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Abstract 

Multiphysics  simulations,  which  involves  a  mathematical  model  of  various  

physics  phenomena  expressed  using  partial  differential  equations,  are  integral  part  

of  projects  and  research  conducted  in  number  fields  of  science.  It  allows  to  gather  

knowledge  about  model,  predict  future  condition,  and  saves  a  lot  of  time  and  

money. 

One  of  the  most  popular  method  of  performing  multiphysics  simulation  is  a  

Finite  Element  method.  As  a  numerical  method  it  can  be  run  by  computers.  

Unfortunately  large  scale  simulations  require  humongous  amounts  of  computational  

resources.  Yet,  even  then  simulation  process  may  take  many  days  or  even  weeks. 

General  Purpose  Graphic  Processing  Unit  (GPGPU)  is  a  new  approach  in  

high-performance  computing  that  favorites  highly  parallel  execution  using  hundreds  

of  thousands  of  low-performance  GPU  cores  over  classic  thousands  of  high-

performance  CPU  executors.  As  the  related  work  shows  this  approach  can  be  very  

beneficial  when  applied  to  certain  category  of  problems. 
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The  goal  of  the  research  was  to  enhance  the  performance  of  existing  

multiphysics  simulator  by  applying  GPGPU  model  to  it.  It  was  important  to  

preserve  the  functionality  of  existing  simulator  and  to  keep  the  interfaces  

unchanged  so  that  applications  built  on  it  would  not  have  to  be  modified. 

To  accomplish  that  goal  three  approaches  were  tested.  In  first  of  them  it  

was  assumed  that  whole  library  will  be  redesigned  and  reimplemented  to  be  

executed  entirely  by  GPU.  The  approach  led  to  failure  because  of  highly  object  

oriented  design  of  existing  simulator,  extensive  usage  of  Standard  Template  

Library  (STL)  containers,  and  numerous  branching  instructions;  all  of  these  are  

poorly  supported  by  GPGPU.  In  the  second  approach  hybrid  GPU/CPU  

implementation  was  proposed.  All  highly-parallel  algebraic  operators  used  by  

simulator  were  reimplemented  to  run  on  GPU;  as  a  result  custom  GPU  BLAS  

library  was  created.  Results  show  that  GPU/CPU  approach  was  10%  faster  than  

classic  CPU  approach.  In  third  approach  custom  BLAS  library  and  STL  containers  

were  replaced  by  cuBLAS  library  and  Thrust  containers,  included  in  new  release  

of  CUDA  programming  model,  respectively.  Results  show  further  improvement  in  

terms  of  performance. 

The  research  proves  that  reimplementing  the  existing  multiphysics  simulator  

to  run  on  GPU  is  possible  and  results  in  enhancing  the  performance  of  

simulation.  Both  the  research  and  implementation  are  good  starting  point  to  

evaluate  the  cost  effectiveness,  energy  efficiency,  and  fault  tolerance  of  proposed  

approach.
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Preface 

“Mathematics is the language of nature” – this sentence was frequently said by 

mathematics prodigy, gifted scientist and a brilliant mind – Maximilian Cohen – the main 

protagonist of movie Pi from 1998 [1]. Quoted phrase is an entry point to his research, 

which goal is to discover a universal pattern that describes the universe. Although the 

concept of a comprehensive pattern or equation can be classified as math fiction, 

assumption that “mathematics is the language of nature” might be quite probable thesis. 

To support it one can refer to number of various papers and essays written throughout the 

centuries and especially to texts from XX century. Galileo Galilei, an Italian physicist from 

XVI century, wrote [2] that “philosophy [nature] … is written in mathematical language.” 

Few hundred years later Sir James Jeans, British physicist, suggested in [3] that “God is a 

Mathematician.” The most famous and influential essay, however, was written in 1960 by 

Eugene Wigner – Noble Prize awarded physicist and mathematician. In the paper   

commonly known as Unreasonable Effectiveness [4] author expressed the special role of 

mathematics in modern fields of study and, what is the most important, pointed out how 

mathematical concepts developed for certain case, are often applicable to problems that are 

far from original context.  
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As an example author referred to Newton's law of universal gravitation which origins 

in observation of free falling object on the surface of the Earth. The same law can be easily 

adapted to describe forces generated between the planets. Later in the text Eugene Wigner 

brought up Maxwell's equations that originally meant to model the magnetic and electric 

phenomena. Almost 30 years later the same equations were used by David Hughes to 

describe his new discovery [5] radio waves.  

Traces of mathematics can be found everywhere. High school students apply simple 

physic formulas, and therefore mathematics, calculate distance, velocity, and acceleration. 

Undergraduate Sociology students data frequently refer to Gaussian distribution since 

surprisingly often statistical data generated from surveys perfectly match the curve of 

Gaussian function. Gaussian distribution as a tool was invented decades before the modern 

social science [6]. Moreover the function contains number π which origins are in Ancient 

Egypt and was used in completely different context [7]. Analogous situation can be 

observed in Structural Engineering. Concepts like bending moments, compressions, or 

slope and deflections were for centuries intuitively understated by firsts masons or builders. 

When physical background of these concepts were finally discovered by Leonardo da Vinci 

in late XV century and developed by his successors, like Leonhard Euler [8], in XVIII 

century it appeared that mathematical background already exists. Following that path even 

further one can observe similar tendency in quantum mechanics and string theory. First of 

them uses complex numbers which in 1545 century were just a trick to find real roots of 

certain polynomial equations [9], second is based on created in 1813 non-Euclidean 

geometry which was treated like a joke until 1914 – the beginning of string theory era. 
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All of these examples allow to presume that mathematics impersonates reversed 

visionary. In thesis author's personal opinion visionaries, rather that foreseeing future, are 

setting a flag that is later pursued by scientists and engineers around the world. If so then 

mathematics may be compared to ready solution that is waiting for a visionary to foresee 

an application for it. This scenario is also applicable to partial differential equations and 

multiphysics simulation. 
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Research theses 

Throughout last two decades an attention of researchers from various fields of 

science is turned at mathematical models and multiphysics simulation. Modern computer 

simulation and Computer Aided Design allows engineers from different fields to increase 

the effectiveness of their work and research. This trend is not surprising since multiphysics 

simulation is crucial for almost every civil engineer project, automobile design facility, 

chemical laboratory, and nuclear power plant. 

Simulation helps to improve the understanding of functionality and behavior of a 

model. Using models allows prediction of future conditions and foreseeing possible issues. 

Very often simulating a model is the only potion of a problem that can be solved. 

Furthermore, multiphysics simulation, saves a lot of time, energy, and subsequently, 

money. 

Unfortunately when one is willing to apply multiphysics simulation to very complex 

model then he may quickly hit the performance barrier. In fact increasing complexity of 

model causes rapid growth in computational resources consumption. As a result complex 

simulations are a domain of research facilities equipped with extremely expensive 
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supercomputers. Although manufactures release more and more advanced supercomputers 

the “appetite” for computational power of scientists is unsatisfied. The answer for this 

problem may be seek in modern technologies that break up with old approaches to 

computations. Such an approach is General Purpose Graphical Processing Unit approach. 

The idea of GPGPU assumes using modern Graphical Processing Units to perform 

general purpose computing. GPU is composed of a number of independent multiprocessor 

units called Streaming Multiprocessors. SMs execute in parallel thousands of instances of 

code called kernels. Although a single processor within a SM does not provide high 

performance and the single thread is not executed as fast as it would be on a modern Central 

Processing Unit, the ability to execute a massive number of threads in parallel gives GPU 

exceptional performance. This observation and assumption lead to the hypothesis that: 

Applying GPGPU to multiphysics simulation may results in 

shortening simulation time while keeping the same results. 

Hypothesis stated in that way is generic and there are many ways to confirm it or to 

prove it wrong. To start witch one can choose from different GPU manufacturers which 

may and will have an impact on performance, power consumption, and accurateness. 

Moreover brand of device can dictate the programming model – GPUs produced by AMD 

can execute code written in OpenCL whereas NVidia GPUs can, as for today, execute both. 

To continue, underlying hardware enforces developers to focus on different architecture-

specific aspects crucial to use computational resources of GPU in full. Secondly one may 

want to work on a specialized simulator that can be applied to a small domain – e.g. heat 
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transfer – or develop framework that can be applied to wider spectrum of simulations. 

Finally GPGPU approach may be a starting point to implement new multiphysics simulator 

or applied to existing software. In first scenario program can be tailored to underlying 

architecture and therefore very effective; in second scenario framework design may 

compromise the performance however all application already build on the framework will 

remain functional. To narrow the scope of research three questions were asked: 

 Is it possible to re-implement existing multiphysics simulation 

framework without affecting existing software build on the 

framework? 

 Will the GPGPU approach results in better performance of 

multiphysics simulation framework? 

 Would the potential performance gain be worth of time and money 

required to re-implement and test thoroughly the framework and 

provide required hardware? 

These research questions point the direction in which research will be leaded and 

endorse the goal of the research. 

Enhance the performance of existing multiphysics simulator by 

applying General Purpose Graphical Processing Unit model to it. 

Scope of the research specified in that way makes it accomplishable in reasonable 

period of time and, in the same time, does not affect the generality of consideration. 
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Dissertation Overview 

a.  Content of the Dissertation  

Following dissertation is divided into six main chapters. The order of chapters and 

sub-chapters reflect the order in which the study and the research were conducted. This 

manuscript covers both successful ideas but also concepts that failed. The dissertation 

consist of: 

Chapter 1: Literature review – this section is divided into two sub-chapters. First one 

covers the topic of multiphysics simulation with emphasis put on Finite Element method 

concept and implementations. Second part is focused on GPGPU technology related to 

CUDA and CUDA-enabled hardware. Each sub-chapter consist of introduction to basic 

concepts and literature review of the corresponding topic. Literature review part presents 

other research in which concepts touched in this thesis were considered, describes benefits 

and limitations of these approaches, and exhibit related work which is goal similar to the 

one set in this research. 

Chapter 2: Examined approaches – in this section all examined approaches to speed-

up simulation time were explained. In first sub-chapter holistic approach is presented. In 
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this approach it was assumed that the complete process, that single CPU thread executes, 

can be translated to CUDA and launched by a single GPU thread. The design problems, 

architecture limitations, and major obstacles to accomplish the goal in this way were 

presented. Second sub-chapter is focused on hybrid CPU/GPU approach in which heavy 

computational parts of code were ported to CUDA and tailored into multiphysics 

framework as a layer between framework and hardware. The concept, advantages, and 

drawbacks of the approach were discussed. In last part of the chapter hybrid approach 

modified to use in-build libraries from the newest CUDA release was presented. New 

CUDA programming model includes number of libraries which may be very beneficial, in 

terms of performance and code robustness, to implement especially that it would not affect 

the idea of hybrid approach. It is enough to modify mentioned earlier layer between 

multiphysics framework and hardware. Therefore no further modifications in multiphysics 

framework itself would be required. 

Chapter 3: Algorithms – in this chapter all methods designed and implemented were 

presented. Each method, and approaches to implement it, is considered in separate sub-

chapter in which appropriate description, implementation details, and CUDA code is 

presented. Performance of parallel GPU application relies heavily on used technique and 

problem it is applied to – mechanisms that work great for certain problems may have 

terrible performance for others. Therefore every method was implemented in more than 

one way in order to examine different concepts and techniques. Different implementations 

are considered in sub-chapter specific to the method they implement. 
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Chapter 4: Experiment environment – this chapter describes the environment in 

which experiment were carried out. The detailed hardware configuration of machines used 

in the research was presented; the differences between them was described and detailed 

explanation on key differences was provided. In this section crucial concerns that follows 

every performance tests were discussed. Among others special attention was paid to 

external nondeterministic factors that may have negative influence in results. Because of 

that steps to reduce the noise and techniques to filter out remaining noise were proposed. 

The general plan of experiment was expressed using simple mathematical formulas. The 

details of test cases – like size of matrices that are about to be multiplied – are provided 

together with results in next chapter. 

Chapter 5: Results – in this section obtained results were presented and briefly 

discussed. Performance evaluation was grouped in four sections. In first two of them hybrid 

CPU/GPU approach was considered. Firstly effectiveness of CUDA-enabled algorithms 

were evaluated and referred to performance of corresponding CPU algorithms; second the 

algorithms were introduced to simulation framework and performance of whole system 

was inspected. In second two subsections analogous scenario was used. First CUDA- 

-enabled algorithms were implemented using features of new CUDA programming model 

are implemented into simulation software. Their efficiency was referred to previous results. 

Second multiphysics simulator was modified and compared to previous version of the 

application. Also in this chapter accurateness of GPU algorithm was assessed and 

compared to accurateness of CPU algorithm.  
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Chapter 6: Discussion – in this chapter results obtained from the experiments are 

discussed. Performance of GPU-enabled algorithms were assessed by comparing 

efficiency of different versions of the same method to each other and to effectiveness of 

classic CPU method. Later on the performance of proposed algorithms were compared to 

performance corresponding algorithms from commercial library supplied with new version 

of CUDA framework. Furthermore the behavior of every algorithm is discussed together 

explaining the reasons of why some algorithms are better than others. In this section it is 

also discussed how selection of CUDA algorithms may affect overall multiphysics 

simulation performance. It is also described why in certain cases hybrid GPU/CPU 

approach results in performance loss and what requirements have to be fulfilled in order to 

enhance the performance. 

Conclusion – in last section of this dissertation a brief summary of conducted work 

was presented. In this section advantages and disadvantages of proposed approach are 

presented and the answers for research questions are formulated. In this part guidelines 

regarding future work are presented, aspects that were omitted in this manuscript but are 

worth or even must be considered are pointed out, and limitations are discussed. Also the 

thesis of the dissertation is reevaluated in terms of initial expectations, observations, 

results, and limit of proposed approach. 

b.  Self  –Citations  

The following papers played important role and contributed to research presented in 

this dissertation and contributed:  
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 Solving PDEs in Modern Multiphysics Simulation Software [10]: presents the 

concept of multiphysics simulation in HPC. It focuses on the architecture of 

multuphysics simulators and underlying libraries. In this paper code analysis 

of libMesh was conducted. 

 Matrix Multiplication in Multiphysics Systems Using CUDA [11]: first 

implementation of CUDA algorithm that later was composed, together with 

other methods, custom GPU BLAS library were presented and evaluated in 

terms of efficiency. 

 Hybrid GPU/CPU Approach to Multiphysics Simulation [12]: first iteration 

of GPU-enabled libMesh library is proposed. Instead of one-to-one 

translation from CPU thread to GPU thread hybrid approach is proposed. 

 Eff ectiveness evaluation of cuBLAS and Thrust CUDA 6.5 libraries [13]: 

alternative implementation of previously proposed GPU-enabled BLAS 

operator was presented in this paper. It was an entry point for proposing 

second iteration of libMesh library implementation that uses cuBLAS 

operators and Thrust data structures 

 Problem-Independent Approach to Multiprocessor Dependent Task 

Scheduling [14]: points out importance of parallel processing and importance 

of proper job management in HPC environment 
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Dawid 

Chapter 1  

Literature review 

Chapter 1.1.  Multiphysics Simulation 

Multiphysics simulation is a complex process that requires significant time and 

computational resources. It involves a number of physical phenomena usually described 

by PDEs – the process of multiphysics simulation is therefore equivalent of solving system 

of PDEs. Currently one of the most popular approaches to solve PDEs is the FE method. 

The method was originally developed in 1943 by A. Hrennikoff and R. Courant, it gained 

popularity in 1960 when applied to the problem of electromagnetic wave propagation [15]. 

Simulations are widely applied in most major fields of science and business like nuclear 

power plants, civil engineering, and automotive. Very soon after FE-based simulation 

become popular market responded with wider variety of multiphysics simulation software 

like COMSOL Multiphysics or ANSYS Multiphysics, but also open source software like the, 

MOOSE Framework. 

Engineers and scientists are eager to use new technologies that may offer promising 

possibilities for performing simulations faster and easier. Although these aforementioned 

applications can be easily used on a typical modern personal computer, more advanced 
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simulations that incorporate a significant number of physics phenomena requires very 

precise results. These simulations are performed on meshes assembled from millions of 

shapes and require an enormous amount of computational resources. Resources are, as 

usual, limited and because of that researchers search for simulation framework that suits or 

can be accustomed to suit their needs. 

a.  Generic approach to mult iphysics simulation  

The general simulation approach used in most of FE-based simulators can be 

presented by diagram in Figure 1 [10]. The process starts with defining mathematical 

model of multiphysics phenomena problem with corresponding properties and expressing 

it in manner required in underlying framework. This step is performed in first layer of 

Multiphysics 
Module 

Parallel Comp. 
Framework 

Finite Element 
Library 

Solvers 

Figure 1. Generic multiphysics simulation 

system 
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generic simulator diagram called Multiphysics Model. Top level layer provides user a set 

of helper functions, methods to import data from CAD applications, or very often a 

graphical interface in which user can assemble model and set appropriate properties. Input 

data is the passed to Parallel Computational Framework. By definition each framework is 

a set of more or less compound wrapper functions that group calls of generic methods from 

underlying libraries in order to provide easy access to problem specific system. In this 

scenario second layer of simulation system is responsible for preprocessing of input data 

and parameters; base on that appropriate simulation plan, data structures, monitoring 

procedures, and thread pool are created. Finally the simulation is started and, from this 

point, is performed by FE library and FE solver [10]. Another role of Parallel 

Computational Framework is maintaining the contact with user and informing about status 

of the simulation. A popular approach to handle communication is through console log. 

The next layer, FE library, handles the simulation. This layer supplied the framework with 

utilities to perform FE based computations like input/output mechanics for meshes, error 

handling protocols, and interfaces to solver packages. It is also responsible for managing 

parallel processing across multiple computational nodes. Last layer is a Solver layer which 

consists of set methods that solves systems of differential equations, BLAS operators, and 

basic data structures with associated primitives [16]. The layer is responsible for solving 

an actual set of PDE provided by FE library in efficient way; because of its proximity to 

hardware it often provides implementation MPI and profiling tools. Results generated by 

Solvers are passed back to FE library which proceeds to next step of simulation or prepares 

the output and transmit it to higher layers. 
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b.  Commercial multiphysics simulators  

Currently there are two leading commercial multiphysics simulation systems: 

COMSOL Multiphysics and ANSYS Multiphysics. Both are an interactive environment for 

modeling and solving various scientific problems based on PDEs using FE method. 

Applications offer a user friendly interface – multiphysics module – that speeds up defining 

of problem and simulation parameters. Both applications provide number of API and 

plugins that allow to integrate simulator with custom applications written in most major 

programming languages including MATLAB or to import data from CAD applications. 

COMSOL and ANSYS are widely used in areas like acoustics, heat transfer, photonics, and 

structural mechanics [17] [18]. Moreover, as the documentation points out, their 

architecture – Figure 2 – has very close resemblance to generic model presented in  

Multiphysics 
Module 

Application Modes 

FE Modes 

Solvers Modes 

Multiphysics 
Module 

Application Modes 

Solvers Modes 

Figure 2. Architecture of commercial simulators (ANSYS 

Multiphysics on the left, COMSOL Multiphysics on the 

right) 
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Figure 1. Both simulators provides satisfying performance and wide spectrum of 

appliances, however there are cases when more flexible, problem specific, and scalable 

solution is required – this is when custom frameworks like MOOSE becomes handy. 

c.  MOOSE Multiphysics  

MOOSE is created and developed at INL. It is the multiphysics parallel 

computational framework used for solving computational engineering problems. 

Application was designed to reduce time and expense, required to develop new software, 

and to perform simulation in organized, manageable, and coordinated manner. MOOSE 

can be used, similar to its commercial competitors, in areas like heat conduction, fluid flow, 

solid mechanics, thermo-mechanics, and many others [19]. Originally a government 

application, it went open source on March 21st, 2014 [20]. Since then popularity of 

packages MOOSE is built on and MOOSE itself is growing in academia. 

MOOSE allows performing up to 3D analysis. System is capable of using 

unstructured mesh that is built from shapes such as triangular, quadrilateral, tetrahedral, 

prism, and others. Framework also provides developers huge variety of post processing 

options [19]. All MOOSE functions can be performed in parallel in CPU cluster, e.g. at 

INL system the framework is used on supercomputer that number of cores is counted in 

thousands. Currently MOOSE supports Jacobian-free Newton–Krylov method with 

Physics-Based Preconditioning for solving tightly coupled multiphysics modules [21]. 
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MOOSE is an object oriented FE-based framework. This means that framework does 

not enforce use of integrated FE libraries or solvers (system can use any FE library 

available and best solvers peculiar to the selected library). In MOOSE, interfaces to one 

FE library (libMesh) and two solvers (PETSc and Trilinos) are provided; however, the 

framework is capable to use any other FE-based software. The structure to solve 

multiphysics problems using MOOSE is shown in Figure 3 [10]. 

As it can be seen MOOSE architecture matches generic ideally. Multiphysics Model 

layer of MOOSE framework is an application written by user based on methods provided 

by MOOSE. In this layer input data like mesh of an object and list of properties has to be 

specified. MOOSE layer is an interface between user code and FE library; it initializes all 

underlying data structures, preprocess and validates input, and starts the simulation. 

Multiphysics 
Module 

MOOSE 

libMesh 

PETSc Trilinos 

Figure 3. MOOSE Multiphysics architecture 
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LibMesh, as the method of weighted residuals, processes the FE computations after 

receiving the weak form of PDEs from MOOSE. Solver, as a tool finding PDEs’ solutions, 

can be subset of FE Library for providing large scale parallel computing resources [10]. 

LibMesh is frequently used, especially after MOOSE went open source, in academia 

and commercial researches from vast variety of field of science. In [22] author simulated 

random initiation and subsequent propagation of interacting thermal cracks in a ceramic 

nuclear fuel pellet using coupled mechanics, heat conduction, and fracturing. The 

simulation allowed to precisely demonstrate the formation of cracks during the initial 

power rise and power ramp downs. A problem of estimating a hydrogen behavior and 

distribution in nuclear fuel rod was considered in [23]. LibMesh, as a part of MOOSE 

framework, was applied to model composed of diffusion under concentration gradient and 

temperature gradient. The simulations predicted that hydrogen tends to accumulate on 

colder areas right before it precipitates and as a result degrade the cladding ductility. 

d.  l ibMesh 

The libMesh is a framework that uses arbitrary unconstructed discretization for 

numerical simulations of partial PDEs. First version of application was developed at the 

University of Texas at Austin in 2002. However, a major contribution in developing 

libMesh throughout ages came from INL, MIT, and PECOS Center [24].  

The libMesh library was designed and implemented to simply parallel, adaptive, and 

multiscale multiphysics FE simulations. Designers wanted to achieve that by centralizing 

physics independent technology to support parallel and adaptive unstructured mesh-based 
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simulations. This approach allows users to focus on the specifics of a given application 

without considering the complexities of parallel and adaptive computing. Thanks to that 

libMesh proved a robust environment for a wide range of physical applications [10]. 

The library uses AMR in FE simulations. AMR can produce efficient meshes for 

refining solution through the coarsely resolved base-level regular Cartesian grid [25]. 

Framework supports 1D, 2D, and 3D simulations on big variety of geometric and FE types. 

The library provides interfaces to libraries that perform linear algebra computations, 

meshing, and partitioning. 

Although the simulation is already performed in parallel with MPI on multiprocessor 

supercomputers, large scale simulations of models represented by a multimillion cell mesh 

still calls for more computational power. Since the frequency boundary of the CPU was 

almost reached, the only solution is to increase the number of computational nodes. 

However, upgrading existing supercomputers by adding new CPUs is very pricey and the 

increase of performance may be relatively small compared to the cost of modernization. IT 

seems that using GPGPU might be beneficial in this case however according to 

documentation no GPU support is provided and is not planned to be provide in the nearest 

future [24] [12]. 

e.  PETSc 

PETSc is a suite of data structures and methods designed for the scientific 

applications modeled by PDE. Library supplies developers with building blocks for the 

implementation of large-scale application executed, in parallel as well as in series, by 
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computers [26]. PETSc includes a suite of parallel linear, nonlinear equation solvers and 

time integrators. Components may be used in custom applications written in most major 

programming languages like FORTRAN, C/C++, Python, or MATLAB1. Through 

implemented MPI standard for all message-passing communication, PETSc provides many 

of the mechanisms needed within parallel application [27]. The library is organized 

hierarchically and by that enables users to employ the level of abstraction that is most 

appropriate for a particular problem [10]. 

PETSc consists of a variety of libraries.  Each library implements certain family of 

objects and methods related to that object. Object form a hierarchy that enforces user to 

follow specified order of execution and to use only classes required by the simulation. 

Modules provided by PETSc are as follows: index sets for indexing into vectors, 

renumbering, etc.; vectors and matrices as a basic data storage with basic operators and 

subroutines; managing interactions between mesh data structures and vectors and matrices; 

over fifteen Krylov subspace methods; number of preconditioners, including multigrid, 

block solvers, and sparse direct solvers; nonlinear solvers;  time steppers for solving time-

dependent nonlinear PDEs including support for differential algebraic equations [28]. 

f . Tril inos  

The developer of Trilinos – Sandia – historically did a work in area of developing 

scalable solver algorithms and software. Their software, however, was often enclosed 

within single context of a specific application code, providing a good robust solver that 

                                                           
1 MATLAB supports only sequential execution of PETSc 
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specifically meets the needs of that application. The best example is Aztec, solver 

developed for MPSalsa project and only later extracted for use with other applications. 

Despite robustness of the solutions, applications were rarely reused in different projects 

and for different purposes. Therefore at some point developers decided to create a library 

of various project that would have a wide spectrum of appliances in different areas of 

scientific experiments – that decision set the cornerstone for Trilinos project [29]. 

Trilinos is the library of packages for solving the large-scale and complex 

multiphysics problems [30]. Application supports number of linear, nonlinear, and 

eigenvalue problems. Trilinos differs from PETSc, which has independent packages. In 

fact, Trillions could easily use PETSc to provide a variety of capabilities through the 

documented abstract interfaces without modifying their source code [31]. In addition, 

Trilinos supports also external solvers, like PETSc, by supplying users with interfaces. 

Therefore application can be used also as a framework placed between FE library and 

solver. Each Trilinos’ package is the independent unit implemented using a particular 

algorithm [10]. 

Trilinos provides packages like nonlinear solvers like NOX, LOCA, and GlobiPack; 

linear solvers e.g. AztecOO, Belos, and Komplex; eigensolver  Anasazi; preconditioners 

like Meros, ML, Ifpack; Basic Linear Algebra module Epetra and Jpetra implemented in 

C++ and Java respectively; common services package Teuchos. 
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g.  Conclusion 

As the documentation points out both Trilinos and PETSc support MPI, shared 

memory pthreads, and GPUs through CUDA or OpenCL. PETSc supports also MPI-GPU 

parallelism. Therefore FE solvers layer is rather unlikely to be an obstacle to overcome 

when porting the simulator to GPU. Because of that these packages will not be considered 

in this thesis, however their GPU capabilities will be used in experiment that assess the 

effectiveness of redesigned multiphysics simulator. 

Chapter 1.2.  General Purpose Graphic Processing Unit  

Throughout last couple years the area of HPC experienced a rapid and effective 

changes in field of both software and hardware. According to TOP 500 ranking the most 

powerful machine, ranked in June 2013 [32], has twice as much computational power as 

previous, ranked in November 2012, leader. Such a humongous progress in terms of 

computational resources originates from current trend to relay on highly parallel processing 

rather that relatively small cluster of high-frequency CPUs. In 2012 a version 3 of MPI 

standard [33], used by nearly every supercomputer, was approved. A year later, in June 

2013, new version of another notable API - OpenMP - was released [34]. OpenMP focuses 

strongly on shared memory multicore processing and fill the niche left by MPI. A milestone 

in HPC, however, was introducing General Purpose Graphical Processing Unit. Concept 

assumes that parallel execution by thousands of low performance cores gives better result 

that executing the same program by just few high performance CPU. The cornerstone of 

idea is the limitations that hardware engineers approached. Moore’s Law states that the 
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number of transistors located in a dense integrated circuit doubles every two years [35]. 

However increasing quantity of transistors placed on the same area eventually cause major 

growth of temperature. This lead to malfunctions or even irreversible damage. Therefore 

the answer to demand for computational power was to process in parallel.  

In GPGPU SMs, that GPU consists of, are capable of executing enormous number 

of threads and therefore act as a cluster of low performance cores. The idea appeared to be 

so good that in 2010, soon after NVidia released parallel computing platform named 

CUDA, GPGPU revolutionized and dominated the market of HPC. As the TOP500 ranking 

shows in June 2010 only one supercomputer ranked in TOP 5 of the ranking was using 

GPU whereas in November 2010 three machines from TOP 5 (including the leader that 

doubled performance of his predecessor) relied on GPU [32]. Market responded almost 

immediately and main NVidia competitors on hardware market – AMD (that acquired ATI 

in 2006) and Intel - released their solutions – AMD Radeon GPU with OpenCl and Intel 

Xeon Phi. Both companies quickly caught up nevertheless NVidia still remains the leader 

due to new cutting-edge devices, extensive support, and new releases on CUDA 

framework.  

a.  CUDA programming model  

From developer point of view kernel is a single, usually short, function that is 

executed by GPU threads. Thread is the most basic execution structure in GPU 

environment. Kernels are written in CUDA language which is a C++ with minimal 
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extensions; nonetheless it is important to remember that not all C++ features are supported 

by GPU kernels. 

When kernel is called one has to explicitly specify how many threads are assigned to 

it; each thread assigned to kernel will execute exactly the same code. Threads are grouped 

in one-, two-, or three- dimension blocks. Each thread within a block of threads can be 

identified by properties𝑡ℎ𝑟𝑒𝑎𝑑𝐼𝑑𝑥. 𝑥, 𝑡ℎ𝑟𝑒𝑎𝑑𝐼𝑑𝑥. 𝑦, and 𝑡ℎ𝑟𝑒𝑎𝑑𝐼𝑑𝑥. 𝑧; these properties 

are coordinates of thread. The property is always defined; when block is one-dimensional 

only then 𝑡ℎ𝑟𝑒𝑎𝑑𝐼𝑑𝑥. 𝑦, and 𝑡ℎ𝑟𝑒𝑎𝑑𝐼𝑑𝑥. 𝑧 will be 0. Block x-, y-, z-dimension may be 

retrieved by calling 𝑏𝑙𝑜𝑐𝑘𝐷𝑖𝑚. 𝑥, 𝑏𝑙𝑜𝑐𝑘𝐷𝑖𝑚. 𝑦, and 𝑏𝑙𝑜𝑐𝑘𝐷𝑖𝑚. 𝑧 respectively. Logical 

structure of thread mesh is presented in Figure 4. Maximal possible dimensions of block, 

as well as maximum number of threads within a block, are dictated by CUDA capability 

of used GPU [11]. 

  Grid of blocks 

Block(0,0) Block(0,1) 

Block(1,0) Block(1,1) 

Block(2,0) Block(2,1) 

Block(3,0) Block(3,1) 

  Block of threads 

Thread(0,0) Thread(0,1) 

Thread(1,0) Thread(1,1) 

Thread(2,0) Thread(2,1) 

Figure 4. CUDA thread logical structure [54] 
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Blocks of threads forms another structure called grid. Similar to block, grids may 

have up to three dimensions. Each block is identified by its coordinates: 𝑏𝑙𝑜𝑐𝑘𝐼𝑑𝑥. 𝑥, 

𝑏𝑙𝑜𝑐𝑘𝐼𝑑𝑥. 𝑦, and 𝑏𝑙𝑜𝑐𝑘𝐼𝑑𝑥. 𝑧; maximal dimensions of block and maximal allowed number 

of threads within a block are related to CUDA capabilities of GPU. Threads within one 

block share one SM and one portion of memory. It allows to cooperate with each other to 

speed up execution of kernels. 

As it was aforementioned each thread executes exactly the same part of code. 

Therefore the factor that distinguish the obtained result is where the thread is located. Base 

on block coordinates, block dimensions, and thread coordinates it is possible to calculate 

absolute coordinates of thread within an entire execution logic structure. Traditionally the 

absolute coordinates of thread are named 𝑖𝑑𝑋, 𝑖𝑑𝑌, and 𝑖𝑑𝑍 can be calculated from 

equations (1), (2), and (3). The coordinates, distinct for different threads, differentiates the 

context under which thread runs. 

𝑖𝑑𝑋 = 𝑏𝑙𝑜𝑐𝑘𝐼𝑑𝑥. 𝑥 ∙ 𝑏𝑙𝑜𝑐𝑘𝐷𝑖𝑚. 𝑥 + 𝑡ℎ𝑟𝑒𝑎𝑑𝐼𝑑𝑥. 𝑥   (1) 

𝑖𝑑𝑌 = 𝑏𝑙𝑜𝑐𝑘𝐼𝑑𝑥. 𝑦 ∙ 𝑏𝑙𝑜𝑐𝑘𝐷𝑖𝑚. 𝑦 + 𝑡ℎ𝑟𝑒𝑎𝑑𝐼𝑑𝑥. 𝑦   (2) 

𝑖𝑑𝑍 = 𝑏𝑙𝑜𝑐𝑘𝐼𝑑𝑥. 𝑧 ∙ 𝑏𝑙𝑜𝑐𝑘𝐷𝑖𝑚. 𝑧 + 𝑡ℎ𝑟𝑒𝑎𝑑𝐼𝑑𝑥. 𝑧   (3) 

To conclude the developer point of view, the general idea of parallel programming 

is to visualize the problem as a mesh of smaller sub problems and to overlay a logical 

structure of threads onto it so that threads are mapped to sub problems. The general rule 

that can be applied to most cases is that to divide the problem as much as possible and 
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employ as many threads as feasible in order to increase performance and level of 

parallelism. 

b.  GPU architecture  

Figure 5 presents the hardware architecture of GPU. GPU consists of set of 

Streaming Multiprocessors and global memory; each SM is built on set of interconnected 

processors, instruction unit, and additional levels of memory. 

Each block of threads is assigned to a single SM and is executed entirely within a 

context of that SM. Although one SM may host more than one block of threads, one block 

cannot be split among multiple SM. Each SM is equipped with scheduler. It is responsible 

for scheduling bathes of threads, called warps, to processors within the SM. Size of warp 

is number of threads that will be executed in parallel by SM. Currently size of warp is 32, 

  Device 

Device memory 

  SM n 

  SM 2 

  SM 1 

Shared memory 

 

Reg 
 Processor 1 

Reg 
 Processor 2 

Instruction 
Unit 

Reg 
 Processor m 

    Constant Cache 

    Texture Cache   

Figure 5. GPU architecture [54] 
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nonetheless it is very likely to be changed in oncoming generations of GPU [11]. Each 

thread is executed by a single processor, therefore size of warp is also number of 

processors, sometimes called CUDA cores, within one SM. It allows to calculate number 

of SM in GPU by simply dividing number of processors, provided by GPU datasheet, by 

warp size. 

GPU executes threads in SIMT manner. It means that an instruction unit, shared by 

all processors within SM, issues one and the same instruction at a time to each processor. 

In CUDA programming model, presented in Figure 5, three types of memory are 

distinguished. First of them is global device memory – the main memory of the device. 

Usually it is implemented using DDR5 RAM. It can be accessed by every thread from 

every block. Because of large number of threads that can access this storage at Global 

memory is slow and therefore it is not recommended to store frequently accesses data there 

[36].  

Second memory type is shared memory. This memory resides in SM and some part 

of the memory is assigned to a single block executed by SM. This part of memory can be 

accessed only by threads from block to which memory was assigned. It is very fast and 

efficient so the most frequently used data, especially the one that is used by many threads 

in the same block, should be placed here [11]. Third type of memory is local memory that 

can be used only by a thread that is assigned to this memory.  

c.  CUDA 6.5  
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New CUDA framework brings up a number of improvements including resolved 

previous version issues, support for CUDA Fortran, profiling tool interface, and number of 

libraries including Thrust and cuBLAS. Both of these libraries were an open source project 

a long before CUDA 6.5 [37]. Thrust is a GPU enabled equivalent of famous STL. STL 

was first introduced in ‘90 and since then is a crucial part of many large projects. STL 

offers a set of flexible and optimized data structures together with corresponding optimized 

methods like sorting, searching, data sets merging etc. STL greatly improved the 

development process since programmers did not have to implement their own versions of 

common container-specific methods. Thrust library is based on the same idea like STL – 

even containers and methods kept the same names – and simplifies the process of CUDA 

code development. In addition Thrust allows to use GPU to store and manipulate data in 

parallel, and therefore more efficient, manner (e.g. sorting a list in parallel). CuBLAS 

library is GPU enabled BLAS which is a set of subroutines that performs common linear 

algebra operations in parallel. Origins of BLAS can be found in 1979 when it was a 

platform independent Fortran library that supplied developers with basic linear algebra 

operators that could be used as a blocks in bigger applications. CuBLAS offers a set of 

carefully designed and very well optimized linear algebra operators [38] which are 

encapsulated in easy to use wrapper function. Because of that cuBLAS not only simplifies 

the development process but also offers cutting-edge performance. Both Thrust and 

cuBLAS, being a response for developers (used to program in C++) needs, earned huge 

popularity eventually were approved by NVidia and include in CUDA 6.5 framework. 

Possibilities and potential performance of Thrust and cuBLAS libraries are very 

promising therefore incorporating them in multiphysics simulation framework like 
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MOOSE may bring significant performance enhancement. Equally important is the 

simplicity and flexibility offered by mentioned libraries. Because of that eventual refactor 

of existing MOOSE implementation may be much easier that reimplementing it in plain 

CUDA. The goal of the paper is to evaluate the performance and usability of Thrust and 

cuBLAS libraries and, as a result, asserting their usefulness in multiphysics simulation 

software. 

Although both cuBLAS and Thrust are relatively young part of CUDA framework 

the libraries itself exist for a few year and were able to attract significant attention of 

researchers and developers. In [39] authors evaluated the effectiveness of three level 3 

cuBLAS methods – SGEMM, SSYRK, and STRSM – and proposed improved versions of 

these. In the experiment version 1.0 of cuBLAS was used; all kernels were executed by 

NVidia GeForce 8800. Authors started with evaluating the impact of size of input matrices 

on performance of cuBLAS operators and then moved to examining the relation between 

performance and matrix processing operator itself. As a result authors confirmed the 

effectiveness of algorithms and the improvements they proposed focus on combining 

cuBLAS methods with each other, dividing the work between GPU and CPU (which 

normally is idle when GPU executes the kernel), and resizing input matrices to maximize 

number of threads executed in one cycle. 

Similar problem was also investigated in [40]. Authors made an effort to evaluate 

performance and accurateness of cuBLAS matrix multiplication method. As the reference 

point they used analogous algorithm from Intel Matrix Kernel Library and ATLAS BLAS. 

The experiments were carried out on computer equipped with NVidia Tesla T10 and 8 core 
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Intel Xenon Nehalem.  As results show GPU approach significantly outperforms CPU 

approach when single precision floating point numbers were considered. For double 

precision both solutions were equally effective. The disadvantage of cuBLAS method was, 

however, slightly smaller accurateness of results. 

In [41] problem of WZ Factorization was considered. Authors evaluated the 

performance of matrix factorization algorithm implemented using CUDA library by 

comparing it to custom CPU and standard CPU BLAS version WZ factorization algorithm. 

In their work they used methods from level 1 and level 3 cuBLAS library. Experiment was 

carried out on NVidia Tesla C2050. Results show that algorithm written in CUDA 

outperforms CPU algorithms even by 6 times for large matrices. Authors also point out 

that CUDA algorithm reached almost 20 times bigger performance expressed in Gflops. 

CuBLAS library was used in [42] to accelerate adaptive Finite Element framework 

for BLT. The BLT is a sensitive and accurate probing method that uses certain enzymes to 

mark biological entities like tumor cells or compounds of drugs. As a result in biochemical 

reaction part of energy is transformed into bioluminescent light which can be monitored. 

Obtained readings may be processed using FE method can be used to recover 3D image. 

FE simulation is time consuming process therefore authors decided to redesign their FE 

application to use cuBLAS library to obtain better performance. Experiments were 

conducted on NVidia GT240 and results were compared to results obtained from CPU 

version of FE application executed on machine equipped with 8 core Intel Xeon. Research 

showed that FE application that used cuBLAS executed matrix inversion 20 times faster 

and matrix multiplication over 200 times faster than CPU version of FE application. 
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Thrust library was used in research presented in [43] where authors used Thrust data 

structures to search the effective variable-length string sorting algorithm. As they 

mentioned string sorting was a major issue even when fixed-length strings were used. 

Algorithm that were proposed simplifies the variable-length string sorting problem to series 

of short fixed-length string sorting problems: first CPU extract few character long prefixes, 

second Thrust data structure sort operator is used to sort an array of extracted prefixes. 

Experiments were carried out on NVidia GTX 580 and NVidia K20. On both devices 

algorithm obtained much shorter execution time than the serial version of the same 

algorithm. Surprisingly the difference in execution time between NVidia K20 and NVidia 

GTX 580 was not significant, however authors did not covered this case. 

In [44] Thrust library was used in Discrete Event Simulation – a technique that allows 

to study the dynamic behavior of complex systems – problem. Authors used a node of 

supercomputer located in Ohio Supercomputing Center that is built on two Intel Xeon cores 

and NVidia Tesla M2070. Similar to other researches in which CPU and GPU versions of 

the same algorithm are compared when problem scales in small both version has similar 

effectiveness or CPU slightly outperforms GPU. When the problem scale got larger the 

execution time of CPU algorithm starts to grow rapidly. Authors observed that CUDA 

algorithm was almost 60 times faster that its competitor for a large scale problem. 

Data structures from Thrust library were also used in [45]. Author explored how 

Thrust library can be used to enhance performance of sound simulation and jitter analysis 

algorithms with minimal changes in already existing serial C++ application. In the 

experiment machine equipped with NVidia GTX 480 GPU was used whereas Intel Core2 
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Quad CPU was used to generate the reference point results. As the results show GPU 

approach allowed to obtain better performance for each considered input. For the smallest 

input data set (1 Million of samples) GPU enabled algorithm was 2 times faster than CPU 

algorithm; for the largest data set (16 Million of samples) GPU version was over 9 times 

faster. 
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Chapter 2  

Examined approaches 

Chapter 2.1.  Pure GPU approach 

LibMesh is FE Library and parallel computational framework. It can be run in 

parallel on thousands CPU cores thanks to it architecture, optimized code, employed MPI, 

and other functionalities that support parallel execution. Currently libMesh, as a part of 

MOOSE Multiphysics, is run on over 20 thousands cores at Idaho National Laboratory [10]. 

Furthermore it was shown that the applications scales incredibly well. Consequently the 

first approach to port libMesh to GPU assumed that one-to-one translation from CPU thread 

to CUDA thread will be kept – as such flow of each single GPU thread would be exactly 

the same as flow of CPU thread in original approach. Perspectives for this approach were 

extraordinary since even a single GPU would be able to handle hundreds thousands of 

threads, at cost of lower single thread performance of course, compared to just dozens 

thousands of threads currently used.  

In the first iteration top-to-bottom approach of redesigning was employed. The 

selected starting point was libMesh::ParallelObject class. This effort approached several 
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issues soon after immediate children were considered. First of all CUDA2 does not fully 

support class inheritance and polymorphism. In order to make member function accessible 

by GPU it has to be at least properly annotated; in certain cases it has to be also 

reimplemented to match mechanisms supported by CUDA. The problem is possible to 

solve however it would result in more complicated and less readable code. Furthermore 

some children classes, like libMesh::System and libMesh::MeshBase, have pointer based 

member variables; when such objects are passed to GPU memory, the member pointer still 

points to host memory. Since GPU operates on different memory address space each 

reference to pointer variable that points to host memory results in runtime error. To solve 

that problem all pointer member variables would have to be copied to GPU memory. 

Additional data transfers impact the performance, not to mention significant additional 

effort to provide implementation of hundreds post-allocation methods unique to each class 

with pointer-based member variables. Finally libMesh is highly object oriented application 

and therefore most of immediate children classes of libMesh::ParallelObject are also 

parent classes. A common practice in such scenario is to use so called virtual methods. 

These methods are not defined for parent classes since parent class may be too generic to 

implement any legitimate functionality of some methods. Children classes are more 

specialized and therefore supply some functionality related to these methods. This design 

pattern works great on CPUs but is not supported by GPUs and therefore code cannot be 

ported without complete redesign of library which is complicated using top-to-bottom 

approach. 

                                                           
2 as of December 2012 – May 2013 
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Observations form first iteration led to conclusion that bottom-to-top design tactic 

may be more beneficial. This iteration started with libMesh::Parallel::Sort class. 

Unfortunately this time also major issues were encountered. Examined class, as well as 

many of libMesh objects, uses data containers from STL library. STL is a famous C++ 

library that provides wide selection of data structures with associated very efficient 

manipulation methods. Library is highly optimized and easy to use therefore it is crucial 

element in many C++ projects. Unfortunately CUDA does not support STL. In order to 

solve that issue the content of container would have to be copied to traditional array and 

then passed to GPU; result returned by GPU would be a classic array also, so content would 

have to be populate in STL container again. Another issue faced in this iteration was the 

frequency of branch statements in libMesh code. As mentioned in Chapter 1, GPU executes 

kernels in SIMT mode. It means that when even thread follows different and “longer” 

execution path, other threads are forced to stall until the next instruction common for all of 

them is reached. Although both of these issues are not critical to porting process, the 

performance of final result would be disappointing and most likely worse that the original 

one. 

Although both design methodologies assessed in this chapter failed, it does not prove 

that one-to-one translation from CPU thread to GPU thread is impossible. It would require 

to completely redesign the library architecture and therefore enormous amount of time and 

work, which exceed the scope of this dissertation and capabilities of one person, would be 

needed. It is likely that Conversation with Cody Permann – one of MOOSE Multiphysics 

developers – seems to prove the observations. Moreover, significant change like that would 

result in altering existing API and therefore applications build atop of libMesh would have 
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to be modified. Because of that different porting idea, unfortunately less sophisticated, was 

proposed. 

Chapter 2.2.  Hybrid GPU/CPU approach 

Second approach takes a step back from idea of enclosing very complex algorithms 

and complex data structures and turns to basic concepts behind GPGPU. CPU and GPU 

works in a host – device manner. It means that every GPU-enabled application is initialized 

and handled by CPU. CPU thread or threads follows a normal flow of application and 

periodically, when some part of algorithm is highly parallel, invokes a GPU kernels that 

execute selected operation in parallel. Figure 6 presents an example flow of program that 

performs SAXPY operation.  

As it can be seen application starts with a single CPU thread initializes basic 

parameters and allocates necessary memory. Next CPU thread invokes GPU kernel that 

fills data structures with data which is later used to perform SAXPY operation. At the end 

CPU thread displays generated input and result of vector-scalar multiplication. It can be 

seen that kernels are intended to by highly specialized operation that produces a single 

element which is a part of bigger result. In serial application kernel would be the operation 

that is executed within a loop or block of nested loops. This encourages to use this approach 

to alter libMesh. In [10] it was showed that one of the most time consuming operations are 

basic linear algebra operations like matrix multiplication or vector addition – all of them 

executed by CPU in series using multiply nested loops. This approach would, basically, 

introduce another level of parallelism. Currently simulation starts with a single CPU thread 
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that initializes simulation, set all required parameters, and spawns required number of child 

threads that executes simulation process in parallel. Finally parent gathers the results from 

child threads and produces the output. In the new approach child threads will have 

capability of invoking CUDA kernels in order to execute heavy parallel tasks – like BLAS 

operations – by GPU. In theory this concept may result in enhanced performance of overall 

multiphysics simulator, since the most time consuming part of simulation will be improved. 

Nonetheless it is important to remember that effectiveness of kernel depends on two 

factors: overhead related to data allocation and quality and level of parallelism of kernel. 

Initialization 

float *d_X, *d_Y; 

size_t size = sizeof(float) * m; 

 

int grid_dim = m / BLOCK_DIM  

+ (m % BLOCK_DIM > 0 ? 1 : 0); 

Input: X, Y, al, m 

Host-device data  

management 

cudaMemcpy(Y, d_Y, size, 

cudaMemcpyDeviceToHost); 

cudaFree(d_X); 

cudaFree(d_Y); Output: Y 

Host-device data  

management 

cudaMalloc(&d_X, size); 

cudaMalloc(&d_Y, size); 

cudaMemcpy(d_X, X, size,  

cudaMemcpyHostToDevice); 

cudaMemcpy(d_Y, Y, size, 

     

 
Kernel 

cudaSaxpy<<<grid_dim,  

block_dim>>>(d_X, al, d_Y, m); 

Figure 6. Standard CUDA program flow 
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Allocating and populating data structures in GPU memory is not an instant and 

resource-free operation. Therefore it is an overhead that has to be considered when 

comparing the execution time of CPU and GPU versions of the same operation. Kernel 

itself is a single operation, in this example generating and multiplying of floating point 

number, that are executed in parallel by GPU and in series (e.g. in a loop) by CPU. 

Depending on how time consuming is the operation and on how many operations have to 

be executed parallel approach can be more or less efficient. Because of that detailed 

evaluation of all implemented CUDA algorithm is required. 

Chapter 2.3.  CUDA 6.5 enhanced hybrid GPU/CPU approach  

On August 2014 NVidia has released new CUDA programming model versioned 

with 6.5. Among number of improvements, like new code profiler and extended support to 

other programming languages, the most significant for research performed in this 

dissertation was including two libraries, namely Thrust and cuBLAS, to standard CUDA 

release. As mentioned in Chapter 1, Thrust library is GPU-enabled substitute of STL and 

cuBLAS is GPU version of BLAS. Both, as documentation and research done in this area, 

are very efficient and stabile libraries. Therefore it was reasonable to assess the 

performance of these libraries and decide on their usability in multiphysics simulation.  

This approach is very similar to the one presented in previous subchapter: heavy 

computational and highly-parallel algebraic operators were replaced by cuBLAS operators 

in an analogous way they were replaced by custom operators presented in Chapter 2.1. 
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Complete list of used cuBLAS methods together with description of notions they use is 

presented in Algorithms chapter. 

New feature of third approach to redesign libMesh is presence of Thread library. 

LibMesh relies heavily on STL containers and Thrust library extends the functionality of 

STL.  The naming convention and majority of object and method names were kept in Thrust 

library. It allows to easily switch from one library to another simply by changing 

declaration of variable from STL container to Thrust container. New library provides also 

parallel execution on GPU of certain primitives related to container, like search and sort. 

It may be very beneficial for overall performance of libMesh because it operates on some 

container primitives. Thrust offers also possibility to access containers stored on GPU 

directly. It is very likely that host operations on data in GPU memory would be followed 

by the overhead related to data transfers over PCIe port, however there are cases when it 

may be irrelevant. When a container is frequently processed by GPU and rarely accessed 

by CPU then the overhead of retrieving data from GPU memory may be marginal when 

compared to overhead of frequent allocation from host to GPU memory. Potential 

improvements appeared to be so promising that in this approach each occurrence of STL 

library was replaced by corresponding container from Thrust library. 

Chapter 2.4.  Limitations 

GPGPU was invented with intention to speed up processing in research facilities 

equipped with HPC. Obviously one GPU, even from the cutting-edge segment, would be 

unable to replace thousands of high-performance modes that consist of number of modern 
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CPU. Therefore graphic cards has to be used “in bulk”. This exposes engineers to several 

hardware design problems that hast to be overcome in order to provide not only better 

performance but also comparable fault-tolerance, resilience, and survivability of already 

existing classic high-performance clusters. 

HPC systems keep scaling in volume together with more and more complex 

computations they perform. It is also accompanied, unfortunately, with escalation of failure 

frequency which may forfeit hours of computing of long-running applications. In classic 

supercomputer environments so called checkpoint/restart technique is used. The idea is to 

periodically save a state of execution on one or more reliable storage systems and in case 

of failure restore it and resume a normal flow. When classic CPU system is considered 

checkpoint/restart mechanism can be accomplished at three levels: kernel, library and 

application levels [46]. At kernel level the operating system, like V-System [47] or 

Charlotte [48], can spawn a process transparent to developer that can construct the state. 

At the library level library itself is responsible for providing checkpoint/recovery 

functionality. One of the examples is Berkeley Lab Checkpoint/Restart library which uses 

system calls to save registers content onto the stack [49]. Finally when the checkpointing 

and restarting mechanism is delivered at application level then developers need to 

implement such functionality into their product [50]. 
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Chapter 3  

Algorithms 

Chapter 3.1.  Proposed algorithms 

a.  Memory Allocation  

CUDA framework offers various methods that allocate memory in device and pass 

data between host and device. Some of them are just wrapper functions around original 

CUDA allocation and transmission methods, other offers preprocessing steps or align data 

in memory to maximize performance of kernel. As it can be seen first memory is allocated 

using cudaMalloc, then one can copy specified amount of data from host memory (pointed 

by pointer to host memory) to device memory (pointed by pointer to device memory). At 

the end device memory is released using cudaFree method.  

CuBLAS library offers its own methods that handle data allocation. Basically these 

method are just a wrapper functions that eventually uses standard cudaMalloc. However 

the advantage of cuBLAS methods is that data can be preprocessed before it is transferred 

to device. Thanks to the preprocessing user may for example transpose matrix before 

passing it to GPU within one method call.  
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The last considered method of handling the memory comes from Thrust library. The 

undisputed advantage of this approach is flexibility. Developer does not have to remember 

to manually allocate the memory and copy data because everything is done by simply 

assigning thrust::host_vector to thrust::device_vector. This functionality simplifies the 

process of developing and refactoring existing code. 

b.  AXPY 

Level 1 of every BLAS library is reserved for vector operations like dot product or 

vector norms. In this research a classic AXPY operation – which is a simple vector-scalar 

multiplication summed with second vector – is considered. Operator is defined as  

𝑦 = 𝛼𝑥 + 𝑦 where 𝛼 is a scalar, 𝑥 and 𝑦 are vectors of equal dimension.  

In standard CPU approach, presented in Algorithm 1, for every loop iteration 

equation (4) is calculated. Complexity of this algorithm is 𝑂(𝑛). 

𝑦[𝑖] =  𝛼 ∙ 𝑥[𝑖] + 𝑦[𝑖]      (4) 

Second considered algorithm was implemented in plain CUDA and is presented in 

Algorithm 2. Each element of output vector y is calculated by a single GPU thread so that 

𝑖-th element is calculated by a thread given by 𝑡ℎ𝑟𝑒𝑎𝑑𝐼𝑑𝑥. 𝑥 and 𝑏𝑙𝑜𝑐𝑘𝐼𝑑𝑥. 𝑥 where  

𝑖 = 𝑡ℎ𝑟𝑒𝑎𝑑𝐼𝑑𝑥. 𝑥 + 𝑏𝑙𝑜𝑐𝑘𝐼𝑑𝑥. 𝑥 ∙ 𝑏𝑙𝑜𝑐𝑘𝐷𝑖𝑚. 𝑥 using formula (4). Complexity of this 

algorithm, assuming parallel execution, is 𝑂(1). 

 



A l g o r i t h m s    

43  

c.  Vector Swap 

Swap operator, also included in level 1 of BLAS library, switches the places of 

corresponding elements in two vectors. In CPU approach each pair of elements would be 

swapped in a single loop (Algorithm 3) using procedure (5). The complexity of this 

algorithm is 𝑂(𝑛). 

𝑣 = 𝑦[𝑖] → 𝑦[𝑖] = 𝑥[𝑖] → 𝑥[𝑖] = 𝑣    (5) 

CUDA equivalent of swap operator in presented in Algorithm 4. A grid of threads, 

equal in size to vectors, is overlaid on vectors and each GPU thread swaps a pair of 

elements from input vectors: 𝑖-th element is swapped using formula (5) by thread 

𝑡ℎ𝑟𝑒𝑎𝑑𝐼𝑑𝑥. 𝑥 and 𝑏𝑙𝑜𝑐𝑘𝐼𝑑𝑥. 𝑥 where 𝑖 = 𝑡ℎ𝑟𝑒𝑎𝑑𝐼𝑑𝑥. 𝑥 + 𝑏𝑙𝑜𝑐𝑘𝐼𝑑𝑥. 𝑥 ∙ 𝑏𝑙𝑜𝑐𝑘𝐷𝑖𝑚. 𝑥 

Complexity of this parallel algorithm is 𝑂(1). 

d.  Vector Addition and Vector-Scalar Multiplication  

In the simulation process very often a special cases of AXPY operator are used. Two 

of them are sum of two vectors and vector-matrix multiplication. Although the same result 

can be obtained using AXPY, this two operators perform twice less floating point 

operations and therefore is, in theory, twice faster. The output of vector-vector addition is 

defined by 𝑦 = 𝑥 + 𝑦. Serial approach performs the operation in a single loop; each 

iteration performs following operation (6). Scalar-vector multiplication is also executed in 

one loop; in each iteration (7). Algorithms are presented by Algorithm 5 and Algorithm 7. 

Complexity of both operators is 𝑂(𝑛). 
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𝑦[𝑖] =  𝑥[𝑖] + 𝑦[𝑖]      (6) 

𝑦[𝑖] =  𝛼 ∙ 𝑦[𝑖]       (7) 

In corresponding GPU version of vector addition and vector-scalar multiplication, 

presented in Algorithm 6 and Algorithm 8 respectively. Each thread performs the same 

operation as single iteration of corresponding CPU algorithm; 𝑖-th element is calculated 

by thread 𝑡ℎ𝑟𝑒𝑎𝑑𝐼𝑑𝑥. 𝑥 + 𝑏𝑙𝑜𝑐𝑘𝐼𝑑𝑥. 𝑥 ∙ 𝑏𝑙𝑜𝑐𝑘𝐷𝑖𝑚. 𝑥. Complexity of these algorithms is  

𝑂(1). 

e.  DOT Product  

Another operator frequently used by FE libraries is DOT Product operation. DOT 

operator is here understand in algebraic manner. Operator takes two vectors and calculates 

sum of multiplied corresponding elements. Result is given by formula (8). CPU algorithm 

executes the operation in a loop in which it takes two corresponding elements from input 

vectors, multiplies them, and increment the result (Algorithm 9). Complexity of this 

algorithm is 𝑂(𝑛). 

𝑑 =  ∑ 𝑥[𝑖] ∙ 𝑦[𝑖]𝑛
𝑖=1       (8) 

CUDA version of DOT Product is a little bit less straightforward. To calculate the 

result of DOT Product is necessary to traverse entire vector, therefore it is highly serial 

execution scenario; GPUs does not handle this type of problems, called gather operation, 

very well since parallel execution is rather enforced that applied. It is, however, possible 

to distribute the work among threads – in this case each thread will calculate multiplication 
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result of a single pair of element so that 𝑖-th pair will be processed by thread 

𝑡ℎ𝑟𝑒𝑎𝑑𝐼𝑑𝑥. 𝑥 + 𝑏𝑙𝑜𝑐𝑘𝐼𝑑𝑥. 𝑥 ∙ 𝑏𝑙𝑜𝑐𝑘𝐷𝑖𝑚. 𝑥. After that threads will atomically add the 

results to variable that will represent DOT Product value. Algorithm is presented in 

Algorithm 10; complexity of this algorithm, assuming parallel execution, is 𝑂(1). 

f . GEMV 

Level 2 of BLAS library is responsible for matrix-vector operations including 

matrix-vector multiplication operator (GEMV) defined as 𝑦 = 𝛼𝐴𝑥 + 𝛽𝑦. Serial GEMV 

(Algorithm 11) operator performs multiplication in doubly nested loop, therefore 

complexity of this algorithm is 𝑂(𝑛2). Each iteration of outer loop is responsible 

calculating single element of output vector using (9) where sigma sign represents inner 

loop. 

𝑦[𝑖] = 𝛼 ∑ (𝐴[𝑖][𝑗] ∙ 𝑥[𝑗]) + 𝛽𝑦[𝑖]𝑛
𝑗=1     (9) 

Second algorithm, presented in Algorithm 12, is implemented in plain CUDA. In this 

method each element of output vector is calculated collectively by a number of threads. 

First each thread calculates (10), where 𝑖 = 𝑡ℎ𝑟𝑒𝑎𝑑𝐼𝑑𝑥. 𝑥 + 𝑏𝑙𝑜𝑐𝑘𝐼𝑑𝑥. 𝑥 ∙ 𝑏𝑙𝑜𝑐𝑘𝐷𝑖𝑚. 𝑥  

and 𝑗 = 𝑡ℎ𝑟𝑒𝑎𝑑𝐼𝑑𝑥. 𝑦 + 𝑏𝑙𝑜𝑐𝑘𝐼𝑑𝑥. 𝑦 ∙ 𝑏𝑙𝑜𝑐𝑘𝐷𝑖𝑚. 𝑦, then results from a treads mapped to 

a single row in matrix 𝐴 are summed which produces the final result (11).  

𝑦[𝑖]𝑗 = 𝛼𝐴[𝑖][𝑗] ∙ 𝑥[𝑗]      (10) 

𝑦[𝑖] = ∑ 𝑦[𝑖]𝑗 + 𝛽𝑦[𝑖]𝑛
𝑗=1      (11) 
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In theory algorithm would be executed in parallel (including summation of partial 

results) so its complexity is 𝑂(1). 

g.  Matrix Swap 

Another level 3 BLAS operator used frequently in FE libraries is swap operator. 

Similar to vector swap operator, operator takes two matrices and swap corresponding 

elements. Serial algorithm uses two nested loops; in inner loop corresponding elements in 

two matrices are swapped. Inner loop performs operation given by (12). Complexity of this 

method is 𝑂(𝑛2); code is presented in Algorithm 13. 

𝑣 = 𝐴[𝑖][𝑗] → 𝐴[𝑖][𝑗] = 𝐵[𝑖][𝑗] → 𝐵[𝑖][𝑗] = 𝑣  (12) 

CPU algorithm performs the same operation with complexity of 𝑂(1). Each pair of 

elements is swapped using single thread so that (𝑖-th 𝑗-th) elements are swapped by thread 

given by 𝑖 = 𝑡ℎ𝑟𝑒𝑎𝑑𝐼𝑑𝑥. 𝑥 + 𝑏𝑙𝑜𝑐𝑘𝐼𝑑𝑥. 𝑥 ∙ 𝑏𝑙𝑜𝑐𝑘𝐷𝑖𝑚. 𝑥 and 𝑗 = 𝑡ℎ𝑟𝑒𝑎𝑑𝐼𝑑𝑥. 𝑦 +

𝑏𝑙𝑜𝑐𝑘𝐼𝑑𝑥. 𝑦 ∙ 𝑏𝑙𝑜𝑐𝑘𝐷𝑖𝑚. 𝑦. Code is presented by Algorithm 14. 

h.  Matrix-Scalar Multiplication and Matrix Addition  

Analogous to SAXPY operator, scalar-matrix multiplication and matrix-matrix 

addition – a special case of GEMM method – are proposed. It this situation the complexity 

expressed in number of floating point operations is significantly smaller that complexity of 

GEMM operator because a matrix-matrix multiplication step is omitted. This reduces the 

number of floating point operations by 4 orders of magnitude. Serial algorithm performs 

the operations in doubly nested loop. Each loop travers matrix in one dimension; inner loop 
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calculate (13) for matrix addition and (14) for matrix-scalar multiplication. Complexity of 

both algorithms is 𝑂(𝑛2). Algorithm 15 and Algorithm 17 presents matrix addition and 

matrix-scalar multiplication respectively. 

𝐴[𝑖][𝑗] = 𝐴[𝑖][𝑗] + 𝐵[𝑖][𝑗]     (13) 

𝐴[𝑖][𝑗] = 𝛼 ∙ 𝐴[𝑖][𝑗]      (14) 

Corresponding CUDA algorithms perform the same operations as CPU algorithms. 

Each thread calculates single element in output matrix; (𝑖-th 𝑗-th) elements are added or 

multiplied by thread given by (𝑖 = 𝑡ℎ𝑟𝑒𝑎𝑑𝐼𝑑𝑥. 𝑥 + 𝑏𝑙𝑜𝑐𝑘𝐼𝑑𝑥. 𝑥 ∙ 𝑏𝑙𝑜𝑐𝑘𝐷𝑖𝑚. 𝑥, 𝑗 =

𝑡ℎ𝑟𝑒𝑎𝑑𝐼𝑑𝑥. 𝑦 + 𝑏𝑙𝑜𝑐𝑘𝐼𝑑𝑥. 𝑦 ∙ 𝑏𝑙𝑜𝑐𝑘𝐷𝑖𝑚. 𝑦) thread using (13) and (14) respectively. 

Complexity of both CUDA algorithms, Algorithm 16 and Algorithm 18, is given by 𝑂(1). 

i .  Matrix Transposition  

Matrix transposition is very important operator in FE library. The operator reorder 

the elements so that 𝑖-th column is rewritten as 𝑖-th row. Classic CPU algorithm swaps 

element between two matrices within two nested loops; the inner loop assign (𝑖-th 𝑗-th) 

element from input matrix to (𝑗-th 𝑖-th) element of output matrix (15). Complexity of this 

algorithm is 𝑂(𝑛2). 

𝐵[𝑗][𝑖] = 𝐴[𝑖][𝑗]      (15) 

GPU algorithm – Algorithm 20 – performs the operation in very similar way: each 

singe thread is responsible for rearranging one element. Thread (𝑖 = 𝑡ℎ𝑟𝑒𝑎𝑑𝐼𝑑𝑥. 𝑥 +
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𝑏𝑙𝑜𝑐𝑘𝐼𝑑𝑥. 𝑥 ∙ 𝑏𝑙𝑜𝑐𝑘𝐷𝑖𝑚. 𝑥, 𝑗 = 𝑡ℎ𝑟𝑒𝑎𝑑𝐼𝑑𝑥. 𝑦 + 𝑏𝑙𝑜𝑐𝑘𝐼𝑑𝑥. 𝑦 ∙ 𝑏𝑙𝑜𝑐𝑘𝐷𝑖𝑚. 𝑦 transpose  

(𝑖-th 𝑗-th) element to (𝑗-th 𝑖-th) element in output matrix (15). Complexity of this CUDA 

algorithm is 𝑂(1). 

j .  GEMM 

Level 3 of BLAS is a set of matrix-matrix operators. This level contains matrix- 

matrix multiplication called GEMM. Operator is given by formula 𝐶 = 𝛼𝐴𝐵 + 𝛽𝐶. Classic 

CPU algorithm consists of three nested loops what makes it algorithm of complexity 

𝑂(𝑛3). Inner loop calculates the value of (𝑖-th 𝑗-th) element using formula (16), where 𝑖 

and 𝑗 are number of iteration two outer loops are in Algorithm 21. 

𝐶[𝑖][𝑗] = 𝛼 ∙ ∑ (𝐴[𝑖][𝑘] ∙ 𝐶[𝑘][𝑗]) + 𝛽 ∙ 𝐶[𝑖][𝑗]𝑙
𝑘=0   (16) 

In this experiment two CUDA matrix multiplication algorithms, presented in [11], 

are used. First of them, CUDA GEMM presented by Algorithm 22, is a simple parallel 

algorithm in which each element of output matrix is calculated by one thread. Element  

(𝑖, 𝑗) is calculated using (16) by single thread where 𝑖 = 𝑡ℎ𝑟𝑒𝑎𝑑𝐼𝑑𝑥. 𝑥 + 𝑏𝑙𝑜𝑐𝑘𝐼𝑑𝑥. 𝑥 ∙

𝑏𝑙𝑜𝑐𝑘𝐷𝑖𝑚. 𝑥 and 𝑗 = 𝑡ℎ𝑟𝑒𝑎𝑑𝐼𝑑𝑥. 𝑦 + 𝑏𝑙𝑜𝑐𝑘𝐼𝑑𝑥. 𝑦 ∙ 𝑏𝑙𝑜𝑐𝑘𝐷𝑖𝑚. 𝑦. 

Second CUDA algorithm, Tiled CUDA GEMM, also designate single thread per one 

element in output matrix, however this version make a use of fast shared memory. 

Algorithm is presented by Algorithm 23. Threads are grouped in so called tiles and threads 

within a single tile cooperates to speedup execution. Problem of matrix multiplication is 

divided into sum of sub-matrices multiplication. Threads within one file copy data from 
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matrices in global memory to sub-matrices in shared memory; the sub-matrices are later 

multiplied. Each single thread within one iteration copies (𝑖-th 𝑗-th) element, where 𝑖 =

𝑡ℎ𝑟𝑒𝑎𝑑𝐼𝑑𝑥. 𝑥 + 𝑏𝑙𝑜𝑐𝑘𝐼𝑑𝑥. 𝑥 ∙ 𝑏𝑙𝑜𝑐𝑘𝐷𝑖𝑚. 𝑥 and 𝑗 = 𝑡ℎ𝑟𝑒𝑎𝑑𝐼𝑑𝑥. 𝑦 + 𝑏𝑙𝑜𝑐𝑘𝐼𝑑𝑥. 𝑦 ∙

𝑏𝑙𝑜𝑐𝑘𝐷𝑖𝑚. 𝑦, from input matrices in global memory to (𝑘-th 𝑙-th) element of input 

submatrices in shared memory; when submatrices are populated with data thread calculates 

(𝑘-th 𝑙-th) element in output submatrix using (17).  

𝐶[𝑘][𝑙] = 𝛼 ∙ ∑ 𝐴[𝑘][𝑡] ∙ 𝐵[𝑡][𝑙]𝑇𝐼𝐿𝐸_𝐷𝐼𝑀
𝑡=0    (17) 

The output submatrices are later summed what gives a submatrix within a result of 

multiplication of matrix 𝐴 and 𝐵. In theory complexity of both CUDA algorithms in 𝑂(𝑛). 

k.  Triangular GEMM 

A special case of matrix multiplication is multiplication of two triangular matrices. 

Triangular matrix is a square matrix with zeros located above the main diagonal or below 

the low diagonal; such matrices are called left triangular and right triangular respectively. 

Linear algebra reports numerous properties of these matrices including, important for this 

research, result of multiplication of two left triangular or right triangular matrices is also 

left or right triangular matrix. This property simplifies the multiplication algorithm because 

almost half of the elements do not have to be calculated. Therefore serial CPU operator 

takes a form of Algorithms. It is very similar to CPU GEMM algorithm however first inner 

loop iterates through reduced number of elements. Although it does not affect overall  

Big-O complexity – it still remains 𝑂(𝑛3) – the actual execution time will be shorter. 
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Algorithms, both left and right triangular version, are presented in Algorithm 24 and 

Algorithm 27 respectively. 

Two CUDA triangular matrix multiplication operators are considered in this 

research. First of them, Simple CUDA Triangular GEMM (used in two versions that 

supports left- and right-triangular matrices), works in a way similar to CUDA GEMM – 

each element of output matrix is calculated by a single thread. The difference is that when 

elements comes from part of matrix filled with zeros thread terminates at that point. Both 

left and right triangular versions of algorithm are presented in Algorithm 25 and  

Algorithm 28. The complexity of these algorithms is 𝑂(𝑛). 

Tiled CUDA Triangular GEMM also employs single thread per one element in 

output matrix and similar to Tiled CUDA GEMM uses of fast shared memory. Since 

triangular matrices are multiplied some operations can be skipped. In this case when whole 

tile of threads is supposed to calculate elements from segment of matrix that will be 0 then 

execution of these threads can be terminated immediately. Two version of this algorithm 

are presented in Algorithm 26 and Algorithm 29. The complexity of both CUDA 

algorithms is 𝑂(𝑛). 

Chapter 3.2.  cuBLAS operator 

CuBLAS library offers a wide spectrum of operators including all three levels of 

classic BLAS and custom methods that implements special cases of more generic original 

BLAS methods. All of them are carefully designed and optimized by team of experienced 
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developers and researchers [13]. Presents cuBLAS methods that corresponds to algorithms 

designed and implemented in this dissertation. 

Table 1. cuBLAS methods and corresponding operators 

cuBLAS 

method 
Implements Description 

cublasSaxpy 

AXPY 

Method required following parameters: 

 handle – to handle library context 

 alpha – scalar value 

 n – size of vectors 

 x – first vector container 

 incx – stride between consecutive 

elements in vector x 

 y – second vector container 

 incy – stride between consecutive 

elements in vector y 

Vector-Scalar 

Multiplication1 

Vector Addition2 

cublasSswap Vector Swap 

Method required following parameters: 

 handle – to handle library context 

 n – size of vectors 

 x – first vector container 

 incx – stride between consecutive 

elements in vector x 

 y – second vector container 

 incy – stride between consecutive 

elements in vector y 

cublasSdot DOT Product 

Method required following parameters: 

 handle – to handle library context 

 n – size of vectors 

 x – first vector container 

 incx – stride between consecutive 

elements in vector x 

 y – second vector container 

 incy – stride between consecutive 

elements in vector y 

 result – stores result of DOT operator 

cublasSgemv GEMV 
Method required following parameters: 

 handle – to handle library context 
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 trans – indicates whether matrix A will 

be transposes 

 m – first dimension of matrix A 

 n – second dimension of matrix A 

 lda – stride between consecutive 

elements in matrix A 

 x – vector container 

 incx – stride between consecutive 

elements in vector x 

 y – second vector container 

 incy – stride between consecutive 

elements in vector y 

cublasSgemm 

Matrix 

Transposition3 

Method required following parameters: 

 handle – to handle library context 

 transa – indicates whether matrix A will 

be transposes 

 transb – indicates whether matrix B will 

be transposes 

 m – first dimension of matrix 

 n – second dimension of matrix 

 A – first matrix 

 lda – stride between consecutive 

elements in matrix A 

 B – second matrix 

 ldb – stride between consecutive 

elements in matrix B 

 C – output matrix 

 ldc – stride between consecutive 

elements in matrix C                       

Matrix-Scalar 

Multiplication4 

Matrix Addition5 

cublasSgemm GEMM 

Method required following parameters: 

 handle – to handle library context 

 transa – indicates whether matrix A will 

be transposes 

 transb – indicates whether matrix B will 

be transposes 
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Triangular 

GEMM 

 m – first dimension of matrix 

 n – second dimension of matrix 

 A – first matrix 

 lda – stride between consecutive 

elements in matrix A 

 B – second matrix 

 ldb – stride between consecutive 

elements in matrix B 

 C – output matrix 

 ldc – stride between consecutive 

elements in matrix C 

1 vector x needs to be filled with zeros 
2 alpha need to be set to 1 
3 matrix B needs to be filled with zeros, alpha needs to be 1, transa need to be set to  

             transpose 
4 matrix B needs to be filled with zeros 
5 alpha and beta need to be set to 1 
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Chapter 4  

Experiments 

Chapter 4.1.  Hardware configuration 

Quadro line is a GPU brand designed by NVidia and developed by PNY and NVidia. 

This product line was designed for professional CAD and DCC market segment – as 

opposed to GeForce line which is designed almost exclusively for gaming [51]. The idea 

behind the Quadro line was to reduce the functionality of GeForce GPU that is important 

for gaming, like quality of textures and number of shaders, in favor of features crucial to 

CAD/DCC industry like high performance anti-aliased lines and two-sided lighting. In 

addition custom firmware and drivers, which support CAD applications better, for Quadro 

line were developed. NVidia Quadro 5000, which was used in this research, is built on 

introduced in March 2010, Fermi architecture [52]. 

Tesla line, named by Nikola Tesla, is a dedicated streaming and general purpose 

GPU brand designed and manufactured by NVidia. These devices are highly specialized 

hardware that are intended to be used in HPC centers. As of January 2015, TOP500 ranking 
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points out that three supercomputers out TOP 10 are built on NVidia Tesla GPUs [32]. 

Even though it is technically a graphical processing unit it was never meant to display 

images – Tesla GPUs, despite the most recent products, are not even equipped in display 

port. Used in this research NVidia Tesla K40 is built on Kepler architecture – presented to 

public in 2012 [53]. 

Table 2. NVidia Tesla K40 and NVidia Quadro 5000 specification 

Property 
NVidia  

Tesla K40 

NVidia  

Quadro 5000 

Base clock 745 MHz 513 MHz 

Processor cores 2880 352 

Memory clock 3.0 GHz 750 MHz 

Memory bandwidth 288 GB/sec 120 GB/sec 

Interface 384-bit 320-bit 

Total board memory 
12 GB 

DDR5 

2.5 GB 

DDR5 

Board power 235 W 152 W 

CUDA capability 3.5 2.0 

Max dimension of grid of thread 

blocks 
3 

Max x-dimension of a grid of thread 

blocks 
231-1 65535 

Max y-, z- dimensions of a grid of 

thread blocks 
65535 

Max dimensionality of thread block 3 

Max x- or y-dimension of a block 1024 

Max z-dimension of a block 64 

Max number of threads per block 1024 
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Warp size 32 

Max number of resident blocks per 

multiprocessor 
16 8 

Max number of resident warps per 

multiprocessor 
64 48 

Max number of resident threads per 

multiprocessor 
2048 1536 

Max amount of shared memory per 

multiprocessor 
112 kB 48 kB 

Amount of local memory per thread 512 kB 

 

 

The main difference, from technology point of view, is significantly bigger 

frequency of both base and memory clock and greater number of processor cores. 

Obviously it translates to higher performance of calculations; especially important is 

memory clock frequency since slow access to memory was a major factor that slows the 

execution in NVidia Quadro 5000 GPU. It can be also seen that amount of memory was 

increased almost 5 times; yet the amount of memory per single core was decreased. 

Unfortunately the improvements caused higher power consumption [52] [53]. 

Worth to point out is the difference in CUDA capability between Tesla K40 and 

Quadro 5000. Although the technology leap between 2.0 and 3.5 is not as significant as 

between 2.0 and 1.3 [52], the changes are significant. First and foremost the maximal  

x-dimension of block was enormously increased. This allows to map the logical structure 

of threads to big scale problems. It can be also noticed that the amount of fast shared 

memory assigned to multiprocessor was doubled. It may be related to doubling the number 
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of blocks that can resides at single SM at any time which; if this prediction is true then 

amount of memory per block remains almost the same. Nonetheless it will encourage 

developer to use this level of storage more often and therefore improve overall kernel 

execution efficiency [52] [53]. 

Chapter 4.2.  Plan of experiment 

a.  Metric  

One of the goals of this thesis is to evaluate the benefits of implementing modern 

GPGPU technology in multiphysics simulation software. Therefore an obvious step 

toward, was to assess the performance of proposed approach. Traditionally performance is 

measured I number of floating point operations per one second – flops. This metric is very 

popular in various brochures advertising new hardware solutions and in most cases it is 

valid way to evaluate capabilities of device.  

In research however, including this thesis, flops metric is not the most fortunate way 

of describing performance mainly because it does not translate directly to time. The 

performance of GPU algorithm depends on a number of factors like frequency of 

synchronizations within a kernel, type of memory data is located in, alignment of this data 

in the memory, number of threads that execute the kernel and many others. Following 

example illustrates the disadvantage of flops metric. 
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Example: Disadvantage of flops metric 

 

The task is to multiply two square matrices of size 2 × 2 filled with 

floating point numbers from range [0, 1] using simple CUDA matrix 

multiplication algorithm. It can be observed that it is enough to run the kernel 

on a thread grid of size 2 × 2 which gives four threads encapsulated in one 

block. As a result each thread will calculate the value of one element in result 

matrix and perform four floating point operations. The task will be completed 

in time 𝑡1. The performance expressed in flops is given by 
4∙4

𝑡1
=

16

𝑡1
 flops.  

GPU is, however, capable of running much more threads in parallel so 

one may consider increasing the number of threads assigned to that task. The 

common practice in this situation is to resize the input matrices to math desired 

dimensions of thread grid and fill it with zeros. Assuming that a grid of 32 ×

32 threads will be assigned to perform that task, then both matrices will be 

resized to 32 × 32, each thread will calculate one element in result 32 × 32 

matrix, and finally result will be trimmed back to size of 2 × 2 by removing 

previously added columns and rows. It can be calculated that each thread will 

execute 64 floating point operations so the performance is given by 
32∙32∙64

𝑡2
=

65536

𝑡2
 flops. For such small scale problem 𝑡1 < 𝑡2 < 1.01𝑡1 and the performance 

is humongous greater. That leads to contradiction since algorithm with better 

performance needs more time to execute the same task. 
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Multiphysics simulation software is just a tool for scientists and engineers and what 

matters for them is how soon and how accurate will be the results they get. The 

performance expresses in flops also does not indicate how well the algorithm will perform 

in different system with different hardware configuration. Because of that in this 

dissertation elapsed time would be that major evaluation criterions that describes the 

performance of proposed approach. Nevertheless flops metric, together with memory 

access metric, would also be used as a supporting factor that may allow to clarify aspects 

that are unable to be interpreted with time metric only. 

b.  Precision issue  

As mentioned in previous paragraph [54] concerns regarding floating point 

operations precision were reported. GPU, as well as CPU, uses the same standard of 

notation and calculation – IEEE 754. Within this standard two types are distinguished: 

single precision numbers (float) and double precision numbers (double). No matter what 

type is used, general notation is very similar: first bit encodes sign, followed by exponent 

bits encoding the exponent offset3  and bits encoding the fraction4. The architecture of 

IEEE 754 that tries to “fit infinite number of numbers onto finite number of bits” has to 

use some limitations; one of the limitations is the rounding step performed at the end of 

every arithmetic operation – result is rounded to the nearest number feasible to encode 

using designate number of bits. It is guaranteed than the result of any single basic arithmetic 

                                                           
3 8 bits for float and 11 bits for double 
4 23bits for float and 52 bits for double 
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operation5 on two numbers encoded using IEEE 754 will be exactly the same no matter 

what hardware accomplished it. Nevertheless the error related to frequent rounding step 

may appear since it is strongly related to level of parallelism and the order of operations. 

NVidia took a number of steps to obtain as good precision as possible including 

implementing into the hardware support for double precision type in devices with CUDA 

capability of 1.3 and so called fused multiply-add operation (multiplication operation 

performed on a result of addition is accompanied by a single rounding step) for GPUs that 

have CUDA capability of 2.0. Despite the improvements a common practice, applied also 

to this research, is to calculate the error by referring GPU result to expected result (usually 

calculated by CPU). In in this research the error is calculated for each repetition of 

experiment; errors are used to calculate Mean Square Root Error. 

c.  Experimental approach  

The experiments 𝐸 =< 𝐴; 𝑆 > carried out in this research can be described by 

following pattern: each entity 𝐴 – which can be an algorithm, method, or a simulation – 

has to execute given set of experiment scenario 𝑆; execution of each experiment will be 

described with amount of time expressed in 𝑚𝑠 required to complete it 𝑝𝑡(𝐸) and also, if 

applicable, performance boost compared to CPU version, and MRSE metric. Scenarios 

were designed to uniformly cover the selected scope of interest, e.g. when two vectors are 

                                                           
5 add, subtract, multiply, divide, square root, fused-multiply-add, remainder, conversion operations, scaling, 

sign operations, and comparisons 
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added the size of vectors changes from 𝑛1 to 𝑛2 with step 𝑠 =
⌊𝑛2−𝑛1⌋

200
. Details on each 

scenario are presented in section in which corresponding results are presented. 

Whenever the subject of the research is to assess the performance of a hardware 

solution or a new algorithm and experiments are not carried out in dedicated server class 

environment, then results may be affected by nondeterministic occurrences or, simply 

speaking, noise. Typical sources of noise are all concurrently running applications, since 

they rivals with the experiment thread for resources, and operation system related processes 

that are meant to provide additional features which may not be required by the experiment 

threads, like maintaining GUI and some HID.  Therefore a good practice is to disable all 

known and unused sources or possible noise. In this research whenever experiments were 

performed on regular desktop computer, the machine was running operating system in 

terminal mode, disabled network adapter, and all unnecessary services, like apache and 

database servers, turned off. 

Even though careful preparation of experimental environment can greatly help with 

reducing separating results from some sources of interferences, it is crucial to remember 

that not all sources are known or can be deactivated. In this type of situations repeating a 

single experiment multiple times and applying statistic methods to obtained results may 

become very valuable. As such the following experimenting plan was used in the research: 

 each experiment 𝐸 was repeated at least 𝑛 times 

 results from ever experiments, namely experiment execution time 𝑡(𝐸) were 

gathered and formed a set 𝑅𝐸 
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 3% of the most extreme results from 𝑅𝐸 were discarded 

 The average value of observed metrics and standard distribution were 

calculated and used as a representative experiment results  

To select optimal values of parameters n a small experiment were performed: three 

CUDA algorithms with various complexity were executed for the same scenario for each 

𝑛 ∈ {10, 11, … , 1000}. The results showed that for n greater than 300 standard distribution 

of RE curve flattens and further increase in number of repetitions becomes cost ineffective. 

Therefore in this research the value of n was set to 300.
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Chapter 5  

Results 

Chapter 5.1.  Performance of Linear Algebra Operators  

a.  Memory Allocation 

In this section performance of memory allocation primitives is evaluated. Set of 

algorithms 𝐴 considered in this experiment is given by ∈

{𝑃𝑙𝑎𝑖𝑛 CPU Allocator, cuBLAS Allocator, Thrust Allocator} ; set of scenarios is given by 

𝑆 = (𝐴, 𝐵, 𝐶 ∈  [0, 1]𝑛×𝑛: 𝑛 ∈ {100, 150, … ,10 000}). 

The results presented in Figure 7 show that: 

 together with growing size of data structures time required to allocate grows 

 for each allocation methods linear growth of allocation time can be observed, 

however for matrices size of 5200×5200 slope gets steeper 

 the shortest execution time is observed for Plain CUDA Allocator 
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 second best allocator is cuBLAS Allocator; it can be observed, however, that 

the difference in execution time between Plain CUDA Allocator and cuBLAS 

Allocator grows with size of problem 

 Thrust allocation is the slowest and the execution time grows in faster pace 

than two other allocators 

b.  AXPY Operator  

In this section performance of AXPY operator is evaluated. Set of algorithms 𝐴 

considered in this experiment is given by ∈ {CPU AXPY, CUDA AXPY, cuBLAS AXPY} ; set 

of scenarios is given by 𝑆 = (𝛼 ∈  [0, 1]; 𝑥, 𝑦 ∈  [0, 1]𝑛: 𝑛 ∈ {100, 125, … ,15 000}). 
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Figure 7. Allocation method execution time 
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The results, showed in Figure 8, show that for standard array container: 

 there is small impact of problem size on algorithm performance; execution 

time grows for all algorithms, however the slope is rather gentle 
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Figure 8. AXPY operator performance (Thrust containers on the top, array 

containers on the bottom) 
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 CPU algorithm is the most effective among all tested operators; second best 

was CUDA algorithm; cuBLAS operator was the worst 

 for vector size of 1300 an execution time of cuBLAS algorithms decrease; 

later for vector size of 4300 it gets worse and follows the original trend 

 the execution time of CPU method for vector size equals to 100 is 69 times 

greater than execution time for problem size of 15000 

 for execution time of cuBLAS method for problem size is 1.51 times greater 

than execution time for problem size of 15000 

 for execution time of CUDA method for problem size is 1.4 times greater 

than execution time for problem size of 15000 

The results, showed in Figure 8, show that for standard Thrust container: 

 GPU AXPY has slightly worse performance - about 3% - than the same 

algorithms using array of numbers 

 CPU AXPYs suffers huge performance drop when Thrust container is used; 

the execution time grows proportionally to problem size 

 CUDA AXPY is the most efficient algorithm; cuBLAS AXPY is worse than 

CUDA AXPY but it outperforms CPU approach for bigger problem sizes 

 for vector size of 1300 an performance of cuBLAS algorithm increase 

however for vector size of 4300 it gets back to previous trend 
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 the execution time of CPU method for vector size equals to 100 is over 140 

times greater than execution time for problem size of 15000 

 for execution time of cuBLAS method for vector size equals to 100 is 1.54 

times greater than execution time for problem size of 15000 

 for execution time of CUDA method for vector size equals to 100 is 1.37 

times greater than execution time for problem size of 15000 

c.  Vector Swap 

 In this section performance of Vector Swap operator is evaluated. Set of algorithms 

𝐴 considered in this experiment is given by  ∈ {CPU Vector Swap, CUDA Vector Swap,

cuBLAS Vector Swap} ; set of scenarios is given by 𝑆 = (𝑥, 𝑦 ∈  [0, 1]𝑛: 𝑛 ∈

{100, 125, … ,15 000}).  

The results, showed in Figure 9, show that for standard array container: 

 there is minimal impact of problem size on algorithms performance 

 execution time increase all algorithms with very slow peace 

 CPU algorithm is the most effective operator in this experiment; second best 

was CUDA algorithm and third one was cuBLAS method 

 for problem size of  an execution time of GPU algorithms bumped up and 

after a while came back to follow the original trend 
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 the execution time of CPU method for vector size equals to 100 is 91 times 

greater than execution time for problem size of 15000 

 for execution time of cuBLAS method for vector size equals to 100 is 1.46 

times greater than execution time for problem size of 15000 
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Figure 9. Vector Swap operator performance (Thrust containers on the top, array 

containers on the bottom) 
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 for execution time of CUDA method for vector size equals to 100 is 1.45 

times greater than execution time for problem size of 15000 

The results, showed in Figure 9, show that for standard Thrust container: 

 Thrust containers caused relatively small drop in performance for GPU-based 

algorithms; for both of them performance is about 4% worse 

 CPU operator is significantly less effective when Thrust container is used; 

performance gets smaller linearly with growing problem size 

 CUDA operator is the best method in this experiment; second place is taken 

by cuBLAS operator 

 the execution time of CPU method for vector size equals to 136 is 137 times 

greater than execution time for problem size of 15000 

 for execution time of cuBLAS method for vector size equals to 100 is 1.51 

times greater than execution time for problem size of 15000 

 for execution time of CUDA method for vector size equals to 100 is 1.28 

times greater than execution time for problem size of 15000 

d.  Vector-Scalar Multiplication 

In this section performance of Vector-Scalar Multiplication operator is evaluated. Set 

of algorithms 𝐴 considered in this experiment is given by  ∈ {CPU Vector −
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Scalar Multiplication, CUDA Vector − Scalar Multiplication, cuBLAS AXPY} ; set of 

scenarios is given by𝑆 = (𝛼 ∈  [0, 1]; 𝑥 ∈  [0, 1]𝑛: 𝑛 ∈ {100, 125, … ,15 000}). 

The results, showed in Figure 10, show that for standard array container: 
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Figure 10. Vector-Scalar Multiplication operator performance (Thrust containers 

on the top, array containers on the bottom) 
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 there is a small impact of problem size on algorithm performance however 

execution time of all methods increase linearly with increase in problem size 

 CPU Matrix-Scalar Multiplication method is the most effective operator in 

this experiment; second is CUDA Matrix-Scalar Multiplication and the last 

one is cuBLAS Matrix-Scalar Multiplication 

 for problem size of  1300 an execution time of GPU algorithms drops down 

and after a while came back to follow the original trend 

 the execution time of CPU method for vector size equals to 100 is 53 times 

greater than execution time for problem size of 15000 

 for execution time of cuBLAS method for vector size equals to 100 is 1.5 

times greater than execution time for problem size of 15000 

 for execution time of CUDA method for vector size equals to 100 is 1.36 

times greater than execution time for problem size of 15000 

The results, showed in Figure 10, show that for standard Thrust container: 

 Thrust containers caused slower execution time; GPU-based algorithms were 

6% less effective 

 CPU operator is significantly less effective when Thrust container is used; 

performance gets smaller linearly with growing problem size 
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 CUDA Matrix-Scalar Multiplication is the best method in this experiment; 

second place is taken by cuBLAS Matrix-Scalar Multiplication 

 the execution time of CPU method for vector size equals to 136 is 125 times 

greater than execution time for problem size of 15000 

 for execution time of cuBLAS method for vector size equals to 100 is 1.5 

times greater than execution time for problem size of 15000 

 for execution time of CUDA method for vector size equals to 100 is 1.3 times 

greater than execution time for problem size of 15000 

e.  Vector Addition 

In this section performance of Vector Addition operator is evaluated. Set of 

algorithms 𝐴 considered in this experiment is given by ∈ {CPU Vector −

Scalar Addition, CUDA Vector − Scalar Addition, cuBLAS AXPY} ; set of scenarios is 

given by 𝑆 = (𝑥, 𝑦 ∈  [0, 1]𝑛: 𝑛 ∈ {100, 125, … ,15 000}). 

The results, showed in Figure 11, show that for standard array container: 

 problem size has marginal impact on performance of all methods; execution 

time increase together with increase of vector size for all algorithms  

 CPU Vector Addition is the most effective operator in this experiment; 

second best was CUDA Vector Addition algorithm and third one was cuBLAS 

Vector Addition method 
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 for problem size of  an execution time of GPU algorithms bumped up and 

after a while came back to follow the original trend 

 the execution time of CPU method for vector size equals to 100 is 64 times 

greater than execution time for problem size of 15000 
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Figure 11. Vector Addition operator performance (Thrust containers on the top, 

array containers on the bottom) 
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 for execution time of cuBLAS method for problem size is 1.54 times greater 

than execution time for problem size of 15000 

 for execution time of CUDA method for problem size is 1.39 times greater 

than execution time for problem size of 15000 

The results, showed in Figure 11, show that for standard Thrust container: 

 switching to Thrust containers resulted in approximately 5% worse 

performance of all CUDA algorithms 

 CPU operator is significantly less effective when Thrust container is used; 

performance gets smaller linearly with growing problem size 

 CUDA operator is the best method in this experiment; second place is taken 

by cuBLAS operator 

 the execution time of CPU method for vector size equals to 100 is 137 times 

greater than execution time for problem size of 15000 

 for execution time of cuBLAS method vector size equals to 100 is 1.51 times 

greater than execution time for problem size of 15000 

 for execution time of CUDA method vector size equals to 100 is 1.32 times 

greater than execution time for problem size of 15000 
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f . DOT Product  

In this section performance of Dot Product operator is evaluated. Set of algorithms 

𝐴 considered in this experiment is given by 𝐴 ∈ {CPU DOT, CUDA DOT, cuBLAS DOT}. 
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Figure 12. DOT Product operator performance (Thrust containers on the top, 

array containers on the bottom) 
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Scenarion examined in this research are given by 𝑆 = (𝑥, 𝑦 ∈  [0, 1]𝑛: 𝑛 ∈

{100, 125, … ,15 000}). 

The results, showed in Figure 12, show that for standard array container: 

 the most efficient algorithm is CPU DOT Product; execution time grows with 

time, however the slope is rather gentle: the difference between first and the 

last test case is 0.08 𝑚𝑠 

 two remaining operators are worse than CPU operator for over 15 times for 

larger size matrices 

 CUDA DOT operator execution time grows linearly with stepper slope that 

CPU DOT execution time; the difference between execution time of these 

two methods for vector size of 100 is 0.21 𝑚𝑠, whereas for vector size of  15 

000 the difference is 0.07 𝑚𝑠 

 the execution time of cuBLAS DOT operator also grows linearly for most of 

the experimental sets; it has the slowest increase pace: the difference in 

execution time for vector size equal to 400 and 15 000 is 0.22 𝑚𝑠 

 for vector size of 1300 an execution time of cuBLAS algorithms decrease; 

later for vector size of 4300 it gets worse and follows the original trend 

The results, showed in Figure 12, show that for standard Thrust container: 
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 switching to Thrust container has a little influence, about 2%, on performance 

of cuBLAS DOT and CUDA DOT operator 

 the difference in execution time of cuBLAS DOT operator for vector size 

between 100 and 15 000 is 0.076 𝑚𝑠 

 switching to Thrust data structures has significant impact on CPU DOT 

operator 

 execution time of CPU algorithm grown linearly; for vector size of 4800 it 

gets outperformed by CUDA DOT operator; for vector size equals to 9000 

cuBLAS DOT method becomes more efficient 

 for vector size of 1300 an execution time of cuBLAS algorithm decrease; it 

gets back to previous trend when vector size reach size of 4300 

g.  GEMV 

In this section performance of GEMV operator is evaluated. Set of algorithms 𝐴 

considered in this experiment is given by 𝐴 ∈ {CPU GEMV,

Atomic CUDA GEMV, Plain CUDA GEMM, Tiled CUDA GEMM, cuBLAS GEMV}; GEMV 

is a special case of GEMM operator when second matrix is a vector; set of scenarios is 

given by 𝑆 = (𝛼, 𝛽 ∈  [0, 1]; 𝑥 ∈  [0, 1]𝑛: 𝑛 ∈ {100, 125, … ,10 000}; 𝐴 ∈ [0, 1]𝑛×𝑛: 𝑛 ∈

{100, 125, … , 7 000}). 
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The results, showed in Figure 13, show that for standard array container: 

 the most efficient algorithms is cuBLAS GEMV operator 
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Figure 13. GEMV operator performance (Thrust containers on the top, array 

containers on the bottom) 



R e s u l t s    

79  

 second best operator is Plain CUDA GEMM operator; it is almost equally 

efficient as Tiled CUDA GEMM operator, yet Tiled CUDA GEMM is about 

2% less effective 

 execution time of cuBLAS GEMV, Plain CUDA GEMM, and Tiled CUDA 

GEMM can be described by polynomial 

 Atomic CUDA GEMV and CPU GEMV operators are the least effective; 

execution time of these operators grows almost exponentially together with 

growing size of input matrix/vector 

 for cuBLAS GEMV the difference in execution time between problem size of 

25×25 and 7000×7000 is about 89 𝑚𝑠 

 for Plain CUDA GEMM the difference in execution time between problem 

size of 25×25 and 7000×7000 is about 176 𝑚𝑠 

 for Tiled CUDA GEMM the difference in execution time between problem 

size of 25×25 and 7000×7000 is about 190 𝑚𝑠 

 for Atomic CUDA GEMM the difference in execution time between problem 

size of 25×25 and 7000×7000 is about 7.8 𝑠 

 for CPU GEMM the difference in execution time between problem size of 

25×25 and 7000×7000 is about 5.5 𝑠 

The results, showed in Figure 13, show that for standard Thrust container: 
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 switching to Thrust containers resulted in significantly worse performance of 

CPU GEMV operator 

 for CPU GEMM the difference in execution time between problem size of 

25×25 and 7000×7000 is about 995 𝑚𝑠 

 Thrust data structures did not cause big performance drop when applied to 

CUDA operators; a 4% increase of execution time can be observed 

h.  Matrix Swap 

In this section performance of Matrix Swap operator is evaluated. Set of algorithms 

𝐴 considered in this experiment is given by 𝐴 ∈ {CPU Matrix Swap,

CUDA Matrix Swap}; set of scenarios is given by 𝑆 = (𝐴, 𝐵 ∈ [0, 1]𝑛×𝑛: 𝑛 ∈

{25, 50, … , 5 000}). 

The results, showed in Figure 14, show that for standard array container: 

 CUDA Matrix Swap was the most effective algorithm in this experiment 

 execution time of both operators can be described by polynomial, however 

execution time of CPU operator grows with greater speed 

 for CUDA Matrix Swap operator the difference in execution time between 

problem size of 25×25 and 5000×5000 is about 56 𝑚𝑠 
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 for CPU Matrix Swap operator the difference in execution time between 

problem size of 25×25 and 5000×5000 is about 204 𝑚𝑠 

The results, showed in Figure 14, show that for standard Thrust container: 
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Figure 14. Matrix Swap operator performance (Thrust containers on the top, array 

containers on the bottom) 
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 after Thrust container was applied to evaluated methods each of them 

experienced much longer execution time 

 lower performance is especially visible for CPU Matrix Swap operator since 

its execution time grows almost exponentially 

i .  Matrix Addition 

In this section performance of Matrix Addition operator is evaluated. Set of 

algorithms 𝐴 considered in this experiment is given by 𝐴 ∈ {CPU Matrix Addition,

CUDA Matrix Addition, cuBLAS GEAM}; set of scenarios is given by 𝑆 = (𝐴, 𝐵 ∈

[0, 1]𝑛×𝑛: 𝑛 ∈ {25, 50, … , 5 000}).  

The results, showed in Figure 15, show that for standard array container: 

 all operators have similar performance until matrix size is smaller than 

800×800 

 when the matrices get bigger than 800×800 the execution time of all 

algorithms follows polynomial growth 

 the nest performance was achieved by CUDA Matrix Addition operator; 

second best operator is cuBLAS operator; the least effective is CPU Matrix 

Addition method 

 for CUDA Matrix Addition the difference in execution time between problem 

size of 25×25 and 5000×5000 is about 62 𝑚𝑠 
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 for CPU Matrix Addition the difference in execution time between problem 

size of 25×25 and 5000×5000 is about 154 𝑚𝑠 

 for cuBLAS Matrix Addition the difference in execution time between 

problem size of 25×25 and 5000×5000 is about 78 𝑚𝑠 
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Figure 15. Matrix Addition operator performance (Thrust containers on the top, 

array containers on the bottom) 
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The results, showed in Figure 15, show that for standard Thrust container: 

 switching to Thrust containers had very negative influence on CPU operator; 

the execution time started to grow in almost exponential manner 

 applying Thrust data structures to GPU-based operators caused 50% drop in 

performance; because of that cuBLAS operator outperformed CUDA Matrix 

Addition algorithm 

j .  Matrix-Scalar Multiplication  

In this section performance of Matrix-Scalar Multiplication operator is evaluated. Set 

of algorithms 𝐴 considered in this experiment is given by 𝐴 ∈ {CPU Matrix −

Scalar Multiplication, CUDA Matrix − Scalar Multiplication, cuBLAS GEMM}; set of 

scenarios is given by 𝑆 = (𝛼 ∈ [0, 1]; 𝐴 ∈ [0, 1]𝑛×𝑛: 𝑛 ∈ {25, 50, … , 5 000}).  

The results, showed in Figure 16, show that for standard array container: 

 the execution time of all operators is similar especially for matrix sizes 

smaller than 725×725 

 for bigger problem sizes execution size of all operators starts to grow in 

polynomial manner, but performance is still relatively similar 

 the best algorithm evaluated in this experiment was CUDA Matrix-Scalar 

Multiplication method; cuBLAS GEAM operator was ranked second; the 

worst performance was achieved by CPU Matrix-Scalar Multiplication 
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 for CUDA Matrix-Scalar Multiplication the difference in execution time 

between problem size of 25×25 and 5000×5000 is about 59 𝑚𝑠 

 for CPU Matrix-Scalar Multiplication the difference in execution time 

between problem size of 25×25 and 5000×5000 is about 120 𝑚𝑠 
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Figure 16. Matrix-Scalar Multiplication operator performance (Thrust containers 

on the top, array containers on the bottom) 



R e s u l t s    

86  

 for cuBLAS Matrix-Scalar Multiplication the difference in execution time 

between problem size of 25×25 and 5000×5000 is about 77 𝑚𝑠 

The results, showed in Figure 16, show that for standard Thrust container: 

 execution time of CPU algorithm is strongly affected by Thrust containers; it 

grows almost exponentially together with increasing matrices size 

 for CPU Matrix-Scalar Multiplication the difference in execution time 

between problem size of 25×25 and 5000×5000 is about 2 𝑠 

 replacing classic arrays with Thrust containers had a smaller, but still 

significant, impact on execution time of CUDA operators; it was, however, 

sufficient to alter the ranking of operator: cuBLAS GEAM operator is more 

effective than CUDA Matrix-Scalar Multiplication 

k.  Matrix Transposition  

In this section performance of Matrix Transposition operator is evaluated. Set of 

algorithms 𝐴 considered in this experiment is given by 𝐴 ∈ {CPU Matrix Transposition,

CUDA Matrix Transposition, cuBLAS Matrix Transposition}; set of scenarios is given by 

𝑆 = (𝐴 ∈ [0, 1]𝑛×𝑛: 𝑛 ∈ {25, 50, … , 5 000}).  

The results show, showed in Figure 17, that for standard array container: 
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 the most efficient operator examined in this experiment is CUDA Matrix 

Transposition operator; second best operator is cuBLAS Matrix 

Transposition; CPU operator is the least effective 

0

50

100

150

200

25 2k 3.5k 5k

t[
m

s]

matrix size

CPU Transposition cuBLAS Transposition CUDA Transposition

0

50

100

150

200

25 2k 3.5k 5k

t[
m

s]

matrix size

CPU Transposition cuBLAS Transposition CUDA Transposition

Figure 17. Matrix Transposition operator performance (Thrust containers on the 

top, array containers on the bottom) 
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 execution time of each operator grows in different pace however each of them 

follows polynomial trend 

 for CUDA Matrix Transposition the difference in execution time between 

problem size of 25×25 and 5000×5000 is about 59 𝑚𝑠 

 for cuBLAS Matrix Transposition the difference in execution time between 

problem size of 25×25 and 5000×5000 is about 76 𝑚𝑠 

 for CPU Matrix Transposition the difference in execution time between 

problem size of 25×25 and 5000×5000 is about 111 𝑚𝑠 

The results, showed in Figure 17, show that for standard Thrust container: 

 after Thrust data structures were applied to methods each of them experiences 

significantly slower execution time 

 longer execution time is especially visible for CPU Matrix Transposition 

operator since it follows exponential trend 

 in this scenario cuBLAS operator is more efficient than CUDA Matrix 

Transposition method 

l .  GEMM 

In this section performance of GEMM operator is evaluated. Set of algorithms 𝐴 

considered in this experiment is given by 𝐴 ∈ {CPU GEMM,
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Simple CUDA GEMM, Tiled CUDA GEMM, cuBLAS GEMM}; set of scenarios  is given by 

𝑆 = (𝛼, 𝛽 ∈  [0, 1]; 𝐴, 𝐵 ∈ [0, 1]𝑛×𝑛: 𝑛 ∈ {25, 50, … , 3 000}).  

The results, showed in Figure 18, show that for standard array container: 
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Figure 18. GEMM operator performance (Thrust containers on the top, array 

containers on the bottom) 
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 the most efficient algorithm is cuBLAS GEMM; the difference in execution 

time of cuBLAS GEMM and any other GEMM operator grows together with 

size of the problem 

 linear growth of execution time for cuBLAS GEMM can be observed; the 

difference in execution time between problem size of 25×25 and 3000×3000 

is about 160 𝑚𝑠 

 next two best algorithms are Tiled CUDA GEMM and Plain CUDA GEMM; 

they were almost equally effective throughout the whole experiment; Tiled 

CUDA GEMM was better, however, for about 3% 

 for Tiled CUDA GEMM the difference in execution time between problem 

size of 25×25 and 3000×3000 is about 995 𝑚𝑠 

 for Plain CUDA GEMM the difference in execution time between problem 

size of 25×25 and 3000×3000 is about 1048 𝑚𝑠 

 the CPU operator was the least efficient; its execution time grows almost 

exponentially 

 for CPU GEMM the difference in execution time between problem size of 

25×25 and 3000×3000 is about 5 𝑚𝑖𝑛 

The results show, showed in Figure 18, that for standard Thrust container: 
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 Thrust containers, when applied to GPU-based operators, resulted in about 

3% increase of execution time 

 it did not, however, affect the pace in which execution time grows with 

increasing problem size 

 switching to Thrust containers caused humongous drop in performance for 

CPU GEMM operator; for large scale matrices, 3000×3000, the execution 

time is almost an hour 

m.  Triangular GEMM 

In this section performance of Triangular GEMM operator is evaluated. Set of 

algorithms 𝐴 considered in this experiment is given by 𝐴 ∈ {CPU Triangular GEMM,

Simple CUDA Triangular GEMM, Tiled CUDA Triangular GEMM, cuBLAS GEMM}; set 

of scenarios is given by 𝑆 = {𝛼, 𝛽 ∈  [0, 1]; 𝐴, 𝐵 ∈ [0, 1]𝑛×𝑛: 𝑛 ∈

{25, 50, … , 3 000}; 𝐴[𝑖][𝑗] = 𝐵[𝑖][𝑗] = 0: 𝑗 < 𝑖 < 𝑛 }. 

The results, showed in Figure 19, show that for standard array container: 

 performance of CPU Triangular GEMM is very poor; execution time of this 

algorithm grow almost exponentially and therefore it makes it unusable for 

large scale matrices 

 execution time of all GPU algorithm can be described by polynomial growth; 

for small size problems, up to matrix size of 525×525, it is very similar among 
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all of these operators; after that size execution time starts to grow with 

different speed for different operators 
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Figure 19. Triangular GEMM operator performance (Thrust containers on the top, 

array containers on the bottom) 



R e s u l t s    

93  

 Tiled CUDA Triangular GEMM – the worst of GPU operators – needed about 

8 𝑚𝑠 to multiply matrices of size 512×512; to multiply matrices of size 

3000×3000 it needed almost a 1 𝑠 

 CUDA Triangular GEMM operator is second best operator; it needed 3 𝑚𝑠 

to multiply two matrices of size 525×525; to multiply two matrices of size 

3000×3000 it needed 567 𝑚𝑠 

 the most efficient operator – cuBLAS GEMM – has the gentlest slope function 

that describes its execution time 

 for 525×525 matrices cuBLAS GEMM needed 5.5 𝑚𝑠 to complete operation; 

for 3000×3000 execution time was 161 𝑚𝑠 

The results, showed in Figure 19, show that for standard Thrust container: 

 switching to Thrust containers had humongous impact of CPU Triangular 

GEMM; its execution time grows even faster compared to standard array 

container 

 using Thrust containers had almost on impact on GPU methods; this 

scenarios shows analogous behavior of GPU operators to the one presented 

for classic array containers 

 for Tiled CUDA Triangular GEMM the difference in execution time for 

matrix size between 25×25 and 3000×3000 is 989 𝑚𝑠 
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 for Simple CUDA Triangular GEMM the difference in execution time for 

matrix size between 25×25 and 3000×3000 is 560 𝑚𝑠 

 for cuBLAS GEMM the difference in execution time for matrix size between 

25×25 and 3000×3000 is 158 𝑚𝑠 

Chapter 5.2.  Performance of Multiphysics s imulation 

To examine the effectiveness of the proposed hybrid approach, an experiment was 

performed. Performance of the proposed method was compared to the performance of the 

standard CPU approach. In the experiment two multiphysics heat conduction problems, 

diffusion and diffusion with convection were considered. A weak form of the PDE that 

describes the convection diffusion problem (and therefore diffusion only also) is given by 

the equations below. 

−∇ ∙ 𝑘∇𝑢 + 𝛽 ∙ ∇𝑢 = 𝑓       (18) 

Where k is diffusivity, β is the vector field of velocity, −∇ ∙ 𝑘∇𝑢 is diffusion, and 

𝛽 ∙  ∇𝑢 is convection. After moving f to the left side of equation, multiplying both sides by 

the shape function ψ, and integrating the equation over the domain Ω, equation (19) is 

obtained [20]. 

− ∫ 𝜓(∇ ∙ 𝑘∇𝑢)
𝛺

+ ∫ 𝜓(𝛽 ∙ ∇𝑢) − ∫ 𝜓𝑓
𝛺𝛺

= 0   (19) 

Applying the divergence theorem to equation (19) transforms it to equation (20). 
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∫ ∇𝜓 ∙ 𝑘∇𝑢
𝛺

− ∫ 𝜓(𝑘∇𝑢 ∙ �̂�)
𝜕𝛺

+ ∫ 𝜓(𝛽 ∙ ∇𝑢) − ∫ 𝜓𝑓
𝛺𝛺

= 0 (20) 

When represented in terms of multiphysics kernels and boundary conditions, 

equation (20) has the following form [20]. 

(∇𝜓, 𝑘∇𝑢) − 〈𝜓, 𝑘∇𝑛 ∙ �̂�〉 + (𝜓, 𝛽 ∙ ∇𝑢) − (𝜓, 𝑓) = 0   (21) 

Where (∇𝜓, 𝑘∇𝑢), (𝜓, 𝛽 ∙ ∇𝑢), and (𝜓, 𝑓) are multiphysics kernels and 〈𝜓, 𝑘∇𝑛 ∙ �̂�〉 

is a boundary condition [20]. 

Set of algorithms 𝐴 considered in this experiment is given by 𝐴 ∈

{CUDA Hybrid, Thrust Hybrid, cuBLAS Hybrid, Thrust & cuBLAS Hybrid} where 

CUDA Hybrid represents libMesh with underlying algorithms that were designed in second 

approach, Thrust Hybrid represents libMesh in which all STL containers were replaced by 

Thrust containers, cuBLAS Hybrid represents libMesh with underlying cuBLAS operators, 

and finally Thrust-cuBLAS Hybrid represent libMesh with Thrust data structures and 

cuBLAS operators. Set of scenarios is given by 𝑆 = {𝑀 × 𝑃: 𝑀 ∈ 𝑀𝑒𝑠ℎ𝑛×𝑛: 𝑛 ∈

{32, 64, 128, 256, 512}, 𝑃 ∈ {𝐷𝑖𝑓𝑓𝑢𝑠𝑖𝑜𝑛, 𝐷𝑖𝑓𝑓𝑓𝑢𝑠𝑖𝑜𝑛 & 𝐶𝑜𝑛𝑣𝑒𝑐𝑡𝑖𝑜𝑛}} where 𝑀 is 

sealed steel cylinder given by mesh of size 𝑛 × 𝑛 and 𝑃 represents multiphysics simulation. 

Table 3 presents the performance of proposed solutions expressed as ration of 

𝑡ℎ𝑦𝑏𝑟𝑖𝑑(𝑃)

𝑡𝑙𝑖𝑏𝑀𝑒𝑠ℎ(𝑃)
 where 𝑡𝑙𝑖𝑏𝑀𝑒𝑠ℎ(𝑃) is duration of simulation  𝑃 executed by classic libMesh 

implementation, 𝑡𝑙𝑖𝑏𝑀𝑒𝑠ℎ(𝑃) is duration of simulation  𝑃 executed by one of proposed 

hybrid GPU/CPU libMesh implementation. 
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Table 3. Hybrid simulators performance 

Mesh size Physics 

Speed-up factor of Hybrid approach 

CUDA Thrust cuBLAS 
Thrust & 

cuBLAS 

32×32 Diffusion 0.974 0.921 0.989 0.903 

64×64 Diffusion 0.986 0.782 0.992 0.778 

128×128 Diffusion 1.012 0.698 1.019 0.712 

256×256 Diffusion 1.025 0.612 1.031 0.698 

512×512 Diffusion 1.036 0.562 1.049 0.612 

32×32 
Diffusion & 

Convection 
0.979 0.928 0.992 0.915 

64×64 
Diffusion & 

Convection 
0.994 0.798 0.998 0.773 

128×128 
Diffusion & 

Convection 
1.007 0.721 1.013 0.753 

256×256 
Diffusion & 

Convection 
1.018 0.676 1.027 0.713 

512×512 
Diffusion & 

Convection 
1.031 0.598 1.042 0.682 

 

The results shows that: 

 for CUDA Hybrid and cuBLAS Hybrid greater performance gain follows 

bigger problem sizes 

 for small size problems, 64 × 64 and below, none of the proposed 

modifications resulted in performance gain 
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 when problem size gets bigger than 64 × 64, CUDA Hybrid and cuBLAS 

Hybrid executes diffusion simulation faster than original libMesh 

implementation by 1.2% and 1.9% respectively 

 when problem size gets bigger than 64 × 64, CUDA Hybrid and cuBLAS 

Hybrid executes diffusion & convection simulation faster than original 

libMesh implementation by 0.7% and 1.3% respectively 

 when Thrust library was applied to libMesh, for both proposed approaches 

that involves new data containers significant drop in performance was 

observed; the performance of simulation were decreasing together with 

growing problem size 

 for problem size of 512 × 512 Thrust Hybrid and cuBLAS & Thrust Hybrid 

are slower than original libMesh implementation by over 30% 
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Chapter 6  

Discussion 

a.  Paral lel BLAS algorithms  

The results show that the overhead, related to highly object oriented architecture of 

Thrust data structures and wrapper nature of methods, has serious negative impact on 

overall performance of memory allocation operators. Both CPU and plain CUDA 

implementations outperforms Thrust operators. It can be also observed that effectiveness 

of algorithms (both serial and parallel) with Thrust data structures were worse than 

effectiveness of corresponding non-Thrust versions. Despite worse performance 

considered library provides extremely usable and flexible data structures. Thrust containers 

are easy to use, greatly increases code readability, simplifies code refactor, and speed up 

the development process. Therefore a small decrease in performance may be worth the 

robustness offered by Thrust library. 

The research confirmed the enormous effectiveness of both CUDA and cuBLAS 

methods. The scenario was similar for all algorithms for which corresponding CPU 

operators have complexity of 𝑂(𝑛2) and higher. First, when dimensions of 
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matrices/vectors were small, CPU outperform all GPU algorithms. It happens because of 

overhead related to data transfers between host and device and because of relatively low-

performance of GPU cores. However increasing dimensions cause exponential growth of 

CPU algorithms execution time and therefore they are no longer competitive. In the same 

time execution time of CUDA algorithms grows linearly. When execution time of plain 

CUDA algorithms are compared to equivalent cuBLAS methods it can be observed that 

plain CUDA operators are more effective for smaller scale of problem. It is because of the 

overhead caused by wrapper nature of cuBLAS methods. Nevertheless the difference is 

getting smaller when matrix/vector dimensions are getting bigger and eventually cuBLAS 

operators outpace plain CUDA algorithms. As the experience shows in real life when 

developers decide to consider GPGPU the scale of problem is already big enough to not 

focus on corner cases when serial algorithm may be more efficient. 

A different situation, however, can be observed for all CPU operators described by 

complexity of 𝑂(𝑛). The complexity of these algorithms is so insignificant that an effort 

to make it parallel seems to be pointless. As the research shows when a regular data 

structures are used CPU outperforms all GPU approaches. Furthermore even when two 

GPU approaches are compared it appears that the algorithm that the overhead may be more 

important than design of the algorithm itself. This observation points out how the 

performance of hardware and overhead related to design can affect the effectiveness of 

algorithm for relatively small scale of problem. 
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b.  Multiphysics s imulat ion  

Results show that switching from STL container to Thrust containers has very 

negative influence on performance of proposed hybrid GPU/CPU multiphysics simulator. 

Even when efficient cuBLAS operators work atop of Thrust data structures the overall 

performance of simulator is very disappointing. Moreover together with growing problem 

size the performance drop gets bigger. It is related to overhead that accompanies every 

operation that involves any data manipulation within a Thrust data structures. Therefore it 

is not recommended to replace STL container with Thrust containers at least until 

additional research is done. Further research would have to evaluate how increasing the 

spectrum of used Thrust parallel operators affects the performance of simulation. 

Currently, when the only used Thrust operators are accessors to element enclosed in data 

structures, the negative impact on performance of simulation is unacceptable. 

As it can be seen in cases in which the number of points was relatively small, CPU 

approach outperforms the proposed Hybrid approach (in each version). This is caused by 

an additional steps that are related to the GPU/CPU approach. The libMesh data structure 

has to be translated to standard arrays, memory on GPU has to be allocated, and data has 

to be copied. Therefore, although execution of the kernel may be faster than the 

multiplication process performed by CPU, together with the mentioned overhead, the 

overall performance is worse. Nevertheless, when the number of points grows, the 

proposed approach is more efficient. For meshes with 128×128 and more, the hybrid 

approach reduces the total simulation time by over 1.03 (3%) and 1.05(5%) for CUDA 

Hybrid and cuBLAS Hybrid respectively. It can be also observed that with the increase in 
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number of points the speed-up factor grows. Therefore it can be assumed that the 

performance increase would be even greater for a mesh that consists of more than 

1024×1024 points. A reasonable idea to test this hypothesis would be to implement a 

mechanism that tracks simulation and record profiling. These outcomes could then be used 

to decide whether to use the hybrid or CPU approach. 

The obtained results also show that the complexity of multiphysics phenomena has 

an influence on performance. For the same model the speed-up factor obtained for a simple 

diffusion phenomena is definitely larger than for the convection diffusion phenomena. 

Therefore, it may be assumed that for complex multiphysics problems, the difference in 

time consumption between matrix multiplication and other parts of the code is getting 

smaller. As a result, in the worst-case scenario, the speed-up factor will be very close to 

one. However it will never drop below one so the hybrid approach would be at worst as 

good as the CPU approach.  
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Conclusion 

The research carried out and presented in this thesis focuses almost exclusively on 

the multiphysics simulation performance in the purest and the most literal meaning of that 

word. It is because there is still a little research done in this area and, especially, in porting 

existing CPU-based systems to GPU-enabled systems. Topic covered in the thesis was the 

obvious choice to assess the potential legitimacy of applying GPGPU technology and, in 

case of being wrong, invalidity of using it.  

The most important part of the multiphysics simulation is to solve PDEs. For larger 

problems these equations have to be solved simultaneously on HPC in order to finish the 

calculation in reasonable time. In this paper, a strategy of dealing with multiphysics 

problems is presented by a hierarchical software framework. Examples of the systems are 

MOOSE, COMSOL, and ANSYS. In this research architecture of these systems was 

presented and described. The code analysis and documentation review allowed to observe 

that both commercial and academia solutions follow a generic pattern architecture that 

consist of multiphysics models, parallel computational framework, Finite Element library, 

and set of PDE solvers. In first layer multiphysics problem is defined, second layer 
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initializes simulation and preprocess input data, third layer runs solvers and processes 

corresponding mesh, finally last layer solves system of partial differential equations.  

The simulation process is very time consuming and requires a lot of computational 

power. Because of that even when multimode high-performance supercomputer is applied 

the simulation may take even few days or weeks. Moreover the cost of upgrading the 

hardware is not proportional to performance gain. Therefore an attempt to use different 

computational technology, namely GPGPU, was made. Because MOOSE Framework and 

all of its layers are open source and because both MOOSE and underlying layers – namely 

libMesh, PETSc, and Trilinos – are widely used in academia and business, they were 

selected to the research.  

Code analysis shows that the lowest layer – PDE solvers – are already efficient 

applications capable of being executed by classic CPU-based supercomputers and also 

machines that takes advantage of newer technologies like GPU and FPGA. FE Library 

layer however, despite capability of being executed in parallel by number of CPU nodes, 

is not ready to be ran by GPUs and for that reason it becomes a bottleneck. Because of that 

libMesh the most suitable candidate to be redesigned and reimplemented to run on GPU. 

First approach to taken to move the simulation to GPU environment assumed that 

each CPU thread will be mapped one-to-one to GPU thread; as such Parallel Multiphysics 

Framework would spawn numerous GPU kernels instead of GPU threads. This approach 

would significantly increase parallelism of execution since even single GPU is able to run 

hundred thousands of threads simultaneously what exceeds capabilities, understood as 

number of parallel threads not performance, of most supercomputers. This approach lead 
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to dead end since there are some issues with porting the whole framework to GPU. The 

biggest of them is the architecture of libMesh. LibMesh is a highly object oriented 

application written in C++. Investigation of the code reveals that the library strongly relies 

on highly hierarchical abstract classes and polymorphism which were nor well supported 

by GPU. Furthermore libMesh code that is executed by single CPU thread is very complex 

in terms of branch operations. Because GPU execute kernels in SIMT pattern, in which 

each GPU thread enclosed in warp executes the same instruction at the same moment, 

branches have significant negative influence on performance. LibMesh uses also STL 

containers. The main problem is that STL containers use pointers extensively. When STL 

data structure is transferred to GPU memory addresses are copied instead. This results in 

error because GPU tries to refer to host memory which cannot be accessed directly by 

GPU. To solve the aforementioned issues libMesh architecture would have to be 

completely redesign the architecture of libMesh, however it would be an extremely time 

consuming and expensive project, not to mention that results still may be unsatisfying. 

Because of this, a hybrid approach that uses GPU and CPU is proposed in this paper. 

Second approach to enhance multiphysics simulation performance assumed porting 

to GPU only the most time consuming and highly parallel parts of libMesh. In this 

approach, named hybrid GPU/CPU, the application flow is very similar to original one: 

single CPU thread initializes simulation and spawns child threads, child threads work 

together via MPI and when done they return results to parent thread. The difference is when 

ported to GPU part of code is approached. In this situation child thread calls a GPU kernel 

thread that executes heavy computational part of application. Code reviews and profiling 

reveals that the best candidates to be reimplemented in GPU-enabled manner are linear 
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algebraic operators. To assess validity and performance boost preliminary research was 

conducted – selected operators were implemented in CUDA and their effectiveness were 

referred efficiency of corresponding CPU algorithms. The results proved outstanding 

performance of GPU approach; parallel were multiple times more efficient than GPU 

algorithms and the difference grew with size of problem. When implemented to 

multiphysics simulator the time required to finish the simulation was almost 18% shorter 

than original version. 

In third approach features from new CUDA programing model, namely Thrust and 

cuBLAS, were used. Thrust is the GPU version of STL whereas cuBLAS is GPU-enabled 

version of BLAS library. Since the work done in previous step resulted in custom GPU 

BLAS library, it seemed obvious that it should be referred to cuBLAS. All algorithms 

implemented in previous approach were reimplemented using cuBLAS methods and a 

number of experiments were conducted to evaluate the performance. As the results show 

cuBLAS was more efficient in certain cases especially for large scale problems. Therefore 

multiphysics simulator was updated to use more efficient cuBLAS operators instead of 

previously used GPU algorithms. In addition all instances of STL containers were replaced 

by Thrust containers so that some container-related methods, like sorting, could be 

executed by GPU. Upgrade to CUDA 6.5 brought even greater performance boots: the 

newest version of hybrid GPU/CPU approach was 5% faster than previous one and over 

13% faster than original CPU version. 

The investigation, research, and obtained results answer the research questions asked 

at the beginning of the dissertation: it is possible to redesigned existing multiphysics 
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simulator to run on GPU; changes does not affect existing applications that were build atop 

of it; furthermore GPU version may be more efficient than CPU version. Nevertheless 

stating that the new approach is undoubtedly beneficial and that it is safe to proceed with 

this approach may be risky. The main concern is relatively small performance gain which 

may be easily compromised by other factors that has to be considered before approach is 

implemented in large-scale and expensive supercomputer. 

One of them is fault-tolerance and resilience of application. In current state any 

random failure of even one thread results in termination of kernel and, as a result, 

termination of parent CPU process. Depending on configuration of CPU layer of 

multiphysics framework, in best case scenario the CPU thread can be relaunched or even a 

thread context can be restored from a checkpoint; in worst case scenario, however, whole 

simulation would fail. No matter which scenario occurs any GPU layer failure results in 

loss in execution time and therefore in performance drop. Resolving that issue is highly 

important task because single failure may neglect days of computations which rerunning 

causes loses in time and money. 

Second issue that is worth being investigated is cost effectiveness of new approach. 

GPUs have an opinion of being highly energy inefficient; supercomputers that consist of 

thousands of GPU consumes more power than equally efficient systems. This may lead to 

conclusion that each flops of GPU performance is more expensive. On the other hand, 

however, it is hard to achieve the performance of GPU using only CPU. Cost of adding 

new CPU nodes of performance equal to GPU modes is significantly higher. Furthermore 

one has to take into account context in which supercomputer is used. If multiphysics 
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simulation is the only or the main role of machine then switching to GPGPU may be 

reasonable. However when other applications are also ran on supercomputer than cost of 

redesign and implementation to support new hardware architecture has to be considered. 

Further work in this area may include finding solutions and answers to issues: cost 

effectiveness and fault-tolerance. A good idea would be to design and implement a 

mechanism that tracks the parameters of simulation and record the used method and 

performance. Results would help to determine which approach, hybrid or standard, offers 

better performance. It is also reasonable to experiment with GPU features, parallel 

programing frameworks, or kernel execution properties like different structure of thread 

grids or even a dynamic structure which shape depends on input data structures. Another 

promising alternative is to investigate libMesh and other modules architecture to discover 

other highly parallel parts of code or even whole blocks that can be ported to GPU without 

compromising their performance. Moreover it might be profitable to consider a hybrid 

hardware architecture that takes advantage of GPU, CPU, and other technologies like 

FPGA. One can also focus on developing intelligent and automated detection of these parts 

in code that can be efficiently migrated to these accelerators.  
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Appendix 1 

  input: Vectors y, x, both of size m, scalar al 
  output: Vector y of size m 

1 for (int i = 0; i < m; i++) 
2 { 
3  y[i] += x[i] * al 
4 } 

Algorithm 1. CPU SAXPY 

  input: Vectors y, x, both of size m, scalar al 
  output: Vector y of size m 

1 int id = blockIdx.x * blockDim.x + threadIdx.x; 
2 if (id < m) 
3 { 
4  y[id] += x[id] * al; 
5 } 

Algorithm 2. CUDA SAXPY 

  input: Vectors y, x, both of size m 
  output: Vectors y, x, both of size m 

1 for (int i = 0; i < m; i++) 
2 { 
3  float v = y[i]; 
4  y[i] = x[i]; 
5  x[i] = v; 
6 } 

Algorithm 3. CPU Vector Swap 
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  input: Vectors y, x, both of size m 
  output: Vectors y, x, both of size m 

1 int id = blockIdx.x * blockDim.x + threadIdx.x; 
2 if (id < m) 
2 { 
3  float v = y[i]; 
4  y[i] = x[i]; 
5  x[i] = v; 
6 } 

Algorithm 4. CUDA Vector Swap 

  input: Vectors y, x, both of size m 
  output: Vector y of size m 

1 for (int i = 0; i < m; i++) 
2 { 
3  y[i] += x[i]; 
4 } 

Algorithm 5. CPU Vector Addition 

  input: Vectors y, x, both of size m 
  output: Vector y of size m 

1 int id = blockIdx.x * blockDim.x + threadIdx.x; 
2 if (id < m) 
3 { 
4  y[id] += x[id]; 
5 } 

Algorithm 6. CUDA Vector Addition 

  input: Vectors y of size m, scalar al 
  output: Vector y of size m 

1 for (int i = 0; i < m; i++) 
2 { 
3  y[i] = y[i] * al; 
4 } 

Algorithm 7. CPU Vector-Scalar Multiplication 
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  input: Vectors y of size m, scalar al 
  output: Vector y of size m 

1 int id = blockIdx.x * blockDim.x + threadIdx.x; 
2 if (id < m) 
3 { 
4  y[id] = y[id] * al; 
5 } 

Algorithm 8. CUDA Vector-Scalar Multiplication 

  input: Vectors y of size m, scalar al 
  output: Scalar d 

1 for (int i = 0; i < m; i++) 
2 { 
3  d = x[i] * y[id]; 
4 } 

Algorithm 9. CPU DOT Product 

  input: Vectors y, x, both of size m 
  output: Scalar d 

1 int id = blockIdx.x * blockDim.x + threadIdx.x; 
2 if (id < m) 
3 { 
4  float v = x[id] * y[id]; 
5  atomicAdd(&d, v); 
6 } 

Algorithm 10. CUDA DOT Product 
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  input: Matrix A of size m×l, vector y of size m, vector x of size l, scalars al and be 
  output: Vector y of size m 

1 for (int i = 0; i < m; i++) 
2 { 
3  y[i] *= y[i] * be; 
4  for (int j = 0; i < l; i++) 
5  { 
6   y[i] += A[i * l + j] * x[j]; 
7  } 
8 } 

Algorithm 11. CPU GEMV 

  input: Matrix A of size m×l, vector y of size m, vector x of size l, scalars al and be 
  output: Vector y of size m 

1 int idA = blockIdx.y * blockDim.y + threadIdx.y; 
2 int idX = blockIdx.x * blockDim.x + threadIdx.x; 
3 if (idA >= m || idX >= l) 
4 { 
5  return; 
6 } 
7 if (idX == 0) 
8 { 
9  y[idA] *= be; 
10 } 
11 __ syncthreads(); 
12 float result = A[idA * l + idX] * X[idX] * al; 
13 atomicAdd(&Y[idA], result); 

Algorithm 12. CUDA GEMV 

  input: Matrices A, B, both of size m×l 
  output: Matrices A, B, both of size m×l 

1 for (int i  = 0; i < m; i++) 
2 { 
3  for (int j= 0; j < l; j++) 
4  { 
5   float v = A[i * l + j]; 
6   A[i * l + j] = B[i * l + j]; 
7   B[i * l + j] = v; 
8  } 
9 } 

Algorithm 13. CPU Matrix Swap 
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  input: Matrices A, B, both of size m×l 
  output: Matrices A, B, both of size m×l 

1 int idY = blockIdx.y * blockDim.y + threadIdx.y; 
2 int idX = blockIdx.x * blockDim.x + threadIdx.x; 
3 if (idA < m || idB < l) 
4 { 
5  idX += idY * l; 
6  float temp = A[idX]; 
7  A[idX] = B[idX]; 
8  B[idX] = temp; 
9 } 

Algorithm 14. CUDA Matrix Swap 

  input: Matrices A, B, both of size m×l 
  output: Matrix C of size m×l 

1 for (int i  = 0; i < m; i++) 
2 { 
3  for (int j= 0; j < l; j++) 
4  { 
5   A[i * l + j] += B[i * l + j]; 
6  } 
7 } 

Algorithm 15. CPU Matrix Addition 

  input: Matrices A, B, both of size m×l 
  output: Matrices A of size m×l 

1 int idY = blockIdx.y * blockDim.y + threadIdx.y; 
2 int idX = blockIdx.x * blockDim.x + threadIdx.x; 
3 if (idA < m || idB < l) 
4 { 
6  idX += idY * l; 
7  A[idX] += B[idX]; 
8 } 

Algorithm 16. CUDA Matrix Addition 
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  input: Matrix A of size m×l, scalar al 
  output: Matrix A of size m×l 

1 for (int i  = 0; i < m; i++) 
2 { 
3  for (int j= 0; j < l; j++) 
4  { 
5   A[i * l + j] *= al; 
6  } 
7 } 

Algorithm 17. CPU Matrix-Scalar Multiplication 

  input: Matrix A of size m×l, scalar al 
  output: Matrix A of size m×l 

1 int idY = blockIdx.y * blockDim.y + threadIdx.y; 
2 int idX = blockIdx.x * blockDim.x + threadIdx.x; 
3 if (idA < m || idB < l) 
4 { 
5  idX += idY * l; 
6  A[idX] *= al; 
7 } 

Algorithm 18. CUDA Matrix-Scalar Multiplication 

  input: Matrix A of size m×l 
  output: Matrix B of size m×l 

1 for (int i  = 0; i < m; i++) 
2 { 
3  for (int j= 0; j < l; j++) 
4  { 
5   B[j * l + i] = A[i * l + j]; 
6  } 
7 } 

Algorithm 19. CPU Matrix Transposition 
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  input: Matrix A of size m×l 
  output: Matrix B of size l×m 

1 int idY = blockIdx.y * blockDim.y + threadIdx.y; 
2 int idX = blockIdx.x * blockDim.x + threadIdx.x; 
3 if (idA < m || idB < l) 
4 { 
5  B[idX * l + idY] = A[idY * l + idX]; 
6 } 

Algorithm 20. CUDA Matrix Transposition 

 

 

  input: Matrix A of size m×l, matrix A of size l×n, matrix A of size m×n, scalars al, be 
  output: Matrix C of size m×n 

1 for (int i  = 0; i < m; i++) 
2 { 
3  for (int j= 0; j < n; j++) 
4  { 
5   C[i * n + j] *= C[i * n + j] * be; 
6   for (int k = 0; k < l; k++) 
7   { 
8    C[i * n + j] += A[i * l + k] * B[k * n + j] * al; 
9   } 
10  } 
11 } 

Algorithm 21. CPU GEMM 
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  input: Matrix A of size m×l, matrix A of size l×n, matrix A of size m×n, scalars al, be 
  output: Matrix C of size m×n 

1 int idB = blockIdx.x * blockDim.x + threadIdx.x; 
2 int idA = blockIdx.y * blockDim.y + threadIdx.y; 
3 if (idA >= m || idB >= n) 
4 { 
5  return; 
6 } 
7 int idC = idB + idA * n; 
8 idA *= l; 
9 float result = C[idC] * be; 
10 for (int i = 0; i < l; i++) 
11 { 
12  result += A[idA] * B[idB] * al; 
13  idA++; 
14  idB += n; 
15 } 
16 C[idC] = result; 

Algorithm 22. Simple CUDA GEMM 

 

 

 

 



A p p e n d i x  1    

121  

  input: Matrix A of size m×l, matrix A of size l×n, matrix A of size m×n, scalars al, be 
  output: Matrix C of size m×n 

1 int idB = blockIdx.x * blockDim.x + threadIdx.x; 
2 int idA = blockIdx.y * blockDim.y + threadIdx.y; 
3 if (idA >= m || idB >= n) 
4 { 
5  return; 
6 } 
7 int id_temp = threadIdx.x + threadIdx.y * blockDim.x; 
8 int offset = 0; 
9 float result = 0.0; 
10 extern shared float shared[]; 
11 float *tA = &shared[0]; 
12 float *tB = &shared[blockDim.x * blockDim.x]; 
13 while (offset < l) 
14 { 
15  tA[id temp] = tB[id temp] = 0; 
16  if (idA < m && offset + threadIdx.x < l) 
17  { 
18   tA[id temp] = A[idA * l + offset + threadIdx.x]; 
19  } 
20  if (idB < n && offset + threadIdx.y < l) 
21  { 
22   tB[id temp] = B[idB + (offset + threadIdx.y) * n]; 
23  } 
24  offset += blockDim.x; 
25  __ syncthreads(); 
26  for (int j = 0; j < blockDim.x; j++) 
27  { 

28   
result += tA[threadIdx.y * blockDim.x + j] *  
                tB[threadIdx.x + j * blockDim.x] * al 

29  } 
30  __syncthreads(); 
31 } 
32 if (idA < m && idB < n) 
33 { 
34  C[idB + idA * n] = C[idB + idA * n] * be + result; 
35 } 

Algorithm 23. Tiled CUDA GEMM 
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  input: Matrix A, B both of size m×m scalars al, be 
  output: Matrix C of size m×m 

1 for (int i  = 0; i < m; i++) 
2 { 
3  for (int j= 0; j < i; j++) 
4  { 
5   C[i * m + j] *= C[i * m + j] * be; 
6   for (int k = 0; k < m; k++) 
7   { 
8    C[i * m + j] += A[i * m + k] * B[k * m + j] * al; 
9   } 
10  } 
11 } 

Algorithm 24. CPU Left Triangular GEMM 

 

  input: Ma Matrix A, B both of size m×m scalars al, be 
  output: Matrix C of size m×m 

1 int idB = blockIdx.x * blockDim.x + threadIdx.x; 
2 int idA = blockIdx.y * blockDim.y + threadIdx.y; 
3 if (idA >= m || idB >= idA) 
4 { 
5  return; 
6 } 
7 int idC = idB + idA * m; 
8 idA *= m; 
9 float result = C[idC] * be; 
10 for (int i = 0; i < m; i++) 
11 { 
12  result += A[idA] * B[idB] * al; 
13  idA++; 
14  idB += m; 
15 } 
16 C[idC] = result; 

Algorithm 25. Simple CUDA Left Triangular GEMM 
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  input: Matrix A of size m×l, matrix A of size l×n, matrix A of size m×n, scalars al, be 
  output: Matrix C of size m×n 

1 int idB = blockIdx.x * blockDim.x; 
2 int idA = blockIdx.y * blockDim.y + threadIdx.y; 
3 if (idA < idB) 
4 { 
5  return; 
6 } 
7 idB += threadIdx.x; 
8 idA += threadIdx.y; 
9 if (idA >= m || idB >= n) 
10 { 
11  return; 
12 } 
13 int id_temp = threadIdx.x + threadIdx.y * blockDim.x; 
14 int offset = 0; 
15 float result = 0.0; 
16 extern shared float shared[]; 
17 float *tA = &shared[0]; 
18 float *tB = &shared[blockDim.x * blockDim.x]; 
19 while (offset < l) 
20 { 
21  tA[id temp] = tB[id temp] = 0; 
22  if (idA < m && offset + threadIdx.x < l) 
23  { 
24   tA[id temp] = A[idA * l + offset + threadIdx.x]; 
25  } 
26  if (idB < n && offset + threadIdx.y < l) 
27  { 
28   tB[id temp] = B[idB + (offset + threadIdx.y) * n]; 
29  } 
30  offset += blockDim.x; 
31  __ syncthreads(); 
32  for (int j = 0; j < blockDim.x; j++) 
33  { 

34   
result += tA[threadIdx.y * blockDim.x + j] *  
                tB[threadIdx.x + j * blockDim.x] * al 

35  } 
36  __syncthreads(); 
37 } 
38 if (idA < m && idB < n) 
39 { 
40  C[idB + idA * n] = C[idB + idA * n] * be + result; 
41 } 

Algorithm 26. Tiled CUDA Left Triangular GEMM 
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  input: Matrix A, B both of size m×m scalars al, be 
  output: Matrix C of size m×m 

1 for (int i  = 0; i < m; i++) 
2 { 
3  for (int j= i; j < m; j++) 
4  { 
5   C[i * n + j] *= C[i * n + j] * be; 
6   for (int k = 0; k < m; k++) 
7   { 
8    C[i * m + j] += A[i * m + k] * B[k * m + j] * al; 
9   } 
10  } 
11 } 

Algorithm 27. CPU Right Triangular GEMM 

  input: Matrix A, B both of size m×m scalars al, be 
  output: Matrix C of size m×m 

1 int idB = blockIdx.x * blockDim.x + threadIdx.x; 
2 int idA = blockIdx.y * blockDim.y + threadIdx.y; 
3 if (idA >= m || idB >= m || idB < idA) 
4 { 
5  return; 
6 } 
7 int idC = idB + idA * m; 
8 idA *= m; 
9 float result = C[idC] * be; 
10 for (int i = 0; i < m; i++) 
11 { 
12  result += A[idA] * B[idB] * al; 
13  idA++; 
14  idB += m; 
15 } 
16 C[idC] = result; 

Algorithm 28. Simple CUDA Right Triangular GEMM 
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  input: Matrix A of size m×l, matrix A of size l×n, matrix A of size m×n, scalars al, be 
  output: Matrix C of size m×n 

1 int idB = blockIdx.x * blockDim.x + blockDim.x; 
2 int idA = blockIdx.y * blockDim.y + blockDim.y; 
3 if (idA > idB) 
4 { 
5  return; 
6 } 
7 int idB = blockIdx.x * blockDim.x - blockDim.x + threadIdx.x; 
8 int idA = blockIdx.y * blockDim.y - blockDim.y + threadIdx.y; 
9 if (idA >= m || idB >= n) 
10 { 
11  return; 
12 } 
13 int id_temp = threadIdx.x + threadIdx.y * blockDim.x; 
14 int offset = 0; 
15 float result = 0.0; 
16 extern shared float shared[]; 
17 float *tA = &shared[0]; 
18 float *tB = &shared[blockDim.x * blockDim.x]; 
19 while (offset < l) 
20 { 
21  tA[id temp] = tB[id temp] = 0; 
22  if (idA < m && offset + threadIdx.x < l) 
23  { 
24   tA[id temp] = A[idA * l + offset + threadIdx.x]; 
25  } 
26  if (idB < n && offset + threadIdx.y < l) 
27  { 
28   tB[id temp] = B[idB + (offset + threadIdx.y) * n]; 
29  } 
30  offset += blockDim.x; 
31  __ syncthreads(); 
32  for (int j = 0; j < blockDim.x; j++) 
33  { 

34   
result += tA[threadIdx.y * blockDim.x + j] *  
                tB[threadIdx.x + j * blockDim.x] * al 

35  } 
36  __syncthreads(); 
37 } 
38 if (idA < m && idB < n) 
39 { 
40  C[idB + idA * n] = C[idB + idA * n] * be + result; 
41 } 

Algorithm 29. Tiled CUDA Right Triangular GEMM 




