
i

Use Authorization

In presenting this dissertation in partial fulfillment of the requirements for an advanced

degree at Idaho State University, I agree that the Library shall make it freely available for

inspection. I further state that permission to download and/or print my dissertation for scholarly

purposes may be granted by the Dean of the Graduate School, Dean of my academic division, or

by the University Librarian. It is understood that any copying or publication of this dissertation for

financial gain shall not be allowed without my written permission.

Signature_________________________

Date _____________________________

GPU Oriented Approach to Finite

Element Multiphysics Simulation

By

Dawid L. Krol

A Dissertation submitted in partial fulfillment of the

Requirement for the degree of

Doctor of Philosophy

in

Engineering and Applied Science

IDAHO STATE UNIVERSITY

May 2015

To the Graduate Faculty:

The members of the committee appointed to examine the dissertation of DAWID KROL

find it satisfactory and recommend that it be accepted.

Dr. Steve Chiu, Major Advisor

__

Dr. Dawid Zydek, Committee Member

__

Dr. Eugene Stuffle, Committee Member

__

Dr. Hossein Mousavinezhad, Committee Member

Dr. Jason Harris, Graduate Faculty Representative

iv

Dawid

Dedication

I dedicate this thesis to my beloved wife Joanna Bieganska. Back in 2012 she decided

to go through this wonderful but also demanding journey with me asking for nothing in

return. She is the most the most charming and kind person I have ever meet. She believe in

me unconditionally more than anyone else including myself. Thanks to her support and

help in almost every area on my life I was able to complete the Ph.D. program and to finish

the dissertation – I am sure that would not be able to do that without Joanna.

I would also like to extend the dedication to my parents – Grazyna and Kazimierz

Krol – for their support, helping hand, and weekly Sunday Skype calls. Knowing that you

have a place that you can call Home and to which you can come back no matter what

happens is one of the most comforting thing on Earth. I would also like to thank my parents

for being a role models for me a long before I knew what it means.

v

Dawid

Acknowledgement

Firstly I would like to thank Dr. Dawid Zydek – my first advisor at Idaho State

University and a person that made my Ph.D. program possible. Throughout all of these

years, and even after Dr. Zydek decided to follow other career path, he always had time to

answer my questions regarding research, address my concerns, or simply have a casual

conversation. Dr. Zydek has extraordinary and positive influence on my research and

thesis; he helped me greatly with all my publications. Every conversation we made was

very motivating and encouraging to make further effort. Aside from academia, Dr. Zydek

helped me a lot with making first step, or actually first few hundreds steps, in United States

of America. I will never forget how much Dr. Zydek did for me and I will be always

thankful for that and for his friendship.

I would also like to thank Dr. Steve Chiu who agreed to be my advisor for final year

of program. I am sure it was not an easy decision to take a responsibility for student in final

stage of research. Without his help I would never be able finish Ph.D. program. I am also

very grateful for all the time Dr. Chiu spent on answering my countless emails, helping

hand in number of academia and non-academia situations, and valuable advices regarding

A c k n o w l e d g e m e n t

v i

my future career in United States of America. At last but not at least I want to express my

gratitude for great influence on the direction and form of my research.

A special thanks Committee Members (listed in alphabetical order) for their time and

commitment: Dr. Jason Harris, Dr. Hossein Mousavinezhad, and Dr. Gene Stuffle. I am

very thankful for valuable input and inspiration they shared with me throughout 3 years of

my studies. I am also grateful for all their help and support in non-academia field. It was a

pleasure to meet and work along with such great researchers and brilliant minds – I will

never forget that experience.

I would also like to extend my personal thanks to Polish community from Pocatello:

Monika and Dawid Zydek, Eliza and Lukasz Borzadek, and Agnieszka and Piotr Lotowki.

Living thousands of miles away from home is never easy however thanks to all

aforementioned persons, holidays that we spent together, and time we shared I felt in Idaho

like at home. Thank you for being there all the time.

Finally I would like to thank Dr. Leszek Koszalka and Dr. Iwona Pozniak-Koszalka

- my advisors at the Wroclaw University of Technology. Their phone call on February 12,

2012 in which they asked “did I ever think about doing Ph.D. in United States of America”

was so alike scenario of Hollywood movie in which a dreams come truth within a minute.

I would never be able to full express how thankful I am for turning my life in that direction.

I am so glad and proud that Polish students have a privilege to meet such wonderful persons

like you.

vii

Dawid

Table of Contents

List of Figures .. ix

List of Tables ... xi

List of Abbreviations .. xii

Abstract .. xiv

Preface... 1

Research theses ... 4

Dissertation Overview .. 7

Chapter 1. Literature review ... 12

Chapter 1.1. Multiphysics Simulation .. 12

Chapter 1.2. General Purpose Graphic Processing Unit ... 22

Chapter 2. Examined approaches .. 33

Chapter 2.1. Pure GPU approach .. 33

Chapter 2.2. Hybrid GPU/CPU approach ... 36

Chapter 2.3. CUDA 6.5 enhanced hybrid GPU/CPU approach ... 38

Chapter 2.4. Limitations ... 39

Chapter 3. Algorithms ... 41

Chapter 3.1. Proposed algorithms ... 41

Chapter 3.2. cuBLAS operator ... 50

Chapter 4. Experiments ... 54

Chapter 4.1. Hardware configuration ... 54

Chapter 4.2. Plan of experiment ... 57

Chapter 5. Results ... 63

Chapter 5.1. Performance of Linear Algebra Operators ... 63

T a b l e o f C o n t e n t s

v i i i

Chapter 5.2. Performance of Multiphysics simulation ... 94

Chapter 6. Discussion ... 98

Conclusion .. 102

References ... 108

Appendix 1 .. 113

ix

Dawid

List of Figures

Figure 1. Generic multiphysics simulation system ... 13

Figure 2. Architecture of commercial simulators (ANSYS Multiphysics on the left,

COMSOL Multiphysics on the right) ... 15

Figure 3. MOOSE Multiphysics architecture ... 17

Figure 4. CUDA thread logical structure [54] .. 24

Figure 5. GPU architecture [54] .. 26

Figure 6. Standard CUDA program flow .. 37

Figure 7. Allocation method execution time... 64

Figure 8. AXPY operator performance (Thrust containers on the top, array containers on

the bottom) .. 65

Figure 9. Vector Swap operator performance (Thrust containers on the top, array

containers on the bottom).. 68

Figure 10. Vector-Scalar Multiplication operator performance (Thrust containers on the

top, array containers on the bottom) ... 70

Figure 11. Vector Addition operator performance (Thrust containers on the top, array

containers on the bottom).. 73

Figure 12. DOT Product operator performance (Thrust containers on the top, array

containers on the bottom).. 75

Figure 13. GEMV operator performance (Thrust containers on the top, array containers

on the bottom) ... 78

Figure 14. Matrix Swap operator performance (Thrust containers on the top, array

containers on the bottom).. 81

file:///C:/Users/Dawid/Documents/USA%20ISU/PHD/v1.docx%23_Toc416666661
file:///C:/Users/Dawid/Documents/USA%20ISU/PHD/v1.docx%23_Toc416666662
file:///C:/Users/Dawid/Documents/USA%20ISU/PHD/v1.docx%23_Toc416666662
file:///C:/Users/Dawid/Documents/USA%20ISU/PHD/v1.docx%23_Toc416666663
file:///C:/Users/Dawid/Documents/USA%20ISU/PHD/v1.docx%23_Toc416666664
file:///C:/Users/Dawid/Documents/USA%20ISU/PHD/v1.docx%23_Toc416666665
file:///C:/Users/Dawid/Documents/USA%20ISU/PHD/v1.docx%23_Toc416666666
file:///C:/Users/Dawid/Documents/USA%20ISU/PHD/v1.docx%23_Toc416666667
file:///C:/Users/Dawid/Documents/USA%20ISU/PHD/v1.docx%23_Toc416666668
file:///C:/Users/Dawid/Documents/USA%20ISU/PHD/v1.docx%23_Toc416666668
file:///C:/Users/Dawid/Documents/USA%20ISU/PHD/v1.docx%23_Toc416666669
file:///C:/Users/Dawid/Documents/USA%20ISU/PHD/v1.docx%23_Toc416666669
file:///C:/Users/Dawid/Documents/USA%20ISU/PHD/v1.docx%23_Toc416666670
file:///C:/Users/Dawid/Documents/USA%20ISU/PHD/v1.docx%23_Toc416666670
file:///C:/Users/Dawid/Documents/USA%20ISU/PHD/v1.docx%23_Toc416666671
file:///C:/Users/Dawid/Documents/USA%20ISU/PHD/v1.docx%23_Toc416666671
file:///C:/Users/Dawid/Documents/USA%20ISU/PHD/v1.docx%23_Toc416666672
file:///C:/Users/Dawid/Documents/USA%20ISU/PHD/v1.docx%23_Toc416666672
file:///C:/Users/Dawid/Documents/USA%20ISU/PHD/v1.docx%23_Toc416666673
file:///C:/Users/Dawid/Documents/USA%20ISU/PHD/v1.docx%23_Toc416666673
file:///C:/Users/Dawid/Documents/USA%20ISU/PHD/v1.docx%23_Toc416666674
file:///C:/Users/Dawid/Documents/USA%20ISU/PHD/v1.docx%23_Toc416666674

L i s t o f F i g u r e s

x

Figure 15. Matrix Addition operator performance (Thrust containers on the top, array

containers on the bottom).. 83

Figure 16. Matrix-Scalar Multiplication operator performance (Thrust containers on the

top, array containers on the bottom) ... 85

Figure 17. Matrix Transposition operator performance (Thrust containers on the top,

array containers on the bottom) .. 87

Figure 18. GEMM operator performance (Thrust containers on the top, array containers

on the bottom) ... 89

Figure 19. Triangular GEMM operator performance (Thrust containers on the top, array

containers on the bottom).. 92

file:///C:/Users/Dawid/Documents/USA%20ISU/PHD/v1.docx%23_Toc416666675
file:///C:/Users/Dawid/Documents/USA%20ISU/PHD/v1.docx%23_Toc416666675
file:///C:/Users/Dawid/Documents/USA%20ISU/PHD/v1.docx%23_Toc416666676
file:///C:/Users/Dawid/Documents/USA%20ISU/PHD/v1.docx%23_Toc416666676
file:///C:/Users/Dawid/Documents/USA%20ISU/PHD/v1.docx%23_Toc416666677
file:///C:/Users/Dawid/Documents/USA%20ISU/PHD/v1.docx%23_Toc416666677
file:///C:/Users/Dawid/Documents/USA%20ISU/PHD/v1.docx%23_Toc416666678
file:///C:/Users/Dawid/Documents/USA%20ISU/PHD/v1.docx%23_Toc416666678
file:///C:/Users/Dawid/Documents/USA%20ISU/PHD/v1.docx%23_Toc416666679
file:///C:/Users/Dawid/Documents/USA%20ISU/PHD/v1.docx%23_Toc416666679

L i s t o f T a b l e s

xi

Dawid

List of Tables

Table 1. cuBLAS methods and corresponding operators .. 51

Table 2. NVidia Tesla K40 and NVidia Quadro 5000 specification 55

Table 3. Hybrid simulators performance .. 96

L i s t o f A b b r e v i a t i o n s

xi i

Dawid

List of Abbreviations

 AMR - Adaptive Mesh Refinement

 BLAS – Basic Linear Algebra Subprograms

 BLT – Bioluminescence Tomography

 CAD – Computer-Aided Design

 CUDA – Compute Unified Device Architecture

 CPU – Central Processing Unit

 DCC – Digital Content Creation

 FE – Finite Element

 flops – floating point operations per second

 GPGPU – General Purpose Graphical Processing Unit

 GPU – Graphical Processing Unit

 GUI – Graphical User Interface

 HID – Human Interface Device

 HPC – High Performance Computing

 MOOSE – Multiphyscis Object Oriented Simulation Environment

 MPI – Message Passing Interface

L i s t o f A b b r e v i a t i o n s

xi i i

 PDE – Patrial Differential Equation

 PETSc – Portable, Extensible Toolkit for Scientific Computations

 SIMT – Single Instruction Multiple Threads

 SM – Streaming Multiprocessor

 STL – Standard Template Library

xiv

Dawid

Abstract

Multiphysics simulations, which involves a mathematical model of various

physics phenomena expressed using partial differential equations, are integral part

of projects and research conducted in number fields of science. It allows to gather

knowledge about model, predict future condition, and saves a lot of time and

money.

One of the most popular method of performing multiphysics simulation is a

Finite Element method. As a numerical method it can be run by computers.

Unfortunately large scale simulations require humongous amounts of computational

resources. Yet, even then simulation process may take many days or even weeks.

General Purpose Graphic Processing Unit (GPGPU) is a new approach in

high-performance computing that favorites highly parallel execution using hundreds

of thousands of low-performance GPU cores over classic thousands of high-

performance CPU executors. As the related work shows this approach can be very

beneficial when applied to certain category of problems.

A b s t r a c t

xv

The goal of the research was to enhance the performance of existing

multiphysics simulator by applying GPGPU model to it. It was important to

preserve the functionality of existing simulator and to keep the interfaces

unchanged so that applications built on it would not have to be modified.

To accomplish that goal three approaches were tested. In first of them it

was assumed that whole library will be redesigned and reimplemented to be

executed entirely by GPU. The approach led to failure because of highly object

oriented design of existing simulator, extensive usage of Standard Template

Library (STL) containers, and numerous branching instructions; all of these are

poorly supported by GPGPU. In the second approach hybrid GPU/CPU

implementation was proposed. All highly-parallel algebraic operators used by

simulator were reimplemented to run on GPU; as a result custom GPU BLAS

library was created. Results show that GPU/CPU approach was 10% faster than

classic CPU approach. In third approach custom BLAS library and STL containers

were replaced by cuBLAS library and Thrust containers, included in new release

of CUDA programming model, respectively. Results show further improvement in

terms of performance.

The research proves that reimplementing the existing multiphysics simulator

to run on GPU is possible and results in enhancing the performance of

simulation. Both the research and implementation are good starting point to

evaluate the cost effectiveness, energy efficiency, and fault tolerance of proposed

approach.

1

Dawid

Preface

“Mathematics is the language of nature” – this sentence was frequently said by

mathematics prodigy, gifted scientist and a brilliant mind – Maximilian Cohen – the main

protagonist of movie Pi from 1998 [1]. Quoted phrase is an entry point to his research,

which goal is to discover a universal pattern that describes the universe. Although the

concept of a comprehensive pattern or equation can be classified as math fiction,

assumption that “mathematics is the language of nature” might be quite probable thesis.

To support it one can refer to number of various papers and essays written throughout the

centuries and especially to texts from XX century. Galileo Galilei, an Italian physicist from

XVI century, wrote [2] that “philosophy [nature] … is written in mathematical language.”

Few hundred years later Sir James Jeans, British physicist, suggested in [3] that “God is a

Mathematician.” The most famous and influential essay, however, was written in 1960 by

Eugene Wigner – Noble Prize awarded physicist and mathematician. In the paper

commonly known as Unreasonable Effectiveness [4] author expressed the special role of

mathematics in modern fields of study and, what is the most important, pointed out how

mathematical concepts developed for certain case, are often applicable to problems that are

far from original context.

P r e f a c e

2

As an example author referred to Newton's law of universal gravitation which origins

in observation of free falling object on the surface of the Earth. The same law can be easily

adapted to describe forces generated between the planets. Later in the text Eugene Wigner

brought up Maxwell's equations that originally meant to model the magnetic and electric

phenomena. Almost 30 years later the same equations were used by David Hughes to

describe his new discovery [5] radio waves.

Traces of mathematics can be found everywhere. High school students apply simple

physic formulas, and therefore mathematics, calculate distance, velocity, and acceleration.

Undergraduate Sociology students data frequently refer to Gaussian distribution since

surprisingly often statistical data generated from surveys perfectly match the curve of

Gaussian function. Gaussian distribution as a tool was invented decades before the modern

social science [6]. Moreover the function contains number π which origins are in Ancient

Egypt and was used in completely different context [7]. Analogous situation can be

observed in Structural Engineering. Concepts like bending moments, compressions, or

slope and deflections were for centuries intuitively understated by firsts masons or builders.

When physical background of these concepts were finally discovered by Leonardo da Vinci

in late XV century and developed by his successors, like Leonhard Euler [8], in XVIII

century it appeared that mathematical background already exists. Following that path even

further one can observe similar tendency in quantum mechanics and string theory. First of

them uses complex numbers which in 1545 century were just a trick to find real roots of

certain polynomial equations [9], second is based on created in 1813 non-Euclidean

geometry which was treated like a joke until 1914 – the beginning of string theory era.

P r e f a c e

3

All of these examples allow to presume that mathematics impersonates reversed

visionary. In thesis author's personal opinion visionaries, rather that foreseeing future, are

setting a flag that is later pursued by scientists and engineers around the world. If so then

mathematics may be compared to ready solution that is waiting for a visionary to foresee

an application for it. This scenario is also applicable to partial differential equations and

multiphysics simulation.

4

Dawid

Research theses

Throughout last two decades an attention of researchers from various fields of

science is turned at mathematical models and multiphysics simulation. Modern computer

simulation and Computer Aided Design allows engineers from different fields to increase

the effectiveness of their work and research. This trend is not surprising since multiphysics

simulation is crucial for almost every civil engineer project, automobile design facility,

chemical laboratory, and nuclear power plant.

Simulation helps to improve the understanding of functionality and behavior of a

model. Using models allows prediction of future conditions and foreseeing possible issues.

Very often simulating a model is the only potion of a problem that can be solved.

Furthermore, multiphysics simulation, saves a lot of time, energy, and subsequently,

money.

Unfortunately when one is willing to apply multiphysics simulation to very complex

model then he may quickly hit the performance barrier. In fact increasing complexity of

model causes rapid growth in computational resources consumption. As a result complex

simulations are a domain of research facilities equipped with extremely expensive

R e s e a r c h t h e s e s

5

supercomputers. Although manufactures release more and more advanced supercomputers

the “appetite” for computational power of scientists is unsatisfied. The answer for this

problem may be seek in modern technologies that break up with old approaches to

computations. Such an approach is General Purpose Graphical Processing Unit approach.

The idea of GPGPU assumes using modern Graphical Processing Units to perform

general purpose computing. GPU is composed of a number of independent multiprocessor

units called Streaming Multiprocessors. SMs execute in parallel thousands of instances of

code called kernels. Although a single processor within a SM does not provide high

performance and the single thread is not executed as fast as it would be on a modern Central

Processing Unit, the ability to execute a massive number of threads in parallel gives GPU

exceptional performance. This observation and assumption lead to the hypothesis that:

Applying GPGPU to multiphysics simulation may results in

shortening simulation time while keeping the same results.

Hypothesis stated in that way is generic and there are many ways to confirm it or to

prove it wrong. To start witch one can choose from different GPU manufacturers which

may and will have an impact on performance, power consumption, and accurateness.

Moreover brand of device can dictate the programming model – GPUs produced by AMD

can execute code written in OpenCL whereas NVidia GPUs can, as for today, execute both.

To continue, underlying hardware enforces developers to focus on different architecture-

specific aspects crucial to use computational resources of GPU in full. Secondly one may

want to work on a specialized simulator that can be applied to a small domain – e.g. heat

R e s e a r c h t h e s e s

6

transfer – or develop framework that can be applied to wider spectrum of simulations.

Finally GPGPU approach may be a starting point to implement new multiphysics simulator

or applied to existing software. In first scenario program can be tailored to underlying

architecture and therefore very effective; in second scenario framework design may

compromise the performance however all application already build on the framework will

remain functional. To narrow the scope of research three questions were asked:

 Is it possible to re-implement existing multiphysics simulation

framework without affecting existing software build on the

framework?

 Will the GPGPU approach results in better performance of

multiphysics simulation framework?

 Would the potential performance gain be worth of time and money

required to re-implement and test thoroughly the framework and

provide required hardware?

These research questions point the direction in which research will be leaded and

endorse the goal of the research.

Enhance the performance of existing multiphysics simulator by

applying General Purpose Graphical Processing Unit model to it.

Scope of the research specified in that way makes it accomplishable in reasonable

period of time and, in the same time, does not affect the generality of consideration.

7

Dawid

Dissertation Overview

a. Content of the Dissertation

Following dissertation is divided into six main chapters. The order of chapters and

sub-chapters reflect the order in which the study and the research were conducted. This

manuscript covers both successful ideas but also concepts that failed. The dissertation

consist of:

Chapter 1: Literature review – this section is divided into two sub-chapters. First one

covers the topic of multiphysics simulation with emphasis put on Finite Element method

concept and implementations. Second part is focused on GPGPU technology related to

CUDA and CUDA-enabled hardware. Each sub-chapter consist of introduction to basic

concepts and literature review of the corresponding topic. Literature review part presents

other research in which concepts touched in this thesis were considered, describes benefits

and limitations of these approaches, and exhibit related work which is goal similar to the

one set in this research.

Chapter 2: Examined approaches – in this section all examined approaches to speed-

up simulation time were explained. In first sub-chapter holistic approach is presented. In

D i s s e r t a t i o n O v e r v i e w

8

this approach it was assumed that the complete process, that single CPU thread executes,

can be translated to CUDA and launched by a single GPU thread. The design problems,

architecture limitations, and major obstacles to accomplish the goal in this way were

presented. Second sub-chapter is focused on hybrid CPU/GPU approach in which heavy

computational parts of code were ported to CUDA and tailored into multiphysics

framework as a layer between framework and hardware. The concept, advantages, and

drawbacks of the approach were discussed. In last part of the chapter hybrid approach

modified to use in-build libraries from the newest CUDA release was presented. New

CUDA programming model includes number of libraries which may be very beneficial, in

terms of performance and code robustness, to implement especially that it would not affect

the idea of hybrid approach. It is enough to modify mentioned earlier layer between

multiphysics framework and hardware. Therefore no further modifications in multiphysics

framework itself would be required.

Chapter 3: Algorithms – in this chapter all methods designed and implemented were

presented. Each method, and approaches to implement it, is considered in separate sub-

chapter in which appropriate description, implementation details, and CUDA code is

presented. Performance of parallel GPU application relies heavily on used technique and

problem it is applied to – mechanisms that work great for certain problems may have

terrible performance for others. Therefore every method was implemented in more than

one way in order to examine different concepts and techniques. Different implementations

are considered in sub-chapter specific to the method they implement.

D i s s e r t a t i o n O v e r v i e w

9

Chapter 4: Experiment environment – this chapter describes the environment in

which experiment were carried out. The detailed hardware configuration of machines used

in the research was presented; the differences between them was described and detailed

explanation on key differences was provided. In this section crucial concerns that follows

every performance tests were discussed. Among others special attention was paid to

external nondeterministic factors that may have negative influence in results. Because of

that steps to reduce the noise and techniques to filter out remaining noise were proposed.

The general plan of experiment was expressed using simple mathematical formulas. The

details of test cases – like size of matrices that are about to be multiplied – are provided

together with results in next chapter.

Chapter 5: Results – in this section obtained results were presented and briefly

discussed. Performance evaluation was grouped in four sections. In first two of them hybrid

CPU/GPU approach was considered. Firstly effectiveness of CUDA-enabled algorithms

were evaluated and referred to performance of corresponding CPU algorithms; second the

algorithms were introduced to simulation framework and performance of whole system

was inspected. In second two subsections analogous scenario was used. First CUDA-

-enabled algorithms were implemented using features of new CUDA programming model

are implemented into simulation software. Their efficiency was referred to previous results.

Second multiphysics simulator was modified and compared to previous version of the

application. Also in this chapter accurateness of GPU algorithm was assessed and

compared to accurateness of CPU algorithm.

D i s s e r t a t i o n O v e r v i e w

10

Chapter 6: Discussion – in this chapter results obtained from the experiments are

discussed. Performance of GPU-enabled algorithms were assessed by comparing

efficiency of different versions of the same method to each other and to effectiveness of

classic CPU method. Later on the performance of proposed algorithms were compared to

performance corresponding algorithms from commercial library supplied with new version

of CUDA framework. Furthermore the behavior of every algorithm is discussed together

explaining the reasons of why some algorithms are better than others. In this section it is

also discussed how selection of CUDA algorithms may affect overall multiphysics

simulation performance. It is also described why in certain cases hybrid GPU/CPU

approach results in performance loss and what requirements have to be fulfilled in order to

enhance the performance.

Conclusion – in last section of this dissertation a brief summary of conducted work

was presented. In this section advantages and disadvantages of proposed approach are

presented and the answers for research questions are formulated. In this part guidelines

regarding future work are presented, aspects that were omitted in this manuscript but are

worth or even must be considered are pointed out, and limitations are discussed. Also the

thesis of the dissertation is reevaluated in terms of initial expectations, observations,

results, and limit of proposed approach.

b. Self –Citations

The following papers played important role and contributed to research presented in

this dissertation and contributed:

D i s s e r t a t i o n O v e r v i e w

11

 Solving PDEs in Modern Multiphysics Simulation Software [10]: presents the

concept of multiphysics simulation in HPC. It focuses on the architecture of

multuphysics simulators and underlying libraries. In this paper code analysis

of libMesh was conducted.

 Matrix Multiplication in Multiphysics Systems Using CUDA [11]: first

implementation of CUDA algorithm that later was composed, together with

other methods, custom GPU BLAS library were presented and evaluated in

terms of efficiency.

 Hybrid GPU/CPU Approach to Multiphysics Simulation [12]: first iteration

of GPU-enabled libMesh library is proposed. Instead of one-to-one

translation from CPU thread to GPU thread hybrid approach is proposed.

 Eff ectiveness evaluation of cuBLAS and Thrust CUDA 6.5 libraries [13]:

alternative implementation of previously proposed GPU-enabled BLAS

operator was presented in this paper. It was an entry point for proposing

second iteration of libMesh library implementation that uses cuBLAS

operators and Thrust data structures

 Problem-Independent Approach to Multiprocessor Dependent Task

Scheduling [14]: points out importance of parallel processing and importance

of proper job management in HPC environment

L i t e r a t u r e r e v i e w

12

Dawid

Chapter 1

Literature review

Chapter 1.1. Multiphysics Simulation

Multiphysics simulation is a complex process that requires significant time and

computational resources. It involves a number of physical phenomena usually described

by PDEs – the process of multiphysics simulation is therefore equivalent of solving system

of PDEs. Currently one of the most popular approaches to solve PDEs is the FE method.

The method was originally developed in 1943 by A. Hrennikoff and R. Courant, it gained

popularity in 1960 when applied to the problem of electromagnetic wave propagation [15].

Simulations are widely applied in most major fields of science and business like nuclear

power plants, civil engineering, and automotive. Very soon after FE-based simulation

become popular market responded with wider variety of multiphysics simulation software

like COMSOL Multiphysics or ANSYS Multiphysics, but also open source software like the,

MOOSE Framework.

Engineers and scientists are eager to use new technologies that may offer promising

possibilities for performing simulations faster and easier. Although these aforementioned

applications can be easily used on a typical modern personal computer, more advanced

L i t e r a t u r e r e v i e w

13

simulations that incorporate a significant number of physics phenomena requires very

precise results. These simulations are performed on meshes assembled from millions of

shapes and require an enormous amount of computational resources. Resources are, as

usual, limited and because of that researchers search for simulation framework that suits or

can be accustomed to suit their needs.

a. Generic approach to mult iphysics simulation

The general simulation approach used in most of FE-based simulators can be

presented by diagram in Figure 1 [10]. The process starts with defining mathematical

model of multiphysics phenomena problem with corresponding properties and expressing

it in manner required in underlying framework. This step is performed in first layer of

Multiphysics
Module

Parallel Comp.
Framework

Finite Element
Library

Solvers

Figure 1. Generic multiphysics simulation

system

L i t e r a t u r e r e v i e w

14

generic simulator diagram called Multiphysics Model. Top level layer provides user a set

of helper functions, methods to import data from CAD applications, or very often a

graphical interface in which user can assemble model and set appropriate properties. Input

data is the passed to Parallel Computational Framework. By definition each framework is

a set of more or less compound wrapper functions that group calls of generic methods from

underlying libraries in order to provide easy access to problem specific system. In this

scenario second layer of simulation system is responsible for preprocessing of input data

and parameters; base on that appropriate simulation plan, data structures, monitoring

procedures, and thread pool are created. Finally the simulation is started and, from this

point, is performed by FE library and FE solver [10]. Another role of Parallel

Computational Framework is maintaining the contact with user and informing about status

of the simulation. A popular approach to handle communication is through console log.

The next layer, FE library, handles the simulation. This layer supplied the framework with

utilities to perform FE based computations like input/output mechanics for meshes, error

handling protocols, and interfaces to solver packages. It is also responsible for managing

parallel processing across multiple computational nodes. Last layer is a Solver layer which

consists of set methods that solves systems of differential equations, BLAS operators, and

basic data structures with associated primitives [16]. The layer is responsible for solving

an actual set of PDE provided by FE library in efficient way; because of its proximity to

hardware it often provides implementation MPI and profiling tools. Results generated by

Solvers are passed back to FE library which proceeds to next step of simulation or prepares

the output and transmit it to higher layers.

L i t e r a t u r e r e v i e w

15

b. Commercial multiphysics simulators

Currently there are two leading commercial multiphysics simulation systems:

COMSOL Multiphysics and ANSYS Multiphysics. Both are an interactive environment for

modeling and solving various scientific problems based on PDEs using FE method.

Applications offer a user friendly interface – multiphysics module – that speeds up defining

of problem and simulation parameters. Both applications provide number of API and

plugins that allow to integrate simulator with custom applications written in most major

programming languages including MATLAB or to import data from CAD applications.

COMSOL and ANSYS are widely used in areas like acoustics, heat transfer, photonics, and

structural mechanics [17] [18]. Moreover, as the documentation points out, their

architecture – Figure 2 – has very close resemblance to generic model presented in

Multiphysics
Module

Application Modes

FE Modes

Solvers Modes

Multiphysics
Module

Application Modes

Solvers Modes

Figure 2. Architecture of commercial simulators (ANSYS

Multiphysics on the left, COMSOL Multiphysics on the

right)

L i t e r a t u r e r e v i e w

16

Figure 1. Both simulators provides satisfying performance and wide spectrum of

appliances, however there are cases when more flexible, problem specific, and scalable

solution is required – this is when custom frameworks like MOOSE becomes handy.

c. MOOSE Multiphysics

MOOSE is created and developed at INL. It is the multiphysics parallel

computational framework used for solving computational engineering problems.

Application was designed to reduce time and expense, required to develop new software,

and to perform simulation in organized, manageable, and coordinated manner. MOOSE

can be used, similar to its commercial competitors, in areas like heat conduction, fluid flow,

solid mechanics, thermo-mechanics, and many others [19]. Originally a government

application, it went open source on March 21st, 2014 [20]. Since then popularity of

packages MOOSE is built on and MOOSE itself is growing in academia.

MOOSE allows performing up to 3D analysis. System is capable of using

unstructured mesh that is built from shapes such as triangular, quadrilateral, tetrahedral,

prism, and others. Framework also provides developers huge variety of post processing

options [19]. All MOOSE functions can be performed in parallel in CPU cluster, e.g. at

INL system the framework is used on supercomputer that number of cores is counted in

thousands. Currently MOOSE supports Jacobian-free Newton–Krylov method with

Physics-Based Preconditioning for solving tightly coupled multiphysics modules [21].

L i t e r a t u r e r e v i e w

17

MOOSE is an object oriented FE-based framework. This means that framework does

not enforce use of integrated FE libraries or solvers (system can use any FE library

available and best solvers peculiar to the selected library). In MOOSE, interfaces to one

FE library (libMesh) and two solvers (PETSc and Trilinos) are provided; however, the

framework is capable to use any other FE-based software. The structure to solve

multiphysics problems using MOOSE is shown in Figure 3 [10].

As it can be seen MOOSE architecture matches generic ideally. Multiphysics Model

layer of MOOSE framework is an application written by user based on methods provided

by MOOSE. In this layer input data like mesh of an object and list of properties has to be

specified. MOOSE layer is an interface between user code and FE library; it initializes all

underlying data structures, preprocess and validates input, and starts the simulation.

Multiphysics
Module

MOOSE

libMesh

PETSc Trilinos

Figure 3. MOOSE Multiphysics architecture

L i t e r a t u r e r e v i e w

18

LibMesh, as the method of weighted residuals, processes the FE computations after

receiving the weak form of PDEs from MOOSE. Solver, as a tool finding PDEs’ solutions,

can be subset of FE Library for providing large scale parallel computing resources [10].

LibMesh is frequently used, especially after MOOSE went open source, in academia

and commercial researches from vast variety of field of science. In [22] author simulated

random initiation and subsequent propagation of interacting thermal cracks in a ceramic

nuclear fuel pellet using coupled mechanics, heat conduction, and fracturing. The

simulation allowed to precisely demonstrate the formation of cracks during the initial

power rise and power ramp downs. A problem of estimating a hydrogen behavior and

distribution in nuclear fuel rod was considered in [23]. LibMesh, as a part of MOOSE

framework, was applied to model composed of diffusion under concentration gradient and

temperature gradient. The simulations predicted that hydrogen tends to accumulate on

colder areas right before it precipitates and as a result degrade the cladding ductility.

d. l ibMesh

The libMesh is a framework that uses arbitrary unconstructed discretization for

numerical simulations of partial PDEs. First version of application was developed at the

University of Texas at Austin in 2002. However, a major contribution in developing

libMesh throughout ages came from INL, MIT, and PECOS Center [24].

The libMesh library was designed and implemented to simply parallel, adaptive, and

multiscale multiphysics FE simulations. Designers wanted to achieve that by centralizing

physics independent technology to support parallel and adaptive unstructured mesh-based

L i t e r a t u r e r e v i e w

19

simulations. This approach allows users to focus on the specifics of a given application

without considering the complexities of parallel and adaptive computing. Thanks to that

libMesh proved a robust environment for a wide range of physical applications [10].

The library uses AMR in FE simulations. AMR can produce efficient meshes for

refining solution through the coarsely resolved base-level regular Cartesian grid [25].

Framework supports 1D, 2D, and 3D simulations on big variety of geometric and FE types.

The library provides interfaces to libraries that perform linear algebra computations,

meshing, and partitioning.

Although the simulation is already performed in parallel with MPI on multiprocessor

supercomputers, large scale simulations of models represented by a multimillion cell mesh

still calls for more computational power. Since the frequency boundary of the CPU was

almost reached, the only solution is to increase the number of computational nodes.

However, upgrading existing supercomputers by adding new CPUs is very pricey and the

increase of performance may be relatively small compared to the cost of modernization. IT

seems that using GPGPU might be beneficial in this case however according to

documentation no GPU support is provided and is not planned to be provide in the nearest

future [24] [12].

e. PETSc

PETSc is a suite of data structures and methods designed for the scientific

applications modeled by PDE. Library supplies developers with building blocks for the

implementation of large-scale application executed, in parallel as well as in series, by

L i t e r a t u r e r e v i e w

20

computers [26]. PETSc includes a suite of parallel linear, nonlinear equation solvers and

time integrators. Components may be used in custom applications written in most major

programming languages like FORTRAN, C/C++, Python, or MATLAB1. Through

implemented MPI standard for all message-passing communication, PETSc provides many

of the mechanisms needed within parallel application [27]. The library is organized

hierarchically and by that enables users to employ the level of abstraction that is most

appropriate for a particular problem [10].

PETSc consists of a variety of libraries. Each library implements certain family of

objects and methods related to that object. Object form a hierarchy that enforces user to

follow specified order of execution and to use only classes required by the simulation.

Modules provided by PETSc are as follows: index sets for indexing into vectors,

renumbering, etc.; vectors and matrices as a basic data storage with basic operators and

subroutines; managing interactions between mesh data structures and vectors and matrices;

over fifteen Krylov subspace methods; number of preconditioners, including multigrid,

block solvers, and sparse direct solvers; nonlinear solvers; time steppers for solving time-

dependent nonlinear PDEs including support for differential algebraic equations [28].

f . Tril inos

The developer of Trilinos – Sandia – historically did a work in area of developing

scalable solver algorithms and software. Their software, however, was often enclosed

within single context of a specific application code, providing a good robust solver that

1 MATLAB supports only sequential execution of PETSc

L i t e r a t u r e r e v i e w

21

specifically meets the needs of that application. The best example is Aztec, solver

developed for MPSalsa project and only later extracted for use with other applications.

Despite robustness of the solutions, applications were rarely reused in different projects

and for different purposes. Therefore at some point developers decided to create a library

of various project that would have a wide spectrum of appliances in different areas of

scientific experiments – that decision set the cornerstone for Trilinos project [29].

Trilinos is the library of packages for solving the large-scale and complex

multiphysics problems [30]. Application supports number of linear, nonlinear, and

eigenvalue problems. Trilinos differs from PETSc, which has independent packages. In

fact, Trillions could easily use PETSc to provide a variety of capabilities through the

documented abstract interfaces without modifying their source code [31]. In addition,

Trilinos supports also external solvers, like PETSc, by supplying users with interfaces.

Therefore application can be used also as a framework placed between FE library and

solver. Each Trilinos’ package is the independent unit implemented using a particular

algorithm [10].

Trilinos provides packages like nonlinear solvers like NOX, LOCA, and GlobiPack;

linear solvers e.g. AztecOO, Belos, and Komplex; eigensolver Anasazi; preconditioners

like Meros, ML, Ifpack; Basic Linear Algebra module Epetra and Jpetra implemented in

C++ and Java respectively; common services package Teuchos.

L i t e r a t u r e r e v i e w

22

g. Conclusion

As the documentation points out both Trilinos and PETSc support MPI, shared

memory pthreads, and GPUs through CUDA or OpenCL. PETSc supports also MPI-GPU

parallelism. Therefore FE solvers layer is rather unlikely to be an obstacle to overcome

when porting the simulator to GPU. Because of that these packages will not be considered

in this thesis, however their GPU capabilities will be used in experiment that assess the

effectiveness of redesigned multiphysics simulator.

Chapter 1.2. General Purpose Graphic Processing Unit

Throughout last couple years the area of HPC experienced a rapid and effective

changes in field of both software and hardware. According to TOP 500 ranking the most

powerful machine, ranked in June 2013 [32], has twice as much computational power as

previous, ranked in November 2012, leader. Such a humongous progress in terms of

computational resources originates from current trend to relay on highly parallel processing

rather that relatively small cluster of high-frequency CPUs. In 2012 a version 3 of MPI

standard [33], used by nearly every supercomputer, was approved. A year later, in June

2013, new version of another notable API - OpenMP - was released [34]. OpenMP focuses

strongly on shared memory multicore processing and fill the niche left by MPI. A milestone

in HPC, however, was introducing General Purpose Graphical Processing Unit. Concept

assumes that parallel execution by thousands of low performance cores gives better result

that executing the same program by just few high performance CPU. The cornerstone of

idea is the limitations that hardware engineers approached. Moore’s Law states that the

L i t e r a t u r e r e v i e w

23

number of transistors located in a dense integrated circuit doubles every two years [35].

However increasing quantity of transistors placed on the same area eventually cause major

growth of temperature. This lead to malfunctions or even irreversible damage. Therefore

the answer to demand for computational power was to process in parallel.

In GPGPU SMs, that GPU consists of, are capable of executing enormous number

of threads and therefore act as a cluster of low performance cores. The idea appeared to be

so good that in 2010, soon after NVidia released parallel computing platform named

CUDA, GPGPU revolutionized and dominated the market of HPC. As the TOP500 ranking

shows in June 2010 only one supercomputer ranked in TOP 5 of the ranking was using

GPU whereas in November 2010 three machines from TOP 5 (including the leader that

doubled performance of his predecessor) relied on GPU [32]. Market responded almost

immediately and main NVidia competitors on hardware market – AMD (that acquired ATI

in 2006) and Intel - released their solutions – AMD Radeon GPU with OpenCl and Intel

Xeon Phi. Both companies quickly caught up nevertheless NVidia still remains the leader

due to new cutting-edge devices, extensive support, and new releases on CUDA

framework.

a. CUDA programming model

From developer point of view kernel is a single, usually short, function that is

executed by GPU threads. Thread is the most basic execution structure in GPU

environment. Kernels are written in CUDA language which is a C++ with minimal

L i t e r a t u r e r e v i e w

24

extensions; nonetheless it is important to remember that not all C++ features are supported

by GPU kernels.

When kernel is called one has to explicitly specify how many threads are assigned to

it; each thread assigned to kernel will execute exactly the same code. Threads are grouped

in one-, two-, or three- dimension blocks. Each thread within a block of threads can be

identified by properties𝑡ℎ𝑟𝑒𝑎𝑑𝐼𝑑𝑥. 𝑥, 𝑡ℎ𝑟𝑒𝑎𝑑𝐼𝑑𝑥. 𝑦, and 𝑡ℎ𝑟𝑒𝑎𝑑𝐼𝑑𝑥. 𝑧; these properties

are coordinates of thread. The property is always defined; when block is one-dimensional

only then 𝑡ℎ𝑟𝑒𝑎𝑑𝐼𝑑𝑥. 𝑦, and 𝑡ℎ𝑟𝑒𝑎𝑑𝐼𝑑𝑥. 𝑧 will be 0. Block x-, y-, z-dimension may be

retrieved by calling 𝑏𝑙𝑜𝑐𝑘𝐷𝑖𝑚. 𝑥, 𝑏𝑙𝑜𝑐𝑘𝐷𝑖𝑚. 𝑦, and 𝑏𝑙𝑜𝑐𝑘𝐷𝑖𝑚. 𝑧 respectively. Logical

structure of thread mesh is presented in Figure 4. Maximal possible dimensions of block,

as well as maximum number of threads within a block, are dictated by CUDA capability

of used GPU [11].

 Grid of blocks

Block(0,0) Block(0,1)

Block(1,0) Block(1,1)

Block(2,0) Block(2,1)

Block(3,0) Block(3,1)

 Block of threads

Thread(0,0) Thread(0,1)

Thread(1,0) Thread(1,1)

Thread(2,0) Thread(2,1)

Figure 4. CUDA thread logical structure [54]

L i t e r a t u r e r e v i e w

25

Blocks of threads forms another structure called grid. Similar to block, grids may

have up to three dimensions. Each block is identified by its coordinates: 𝑏𝑙𝑜𝑐𝑘𝐼𝑑𝑥. 𝑥,

𝑏𝑙𝑜𝑐𝑘𝐼𝑑𝑥. 𝑦, and 𝑏𝑙𝑜𝑐𝑘𝐼𝑑𝑥. 𝑧; maximal dimensions of block and maximal allowed number

of threads within a block are related to CUDA capabilities of GPU. Threads within one

block share one SM and one portion of memory. It allows to cooperate with each other to

speed up execution of kernels.

As it was aforementioned each thread executes exactly the same part of code.

Therefore the factor that distinguish the obtained result is where the thread is located. Base

on block coordinates, block dimensions, and thread coordinates it is possible to calculate

absolute coordinates of thread within an entire execution logic structure. Traditionally the

absolute coordinates of thread are named 𝑖𝑑𝑋, 𝑖𝑑𝑌, and 𝑖𝑑𝑍 can be calculated from

equations (1), (2), and (3). The coordinates, distinct for different threads, differentiates the

context under which thread runs.

𝑖𝑑𝑋 = 𝑏𝑙𝑜𝑐𝑘𝐼𝑑𝑥. 𝑥 ∙ 𝑏𝑙𝑜𝑐𝑘𝐷𝑖𝑚. 𝑥 + 𝑡ℎ𝑟𝑒𝑎𝑑𝐼𝑑𝑥. 𝑥 (1)

𝑖𝑑𝑌 = 𝑏𝑙𝑜𝑐𝑘𝐼𝑑𝑥. 𝑦 ∙ 𝑏𝑙𝑜𝑐𝑘𝐷𝑖𝑚. 𝑦 + 𝑡ℎ𝑟𝑒𝑎𝑑𝐼𝑑𝑥. 𝑦 (2)

𝑖𝑑𝑍 = 𝑏𝑙𝑜𝑐𝑘𝐼𝑑𝑥. 𝑧 ∙ 𝑏𝑙𝑜𝑐𝑘𝐷𝑖𝑚. 𝑧 + 𝑡ℎ𝑟𝑒𝑎𝑑𝐼𝑑𝑥. 𝑧 (3)

To conclude the developer point of view, the general idea of parallel programming

is to visualize the problem as a mesh of smaller sub problems and to overlay a logical

structure of threads onto it so that threads are mapped to sub problems. The general rule

that can be applied to most cases is that to divide the problem as much as possible and

L i t e r a t u r e r e v i e w

26

employ as many threads as feasible in order to increase performance and level of

parallelism.

b. GPU architecture

Figure 5 presents the hardware architecture of GPU. GPU consists of set of

Streaming Multiprocessors and global memory; each SM is built on set of interconnected

processors, instruction unit, and additional levels of memory.

Each block of threads is assigned to a single SM and is executed entirely within a

context of that SM. Although one SM may host more than one block of threads, one block

cannot be split among multiple SM. Each SM is equipped with scheduler. It is responsible

for scheduling bathes of threads, called warps, to processors within the SM. Size of warp

is number of threads that will be executed in parallel by SM. Currently size of warp is 32,

 Device

Device memory

 SM n

 SM 2

 SM 1

Shared memory

Reg
 Processor 1

Reg
 Processor 2

Instruction
Unit

Reg
 Processor m

 Constant Cache

 Texture Cache

Figure 5. GPU architecture [54]

L i t e r a t u r e r e v i e w

27

nonetheless it is very likely to be changed in oncoming generations of GPU [11]. Each

thread is executed by a single processor, therefore size of warp is also number of

processors, sometimes called CUDA cores, within one SM. It allows to calculate number

of SM in GPU by simply dividing number of processors, provided by GPU datasheet, by

warp size.

GPU executes threads in SIMT manner. It means that an instruction unit, shared by

all processors within SM, issues one and the same instruction at a time to each processor.

In CUDA programming model, presented in Figure 5, three types of memory are

distinguished. First of them is global device memory – the main memory of the device.

Usually it is implemented using DDR5 RAM. It can be accessed by every thread from

every block. Because of large number of threads that can access this storage at Global

memory is slow and therefore it is not recommended to store frequently accesses data there

[36].

Second memory type is shared memory. This memory resides in SM and some part

of the memory is assigned to a single block executed by SM. This part of memory can be

accessed only by threads from block to which memory was assigned. It is very fast and

efficient so the most frequently used data, especially the one that is used by many threads

in the same block, should be placed here [11]. Third type of memory is local memory that

can be used only by a thread that is assigned to this memory.

c. CUDA 6.5

L i t e r a t u r e r e v i e w

28

New CUDA framework brings up a number of improvements including resolved

previous version issues, support for CUDA Fortran, profiling tool interface, and number of

libraries including Thrust and cuBLAS. Both of these libraries were an open source project

a long before CUDA 6.5 [37]. Thrust is a GPU enabled equivalent of famous STL. STL

was first introduced in ‘90 and since then is a crucial part of many large projects. STL

offers a set of flexible and optimized data structures together with corresponding optimized

methods like sorting, searching, data sets merging etc. STL greatly improved the

development process since programmers did not have to implement their own versions of

common container-specific methods. Thrust library is based on the same idea like STL –

even containers and methods kept the same names – and simplifies the process of CUDA

code development. In addition Thrust allows to use GPU to store and manipulate data in

parallel, and therefore more efficient, manner (e.g. sorting a list in parallel). CuBLAS

library is GPU enabled BLAS which is a set of subroutines that performs common linear

algebra operations in parallel. Origins of BLAS can be found in 1979 when it was a

platform independent Fortran library that supplied developers with basic linear algebra

operators that could be used as a blocks in bigger applications. CuBLAS offers a set of

carefully designed and very well optimized linear algebra operators [38] which are

encapsulated in easy to use wrapper function. Because of that cuBLAS not only simplifies

the development process but also offers cutting-edge performance. Both Thrust and

cuBLAS, being a response for developers (used to program in C++) needs, earned huge

popularity eventually were approved by NVidia and include in CUDA 6.5 framework.

Possibilities and potential performance of Thrust and cuBLAS libraries are very

promising therefore incorporating them in multiphysics simulation framework like

L i t e r a t u r e r e v i e w

29

MOOSE may bring significant performance enhancement. Equally important is the

simplicity and flexibility offered by mentioned libraries. Because of that eventual refactor

of existing MOOSE implementation may be much easier that reimplementing it in plain

CUDA. The goal of the paper is to evaluate the performance and usability of Thrust and

cuBLAS libraries and, as a result, asserting their usefulness in multiphysics simulation

software.

Although both cuBLAS and Thrust are relatively young part of CUDA framework

the libraries itself exist for a few year and were able to attract significant attention of

researchers and developers. In [39] authors evaluated the effectiveness of three level 3

cuBLAS methods – SGEMM, SSYRK, and STRSM – and proposed improved versions of

these. In the experiment version 1.0 of cuBLAS was used; all kernels were executed by

NVidia GeForce 8800. Authors started with evaluating the impact of size of input matrices

on performance of cuBLAS operators and then moved to examining the relation between

performance and matrix processing operator itself. As a result authors confirmed the

effectiveness of algorithms and the improvements they proposed focus on combining

cuBLAS methods with each other, dividing the work between GPU and CPU (which

normally is idle when GPU executes the kernel), and resizing input matrices to maximize

number of threads executed in one cycle.

Similar problem was also investigated in [40]. Authors made an effort to evaluate

performance and accurateness of cuBLAS matrix multiplication method. As the reference

point they used analogous algorithm from Intel Matrix Kernel Library and ATLAS BLAS.

The experiments were carried out on computer equipped with NVidia Tesla T10 and 8 core

L i t e r a t u r e r e v i e w

30

Intel Xenon Nehalem. As results show GPU approach significantly outperforms CPU

approach when single precision floating point numbers were considered. For double

precision both solutions were equally effective. The disadvantage of cuBLAS method was,

however, slightly smaller accurateness of results.

In [41] problem of WZ Factorization was considered. Authors evaluated the

performance of matrix factorization algorithm implemented using CUDA library by

comparing it to custom CPU and standard CPU BLAS version WZ factorization algorithm.

In their work they used methods from level 1 and level 3 cuBLAS library. Experiment was

carried out on NVidia Tesla C2050. Results show that algorithm written in CUDA

outperforms CPU algorithms even by 6 times for large matrices. Authors also point out

that CUDA algorithm reached almost 20 times bigger performance expressed in Gflops.

CuBLAS library was used in [42] to accelerate adaptive Finite Element framework

for BLT. The BLT is a sensitive and accurate probing method that uses certain enzymes to

mark biological entities like tumor cells or compounds of drugs. As a result in biochemical

reaction part of energy is transformed into bioluminescent light which can be monitored.

Obtained readings may be processed using FE method can be used to recover 3D image.

FE simulation is time consuming process therefore authors decided to redesign their FE

application to use cuBLAS library to obtain better performance. Experiments were

conducted on NVidia GT240 and results were compared to results obtained from CPU

version of FE application executed on machine equipped with 8 core Intel Xeon. Research

showed that FE application that used cuBLAS executed matrix inversion 20 times faster

and matrix multiplication over 200 times faster than CPU version of FE application.

L i t e r a t u r e r e v i e w

31

Thrust library was used in research presented in [43] where authors used Thrust data

structures to search the effective variable-length string sorting algorithm. As they

mentioned string sorting was a major issue even when fixed-length strings were used.

Algorithm that were proposed simplifies the variable-length string sorting problem to series

of short fixed-length string sorting problems: first CPU extract few character long prefixes,

second Thrust data structure sort operator is used to sort an array of extracted prefixes.

Experiments were carried out on NVidia GTX 580 and NVidia K20. On both devices

algorithm obtained much shorter execution time than the serial version of the same

algorithm. Surprisingly the difference in execution time between NVidia K20 and NVidia

GTX 580 was not significant, however authors did not covered this case.

In [44] Thrust library was used in Discrete Event Simulation – a technique that allows

to study the dynamic behavior of complex systems – problem. Authors used a node of

supercomputer located in Ohio Supercomputing Center that is built on two Intel Xeon cores

and NVidia Tesla M2070. Similar to other researches in which CPU and GPU versions of

the same algorithm are compared when problem scales in small both version has similar

effectiveness or CPU slightly outperforms GPU. When the problem scale got larger the

execution time of CPU algorithm starts to grow rapidly. Authors observed that CUDA

algorithm was almost 60 times faster that its competitor for a large scale problem.

Data structures from Thrust library were also used in [45]. Author explored how

Thrust library can be used to enhance performance of sound simulation and jitter analysis

algorithms with minimal changes in already existing serial C++ application. In the

experiment machine equipped with NVidia GTX 480 GPU was used whereas Intel Core2

L i t e r a t u r e r e v i e w

32

Quad CPU was used to generate the reference point results. As the results show GPU

approach allowed to obtain better performance for each considered input. For the smallest

input data set (1 Million of samples) GPU enabled algorithm was 2 times faster than CPU

algorithm; for the largest data set (16 Million of samples) GPU version was over 9 times

faster.

33

Dawid

Chapter 2

Examined approaches

Chapter 2.1. Pure GPU approach

LibMesh is FE Library and parallel computational framework. It can be run in

parallel on thousands CPU cores thanks to it architecture, optimized code, employed MPI,

and other functionalities that support parallel execution. Currently libMesh, as a part of

MOOSE Multiphysics, is run on over 20 thousands cores at Idaho National Laboratory [10].

Furthermore it was shown that the applications scales incredibly well. Consequently the

first approach to port libMesh to GPU assumed that one-to-one translation from CPU thread

to CUDA thread will be kept – as such flow of each single GPU thread would be exactly

the same as flow of CPU thread in original approach. Perspectives for this approach were

extraordinary since even a single GPU would be able to handle hundreds thousands of

threads, at cost of lower single thread performance of course, compared to just dozens

thousands of threads currently used.

In the first iteration top-to-bottom approach of redesigning was employed. The

selected starting point was libMesh::ParallelObject class. This effort approached several

E x a m i n e d a p p r o a c h e s

34

issues soon after immediate children were considered. First of all CUDA2 does not fully

support class inheritance and polymorphism. In order to make member function accessible

by GPU it has to be at least properly annotated; in certain cases it has to be also

reimplemented to match mechanisms supported by CUDA. The problem is possible to

solve however it would result in more complicated and less readable code. Furthermore

some children classes, like libMesh::System and libMesh::MeshBase, have pointer based

member variables; when such objects are passed to GPU memory, the member pointer still

points to host memory. Since GPU operates on different memory address space each

reference to pointer variable that points to host memory results in runtime error. To solve

that problem all pointer member variables would have to be copied to GPU memory.

Additional data transfers impact the performance, not to mention significant additional

effort to provide implementation of hundreds post-allocation methods unique to each class

with pointer-based member variables. Finally libMesh is highly object oriented application

and therefore most of immediate children classes of libMesh::ParallelObject are also

parent classes. A common practice in such scenario is to use so called virtual methods.

These methods are not defined for parent classes since parent class may be too generic to

implement any legitimate functionality of some methods. Children classes are more

specialized and therefore supply some functionality related to these methods. This design

pattern works great on CPUs but is not supported by GPUs and therefore code cannot be

ported without complete redesign of library which is complicated using top-to-bottom

approach.

2 as of December 2012 – May 2013

E x a m i n e d a p p r o a c h e s

35

Observations form first iteration led to conclusion that bottom-to-top design tactic

may be more beneficial. This iteration started with libMesh::Parallel::Sort class.

Unfortunately this time also major issues were encountered. Examined class, as well as

many of libMesh objects, uses data containers from STL library. STL is a famous C++

library that provides wide selection of data structures with associated very efficient

manipulation methods. Library is highly optimized and easy to use therefore it is crucial

element in many C++ projects. Unfortunately CUDA does not support STL. In order to

solve that issue the content of container would have to be copied to traditional array and

then passed to GPU; result returned by GPU would be a classic array also, so content would

have to be populate in STL container again. Another issue faced in this iteration was the

frequency of branch statements in libMesh code. As mentioned in Chapter 1, GPU executes

kernels in SIMT mode. It means that when even thread follows different and “longer”

execution path, other threads are forced to stall until the next instruction common for all of

them is reached. Although both of these issues are not critical to porting process, the

performance of final result would be disappointing and most likely worse that the original

one.

Although both design methodologies assessed in this chapter failed, it does not prove

that one-to-one translation from CPU thread to GPU thread is impossible. It would require

to completely redesign the library architecture and therefore enormous amount of time and

work, which exceed the scope of this dissertation and capabilities of one person, would be

needed. It is likely that Conversation with Cody Permann – one of MOOSE Multiphysics

developers – seems to prove the observations. Moreover, significant change like that would

result in altering existing API and therefore applications build atop of libMesh would have

E x a m i n e d a p p r o a c h e s

36

to be modified. Because of that different porting idea, unfortunately less sophisticated, was

proposed.

Chapter 2.2. Hybrid GPU/CPU approach

Second approach takes a step back from idea of enclosing very complex algorithms

and complex data structures and turns to basic concepts behind GPGPU. CPU and GPU

works in a host – device manner. It means that every GPU-enabled application is initialized

and handled by CPU. CPU thread or threads follows a normal flow of application and

periodically, when some part of algorithm is highly parallel, invokes a GPU kernels that

execute selected operation in parallel. Figure 6 presents an example flow of program that

performs SAXPY operation.

As it can be seen application starts with a single CPU thread initializes basic

parameters and allocates necessary memory. Next CPU thread invokes GPU kernel that

fills data structures with data which is later used to perform SAXPY operation. At the end

CPU thread displays generated input and result of vector-scalar multiplication. It can be

seen that kernels are intended to by highly specialized operation that produces a single

element which is a part of bigger result. In serial application kernel would be the operation

that is executed within a loop or block of nested loops. This encourages to use this approach

to alter libMesh. In [10] it was showed that one of the most time consuming operations are

basic linear algebra operations like matrix multiplication or vector addition – all of them

executed by CPU in series using multiply nested loops. This approach would, basically,

introduce another level of parallelism. Currently simulation starts with a single CPU thread

E x a m i n e d a p p r o a c h e s

37

that initializes simulation, set all required parameters, and spawns required number of child

threads that executes simulation process in parallel. Finally parent gathers the results from

child threads and produces the output. In the new approach child threads will have

capability of invoking CUDA kernels in order to execute heavy parallel tasks – like BLAS

operations – by GPU. In theory this concept may result in enhanced performance of overall

multiphysics simulator, since the most time consuming part of simulation will be improved.

Nonetheless it is important to remember that effectiveness of kernel depends on two

factors: overhead related to data allocation and quality and level of parallelism of kernel.

Initialization

float *d_X, *d_Y;

size_t size = sizeof(float) * m;

int grid_dim = m / BLOCK_DIM

+ (m % BLOCK_DIM > 0 ? 1 : 0);

Input: X, Y, al, m

Host-device data

management

cudaMemcpy(Y, d_Y, size,

cudaMemcpyDeviceToHost);

cudaFree(d_X);

cudaFree(d_Y); Output: Y

Host-device data

management

cudaMalloc(&d_X, size);

cudaMalloc(&d_Y, size);

cudaMemcpy(d_X, X, size,

cudaMemcpyHostToDevice);

cudaMemcpy(d_Y, Y, size,

Kernel

cudaSaxpy<<<grid_dim,

block_dim>>>(d_X, al, d_Y, m);

Figure 6. Standard CUDA program flow

E x a m i n e d a p p r o a c h e s

38

Allocating and populating data structures in GPU memory is not an instant and

resource-free operation. Therefore it is an overhead that has to be considered when

comparing the execution time of CPU and GPU versions of the same operation. Kernel

itself is a single operation, in this example generating and multiplying of floating point

number, that are executed in parallel by GPU and in series (e.g. in a loop) by CPU.

Depending on how time consuming is the operation and on how many operations have to

be executed parallel approach can be more or less efficient. Because of that detailed

evaluation of all implemented CUDA algorithm is required.

Chapter 2.3. CUDA 6.5 enhanced hybrid GPU/CPU approach

On August 2014 NVidia has released new CUDA programming model versioned

with 6.5. Among number of improvements, like new code profiler and extended support to

other programming languages, the most significant for research performed in this

dissertation was including two libraries, namely Thrust and cuBLAS, to standard CUDA

release. As mentioned in Chapter 1, Thrust library is GPU-enabled substitute of STL and

cuBLAS is GPU version of BLAS. Both, as documentation and research done in this area,

are very efficient and stabile libraries. Therefore it was reasonable to assess the

performance of these libraries and decide on their usability in multiphysics simulation.

This approach is very similar to the one presented in previous subchapter: heavy

computational and highly-parallel algebraic operators were replaced by cuBLAS operators

in an analogous way they were replaced by custom operators presented in Chapter 2.1.

E x a m i n e d a p p r o a c h e s

39

Complete list of used cuBLAS methods together with description of notions they use is

presented in Algorithms chapter.

New feature of third approach to redesign libMesh is presence of Thread library.

LibMesh relies heavily on STL containers and Thrust library extends the functionality of

STL. The naming convention and majority of object and method names were kept in Thrust

library. It allows to easily switch from one library to another simply by changing

declaration of variable from STL container to Thrust container. New library provides also

parallel execution on GPU of certain primitives related to container, like search and sort.

It may be very beneficial for overall performance of libMesh because it operates on some

container primitives. Thrust offers also possibility to access containers stored on GPU

directly. It is very likely that host operations on data in GPU memory would be followed

by the overhead related to data transfers over PCIe port, however there are cases when it

may be irrelevant. When a container is frequently processed by GPU and rarely accessed

by CPU then the overhead of retrieving data from GPU memory may be marginal when

compared to overhead of frequent allocation from host to GPU memory. Potential

improvements appeared to be so promising that in this approach each occurrence of STL

library was replaced by corresponding container from Thrust library.

Chapter 2.4. Limitations

GPGPU was invented with intention to speed up processing in research facilities

equipped with HPC. Obviously one GPU, even from the cutting-edge segment, would be

unable to replace thousands of high-performance modes that consist of number of modern

E x a m i n e d a p p r o a c h e s

40

CPU. Therefore graphic cards has to be used “in bulk”. This exposes engineers to several

hardware design problems that hast to be overcome in order to provide not only better

performance but also comparable fault-tolerance, resilience, and survivability of already

existing classic high-performance clusters.

HPC systems keep scaling in volume together with more and more complex

computations they perform. It is also accompanied, unfortunately, with escalation of failure

frequency which may forfeit hours of computing of long-running applications. In classic

supercomputer environments so called checkpoint/restart technique is used. The idea is to

periodically save a state of execution on one or more reliable storage systems and in case

of failure restore it and resume a normal flow. When classic CPU system is considered

checkpoint/restart mechanism can be accomplished at three levels: kernel, library and

application levels [46]. At kernel level the operating system, like V-System [47] or

Charlotte [48], can spawn a process transparent to developer that can construct the state.

At the library level library itself is responsible for providing checkpoint/recovery

functionality. One of the examples is Berkeley Lab Checkpoint/Restart library which uses

system calls to save registers content onto the stack [49]. Finally when the checkpointing

and restarting mechanism is delivered at application level then developers need to

implement such functionality into their product [50].

41

Dawid

Chapter 3

Algorithms

Chapter 3.1. Proposed algorithms

a. Memory Allocation

CUDA framework offers various methods that allocate memory in device and pass

data between host and device. Some of them are just wrapper functions around original

CUDA allocation and transmission methods, other offers preprocessing steps or align data

in memory to maximize performance of kernel. As it can be seen first memory is allocated

using cudaMalloc, then one can copy specified amount of data from host memory (pointed

by pointer to host memory) to device memory (pointed by pointer to device memory). At

the end device memory is released using cudaFree method.

CuBLAS library offers its own methods that handle data allocation. Basically these

method are just a wrapper functions that eventually uses standard cudaMalloc. However

the advantage of cuBLAS methods is that data can be preprocessed before it is transferred

to device. Thanks to the preprocessing user may for example transpose matrix before

passing it to GPU within one method call.

A l g o r i t h m s

42

The last considered method of handling the memory comes from Thrust library. The

undisputed advantage of this approach is flexibility. Developer does not have to remember

to manually allocate the memory and copy data because everything is done by simply

assigning thrust::host_vector to thrust::device_vector. This functionality simplifies the

process of developing and refactoring existing code.

b. AXPY

Level 1 of every BLAS library is reserved for vector operations like dot product or

vector norms. In this research a classic AXPY operation – which is a simple vector-scalar

multiplication summed with second vector – is considered. Operator is defined as

𝑦 = 𝛼𝑥 + 𝑦 where 𝛼 is a scalar, 𝑥 and 𝑦 are vectors of equal dimension.

In standard CPU approach, presented in Algorithm 1, for every loop iteration

equation (4) is calculated. Complexity of this algorithm is 𝑂(𝑛).

𝑦[𝑖] = 𝛼 ∙ 𝑥[𝑖] + 𝑦[𝑖] (4)

Second considered algorithm was implemented in plain CUDA and is presented in

Algorithm 2. Each element of output vector y is calculated by a single GPU thread so that

𝑖-th element is calculated by a thread given by 𝑡ℎ𝑟𝑒𝑎𝑑𝐼𝑑𝑥. 𝑥 and 𝑏𝑙𝑜𝑐𝑘𝐼𝑑𝑥. 𝑥 where

𝑖 = 𝑡ℎ𝑟𝑒𝑎𝑑𝐼𝑑𝑥. 𝑥 + 𝑏𝑙𝑜𝑐𝑘𝐼𝑑𝑥. 𝑥 ∙ 𝑏𝑙𝑜𝑐𝑘𝐷𝑖𝑚. 𝑥 using formula (4). Complexity of this

algorithm, assuming parallel execution, is 𝑂(1).

A l g o r i t h m s

43

c. Vector Swap

Swap operator, also included in level 1 of BLAS library, switches the places of

corresponding elements in two vectors. In CPU approach each pair of elements would be

swapped in a single loop (Algorithm 3) using procedure (5). The complexity of this

algorithm is 𝑂(𝑛).

𝑣 = 𝑦[𝑖] → 𝑦[𝑖] = 𝑥[𝑖] → 𝑥[𝑖] = 𝑣 (5)

CUDA equivalent of swap operator in presented in Algorithm 4. A grid of threads,

equal in size to vectors, is overlaid on vectors and each GPU thread swaps a pair of

elements from input vectors: 𝑖-th element is swapped using formula (5) by thread

𝑡ℎ𝑟𝑒𝑎𝑑𝐼𝑑𝑥. 𝑥 and 𝑏𝑙𝑜𝑐𝑘𝐼𝑑𝑥. 𝑥 where 𝑖 = 𝑡ℎ𝑟𝑒𝑎𝑑𝐼𝑑𝑥. 𝑥 + 𝑏𝑙𝑜𝑐𝑘𝐼𝑑𝑥. 𝑥 ∙ 𝑏𝑙𝑜𝑐𝑘𝐷𝑖𝑚. 𝑥

Complexity of this parallel algorithm is 𝑂(1).

d. Vector Addition and Vector-Scalar Multiplication

In the simulation process very often a special cases of AXPY operator are used. Two

of them are sum of two vectors and vector-matrix multiplication. Although the same result

can be obtained using AXPY, this two operators perform twice less floating point

operations and therefore is, in theory, twice faster. The output of vector-vector addition is

defined by 𝑦 = 𝑥 + 𝑦. Serial approach performs the operation in a single loop; each

iteration performs following operation (6). Scalar-vector multiplication is also executed in

one loop; in each iteration (7). Algorithms are presented by Algorithm 5 and Algorithm 7.

Complexity of both operators is 𝑂(𝑛).

A l g o r i t h m s

44

𝑦[𝑖] = 𝑥[𝑖] + 𝑦[𝑖] (6)

𝑦[𝑖] = 𝛼 ∙ 𝑦[𝑖] (7)

In corresponding GPU version of vector addition and vector-scalar multiplication,

presented in Algorithm 6 and Algorithm 8 respectively. Each thread performs the same

operation as single iteration of corresponding CPU algorithm; 𝑖-th element is calculated

by thread 𝑡ℎ𝑟𝑒𝑎𝑑𝐼𝑑𝑥. 𝑥 + 𝑏𝑙𝑜𝑐𝑘𝐼𝑑𝑥. 𝑥 ∙ 𝑏𝑙𝑜𝑐𝑘𝐷𝑖𝑚. 𝑥. Complexity of these algorithms is

𝑂(1).

e. DOT Product

Another operator frequently used by FE libraries is DOT Product operation. DOT

operator is here understand in algebraic manner. Operator takes two vectors and calculates

sum of multiplied corresponding elements. Result is given by formula (8). CPU algorithm

executes the operation in a loop in which it takes two corresponding elements from input

vectors, multiplies them, and increment the result (Algorithm 9). Complexity of this

algorithm is 𝑂(𝑛).

𝑑 = ∑ 𝑥[𝑖] ∙ 𝑦[𝑖]𝑛
𝑖=1 (8)

CUDA version of DOT Product is a little bit less straightforward. To calculate the

result of DOT Product is necessary to traverse entire vector, therefore it is highly serial

execution scenario; GPUs does not handle this type of problems, called gather operation,

very well since parallel execution is rather enforced that applied. It is, however, possible

to distribute the work among threads – in this case each thread will calculate multiplication

A l g o r i t h m s

45

result of a single pair of element so that 𝑖-th pair will be processed by thread

𝑡ℎ𝑟𝑒𝑎𝑑𝐼𝑑𝑥. 𝑥 + 𝑏𝑙𝑜𝑐𝑘𝐼𝑑𝑥. 𝑥 ∙ 𝑏𝑙𝑜𝑐𝑘𝐷𝑖𝑚. 𝑥. After that threads will atomically add the

results to variable that will represent DOT Product value. Algorithm is presented in

Algorithm 10; complexity of this algorithm, assuming parallel execution, is 𝑂(1).

f . GEMV

Level 2 of BLAS library is responsible for matrix-vector operations including

matrix-vector multiplication operator (GEMV) defined as 𝑦 = 𝛼𝐴𝑥 + 𝛽𝑦. Serial GEMV

(Algorithm 11) operator performs multiplication in doubly nested loop, therefore

complexity of this algorithm is 𝑂(𝑛2). Each iteration of outer loop is responsible

calculating single element of output vector using (9) where sigma sign represents inner

loop.

𝑦[𝑖] = 𝛼 ∑ (𝐴[𝑖][𝑗] ∙ 𝑥[𝑗]) + 𝛽𝑦[𝑖]𝑛
𝑗=1 (9)

Second algorithm, presented in Algorithm 12, is implemented in plain CUDA. In this

method each element of output vector is calculated collectively by a number of threads.

First each thread calculates (10), where 𝑖 = 𝑡ℎ𝑟𝑒𝑎𝑑𝐼𝑑𝑥. 𝑥 + 𝑏𝑙𝑜𝑐𝑘𝐼𝑑𝑥. 𝑥 ∙ 𝑏𝑙𝑜𝑐𝑘𝐷𝑖𝑚. 𝑥

and 𝑗 = 𝑡ℎ𝑟𝑒𝑎𝑑𝐼𝑑𝑥. 𝑦 + 𝑏𝑙𝑜𝑐𝑘𝐼𝑑𝑥. 𝑦 ∙ 𝑏𝑙𝑜𝑐𝑘𝐷𝑖𝑚. 𝑦, then results from a treads mapped to

a single row in matrix 𝐴 are summed which produces the final result (11).

𝑦[𝑖]𝑗 = 𝛼𝐴[𝑖][𝑗] ∙ 𝑥[𝑗] (10)

𝑦[𝑖] = ∑ 𝑦[𝑖]𝑗 + 𝛽𝑦[𝑖]𝑛
𝑗=1 (11)

A l g o r i t h m s

46

In theory algorithm would be executed in parallel (including summation of partial

results) so its complexity is 𝑂(1).

g. Matrix Swap

Another level 3 BLAS operator used frequently in FE libraries is swap operator.

Similar to vector swap operator, operator takes two matrices and swap corresponding

elements. Serial algorithm uses two nested loops; in inner loop corresponding elements in

two matrices are swapped. Inner loop performs operation given by (12). Complexity of this

method is 𝑂(𝑛2); code is presented in Algorithm 13.

𝑣 = 𝐴[𝑖][𝑗] → 𝐴[𝑖][𝑗] = 𝐵[𝑖][𝑗] → 𝐵[𝑖][𝑗] = 𝑣 (12)

CPU algorithm performs the same operation with complexity of 𝑂(1). Each pair of

elements is swapped using single thread so that (𝑖-th 𝑗-th) elements are swapped by thread

given by 𝑖 = 𝑡ℎ𝑟𝑒𝑎𝑑𝐼𝑑𝑥. 𝑥 + 𝑏𝑙𝑜𝑐𝑘𝐼𝑑𝑥. 𝑥 ∙ 𝑏𝑙𝑜𝑐𝑘𝐷𝑖𝑚. 𝑥 and 𝑗 = 𝑡ℎ𝑟𝑒𝑎𝑑𝐼𝑑𝑥. 𝑦 +

𝑏𝑙𝑜𝑐𝑘𝐼𝑑𝑥. 𝑦 ∙ 𝑏𝑙𝑜𝑐𝑘𝐷𝑖𝑚. 𝑦. Code is presented by Algorithm 14.

h. Matrix-Scalar Multiplication and Matrix Addition

Analogous to SAXPY operator, scalar-matrix multiplication and matrix-matrix

addition – a special case of GEMM method – are proposed. It this situation the complexity

expressed in number of floating point operations is significantly smaller that complexity of

GEMM operator because a matrix-matrix multiplication step is omitted. This reduces the

number of floating point operations by 4 orders of magnitude. Serial algorithm performs

the operations in doubly nested loop. Each loop travers matrix in one dimension; inner loop

A l g o r i t h m s

47

calculate (13) for matrix addition and (14) for matrix-scalar multiplication. Complexity of

both algorithms is 𝑂(𝑛2). Algorithm 15 and Algorithm 17 presents matrix addition and

matrix-scalar multiplication respectively.

𝐴[𝑖][𝑗] = 𝐴[𝑖][𝑗] + 𝐵[𝑖][𝑗] (13)

𝐴[𝑖][𝑗] = 𝛼 ∙ 𝐴[𝑖][𝑗] (14)

Corresponding CUDA algorithms perform the same operations as CPU algorithms.

Each thread calculates single element in output matrix; (𝑖-th 𝑗-th) elements are added or

multiplied by thread given by (𝑖 = 𝑡ℎ𝑟𝑒𝑎𝑑𝐼𝑑𝑥. 𝑥 + 𝑏𝑙𝑜𝑐𝑘𝐼𝑑𝑥. 𝑥 ∙ 𝑏𝑙𝑜𝑐𝑘𝐷𝑖𝑚. 𝑥, 𝑗 =

𝑡ℎ𝑟𝑒𝑎𝑑𝐼𝑑𝑥. 𝑦 + 𝑏𝑙𝑜𝑐𝑘𝐼𝑑𝑥. 𝑦 ∙ 𝑏𝑙𝑜𝑐𝑘𝐷𝑖𝑚. 𝑦) thread using (13) and (14) respectively.

Complexity of both CUDA algorithms, Algorithm 16 and Algorithm 18, is given by 𝑂(1).

i . Matrix Transposition

Matrix transposition is very important operator in FE library. The operator reorder

the elements so that 𝑖-th column is rewritten as 𝑖-th row. Classic CPU algorithm swaps

element between two matrices within two nested loops; the inner loop assign (𝑖-th 𝑗-th)

element from input matrix to (𝑗-th 𝑖-th) element of output matrix (15). Complexity of this

algorithm is 𝑂(𝑛2).

𝐵[𝑗][𝑖] = 𝐴[𝑖][𝑗] (15)

GPU algorithm – Algorithm 20 – performs the operation in very similar way: each

singe thread is responsible for rearranging one element. Thread (𝑖 = 𝑡ℎ𝑟𝑒𝑎𝑑𝐼𝑑𝑥. 𝑥 +

A l g o r i t h m s

48

𝑏𝑙𝑜𝑐𝑘𝐼𝑑𝑥. 𝑥 ∙ 𝑏𝑙𝑜𝑐𝑘𝐷𝑖𝑚. 𝑥, 𝑗 = 𝑡ℎ𝑟𝑒𝑎𝑑𝐼𝑑𝑥. 𝑦 + 𝑏𝑙𝑜𝑐𝑘𝐼𝑑𝑥. 𝑦 ∙ 𝑏𝑙𝑜𝑐𝑘𝐷𝑖𝑚. 𝑦 transpose

(𝑖-th 𝑗-th) element to (𝑗-th 𝑖-th) element in output matrix (15). Complexity of this CUDA

algorithm is 𝑂(1).

j . GEMM

Level 3 of BLAS is a set of matrix-matrix operators. This level contains matrix-

matrix multiplication called GEMM. Operator is given by formula 𝐶 = 𝛼𝐴𝐵 + 𝛽𝐶. Classic

CPU algorithm consists of three nested loops what makes it algorithm of complexity

𝑂(𝑛3). Inner loop calculates the value of (𝑖-th 𝑗-th) element using formula (16), where 𝑖

and 𝑗 are number of iteration two outer loops are in Algorithm 21.

𝐶[𝑖][𝑗] = 𝛼 ∙ ∑ (𝐴[𝑖][𝑘] ∙ 𝐶[𝑘][𝑗]) + 𝛽 ∙ 𝐶[𝑖][𝑗]𝑙
𝑘=0 (16)

In this experiment two CUDA matrix multiplication algorithms, presented in [11],

are used. First of them, CUDA GEMM presented by Algorithm 22, is a simple parallel

algorithm in which each element of output matrix is calculated by one thread. Element

(𝑖, 𝑗) is calculated using (16) by single thread where 𝑖 = 𝑡ℎ𝑟𝑒𝑎𝑑𝐼𝑑𝑥. 𝑥 + 𝑏𝑙𝑜𝑐𝑘𝐼𝑑𝑥. 𝑥 ∙

𝑏𝑙𝑜𝑐𝑘𝐷𝑖𝑚. 𝑥 and 𝑗 = 𝑡ℎ𝑟𝑒𝑎𝑑𝐼𝑑𝑥. 𝑦 + 𝑏𝑙𝑜𝑐𝑘𝐼𝑑𝑥. 𝑦 ∙ 𝑏𝑙𝑜𝑐𝑘𝐷𝑖𝑚. 𝑦.

Second CUDA algorithm, Tiled CUDA GEMM, also designate single thread per one

element in output matrix, however this version make a use of fast shared memory.

Algorithm is presented by Algorithm 23. Threads are grouped in so called tiles and threads

within a single tile cooperates to speedup execution. Problem of matrix multiplication is

divided into sum of sub-matrices multiplication. Threads within one file copy data from

A l g o r i t h m s

49

matrices in global memory to sub-matrices in shared memory; the sub-matrices are later

multiplied. Each single thread within one iteration copies (𝑖-th 𝑗-th) element, where 𝑖 =

𝑡ℎ𝑟𝑒𝑎𝑑𝐼𝑑𝑥. 𝑥 + 𝑏𝑙𝑜𝑐𝑘𝐼𝑑𝑥. 𝑥 ∙ 𝑏𝑙𝑜𝑐𝑘𝐷𝑖𝑚. 𝑥 and 𝑗 = 𝑡ℎ𝑟𝑒𝑎𝑑𝐼𝑑𝑥. 𝑦 + 𝑏𝑙𝑜𝑐𝑘𝐼𝑑𝑥. 𝑦 ∙

𝑏𝑙𝑜𝑐𝑘𝐷𝑖𝑚. 𝑦, from input matrices in global memory to (𝑘-th 𝑙-th) element of input

submatrices in shared memory; when submatrices are populated with data thread calculates

(𝑘-th 𝑙-th) element in output submatrix using (17).

𝐶[𝑘][𝑙] = 𝛼 ∙ ∑ 𝐴[𝑘][𝑡] ∙ 𝐵[𝑡][𝑙]𝑇𝐼𝐿𝐸_𝐷𝐼𝑀
𝑡=0 (17)

The output submatrices are later summed what gives a submatrix within a result of

multiplication of matrix 𝐴 and 𝐵. In theory complexity of both CUDA algorithms in 𝑂(𝑛).

k. Triangular GEMM

A special case of matrix multiplication is multiplication of two triangular matrices.

Triangular matrix is a square matrix with zeros located above the main diagonal or below

the low diagonal; such matrices are called left triangular and right triangular respectively.

Linear algebra reports numerous properties of these matrices including, important for this

research, result of multiplication of two left triangular or right triangular matrices is also

left or right triangular matrix. This property simplifies the multiplication algorithm because

almost half of the elements do not have to be calculated. Therefore serial CPU operator

takes a form of Algorithms. It is very similar to CPU GEMM algorithm however first inner

loop iterates through reduced number of elements. Although it does not affect overall

Big-O complexity – it still remains 𝑂(𝑛3) – the actual execution time will be shorter.

A l g o r i t h m s

50

Algorithms, both left and right triangular version, are presented in Algorithm 24 and

Algorithm 27 respectively.

Two CUDA triangular matrix multiplication operators are considered in this

research. First of them, Simple CUDA Triangular GEMM (used in two versions that

supports left- and right-triangular matrices), works in a way similar to CUDA GEMM –

each element of output matrix is calculated by a single thread. The difference is that when

elements comes from part of matrix filled with zeros thread terminates at that point. Both

left and right triangular versions of algorithm are presented in Algorithm 25 and

Algorithm 28. The complexity of these algorithms is 𝑂(𝑛).

Tiled CUDA Triangular GEMM also employs single thread per one element in

output matrix and similar to Tiled CUDA GEMM uses of fast shared memory. Since

triangular matrices are multiplied some operations can be skipped. In this case when whole

tile of threads is supposed to calculate elements from segment of matrix that will be 0 then

execution of these threads can be terminated immediately. Two version of this algorithm

are presented in Algorithm 26 and Algorithm 29. The complexity of both CUDA

algorithms is 𝑂(𝑛).

Chapter 3.2. cuBLAS operator

CuBLAS library offers a wide spectrum of operators including all three levels of

classic BLAS and custom methods that implements special cases of more generic original

BLAS methods. All of them are carefully designed and optimized by team of experienced

A l g o r i t h m s

51

developers and researchers [13]. Presents cuBLAS methods that corresponds to algorithms

designed and implemented in this dissertation.

Table 1. cuBLAS methods and corresponding operators

cuBLAS

method
Implements Description

cublasSaxpy

AXPY

Method required following parameters:

 handle – to handle library context

 alpha – scalar value

 n – size of vectors

 x – first vector container

 incx – stride between consecutive

elements in vector x

 y – second vector container

 incy – stride between consecutive

elements in vector y

Vector-Scalar

Multiplication1

Vector Addition2

cublasSswap Vector Swap

Method required following parameters:

 handle – to handle library context

 n – size of vectors

 x – first vector container

 incx – stride between consecutive

elements in vector x

 y – second vector container

 incy – stride between consecutive

elements in vector y

cublasSdot DOT Product

Method required following parameters:

 handle – to handle library context

 n – size of vectors

 x – first vector container

 incx – stride between consecutive

elements in vector x

 y – second vector container

 incy – stride between consecutive

elements in vector y

 result – stores result of DOT operator

cublasSgemv GEMV
Method required following parameters:

 handle – to handle library context

A l g o r i t h m s

52

 trans – indicates whether matrix A will

be transposes

 m – first dimension of matrix A

 n – second dimension of matrix A

 lda – stride between consecutive

elements in matrix A

 x – vector container

 incx – stride between consecutive

elements in vector x

 y – second vector container

 incy – stride between consecutive

elements in vector y

cublasSgemm

Matrix

Transposition3

Method required following parameters:

 handle – to handle library context

 transa – indicates whether matrix A will

be transposes

 transb – indicates whether matrix B will

be transposes

 m – first dimension of matrix

 n – second dimension of matrix

 A – first matrix

 lda – stride between consecutive

elements in matrix A

 B – second matrix

 ldb – stride between consecutive

elements in matrix B

 C – output matrix

 ldc – stride between consecutive

elements in matrix C

Matrix-Scalar

Multiplication4

Matrix Addition5

cublasSgemm GEMM

Method required following parameters:

 handle – to handle library context

 transa – indicates whether matrix A will

be transposes

 transb – indicates whether matrix B will

be transposes

A l g o r i t h m s

53

Triangular

GEMM

 m – first dimension of matrix

 n – second dimension of matrix

 A – first matrix

 lda – stride between consecutive

elements in matrix A

 B – second matrix

 ldb – stride between consecutive

elements in matrix B

 C – output matrix

 ldc – stride between consecutive

elements in matrix C

1 vector x needs to be filled with zeros
2 alpha need to be set to 1
3 matrix B needs to be filled with zeros, alpha needs to be 1, transa need to be set to

 transpose
4 matrix B needs to be filled with zeros
5 alpha and beta need to be set to 1

54

Dawid

Chapter 4

Experiments

Chapter 4.1. Hardware configuration

Quadro line is a GPU brand designed by NVidia and developed by PNY and NVidia.

This product line was designed for professional CAD and DCC market segment – as

opposed to GeForce line which is designed almost exclusively for gaming [51]. The idea

behind the Quadro line was to reduce the functionality of GeForce GPU that is important

for gaming, like quality of textures and number of shaders, in favor of features crucial to

CAD/DCC industry like high performance anti-aliased lines and two-sided lighting. In

addition custom firmware and drivers, which support CAD applications better, for Quadro

line were developed. NVidia Quadro 5000, which was used in this research, is built on

introduced in March 2010, Fermi architecture [52].

Tesla line, named by Nikola Tesla, is a dedicated streaming and general purpose

GPU brand designed and manufactured by NVidia. These devices are highly specialized

hardware that are intended to be used in HPC centers. As of January 2015, TOP500 ranking

E x p e r i m e n t s

55

points out that three supercomputers out TOP 10 are built on NVidia Tesla GPUs [32].

Even though it is technically a graphical processing unit it was never meant to display

images – Tesla GPUs, despite the most recent products, are not even equipped in display

port. Used in this research NVidia Tesla K40 is built on Kepler architecture – presented to

public in 2012 [53].

Table 2. NVidia Tesla K40 and NVidia Quadro 5000 specification

Property
NVidia

Tesla K40

NVidia

Quadro 5000

Base clock 745 MHz 513 MHz

Processor cores 2880 352

Memory clock 3.0 GHz 750 MHz

Memory bandwidth 288 GB/sec 120 GB/sec

Interface 384-bit 320-bit

Total board memory
12 GB

DDR5

2.5 GB

DDR5

Board power 235 W 152 W

CUDA capability 3.5 2.0

Max dimension of grid of thread

blocks
3

Max x-dimension of a grid of thread

blocks
231-1 65535

Max y-, z- dimensions of a grid of

thread blocks
65535

Max dimensionality of thread block 3

Max x- or y-dimension of a block 1024

Max z-dimension of a block 64

Max number of threads per block 1024

E x p e r i m e n t s

56

Warp size 32

Max number of resident blocks per

multiprocessor
16 8

Max number of resident warps per

multiprocessor
64 48

Max number of resident threads per

multiprocessor
2048 1536

Max amount of shared memory per

multiprocessor
112 kB 48 kB

Amount of local memory per thread 512 kB

The main difference, from technology point of view, is significantly bigger

frequency of both base and memory clock and greater number of processor cores.

Obviously it translates to higher performance of calculations; especially important is

memory clock frequency since slow access to memory was a major factor that slows the

execution in NVidia Quadro 5000 GPU. It can be also seen that amount of memory was

increased almost 5 times; yet the amount of memory per single core was decreased.

Unfortunately the improvements caused higher power consumption [52] [53].

Worth to point out is the difference in CUDA capability between Tesla K40 and

Quadro 5000. Although the technology leap between 2.0 and 3.5 is not as significant as

between 2.0 and 1.3 [52], the changes are significant. First and foremost the maximal

x-dimension of block was enormously increased. This allows to map the logical structure

of threads to big scale problems. It can be also noticed that the amount of fast shared

memory assigned to multiprocessor was doubled. It may be related to doubling the number

E x p e r i m e n t s

57

of blocks that can resides at single SM at any time which; if this prediction is true then

amount of memory per block remains almost the same. Nonetheless it will encourage

developer to use this level of storage more often and therefore improve overall kernel

execution efficiency [52] [53].

Chapter 4.2. Plan of experiment

a. Metric

One of the goals of this thesis is to evaluate the benefits of implementing modern

GPGPU technology in multiphysics simulation software. Therefore an obvious step

toward, was to assess the performance of proposed approach. Traditionally performance is

measured I number of floating point operations per one second – flops. This metric is very

popular in various brochures advertising new hardware solutions and in most cases it is

valid way to evaluate capabilities of device.

In research however, including this thesis, flops metric is not the most fortunate way

of describing performance mainly because it does not translate directly to time. The

performance of GPU algorithm depends on a number of factors like frequency of

synchronizations within a kernel, type of memory data is located in, alignment of this data

in the memory, number of threads that execute the kernel and many others. Following

example illustrates the disadvantage of flops metric.

E x p e r i m e n t s

58

Example: Disadvantage of flops metric

The task is to multiply two square matrices of size 2 × 2 filled with

floating point numbers from range [0, 1] using simple CUDA matrix

multiplication algorithm. It can be observed that it is enough to run the kernel

on a thread grid of size 2 × 2 which gives four threads encapsulated in one

block. As a result each thread will calculate the value of one element in result

matrix and perform four floating point operations. The task will be completed

in time 𝑡1. The performance expressed in flops is given by
4∙4

𝑡1
=

16

𝑡1
 flops.

GPU is, however, capable of running much more threads in parallel so

one may consider increasing the number of threads assigned to that task. The

common practice in this situation is to resize the input matrices to math desired

dimensions of thread grid and fill it with zeros. Assuming that a grid of 32 ×

32 threads will be assigned to perform that task, then both matrices will be

resized to 32 × 32, each thread will calculate one element in result 32 × 32

matrix, and finally result will be trimmed back to size of 2 × 2 by removing

previously added columns and rows. It can be calculated that each thread will

execute 64 floating point operations so the performance is given by
32∙32∙64

𝑡2
=

65536

𝑡2
 flops. For such small scale problem 𝑡1 < 𝑡2 < 1.01𝑡1 and the performance

is humongous greater. That leads to contradiction since algorithm with better

performance needs more time to execute the same task.

E x p e r i m e n t s

59

Multiphysics simulation software is just a tool for scientists and engineers and what

matters for them is how soon and how accurate will be the results they get. The

performance expresses in flops also does not indicate how well the algorithm will perform

in different system with different hardware configuration. Because of that in this

dissertation elapsed time would be that major evaluation criterions that describes the

performance of proposed approach. Nevertheless flops metric, together with memory

access metric, would also be used as a supporting factor that may allow to clarify aspects

that are unable to be interpreted with time metric only.

b. Precision issue

As mentioned in previous paragraph [54] concerns regarding floating point

operations precision were reported. GPU, as well as CPU, uses the same standard of

notation and calculation – IEEE 754. Within this standard two types are distinguished:

single precision numbers (float) and double precision numbers (double). No matter what

type is used, general notation is very similar: first bit encodes sign, followed by exponent

bits encoding the exponent offset3 and bits encoding the fraction4. The architecture of

IEEE 754 that tries to “fit infinite number of numbers onto finite number of bits” has to

use some limitations; one of the limitations is the rounding step performed at the end of

every arithmetic operation – result is rounded to the nearest number feasible to encode

using designate number of bits. It is guaranteed than the result of any single basic arithmetic

3 8 bits for float and 11 bits for double
4 23bits for float and 52 bits for double

E x p e r i m e n t s

60

operation5 on two numbers encoded using IEEE 754 will be exactly the same no matter

what hardware accomplished it. Nevertheless the error related to frequent rounding step

may appear since it is strongly related to level of parallelism and the order of operations.

NVidia took a number of steps to obtain as good precision as possible including

implementing into the hardware support for double precision type in devices with CUDA

capability of 1.3 and so called fused multiply-add operation (multiplication operation

performed on a result of addition is accompanied by a single rounding step) for GPUs that

have CUDA capability of 2.0. Despite the improvements a common practice, applied also

to this research, is to calculate the error by referring GPU result to expected result (usually

calculated by CPU). In in this research the error is calculated for each repetition of

experiment; errors are used to calculate Mean Square Root Error.

c. Experimental approach

The experiments 𝐸 =< 𝐴; 𝑆 > carried out in this research can be described by

following pattern: each entity 𝐴 – which can be an algorithm, method, or a simulation –

has to execute given set of experiment scenario 𝑆; execution of each experiment will be

described with amount of time expressed in 𝑚𝑠 required to complete it 𝑝𝑡(𝐸) and also, if

applicable, performance boost compared to CPU version, and MRSE metric. Scenarios

were designed to uniformly cover the selected scope of interest, e.g. when two vectors are

5 add, subtract, multiply, divide, square root, fused-multiply-add, remainder, conversion operations, scaling,

sign operations, and comparisons

E x p e r i m e n t s

61

added the size of vectors changes from 𝑛1 to 𝑛2 with step 𝑠 =
⌊𝑛2−𝑛1⌋

200
. Details on each

scenario are presented in section in which corresponding results are presented.

Whenever the subject of the research is to assess the performance of a hardware

solution or a new algorithm and experiments are not carried out in dedicated server class

environment, then results may be affected by nondeterministic occurrences or, simply

speaking, noise. Typical sources of noise are all concurrently running applications, since

they rivals with the experiment thread for resources, and operation system related processes

that are meant to provide additional features which may not be required by the experiment

threads, like maintaining GUI and some HID. Therefore a good practice is to disable all

known and unused sources or possible noise. In this research whenever experiments were

performed on regular desktop computer, the machine was running operating system in

terminal mode, disabled network adapter, and all unnecessary services, like apache and

database servers, turned off.

Even though careful preparation of experimental environment can greatly help with

reducing separating results from some sources of interferences, it is crucial to remember

that not all sources are known or can be deactivated. In this type of situations repeating a

single experiment multiple times and applying statistic methods to obtained results may

become very valuable. As such the following experimenting plan was used in the research:

 each experiment 𝐸 was repeated at least 𝑛 times

 results from ever experiments, namely experiment execution time 𝑡(𝐸) were

gathered and formed a set 𝑅𝐸

E x p e r i m e n t s

62

 3% of the most extreme results from 𝑅𝐸 were discarded

 The average value of observed metrics and standard distribution were

calculated and used as a representative experiment results

To select optimal values of parameters n a small experiment were performed: three

CUDA algorithms with various complexity were executed for the same scenario for each

𝑛 ∈ {10, 11, … , 1000}. The results showed that for n greater than 300 standard distribution

of RE curve flattens and further increase in number of repetitions becomes cost ineffective.

Therefore in this research the value of n was set to 300.

63

Dawid

Chapter 5

Results

Chapter 5.1. Performance of Linear Algebra Operators

a. Memory Allocation

In this section performance of memory allocation primitives is evaluated. Set of

algorithms 𝐴 considered in this experiment is given by ∈

{𝑃𝑙𝑎𝑖𝑛 CPU Allocator, cuBLAS Allocator, Thrust Allocator} ; set of scenarios is given by

𝑆 = (𝐴, 𝐵, 𝐶 ∈ [0, 1]𝑛×𝑛: 𝑛 ∈ {100, 150, … ,10 000}).

The results presented in Figure 7 show that:

 together with growing size of data structures time required to allocate grows

 for each allocation methods linear growth of allocation time can be observed,

however for matrices size of 5200×5200 slope gets steeper

 the shortest execution time is observed for Plain CUDA Allocator

R e s u l t s

64

 second best allocator is cuBLAS Allocator; it can be observed, however, that

the difference in execution time between Plain CUDA Allocator and cuBLAS

Allocator grows with size of problem

 Thrust allocation is the slowest and the execution time grows in faster pace

than two other allocators

b. AXPY Operator

In this section performance of AXPY operator is evaluated. Set of algorithms 𝐴

considered in this experiment is given by ∈ {CPU AXPY, CUDA AXPY, cuBLAS AXPY} ; set

of scenarios is given by 𝑆 = (𝛼 ∈ [0, 1]; 𝑥, 𝑦 ∈ [0, 1]𝑛: 𝑛 ∈ {100, 125, … ,15 000}).

0

100

200

300

400

500

0.1k 3.3k 6.6k 10k

t[
m

s]

matrix dimensions

CUDA allocator cuBLAS allocator Thrust allocator

Figure 7. Allocation method execution time

R e s u l t s

65

The results, showed in Figure 8, show that for standard array container:

 there is small impact of problem size on algorithm performance; execution

time grows for all algorithms, however the slope is rather gentle

0

0.2

0.4

0.6

0.8

1

100 5k 10k 15k

t[
m

s]

vector size

CPU AXPY cuBLAS AXPY CUDA AXPY

0

0.2

0.4

0.6

0.8

1

100 5k 10k 15k

t[
m

s]

vector size

CPU AXPY cuBLAS AXPY CUDA AXPY

Figure 8. AXPY operator performance (Thrust containers on the top, array

containers on the bottom)

R e s u l t s

66

 CPU algorithm is the most effective among all tested operators; second best

was CUDA algorithm; cuBLAS operator was the worst

 for vector size of 1300 an execution time of cuBLAS algorithms decrease;

later for vector size of 4300 it gets worse and follows the original trend

 the execution time of CPU method for vector size equals to 100 is 69 times

greater than execution time for problem size of 15000

 for execution time of cuBLAS method for problem size is 1.51 times greater

than execution time for problem size of 15000

 for execution time of CUDA method for problem size is 1.4 times greater

than execution time for problem size of 15000

The results, showed in Figure 8, show that for standard Thrust container:

 GPU AXPY has slightly worse performance - about 3% - than the same

algorithms using array of numbers

 CPU AXPYs suffers huge performance drop when Thrust container is used;

the execution time grows proportionally to problem size

 CUDA AXPY is the most efficient algorithm; cuBLAS AXPY is worse than

CUDA AXPY but it outperforms CPU approach for bigger problem sizes

 for vector size of 1300 an performance of cuBLAS algorithm increase

however for vector size of 4300 it gets back to previous trend

R e s u l t s

67

 the execution time of CPU method for vector size equals to 100 is over 140

times greater than execution time for problem size of 15000

 for execution time of cuBLAS method for vector size equals to 100 is 1.54

times greater than execution time for problem size of 15000

 for execution time of CUDA method for vector size equals to 100 is 1.37

times greater than execution time for problem size of 15000

c. Vector Swap

 In this section performance of Vector Swap operator is evaluated. Set of algorithms

𝐴 considered in this experiment is given by ∈ {CPU Vector Swap, CUDA Vector Swap,

cuBLAS Vector Swap} ; set of scenarios is given by 𝑆 = (𝑥, 𝑦 ∈ [0, 1]𝑛: 𝑛 ∈

{100, 125, … ,15 000}).

The results, showed in Figure 9, show that for standard array container:

 there is minimal impact of problem size on algorithms performance

 execution time increase all algorithms with very slow peace

 CPU algorithm is the most effective operator in this experiment; second best

was CUDA algorithm and third one was cuBLAS method

 for problem size of an execution time of GPU algorithms bumped up and

after a while came back to follow the original trend

R e s u l t s

68

 the execution time of CPU method for vector size equals to 100 is 91 times

greater than execution time for problem size of 15000

 for execution time of cuBLAS method for vector size equals to 100 is 1.46

times greater than execution time for problem size of 15000

0

0.2

0.4

0.6

0.8

1

100 5k 10k 15k

t[
m

s]

vector size

CPU Swap cuBLAS Swap CUDA Swap

0

0.2

0.4

0.6

0.8

1

100 5k 10k 15k

t[
m

s]

vector size

Classic CPU Saxpy cuBLAS Saxpy Simple CUDA Saxpy

Figure 9. Vector Swap operator performance (Thrust containers on the top, array

containers on the bottom)

R e s u l t s

69

 for execution time of CUDA method for vector size equals to 100 is 1.45

times greater than execution time for problem size of 15000

The results, showed in Figure 9, show that for standard Thrust container:

 Thrust containers caused relatively small drop in performance for GPU-based

algorithms; for both of them performance is about 4% worse

 CPU operator is significantly less effective when Thrust container is used;

performance gets smaller linearly with growing problem size

 CUDA operator is the best method in this experiment; second place is taken

by cuBLAS operator

 the execution time of CPU method for vector size equals to 136 is 137 times

greater than execution time for problem size of 15000

 for execution time of cuBLAS method for vector size equals to 100 is 1.51

times greater than execution time for problem size of 15000

 for execution time of CUDA method for vector size equals to 100 is 1.28

times greater than execution time for problem size of 15000

d. Vector-Scalar Multiplication

In this section performance of Vector-Scalar Multiplication operator is evaluated. Set

of algorithms 𝐴 considered in this experiment is given by ∈ {CPU Vector −

R e s u l t s

70

Scalar Multiplication, CUDA Vector − Scalar Multiplication, cuBLAS AXPY} ; set of

scenarios is given by𝑆 = (𝛼 ∈ [0, 1]; 𝑥 ∈ [0, 1]𝑛: 𝑛 ∈ {100, 125, … ,15 000}).

The results, showed in Figure 10, show that for standard array container:

0

0.2

0.4

0.6

0.8

1

100 5k 10k 15k

t[
m

s]

vector size

CPU Vector-Scalar Multiplication cuBLAS Vector-Scalar Multiplication

CUDA Vector-Scalar Multiplication

0

0.2

0.4

0.6

0.8

1

100 5k 10k 15k

t[
m

s]

vector size

CPU Vector-Scalar Multiplication cuBLAS Vector-Scalar Multiplication

CUDA Vector-Scalar Multiplication

Figure 10. Vector-Scalar Multiplication operator performance (Thrust containers

on the top, array containers on the bottom)

R e s u l t s

71

 there is a small impact of problem size on algorithm performance however

execution time of all methods increase linearly with increase in problem size

 CPU Matrix-Scalar Multiplication method is the most effective operator in

this experiment; second is CUDA Matrix-Scalar Multiplication and the last

one is cuBLAS Matrix-Scalar Multiplication

 for problem size of 1300 an execution time of GPU algorithms drops down

and after a while came back to follow the original trend

 the execution time of CPU method for vector size equals to 100 is 53 times

greater than execution time for problem size of 15000

 for execution time of cuBLAS method for vector size equals to 100 is 1.5

times greater than execution time for problem size of 15000

 for execution time of CUDA method for vector size equals to 100 is 1.36

times greater than execution time for problem size of 15000

The results, showed in Figure 10, show that for standard Thrust container:

 Thrust containers caused slower execution time; GPU-based algorithms were

6% less effective

 CPU operator is significantly less effective when Thrust container is used;

performance gets smaller linearly with growing problem size

R e s u l t s

72

 CUDA Matrix-Scalar Multiplication is the best method in this experiment;

second place is taken by cuBLAS Matrix-Scalar Multiplication

 the execution time of CPU method for vector size equals to 136 is 125 times

greater than execution time for problem size of 15000

 for execution time of cuBLAS method for vector size equals to 100 is 1.5

times greater than execution time for problem size of 15000

 for execution time of CUDA method for vector size equals to 100 is 1.3 times

greater than execution time for problem size of 15000

e. Vector Addition

In this section performance of Vector Addition operator is evaluated. Set of

algorithms 𝐴 considered in this experiment is given by ∈ {CPU Vector −

Scalar Addition, CUDA Vector − Scalar Addition, cuBLAS AXPY} ; set of scenarios is

given by 𝑆 = (𝑥, 𝑦 ∈ [0, 1]𝑛: 𝑛 ∈ {100, 125, … ,15 000}).

The results, showed in Figure 11, show that for standard array container:

 problem size has marginal impact on performance of all methods; execution

time increase together with increase of vector size for all algorithms

 CPU Vector Addition is the most effective operator in this experiment;

second best was CUDA Vector Addition algorithm and third one was cuBLAS

Vector Addition method

R e s u l t s

73

 for problem size of an execution time of GPU algorithms bumped up and

after a while came back to follow the original trend

 the execution time of CPU method for vector size equals to 100 is 64 times

greater than execution time for problem size of 15000

0

0.2

0.4

0.6

0.8

1

100 5k 10k 15k

t[
m

s]

vector size

CPU Vector Addition cuBLAS Vector Addition CUDA Vector Addition

0

0.2

0.4

0.6

0.8

1

100 5k 10k 15k

t[
m

s]

vector size

CPU Vector Addition cuBLAS Vector Addition CUDA Vector Addition

Figure 11. Vector Addition operator performance (Thrust containers on the top,

array containers on the bottom)

R e s u l t s

74

 for execution time of cuBLAS method for problem size is 1.54 times greater

than execution time for problem size of 15000

 for execution time of CUDA method for problem size is 1.39 times greater

than execution time for problem size of 15000

The results, showed in Figure 11, show that for standard Thrust container:

 switching to Thrust containers resulted in approximately 5% worse

performance of all CUDA algorithms

 CPU operator is significantly less effective when Thrust container is used;

performance gets smaller linearly with growing problem size

 CUDA operator is the best method in this experiment; second place is taken

by cuBLAS operator

 the execution time of CPU method for vector size equals to 100 is 137 times

greater than execution time for problem size of 15000

 for execution time of cuBLAS method vector size equals to 100 is 1.51 times

greater than execution time for problem size of 15000

 for execution time of CUDA method vector size equals to 100 is 1.32 times

greater than execution time for problem size of 15000

R e s u l t s

75

f . DOT Product

In this section performance of Dot Product operator is evaluated. Set of algorithms

𝐴 considered in this experiment is given by 𝐴 ∈ {CPU DOT, CUDA DOT, cuBLAS DOT}.

0

0.2

0.4

0.6

0.8

1

100 5k 10k 15k

t[
m

s]

vector size

CPU DOT Product cuBLAS DOT Product CUDA DOT Product

0

0.2

0.4

0.6

0.8

1

100 5k 10k 15k

t[
m

s]

vector size

CPU DOT Product cuBLAS DOT Product CUDA DOT Product

Figure 12. DOT Product operator performance (Thrust containers on the top,

array containers on the bottom)

R e s u l t s

76

Scenarion examined in this research are given by 𝑆 = (𝑥, 𝑦 ∈ [0, 1]𝑛: 𝑛 ∈

{100, 125, … ,15 000}).

The results, showed in Figure 12, show that for standard array container:

 the most efficient algorithm is CPU DOT Product; execution time grows with

time, however the slope is rather gentle: the difference between first and the

last test case is 0.08 𝑚𝑠

 two remaining operators are worse than CPU operator for over 15 times for

larger size matrices

 CUDA DOT operator execution time grows linearly with stepper slope that

CPU DOT execution time; the difference between execution time of these

two methods for vector size of 100 is 0.21 𝑚𝑠, whereas for vector size of 15

000 the difference is 0.07 𝑚𝑠

 the execution time of cuBLAS DOT operator also grows linearly for most of

the experimental sets; it has the slowest increase pace: the difference in

execution time for vector size equal to 400 and 15 000 is 0.22 𝑚𝑠

 for vector size of 1300 an execution time of cuBLAS algorithms decrease;

later for vector size of 4300 it gets worse and follows the original trend

The results, showed in Figure 12, show that for standard Thrust container:

R e s u l t s

77

 switching to Thrust container has a little influence, about 2%, on performance

of cuBLAS DOT and CUDA DOT operator

 the difference in execution time of cuBLAS DOT operator for vector size

between 100 and 15 000 is 0.076 𝑚𝑠

 switching to Thrust data structures has significant impact on CPU DOT

operator

 execution time of CPU algorithm grown linearly; for vector size of 4800 it

gets outperformed by CUDA DOT operator; for vector size equals to 9000

cuBLAS DOT method becomes more efficient

 for vector size of 1300 an execution time of cuBLAS algorithm decrease; it

gets back to previous trend when vector size reach size of 4300

g. GEMV

In this section performance of GEMV operator is evaluated. Set of algorithms 𝐴

considered in this experiment is given by 𝐴 ∈ {CPU GEMV,

Atomic CUDA GEMV, Plain CUDA GEMM, Tiled CUDA GEMM, cuBLAS GEMV}; GEMV

is a special case of GEMM operator when second matrix is a vector; set of scenarios is

given by 𝑆 = (𝛼, 𝛽 ∈ [0, 1]; 𝑥 ∈ [0, 1]𝑛: 𝑛 ∈ {100, 125, … ,10 000}; 𝐴 ∈ [0, 1]𝑛×𝑛: 𝑛 ∈

{100, 125, … , 7 000}).

R e s u l t s

78

The results, showed in Figure 13, show that for standard array container:

 the most efficient algorithms is cuBLAS GEMV operator

0

40

80

120

160

200

0.1k 2.5k 5k 7k

t[
m

s]

matrix/vector dimmensions

CPU GEMV cuBLAS GEMV CUDA GEMV Tiled CUDA GEMV Atomic CUDA GEMV

0

40

80

120

160

200

0.1k 2.5k 5k 7k

t[
m

s]

matrix/vector dimmensions

CPU GEMV cuBLAS GEMV CUDA GEMV Tiled CUDA GEMV Atomic CUDA GEMV

Figure 13. GEMV operator performance (Thrust containers on the top, array

containers on the bottom)

R e s u l t s

79

 second best operator is Plain CUDA GEMM operator; it is almost equally

efficient as Tiled CUDA GEMM operator, yet Tiled CUDA GEMM is about

2% less effective

 execution time of cuBLAS GEMV, Plain CUDA GEMM, and Tiled CUDA

GEMM can be described by polynomial

 Atomic CUDA GEMV and CPU GEMV operators are the least effective;

execution time of these operators grows almost exponentially together with

growing size of input matrix/vector

 for cuBLAS GEMV the difference in execution time between problem size of

25×25 and 7000×7000 is about 89 𝑚𝑠

 for Plain CUDA GEMM the difference in execution time between problem

size of 25×25 and 7000×7000 is about 176 𝑚𝑠

 for Tiled CUDA GEMM the difference in execution time between problem

size of 25×25 and 7000×7000 is about 190 𝑚𝑠

 for Atomic CUDA GEMM the difference in execution time between problem

size of 25×25 and 7000×7000 is about 7.8 𝑠

 for CPU GEMM the difference in execution time between problem size of

25×25 and 7000×7000 is about 5.5 𝑠

The results, showed in Figure 13, show that for standard Thrust container:

R e s u l t s

80

 switching to Thrust containers resulted in significantly worse performance of

CPU GEMV operator

 for CPU GEMM the difference in execution time between problem size of

25×25 and 7000×7000 is about 995 𝑚𝑠

 Thrust data structures did not cause big performance drop when applied to

CUDA operators; a 4% increase of execution time can be observed

h. Matrix Swap

In this section performance of Matrix Swap operator is evaluated. Set of algorithms

𝐴 considered in this experiment is given by 𝐴 ∈ {CPU Matrix Swap,

CUDA Matrix Swap}; set of scenarios is given by 𝑆 = (𝐴, 𝐵 ∈ [0, 1]𝑛×𝑛: 𝑛 ∈

{25, 50, … , 5 000}).

The results, showed in Figure 14, show that for standard array container:

 CUDA Matrix Swap was the most effective algorithm in this experiment

 execution time of both operators can be described by polynomial, however

execution time of CPU operator grows with greater speed

 for CUDA Matrix Swap operator the difference in execution time between

problem size of 25×25 and 5000×5000 is about 56 𝑚𝑠

R e s u l t s

81

 for CPU Matrix Swap operator the difference in execution time between

problem size of 25×25 and 5000×5000 is about 204 𝑚𝑠

The results, showed in Figure 14, show that for standard Thrust container:

0

50

100

150

200

25 2k 3.5k 5k

t[
m

s]

matrix size

CPU Matrix Swap CUDA Matrix Swap

0

50

100

150

200

25 2k 3.5k 5k

t[
m

s]

matrix size

CPU Matrix Swap CUDA Matrix Swap

Figure 14. Matrix Swap operator performance (Thrust containers on the top, array

containers on the bottom)

R e s u l t s

82

 after Thrust container was applied to evaluated methods each of them

experienced much longer execution time

 lower performance is especially visible for CPU Matrix Swap operator since

its execution time grows almost exponentially

i . Matrix Addition

In this section performance of Matrix Addition operator is evaluated. Set of

algorithms 𝐴 considered in this experiment is given by 𝐴 ∈ {CPU Matrix Addition,

CUDA Matrix Addition, cuBLAS GEAM}; set of scenarios is given by 𝑆 = (𝐴, 𝐵 ∈

[0, 1]𝑛×𝑛: 𝑛 ∈ {25, 50, … , 5 000}).

The results, showed in Figure 15, show that for standard array container:

 all operators have similar performance until matrix size is smaller than

800×800

 when the matrices get bigger than 800×800 the execution time of all

algorithms follows polynomial growth

 the nest performance was achieved by CUDA Matrix Addition operator;

second best operator is cuBLAS operator; the least effective is CPU Matrix

Addition method

 for CUDA Matrix Addition the difference in execution time between problem

size of 25×25 and 5000×5000 is about 62 𝑚𝑠

R e s u l t s

83

 for CPU Matrix Addition the difference in execution time between problem

size of 25×25 and 5000×5000 is about 154 𝑚𝑠

 for cuBLAS Matrix Addition the difference in execution time between

problem size of 25×25 and 5000×5000 is about 78 𝑚𝑠

0

50

100

150

200

25 2k 3.5k 5k

t[
m

s]

matrix size

CPU Matrix Addition cuBLAS Matrix Addition CUDA Matrix Addition

0

50

100

150

200

25 2k 3.5k 5k

t[
m

s]

matrix size

CPU Matrix Addition cuBLAS Matrix Addition CUDA Matrix Addition

Figure 15. Matrix Addition operator performance (Thrust containers on the top,

array containers on the bottom)

R e s u l t s

84

The results, showed in Figure 15, show that for standard Thrust container:

 switching to Thrust containers had very negative influence on CPU operator;

the execution time started to grow in almost exponential manner

 applying Thrust data structures to GPU-based operators caused 50% drop in

performance; because of that cuBLAS operator outperformed CUDA Matrix

Addition algorithm

j . Matrix-Scalar Multiplication

In this section performance of Matrix-Scalar Multiplication operator is evaluated. Set

of algorithms 𝐴 considered in this experiment is given by 𝐴 ∈ {CPU Matrix −

Scalar Multiplication, CUDA Matrix − Scalar Multiplication, cuBLAS GEMM}; set of

scenarios is given by 𝑆 = (𝛼 ∈ [0, 1]; 𝐴 ∈ [0, 1]𝑛×𝑛: 𝑛 ∈ {25, 50, … , 5 000}).

The results, showed in Figure 16, show that for standard array container:

 the execution time of all operators is similar especially for matrix sizes

smaller than 725×725

 for bigger problem sizes execution size of all operators starts to grow in

polynomial manner, but performance is still relatively similar

 the best algorithm evaluated in this experiment was CUDA Matrix-Scalar

Multiplication method; cuBLAS GEAM operator was ranked second; the

worst performance was achieved by CPU Matrix-Scalar Multiplication

R e s u l t s

85

 for CUDA Matrix-Scalar Multiplication the difference in execution time

between problem size of 25×25 and 5000×5000 is about 59 𝑚𝑠

 for CPU Matrix-Scalar Multiplication the difference in execution time

between problem size of 25×25 and 5000×5000 is about 120 𝑚𝑠

0

50

100

150

200

25 2k 3.5k 5k

t[
m

s]

matrix size

CPU Matrix-Scalar Multiplication cuBLAS Matrix-Scalar Multiplication

CUDA Matrix-Scalar Multiplication

0

50

100

150

200

25 2k 3.5k 5k

t[
m

s]

matrix size

CPU Matrix-Scalar Multiplication cuBLAS Matrix-Scalar Multiplication

CUDA Matrix-Scalar Multiplication

Figure 16. Matrix-Scalar Multiplication operator performance (Thrust containers

on the top, array containers on the bottom)

R e s u l t s

86

 for cuBLAS Matrix-Scalar Multiplication the difference in execution time

between problem size of 25×25 and 5000×5000 is about 77 𝑚𝑠

The results, showed in Figure 16, show that for standard Thrust container:

 execution time of CPU algorithm is strongly affected by Thrust containers; it

grows almost exponentially together with increasing matrices size

 for CPU Matrix-Scalar Multiplication the difference in execution time

between problem size of 25×25 and 5000×5000 is about 2 𝑠

 replacing classic arrays with Thrust containers had a smaller, but still

significant, impact on execution time of CUDA operators; it was, however,

sufficient to alter the ranking of operator: cuBLAS GEAM operator is more

effective than CUDA Matrix-Scalar Multiplication

k. Matrix Transposition

In this section performance of Matrix Transposition operator is evaluated. Set of

algorithms 𝐴 considered in this experiment is given by 𝐴 ∈ {CPU Matrix Transposition,

CUDA Matrix Transposition, cuBLAS Matrix Transposition}; set of scenarios is given by

𝑆 = (𝐴 ∈ [0, 1]𝑛×𝑛: 𝑛 ∈ {25, 50, … , 5 000}).

The results show, showed in Figure 17, that for standard array container:

R e s u l t s

87

 the most efficient operator examined in this experiment is CUDA Matrix

Transposition operator; second best operator is cuBLAS Matrix

Transposition; CPU operator is the least effective

0

50

100

150

200

25 2k 3.5k 5k

t[
m

s]

matrix size

CPU Transposition cuBLAS Transposition CUDA Transposition

0

50

100

150

200

25 2k 3.5k 5k

t[
m

s]

matrix size

CPU Transposition cuBLAS Transposition CUDA Transposition

Figure 17. Matrix Transposition operator performance (Thrust containers on the

top, array containers on the bottom)

R e s u l t s

88

 execution time of each operator grows in different pace however each of them

follows polynomial trend

 for CUDA Matrix Transposition the difference in execution time between

problem size of 25×25 and 5000×5000 is about 59 𝑚𝑠

 for cuBLAS Matrix Transposition the difference in execution time between

problem size of 25×25 and 5000×5000 is about 76 𝑚𝑠

 for CPU Matrix Transposition the difference in execution time between

problem size of 25×25 and 5000×5000 is about 111 𝑚𝑠

The results, showed in Figure 17, show that for standard Thrust container:

 after Thrust data structures were applied to methods each of them experiences

significantly slower execution time

 longer execution time is especially visible for CPU Matrix Transposition

operator since it follows exponential trend

 in this scenario cuBLAS operator is more efficient than CUDA Matrix

Transposition method

l . GEMM

In this section performance of GEMM operator is evaluated. Set of algorithms 𝐴

considered in this experiment is given by 𝐴 ∈ {CPU GEMM,

R e s u l t s

89

Simple CUDA GEMM, Tiled CUDA GEMM, cuBLAS GEMM}; set of scenarios is given by

𝑆 = (𝛼, 𝛽 ∈ [0, 1]; 𝐴, 𝐵 ∈ [0, 1]𝑛×𝑛: 𝑛 ∈ {25, 50, … , 3 000}).

The results, showed in Figure 18, show that for standard array container:

0

100

200

300

400

500

25 1k 2k 3k

t[
m

s]

matrix dimensions

CPU GEMM cuBLAS GEMM CUDA GEMM Tiled CUDA GEMM

0

100

200

300

400

500

25 1k 2k 3k

t[
m

s]

matrix dimensions

CPU GEMM cuBLAS GEMM CUDA GEMM Tiled CUDA GEMM

Figure 18. GEMM operator performance (Thrust containers on the top, array

containers on the bottom)

R e s u l t s

90

 the most efficient algorithm is cuBLAS GEMM; the difference in execution

time of cuBLAS GEMM and any other GEMM operator grows together with

size of the problem

 linear growth of execution time for cuBLAS GEMM can be observed; the

difference in execution time between problem size of 25×25 and 3000×3000

is about 160 𝑚𝑠

 next two best algorithms are Tiled CUDA GEMM and Plain CUDA GEMM;

they were almost equally effective throughout the whole experiment; Tiled

CUDA GEMM was better, however, for about 3%

 for Tiled CUDA GEMM the difference in execution time between problem

size of 25×25 and 3000×3000 is about 995 𝑚𝑠

 for Plain CUDA GEMM the difference in execution time between problem

size of 25×25 and 3000×3000 is about 1048 𝑚𝑠

 the CPU operator was the least efficient; its execution time grows almost

exponentially

 for CPU GEMM the difference in execution time between problem size of

25×25 and 3000×3000 is about 5 𝑚𝑖𝑛

The results show, showed in Figure 18, that for standard Thrust container:

R e s u l t s

91

 Thrust containers, when applied to GPU-based operators, resulted in about

3% increase of execution time

 it did not, however, affect the pace in which execution time grows with

increasing problem size

 switching to Thrust containers caused humongous drop in performance for

CPU GEMM operator; for large scale matrices, 3000×3000, the execution

time is almost an hour

m. Triangular GEMM

In this section performance of Triangular GEMM operator is evaluated. Set of

algorithms 𝐴 considered in this experiment is given by 𝐴 ∈ {CPU Triangular GEMM,

Simple CUDA Triangular GEMM, Tiled CUDA Triangular GEMM, cuBLAS GEMM}; set

of scenarios is given by 𝑆 = {𝛼, 𝛽 ∈ [0, 1]; 𝐴, 𝐵 ∈ [0, 1]𝑛×𝑛: 𝑛 ∈

{25, 50, … , 3 000}; 𝐴[𝑖][𝑗] = 𝐵[𝑖][𝑗] = 0: 𝑗 < 𝑖 < 𝑛 }.

The results, showed in Figure 19, show that for standard array container:

 performance of CPU Triangular GEMM is very poor; execution time of this

algorithm grow almost exponentially and therefore it makes it unusable for

large scale matrices

 execution time of all GPU algorithm can be described by polynomial growth;

for small size problems, up to matrix size of 525×525, it is very similar among

R e s u l t s

92

all of these operators; after that size execution time starts to grow with

different speed for different operators

0

100

200

300

400

500

25 1k 2k 3k

t[
m

s]

vector size

CPU Left Triangular GEMM cuBLAS CUDA Left Triangular GEMM

Simple CUDA Left Triangular GEMM Tiled CUDA Left Triangular GEMM

0

100

200

300

400

500

25 1k 2k 3k

t[
m

s]

vector size

CPU Left Triangular GEMM cuBLAS CUDA Left Triangular GEMM

Simple CUDA Left Triangular GEMM Tiled CUDA Left Triangular GEMM

Figure 19. Triangular GEMM operator performance (Thrust containers on the top,

array containers on the bottom)

R e s u l t s

93

 Tiled CUDA Triangular GEMM – the worst of GPU operators – needed about

8 𝑚𝑠 to multiply matrices of size 512×512; to multiply matrices of size

3000×3000 it needed almost a 1 𝑠

 CUDA Triangular GEMM operator is second best operator; it needed 3 𝑚𝑠

to multiply two matrices of size 525×525; to multiply two matrices of size

3000×3000 it needed 567 𝑚𝑠

 the most efficient operator – cuBLAS GEMM – has the gentlest slope function

that describes its execution time

 for 525×525 matrices cuBLAS GEMM needed 5.5 𝑚𝑠 to complete operation;

for 3000×3000 execution time was 161 𝑚𝑠

The results, showed in Figure 19, show that for standard Thrust container:

 switching to Thrust containers had humongous impact of CPU Triangular

GEMM; its execution time grows even faster compared to standard array

container

 using Thrust containers had almost on impact on GPU methods; this

scenarios shows analogous behavior of GPU operators to the one presented

for classic array containers

 for Tiled CUDA Triangular GEMM the difference in execution time for

matrix size between 25×25 and 3000×3000 is 989 𝑚𝑠

R e s u l t s

94

 for Simple CUDA Triangular GEMM the difference in execution time for

matrix size between 25×25 and 3000×3000 is 560 𝑚𝑠

 for cuBLAS GEMM the difference in execution time for matrix size between

25×25 and 3000×3000 is 158 𝑚𝑠

Chapter 5.2. Performance of Multiphysics s imulation

To examine the effectiveness of the proposed hybrid approach, an experiment was

performed. Performance of the proposed method was compared to the performance of the

standard CPU approach. In the experiment two multiphysics heat conduction problems,

diffusion and diffusion with convection were considered. A weak form of the PDE that

describes the convection diffusion problem (and therefore diffusion only also) is given by

the equations below.

−∇ ∙ 𝑘∇𝑢 + 𝛽 ∙ ∇𝑢 = 𝑓 (18)

Where k is diffusivity, β is the vector field of velocity, −∇ ∙ 𝑘∇𝑢 is diffusion, and

𝛽 ∙ ∇𝑢 is convection. After moving f to the left side of equation, multiplying both sides by

the shape function ψ, and integrating the equation over the domain Ω, equation (19) is

obtained [20].

− ∫ 𝜓(∇ ∙ 𝑘∇𝑢)
𝛺

+ ∫ 𝜓(𝛽 ∙ ∇𝑢) − ∫ 𝜓𝑓
𝛺𝛺

= 0 (19)

Applying the divergence theorem to equation (19) transforms it to equation (20).

R e s u l t s

95

∫ ∇𝜓 ∙ 𝑘∇𝑢
𝛺

− ∫ 𝜓(𝑘∇𝑢 ∙ �̂�)
𝜕𝛺

+ ∫ 𝜓(𝛽 ∙ ∇𝑢) − ∫ 𝜓𝑓
𝛺𝛺

= 0 (20)

When represented in terms of multiphysics kernels and boundary conditions,

equation (20) has the following form [20].

(∇𝜓, 𝑘∇𝑢) − 〈𝜓, 𝑘∇𝑛 ∙ �̂�〉 + (𝜓, 𝛽 ∙ ∇𝑢) − (𝜓, 𝑓) = 0 (21)

Where (∇𝜓, 𝑘∇𝑢), (𝜓, 𝛽 ∙ ∇𝑢), and (𝜓, 𝑓) are multiphysics kernels and 〈𝜓, 𝑘∇𝑛 ∙ �̂�〉

is a boundary condition [20].

Set of algorithms 𝐴 considered in this experiment is given by 𝐴 ∈

{CUDA Hybrid, Thrust Hybrid, cuBLAS Hybrid, Thrust & cuBLAS Hybrid} where

CUDA Hybrid represents libMesh with underlying algorithms that were designed in second

approach, Thrust Hybrid represents libMesh in which all STL containers were replaced by

Thrust containers, cuBLAS Hybrid represents libMesh with underlying cuBLAS operators,

and finally Thrust-cuBLAS Hybrid represent libMesh with Thrust data structures and

cuBLAS operators. Set of scenarios is given by 𝑆 = {𝑀 × 𝑃: 𝑀 ∈ 𝑀𝑒𝑠ℎ𝑛×𝑛: 𝑛 ∈

{32, 64, 128, 256, 512}, 𝑃 ∈ {𝐷𝑖𝑓𝑓𝑢𝑠𝑖𝑜𝑛, 𝐷𝑖𝑓𝑓𝑓𝑢𝑠𝑖𝑜𝑛 & 𝐶𝑜𝑛𝑣𝑒𝑐𝑡𝑖𝑜𝑛}} where 𝑀 is

sealed steel cylinder given by mesh of size 𝑛 × 𝑛 and 𝑃 represents multiphysics simulation.

Table 3 presents the performance of proposed solutions expressed as ration of

𝑡ℎ𝑦𝑏𝑟𝑖𝑑(𝑃)

𝑡𝑙𝑖𝑏𝑀𝑒𝑠ℎ(𝑃)
 where 𝑡𝑙𝑖𝑏𝑀𝑒𝑠ℎ(𝑃) is duration of simulation 𝑃 executed by classic libMesh

implementation, 𝑡𝑙𝑖𝑏𝑀𝑒𝑠ℎ(𝑃) is duration of simulation 𝑃 executed by one of proposed

hybrid GPU/CPU libMesh implementation.

R e s u l t s

96

Table 3. Hybrid simulators performance

Mesh size Physics

Speed-up factor of Hybrid approach

CUDA Thrust cuBLAS
Thrust &

cuBLAS

32×32 Diffusion 0.974 0.921 0.989 0.903

64×64 Diffusion 0.986 0.782 0.992 0.778

128×128 Diffusion 1.012 0.698 1.019 0.712

256×256 Diffusion 1.025 0.612 1.031 0.698

512×512 Diffusion 1.036 0.562 1.049 0.612

32×32
Diffusion &

Convection
0.979 0.928 0.992 0.915

64×64
Diffusion &

Convection
0.994 0.798 0.998 0.773

128×128
Diffusion &

Convection
1.007 0.721 1.013 0.753

256×256
Diffusion &

Convection
1.018 0.676 1.027 0.713

512×512
Diffusion &

Convection
1.031 0.598 1.042 0.682

The results shows that:

 for CUDA Hybrid and cuBLAS Hybrid greater performance gain follows

bigger problem sizes

 for small size problems, 64 × 64 and below, none of the proposed

modifications resulted in performance gain

R e s u l t s

97

 when problem size gets bigger than 64 × 64, CUDA Hybrid and cuBLAS

Hybrid executes diffusion simulation faster than original libMesh

implementation by 1.2% and 1.9% respectively

 when problem size gets bigger than 64 × 64, CUDA Hybrid and cuBLAS

Hybrid executes diffusion & convection simulation faster than original

libMesh implementation by 0.7% and 1.3% respectively

 when Thrust library was applied to libMesh, for both proposed approaches

that involves new data containers significant drop in performance was

observed; the performance of simulation were decreasing together with

growing problem size

 for problem size of 512 × 512 Thrust Hybrid and cuBLAS & Thrust Hybrid

are slower than original libMesh implementation by over 30%

D i s c u s s i o n

98

Dawid

Chapter 6

Discussion

a. Paral lel BLAS algorithms

The results show that the overhead, related to highly object oriented architecture of

Thrust data structures and wrapper nature of methods, has serious negative impact on

overall performance of memory allocation operators. Both CPU and plain CUDA

implementations outperforms Thrust operators. It can be also observed that effectiveness

of algorithms (both serial and parallel) with Thrust data structures were worse than

effectiveness of corresponding non-Thrust versions. Despite worse performance

considered library provides extremely usable and flexible data structures. Thrust containers

are easy to use, greatly increases code readability, simplifies code refactor, and speed up

the development process. Therefore a small decrease in performance may be worth the

robustness offered by Thrust library.

The research confirmed the enormous effectiveness of both CUDA and cuBLAS

methods. The scenario was similar for all algorithms for which corresponding CPU

operators have complexity of 𝑂(𝑛2) and higher. First, when dimensions of

D i s c u s s i o n

99

matrices/vectors were small, CPU outperform all GPU algorithms. It happens because of

overhead related to data transfers between host and device and because of relatively low-

performance of GPU cores. However increasing dimensions cause exponential growth of

CPU algorithms execution time and therefore they are no longer competitive. In the same

time execution time of CUDA algorithms grows linearly. When execution time of plain

CUDA algorithms are compared to equivalent cuBLAS methods it can be observed that

plain CUDA operators are more effective for smaller scale of problem. It is because of the

overhead caused by wrapper nature of cuBLAS methods. Nevertheless the difference is

getting smaller when matrix/vector dimensions are getting bigger and eventually cuBLAS

operators outpace plain CUDA algorithms. As the experience shows in real life when

developers decide to consider GPGPU the scale of problem is already big enough to not

focus on corner cases when serial algorithm may be more efficient.

A different situation, however, can be observed for all CPU operators described by

complexity of 𝑂(𝑛). The complexity of these algorithms is so insignificant that an effort

to make it parallel seems to be pointless. As the research shows when a regular data

structures are used CPU outperforms all GPU approaches. Furthermore even when two

GPU approaches are compared it appears that the algorithm that the overhead may be more

important than design of the algorithm itself. This observation points out how the

performance of hardware and overhead related to design can affect the effectiveness of

algorithm for relatively small scale of problem.

D i s c u s s i o n

100

b. Multiphysics s imulat ion

Results show that switching from STL container to Thrust containers has very

negative influence on performance of proposed hybrid GPU/CPU multiphysics simulator.

Even when efficient cuBLAS operators work atop of Thrust data structures the overall

performance of simulator is very disappointing. Moreover together with growing problem

size the performance drop gets bigger. It is related to overhead that accompanies every

operation that involves any data manipulation within a Thrust data structures. Therefore it

is not recommended to replace STL container with Thrust containers at least until

additional research is done. Further research would have to evaluate how increasing the

spectrum of used Thrust parallel operators affects the performance of simulation.

Currently, when the only used Thrust operators are accessors to element enclosed in data

structures, the negative impact on performance of simulation is unacceptable.

As it can be seen in cases in which the number of points was relatively small, CPU

approach outperforms the proposed Hybrid approach (in each version). This is caused by

an additional steps that are related to the GPU/CPU approach. The libMesh data structure

has to be translated to standard arrays, memory on GPU has to be allocated, and data has

to be copied. Therefore, although execution of the kernel may be faster than the

multiplication process performed by CPU, together with the mentioned overhead, the

overall performance is worse. Nevertheless, when the number of points grows, the

proposed approach is more efficient. For meshes with 128×128 and more, the hybrid

approach reduces the total simulation time by over 1.03 (3%) and 1.05(5%) for CUDA

Hybrid and cuBLAS Hybrid respectively. It can be also observed that with the increase in

D i s c u s s i o n

101

number of points the speed-up factor grows. Therefore it can be assumed that the

performance increase would be even greater for a mesh that consists of more than

1024×1024 points. A reasonable idea to test this hypothesis would be to implement a

mechanism that tracks simulation and record profiling. These outcomes could then be used

to decide whether to use the hybrid or CPU approach.

The obtained results also show that the complexity of multiphysics phenomena has

an influence on performance. For the same model the speed-up factor obtained for a simple

diffusion phenomena is definitely larger than for the convection diffusion phenomena.

Therefore, it may be assumed that for complex multiphysics problems, the difference in

time consumption between matrix multiplication and other parts of the code is getting

smaller. As a result, in the worst-case scenario, the speed-up factor will be very close to

one. However it will never drop below one so the hybrid approach would be at worst as

good as the CPU approach.

C o n c l u s i o n

102

Dawid

Conclusion

The research carried out and presented in this thesis focuses almost exclusively on

the multiphysics simulation performance in the purest and the most literal meaning of that

word. It is because there is still a little research done in this area and, especially, in porting

existing CPU-based systems to GPU-enabled systems. Topic covered in the thesis was the

obvious choice to assess the potential legitimacy of applying GPGPU technology and, in

case of being wrong, invalidity of using it.

The most important part of the multiphysics simulation is to solve PDEs. For larger

problems these equations have to be solved simultaneously on HPC in order to finish the

calculation in reasonable time. In this paper, a strategy of dealing with multiphysics

problems is presented by a hierarchical software framework. Examples of the systems are

MOOSE, COMSOL, and ANSYS. In this research architecture of these systems was

presented and described. The code analysis and documentation review allowed to observe

that both commercial and academia solutions follow a generic pattern architecture that

consist of multiphysics models, parallel computational framework, Finite Element library,

and set of PDE solvers. In first layer multiphysics problem is defined, second layer

C o n c l u s i o n

103

initializes simulation and preprocess input data, third layer runs solvers and processes

corresponding mesh, finally last layer solves system of partial differential equations.

The simulation process is very time consuming and requires a lot of computational

power. Because of that even when multimode high-performance supercomputer is applied

the simulation may take even few days or weeks. Moreover the cost of upgrading the

hardware is not proportional to performance gain. Therefore an attempt to use different

computational technology, namely GPGPU, was made. Because MOOSE Framework and

all of its layers are open source and because both MOOSE and underlying layers – namely

libMesh, PETSc, and Trilinos – are widely used in academia and business, they were

selected to the research.

Code analysis shows that the lowest layer – PDE solvers – are already efficient

applications capable of being executed by classic CPU-based supercomputers and also

machines that takes advantage of newer technologies like GPU and FPGA. FE Library

layer however, despite capability of being executed in parallel by number of CPU nodes,

is not ready to be ran by GPUs and for that reason it becomes a bottleneck. Because of that

libMesh the most suitable candidate to be redesigned and reimplemented to run on GPU.

First approach to taken to move the simulation to GPU environment assumed that

each CPU thread will be mapped one-to-one to GPU thread; as such Parallel Multiphysics

Framework would spawn numerous GPU kernels instead of GPU threads. This approach

would significantly increase parallelism of execution since even single GPU is able to run

hundred thousands of threads simultaneously what exceeds capabilities, understood as

number of parallel threads not performance, of most supercomputers. This approach lead

C o n c l u s i o n

104

to dead end since there are some issues with porting the whole framework to GPU. The

biggest of them is the architecture of libMesh. LibMesh is a highly object oriented

application written in C++. Investigation of the code reveals that the library strongly relies

on highly hierarchical abstract classes and polymorphism which were nor well supported

by GPU. Furthermore libMesh code that is executed by single CPU thread is very complex

in terms of branch operations. Because GPU execute kernels in SIMT pattern, in which

each GPU thread enclosed in warp executes the same instruction at the same moment,

branches have significant negative influence on performance. LibMesh uses also STL

containers. The main problem is that STL containers use pointers extensively. When STL

data structure is transferred to GPU memory addresses are copied instead. This results in

error because GPU tries to refer to host memory which cannot be accessed directly by

GPU. To solve the aforementioned issues libMesh architecture would have to be

completely redesign the architecture of libMesh, however it would be an extremely time

consuming and expensive project, not to mention that results still may be unsatisfying.

Because of this, a hybrid approach that uses GPU and CPU is proposed in this paper.

Second approach to enhance multiphysics simulation performance assumed porting

to GPU only the most time consuming and highly parallel parts of libMesh. In this

approach, named hybrid GPU/CPU, the application flow is very similar to original one:

single CPU thread initializes simulation and spawns child threads, child threads work

together via MPI and when done they return results to parent thread. The difference is when

ported to GPU part of code is approached. In this situation child thread calls a GPU kernel

thread that executes heavy computational part of application. Code reviews and profiling

reveals that the best candidates to be reimplemented in GPU-enabled manner are linear

C o n c l u s i o n

105

algebraic operators. To assess validity and performance boost preliminary research was

conducted – selected operators were implemented in CUDA and their effectiveness were

referred efficiency of corresponding CPU algorithms. The results proved outstanding

performance of GPU approach; parallel were multiple times more efficient than GPU

algorithms and the difference grew with size of problem. When implemented to

multiphysics simulator the time required to finish the simulation was almost 18% shorter

than original version.

In third approach features from new CUDA programing model, namely Thrust and

cuBLAS, were used. Thrust is the GPU version of STL whereas cuBLAS is GPU-enabled

version of BLAS library. Since the work done in previous step resulted in custom GPU

BLAS library, it seemed obvious that it should be referred to cuBLAS. All algorithms

implemented in previous approach were reimplemented using cuBLAS methods and a

number of experiments were conducted to evaluate the performance. As the results show

cuBLAS was more efficient in certain cases especially for large scale problems. Therefore

multiphysics simulator was updated to use more efficient cuBLAS operators instead of

previously used GPU algorithms. In addition all instances of STL containers were replaced

by Thrust containers so that some container-related methods, like sorting, could be

executed by GPU. Upgrade to CUDA 6.5 brought even greater performance boots: the

newest version of hybrid GPU/CPU approach was 5% faster than previous one and over

13% faster than original CPU version.

The investigation, research, and obtained results answer the research questions asked

at the beginning of the dissertation: it is possible to redesigned existing multiphysics

C o n c l u s i o n

106

simulator to run on GPU; changes does not affect existing applications that were build atop

of it; furthermore GPU version may be more efficient than CPU version. Nevertheless

stating that the new approach is undoubtedly beneficial and that it is safe to proceed with

this approach may be risky. The main concern is relatively small performance gain which

may be easily compromised by other factors that has to be considered before approach is

implemented in large-scale and expensive supercomputer.

One of them is fault-tolerance and resilience of application. In current state any

random failure of even one thread results in termination of kernel and, as a result,

termination of parent CPU process. Depending on configuration of CPU layer of

multiphysics framework, in best case scenario the CPU thread can be relaunched or even a

thread context can be restored from a checkpoint; in worst case scenario, however, whole

simulation would fail. No matter which scenario occurs any GPU layer failure results in

loss in execution time and therefore in performance drop. Resolving that issue is highly

important task because single failure may neglect days of computations which rerunning

causes loses in time and money.

Second issue that is worth being investigated is cost effectiveness of new approach.

GPUs have an opinion of being highly energy inefficient; supercomputers that consist of

thousands of GPU consumes more power than equally efficient systems. This may lead to

conclusion that each flops of GPU performance is more expensive. On the other hand,

however, it is hard to achieve the performance of GPU using only CPU. Cost of adding

new CPU nodes of performance equal to GPU modes is significantly higher. Furthermore

one has to take into account context in which supercomputer is used. If multiphysics

C o n c l u s i o n

107

simulation is the only or the main role of machine then switching to GPGPU may be

reasonable. However when other applications are also ran on supercomputer than cost of

redesign and implementation to support new hardware architecture has to be considered.

Further work in this area may include finding solutions and answers to issues: cost

effectiveness and fault-tolerance. A good idea would be to design and implement a

mechanism that tracks the parameters of simulation and record the used method and

performance. Results would help to determine which approach, hybrid or standard, offers

better performance. It is also reasonable to experiment with GPU features, parallel

programing frameworks, or kernel execution properties like different structure of thread

grids or even a dynamic structure which shape depends on input data structures. Another

promising alternative is to investigate libMesh and other modules architecture to discover

other highly parallel parts of code or even whole blocks that can be ported to GPU without

compromising their performance. Moreover it might be profitable to consider a hybrid

hardware architecture that takes advantage of GPU, CPU, and other technologies like

FPGA. One can also focus on developing intelligent and automated detection of these parts

in code that can be efficiently migrated to these accelerators.

108

Dawid

References

[1] D. Aronofsky, Director, Pi. [Film]. United States: Protozoa Pictures, 1998.

[2] E. Burt, The Metaphysical Foundations of Modern Science, Chicago: Dover Publications,

INC, 2003.

[3] J. Jeans, The Mysterious Universe, Cambridge University Press, 1930.

[4] E. Wigner, "The Unreasonable Effectiveness of Mathematics in the Natural Sciences,"

Communications in Pure and Applied Mathematics, vol. 13, no. 1, 1960.

[5] D. Hughes, "Prof. D. E. Hughes' Research in Wireless Telegraphy," The Electrician, vol. 43,

pp. 40 - 41, 1899.

[6] C. F. Gauss, Theory of the Motion of the Heavenly Bodies Moving about the Sun in Conic

Sections. A translation of Guass' Theoria Motus, Little, Brown and Company, 1857.

[7] J. Arndt and C. Haenel, π unleashed, Springer-Verlang, 2001.

[8] W. Gautschi, "Leonhard Euler: His Life, the Man, and His Work," SIAM Review, vol. 50, no.

1, pp. 3 - 33, 2008.

[9] G. Cardano, "Ars magna or The Rules of Algebra. A translation of Gerolamo's Ars magna.,"

1993.

[10] D. Krol and D. Zydek, "Solving PDEs in Modern Multiphysics Simulation Software," in 2013

IEEE International Conference on Electro/Information Technology (EIT), Rapid City SD,

2013.

[11] D. Krol and D. Zydek, "Matrix Multiplication in Multiphysics Systems Using CUDA," in

Proceedings of the 18th International Conference on Systems Science (ICSS 2013),

Advances in Intelligent Systems and Computing, 2014.

R e f e r e n c e s

109

[12] D. Krol, J. Harris and D. Zydek, "Hybrid GPU/CPU Approach to Multiphysics Simulation," in

Progress in Systems Engineering, Las Vegas, 2014.

[13] D. Krol, S. Chiu, M. Liu and D. Zydek, "Effectiveness evaluation of cuBLAS and Thrust CUDA

6.5 libraries," Journal of Distributed Computing, 2015.

[14] D. Krol, D. Zydek and L. Koszalka, "Problem-Independent Approach to Multiprocessor

Dependent Task Scheduling," International Journal of Electronics and Telecommunications,

vol. 58, no. 4, pp. 369 - 379, 2013.

[15] W. Zimmerman, "Multiphysics Modeling with Finite Element Methods," Series on Stability,

Vibration and Control of Systems, Series A, vol. 18, 2006.

[16] H. Achkar, F. Pennec, D. Peyrou, P. Pons and P. Pons, "Use the Reverse Engineering

Technique to Link COMSOL and ANSYS Softwares," in International Conference on

Thermal, Mechanical and Multi-Physics Simulation and Experiments in Microelectronics

and Micro-Systems, EuroSimE 2008., 2008.

[17] ANSYS Multiphysics, "ANSYS Multiphysics," [Online]. Available: www.ansys.com. [Accessed

12 2012].

[18] COMSOL Multiphysics, "COMSOL Multiphysics User’s Guide, 3.5a ed.," 2008. [Online].

Available: http://wiki.crc.nd.edu/wiki/images/6/6a/Comsol_quick_3.5a.pdf. [Accessed 12

2012].

[19] Idaho National Laboratory, "MOOSE Workshop," Idaho National Laboratory, Idaho Falls,

2012.

[20] Idaho National Laboratory, "MOOSE Workshop," Idaho National Laboratory, Idaho Falls,

2014.

[21] D. Gaston, C. Newman, G. Hansen and D. Lebrun-Grandié, "MOOSE: A parallel

computational framework for coupled systems of nonlinear equations," Nuclear

Engineering and Design, vol. 239, pp. 1768 - 1778, 2009.

[22] H. Huang, B. Spencer and J. Hales, "Discrete element method for simulation of early-life

thermal fracturing behavior in ceramic nuclear fuel pellets," Nuclear Engineering and

Design, vol. 278, pp. 515 - 528, 2014.

[23] O. Courty, A. Motta and J. Hales, "Modeling and simulation of hydrogen behavior in

Zircaloy-4 fuel cladding," Journal of Nuclear Materials, vol. 452, no. 1 - 3, pp. 311 - 320,

2014.

[24] libMesh, "libMesh," [Online]. Available: http://libmesh.github.io. [Accessed 10 2014].

R e f e r e n c e s

110

[25] B. Kirk, J. Peterson and R. Stogner, "libMesh : a C++ library for parallel adaptive mesh

refinement/coarsening simulations," Engineering with Computers, vol. 22, no. 3 - 4, pp.

237 - 254, 2006.

[26] J. Mukherjee and W. Gropp, "Performance Evaluation and Enhancement of Dendro," ACM

Transactions on Mathematical Software, vol. 31, no. 3, pp. 397 - 423, 2005.

[27] Argonne National Laboratory, "PETSc," [Online]. Available:

http://www.mcs.anl.gov/petsc/. [Accessed 12 2012].

[28] Argonne National Laboratory, "PETSc 3.5 User Manual," 2015.

[29] Sandia National Laboratories, "An Overview of Trilinos," 2003.

[30] Sandia National Laboratories, "The Trilinos Project," [Online]. Available:

http://trilinos.sandia.gov. [Accessed 1 2013].

[31] M. Heroux, R. Bartlett, V. Howle, R. Hoekstra, J. Hu, T. Kolda, R. Lehoucq, K. Long, R.

Pawlowski, E. Phipps, A. Salinger, H. Thornquist, R. Tuminaro, J. Willenbring, A. Williams

and S. Kendall, "An Overview of the Trilinos Project," ACM Transactions on Mathematical

Software, vol. 31, no. 3, pp. 397 - 423, 2005.

[32] TOP500, "TOP500 Ranking," 2014. [Online]. Available: http://www.top500.org/. [Accessed

December 2014].

[33] MPI oficial forum, "www.mpi-forum.org," [Online]. Available: http://www.mpi-forum.org.

[Accessed 11 2014].

[34] OpenMP, "OpenMP 4.0 Specification," 12 2014. [Online]. Available:

http://openmp.org/wp/2013/07/openmp-40.

[35] G. E. Moore, "Cramming More Components onto," Electronics Magazine, 1965.

[36] NVidia, "CUDA Programming Guide," [Online]. Available:

http://docs.nvidia.com/cuda/pdf/CUDA_C_Programming_Guide.pdf. [Accessed 1 2014].

[37] NVidia, "CUDA 6.5 release notes," 11 2014. [Online]. Available:

developer.nvidia.com/cuda-zone.

[38] A. Abdelfattah, D. Keyes and H. Ltaief, "KBLAS: An Optimized Library for Dense Matrix-

Vector Multiplication on GPU Accelerators," ACM Transactions on Mathematical Software,

2014.

[39] S. Barrachina, M. Castillo, F. Igual and R. Mayo, "Evaluation and tuning of the Level 3

CUBLAS for graphics processors," in IEEE International Symposium on Parallel and

Distributed Processing IPDPS 2008, Miami, 2008.

R e f e r e n c e s

111

[40] P. Estival and L. Giraud, "Performance and accuracy of the matrix multiplication routines:

CUBLAS on Nvidia Tesla versus MKL and ATLAS on Intel Nehalem," 2012.

[41] B. Bylina and J. Bylina, "GPU-accelerated WZ Factorization with the Use of the CUBLAS

Library," in Federated Conference on Computer Science and Information Systems, 2012.

[42] B. Zhang, X. Yang, F. Yang, X. Yang, C. Qin, D. Han, X. Ma, K. Liu and J. Tian, "The CUBLAS

and CULA based GPU acceleration of adaptive finite element framework for

bioluminescence tomography," Optics Express, vol. 18, no. 19, 2010.

[43] A. Deshpande and P. J. Narayanan, "Can GPUs Sort Strings Efficiently?," in IEEE High

Performance Computing (HiPC), 2013.

[44] J. Sang, C.-R. Lee, V. Rego and C.-T. King, "A Fast Implementation of Parallel Discrete-Event

Simulation on GPGPU," in International Conference on Parallel and Distributed Processing

Techniques and Applications, 2013.

[45] T. P. Loken, "A Comparison of Massively Parallel Programming Models Through

Applications in Sound Propagation and Jitter Measurement," University of Nevada, Reno,

2014.

[46] D. Milojičić, F. Douglis, Y. Paindaveine, R. Wheeler and S. Zhou, "Process migration,"

Journal of ACM, vol. 32, no. 3, pp. 241 - 299, 2000.

[47] R. Gioiosa, J. C. Sancho, S. Jiang and F. Petrini, "Transparent, incremental checkpointing

at," in Proc. ACM/IEEE Intl. Conf. on Supercomputing kernel level: a foundation for fault

tolerance for parallel computers, Seattle, 2005.

[48] M. Bozyiğit, "User-level process checkpoint and restore for migration," ACM SIGOPS

Operating, vol. 35, no. 2, pp. 86 - 96, 2001.

[49] P. Hargrove and J. Duell, "Berkeley Lab Checkpoint/Restart (BLCR) for Linux Clusters," in

Proc. SciDAC, Denver, 2006.

[50] J. P. Walters and V. Chaudhary, "Application-Level Checkpointing Techniques for Parallel

Programs," in Proc. Intl. Conf. on Distributed Computing and Internet Technology, 2006.

[51] PNY, "PNY NVidia Quadro Specification," [Online]. Available:

http://www.pny.eu/data/sitedynamic/Image/Quadro%205000%20SDI%20IO%20by%20PN

Y%20Datasheet.pdf. [Accessed December 2012].

[52] NVidia, "NVidia Fermi Architecture," [Online]. Available:

http://www.nvidia.com/content/pdf/fermi_white_papers/nvidia_fermi_compute_archite

cture_whitepaper.pdf. [Accessed December 2012].

R e f e r e n c e s

112

[53] NVidia, "NVidia Kepler Architecture," [Online]. Available:

http://www.nvidia.com/content/PDF/kepler/NVIDIA-kepler-GK110-Architecture-

Whitepaper.pdf. [Accessed September 2013].

[54] N. Whitehead and A. Fit-Florea, "Precision & Performance: Floating Point and IEEE 754

Compliance for NVIDIA GPUs," NVidia, 2011.

[55] A. Nukada, H. Takizawa and S. Matsuoka, "NVCR: A Transparent Checkpoint-Restart

Library for NVIDIA CUDA," in Parallel and Distributed Processing Workshops and Phd

Forum (IPDPSW), 2011 IEEE International Symposium on, Shanghai, 2011.

[56] H. Jiang, Y. Zhang, J. Jenness and L. Kuan-Ching, "A Checkpoint/Restart Scheme for CUDA

Programs with Complex Computation States," International Journal of Networked and

Distributed Computing, vol. 1, no. 4, pp. 196 - 212, 2013.

113

Dawid

Appendix 1

 input: Vectors y, x, both of size m, scalar al
 output: Vector y of size m

1 for (int i = 0; i < m; i++)
2 {
3 y[i] += x[i] * al
4 }

Algorithm 1. CPU SAXPY

 input: Vectors y, x, both of size m, scalar al
 output: Vector y of size m

1 int id = blockIdx.x * blockDim.x + threadIdx.x;
2 if (id < m)
3 {
4 y[id] += x[id] * al;
5 }

Algorithm 2. CUDA SAXPY

 input: Vectors y, x, both of size m
 output: Vectors y, x, both of size m

1 for (int i = 0; i < m; i++)
2 {
3 float v = y[i];
4 y[i] = x[i];
5 x[i] = v;
6 }

Algorithm 3. CPU Vector Swap

A p p e n d i x 1

114

 input: Vectors y, x, both of size m
 output: Vectors y, x, both of size m

1 int id = blockIdx.x * blockDim.x + threadIdx.x;
2 if (id < m)
2 {
3 float v = y[i];
4 y[i] = x[i];
5 x[i] = v;
6 }

Algorithm 4. CUDA Vector Swap

 input: Vectors y, x, both of size m
 output: Vector y of size m

1 for (int i = 0; i < m; i++)
2 {
3 y[i] += x[i];
4 }

Algorithm 5. CPU Vector Addition

 input: Vectors y, x, both of size m
 output: Vector y of size m

1 int id = blockIdx.x * blockDim.x + threadIdx.x;
2 if (id < m)
3 {
4 y[id] += x[id];
5 }

Algorithm 6. CUDA Vector Addition

 input: Vectors y of size m, scalar al
 output: Vector y of size m

1 for (int i = 0; i < m; i++)
2 {
3 y[i] = y[i] * al;
4 }

Algorithm 7. CPU Vector-Scalar Multiplication

A p p e n d i x 1

115

 input: Vectors y of size m, scalar al
 output: Vector y of size m

1 int id = blockIdx.x * blockDim.x + threadIdx.x;
2 if (id < m)
3 {
4 y[id] = y[id] * al;
5 }

Algorithm 8. CUDA Vector-Scalar Multiplication

 input: Vectors y of size m, scalar al
 output: Scalar d

1 for (int i = 0; i < m; i++)
2 {
3 d = x[i] * y[id];
4 }

Algorithm 9. CPU DOT Product

 input: Vectors y, x, both of size m
 output: Scalar d

1 int id = blockIdx.x * blockDim.x + threadIdx.x;
2 if (id < m)
3 {
4 float v = x[id] * y[id];
5 atomicAdd(&d, v);
6 }

Algorithm 10. CUDA DOT Product

A p p e n d i x 1

116

 input: Matrix A of size m×l, vector y of size m, vector x of size l, scalars al and be
 output: Vector y of size m

1 for (int i = 0; i < m; i++)
2 {
3 y[i] *= y[i] * be;
4 for (int j = 0; i < l; i++)
5 {
6 y[i] += A[i * l + j] * x[j];
7 }
8 }

Algorithm 11. CPU GEMV

 input: Matrix A of size m×l, vector y of size m, vector x of size l, scalars al and be
 output: Vector y of size m

1 int idA = blockIdx.y * blockDim.y + threadIdx.y;
2 int idX = blockIdx.x * blockDim.x + threadIdx.x;
3 if (idA >= m || idX >= l)
4 {
5 return;
6 }
7 if (idX == 0)
8 {
9 y[idA] *= be;
10 }
11 __ syncthreads();
12 float result = A[idA * l + idX] * X[idX] * al;
13 atomicAdd(&Y[idA], result);

Algorithm 12. CUDA GEMV

 input: Matrices A, B, both of size m×l
 output: Matrices A, B, both of size m×l

1 for (int i = 0; i < m; i++)
2 {
3 for (int j= 0; j < l; j++)
4 {
5 float v = A[i * l + j];
6 A[i * l + j] = B[i * l + j];
7 B[i * l + j] = v;
8 }
9 }

Algorithm 13. CPU Matrix Swap

A p p e n d i x 1

117

 input: Matrices A, B, both of size m×l
 output: Matrices A, B, both of size m×l

1 int idY = blockIdx.y * blockDim.y + threadIdx.y;
2 int idX = blockIdx.x * blockDim.x + threadIdx.x;
3 if (idA < m || idB < l)
4 {
5 idX += idY * l;
6 float temp = A[idX];
7 A[idX] = B[idX];
8 B[idX] = temp;
9 }

Algorithm 14. CUDA Matrix Swap

 input: Matrices A, B, both of size m×l
 output: Matrix C of size m×l

1 for (int i = 0; i < m; i++)
2 {
3 for (int j= 0; j < l; j++)
4 {
5 A[i * l + j] += B[i * l + j];
6 }
7 }

Algorithm 15. CPU Matrix Addition

 input: Matrices A, B, both of size m×l
 output: Matrices A of size m×l

1 int idY = blockIdx.y * blockDim.y + threadIdx.y;
2 int idX = blockIdx.x * blockDim.x + threadIdx.x;
3 if (idA < m || idB < l)
4 {
6 idX += idY * l;
7 A[idX] += B[idX];
8 }

Algorithm 16. CUDA Matrix Addition

A p p e n d i x 1

118

 input: Matrix A of size m×l, scalar al
 output: Matrix A of size m×l

1 for (int i = 0; i < m; i++)
2 {
3 for (int j= 0; j < l; j++)
4 {
5 A[i * l + j] *= al;
6 }
7 }

Algorithm 17. CPU Matrix-Scalar Multiplication

 input: Matrix A of size m×l, scalar al
 output: Matrix A of size m×l

1 int idY = blockIdx.y * blockDim.y + threadIdx.y;
2 int idX = blockIdx.x * blockDim.x + threadIdx.x;
3 if (idA < m || idB < l)
4 {
5 idX += idY * l;
6 A[idX] *= al;
7 }

Algorithm 18. CUDA Matrix-Scalar Multiplication

 input: Matrix A of size m×l
 output: Matrix B of size m×l

1 for (int i = 0; i < m; i++)
2 {
3 for (int j= 0; j < l; j++)
4 {
5 B[j * l + i] = A[i * l + j];
6 }
7 }

Algorithm 19. CPU Matrix Transposition

A p p e n d i x 1

119

 input: Matrix A of size m×l
 output: Matrix B of size l×m

1 int idY = blockIdx.y * blockDim.y + threadIdx.y;
2 int idX = blockIdx.x * blockDim.x + threadIdx.x;
3 if (idA < m || idB < l)
4 {
5 B[idX * l + idY] = A[idY * l + idX];
6 }

Algorithm 20. CUDA Matrix Transposition

 input: Matrix A of size m×l, matrix A of size l×n, matrix A of size m×n, scalars al, be
 output: Matrix C of size m×n

1 for (int i = 0; i < m; i++)
2 {
3 for (int j= 0; j < n; j++)
4 {
5 C[i * n + j] *= C[i * n + j] * be;
6 for (int k = 0; k < l; k++)
7 {
8 C[i * n + j] += A[i * l + k] * B[k * n + j] * al;
9 }
10 }
11 }

Algorithm 21. CPU GEMM

A p p e n d i x 1

120

 input: Matrix A of size m×l, matrix A of size l×n, matrix A of size m×n, scalars al, be
 output: Matrix C of size m×n

1 int idB = blockIdx.x * blockDim.x + threadIdx.x;
2 int idA = blockIdx.y * blockDim.y + threadIdx.y;
3 if (idA >= m || idB >= n)
4 {
5 return;
6 }
7 int idC = idB + idA * n;
8 idA *= l;
9 float result = C[idC] * be;
10 for (int i = 0; i < l; i++)
11 {
12 result += A[idA] * B[idB] * al;
13 idA++;
14 idB += n;
15 }
16 C[idC] = result;

Algorithm 22. Simple CUDA GEMM

A p p e n d i x 1

121

 input: Matrix A of size m×l, matrix A of size l×n, matrix A of size m×n, scalars al, be
 output: Matrix C of size m×n

1 int idB = blockIdx.x * blockDim.x + threadIdx.x;
2 int idA = blockIdx.y * blockDim.y + threadIdx.y;
3 if (idA >= m || idB >= n)
4 {
5 return;
6 }
7 int id_temp = threadIdx.x + threadIdx.y * blockDim.x;
8 int offset = 0;
9 float result = 0.0;
10 extern shared float shared[];
11 float *tA = &shared[0];
12 float *tB = &shared[blockDim.x * blockDim.x];
13 while (offset < l)
14 {
15 tA[id temp] = tB[id temp] = 0;
16 if (idA < m && offset + threadIdx.x < l)
17 {
18 tA[id temp] = A[idA * l + offset + threadIdx.x];
19 }
20 if (idB < n && offset + threadIdx.y < l)
21 {
22 tB[id temp] = B[idB + (offset + threadIdx.y) * n];
23 }
24 offset += blockDim.x;
25 __ syncthreads();
26 for (int j = 0; j < blockDim.x; j++)
27 {

28
result += tA[threadIdx.y * blockDim.x + j] *
 tB[threadIdx.x + j * blockDim.x] * al

29 }
30 __syncthreads();
31 }
32 if (idA < m && idB < n)
33 {
34 C[idB + idA * n] = C[idB + idA * n] * be + result;
35 }

Algorithm 23. Tiled CUDA GEMM

A p p e n d i x 1

122

 input: Matrix A, B both of size m×m scalars al, be
 output: Matrix C of size m×m

1 for (int i = 0; i < m; i++)
2 {
3 for (int j= 0; j < i; j++)
4 {
5 C[i * m + j] *= C[i * m + j] * be;
6 for (int k = 0; k < m; k++)
7 {
8 C[i * m + j] += A[i * m + k] * B[k * m + j] * al;
9 }
10 }
11 }

Algorithm 24. CPU Left Triangular GEMM

 input: Ma Matrix A, B both of size m×m scalars al, be
 output: Matrix C of size m×m

1 int idB = blockIdx.x * blockDim.x + threadIdx.x;
2 int idA = blockIdx.y * blockDim.y + threadIdx.y;
3 if (idA >= m || idB >= idA)
4 {
5 return;
6 }
7 int idC = idB + idA * m;
8 idA *= m;
9 float result = C[idC] * be;
10 for (int i = 0; i < m; i++)
11 {
12 result += A[idA] * B[idB] * al;
13 idA++;
14 idB += m;
15 }
16 C[idC] = result;

Algorithm 25. Simple CUDA Left Triangular GEMM

A p p e n d i x 1

123

 input: Matrix A of size m×l, matrix A of size l×n, matrix A of size m×n, scalars al, be
 output: Matrix C of size m×n

1 int idB = blockIdx.x * blockDim.x;
2 int idA = blockIdx.y * blockDim.y + threadIdx.y;
3 if (idA < idB)
4 {
5 return;
6 }
7 idB += threadIdx.x;
8 idA += threadIdx.y;
9 if (idA >= m || idB >= n)
10 {
11 return;
12 }
13 int id_temp = threadIdx.x + threadIdx.y * blockDim.x;
14 int offset = 0;
15 float result = 0.0;
16 extern shared float shared[];
17 float *tA = &shared[0];
18 float *tB = &shared[blockDim.x * blockDim.x];
19 while (offset < l)
20 {
21 tA[id temp] = tB[id temp] = 0;
22 if (idA < m && offset + threadIdx.x < l)
23 {
24 tA[id temp] = A[idA * l + offset + threadIdx.x];
25 }
26 if (idB < n && offset + threadIdx.y < l)
27 {
28 tB[id temp] = B[idB + (offset + threadIdx.y) * n];
29 }
30 offset += blockDim.x;
31 __ syncthreads();
32 for (int j = 0; j < blockDim.x; j++)
33 {

34
result += tA[threadIdx.y * blockDim.x + j] *
 tB[threadIdx.x + j * blockDim.x] * al

35 }
36 __syncthreads();
37 }
38 if (idA < m && idB < n)
39 {
40 C[idB + idA * n] = C[idB + idA * n] * be + result;
41 }

Algorithm 26. Tiled CUDA Left Triangular GEMM

A p p e n d i x 1

124

 input: Matrix A, B both of size m×m scalars al, be
 output: Matrix C of size m×m

1 for (int i = 0; i < m; i++)
2 {
3 for (int j= i; j < m; j++)
4 {
5 C[i * n + j] *= C[i * n + j] * be;
6 for (int k = 0; k < m; k++)
7 {
8 C[i * m + j] += A[i * m + k] * B[k * m + j] * al;
9 }
10 }
11 }

Algorithm 27. CPU Right Triangular GEMM

 input: Matrix A, B both of size m×m scalars al, be
 output: Matrix C of size m×m

1 int idB = blockIdx.x * blockDim.x + threadIdx.x;
2 int idA = blockIdx.y * blockDim.y + threadIdx.y;
3 if (idA >= m || idB >= m || idB < idA)
4 {
5 return;
6 }
7 int idC = idB + idA * m;
8 idA *= m;
9 float result = C[idC] * be;
10 for (int i = 0; i < m; i++)
11 {
12 result += A[idA] * B[idB] * al;
13 idA++;
14 idB += m;
15 }
16 C[idC] = result;

Algorithm 28. Simple CUDA Right Triangular GEMM

A p p e n d i x 1

125

 input: Matrix A of size m×l, matrix A of size l×n, matrix A of size m×n, scalars al, be
 output: Matrix C of size m×n

1 int idB = blockIdx.x * blockDim.x + blockDim.x;
2 int idA = blockIdx.y * blockDim.y + blockDim.y;
3 if (idA > idB)
4 {
5 return;
6 }
7 int idB = blockIdx.x * blockDim.x - blockDim.x + threadIdx.x;
8 int idA = blockIdx.y * blockDim.y - blockDim.y + threadIdx.y;
9 if (idA >= m || idB >= n)
10 {
11 return;
12 }
13 int id_temp = threadIdx.x + threadIdx.y * blockDim.x;
14 int offset = 0;
15 float result = 0.0;
16 extern shared float shared[];
17 float *tA = &shared[0];
18 float *tB = &shared[blockDim.x * blockDim.x];
19 while (offset < l)
20 {
21 tA[id temp] = tB[id temp] = 0;
22 if (idA < m && offset + threadIdx.x < l)
23 {
24 tA[id temp] = A[idA * l + offset + threadIdx.x];
25 }
26 if (idB < n && offset + threadIdx.y < l)
27 {
28 tB[id temp] = B[idB + (offset + threadIdx.y) * n];
29 }
30 offset += blockDim.x;
31 __ syncthreads();
32 for (int j = 0; j < blockDim.x; j++)
33 {

34
result += tA[threadIdx.y * blockDim.x + j] *
 tB[threadIdx.x + j * blockDim.x] * al

35 }
36 __syncthreads();
37 }
38 if (idA < m && idB < n)
39 {
40 C[idB + idA * n] = C[idB + idA * n] * be + result;
41 }

Algorithm 29. Tiled CUDA Right Triangular GEMM

