking lots. Blue polygons indicate geothermal zones as mapped by R. Hutchinson 

(unpublished). 

 

4. Conclusions 

The multivariate background subtraction method used in this study identified 

geothermal anomalies in YNP at multiple scales, from individual geysers to large hot 

springs and extensive geothermal anomaly clusters. This study is unique in that it 

successfully used multivariate regression analysis of Landsat TM 5 thermal infrared data 

to identify geothermal anomalies by developing a filter based on thorough explanation of 

background variables during snow-free conditions. By moving away from more 

traditional snow-filtering approaches, this model can be trained for use in potential 

geothermal areas in areas without regular snow accumulation. Future work will involve 

testing the inclusion of a geologic variable in the multivariate regression and 

investigation of complex relationships between independent variables that may contribute 

to false anomaly detection along northeast-trending ridges. The model will also be tested 

in geothermally active regions outside of YNP to evaluate robustness in different climate 

zones, with a focus on minimizing time required for coefficient training. Results from the 
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current model application in YNP suggest that it is a low-cost, solution for geothermal 

anomaly detection over large areas for both large- and small-scale features. 
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Chapter 4 

 
Detecting Geothermal Anomalies in Yellowstone National Park using Landsat 

ETM+ Thermal Band Data and Application of the Model in Coso Geothermal Area 

in California and Tendaho Geothermal Area in Ethiopia 

 

1. Introduction 

Detection of geothermal anomalies in remote sensing data depends on 

segregation of background thermal emission from the actual anomaly signals. The 

contributions of background environmental variables such as vegetation or insolation to 

thermal emission vary over space and time, thereby requiring careful analysis to filter 

their effects from thermal remote sensing imagery. We use a multivariate regression 

model to quantify the effect of background variables and create a filter to remove their 

impacts from the raw thermal image. The resultant residual image, devoid of background-

contributed false anomalies, displays the true anomalies present in the scene.  

The nature of the residual and detection of geothermal anomalies is dependent on 

the background variables that occur in the study area. The effect of background variables 

is not uniform and the specific variables considered in the study determine the per-pixel 

value in the background image. The gross emission in the raw image and the deduction of 

variable background emission determine the magnitude and distribution of the residual 

(Fig. 1). The multivariate regression used to calculate the background either 

overestimates or underestimates the effect of background on a per-pixel basis; when the 

multivariate model accurately captures all of the contributing background emissions, this 

over- and underestimation should appear as random background noise.  
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Figure 1: Illustration showing the background subtraction technique.  Individual squares represent 

pixels and are numbered and shaded according to the signal strength associated with that position. 

The first image is the total heat emittance from thermal sensor, second is background image 

calculated from multivariate regression, and the third is residual image obtained after subtraction 

of background from the raw image. Different pixels are highlighted in the filtered image than in 

the raw image, due to the masking effects of the background noise that have been filtered out. 

Background subtraction methods have been applied to geothermal remote sensing 

before with mixed success (e.g., Hellman and Ramsey, 2004; Coolbaugh et al., 2006; 

Eneva et al., 2006; Watson et al., 2008; Savage et al., 2012 and Vaughan et al., 2012). 

Significant limitations of past work have included using very few independent variables 

(Watson et al., 2008; Savage et al., 2012 and Vaughan et al., 2012) and requiring ground-

covering snow in the imagery as a natural filter for background emissions (Watson et al., 

2008).  

Previous studies did not conduct model training in geothermally quiescent areas 

to quantify the relative importance of background variables; rather, the thermal image 

was corrected for the effect of thermal inertia, topography and albedo (e.g., Coolbaugh et 

al., 2006; Eneva et al., 2006). The albedo was calculated using visible and near-infrared 

ASTER bands, and the effect of topography was calculated using local slope. The field 
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measured temperature and weighted average of day and night time ASTER thermal 

image were used to account for inertia.  

Instead of quantifying the effect of individual background variables, Vaughan et 

al. (2012) calculated the total heat emittance at the geothermal sites and subtracted the 

emission from the surrounding non-geothermal area with similar topography and land 

cover characteristics. They assumed that the emission from surrounding non-geothermal 

area is similar to the background emission at the geothermal sites; this assumption is 

hindered by the known effects of geothermal anomalies on contributing background 

emittors, such as vegetation (Mia et al., 2012). 

 Earlier geothermal studies (e.g., Hellman and Ramsey, 2004; Coolbaugh et al., 

2006; Eneva et al., 2006; Watson et al., 2008; Savage et al., 2012; Vaughan et al., 2012) 

conducted using satellite thermal bands either did not investigate the background 

variables (Hellman and Ramsey, 2004; Savage et al., 2012)  or studied few background 

variables (Coolbaugh et al., 2006; Eneva et al., 2006; Watson et al., 2008) or subtracted 

the emission from surrounding environment without quantifying the effect of each 

variable (Vaughan et al., 2012). Our methodology differs from these approaches as we 

use training areas similar to the target zones to develop quantitative relationships between 

background variables and their contribution to raw thermal emissions, and then use those 

equations to adaptively filter background from the targets on a per-pixel basis.  

We focus our study in and around Yellowstone National Park (YNP) in western 

Wyoming, eastern Idaho and southeastern Montana (Fig. 2). We selected YNP because of 

the number and range of geothermal features and the availability of data from previous 

studies for model comparison (e.g., Watson et al., 2008; Bergfeld et al., 2011; USGS, 
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2015). YNP is located at the eastern end of the Snake River Plain and covers an area of 

8,983 km2.  The major volcanic events responsible for present physiographic features of 

the plateau occurred within the last million years, with voluminous ash-flow eruptions 

and caldera collapse ~640,000 years ago (Christiansen, 2001). The active magmatic 

system under Yellowstone causes degassing and ground deformation, while faults and 

fractures provide pathways for water circulation. There are more than 10,000 (Fournier, 

1989) surficial geothermal features, including hot springs, mud pots and geysers, of 

varying size and temperature in YNP. 
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Figure 2: Map showing training areas (A to J) around YNP and test area inside YNP. The 

dots outside the park boundary represent geothermal feature locations from Idaho 

Department of Water Resources (2001) and US Geological Survey (USGS, 1995). 

 

 

2. Materials and Methods 

We selected training areas around YNP to determine quantitative relationships 

between independent background variables and measured heat (Fig. 2). The selected 

training sites represent geothermally inactive areas as indicated by the absence of 

geothermal features as mapped by Idaho Department of Water Resources (IDWR, 2001) 

and USGS (1995).  We assume that the same background variables are significant in both 

training and test sites because of their proximity and similar environmental conditions. 

The training areas include barren lands, vegetated land, exposed slope, wetlands, and a 

variety of flat through rugged topography to make the model representative of a broad 

spectrum of land types. 

Landsat ETM+ with 60 m thermal band resolution was used to study geothermal 

features in YNP as it provides greater detail than Landsat TM (120 m resolution) and 

Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER, 90 m). 

The finer resolution of ETM+ resulted in less noise in the final image because of the 

decreased signal mixing in each pixel.  ETM+ was available for a shorter time span than 

TM because of technical problems that began in 2003 (Sobrino et al., 2008). We chose 

late summer season to avoid peak vegetation saturation and used snow and cloud free 

images from 15 September 1999, 16 August 2000, and 23 September 2002. We used 

ETM+ thermal bands to calculate the raw temperature of the test area by using standard 
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calibration parameters (NASA, 2007; Chander et al., 2009) in ENVI software. The 

temperature was used to calculate emittance using the Stefan-Boltzmann equation 

(Campbell, 2008). 

Independent variables investigated 

The environmental variables considered in the study were slope, aspect, shaded 

relief, curvature, bare soil, soil moisture, water and vegetation. From these independent 

variables, we selected a set of significant variables for model development (Fig 3), 

calculating the background emission using multivariate regression. Water, bare soil and 

vegetation indices were calculated using Landsat data, while digital elevation (10 m) data 

from USGS National Elevation Datasets (NED) was used to calculate slope, aspect, 

elevation, curvature and insolation values.  
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Figure 3: Methodology used in training areas to determine the significant variables. We started 

with 10 background variables and only 6 six variables were significant for final multivariate 

regression equation.  

 

The Normalized Difference Vegetation Index (NDVI) is a proxy measure of 

vegetation greenness, health and plant type calculated using near infrared (NIR) and red 

bands in the equation by Jensen (1986):   
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𝑁𝐷𝑉𝐼 =
𝑁𝐼𝑅 − 𝑅𝑒𝑑

𝑁𝐼𝑅 + 𝑅𝑒𝑑
             (1) 

Similarly, we used green and NIR bands to calculate the Normalized Difference 

Water Index (NDWI), which is used to delineate water bodies and enhance water 

presence through imagery (McFeeters, 1996):  

𝑁𝐷𝑊𝐼 =
𝐺𝑟𝑒𝑒𝑛 − 𝑁𝐼𝑅

𝐺𝑟𝑒𝑒𝑛 + 𝑁𝐼𝑅
             (2) 

We also computed modified-NDWI, which suppresses the noise from soil and 

vegetation with the use of Shortwave Infrared (SWIR) band (Xu, 2006): 

𝑚𝑜𝑑𝑖𝑓𝑖𝑒𝑑 𝑁𝐷𝑊𝐼 =
𝐺𝑟𝑒𝑒𝑛 − 𝑆𝑊𝐼𝑅

𝐺𝑟𝑒𝑒𝑛 + 𝑆𝑊𝐼𝑅
             (3) 

 NDWI and modified-NDWI were both included in the initial analyses, despite 

their similarity, in order to identify which had the stronger relationship with the 

dependent variable; the lesser performing one was later removed from further 

calculations.  

Shortwave Infrared (SWIR) and NIR bands are used to calculate the Normalized 

Difference Bare Soil Index (NDBSI), which measures bare soil area and exposed land 

using the equation of Roy et al. (1997): 

𝑁𝐷𝐵𝑆𝐼 =
𝑆𝑊𝐼𝑅 − 𝑁𝐼𝑅

𝑆𝑊𝐼𝑅 + 𝑁𝐼𝑅
             (4) 

The remaining independent variables were calculated using the 10 m DEM. 

Slope, aspect, shaded relief, insolation and curvature were calculated using ArcGIS 

software, which uses the algorithms by Burrough et al. (1998). Slope is the rate of change 

of elevation with the change of horizontal distance and its value ranges from 0 

(horizontal) to 90 (vertical). Aspect indicates the direction that the sloping side is facing 
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and varies from 0 to 360 degrees as compass direction. Shaded relief, or hillshade, 

represents the incoming solar radiation and shadow condition due to topography and is 

measured as a brightness value from 0 to 255; this was calculated using the same solar 

elevation and azimuth as represented in the corresponding Landsat scene. Insolation was 

calculated using the hemispherical viewshed algorithm by Rich et al. (1994) and Fu and 

Rich (2000, 2002) native to ArcGIS. For insolation, the solar radiation was calculated 

using the same sun orientation and elevation as the Landsat image acquisition and was 

expressed in Watt-hour/meter2. Curvature is the second derivative of the surface and 

measures the slope of the slope. There are two types of curvature, profile and plan 

curvature; plan curvature measures the curvature in the direction of slope while plan 

curvature measures the curvature perpendicular to the direction of slope. A positive 

curvature indicates the surface is upwardly convex and a negative curvature indicates the 

surface is upwardly concave, a value of 0 indicates the surface is flat.  

Univariate evaluation 

We applied univariate regression using the ordinary least squares (OLS) tool in 

ArcGIS software to determine the significance of each variable’s correlation to thermal 

emission. Temperature was the dependent variable; independent variables were evaluated 

one at a time in the OLS tool. Only those variables found to have a significant correlation 

with temperature (95% confidence p-test) were retained for multivariate regression. All 

of independent variables passed the significance test except for curvature (both profile 

and plan), which was removed from further consideration. Each variable found to be 

significant through univariate regression was then plotted against the dependent variable 

temperature to understand the actual nature of the relationship. Since aspect is expressed 
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as an angle (0 to 360 degrees) from North, it has a quadratic relationship while all the 

other variables have linear relationships with temperature. 

 

Redundancy 

The Variance Inflation Factor (VIF; O’Brien, 2007) was used to identify 

redundant variables. The multivariate regression was run using the OLS tool in ArcGIS 

software with temperature as the dependent variable and all other variables as 

independent variables, returning VIF values. Variables with a VIF >7.5 are considered 

redundant while VIF less than 7.5 are considered significant while using OLS in ArcGIS 

software. The variable with highest VIF was dropped one at a time and OLS tool was run 

again to identify other redundant variables. In the situation where more than one variable 

had VIF values higher than 7.5, the one with highest VIF was removed first as it was 

redundant over rest of the variables. The test was continued until only variables with VIF 

less than 7.5 were left.  NDWI and modified-NDWI were found to be redundant over 

NDVI so they were removed from further analyses. Similarly, insolation was redundant 

over shaded relief as it measured the same solar radiation in a different form as shaded 

relief. Six variables (Fig. 4) passed the tests of significance and redundancy and were 

considered in the final multivariate model. 
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Figure 4: Figure showing the R-squared values corresponding to the background variables. Slope, 

elevation and NDVI have lower influence while NDBSI and shaded relief have the more 

influence on the dependent variable as indicated by the darker color. Curvature, not included 

here, was not significant. NDWI, modified-NDVI, and insolation were removed from further 

investigation due to redundancy and are thus also not included here. 

Determining coefficients 

The independent variable’s coefficient represents its influence on the dependent 

variable. We ran the univariate regression in all the training areas to determine the 

coefficient for each variable. These coefficients specific to the training areas were used to 

identify the range of coefficients that define the bounds of the multivariate model. Since 

slope aspect has a quadratic relation with temperature, it has two coefficients while all the 

other variables have only one. The range of univariate regression coefficient values is 

shown in Table 1 for each independent variable. By establishing the values of these 

coefficients in the geothermally inactive areas, we tried to mitigate potential model 

overfit for application of the model in geothermally active areas. Determining the ranges 
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of coefficient values in the training areas minimizes the potential false anomalies that 

could be caused by anomalous behavior of some background variables.  

 Table 1: Coefficient for each variable for the training areas. The minimum and maximum for 

each coefficient was used for as coefficient interval for multivariate model generation. There are 

two sets of coefficients for aspect as it has quadratic relationship with the temperature.  

Training Areas Coefficients for Independent Variables 

  Slope Elevation Aspect1 Aspect2 NDVI Hillshade NDBSI Intercept 

A:Hilly, sparse 

vegetation -0.02037 -0.00285 0.01977 -0.00005 -3.777 0.00976 50.750 338.410 

B: Mountain Valley, 
sparse vegetation 0.12190 0.00180 -0.01926 0.00004 -10.330 0.06808 61.430 327.275 

C: Hilly, soil and 

exposed surface 0.00956 -0.00492 0.00201 0.00001 8.746 0.05397 61.660 346.223 
D: Rocky surface, no 

vegetation 0.08805 0.00146 -0.04258 0.00009 6.034 0.07942 57.050 319.895 

E: Hilly forest 0.06343 -0.00253 0.00021 0.00000 9.084 0.04175 37.190 319.229 
F: Hilly forest 0.04575 0.00147 0.00013 0.00000 3.926 0.02439 25.800 302.889 

G: Agricultural lands 0.01205 0.00228 0.00671 -0.00003 0.555 0.06236 51.300 320.935 
H: Low lands, sparse 

vegetation -0.07244 0.00277 0.01246 -0.00003 7.421 0.08450 49.530 311.485 

I: River basin, medium 
vegetation 0.04394 -0.01439 0.01388 -0.00004 7.009 0.04021 33.480 338.165 

J: Flat barren lands -0.01431 -0.03677 0.00195 -0.00001 0.110 -0.01963 36.900 394.502 

Maximum 0.12190 0.00277 0.01977 0.00009 9.084 0.08450 61.660 394.502 

Minimum -0.07244 -0.03677 -0.04258 -0.00005 -10.330 -0.01963 25.800 302.889 

 

Multivariate model 

Using the maximum and minimum value of each coefficients we developed for 

the training areas, we employed a Monte Carlo technique to generate the multivariate 

model (appendix) for the test area:  

Background temperature=[Slope Coefficient*Slope]+[Aspect Coefficient 

1*Aspect]+[Aspect Coefficient 2*Aspect2]+[Hillshade 

Coefficient*Hillshade]+[Elevation 

Coefficient*Elevation]+[NDVI Coefficient*NDVI]+[NDBSI 

Coefficient*NDBSI]+[Intercept]                  (5)                    

The Monte Carlo technique randomly selects values of each coefficient between 

the minimum and maximum values for each independent variable in Table 1. The model 

pairs the coefficients with each background variables to calculate the background 

temperature. The user has to specify the input text files containing the raw temperature 
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and background variables and the program outputs the text file containing the 

multivariate equation. We determined the optimum number of iterations by increasing the 

number of iterations until the point of no further improvement, or stable solution. The 

number of iteration that provided stable solution was ~100,000 for our location. Among 

numerous multivariate equations with all possible combinations of coefficients, the 

model picks the one that results in the least residual (calculated temperature – raw 

temperature) for the test area. To minimize the time expense of so many iterations, the 

code was parallelized via openMP for faster solutions on desktop or laptop-scale 

computers.  

Running the multivariate model in the test area 

The inputs for the multivariate model are the background variables and the raw 

temperature of the test area. The model generates the multivariate equation appropriate 

for the test area that explains the background temperature (Fig. 5). The coefficients in the 

multivariate output equation were not pushing against the boundary limits for any of the 

variables, indicating that the coefficient ranges established in the training zones were not 

overly restrictive for the test area. We plugged in the value of background variables in the 

resultant multivariate equation and calculated the background temperature for the test 

area. This background image explains the effect of all independent variables considered 

in our study and is used to calculate residual temperature. We subtracted background 

image from the raw temperature image to calculate the residual image which is devoid of 

background contribution. The magnitude and distribution of the emittance in the residual 

pixels provided the basis for detecting thermal anomalies. We converted the temperature 

scale measurements to emittance using Stefan-Boltzmann equation.    We ran our model 
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in the test area about half the size of YNP (Fig. 2). The number of pixels required for 

appropriate fit is relative to the number of pixels anticipated to represent anomalies in the 

image; geothermal anomalies should make up a small fraction of the total space in the 

image to be able to see the contrast between cold and hot areas. 

 

Figure 5: Methodology applied in test area to determine geothermal anomalies. The multivariate 

model used the background variables to generate background temperature for the test area. 
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Emittance was calculated using residual temperature which is the difference between raw and 

background temperature. The standard deviation filter was used to help refine geothermal 

anomalies.  

 

3. Results and Discussions 

The multivariate equation (Eqn. 5) generated for the test area gives the measure of 

background temperature explained by the environmental variables. The background 

temperature is subtracted from the Landsat raw thermal temperature (Fig. 6) to calculate 

the residual temperature. The residual temperature image shows the temperature above 

the background temperature caused by factors not considered in background calculation 

and could be the geothermal anomalies.  

 

Figure 6: Close-up of the Hot Spring Basin in YNP showing a) raw Landsat 5 ETM+, b) 

background, and c) residual (raw-background) images expressed in temperature (K). The black 

polygons in the images are mapped geothermal zones by R. Hutchinson (unpublished). 

Subtraction of background from the raw image significantly removes the false positive areas 

present in the raw image and highlights the true anomalies.   

The temperature was used to calculate emittance using the Stefan-Boltzmann 

equation (Campbell, 2008) for three late summer Landsat images considered in our study. 
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We averaged the emittance of the three images on a per-pixel basis to minimize small 

temporal fluctuation and detect geothermal anomalies that were present in all the scenes. 

This averaging technique increased the confidence of output by highlighting temporally 

persistent anomalies and suppressing transient anomalies. 

The averaged residual image shows the emittance from geothermal as well as 

low-level non-geothermal noise (Fig. 7). For visualization purposes, we used a standard 

deviation-based filter to remove the low-level background noise, starting with one 

standard deviation and increasing until we reached the point where only the hot pixels 

were displayed. The filtered images presented in this work use a 3 standard deviation 

filter, similar to that used by Watson (2008); lower thresholds increased the inclusion of 

background noise in the image while higher thresholds removed anomalous pixels. The 

standard deviation filter was used for visualization purposes only, and was not used for 

any numerical alteration of the images.  
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Figure 7: The standard deviation filter was used to display the anomalous pixel in relation to the 

surrounding pixels in Upper Geyser Basin and Midway Geyser Basin. More pixels were 

displayed when we used low standard deviation filter and fewer pixels were displayed when 
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standard deviation was increased as shown by blue, yellow and red color for 1, 2 and 3 standard 

deviations.  

The multivariate regression model resulted in very good agreement between our 

model output and geothermal areas identified across the park mapped by R. Hutchinson 

(unpublished) available from the Yellowstone Center for Resources GIS geodatabase. 

The Hutchinson polygons include areas of geothermal influence, including travertine 

deposits in drainage zones, as well as individual geothermal features; our model identifies 

separate features within these broader zones. Figures 8 and 9 illustrate the locations of 

hot spring pools, mud pots, and geysers within the broader polygons. The model also 

identifies true anomalies, such as Violet Mud Pot 1 and 2 in Figure 8 E that are not 

represented in the Hutchinson (unpublished) polygons but have been field-confirmed by 

Watson et al. (2008). The model distinguished between Grand Prismatic Spring and 

Excelsior Geyser Crater in the Midway Geyser Basin while minimizing the effect of the 

surrounding runoff zones in the polygon (Fig. 8 C).  Similarly, the model also identified 

various geysers and pools in Norris Geyser Basin (Fig. 8 F). False anomalies occur in the 

output, mostly concentrated along northeast-trending ridges. The existence of false 

anomalies in the model output suggest that one or more of the variables may be 

underfitting the solution in certain circumstances, perhaps as a result of complex 

interplay between two or more variables, or that there may be a significant variable yet 

excluded from our analysis, such as rock type. 
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Figure 8: Residual emittance in  (A) Sour Creek Thermal Area, (B) West Astringent Creek, (C) 

Excelsior Geyser Crater, (D) Sulfur Hills, (E) Violet Hot Springs and (F) Norris Geyser Basin of 

YNP showing pixels greater than 3 standard deviations above the average for the zone. Blue 

polygons indicate geothermal zones as mapped by R. Hutchinson (unpublished).  
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There are scattered elevated emittance outside the boundary of geothermal zones 

on the east and west side of Lower Geyser Basin, south of Smoke Jumper Basin and on 

the east of Upper Geyser Basin (Fig. 9). The patch of elevated emittance on the Fairy 

Creek group boundary in the Lower Geyser Basin corresponds to a pool visible in aerial 

imagery, but we were unable to locate the field data available to verify its hydrothermal 

nature. While large hot springs are most readily visible in the residual imagery, terrestrial 

anomalies with relatively small, time-sensitive footprints such as Old Faithful and other 

individual geysers are also identifiable in Upper and Lower Geyser Basins (Fig. 9 A, C).  
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Figure 9: Residual emittance in A. Lower Geyser Basin, B. Smoke Jumper Hot Springs and C. 

Upper Geyser Basin of YNP showing pixels greater than 3 standard deviations above the average 

for the zone. Blue polygons indicate geothermal zones as mapped by R. Hutchinson. 

(unpublished).   
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Comparison of Multivariate model with field measurements 

In addition to evaluating model output for spatial consistency with known 

anomalies, we compared our raw and residual temperature results with field temperatures 

measured by Bergfeld et al. (2011) to evaluate model output temperatures at individual 

sites. They classified their geothermal areas as fumaroles (x̄ =368.53 °K), frying pans (x̄ 

=365.65 °K) and pools (x̄ =342.93 °K). We removed some geothermal locations of 

Bergfeld et al. (2011) that did not correspond to both the elevated thermal features in our 

model output and the identifiable features on the ground visible in the aerial images. This 

may be due to very small feature size or possible error in published latitude longitude 

information.  

Field temperature measurements of pools, frying pans and fumaroles by Bergfeld 

et al. (2011) were compared with our model output to determine if there is a consistent 

relationship between field data and residual output (Fig. 10). The weak relation between 

residual and field temperature suggests that effect of background is not linear. Further, 

the weak relationship between raw thermal data and field data suggests that signal mixing 

in the pixels may have significant effects; at the very least, the model output does not 

greatly degrade temperature correlation to the field measurements relative to the raw, 

unprocessed IR data. The field temperature (range, 108.1) is more scattered than residual 

temperature (range, 20.06) and raw temperature (range, 17.92). The field temperature 

measurement (2003 to 2009) and satellite image acquisition (1999 to 2002) were not 

made contemporaneously, and high temperature hydrothermal regions may have been 

preferentially selected for the temperature survey. The field measured pool temperature is 

positively correlated with area of the pool (Fig. 11), which may have been caused by 
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higher hot water discharge into the pool, longer residence time, or higher thermal inertia 

due to pool volume. Despite the positive correlation of field temperature with pool size, 

the percentage of the pixel occupied by the pool (Fig. 12) did not correlate well with 

model residual temperature. This suggests that although pixel mixing affects our study, 

we cannot account its effect because of the lack of enough data to define a clear trend. 

The majority of the pools occupy a small percentage of the hot pixel and have a random 

distribution of high, medium and low temperature.  

 

 
Figure 10: Correlation of raw and residual temperature with field temperature measured by 

Bergfeld et al. (2011). The correlation between residual temperature and field temperature is 

weaker than that of residual temperature.  
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Figure 11: The area of pool has positive correlation with field temperature measured by Bergfeld 

et al. (2011). The bigger pool can retain more hot water and can stay warm for longer compared 

to smaller pools which can cool down faster.  

 
Figure 12: The correlation between the residual temperature and percentage of pixel that is pool.  

The random distribution of high, medium and low temperature points in relation to the percentage 

of pixel that is pool suggests that the size of the pool and its portion inside the hot pixel does not 

determine the residual temperature. 
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We compared our model calculated residual temperature with the temperature 

measured by USGS from 2010 to 2014 for ten different locations across YNP (Fig. 13). 

Since we used the Landsat imagery from August and September to calculate raw and 

residual temperature, we selected the same months for USGS field measurements and 

removed any measurements below 273 K because water freezes below that temperature. 

Out of ten sites, we removed varying percentages of bad temperature data from five sites: 

Nuphar Lake (8%), Gray Lake (0.02%), Opalescent Spring (0.004 %), Porcelain Outflow 

(2.9%) and Steamboat Geyser (0.7%). These eliminated records comprised about 1% of 

all the measurements from 10 sites (1,799,438 records). Most of the measurements 

eliminated were in the range of 270 to 271 K and were from a period of only a couple of 

days. The average difference between raw temperature and field temperature was 14 K 

with standard deviation of 19 K. Similarly, the average difference between residual and 

field measured temperature was 307 K with standard deviation of 19 K.   
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Figure 13: Location of field temperature measurement done by USGS in Norris Geyser Basin of 

YNP. Residual emittance pixels greater than 3 standard deviations above the average for the zone 

are shown with geothermal boundaries as mapped by R. Hutchinson (unpublished) shown in blue. 

We subtracted background values from the raw in order to highlight true 

anomalies, the anomalies therefore represent degrees in excess of background rather than 

raw temperature. We found that adding a constant base temperature of 307 K to the 

residual temperature resulted in a better fit with field temperature measured by USGS 

(Fig. 14). The addition of constant offset to the residual temperature provided the same 

temperature fluctuation to the elevated temperature and made it easy to compare with 

field temperature.   
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Figure 14: Graph showing the magnitude of field, residual and elevated residual temperature for 

ten locations of USGS temperature measurements. The elevated residual temperature was 

obtained by adding 307 K to all the residual temperature. The thick and thin lines represent the 

first and second standard deviation of field temperature, respectively. 

Nature of emittance and the effects of elevation derived variables on emittance 

 

The effects of background variables are not constant across the region and this 

gets reflected in the residual image when we subtract background from raw emittance. 

The anomalous pixels are highlighted in the residual image because it is devoid of 

background contributions. When we subtract the effect of background, the range of 

emittance decreases but it is compensated by increase in the frequency (Fig. 15) making 
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it easy to detect hot anomalous pixels from surrounding cold pixels. Elevated residual 

emittance occurs not only in geothermal areas but in areas with higher elevation (Fig. 16), 

which suggests that we are either missing some variable in our model or our model is 

currently insufficient for very large elevation gains across a scene. The distribution of 

raw and residual emittance helped to illustrate how the subtraction of background 

emittance can help to identify the density and distribution of anomalous pixels in relation 

to elevation (Fig. 16). The scatter plot shows that anomalous pixels represented by 

residual emittance spikes get narrower with increasing elevation compared to raw 

emittance. 

In order to correct for the effect of higher elevation and to determine the cut-off 

elevation above which geothermal anomalies do not exist in our study area, we plotted 

frequency of pixels for each elevation for known geothermal areas (Fig. 17). The 

frequency histogram showed that the highest elevation of known anomalies is 2700 m. 

We used this elevation to mask all the pixels above this range and reapply our 

multivariate model to calculate a new residual emittance. Despite masking these high 

elevation pixels, the model output was indistinguishable from the unmasked approach 

(Figs. 18), indicating that the overall model is fairly insensitive to the high elevation false 

anomalies.  
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Figure 15: The frequency histogram of the raw and residual emittance of all the pixels in the test 

area at YNP. The lateral spread of histogram gets significantly minimized while the frequency of 

hotter pixels peaks when background emittance is subtracted from raw to get residual emittance. 
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Figure 16: Raw and residual emittance in relation to elevation. The scatter plot of emittance in 

relation to elevation makes it easy to compare the spread of hot pixels in the same location. 

 

 



 

71 

 

 

Figure 17: Histogram of the known anomalies showing pixel frequency. Most of the hot pixels 

exists between 2160 and 2640 m whereas no ho hot pixels exist above 2700 m.  

 

Figure 18: The frequency histogram of the residual emittance of the pixels in the test area at YNP. 

The first histogram shows the emittance when no pixels were masked and the second one shows 

the result when pixels with elevation greater than 2700 m were masked. We cannot see much 
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difference between these two histograms indicating that multivariate model results are not 

affected much by higher elevation false anomalies.  

 

Effect of size of test area on emittance 

The percentage of hot pixels and the size of the test area considered by the model 

determine the calculated emittance values. When we consider a test area with higher 

percentage of hot pixels, the multivariate regression model tries to fit to the majority of 

pixels representing the anomalies. The selection of fewer pixels in a smaller area forces 

the model to consider fewer warmer pixels which ultimately suppresses detection of the 

hotter pixels. To understand model behavior in response to size of test area represented 

by number of pixels, we ran the model for different test areas (Fig 19). When we fed 

large number of pixels, we got the higher anomalies (Fig.20, condition A), when we 

decreased number of pixels, the magnitude of anomalies also decreased (Fig. 20 

condition B and C). We further decreased the number of pixel (condition E), the hotter 

pixel started reappearing resembling condition A but the cluster of colder pixels started 

appearing unlike previous conditions.  From these several scenarios, condition A is the 

optimal condition where hotter pixels are highlighted and colder pixels are suppressed 

and randomized. When very small area was chosen as in condition E, the model fitted to 

the majority of pixels and highlighted few pixels as hot and cold cluster. The size of test 

area and the percentage of hot pixels inside the test area determined the temperature and 

distribution of these hot and cold pixels. 
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Figure 19: Size of the test area indicated by number of input pixels: (A) 3,673,402 (B) 1, 792, 

879, (C) 744, 683 (D) 37, 601 and (E) 1, 559 and geothermal areas represented by black 

polygons. The percentage of hot pixels inside geothermal boundary in relation to test area 

increased as we decreased the test area size: (A) 1.84% (B) 1.71%, (C) 2.85% (D) 7.06 % and (E) 

38.29%. The geothermal area inside study area E was common to all test areas.  
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Figure 20: Residual temperature images of geothermal area that was common to all test areas. 

The percentage of hot pixels increased as we decreased the size of test area from A to E. The hot 

pixels decreased and started reappearing while we moved from A to E. The colder pixels were 

random for bigger test area and it started to cluster when size of the test area dropped. 

Application of multivariate model in other areas 

 

We applied our multivariate model in areas other than YNP, namely the Coso 

geothermal area in California and the Tendaho geothermal area in Ethiopia, in order to 

study the model’s performance in diverse environmental conditions. Both Coso and 

Tendaho have much lower elevations than YNP and little to no vegetation and these 

conditions may help us understand more about the source of false anomalies. The 

response of our model in these very different types of areas has the potential to provide 
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information on creating a more robust model suitable for all environmental conditions. 

The different magnitude of background variables will result in different multivariate 

regression equations for these test areas; we will not apply the same standard deviation 

filtration used in YNP but will determine it for each test area.  

Coso geothermal area 

The Coso geothermal area is located on the eastern side of the Sierra Nevada 

range in eastern California and covers about 400 km2. It is mostly covered by lava flows 

and some rhyolite domes of late Cenozoic age (Wohletz and Heiken, 1992). The most 

recent eruption occurred about 40, 000 years ago and formed Volcano Peak basaltic 

cinder cone and lava flow (USGS 2012). Rhyolite domes are cut by numerous normal 

faults forming fumaroles and hot springs of high geothermal gradient (Wohletz and 

Heiken, 1992).  The geothermal system at Coso reflects renewed magmatic activity 

(Adams et al., 2000) with temperature in excess of 325°C.  

We applied the multivariate model trained around YNP in the Coso geothermal 

area to study the model’s performance in a very different geographic setting. Final model 

coefficients were well within the ranges established at YNP, indicating that the 

continuation of the coefficient ranges was not a limiting factor in model fit despite the 

very different environmental conditions. After obtaining the residual emittance, we used 

the standard deviation filtration technique (Fig 21) to filter cooler emittance and display 

only the hot pixels. In this case, the two standard deviation filter was sufficient to 

visualize the elevated emittance. The model output indicates positive surface anomalies 

on the western side of Coso geothermal field which is mostly covered by pyroclastic 

materials as mapped by Duffield et al. (1980) and it conforms to the location of few 



 

76 

 

geothermal wells. Since these wells do not indicate the surficial expression of geothermal 

anomalies, we did not expect our results to match with these well locations.   

 

Figure 21: First and second standard deviation filtration of emittance in Coso geothermal areas. 

The model seems to be picking emittance in the fault zones in the northern part of the broader 

geothermal area while the faults in the southern zones does not seem to be conforming with the 

faults.  

The model results in this Known Geothermal Resource Area (KGRA) were 

consistent with the studies done by Duffield et al. (1999) (Fig. 22).  The elevated 

emittance on the southwestern part of the image coincides with the volcanic vents and the 

cluster of hot pixels on the northwestern side of the image marks the approximate 
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boundary of Pliocene and Pleistocene vents. The presence of higher emittance pixels on 

the areas of basalt deposit on the northern side suggests that the model is not merely 

responding to areas of higher albedo.  

 

 

 

Figure 22: Figure showing residual emittance after filtering the cooler pixels using 2 standard 

deviation filter in Coso geothermal field and Known Geothermal Resource Area (KGRA) in 

California (California Department of Conservation, 2014). Higher emittance values are 
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concentrated on the northern side of Pliocene-Pleistocene vent boundary and in the areas of 

volcanic vents and pyroclastic material mapped by Duffield et al. (1980).  

 

a. Application of multivariate model in Tendaho geothermal area, Ethiopia 

 

The multivariate model for calculating residual emmitance was also applied in the 

Tendaho geothermal area in the Afar Depression of Ethiopia (Fig. 23). The Afar is a 

diffuse triple junction where the onland expression of the northwest-southeast trending 

Red Sea rift, the onland expression of the northwest-southeast trending Gulf of Aden 

Rift, and northeast-southwest trending Main Ethiopian Rift interact over a 200 square 

kilometer region (Abbate et al., 1995; Manighetti et al., 2001; Manighetti et al., 1998; 

Kidane et al., 2003; Beyene and Abdelsalam, 2005). 

The Afar Depression is a region marked with steep horsts and graben, as well as 

geothermal areas such as in the Tendaho graben (Abbate et al., 1995). The Tendaho 

geothermal area is the southern expression of the Red Sea Propagator, and bimodal 

volcanism is prevalent in the area (Kidane et al., 2003). The Tendaho graben is ~45 km 

wide and filled with Quaternary sediments (Abbate et al., 1995). 

We used our model to look for geothermal anomalies in the Tendaho area, again 

using the same coefficient ranges that came from the training areas outside of YNP. Like 

at Coso, the best-fit coefficients generated by the multivariate model were well within the 

limits established at YNP. After obtaining the residual emittance in Tendaho, we used a 

one standard deviation filter to remove cooler emittance and display only the hot pixels 

(Fig. 24). The higher emittance is directly focused on the central graben of the Main 

Ethiopian Rift (MER), the NE trending structure in the southwest part of the image, and 

the Red Sea Propagator, the SE trending structure in the NW part of the image (Fig. 25 
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and 26). The two grabens intersect in this region and this area has previously been noted 

as a potential region for geothermal expression (Mamo and Bekele, undated). It is worth 

noting that the basaltic rocks in northeast side of Tendaho are cool in the residual image 

while the basalts in the southwest are hot, indicating that the model is not simply 

registering lithology. The concentration of elevated emittance on western side 

corresponding to Red Sea Propagator also suggests that it is not caused by bare ground of 

higher albedo.  

 

Figure 23: Location of Tendaho geothermal site in Afar depression in Ethiopia.  
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Figure 24: Aerial imagery (ESRI, 2014) of Tendaho geothermal test site in Afar depression in 

Ethiopia. This displayed test area corresponds with the area mapped by Mamo and Bekele 

(undated). Areas of thermal emittance greater than one standard deviation are displayed. 
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Figure 25: Tendaho geothermal site in Afar depression in Ethiopia. The test area corresponds 

with the area mapped by Mamo and Bekele (undated). The map marks the Main Ethiopian Rift, 

Red Sea Propagator, and Kurub (a basaltic volcano). Dama Ale, a rhyolitic volcano that 

terminates the Red Sea Propagator, is just outside of the frame to the southeast. (Basemaps after 

Abbate et al., 1995; Manighetti et al., 2001). 
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Figure 26: Tendaho geothermal site in Afar depression in Ethiopia. The map shows Main 

Ethiopian Rift Red Sea Propagator (RSP), Gulf of Aden Propagator (GAP), prominent graben in 

the region are the Immino, Dobe, and Data Yager Hanle. Volcanoes include Kurub (a basaltic 

volcano in the Tendaho graben) and Dama Ale,,which is a rhyolitic volcano that marks the 

terminating point of Red Sea Propagator (Basemaps after Abbate et al., 1995; Manighetti et al., 

2001). 
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4. Conclusions 

The multivariate regression model used in this study was used to identify 

geothermal anomalies in YNP and two other locations. The model detected several 

locations of elevated emittance such as pools, geyser, hot grounds, etc. Despite the fact 

that we used Landsat ETM+, which has scenes available only until 2003, the results 

were significant while comparing with the field based data from more recent years. The 

model was successfully used in different environments without re-training for 

preliminary detection of thermal anomalies, and doesn’t rely on snow-filtering 

techniques or a priori knowledge of anomalies. The application of the model developed 

in YNP provided the evidence that we can use our model in other areas without 

retraining for preliminary investigation of thermal anomalies but detailed investigation 

may require that the model to be retrained in the specific test area. This technique is a 

low cost method to identify heat anomalies and can be used over large study sites as a 

first pass technique. 

Future research work for this project includes expansion of the current research 

areas to include a broader view of the Afar region and may require re-training the model. 

The model can be improved by incorporating more independent variables such as rock 

types and mineral indices and coupling with more field data at the exact location during 

the same time of image acquisition such as using unmanned aerial vehicle (UAV) or 

satellite imaging. The field samples taken at the same time helps in investigating the 

spectral response of different rocks type, seasonal behavior of vegetation and location of 

short-lived pools and geothermal areas.  
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Chapter 5 

Conclusion 

Harvesting geothermal energy at industrial or homestead scales requires detection 

of significantly hot areas to facilitate exploration and identification of new resources. 

Previous attempts to develop remote sensing applications for geothermal anomaly 

detection have had limited success due to the impact of background environmental 

variables. These background effects result in false positive anomalies as well as the 

masking of true anomalies. I investigated the individual contributions of these 

background variables to the emitted energy in the area of YNP on a per pixel basis in 

order to isolate the signals of geothermal origin.  

I hypothesized that the residual after removing the effects of background variables 

would be comprised of low magnitude noise surrounding areas of geothermal anomalies. 

For this study, I trained my model in the areas around YNP and tested the model in the 

geothermal locations inside YNP. My hypothesis was successfully validated as the cluster 

of higher magnitude pixels indicated the presence of geothermal anomalies that 

corresponded with the established boundaries and identified additional features not 

included in the YNP database. The model was effective to identify the actual geothermal 

features in contrast to the runoff and travertine deposits boundary as a basis to identify 

geothermal features.  Further, I applied my model in Coso and Tendaho geothermal 

regions in California and Ethiopia, respectively. I studied YNP in two phases, first using 

Landsat TM and the second using Landsat ETM + sensors. I analyzed the outcomes of 

both phases and presented the results as two standalone papers in Chapter 3 and 4.  
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Earlier studies in detection of geothermal anomalies either depended on the 

accumulation of snowpack around the geothermal areas in order to detect geothermal 

boundaries (e.g., Watson et al., 2008; Vaughan et al., 2012) or assumed that background 

effects can be eliminated by subtracting the values of nearby, non-geothermal pixels 

(Vaughan et al., 2012). Some previous studies attempted to use a small number of 

background variables, such as topography, thermal inertia and albedo (e.g., Coolbaugh et 

al., 2006; Eneva et al., 2006) but did not focus on comprehensive understanding of the 

effect of all background variables through multivariate regression. My study is distinct 

from earlier work because I specifically calculated the background temperature 

contributed entirely by background variables, using multivariate regression and Monte 

Carlo approaches to train the model to fit the cool, ambient pixels surrounding the 

anomalies. I subtracted the background contribution from the raw temperature from 

thermal satellite bands to investigate the residual and compare with established 

geothermal boundaries and locations in YNP.  

I started my investigation by selecting background variables like slope, aspect, 

insolation, curvature, elevation, water, and bare soil and vegetation indices. I determined 

the significance of each variable using univariate regression and then eliminated the 

insignificant ones such as curvature. Insolation and water index were eliminated because 

they were redundant with hillshade and vegetation index, respectively. Elevation, slope, 

aspect, shaded relief, vegetation and bare soil indices remained after downselection, 

becoming the final variables for inclusion into the multivariate regression. I used Landsat 

TM 5 and ETM+ sensors to calculate temperature in YNP. The model coefficients 

required by each background variables were determined by running the multivariate 
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model in representative training areas around YNP. The distribution of model coefficients 

in all areas provided the upper and lower bounds for coefficients required by my 

multivariate model.  

The multivariate program was written using Fortran 90 code (included in 

appendix) and was parallelized with openMP for faster solution. I calculated the raw 

temperature and all background variables for the test area in YNP and ran the 

multivariate model to obtain an equation for background temperature. The background 

temperature was subtracted from raw satellite temperature to obtain the residual. I used 

the Stefan-Boltzman equation to convert temperature (K) to emittance (W/m2). A 

standard deviation filtration technique was used to filter out the surrounding pixels from 

non-geothermal areas and highlight the hot pixels present in hot areas for visualization 

purposes. I compared the residual temperature and emission with the established 

geothermal locations and field temperature measured at various locations. The results 

obtained using Landsat ETM+ sensor provided less noise with high temperature and 

emission magnitude than Landsat TM 5.  

The multivariate model used in the YNP detected geothermal anomalies 

confirmed by earlier studies and even highlighted features not mapped by earlier studies. 

The modeled temperature was also in conformity with the field temperature, suggesting 

that my model is robust and can be used to detect geothermal anomalies in other areas. 

The model resulted in some false positive anomalies in areas of high altitude. Thus, I ran 

my model masking the high elevation pixels (more than 2700 m), resulting in slightly 

decreased emittance without eliminating the issue of false anomalies completely. 
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 I applied my model in Coso and Tendaho geothermal areas to understand how the 

model performs in different conditions. The results obtained from both the Coso and 

Tendaho were consistent with established geothermal locations and showed more 

potential locations of geothermal origin. This suggests that my model, though trained 

around YNP, can be used in other areas for preliminary detection of thermal anomalies. 

However, detailed investigation requires training of the model in the areas around the 

specific test areas.  

I tested if the size of test area, represented by number of input pixels, impacts the 

results of the model and found that it is not very sensitive to the number of pixels, 

demonstrating the flexibility of my model to test areas of various sizes. Overall, the 

model proved to be a very applicable and economical technique to detect thermal 

anomalies in large areas.  

Future work 

Though the multivariate model detected thermal anomalies and determine the 

magnitude of thermal anomalies in YNP and other test areas significantly different from 

YNP, I was not able to get rid of the false anomalies in the northeast facing slopes. These 

false anomalies could be the result of some missing variables or the interplay among the 

independent variables. I did not investigate the variables related to rock and mineral 

indices in my study because of its complex nature and its interaction with other variables.  

Immediate future work for this research includes the expansion of the current test 

area to include a broader swath of the Afar, looking to link existing InSAR datasets to 

elevated heat. The detailed investigation will incorporate the training of the model in the 

Afar region.  
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Further studies related to this work would address the issues beyond the scope of 

the present study, such as improving model robustness through incorporating variables 

such as rock types, mineral indices, and thermal inertia.  While I anticipate that lithology 

terms would improve the model, it should be noted that lithology appeared to have 

limited contributions in the Tendaho, where I examined heat from a rift system and 

associated bimodal volcanic rocks. The application of finer resolution thermal satellite 

imagery and collection of field data during the same time as image acquisition would 

provide more insights to understanding the nature of the individual variables and model 

constants.  

 

Recommendations 

The multivariate model I developed for this study can be used to detect thermal 

anomalies. The model works much better with surficial expression of the anomalies and 

cannot detect the subsurface and hidden features. Although I limited my study with the 

use of Landsat sensors, any thermal satellite sensors can be used in conjunction with 

higher resolution digital elevation models. The acquisition of nighttime thermal imagery 

could help to understand the effect of thermal inertia. I encountered a problem with false 

positive anomalies in northeast facing ridges; the investigation of more topography-

derived descriptors could help to address and account for such false signals. The 

multivariate model I developed calculates the sum total of univariate contribution of 

independent variables and does not account for interaction between the variable. The 

inclusion of complex relationships among variables could strengthen the model by 

reducing the magnitude of background noise in the residual image. The application of the 
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model in other areas such as Coso and Tendaho geothermal areas suggested that this 

multivariate model can be applied in other areas for preliminary detection of thermal 

anomalies and can be followed by training of the model in the test area if detailed 

investigation is warranted. 
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Appendix: 

 
This is the multivariate program code that was written using Fortran 90. The input for the 

program is the text document with array of X-coordinate, Y-coordinate, raw temperature, 

NDVI, NDBSI, elevation, slope, aspect and hillshade. The user has to specify the name 

of the input file and number of iterations. The optimum number of iterations can be 

determined by increasing the number of iterations until the point of no further 

improvement or stable solution. The number of iteration that provided stable solution for 

my study was 100,000. The program outputs “testOut.txt” file with resultant multivariate 

equation. The code has to be run with openMP parallelization.  

 
Program Multivariate 

!-----------------------------------------------------------------------------------------------------------

---! 

! Multivariate - A program to calculate dependent variable temperature based on the 

random coefficient generated.  !   

! The combination of coefficient and independent variable that generates the least average 

residual will be selected.   !  

!                   Written by sita karki, spring/summer 2013   ! 

!.........................                        ! 

! Explanation of variables:                        ! 

! Dependent variable: Temperature                      ! 

! Independent variables: Slope, Aspect, Hillshade, Elevation, NDVI, NDBSI            ! 

! Slope : slope of ground determined in ArcMap 10.1 using 10 m NED, range:0 to 90 

degree        ! 

! Aspect: Direction of maximum slope determined in ArcMap 10.1 using 10 m NED, 

range:0 to 360 degree     ! 

! Hillshade: Illumination of ground, range: 0 to 255                 ! 

! Elevation: Altitude of 10 m NED                      ! 

! NDVI: Normalized Difference Vegetation Index, range: -1 to 1 determined in ENVI 4.8 

using Landsat TM 5, band 3 & 4 ! 

! NDBSI: Normalized Difference Bare Soil Index, range: -1 to 1 determined in ENVI 4.8 

using Landsat TM 5, band 4 & 5 ! 

! Intercept: Multivariate regression Model intercept                 ! 

!-----------------------------------------------------------------------------------------------------------

--! 

implicit none 

integer::k,istat 
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integer::i,n,seedsize,m 

integer, dimension(8):: dateVals 

integer :: omp_get_num_threads, omp_get_thread_num, nthreads, tid 

integer :: t1, t2, rate 

 

integer, dimension(:), allocatable :: seed  

real(kind=8),dimension(:),allocatable:: 

slope,aspect,hillshade,elevation,NDVI,NDBSI,intercept,ET,Res,temp,xx,yy  

real(kind=8)::maxSlope,minSlope,maxAspect1,minAspect1,maxAspect2, minAspect2, 

maxHillshade,minHillshade,maxElevation,& 

minElevation,maxNDVI,minNDVI,maxNDBSI,minNDBSI,maxIntercept,minIntercept 

real(kind=8),dimension(:),allocatable:: 

coffSlope,coffAspect1,coffAspect2,coffHillshade,coffElevation,& 

coffNDVI,coffNDBSI, coffIntercept 

real(kind=8)::ranslope,ranAspect1,ranAspect2,ranHillshade,ranElevation,ranNDVI,ranN

DBSI,ranIntercept, minRes 

real(kind=8),dimension(:),allocatable:: sumRes, meanRes  

character(len=10)::filename 

real::Start, finish,PT  

 

call system_clock(t1, rate) 

print*,'Enter the name of Input text file, Eg; filename.txt'  

Read*,filename 

open(unit=99,file=filename,status='old',action='read') 

open(unit=23, file="testOut.txt") 

write (23,*) 'Input file=',filename  

k=0 

istat=0 

do while(istat.eq.0) 

 read(99,*,iostat=istat) 

 k=k+1 

end do 

write(*,*) 'Number of Rows=',k  

write (23,*) 'Number of Rows=',k  

rewind(99) 

 

allocate(xx(k),yy(k),slope(k),aspect(k),hillshade(k),elevation(k),NDVI(k),NDBSI(k),inter

cept(k),ET(k),temp(k),Res(k)) 

do i=1,k 

 read(99,*,end=50) 

xx(i),yy(i),temp(i),NDVI(i),NDBSI(i),elevation(i),slope(i),aspect(i),hillshade(i) 

end do 

50 continue  

close(99) 

call DATE_AND_TIME(VALUES=dateVals) 

call RANDOM_SEED(SIZE=seedSize) 
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allocate(seed(seedSize))  

call RANDOM_SEED(GET=seed) 

call RANDOM_SEED(PUT=dateVals((9-seedSize):8)) 

 

maxSlope=0.1219 

minSlope=-0.07244 

 

maxAspect1=0.01977 

minAspect1=-0.04258 

 

maxAspect2=0.000088 

minAspect2=-0.000047 

 

maxHillshade=0.0845 

minHillshade=-0.01963 

 

maxElevation=0.002773 

minElevation=-0.03677 

 

maxNDVI=9.084 

minNDVI=-10.33 

 

maxNDBSI=61.66 

minNDBSI=25.8 

 

maxIntercept=394.50159 

minIntercept=302.889 

 

print*,'How many combinations should I run for a solution?' 

read*,m 

write (23,*) 'Number of Run=',m  

allocate(sumRes(m),MeanRes(m),coffSlope(m),coffAspect1(m),coffAspect2(m),& 

coffHillshade(m),coffElevation(m),coffNDVI(m),coffNDBSI(m),coffIntercept(m)) 

 

sumRes(:)=0. 

MeanRes(:)=0. 

 

 

!$OMP parallel private(tid) 

tid = omp_get_thread_num()  

 

!$OMP do private(i, n, ET, ranSlope, ranAspect1, ranAspect2, 

ranHillshade,ranElevation,ranNDVI,ranNDBSI,ranIntercept) !, coffSlope, coffAspect, & 

!!$OMP coffHillshade, coffElevation, coffNDVI, coffNDBSI, coffIntercept) 

 

do i=1,m 
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 call random_number(ranSlope) 

 coffSlope(i)=ranSlope*(maxSlope-minSlope)+minSlope 

  

 call random_number(ranAspect1) 

 coffAspect1(i)=ranAspect1*(maxAspect1-minAspect1)+minAspect1 

  

 call random_number(ranAspect2) 

 coffAspect2(i)=ranAspect2*(maxAspect2-minAspect2)+minAspect2 

  

 call random_number(ranHillshade) 

 coffHillshade(i)=ranHillshade*(maxHillshade-minHillshade)+minHillshade 

  

 call random_number(ranElevation) 

 coffElevation(i)=ranElevation*(maxElevation-minElevation)+minElevation 

  

 call random_number(ranNDVI) 

 coffNDVI(i)=ranNDVI*(maxNDVI-minNDVI)+minNDVI 

  

 call random_number(ranNDBSI) 

 coffNDBSI(i)=ranNDBSI*(maxNDBSI-minNDBSI)+minNDBSI 

  

 call random_number(ranIntercept) 

 coffIntercept(i)=ranIntercept*(maxIntercept-minIntercept)+minIntercept 

  

 do n=1,k 

  ET(n)=(coffslope(i)*(slope(n)))+(coffAspect1(i)*(aspect(n)))& 

 

 +(coffAspect2(i)*(aspect(n))*(aspect(n)))+(coffHillshade(i)*(hillshade(n)))& 

  +(coffElevation(i)*(elevation(n)))+(coffNDBSI(i)*(NDBSI(n)))& 

  +(coffNDVI(i)*(NDVI(n)))+coffIntercept(i) 

  Res(n)=abs(ET(n)-Temp(n))  

  if(Res(n).le.0.)print*, "Not right." 

   

  sumRes(i)= sumRes(i) + Res(n) 

   

 end do 

 MeanRes(i) = sumRes(i)/k  

 if(sumRes(i).le.0.)print *, "Not right.", sumRes(i) 

 end do  

!$OMP end do 

!$OMP end parallel  

call system_clock(t2, rate) 

PT = (t2-t1)/real(rate) 

 

print*,"The lowest average residual is:", minval(MeanRes), "@" ,minloc(MeanRes)  
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write (23,*) "The lowest average residual is:",minval(MeanRes), "@",minloc(MeanRes) 

print*,"The Multivariate Equation 

is:","[",coffSlope(minloc(MeanRes)),"*Slope]+[",coffAspect1(minloc(MeanRes)),"*Asp

ect]+[",& 

coffAspect2(minloc(MeanRes)),"*Aspect*Aspect]+[",coffHillshade(minloc(MeanRes)),"

*Hillshade]+[",& 

coffElevation(minloc(MeanRes)),"*Elevation]+[",& 

coffNDVI(minloc(MeanRes)),"*NDVI]+[",coffNDBSI(minloc(MeanRes)),"*NDBSI]+["

,coffIntercept(minloc(MeanRes)),"]" 

print*,'Parallel Computation Time :',PT,'seconds' 

 

write (23,*)"The Multivariate Equation 

:","(",coffSlope(minloc(MeanRes)),"*[Slope])+(",coffAspect1(minloc(MeanRes)),"*[Asp

ect])+(",& 

coffAspect2(minloc(MeanRes)),"*[Aspect]*[Aspect])+(",coffHillshade(minloc(MeanRes

)),"*[Hillshade])+(",& 

coffElevation(minloc(MeanRes)),"*[Elevation])+(",& 

coffNDVI(minloc(MeanRes)),"*[NDVI])+(",coffNDBSI(minloc(MeanRes)),"*[NDBSI])

+(",coffIntercept(minloc(MeanRes)),")" 

print*,'Parallel Computation Time :',PT,'seconds' 

write (23,*)'Parallel Computation Time :',PT,'seconds' 

close(23) 

end program Multivariate 
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Glossary 

 
Background Emittance Emittance contributed by background variables, calculated 

using background temperature 

Background Temperature Temperature contributed by background variables 

Background Variables Independent variables, determining variables, environmental 

variables such as slope, aspect, elevation 

Dependent Variables Variables dependent on background variables , for example, 

temperature 

Emittance Total radiative energy emitted from the body per unit area, 

measured in Watt/m2 

Emissivity Efficiency of the surface at which an object emits energy, 

expressed as the fraction of energy being emitted compared 

to black body (a perfect emitter, with emissivity of 1), value 

ranges from 0 to 1, unit less. 

Raw Emittance Emittance calculated using raw temperature 

Raw Temperature Temperature calculated using thermal bands 

Residual Emittance Emittance devoid of background emittance obtained by 

subtracting background from raw emittance 

Residual Temperature Temperature devoid of background temperature obtained by 

subtracting background from raw temperature 

 
 

 

 




