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Abstract 

 This dissertation describes a study on the efficiency and effectiveness of using 

worked examples to provide learners with opportunities to practice new concepts and 

skills in a face-to-face calculus course. The independent variables considered in the study 

included the type of practice and the calculus readiness of the learner. The effect of 

readiness and type of practice on the efficiency (measured using a measure called the 

Multidimensional Instructional Efficiency (MIE)) and effectiveness (measured using 

student performance on a post-test) of calculus instruction were examined. 

 The Kemp Model for instructional design was used to design and develop the 

multimedia, online, worked examples to be used in the proposed study. The examples 

were created using Adobe Captivate, a LiveScribe Smartpen, and Mathematica. Two 

different types of examples were created: worked examples with self-explanation 

prompts and worked examples with instructional explanations.  

 In the proposed study, the two types of worked examples were compared to a 

control group where the learners completed traditional homework practice problems. The 

research questions were designed to test the hypothesis that the worked example groups 

were both more efficient and more effective than the control group. However, the worked 

examples with self-explanation prompts were expected to be more effective for learners 

with high calculus readiness and the worked examples with instructional explanations 

were expected to be more effective for learners with low calculus readiness. 

 The results of the experiment did not support the hypotheses and indicated that 

the type of practice the learners completed had no effect on the efficiency or effectiveness 
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of the calculus instruction. There was also no evidence of an interaction effect between 

type of practice and level of readiness.  

 A significant main effect of level of readiness was found, after adjusting for prior 

calculus knowledge and homework completion rates. In particular, learners with high 

readiness were found to perform better on the post-test than learners with low or medium 

readiness. Additionally, learners with high readiness had higher MIE scores, and thus 

higher efficiency, than learners with low or medium readiness. This emphasizes the 

critical importance of readiness in calculus instruction.  
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CHAPTER I 

Introduction 

As instructional designers consider new ways to design learning experiences for 

students in higher education mathematics courses such as calculus, it is important to 

know how to best provide opportunities for students to practice, especially in an online 

environment. Because calculus problems often require students to remember and apply 

skills from their prior algebra courses, calculus problems tend to have high element 

interactivity; that is, they consist of several interacting concepts or principles that cannot 

be learned in isolation (Sweller, 2010). This leads to math problems that carry a high 

cognitive load, especially with learners who have low readiness for calculus. In order to 

provide support for these students, this study looked at the effectiveness of using two 

different types of worked examples in an online context in order to reduce cognitive load 

and to facilitate efficient and effective practice in calculus courses.    

Theoretical Framework 

Cognitive Load Theory (CLT) is a theory of learning that is “based on a model of 

human cognitive architecture” (Ayres & Van Gog, 2009, p. 253) and addresses the 

limited capacity of working memory. According to Sweller (2004), the limited capacity 

of working memory is a mechanism which ensures that changes to long-term memory are 

made in a meaningful, ordered manner in order to facilitate the development of schemas 

by the learner. Cognitive load is the “demand for working memory resources…that [are] 
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required for achieving the goals of a particular cognitive activity” (Kalyuga, 2007, p. 

513).  

Researchers have identified three different types of cognitive load: intrinsic, 

extraneous, and germane (Sweller, Van Merriënboer, & Paas, 1998). Intrinsic load is a 

measure of the complexity of the learning task, where tasks with high element 

interactivity carry a high intrinsic load. However, intrinsic load is modulated by the 

expertise, experience, and readiness of the learner. As such, not all learners will 

experience the same intrinsic load for a particular learning task (Hollender, Hofmann, 

Deneke, & Schmitz, 2010). Extraneous load is load imposed by poor design of learning 

tasks or by the presentation of information that is irrelevant to learning (Sweller, 2010). 

As found by several researchers (e.g. Reed, Corbett, Hoffman, Wagner, & MacLaren, 

2012; Vogel-Walcutt, Gebrim, Bowers, Carper, & Nicholson, 2011), tasks with a high 

extraneous load require a significant amount of mental effort by the learner, but the 

mental effort expended does not lead to greater learning. Germane load is load that is 

required for learners to develop appropriate schemas. Unlike extraneous load, germane 

load is beneficial to learning (Hollender et al., 2010). Effective instructional designs 

reduce extraneous and/or intrinsic load while maximizing germane load (Ayres, 2006; 

Lee & Anderson, 2013). [See chapter 2 for a more detailed discussion of the three types 

of cognitive load.] 

Researchers have identified several effects that occur when instructional changes 

are made that affect cognitive load (Sweller, 2004). One such effect is the worked 

example effect. According to Sweller (2010), the worked example effect “occurs when 
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students learn less from problem solving than from studying the equivalent worked 

examples” (p. 129). Worked examples are thought to carry a lower extraneous load than 

conventional problem-solving problems because learners are able to focus their working 

memory resources on a specific step of the problem and what the next step should be for 

a problem in that particular problem state. Conventional problem-solving, on the other 

hand, requires the leaner to use working memory resources to consider many possible 

next steps, including many that are irrelevant for the particular problem (Sweller, 2010). 

By helping the learners focus on the relevant steps for solving the problem, the 

extraneous load is decreased and schema development is supported (Sweller & Chandler, 

1991).  

However using worked examples to reduce extraneous load does not 

automatically increase germane load (Van Gog & Paas, 2008). Two techniques that 

researchers have identified for ensuring that the cognitive resources freed by the use of 

worked examples are used to increase germane load include self-explanation prompts and 

providing instructional explanations (e.g. Hilbert & Renkl, 2009; Richey & Nokes-

Malach, 2013; Van Gog & Paas, 2008). Instructional explanations are defined as 

“explanations provided to facilitate example processing [and]…help learners to detect 

inconsistencies in their own understanding” (Wittwer & Renkl, 2010, p. 395). Sweller et 

al. (1998) suggested that worked examples are even more effective at helping learners 

develop necessary schema when they use instructional explanations to “identify the 

critical features in the worked examples by annotating them with what they are supposed 

to illustrate” (p. 273-274). Self-explanation prompts are suggestions added to the worked 
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example that encourage learners to engage in a “form of self-talk where a learner engages 

in an iterative personal dialog while engaged in problem solving” (Biesinger & Crippen, 

2010, p. 1474).  

In certain situations, self-explanation prompts and instructional explanations have 

been found to be effective at increasing germane load and supporting learning (Wittwer 

& Renkl, 2010). However, there is concern that students with low prior knowledge may 

not have the necessary background to provide clear and detailed answers to self-

explanation prompts (Richey & Nokes-Malach, 2013). This may inhibit learning for 

students who provide responses to the self-explanation prompts that are unclear, or even 

incorrect (Berthold & Renkl, 2009). Based on this concern, instructional explanations 

may be a good alternative for learners with low prior knowledge because providing 

students with the explanation lowers cognitive load as compared with requiring them to 

answer self-explanation prompts. However, the concern is then whether or not 

instructional explanations are effective for learners with high prior knowledge, who may 

have been capable of providing good responses to self-explanation prompts. 

Purpose of the Study 

The purpose of this study was to explore the relationship among self-explanation 

prompts, instructional explanations, and the calculus readiness of the learners. Cognitive 

Load Theory indicates that replacing some of the practice problems with well-designed 

worked examples can reduce the extraneous load of the learners (Sweller et al., 1998) by 

helping them develop appropriate schema. As discussed above, adding self-explanation 

prompts and instructional explanations to worked examples may make the examples even 
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more effective by increasing germane cognitive load. However, very little research has 

been done on using such techniques in a calculus context (see Chapter 2). 

Because calculus problems rely so heavily on algebra skills, they tend to have 

very high element interactivity, and therefore carry a high intrinsic load. Because 

working memory is limited, and working memory resources are additive (Ayres, 2006), 

this requires instructional designers to pay particular attention to reducing extraneous 

load in order to allow for the higher intrinsic load of calculus practice problems. However, 

the intrinsic load of a calculus topic depends somewhat on the calculus readiness of the 

learner. If the learner is adequately prepared for calculus, they should have developed 

appropriate schemas related to algebra, and will not experience as high an intrinsic load 

as learners who have weak algebra skills and low calculus readiness. 

 In particular, this study looked at how self-explanation prompts, instructional 

explanations, and calculus readiness impact the effectiveness and efficiency of calculus 

instruction. In this context, effectiveness was measured based on student performance. 

Efficiency was measured using a construct called multidimensional instructional 

efficiency (MIE). As developed by Tuovinen and Paas (2004), MIE combines mental 

effort during learning, mental effort during testing, and student performance into one 

measure that gauges the efficiency of instruction. A learning technique with a large MIE 

would be very efficient because student performance would be very high with relatively 

low mental effort. A small value for the MIE indicates low instructional efficiency in that 

student performance is poor even though mental effort required for the learning task was 

relatively high. 
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Research Questions 

The study addressed the following six research questions: 

• Research Question #1: Is there a significant main effect of type of practice 

(worked examples with self-explanation prompts, worked examples with 

instructional explanations, or traditional homework) on multidimensional 

instructional efficiency (MIE) as measured using the MIE formula developed by 

Tuovinen and Paas (2004)?  

• Research Question #2: Is there a significant main effect of calculus readiness (low 

readiness, medium readiness, or high readiness) on MIE as measured using the 

MIE formula developed by Tuovinen and Paas (2004)? 

• Research Question #3: Is there an interaction effect between calculus readiness 

and type of practice on MIE? 

• Research Question #4: Is there a significant main effect of type of practice 

(worked examples with self-explanation prompts, worked examples with 

instructional explanations, or traditional homework) on student performance as 

measured by posttest scores? 

• Research Question #5: Is there a significant main effect of calculus readiness (low 

readiness, medium readiness, or high readiness) on student performance, as 

measured by posttest scores?  

• Research Question #6: Is there an interaction between calculus readiness and type 

of practice on student performance? 
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Research Design 

 These research questions were answered using an experimental pre-test/post-test 

control group design (see Table 1). The experiment was conducted with students 

registered for two sections of Calculus I, both taught by the researcher. At the beginning 

of the semester students took a calculus readiness assessment in order to determine their 

level of readiness for the course. The learners were then randomly assigned to one of 

three experimental groups. A pre-test was administered and then the treatment was 

delivered online during the second unit of the course. The first group completed practice 

problems that consisted of faded worked examples with self-explanation prompts. The 

Table 1 
 
Research Design for the Proposed Study 
 
Group 1:  
Worked Examples 
with Self-explanation 
Prompts 
 

𝑂𝑂1 𝑅𝑅 𝑂𝑂2 𝑋𝑋1 𝑂𝑂3 𝑂𝑂4 𝑂𝑂5 

Group 2: 
Worked Examples 
with Instructional 
Explanations 
 

𝑂𝑂1 𝑅𝑅 𝑂𝑂2 𝑋𝑋2 𝑂𝑂3 𝑂𝑂4 𝑂𝑂5 

Group 3:  
Control Group: 
Traditional homework 
 

𝑂𝑂1 𝑅𝑅 𝑂𝑂2 𝑋𝑋3 𝑂𝑂3 𝑂𝑂4 𝑂𝑂5 

Note. 𝑂𝑂1 represents the MDTP Calculus Readiness Test, 𝑅𝑅 indicates random 
assignment to an experimental group, 𝑂𝑂2 represents the Differentiation Pre-test, each 
𝑋𝑋𝑖𝑖 represents student practice using their assigned type of homework, 𝑂𝑂3 represents 
the mental effort measurements taken during the learning phase, 𝑂𝑂4 represents the 
mental effort measurements taken during the testing phase, and 𝑂𝑂5 represents the 
Differentiation Post-test. 
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second group viewed the same examples as the first group, but the examples included 

instructional explanations, rather than self-explanation prompts. The third (control) group 

completed practice problems without viewing any worked examples. 

 As learners completed each learning task (either a worked example or a practice 

problem), they were asked to rate their level of mental effort. At the conclusion of the 

unit the learners took a post-test to determine student performance. The research 

questions were then answered using two separate two-way ANCOVA tests. 

Definition of Terms 

Calculus readiness. Readiness refers to the learners’ mastery of concepts and 

skills that are required for success in a particular course. In calculus, the readiness of the 

student requires their understanding of the function concept, algebraic manipulation 

skills, and an understanding of trigonometry (Kay & Kletskin, 2012). In this study, 

calculus readiness was measured using the MDTP Calculus Readiness Test. 

Cognitive load. Cognitive load is the “demand for working memory 

resources…that [are] required for achieving the goals of a particular cognitive activity” 

(Kalyuga, 2007, p. 513).  

Conceptual knowledge. In mathematics, conceptual knowledge is defined as 

“explicit or implicit understanding of the principles that govern a domain and the 

interrelations between pieces of knowledge in a domain” (Rittle-Johnson & Alibali, 1999, 

p. 175).  

Extraneous load. Extraneous load is one of three types of cognitive load. 

Extraneous load is defined to be load imposed by the poor design or presentation of 
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instruction (Sweller et al., 1998). Extraneous load was important in the context of this 

proposed study because the worked examples under investigation were expected to 

reduce extraneous cognitive load. 

Faded worked examples. “Faded worked examples gradually fade worked-out 

steps with increased levels of learner expertise by replacing these steps with problem 

solving sub-tasks” (Kalyuga, 2007, p. 529). In this study, the examples were faded as 

each assignment began with fully worked examples, followed by partially worked 

examples, and then practice problems. 

Fully worked example. For the purposes of this study, a fully worked example 

was an example where the complete solution, including all solution steps, was presented 

to the learner.  

Germane load. Germane load is one of three types of cognitive load. Germane 

load is beneficial to learning and refers to load that is required for the development of 

schemas (Sweller et al., 1998). Germane load was particularly important in the context of 

this proposed study because self-explanation prompts and instructional explanations were 

thought to increase germane load (Hilbert & Renkl, 2009). 

Instructional explanations. Instructional explanations are defined as 

“explanations provided to facilitate example processing [and]…help learners to detect 

inconsistencies in their own understanding” (Wittwer & Renkl, 2010, p. 395). In this 

study, instructional explanations referred to explanations that appeared on the screen 

while a student was viewing a worked example that added additional explanations to 

those provided as part of the example.  
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Intrinsic load. Intrinsic load is one of three types of cognitive load. Intrinsic load 

is based on the level of complexity of the content of a learning task (Sweller et al., 1998). 

Intrinsic load is modulated by the prior knowledge, experience, and expertise of the 

learner (Hollender et al., 2010). Intrinsic load was important in the context of this study 

because the learning tasks being tested in this study had a higher intrinsic load for 

learners with low calculus readiness.  

Mental effort. Mental effort refers to the “amount of resources actually allocated 

to accommodate the task demands” (Paas, Van Merriënboer, & Adam, 1994, p. 420). As 

explained by Paas et al. (1994), cognitive load can be conceptualized by considering both 

mental load and mental effort. Mental load is task-centered and is load imposed by the 

task or environment. Mental effort is human-centered and refers to the amount of effort 

actually used to complete the task. Mental effort is one element in the calculation of 

multidimensional instructional efficiency.  

Multidimensional instructional efficiency. Instructional efficiency (IE) is a 

measurement that combines both mental effort and student performance into one 

measurement (Vogel-Walcutt et al., 2011). A task with high IE would indicate high 

performance with low effort, while a task with low IE would correspond to low 

performance with high effort. IE was first developed by Paas (1992) and then expanded 

to multidimensional instructional efficiency (MIE) by Tuovinen and Paas (2004). MIE 

differs from IE in that it considers two different measurements of mental effort: mental 

effort during learning and mental effort during testing (Tuovinen & Paas, 2004). MIE is 

computed using the formula 𝑀𝑀𝑀𝑀𝑀𝑀 = (𝑧𝑧𝑃𝑃 − 𝑧𝑧𝐸𝐸𝐸𝐸 − 𝑧𝑧𝐸𝐸𝐸𝐸)/√3. In this formula 𝑀𝑀𝑀𝑀𝑀𝑀 
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represents the multidimensional instructional efficiency, 𝑧𝑧𝑃𝑃 represents student 

performance, 𝑧𝑧𝐸𝐸𝐸𝐸 represents mental effort during learning, and 𝑧𝑧𝐸𝐸𝐸𝐸 represents mental 

effort during testing. 

Partially worked example. For the purposes of this study, a partially worked 

example is a worked example where only some of the solution steps are provided for the 

learners. In a partially worked example most of the problem steps are provided, however 

the learner is asked to complete one or two of the problem steps. 

Practice problem. See definition for traditional homework.  

Procedural knowledge. In mathematics, procedural knowledge is defined as 

“action sequences for solving problems” (Rittle-Johnson & Alibali, 1999, p. 175)  

Self-explanation prompts. Self-explanation prompts are suggestions added to a 

worked example that encourage learners to engage in a “form of self-talk where a learner 

engages in an iterative personal dialog while engaged in problem solving” (Biesinger & 

Crippen, 2010, p. 1474). In this study, self-explanation prompts referred to questions that 

appeared on the screen while a learner was viewing a worked example. These questions 

asked the learner to answer conceptual questions about the example they were viewing. 

Traditional homework. In this study, traditional homework, or practice 

problems, referred to math problems similar to those given in calculus textbooks, which 

provide opportunities for learners to practice new skills. These problems are typically 

sorted into lists of problems of a similar type. Although these problems are traditionally 

done with paper and pencil, the traditional homework problems presented in this study 

were delivered online. 
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Worked examples. Worked examples are one instructional tool that has been 

used to reduce the cognitive load experienced by a learner. Worked examples provide “a 

step-by-step demonstration of how to perform a task or solve a problem” (Clark & 

Mayer, 2011, p. 22). In this study, worked examples referred to multimedia, online 

examples of calculus problems that learners viewed in place of completing traditional 

homework problems. These examples included audio, video, animations, and/or graphics. 

Limitations and Delimitations 

As with any study we made several key assumptions that were taken into 

consideration during the analysis of the results of the study. These assumptions led to 

limitations and delimitations of the study. A limitation is an aspect of the research design 

that poses a potential threat to internal validity, which is defined as the extent to which 

the differences seen in the treatment groups can be attributed to the experimental 

treatment (Campbell & Stanley, 1963). A delimitation is a threat to external validity, or 

the extent to which the study “can be generalized to different subjects, settings, [and] 

experimenters” (Bracht & Glass, 1968, p. 438). Bracht and Glass (1968) suggest there are 

two general types of external validity to consider: population validity and ecological 

validity. 

Limitations. Campbell and Stanley (1963) identify eight common threats to 

internal validity. In the case of this controlled experiment, almost all of these threats 

(including history, maturation, testing, statistical regression, selection, and selection-

maturation interaction) were mitigated by random assignment to treatment groups and the 
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use of a control group. However, two of the threats suggested by Campbell and Stanley 

(instrumentation and experimental mortality) needed further consideration. 

Campbell and Stanley (1963) noted that instrumentation can be a limitation when 

changes in how assessment instruments are graded leads to changes in the scores, 

especially if those changes favor one experimental group over the other. This is 

particularly a threat in the case of the pre- and post-tests for this experiment because they 

were subjectively graded (the other assessments were objectively graded and thus posed 

less of a threat). Because the post-test score was included in the computation of the MIE, 

this also could be a limitation for the MIE. Several measures were undertaken to ensure 

consistency in the grading procedures in order to mitigate this limitation of the study. 

Both the pre- and post-tests were graded by a single grader, not the researcher/instructor, 

who did not know to which experimental group each student belonged and who was 

trained on a rubric-based grading technique.  

Experimental mortality refers to the limitation caused by having more students 

drop out of one group than another (Campbell & Stanley, 1963). The timing of this 

experiment made this limitation particularly concerning because the treatment occurred in 

Unit 2, immediately after learners took the Unit 1 Exam. The weakest students who do 

not do well on this first exam often drop the course at this point. Because there were 

relatively few students who fell in this category of being particularly weak in their 

mathematical abilities, special care was taken in the random assignment of students using 

the alternate ranks random assignment technique to ensure that those students were 

evenly distributed among the three experimental groups (Myers, Well, & Lorch, 2010). 
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Having these students drop the course had the potential to introduce a form of bias. In 

order to mitigate this potential limitation as much as possible, assignment to experimental 

groups was not done until after the learners had completed the Unit 1 Exam. 

In addition to the possible threats to internal validity identified by Campbell and 

Stanley (1963), another limitation of this study is that it was impossible for the researcher 

to ensure that the study participants only saw the materials that were prepared for 

members of their experimental group. For example, it is possible that learners in one of 

the worked examples groups could have shared the worked examples they received as 

part of the treatment with members of the control group. In order to prevent this type of 

treatment contamination, the experimental groups each viewed different versions of the 

learning management system (LMS) and did not have direct access to the examples 

provided to the other groups. The importance of having learners view only the examples 

prepared for their group was explained to the learners and they were asked to not view 

materials prepared for other groups. 

Delimitations. There were also several delimitations that were considered in this 

study. Specifically, there were threats to both population validity (threats dealing with 

generalizing the results of the study to other populations) and ecological validity (threats 

dealing with generalizing the results to other environments) (Bracht & Glass, 1968).  

The population of learners that was available for this experiment might not have 

been representative of all calculus students, and this posed a threat to population validity 

(Bracht & Glass, 1968; Campbell & Stanley, 1963). Because this study was conducted 

with one instructor, in one class, at one university, the results need to be cautiously 
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considered before being applied to other instructors, classes, or universities. However, 

this threat is somewhat lessened because the students who registered for this course were 

not aware that a study was being conducted as part of the course until the fifth day of 

class. Therefore, it is probably reasonable to assume that they were a fairly representative 

sample of calculus students at the particular university where the study took place. As 

such the results of this study can be generalized to other calculus students at this 

university, but the research should be repeated in other environments in order to apply the 

results to students in other courses or other schools.  

This study also contains several threats to ecological validity. One such threat is 

the fact that the learners knew that their work was being examined as part of the 

experiment (Bracht & Glass, 1968; Campbell & Stanley, 1963). As such, they may have 

been particularly conscientious when viewing the worked examples used in the 

experiment. This may mean that the results would not be typical of students who were not 

participating in an experiment. 

The novelty of the worked examples also posed a threat to ecological validity 

(Bracht & Glass, 1968). The other units in the course used traditional paper-and-pencil 

homework problems selected from a calculus textbook. Therefore, the worked examples 

used in this experiment were new and novel to the learners. The results seen in this study 

might not be generalizable to a class where worked examples are used for an entire 

semester. However, it is worth noting that the three-week long period over which the 

examples were used is longer than most of the other studies in the worked examples 

literature. 
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There also may have been an experimenter effect. This threat to ecological 

validity refers to the fact that the attitudes and expectations of the experimenter might 

bias the learners in favor of certain style of practice problem (Bracht & Glass, 1968). 

This is especially worth consideration in this case because the researcher is also the 

instructor of the class. Special care was taken by the researcher to not reveal her biases to 

the class. 

Two additional threats to ecological validity were pre- and post-test sensitization. 

The pre-test contained several conceptual questions where students were asked to explain 

their understanding of calculus concepts. Even if the learners did not know the answers to 

the pre-test questions, merely taking the pre-test may have alerted them to the fact that 

conceptual ideas are important and could be covered on the post-test. Thus, they may 

have attended more to conceptual ideas they encountered during the unit than they would 

have if they didn’t take a pre-test. As such, it might not be possible to generalize the 

results to learners who do not take a pre-test (Bracht & Glass, 1968; Campbell & Stanley, 

1963).  

The choice of content and assessment instruments also posed a threat to 

generalizability of the environment. The decision was made to use the second unit of the 

course for this study. The assumption was made that this unit is representative of the 

other content included in calculus and that the results seen in this study would apply to 

other topics within the course. As part of the design of the experiment, the validity of the 

assessment instruments was established. This demonstrated that the assessment 
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instruments selected accurately measured the intended constructs and that similar results 

would be seen with other similar assessment instruments (Bracht & Glass, 1968) 

Finally, threats to ecological validity may have occurred because of the timing of 

the study. It may have been that the results seen in the study were due to other variables 

or events that occurred at the same time as the study and were not considered by the 

researcher. And the results seen in the post-test which was taken immediately at the end 

of the study might not be evident later in the course or later in the learners’ academic 

careers (Bracht & Glass, 1968). 

Significance of the Study 

 Researchers have studied worked examples extensively (i.e. Kalyuga, 2007; 

Salden, Koedinger, Renkl, Aleven, & McLaren, 2010; Sweller & Cooper, 1985; Van 

Gog, Paas, & Sweller, 2010). However, as will be described in more detail in Chapter II, 

a recent review of fifteen studies on worked examples in a mathematics context found 

that thirteen of the fifteen studies were conducted in an algebra or geometry class. Very 

little research has been done on using worked examples to teach mathematical principles 

in calculus. Because calculus problems tend to have higher element interactivity than 

algebra problems, they tend to carry higher cognitive load (Sweller, 2010). This is 

especially problematic for learners who have a low level of readiness because they may 

not be at the appropriate point in the development of their mathematical skills to 

understand the more conceptual ideas of calculus (Bruner, 1960; Pyzdrowski et al., 

2013).  
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 Additionally, much of the research on worked examples has been conducted using 

a single lesson, often outside of a classroom setting (see Chapter 2 for a more detailed 

discussion). This study adds to the existing literature on worked examples by considering 

their use over a longer period of time (three weeks) when delivered online as part of a full 

semester calculus course. 

Because of positive results in the research on worked examples, it appears worked 

examples may be an appropriate tool for instructional designers to use to prepare online 

practice in a mathematics context, but more research is needed to see if these results 

apply in a calculus context. 
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CHAPTER II 

Literature Review 

The research questions for this study were intended to explore the effectiveness of 

using worked examples to provide opportunities for students to practice in a calculus 

class. In order to fully understand how these research questions fit within the theoretical 

and historical background of Cognitive Load Theory, a review of literature was 

conducted. A relatively broad search of relevant topics was conducted in order to develop 

a strong foundation for research on this topic. Table 2 details the database searches that 

were conducted to select articles for inclusion in this review. So as to focus on more 

recent technological trends, the search focused primarily on recent research published 

after 2009. Search terms such as multimedia, mathematics, undergraduate mathematics, 

cognitive load, worked examples, and mathematical readiness were used. The search 

identified 111 articles that were related to the topics of cognitive load, example-based 

learning, mathematics education, multimedia applications, or e-Learning. 

The 111 relevant articles identified through this broad search were read, 

summarized, and classified. Three broad topics emerged as being important for providing 

a foundation for research on worked examples. Cognitive Load Theory provides an 

important theoretical perspective from which to consider examples, research on 

knowledge and learning in mathematics provided critical insight into the learning context, 

and research on e-Learning provided guidance on effectively incorporating technology. A 

Venn diagram was used to organize the articles based on how they addressed these three  
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Table 2 
 
Summary of database searches for literature review 
 

Date Database or Journal Search Terms Filters # of 
Results 

# of 
Relevant 
Results 

08/27/13 Clark & Mayer's Chapter 
on Worked Examples 

Looked at their reference 
list and suggested 

resources 

 
7 7 

08/29/13 ERIC (EBSCOHost) "Multimedia" AND 
"Mathematics" 

Full-text, peer-
reviewed, 
2003-2013 

56 13 

09/14/13 Computers & Education 
Journal archive 

"Undergraduate 
Mathematics" 

After 2000 16 4 

09/19/13 ETR&D; Computers & 
Education 

Looked at all articles in 
five most recent issues 

Five most 
recent issues 

13 13 

09/23/13 ETR&D "Cognitive Load" AND 
"Mathematics" 

 
38 6 

10/03/13 PRIMO "Gender Difference" 
AND "Worked example" 

After 2009 6 1 

10/03/13 PRIMO "Gender Difference" 
AND "Worked examples" 

After 2009 10 1 

10/03/13 PRIMO "Gender" AND "Worked 
Examples" 

After 2010 22 7 

11/13/13 PRIMO "Worked Examples" Peer-reviewed, 
After 2012 

141 13 

11/13/13 PRIMO "Worked Examples" Peer-reviewed, 
2009-2011 

323 22 

02/10/14 Google Scholar “Types of Cognitive 
Load” 

 
1.9 

million 
Selected 2 

03/18/14 PRIMO “Mental Effort 
Measurement” 

 
2 1 

03/18/14 PRIMO “Instructional Efficiency” Peer-reviewed 44 6 

04/02/14 PRIMO “Conceptual knowledge” 
AND “Mathematics” 

Peer-reviewed 97 12 

10/14/14 Google Scholar “Mathematical 
Readiness” 

2000-2014 34,500 Selected 3 
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major foundational topics (see Figure 1). Based on this initial research, three main areas 

are discussed in the review: knowledge and learning in mathematics, cognitive load 

theory, and the theory of worked examples. Also, the gaps in the literature that are 

addressed by this proposed study will be identified. 

 

Figure 1. Venn Diagram classifying the 111 research articles 
considered for inclusion in this review of literature. 

 

Knowledge and Learning in Mathematics 

 Mathematics instruction differs from instruction in other learning domains in a 

few significant ways. For example, Ayres (2006) suggests that mathematical tasks often 

have a high level of element interactivity. Element interactivity is defined as the extent to 

which the elements of the task “have to be assimilated simultaneously” (p. 288) rather 

than being learned in isolation. Learning abstract mathematical principles often requires 

learners to coordinate their understanding of several underlying concepts at once and, as 

such, abstract mathematical principles have high element interactivity and carry a high 

cognitive load. Another distinctive feature of learning in the mathematical domain is that 
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topics that appear to be very algorithmic often require learners to understand complex 

conceptual ideas. This is important because learners who know algorithms without 

understanding concepts often apply those algorithms inappropriately (Hiebert & Lefevre, 

1986). Additionally, learners often have low confidence and high anxiety related to 

learning mathematics (Loong & Herbert, 2012). High anxiety levels compete with 

cognitive resources and leave fewer cognitive resources available to focus on solving 

mathematical problems (Vytal, Cornwell, Arkin, & Grillon, 2012). The following 

discussion reviews research related to knowledge and learning in mathematics. In 

particular, in order to provide a research-based perspective on constructs that are essential 

to the proposed experiment, the discussion will address types of mathematical 

knowledge, teaching calculus, and mathematical readiness.  

Conceptual vs. procedural knowledge. Hiebert and Lefevre (1986) note that 

there is a long history of division of mathematical content into conceptual and procedural 

knowledge. Many distinguished educational theorists including Dewey, Thorndike, 

Brownell, Gagné, and Bruner addressed the distinction and relationship between concepts 

and skills. Although earlier discussions of procedural and conceptual knowledge 

considered the two knowledge types as different and competing forms of knowledge, 

“current discussions treat [them] as distinct, but linked in critical, mutually beneficial 

ways” (Hiebert & Lefevre, 1986, p. 2). For example, Rittle-Johnson and Alibali (1999) 

describe procedural and conceptual knowledge as forming two ends of a continuum that 

cannot always be separated and do not develop independently. In fact, several researchers 

note the importance of emphasizing both types of knowledge (e.g. Newton, Star, & 
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Lynch, 2010; Star & Seifert, 2006). Newton et al. (2010) suggest that learners who have a 

solid understanding of both procedural and conceptual knowledge become more flexible 

problem solvers who are able to select the most effective and efficient procedure for a 

given mathematical task. 

Teaching calculus. The concepts traditionally taught in calculus courses contain 

a higher level of abstraction than the concepts taught in a typical algebra course. 

Although, to a certain extent, abstraction is also required for the learning of algebra, the 

introduction of the limit concept in calculus significantly increases the level of 

abstraction required of learners of calculus (Sofronas et al., 2011). According to White 

and Mitchelmore (1996), “a feature of all advanced mathematics is the need for abstract 

concepts” (p. 80). The ability to understand abstraction in a mathematical setting comes 

as a result of procedural knowledge that is supported by conceptual knowledge (White & 

Mitchelmore, 1996). Therefore, the learning of procedures in calculus must be carefully 

connected to conceptual knowledge in order “to foster the development of 

understanding” (Star & Seifert, 2006, p. 281) and help learners gain better understanding 

of the connection between calculus concepts and skills (Sofronas et al., 2011). 

Mathematical readiness. As theorized by Bruner (1960), cognitive readiness is 

an essential aspect of learning. Bruner explained that mathematical principles can be 

taught to children at any age, as long as they are presented in a form that aligns with the 

readiness of the learner. For example, “it can be demonstrated that fifth-grade children 

can play mathematical games with rules modeled on highly advanced 

mathematics…They will flounder, however, if one attempts to force upon them a formal 
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mathematical description of what they have been doing” (Bruner, 1960, p. 38). In order to 

understand formal mathematical language, learners must attain formal operational 

thought.  

In general, calculus requires a higher level of cognitive readiness from the learner 

than algebra because of its higher level of abstraction (White & Mitchelmore, 1996). 

However, even learners with adequate cognitive readiness may not be ready for calculus 

if they have not learned the required prerequisite content. Learners with low content 

readiness are often not successful at learning. Additionally these learners have other 

disadvantages as compared to their more prepared classmates. Schwonke et al. (2013) 

found that learners with low readiness often do not use learning aids in a “learning-

oriented way” (p. 138). Additionally, they are easily overwhelmed when presented with 

new material and have poor metacognitive skills. Schwonke et al. found that providing 

metacognitive support for learners helps them use external learning resources, such as 

tutors and help resources, more strategically and efficiently. 

Content readiness research conducted in a calculus context shows that readiness is 

correlated with student performance (Pyzdrowski et al., 2013). In particular, research 

shows that in order to succeed in calculus, learners need to understand the function 

concept, have adequate algebraic manipulation skills, and have an understanding of 

trigonometry (Kay & Kletskin, 2012). Universities with successful calculus programs 

typically have some way to assess and ensure the content readiness of learners who 

register for calculus (Rasmussen, Ellis, & Zazkis, 2012). 
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Careful consideration must be given on how to teach abstract calculus concepts to 

learners with varying degrees of cognitive and content readiness. Cognitive Load Theory 

provides a helpful theoretical perspective from which learning in calculus can be 

considered.  

Cognitive Load Theory 

 Cognitive Load Theory (CLT) is a theory of learning that is based on knowledge 

of human cognitive architecture. Models of human cognitive architecture describe two 

types of memory: working memory and long-term memory. The working memory can be 

equated with consciousness; individuals “are only aware of information in working 

memory” (Sweller, 2004, p. 12). However, working memory is limited. Learners can only 

retain a limited number of informational items in their working memory at any given time 

(Sweller, 2004). Long-term memory, however, provides for a more permanent system for 

storing information. Unlike the working memory, long-term memory is practically 

limitless in the amount of knowledge and information it can store (Ayres & Van Gog, 

2009). 

Building knowledge in long-term memory occurs as individuals organize new 

information and skills in their working memory and transfer that knowledge to long-term 

memory through the development of schemas. Schemas, or collections of related 

information that can be considered as a single construct (Hollender, Hofmann, Deneke, & 

Schmitz, 2010), allow learners to categorize pieces of information in their long term 

memory “in the manner in which they will be used” (Sweller, Van Merriënboer, & Paas, 

1998, p. 255). This presents a particular advantage because each schema consists of 
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numerous pieces of information that can then be processed in working memory as a 

single item. Sweller (2004) illustrated this principle by describing the schema for 

restaurant. This single word represents a large collection of informational pieces 

including “much of what we know of food, the preparation of food, eating, the serving of 

food, aspects of a financial system and its relation to goods and services, the architecture 

of buildings and furniture, social relations between humans, etc.” (p. 13). However, 

because all of these informational pieces are linked in a single schema in long-term 

memory, an individual can consider them as a single entity in working memory.  

As described by Sweller (2004), CLT assumes that “the purpose of instruction is 

to build knowledge in long-term memory” (p. 21). This occurs as learners develop 

schemas that connect new information to their prior knowledge. However, the limited 

nature of working memory requires instructional techniques to be as efficient as possible, 

so as to not overload the working memory. This is particularly important in light of 

research that shows that learning is most effective when working memory resources are 

not overloaded (Ayres & Van Gog, 2009). As such, instructional designers should 

carefully consider the cognitive load required for a given instructional activity. Cognitive 

load refers to the “demand for working memory resources…that [are] required for 

achieving the goals of a particular cognitive activity” (Kalyuga, 2007, p. 513). 

Researchers have discussed several different learning effects that help optimize the 

cognitive load of instructional activities including, among others, the worked-example 

effect, the split-attention effect, the expertise reversal effect, the element interactivity 

effect, and the goal free effect. These effects are all “based in part on the assumption that 
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instructional design should be structured to facilitate alterations in long-term memory” 

(Sweller, 2004, p. 12).  

Types of cognitive load. As researchers have considered techniques for 

optimizing the cognitive load of instructional activities they have identified three 

different types of cognitive load: germane, intrinsic, and extraneous (Hollender et al., 

2010; Sweller et al., 1998). Germane load refers to the working memory resources that 

are necessary for the development of schema (Hollender et al., 2010). Because the 

development of appropriate schema is the goal of instruction, germane load is beneficial 

to learning. It is essential that instructional designs allow for adequate cognitive resources 

to be allocated for germane load.  

Intrinsic load depends on the complexity and element interactivity of the 

information that is to be learned. To illustrate the difference between a task with low 

intrinsic load and a task with high intrinsic load, Sweller et al. (1998) explains that 

learning vocabulary in a foreign language has low intrinsic load because each word can 

be considered and learned independently of other words. Alternately, learning correct 

grammar structure in a foreign language has high intrinsic load because in order to 

correctly understand grammatical structure the learner cannot consider each of the words 

in a sentence one word at a time, but rather must consider the sentence and its meaning 

collectively, as well as the order and relationship among the words in the sentence. 

Intrinsic load is relative to the expertise, experience, and prior knowledge of the learner. 

Not all learners will have the same intrinsic load for a particular learning task (Hollender 

et al., 2010). 
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Extraneous load is load imposed by learning tasks or presentation of information 

that is irrelevant to learning (Sweller, 2010). Tasks with a high extraneous load require 

significant mental effort by the learner, but the mental effort expended does not lead to 

greater learning. For example, consider a learning task where a learner is provided with a 

graphic and text that mutually describe a new idea, but the graphic and the text are not 

placed next to each other. This situation carries high element interactivity because the 

learner must maintain information from the graphic in their working memory while 

reading the text, and vice versa. Sweller et al. (1998) note that the cognitive load required 

to integrate the text and the graphic is extraneous “because it is caused entirely by the 

format of the instruction rather than by the intrinsic characteristics of the material” (p. 

263). Schnotz (2010) notes that in addition to being due to high element interactivity, 

extraneous load can be due to “other forms of unnecessary usage of resources, namely 

resources such as time and effort” (p. 317). For example, consider a situation where a 

learner views a graphic that clearly describes a new idea without requiring additional 

explanation, but then the learner is asked to read written text that provides the same 

information as the graphic. This task carries high extraneous load, not because of element 

interactivity, but because reading the text is a waste of the learner’s time and effort. 

Germane, intrinsic, and extraneous load are additive, which means that reducing 

one type of load leaves more available cognitive function available for the other types of 

cognitive load (Ayres, 2006), as long as the total load is not greater than available 

working memory resources (Sweller et al., 1998). Because germane load is beneficial to 

learning, appropriate instructional designs will decrease extraneous and/or intrinsic load 
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while simultaneously increasing germane load (Lee & Anderson, 2013). Extraneous load 

is strongly influenced by the instructional design. Ayres (2013) explains that unlike 

intrinsic load, which occurs naturally, extraneous load is created by instructional 

designers when they create poorly designed instructional materials. In particular, “poorly 

designed learning materials, where learners spend considerable effort in trying to follow 

or understand the procedures, are high in extraneous load” (p. 116).  

Because intrinsic load depends on the complexity of the learning task, it is the 

most difficult type of load to affect through instructional design. Either increasing the 

prior knowledge of the learner or reducing the element interactivity of the learning task 

can decrease intrinsic load. One common strategy for decreasing intrinsic load through 

instructional design is the isolated elements strategy, where tasks with high element 

interactivity are broken down and part of the task is presented before presenting the entire 

task (Ayres, 2013).  

Merely reducing the extraneous and/or intrinsic load does not automatically 

increase the germane load. As explained by Sweller et al. (1998), in order to increase the 

germane load, learners’ attention must be directed away from tasks that are not relevant 

to learning to cognitive processes that help with the development of schemas. Some 

specific techniques for increasing germane load include increasing the motivation of the 

learner (Sweller, 2010), including design elements such as self-explanation prompts that 

help the learner identify essential elements of a learning task (Sweller et al., 1998), and 

providing worked examples in place of problem solving so that learners can focus on 

problem steps to aid in the development of schemas (Van Gog, Kester, & Paas, 2011). 
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Measuring cognitive load. Because of its complexity, cognitive load is difficult 

to measure (Sweller et al., 1998). In particular, measuring specific types of cognitive load 

has proven to be quite difficult and there is currently much interest in the development of 

assessments that measure different types of cognitive load (Ayres & Van Gog, 2009; 

Kalyuga, 2009; Kirschner, Ayres, & Chandler, 2011; Van Gog, Kester, Nievelstein, 

Giesbers, & Paas, 2009). Early research on cognitive load relied heavily on performance-

based measures (Paas et al., 1994), but in the 1990s, Paas and his colleagues (see Paas et 

al., 1994; Paas & Van Merriënboer, 1993; Paas, 1992) developed a mental effort rating 

scale that began to be widely used as a technique to measure cognitive load. Although 

mental effort is not the same as cognitive load, mental effort is generally accepted as 

reflecting the actual cognitive load (Ayres & Van Gog, 2009; Paas, Tuovinen, Tabbers, & 

Van Gerven, 2003; Sweller et al., 1998; Van Gog & Paas, 2008). Mental effort is defined 

as “the aspect of cognitive load that refers to the cognitive capacity that is actually 

allocated to demands imposed by the task” (Paas et al., 2003, p. 64). 

Mental effort has been measured using a variety of different subjective and 

psychomotor techniques (Paas et al., 2003, 1994). Paas et al. (1994) found that a 

subjective rating scale was less intrusive and more sensitive to changes in mental effort 

than a psychomotor technique. The subjective scale developed by Paas (1992) is widely 

used as a measurement of mental effort (e.g. Boekhout, Van Gog, Van de Wiel, Gerards-

Last, & Geraets, 2010; Nievelstein, Van Gog, Van Dijck, & Boshuizen, 2013; Van Gog 

et al., 2011). The subjective measurement scale (see Table 3), which has since become 

known as the Paas’ Mental Effort Measurement Scale (PMEMS), is a nine-point Likert 
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scale self-rating that varies from a score of 1 (very, very low mental effort) to a score of 9 

(very, very high mental effort).  

 
Table 3 
 
Paas’ Mental Effort Measurement Scale (PMEMS) (Tuovinen & Paas, 2004, p. 142) 
 
Numerical Rating Interpretation 

1 Very, very low mental effort 
2 Very low mental effort 
3 Low mental effort 
4 Rather low mental effort 
5 Neither low nor high mental effort 
6 Rather high mental effort 
7 High mental effort 
8 Very high mental effort 
9 Very, very high mental effort 

 

Instructional efficiency. Research studies that just look at mental effort do not 

really provide enough information to make conclusions about the effectiveness of the 

instruction because, based on CLT, the goal of instruction is not just to have low mental 

effort. Rather, the goal is to have an appropriate level of mental effort relative to the 

performance of the learners. Paas et al. (1994) developed the concept of instructional 

efficiency in order to provide one measure that combines mental effort and performance 

of the learners. Note that in this context a learning task with high instructional efficiency 

is considered to be efficient relative to the amount of mental effort expended by the 

learners. Instructional efficiency as defined by Paas et al. (1994) does not take time into 

account. 

The instructional efficiency calculation first proposed by Paas et al. (1994) was 

based on mental effort ratings collected during the testing phase of an experiment, rather 
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than during the instructional phase. Later researchers who used the concept of 

instructional efficiency changed the computation (most likely unintentionally) by using 

mental effort ratings that were collected during the instructional phase of an experiment 

(Van Gog, Kirschner, Kester, & Paas, 2012). Van Gog et al. (2012) note that by 

measuring the mental effort during different phases of the experiment, the resulting 

calculations actually measure different constructs. Using the original measure, 

researchers can find the instructional efficiency of the learning objectives, while 

researchers who use the modified measure can determine the instructional efficiency of 

the learning process (Van Gog et al., 2012). Both of these constructs are ultimately 

useful, and as such, Tuovinen and Paas (2004) describe a multidimensional approach to 

computing learning efficiency that incorporates mental effort during the learning phase 

and mental effort during the testing phase, along with performance. This 

multidimensional approach is the one that will be used in this proposed study.  

Cognitive Load Theory versus Constructivism. Cognitive Load Theory (CLT) 

and constructivism are two different theories of learning that are often seen as being at 

odds one with another. Both of these theories of learning are based on the development of 

schemas, but the theories differ in how they propose schemas are developed. CLT 

suggests that instructional designers should reduce extraneous load by making it as 

simple as possible for learners to develop schemas (Sweller & Chandler, 1991). 

Constructivism, on the other hand, suggests that learners develop schemas by 

constructing their own personal learning experiences, which often carries a very high 

cognitive load (Vogel-Walcutt et al., 2011).  
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 In order to compare the two theoretical perspectives, Vogel-Walcutt, Gebrim, 

Bowers, Carper, & Nicholson (2011) compare two online lessons, one that uses a CLT 

approach and one that uses a constructivist approach (problem-based learning). Their 

findings show that the CLT approach is efficient, in that the learners spend significantly 

less time on the learning tasks, but that there is not a significant difference in student 

knowledge between the two approaches. Overall, researchers conclude that a CLT 

approach leads to more efficient learning (Sweller & Chandler, 1991; Sweller & Cooper, 

1985; Vogel-Walcutt et al., 2011).  

Proponents of CLT note that learning designed based on a CLT approach is often 

better at helping less capable or more novice learners than learning designed based on 

constructivism (Kalyuga, 2007). When considered from a CLT perspective, learning 

activities that require learners to construct their own meaning carry a very high cognitive 

load, which leads to difficulties for learners with low prior knowledge. According to 

CLT, constructivist activities would be most successful among learners with high prior 

knowledge for whom the activities carry a lower intrinsic load (Vogel-Walcutt et al., 

2011). 

The Theory of Worked Examples 

Clark and Mayer (2011) define a worked example as “a step-by-step 

demonstration of how to perform a task or solve a problem” (p. 224). Cognitive load 

theorists recommend the use of worked examples based on their observations of the 

worked example effect. The worked example effect states that “in initial skill acquisition, 

it is more favorable to learn from examples with worked solutions than to solve 
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problems” (Schwonke et al., 2009, p. 258). The worked example effect is based on the 

theory that learning from examples helps learners “focus attention on problem states and 

their associated moves” (Sweller & Chandler, 1991, p. 353). Additionally, "worked 

examples prevent students from unproductive cognitive activities" (Schwonke et al., 

2009, p. 265). This reduces extraneous cognitive load and aids in the development of 

schemas (Cooper & Sweller, 1987; Schwonke, Renkl, Salden, & Aleven, 2011). 

Although early research on worked examples focused on skill acquisition for procedural 

knowledge in well-structured situations, more recent research has looked at using worked 

examples in more conceptual settings and in ill-structured domains (i.e. Jarodzka, Van 

Gog, Dorr, Scheiter, & Gerjets, 2013; Nievelstein et al., 2013; Richey & Nokes-Malach, 

2013; Rourke & Sweller, 2009). The chart given in Appendix A summarizes some of the 

recent research on worked examples. The following discussion will highlight some of the 

key findings of that research. 

Recent research on worked examples. Much of the research on worked 

examples has been done using paper-based examples (e.g. Ayres, 2013; Boekhout et al., 

2010; Gentner, Loewenstein, & Thompson, 2003; Hilbert & Renkl, 2009; Moreno & 

Valdez, 2007; Newton et al., 2010; Ngu & Yeung, 2012, 2013; Nievelstein et al., 2013; 

Quilici & Mayer, 1996; Richey & Nokes-Malach, 2013; Rourke & Sweller, 2009; 

Sweller & Cooper, 1985; Van Gog et al., 2011; Van Gog & Kester, 2012). The increased 

use of technology in educational settings has created a variety of new ways to create and 

present worked examples. Other formats of worked examples that have been studied 

include video-based examples (e.g. Kay & Edwards, 2012; Kay & Kletskin, 2012; Van 
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Gog, 2011; Wong, Leahy, Marcus, & Sweller, 2012), examples provided via an 

eLearning application (e.g. Corbalan, Paas, & Cuypers, 2010; Darabi, Nelson, Meeker, 

Liang, & Boulware, 2010; Jarodzka et al., 2013; Nievelstein et al., 2013; Scheiter, 

Gerjets, & Schuh, 2009; Vogel-Walcutt et al., 2011), examples provided through a 

cognitive tutor (e.g. Booth, Lange, Koedinger, & Newton, 2013; Reed et al., 2012; 

Salden et al., 2010; Schwonke et al., 2009, 2011), and in-class examples (e.g. Miller, 

2010).  

 Static vs. animated examples. Scheiter et al. (2009) describe a comparative study 

on the effects of adding animations to algebra worked examples, contrasting traditional 

print worked examples with multimedia examples that utilized an animation, “where a 

realistic animation of the problem [was] morphed into a more abstract representation of 

the problem statement” (p. 492). Based on their study of 32 ninth-grade algebra students, 

the authors find that learners who viewed the worked examples with animations exhibited 

better problem-solving skills on far transfer problems, or problems that use similar skills 

in a method not previously encountered by the learners, than those who viewed the 

printed worked example. Wong et al. (2012) also replace static graphics with animations 

in worked examples designed to teach origami to children ages 10-11. Based on their 

study of 66 children, the authors conclude that animations are effective if they are 

provided in short segments. Providing long segments significantly increases the cognitive 

load and thus negates the positive effects of using the animation. 

Reed et al. (2012) compare three different types of worked examples: static table, 

static graphic, and interactive graphic. The examples were used in a high-school Algebra 
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I course and were delivered on a computer. All three types of examples present the same 

information, but differ in how the information is organized. Static table examples display 

the example in a table where an explanation accompanies each step of the example, static 

graphics use an image to help demonstrate the concept, and interactive graphic examples 

use an interactive image as part of the example. Based on the results of their study 

involving 128 students, the authors conclude there is no difference among the three types 

of examples. All were found to be equally efficient, led to approximately the same 

number of errors on subsequent practice problems, and resulted in equivalent 

performance on paper-and-pencil posttests. The authors note that although these types of 

examples were competitors in the context of the study, they work well together and they 

recommend using a mixture of all three example-types to provide instruction. 

Structure and design of worked examples. The structure, design, and 

organization of worked examples have been considered by several recent studies. For 

example, in a high school Algebra I context, Booth et al. (2013) find that providing 

learners with a mixture of both incorrect and correct examples is more effective than 

providing correct examples alone; students who are asked to explain incorrect examples 

gained more knowledge about the conceptual features of the problems. A series of 

articles by Van Gog and her colleagues (Van Gog et al., 2011; Van Gog & Kester, 2012; 

Van Gog, 2011) examined the sequencing of worked examples with practice problems. 

When considered collectively, the results show that viewing an example prior to 

completing a practice problem is more effective than completing the tasks in the opposite 

order. This is due to the reduced cognitive load provided by viewing the example first. 
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However, the analysis showed that the order the problems are presented in does not 

matter as much as how many opportunities learners are given to practice a particular 

problem solving technique. This emphasizes the fact that cognitive load is not the only 

consideration in determining how to help learners obtain new knowledge and skills. It is 

also essential to ensure that learners have opportunities to practice and to apply their new 

skills. This supports this proposed study in that the worked examples in the proposed 

study were created specifically in order to provide learners with more opportunities to 

practice. 

Schwonke et al. (2011) conducted a study in a ninth-grade geometry class to 

determine whether the ratio of worked steps to to-be-solved steps in faded worked 

examples affects student learning. Based on their study of 125 students, they find that 

problem solving carries a higher cognitive load than worked examples, regardless of the 

number of worked steps. They also find that, for difficult problems, the highest post-test 

scores are found for examples with the highest number of worked steps. The authors 

observe an expertise reversal effect; the worked examples are most effective for content 

with which the learners were not familiar and are not as effective for familiar material. 

However, the expertise reversal effect was not as pronounced for conceptual content. The 

authors conclude, “worked examples might lose their effectiveness later – or potentially 

not at all – for the development of conceptual understanding” (p. 61).  

Boekhout et al. (2010) determined whether or not an expert or a novice model 

should be used in a video worked example. The video worked examples in the study were 

used by 134 physiotherapy students to learn to diagnose physical complaints of patients. 

 

 



 

 

38 

The authors find that learners who learn from an expert model do significantly better on 

tests of far transfer than learners who learn from a novice model.  

In a series of three experiments conducted with undergraduate statistics students 

Quilici and Mayer (1996) find that worked examples that emphasize the statistical 

structure of the problem are more helpful for schema development than examples that 

emphasize surface details of the problem. This was especially true for lower ability 

students. Corbalan et al. (2010) explain that when linear algebra examples are faded and 

students are asked to complete to-be-solved steps, the examples are most effective when 

feedback is provided on each step rather than just at the end of the problem. This 

conclusion is based on their finding that providing feedback at each step of the problem 

reduced the overall mental effort required to complete the problem. In a study of 54 

eighth grade algebra students, Ayres (2013) determine that isolating elements of 

problems where learners are known to struggle and having learners practice those skills 

in isolation is beneficial to learners with low readiness. When considering case-based 

business examples, Gentner et al. (2003) find that asking learners to compare two 

examples and look for similarities helps increase transfer.  

Benefits of worked examples. Several research studies have compared groups of 

learners who are provided with worked examples to groups of learners who are not 

provided with worked examples. These studies highlight some of the benefits of using 

worked examples for instruction. Some of these benefits include increased ability to 

develop mental mathematical models (Darabi et al., 2010), better course performance 

(Miller, 2010; Ngu & Yeung, 2013), increased flexibility in problem solving (Newton et 
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al., 2010), more efficient learning (Nievelstein et al., 2013; Schwonke et al., 2009), and 

deeper conceptual understanding (Schwonke et al., 2009).  

Self-explanation Prompts vs. Instructional Explanations 

Theoretically, worked examples are beneficial to learning because they help 

emphasize the steps for solving a problem; focusing on the problem steps decreases 

extraneous cognitive load and helps facilitate the development of schemas. However, 

worked examples can be even more beneficial to learning when they are combined with 

additional instructional tools that increase germane load. Two such instructional tools are 

self-explanation prompts and instructional explanations.   

Self-explanation prompts are questions added to worked examples to encourage 

learners to consider more carefully the details of the example (Biesinger & Crippen, 

2010). The use of worked examples is thought to free up cognitive resources through a 

reduction in extraneous load. However, this does not guarantee that the learner will use 

the newly available cognitive resources in a productive way. Self-explanation prompts 

encourage learners to focus on features of the problem that are essential for the 

development of schemas, and therefore should increase germane load (Hilbert & Renkl, 

2009). Because self-explanation prompts encourage learners to think about more than just 

the steps for solving a problem, self-explanation prompts can lead to better conceptual 

knowledge than the use of worked examples alone (Booth et al., 2013). 

 As an example, consider the self-explanation prompt given in the worked example 

shown in Figure 2. This related rates example is one that was designed for use in the 

proposed study. Note that the question displayed in the gray box on the screen asks the 
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learner to explain when it is possible to substitute the value of a variable into an equation 

before taking its derivative. Understanding this concept is essential for completing the 

next step of this problem, as well as for completing other similar related rates problems.  

 

Figure 2. Screen shot from a multimedia worked example with 
self-explanation prompts. 

 

 Instructional explanations are defined as “explanations provided to facilitate 

example processing” (Wittwer & Renkl, 2010, p. 395). Wittwer and Renkl (2010) 

describe a meta-analytical review of research on instructional explanations. They find 

that adding instructional explanations to worked examples did lead to an increase in 

conceptual knowledge, although the effect size was only significant in studies where the 

learning domain was mathematics. However, they find that providing instructional 

explanations is not more effective than providing self-explanation prompts.  
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 The worked example shown in Figure 3 is an example of a worked example with 

an instructional explanation. The instructional explanation shown in the gray box is 

intended to provide additional conceptual explanations for the next step of the problem. 

Although the learner could follow the steps of the problem without seeing this 

explanation, the instructional explanation provides additional information that help the 

learner understand why the next step of the problem is possible.  

 

 

Figure 3. Example of a screen shot from a multimedia worked 
example with instructional explanations. 

 

Comparing Figure 2 to Figure 3 illustrates the difference between self-explanation 

prompts and instructional explanations; although the prompt and the explanation have the 

same purpose, one is presented in question form that the learner must answer and the 

other is provided in explanation form. One concern related to the use of self-explanation 
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prompts is that students with low prior knowledge might not have the necessary cognitive 

skills to construct good responses to self-explanation prompts (Richey & Nokes-Malach, 

2013). Another concern is that the construction of incorrect responses to self-explanation 

prompts has been found to impair learning (Berthold & Renkl, 2009). Providing 

instructional explanations, rather than self-explanation prompts, is an alternative that is 

expected to address these concerns (Wittwer & Renkl, 2010). 

Context of Prior Worked Example Research 

 Most research on worked examples has been conducted with high-school age 

learners in an algebraic context. As can be seen in the Summary Table of Worked 

Example Research included in Appendix A, of the 29 worked example studies included 

in this review of literature, fifteen of them address topics in the mathematical domain. Of 

those, only two (Corbalan et al., 2010; Miller, 2010) are at the level of calculus or 

beyond. The study conducted by Corbalan et al. (2010) was conducted in a linear algebra 

course (for which calculus is typically a prerequisite) and focuses on the most effective 

ways to provide feedback in a worked example and the study by Miller (2010) focuses on 

a method for using worked examples in an in-class setting in a calculus class with the 

teacher providing the example. These studies provide evidence that worked examples are 

beneficial for adult learners at the calculus level, but additional research is needed to 

address using worked examples in calculus in order to provide opportunities for learners 

to practice new knowledge and skills outside of class. 

 Most of the studies included in this review were conducted outside of a regular 

classroom setting. As can be seen in the chart in Appendix A, 20 of the 29 studies 
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included in this review were conducted as a one-time experiment with student volunteers. 

Of the remaining nine studies that were situated in a classroom setting, all but one 

(Newton et al., 2010) were conducted for three or fewer lessons. The one exception was 

the study by Newton et al. (2010) that was conducted in a three-week long 

remedial/review summer school algebra course. Based on the literature included in this 

review, research has not been done using worked examples over an extended period of 

time within a classroom setting. 

 Most of the studies included in this review of literature used worked examples as 

a form of instruction. Only six (Booth et al., 2013; Corbalan et al., 2010; Darabi et al., 

2010; Newton et al., 2010; Ngu & Yeung, 2012, 2013) of the 29 studies combine the use 

of worked examples with in-class instruction. By combining the worked examples with 

in-class instruction, the purpose of using worked examples shifts from providing 

instruction to providing opportunities to practice and to support (rather than replace) face-

to-face classroom instruction.  

 The review of literature represented in Appendix A also indicates variability in 

techniques used in these studies for measuring and assessing cognitive load. None of the 

29 worked example research studies included in this review used MIE. The use of MIE as 

a dependent variable was particularly illustrative in this study in light of the extended 

length of the learning phase of this study because MIE considers mental effort both 

during learning and during testing. 
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Gaps in the Literature 

 The results of this study add to the existing body of literature on worked examples 

by providing new information on the connection between the readiness of the learner and 

the use of self-explanation prompts and instructional explanations. The study helps 

address concerns that self-explanation prompts may carry too high of a cognitive load for 

learners with low readiness, and thereby helps determine whether self-explanation 

prompts or instructional explanations are best for students with low, medium, and high 

readiness.  

The study provides more information on using worked examples for practice 

(rather than instruction) in the more abstract setting of calculus and with adult learners. 

Additionally, the study provides insight on the use of worked examples over an extended 

period of time while situated in a classroom setting. 
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CHAPTER III 

Methodology 

This quantitative experiment was designed in order to answer the six research 

questions posed earlier in this paper (see page 6). The goal of the experiment was to 

determine the efficiency (measured using MIE) and effectiveness (measured using 

student performance) of three different types of worked examples intended to provide 

opportunities for students to practice in a face-to-face calculus course. All three groups 

saw the same problems; however, for Groups #1 and #2, approximately half of the 

practice problems were replaced with worked examples. Prior to completing practice 

problems, learners in Group #1 viewed worked examples with self-explanation prompts 

and learners in Group #2 viewed worked examples with instructional explanations. As a 

form of control, learners in Group #3 did not view any worked examples. Data analyses 

were conducted to determine which of the three types of practice problems had the 

highest multidimensional instructional efficiency, which produced the highest student 

performance, and whether there was an interaction effect between type of practice and 

student readiness. 

Research Design 

 As illustrated in Table 1 (see page 7), the study used an experimental, pre-

test/post-test control group design to answer the six research questions. The study 

included two independent variables: type of homework completed by the student 

(traditional homework, worked examples with instructional explanations, or worked 

 

 



 

 

46 

examples with self-explanation prompts) and readiness of the student (low readiness, 

medium readiness, or high readiness). There were two dependent variables: student 

performance and multidimensional instructional efficiency (MIE). As described by 

Tuovinen and Paas (2004), MIE is a function of mental effort during the learning phase, 

mental effort during the testing phase, and student performance. MIE incorporates all 

three of these individual measures into one computational measure to assess the 

efficiency of the instructional technique. There were also two covariates: homework 

completion rate and prior knowledge of calculus (as measured by a pre-test). 

Population and Sampling 

 The population of interest in this study was university-level students taking their 

first semester of calculus at a private northwestern university. The sample consisted of 

students from two sections of Calculus I during the winter 2015 semester. As will be 

discussed in more detail later in this chapter, the students who register for Calculus I each 

semester have a fairly consistent demographic. As such, this convenience was 

representative of the population of interest. Each section of Calculus I has a maximum 

class size of 49 students. During the semester in which the study took place, a total of 93 

students from two sections of Calculus I signed an informed consent form and agreed to 

participate in the experiment. According to the results of a G*Power a priori power 

analysis (Faul, Erdfelder, Lang, & Buchner, 2007), for a moderate effect size of 0.35 

(measured using Cohen’s 𝑓𝑓), the total sample size would need to be 83 students to have 

80% power. Therefore the sample of 93 students should have been large enough to 

statistically detect a meaningful difference among experimental groups, if one existed.  
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Materials 

 Examples have traditionally played a big role in the teaching and learning of 

mathematics (Sweller & Cooper, 1985). Worked examples are commonly included in 

textbooks or presented by an instructor during face-to-face classes in order to help 

students learn to solve mathematical problems. The worked examples used in this study 

were similar to such examples in that they provided students with worked out solutions to 

mathematical problems. However, the worked examples used in this study had 

characteristics and advantages that went beyond those provided by traditional worked 

examples included in textbooks or presented by an instructor. The multimedia nature of 

the experimental examples provided a more interactive experience for the learners. The 

learner was able to control the speed of the example, to skip forward or go back, and to 

watch the example multiple times. Additionally, unlike traditional worked examples that 

don’t necessarily require a learner response, the experimental examples were embedded 

into the course LMS and learners were expected to respond to questions related to each 

example. This additional scaffolding helped ensure that learners interacted with the 

examples in meaningful ways. 

 Two different versions of each example were created for use in this study. One 

version of the example utilized self-explanation prompts, while the other version used 

instructional explanations. Figures 4 and 5 show a comparison of the same problem as 

presented to each of the three experimental groups. As can be seen in the figures, all three 

groups were exposed to the same problem. However, as can be seen by the screenshot on 

the left in Figure 4, the worked example for Group 1 included a question that students 
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answered by typing their response in the learning management system. In this particular 

example, students were asked to explain the meaning of the answer obtained through the 

calculations shown in the example. The screenshot on the right in Figure 4 shows the 

same example as prepared for Group 2. Notice that the only difference between the two 

examples is that the example for Group 2 provided students with an explanation of the 

meaning of the answer obtained in the example, rather than asking them to provide an 

explanation. Figure 5 shows the same problem as provided to the control group. In this 

case, students were asked to solve the problem without an example being provided. 

  

Figure 4. Side-by-side comparison of the two types of worked examples. Although both 
examples demonstrate how to solve the same mathematical problem, the screenshot on 
the left shows a self-explanation prompt while the screen shot on the right shows an 
instructional explanation. 
 

Figure 5. Screenshot from a practice problem, as used for Group 3. 
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As can be seen in Table 4, some of the worked examples were fully worked 

examples while others were partially worked examples. As suggested by the name, fully 

worked examples showed a complete solution to the problem, whereas partially worked 

examples provided solutions to some steps, but asked learners to fill in the details on 

other steps. Some partially worked examples asked learners to complete intermediate 

steps before the example proceeded with the rest of the solution (see Figure 6 for an 

example); while other partially worked examples began the problem and then asked the 

learner to complete the remainder of the problem (see Figure 7 for an example). For the 

treatment groups the assignments were faded, meaning that for each type of problem the 

problems on the assignment gradually progressed from fully worked examples, to 

partially worked examples, to practice problems. Appendix B includes a list of all the 

mathematical problems used in the study; their classification as a fully worked example, a 

partially worked example, or a practice problem; and their alignment to the objectives of 

the unit. 

Table 4 
 
Distribution of fully worked examples, partially worked examples, and practice problems 
used in the study. 
 
 Group 1: 

Self-explanation 
Prompts 

Group 2: 
Instructional 
Explanations 

Group 3: 
Practice Problems 

(control) 
Number of fully 
worked examples 
 

47 47 0 

Number of partially 
worked examples 
 

30 30 0 

Number of practice 
problems 

69 69 146 
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Figure 6. Screenshot from a partially worked example. Notice this example 
asks the learner to find 𝑑𝑑𝑑𝑑/𝑑𝑑𝑑𝑑. This is the first step of the problem and the 
example will continue with the rest of the solution after learners complete 
this step. 
 
 

Figure 7. Screenshot from a partially worked example. Notice this worked 
example sets up the problem and then asks the learner to complete the 
remaining steps to finish the problem. 
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Instructional Design of Materials 

 The worked examples used in this experiment were designed using the Kemp 

Model (Morrison, Ross, Kalman, & Kemp, 2011). The Kemp Model was originally 

developed by Kemp (1985) and then later improved and redesigned by Kemp, Morrison, 

and Ross (1994). This study used the most current version of the Kemp Model as 

described by Morrison et al. (2011). As illustrated in Figure 8, the Kemp Model consists 

of nine design elements (indicated by the circles in the center of the figure) and eight 

processes that occur throughout the design (indicated in the two outer rings). 

 

Figure 8. The Kemp Model (Morrison et al., 2011, p. 12). The nine design elements 
are represented with circles in the center of the diagram and the two outer rings 
represent the eight ongoing processes. 
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The instructional design process was carried out beginning in June 2014 with 

analysis of the instructional problem and of the learners. The design and development of 

the worked examples was conducted between July and September 2014. In September 

and October 2014 the developed examples were tested during a piloting semester. Based 

on the results of the piloting semester, the examples were revised and finalized during 

November and December 2014 in order to be ready for implementation in the experiment 

in January 2015. The experiment was conducted in January and February 2015. 

Instructional problem. The problems and worked examples that were developed 

were intended to provide opportunities for calculus learners to practice applying new 

knowledge and skills. Traditionally, calculus students in face-to-face classes are given a 

series of practice problems after hearing an in-class lecture on a new topic (Sweller & 

Cooper, 1985). However, the practice problems then carry a very high cognitive load for 

many learners as they are asked to solve problems with little or no scaffolding. 

Additionally, students registering for university-level calculus courses are often under-

prepared (Pyzdrowski et al., 2013; Rasmussen et al., 2012). For these students, practice 

problems carry an even greater cognitive load (Kay & Kletskin, 2012). Learners often use 

their entire available cognitive load to figure out how to solve the problem and have few 

cognitive resources, or the motivation, to focus on why the technique works.  

In order to provide increased scaffolding for learners before they are given 

independent practice problems, this study compared two different types of worked 

examples to traditional problem solving. The first type of examples, worked examples 

with self-explanation prompts, provided learners with questions to consider that helped 
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them focus on the concepts behind problems and provided motivation for the learners to 

think about why processes work. However, there was concern that learners with low 

calculus readiness may not have the cognitive ability to adequately answer the questions 

posed in the self-explanation prompts. As such, worked examples with self-explanation 

prompts were compared to worked examples with instructional explanations. These 

examples also provided helpful scaffolding for the learners without the increased 

cognitive load required by self-explanation prompts.  

Learner characteristics. In order to determine demographic information for 

students who typically register for Calculus I, a historical sample of two previous sections 

of the course was analyzed (see Appendix C). The combined sample of 96 students who 

registered for Calculus I in the previous fall and spring semesters showed that 12.5% of 

the students were female and 87.5% of the students were male. The majority of the 

students were freshmen (40.6%) and sophomores (33.3%), although a few juniors 

(19.8%) and seniors (6.3%) also registered for the course. The majority of the students 

were majoring in STEM fields (science, technology, engineering, and math) (82.3%) with 

the most common major being engineering (49.0%). International students, for whom 

English was not their first language, comprised 10.42% of the class. 

In order to ensure that these statistics are consistent across semesters, the two 

courses comprising the sample were compared. Chi-square tests for homogeneity of 

populations were used to compare the two classes in four different categories: Gender, 

Class Standing, STEM/Non-STEM majors, and International students. Table 5 shows the 

results of the chi-squared tests. As can be seen in the table, none of the tests were 
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significant at the 𝛼𝛼 = .05 level of significance. This indicates that the two sections of the 

course had similar demographics. This provided evidence that the demographic 

information collected as part of the learner analysis gave a reasonable description of the 

sample that was later used in the experiment.  

 

Calculus I has a prerequisite of precalculus (or as an alternative students may take 

both college algebra and trigonometry). Some of the students have taken precalculus (or 

college algebra/trigonometry) in college while other students may have taken precalculus 

in high school. For example, during the piloting semester, 44% of the students had taken 

precalculus in high school; 51% had taken precalculus at the university where the study 

took place; and 5% had taken precalculus at another college or university. For some 

students, their experience with precalculus occurred in the prior one or two semesters, but 

Table 5 
 
Comparison of Spring and Fall sections of Calculus I. None of the P-values were 
significant at the 𝛼𝛼 = 0.05 level of significance. This indicates the two sections of the 
course have similar demographics. 
 
Category Spring  Fall  Chi-Square 𝒑𝒑-value 
Male 87.2% 87.8% 𝜒𝜒2(1) = 0.006 𝑝𝑝 = .938 
Female 12.8% 12.2%   
     
Freshman 29.8% 51% 𝜒𝜒2(3) = 5.116 𝑝𝑝 = .164 
Sophomore 42.6% 24.5%   
Junior 21.3% 18.4%   
Senior 6.4% 6.1%   
     
STEM Major 87.2% 77.6% 𝜒𝜒2(1) = 1.544 𝑝𝑝 = .214 
Non-STEM 12.8% 22.4%   
     
International 12.8% 8.2% 𝜒𝜒2(1) = 0.545 𝑝𝑝 = .461 
Non-international 87.2% 91.8%   
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for other students, their experience with precalculus could have been several years prior 

to registering for Calculus I. During the piloting semester, only 41% of the students had 

completed precalculus in the six months prior to the beginning of Calculus I; the mean 

number of months since the student had taken precalculus was 39 months. Based on 

information provided by the mathematics department about the learners in this course, 

many of the learners had taken another calculus course prior to taking Calculus I. Of 

those learners, many took calculus in high school, but did not earn college credit for it. 

Others failed calculus on their first attempt and were retaking the course 

Instructional objectives. The examples developed for this project covered one 

unit of the Calculus I course. The Calculus I course consists of five units: 1) Limits and 

Continuity, 2) Differentiation, 3) Applications of Differentiation, 4) Integration, and 5) 

Applications of Integration. The Mathematics Department sets the curriculum for the 

course and selected the topics to be included in the course. As such, changing the topics 

selected for inclusion in the course was not an option for this project. This project 

covered the second unit on differentiation. The unit is divided into four lessons each 

consisting of three sub-lessons. Several instructional objectives were identified for each 

of the sub-lessons. A complete list of the forty instructional objectives for the unit on 

differentiation can be found in Appendix D. 

The instructional objectives were revised and validity was verified through a 

survey of three subject matter experts. Although minor changes were made to the 

objectives based on the recommendation of the subject matter experts, all three subject 
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matter experts indicated that the objectives were appropriate for this unit. Complete 

survey results are given in Appendix E. 

 Task analysis. A task analysis was conducted to determine what tasks learners 

would need to complete in order to meet each of the objectives. For each objective, a 

series of tasks was identified and then each task was categorized as to knowledge type, 

difficulty, duration, and importance. The knowledge type was classified using three 

classifications of knowledge types: declarative, procedural, and structural (Jonassen, 

Tessmer, & Hannum, 1999). Declarative knowledge is defined as knowledge of facts; 

procedural knowledge is knowledge of processes required to perform a task; and 

structural knowledge is knowledge of concepts and how different concepts are related. 

The difficulty, duration, and importance were each rated as low, medium, or high. These 

somewhat subjective classifications were initially assigned by the instructional designer 

and then validated by subject matter experts. 

The task analysis was revised and face validity was verified through a survey of 

subject matter experts. With a few minor exceptions, the subject matter experts agreed 

that each task was required, that no tasks were missing, and that the tasks were 

appropriately categorized. Minor changes were made to the tasks in order to address the 

suggestions made by the subject matter experts. The complete, final version of the task 

analysis is given in Appendix F  

Content sequencing. Although the topics to be covered in the unit on 

differentiation were mandated by the mathematics department, the researcher determined 

the sequencing of the content. The content in the unit is very hierarchical and concepts 
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build one upon the other (see the learning hierarchy in Appendix G). Based on this 

learning hierarchy, a concept-related sequencing scheme was selected for this project. 

The content was divided into four lessons that each covered one of four overarching 

themes of the unit: 1) the concept of the derivative, 2) differentiation rules, 3) rates of 

change, and 4) differentiation of inverses. Each lesson was further divided into three sub-

lessons. The practice problems were intended to provide opportunities for the learners to 

practice after the topic was covered in class. Originally, each sub-lesson was expected  

 

Table 6 
 
Content Sequencing of the Differentiation Unit 
   

Lesson #: Lesson Content # of 
Class 

Periods 

# of 
Examples
/Practice 
Problems 

Lesson 1: The Concept of the Derivative 
 Lesson 1A:  Tangent Lines 1 13 
 Lesson 1B: Derivatives at a Point 1 10 
 Lesson 1C: The Derivative as a Function 

 
1 12 

Lesson 2: Differentiation Rules   
 Lesson 2A: Basic Rules 1.5 12 
 Lesson 2B: Trigonometric Rules 1.5 15 
 Lesson 2C: The Chain Rule 

 
1 12 

Lesson 3: Rates of Change 
 Lesson 3A: Applications 1 11 
 Lesson 3B: Implicit Differentiation 1.5 15 
 Lesson 3C: Related Rates 

 
1.5 12 

Lesson 4: Derivatives of Inverses 
 Lesson 4A: Exponential and Logarithmic Functions 1 11 
 Lesson 4B: Logarithmic Differentiation 1.5 12 
 Lesson 4C: Inverse Trig Functions 1.5 12 
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to be covered in one class period. However, based on the results of a pilot of the 

sequencing scheme and practice problems during the Fall 2014 semester, it was 

determined that more time was needed to adequately cover some topics. As such, the 

schedule was adjusted. As shown in Table 6, fifteen class periods were needed to cover 

the unit. Because the Calculus I course met five days per week, this comprised three 

weeks of instruction. 

Designing the message. The design of the worked examples was based on recent 

research on creating effective worked examples. Learner controls were provided within 

the examples that allowed the learner to pause, go forward, and go backward. A progress 

bar was also included. The examples were divided into short segments and the video 

automatically paused after each step of the worked example (Wong et al., 2012). The 

examples utilized equation animations (where long or complicated mathematical 

equations appeared in stages in sync with the audio rather than all at once) and animated 

graphs (Scheiter et al., 2009; Wong et al., 2012). The examples were faded in that they 

progressed from fully worked examples, to partially worked examples, to practice 

problems (Schwonke et al., 2011). 

The calculus problems to be used in the worked examples were chosen carefully 

to align with the objectives and the tasks given in the task analysis. In order to ensure that 

the user interface was easy to use, four prototype examples were developed and reviewed 

by subject matter experts and students. Based on their feedback, a Worked Example 

Wireframe was developed that detailed all formatting and interface features to be used in 

the examples (see Appendix H). 

 

 



 

 

59 

 Development of the instruction. The examples were developed using a 

combination of PowerPoint slides, Adobe Captivate, a Livescribe Smartpen, and screen 

captures of animations and demos created with Mathematica. The library of examples can 

be found at this link: www.dromrell.com/WorkedExampleLibrary/index.htm 

 Evaluation instruments. The differentiation post-test was used to determine 

whether or not the learners met the objectives of the course. More specific details on the 

post-test are given in the instrumentation section of this chapter. 

 Eight ongoing processes. The Kemp et al. Model describes eight ongoing 

processes that should be done throughout a design project. These eight processes include 

formative, summative, and confirmative evaluation; revision; planning; project 

management; support services; and implementation (Morrison et al., 2011).  

Evaluation of the effectiveness of the worked examples was conducted in several 

different ways. Initially, prior to development, four prototype examples were developed 

and reviewed by four subject matter experts and six students. Based on their feedback, 

the examples were revised and prepared for development (see Appendix I for the 

complete survey results). Some of the major revisions made based on this survey were: 1) 

improved learner controls, including adding a pause button and a progress bar; 2) a 

change to the way videos were imported to the Captivate file in order to improve 

navigation; 3) improved audio calibration to ensure the volume was consistent throughout 

the example; 4) increased font size throughout the examples; and 5) revision of LMS 

assignment settings.  
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Evaluation of the examples continued after development as the examples were 

used during the piloting semester in Fall 2014. Based on the results of the pilot and 

feedback from learners involved in the pilot, further revisions were made to the examples 

prior to their implementation in the experiment. In particular, changes were made to the 

method users used to report their answers to the practice problems and the segmenting of 

the examples was refined to reduce the number of times the example paused during 

viewing. 

Support services during the development of the examples for the project were 

provided by the Faculty Technology Center and by employees on the University 

Instructional Development Team. 

Instrumentation 

Readiness assessment. The initial skills test selected for use in the study was the 

Calculus Readiness Test developed by the Mathematics Diagnostic Testing Project 

(MDTP). The MDTP tests were created by schools in the University of California system 

and were used by permission for this study (Mathematics Diagnostic Testing Project 

[MDTP], n.d.). The purpose of the MDTP Calculus Readiness Test is to assess how well 

students are prepared for a first-semester calculus course by assessing learners’ 

understanding of prerequisite topics (see Table 7 for a list of topics covered). The test 

contains 40 multiple-choice questions and was given in a proctored setting during the 

first week of the course.  

The first version of the MDTP test was created in 1986 and numerous studies 

have been done to establish the reliability and validity of the test. The MDTP Manual  
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(MDTP, n.d.) gives numerous references to independent studies that have been conducted 

concerning the validity and reliability of the MDPT Calculus Readiness Test. In 

particular, the test has been found to have face validity, content validity (in that it 

accurately assesses the topics necessary for calculus), and predictive validity (in that it is 

a good predictor of future success in calculus). Validity coefficients were reported for 

eighteen different studies of predictive validity conducted at various universities in 

California (MDTP, n.d.). The highest correlation reported was .61 and was reported 

based on a sample of 459 students at UCLA. The lowest correlation reported was .30 and 

was based on a sample of 143 students at Sacramento State. Most of the reported 

correlations (11 out of 18) were between .40 and .61. These values indicate that the 

assessment has fair predictive validity. The reliability of the assessment was reported 

based on eleven different studies (MDTP, n.d.). Reliability was measured using the 

Kuder-Richardson 20 (KR20) reliability coefficients. The KR20 values ranged from .76 

Table 7 
 
Topics included on MDTP Calculus Readiness Test (MDTP, n.d.) 
 
Topic # of Questions 

Rational Expressions and their Graphs 5 

Exponents and Radicals 4 

Linear Equations and Inequalities; Absolute values and their graphs 8 

Polynomials and Polynomial Functions 5 

Functions 5 

Trigonometry and Geometry 7 

Logarithmic and Exponential Functions 6 

 

 



 

 

62 

to .87, with all but one of the studies having a value above .84. Because these values are 

all close to 1.00, they indicate the assessment is reliable. 

Mental effort ratings. Learners reported the mental effort required to complete 

problems both while practicing on their homework and while taking the test. Mental 

effort was measured using Paas’ (1992) Mental Effort Measurement Scale (PMEMS). As 

noted in Chapter II, PMEMS is widely used, has been found to be reliable and valid, and 

is sensitive to small changes in mental effort. Paas et al. (1994) claimed the measurement 

scale was reliable based on two different studies where the values of Chronbach 𝛼𝛼 were 

found to be .90 and .82, respectively. The same two studies were also used to establish 

the sensitivity of the rating scale. Using an ANOVA test to compare the mental effort 

rating scale of two groups with known differences in mental effort, Paas et al. (1994) 

found there was a statistically significant difference in both the first, 𝐹𝐹(2, 39) = 9.14,

𝑝𝑝 < .05, and second, 𝐹𝐹(1, 56) = 6.5, 𝑝𝑝 < .025, studies. 

In this experiment, the mental effort ratings were collected after each learning 

task (e.g. practice problem or worked example). Additionally, the mental effort rating 

was collected after each exam question on the post-test. Once students (in all three 

experimental groups) completed a learning task they were asked to rate the mental effort 

involved on a scale of 1 – 9 with 1 being very, very low effort, and 9 being very, very 

high effort. The decision to ask learners to rate their mental effort after every learning 

task was based on the results of a study by Van Gog et al. (2012). They found that when, 

and how often, the measurements of mental effort were taken had an effect on the results 

of a study and that it was preferable to collect measurements after each learning task.  
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 Performance assessments. As detailed by Van Gog and Paas (2008), 

performance measurements taken during the learning phase of instruction cannot be 

considered predictive of the final learning outcomes of the instruction. Rather, in order to 

reliably measure performance, a final assessment must be given at the completion of the 

instruction. Based on this recommendation, performance during the learning phase was 

not considered during the analysis of the data in this study. Rather, pre- and post-tests 

were administered at the beginning and end of the unit. A list of questions for each of 

these performance assessments, as well as their alignment to the instructional objectives, 

can be found in Appendix J. The pre- and post-test were very similar and consisted 

mostly of similar problems with different numbers. The purpose of the pre-test was to 

confirm that the three treatments groups had similar levels of knowledge about 

differentiation at the beginning of the treatment. Including the pre-test score as a 

covariate in the data analysis controlled for variation in prior knowledge. The post-test 

was given in order to determine student performance and to assess whether or not the 

learners have met the objectives for the unit.  

Because these assessment instruments were designed specifically for this study, 

the reliability and validity of the assessment needed to be established. As explained by 

Worthen, White, Fan, and Sudweeks (1999), establishing content validity is a two-part 

process. First, the assessment was systematically designed by the researcher to cover each 

learning objective of the unit. See Appendix J for a list of the assessment questions and 

their alignment to the learning objectives. Second, three subject matter experts reviewed 

the assessments and based on their suggestions minor changes were made to the 
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assessment. All three subject matter experts agreed that the assessment was appropriate 

for determining whether or not the learners had met the objectives.  

The piloting semester of the experiment was used to help establish the reliability 

of the assessment. The assessment was administered to 39 students during the piloting 

semester. A rubric was developed to use with the grading (see Appendix K). A teaching 

assistant who was trained on the use of the rubric graded the exams and the exams were 

also graded by the researcher. The correlation between scores assigned by the teaching 

assistant and the scores assigned by the researcher was computed to be 𝑟𝑟 = .97 and 

indicates a high level of interrater reliability. As a measure of the internal consistency 

reliability of the tests, Cronbach’s alpha was computed using SPSS and found to be 𝛼𝛼 =

.87. This value of 𝛼𝛼 is indicative of an instrument with relatively high internal 

consistency reliability. 

 Procedures 

 Table 8 provides an overview of the four phases of the study. On the fifth day of 

class, the instructor described the study to the students and invited them to complete an 

informed consent form. Students who declined to participate in the study were assigned 

to the control group, but none of their data was included in the data analysis.  

During the first week of the semester, the MDTP readiness test was administered 

in order to determine the calculus readiness of learners. The top third of the students were 

classified as having high readiness, the middle third with medium readiness, and the 

bottom third as having low readiness. Students were randomly assigned to experimental 

groups using the alternate ranks method as described by Myers, Well, and Lorch (2010). 
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All random assignments were done using the random number generator in Excel. Using 

the alternate ranks method, students were ranked based on their score on the readiness 

test. Ties on the readiness test were broken using a random ranking of students with the 

same score. Then, the top three students were randomly assigned to the three 

experimental groups. Then the next three students in the readiness ranking were 

randomly assigned to the three experimental groups, and so on. This continued until all 

students were assigned to an experimental group. This procedure for assigning students to 

experimental groups helped ensure that students with very high readiness or very low 

readiness were equally distributed among the three groups (Myers et al., 2010)  

 
Table 8 
 
Summary of Procedures 
 
Phase Description Timeframe 
Preliminary 
Procedures 

• Distribute and Collect Consent Form • Fifth Day of Class 
 
 

Initial Assessment 
Phase 
 

• Administer MDTP - Initial skills 
readiness assessment 

• Randomly assign participants to 
experimental groups, by readiness 
level. 

• Administer Differentiation Pre-test in 
the testing center 
 

• First week of class 
• After the learners have 

taken the exam on the 
first unit in the course. 

• During week 2 of the 
calculus course 
 

Learning Phase • Students complete homework 
assignments that correspond to their 
assigned treatment group. Mental 
effort is assessed on each problem. 
 

• Weeks 4-6 of calculus 
course (see schedule in 
Table 6) 

 

Testing Phase • Students take Differentiation Post-test 
in the testing center. Mental effort is 
assessed on each problem. 

• At the end of week 6 of 
calculus course 
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 During the second week of the course, the students took a Differentiation Pre-test 

in order to determine their prior knowledge of differentiation. The results of the pre-test 

were used to verify that the treatments groups each had approximately the same level of 

prior knowledge regarding differentiation. 

 The learning phase of the study lasted approximately three weeks (see sequence in 

Table 6). During that time, the students in each group completed practice assignments for 

each lesson. The practice assignments were delivered online through the LMS. Although 

all groups had the same problems on each of the practice assignments, the format of the 

assignment problem was different for each group. Approximately half of the problems for 

learners in Groups #1 and #2 were worked examples with the remaining problems being 

practice problems. The learners in Group #1 viewed worked examples with self-

explanation prompts while the learners in Group #2 viewed worked examples with 

instructional explanations. Group #3 (the control group) was given only practice 

problems and did not view any worked examples. Students in all experimental groups 

were also asked to rate the mental effort required for each problem on each homework 

assignment; this rating was inserted into the homework via a multiple choice question at 

the end of each practice problem in the LMS. 

 The final phase of the study was the testing phase. All learners took the same 

Differentiation Post-test to assess their knowledge. The paper/pencil post-test was 

administered in a non-timed, proctored setting in the university’s testing center. Using a 

rubric, each test item was scored on a scale of 0 (no answer) to 4 (correct concept 

selected with correct answer) by the same teaching assistant who graded the pre-test. In 
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order to determine the mental effort during the testing phase, each problem on the exam 

asked the learner to rate the mental effort required for that question.  

Data Analysis 

 After the data were collected they were analyzed in order to answer the six 

research questions posed by this study. Mental Effort was measured during both the 

learning and testing phases of the experiment. The mean mental effort during learning 

(𝐸𝐸𝐿𝐿) was found by averaging the 146 mental effort ratings reported by each learner 

during the learning phase and the mean mental effort during testing (𝐸𝐸𝑇𝑇) was found by 

averaging the 20 mental effort ratings reported by each learner on the post-test. 

Additionally, based on the result of the post-test, a performance score (𝑃𝑃) was computed 

for each learner.  

In order to compute the multidimensional instructional efficiency (MIE) measure 

for each treatment, the grand mean and standard deviation were computed for student 

performance, as measured by post-tests scores, and each type of mental effort using data 

from the combined sample of all experimental subjects. Using this grand mean and 

standard deviation, the z-score for each subject for student performance (𝑧𝑧𝑃𝑃), mental 

effort during the learning phase (𝑧𝑧𝐸𝐸𝐸𝐸), and mental effort during the testing phase (𝑧𝑧𝐸𝐸𝐸𝐸) 

were each computed. The -score values were used to compute the MIE measure for 

each student using the formula: 𝑀𝑀𝑀𝑀𝑀𝑀 = (𝑧𝑧𝑃𝑃 − 𝑧𝑧𝐸𝐸𝐸𝐸 − 𝑧𝑧𝐸𝐸𝐸𝐸)/√3 (Tuovinen & Paas, 2004). 

The individual MIE scores for students in each group were then averaged to find an 

average MIE score for each of the three experimental treatments. An MIE score of zero 

corresponds to neutral efficiency where mental effort is balanced with performance. A 
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positive MIE value would indicate that the mental effort is lower relative to performance, 

whereas a negative MIE value would indicate the mental effort was high relative to 

performance. Positive MIE values were ideal in this context.  

As described in Chapter IV, Research Questions #1, 2, and 3 were answered using 

a two-way ANCOVA. The two-way ANCOVA looked at the multidimensional 

instructional efficiency and determined whether there was a main effect due to readiness, 

a main effect due to the type of practice, and whether or not there was an interaction 

effect for readiness and type of practice. Pre-test scores and practice completion rates 

were used as covariates in the analysis. Similarly, research questions #4, 5, and 6 were 

also answered using a two-way ANCOVA. However, this time the dependent variable 

was student performance. Again, the ANCOVA test determined if there was a main effect 

due to readiness, a main effect due to the type of practice, and whether or not there was 

an interaction effect between readiness and type of practice, using pre-test scores and 

practice completion rates as covariates. For all research questions, a planned Dunn-

Bonferroni analysis was conducted to compare the treatment means for the main effects 

that were found to be significant. If an interaction effect was found to be statistically 

significant, then simple main effects analysis were employed prior to mean comparisons. 

Simple main effects analyses, where needed, were followed by post hoc mean 

comparisons using the Tukey method. All follow-up statistical tests were conducted at a 

family-wise error rate of FWE = .05. 
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CHAPTER IV 

Results 

 This study was designed to determine the efficiency and effectiveness of worked 

examples as a tool for providing calculus students with opportunities to practice. In 

particular, the study compared worked examples with self-explanation prompts to worked 

examples with instructional explanations, and examined whether using a combination of 

worked examples and practice problems was more efficient and effective than problem 

solving alone. Additionally, the study examined whether the readiness of the learner 

impacted the efficiency and/or effectiveness of worked examples. 

 There were six research questions included in the study. The first three questions 

investigated the efficiency of the worked examples as measured using MIE. 

• Research Question #1: Is there a significant main effect of type of practice 

(worked examples with self-explanation prompts, worked examples with 

instructional explanations, or traditional homework) on multidimensional 

instructional efficiency (MIE) as measured using the MIE formula developed by 

Tuovinen and Paas (2004)?  

• Research Question #2: Is there a significant main effect of calculus readiness (low 

readiness, medium readiness, or high readiness) on MIE as measured using the 

MIE formula developed by Tuovinen and Paas (2004)? 

• Research Question #3: Is there an interaction effect between calculus readiness 

and type of practice on MIE? 
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Questions four through six explore similar questions about the effectiveness of the 

worked examples, as measured by post-test scores. 

• Research Question #4: Is there a significant main effect of type of practice 

(worked examples with self-explanation prompts, worked examples with 

instructional explanations, or traditional homework) on student performance as 

measured by posttest scores? 

• Research Question #5: Is there a significant main effect of calculus readiness (low 

readiness, medium readiness, or high readiness) on student performance, as 

measured by posttest scores?  

• Research Question #6: Is there an interaction between calculus readiness and type 

of practice on student performance? 

This chapter will describe the results of the study that was conducted to answer these 

research questions. In particular, the discussion will include a description of the sample, a 

summary of the results of each assessment included in the experiment, and the findings of 

the data analysis used to answer the research questions. 

Description of the Sample 

 The sample was made up of students registered for two sections of Calculus I at a 

large private university in the Northwestern United States during January and February 

2015. One of the sections had 51 registered students and the other section had 52, giving 

a total possible sample of 103 students. Of those students, 11 declined to participate in 

the study and one student dropped the course during the second week of the experiment. 
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One additional student was removed from the sample because of her extensive 

prior knowledge of calculus concepts and theory. As a senior majoring in Applied 

Mathematics, she had taken most of the math courses required for a bachelor’s degree in 

math, including real analysis (advanced calculus). She was retaking calculus to improve 

her grade, but as demonstrated by a pre-test score that was 30 percent higher than any 

other student in the class, her prior knowledge of mathematics was very atypical for a 

first semester calculus student. Because the student really did not belong in the 

population of Calculus I students, the decision was made to remove her information from 

the data set (Mitchell & Jolley, 2009). 

After the learners had completed the unit, two more students were removed from 

the sample. The first student was removed because he did not take the pre-test and only 

completed 39% of the assigned homework problems in the unit. For the entire sample, the 

homework completion rate was 95% (𝑆𝑆𝑆𝑆 = 8%) and his homework completion rate was 

18% lower than any other student in the sample. The second student was removed from 

the sample because the testing center reported that the student was found to be cheating 

on the post-test. After removing these students from the study, the final sample size was 

88 learners. This is larger than the sample size of 83 required by the power calculations 

presented in Chapter III (see page 46).  

Figure 9 provides a visual representation of the alternate ranks randomization 

technique that was used in this experiment. The students were ranked based on their score 

on the readiness exam. Any ties were randomly broken. The students were then assigned 

a ranking number from #1 to #92. The numbers in the boxes on the figure represent these 
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ratings. The students were then grouped in blocks of three and the students within each 

block were randomly assigned to one of the three treatment groups, as shown in the 

figure. The blocks were then divided into thirds to classify them as high, medium, and 

low readiness. 
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Figure 9. Diagram showing the alternate ranks randomization scheme. The number in each box 
represents the rank of the learner on the MDTP Calculus Readiness Assessment. The color of the box 
represents the assignment to treatment groups: Group #1 is purple, Group #2 is blue, and Group #3 is 
orange. The red boxes represent learners who were removed from the sample after random assignment 
to treatment groups. 

 

The students who were removed from the sample after assignment to treatment 

groups are shown in red in Figure 9. Two of the removed students had high readiness, 

one had medium readiness, and one had low readiness. Two of the students were assigned 

to Group 1 and the other two students were from Group 3. Because the students who 

were removed from the sample were spread across different levels of readiness and 

different types of practice, removing these students from the sample should not introduce 

much bias. There is a little cause for concern because the 3rd and 4th ranked students were 

removed from the sample. Since both of these students had high readiness this may 
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introduce some bias into the results. Fortunately, the two students were from different 

experimental groups, which somewhat mitigates this concern.  

Table 9 provides demographic information for the sample of 88 students included 

in the final data analysis. As can be seen in the table, most of the students were male, 

freshmen or sophomores, and majoring in a STEM major. Engineering was the most 

common major with about half of the students (48%) majoring in civil, mechanical, 

electrical, or computer engineering. 

During the instructional design process, a learner analysis was completed and 

similar demographic information was collected for students in prior semesters of 

Calculus I (see Table 5). The data shown here in Table 9 is consistent with the 

information collected during the learner analysis. 

 

Table 9 
 
Demographic information for the sample of 88 students included in the data analysis 
 
Category Number Percentage 
Male 69 78% 
Female 19 22% 
   
Freshman 31 35% 
Sophomore 28 32% 
Junior 21 24% 
Senior 8 9% 
   
STEM Major 70 80% 
Non-STEM 18 20% 
   
International 2 2% 
Non-international 86 98% 
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 Calculus I has a prerequisite of precalculus (or college algebra and trigonometry). 

According to information provided by the learners on a demographic survey, 65% of the 

learners satisfied the prerequisite by taking precalculus at the university where the study 

was conducted. The remaining students satisfied the prerequisite by taking precalculus at 

another college or university (9%), by taking precalculus in high school (22%), or by 

learning the prerequisite material and passing the calculus placement exam that allowed 

them to register for calculus without formally completing the prerequisite (4%). 

 Although many of the learners were taking calculus for the first time (61%), there 

were a significant number of students who had already taken calculus (39%). Based on 

student responses to a survey, the most commonly reported reasons learners were 

retaking calculus were to improve a low or failing grade (33%), to review the concepts 

before proceeding to Calculus II (33%), because their first calculus course did not 

transfer or satisfy their major requirements (18%), or because they did not pass the AP 

Calculus Exam (12%).  

Assessment Results 

 Several assessments were included in this experiment. A readiness test was given 

in order to determine the calculus readiness of the learners, a pre-test was given in order 

to determine the learners’ prior knowledge of the calculus topic of differentiation, mental 

effort ratings were collected, and a post-test was given in order to assess the performance 

of the learners. The mental effort ratings and post-test scores were then used to compute 

the multidimensional instructional efficiency (MIE) measure. The assessment results for 

each of these instruments are discussed below.  
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 Readiness test results. The MDTP Calculus Readiness Exam was given during 

the first week of the semester. The test was administered online, in a proctored setting, in 

the University Testing Center. In order to accommodate all students on the computers 

available in the Testing Center, the students were able to take the exam at their 

convenience over a three-day period during the first week of classes.  

 Table 10 shows the results of the readiness test for the total sample of 88 students. 

Based on the results of the readiness test, learners were assigned to an experimental 

group using an alternate ranks randomization technique (Myers, Well, & Lorch, 2010). 

This technique ensured that learners in the three experimental groups (worked examples 

with self-explanation prompts, worked examples with instructional explanations, and the 

control group) had similar levels of readiness. This was confirmed by the use of a one-

way ANOVA test that showed there was not a significant difference in readiness test 

results among the three experimental groups, 𝐹𝐹(2, 85) = 0.04, 𝑝𝑝 = .96,  partial 𝜂𝜂2 =

.001.  

Table 10 
 
Summary of results on the MDTP Calculus Readiness Assessment 
 
Group 𝑵𝑵 Mean 𝑺𝑺𝑺𝑺 
Combined Sample 88 54.60 14.48 
 
Type of Practice: 

   

   Self-Explanation Prompts 29 54.91 14.21 
   Instructional Explanations 30 54.92 15.75 
   Control 29 53.97 13.86 
 
Level of Readiness: 

   

   Low Readiness 29 38.45 7.27 
   Medium Readiness 31 55.24 3.89 
   High Readiness 28 70.63 7.57 
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 The readiness test results were also used to divide the sample into three groups 

based on their readiness. As shown in Figure 9, blocks of learners were placed in a low 

readiness, medium readiness, or high readiness group based on their readiness test score. 

The top 10 blocks of learners were classified as high readiness, the middle 11 blocks 

were classified as low readiness, and the bottom 10 blocks were classifies as low 

readiness. A one-way ANOVA test verified that the three readiness groups were 

significantly different, 𝐹𝐹(2, 85) = 180.37, 𝑝𝑝 < .001, partial 𝜂𝜂2 = .81. The Tukey HSD 

test found that the low readiness group was significantly different from the medium (𝑝𝑝 <

.001) and high (𝑝𝑝 < .001) groups. The medium readiness group was also found to be 

significantly different from the high readiness group (𝑝𝑝 < .001). This confirmed that the 

three readiness groups represented three distinct levels of readiness 

Pre- and post-test results. The pre- and post-tests consisted of similar questions 

and were intended to assess the learners’ knowledge of the calculus topic of 

differentiation. The pre-test is different from the readiness test in that the readiness test 

was intended to assess prerequisite knowledge from algebra and trigonometry, while the 

pre-test was intended to assess calculus knowledge. The questions included on the pre- 

and post-tests can be found in Appendix J. Both tests were given in a proctored setting in 

the University’s Testing Center. The pre-test was given during the second week of the 

class, prior to beginning the unit on differentiation. The post-test was given at the end of 

the sixth week of the course. The average lengths of time students spent taking the pre- 

and post-tests were 1 hour 35 minutes and 1 hour 51 minutes, respectively. 
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 Table 11 shows the results of the pre- and post-test for the combined sample of 88 

students. The scores are also broken down into subgroups for the three types of practice 

and the three levels of readiness. 

 

 Pre-test Results. A two-way ANOVA was used to investigate the prior 

knowledge of the calculus topic of differentiation for each experimental group. Table 12 

gives the results of the ANOVA test. As can be seen in the table, there was not a 

significant difference in pre-test scores among the three practice groups. This verified 

that the alternate ranks randomization technique was effective in creating groups with 

similar levels of prior knowledge before receiving the treatment. There was also not a 

significant interaction effect.  

As can also be seen in Table 12, there was a significant difference in pre-test 

scores among the three readiness groups. A follow-up analysis using Tukey’s HSD Post-

Table 11 
 
Summary of pre- and post-test scores 
 
   Pre-test  Post-test 
Group 𝑵𝑵   Mean 𝑺𝑺𝑺𝑺  Mean 𝑺𝑺𝑺𝑺 
Combined Sample 88  9.84 12.39  67.51 13.53 
 
Type of Practice: 

       

   Self Explanation Prompts 29  13.08 15.60  67.11 15.23 
   Instructional Explanations 30  6.76 9.10  68.29 11.80 
   Control 29  9.79 11.26  67.51 13.86 
 
Level of Readiness: 

       

   Low Readiness 29  5.93 9.36  61.55 14.41 
   Medium Readiness 31  9.54 9.43  68.02 10.95 
   High Readiness 28  14.23 16.38  73.13 13.06 
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hoc test showed that there was a significant difference in readiness test scores between 

the high and low readiness groups (𝑝𝑝 = .030), but that there was not a significant 

difference between low and medium (𝑝𝑝 = .485) or medium and high (𝑝𝑝 = .301) groups. 

This result indicates that learners with particularly low readiness were more likely to not 

do as well on the pre-test and learners with particularly high readiness were more likely 

to do well on the pre-test. This result supports the conclusion that learners with low 

algebra readiness are likely to not have had prior calculus experience and learners who 

have had exposure to calculus topics are likely to have stronger algebra skills. 

 

Table 12 
 
Two-way ANOVA for pre-test scores showing that there is not a significant difference 
in pre-test scores based on type of practice, but there is a significant different in pre-
test scores based on level of readiness. 
 
Dependent Variable:  Pre-test Score  
Source 𝑺𝑺𝑺𝑺 𝒅𝒅𝒅𝒅 𝑴𝑴𝑴𝑴 𝑭𝑭 𝒑𝒑 Partial 𝜼𝜼𝟐𝟐 
Intercept 8612.43 1 8612.43 58.90 .000 .43 
Type of Practice 563.15 2 281.58 1.93 .153 .05 
Level of Readiness 1008.727 2 504.36 3.45 .037 .08 
Practice * Readiness 222.61 4 55.65 0.38 .822 .02 
Error 11550.70 79 146.21    
Total 21879.33 88     
  

Post-test results. The post-test scores are significantly higher than the pre-test 

scores, t(87) = −36.61, p < .001. This demonstrates that learners who participated in 

the unit had a significant improvement in knowledge about the calculus topic of 

differentiation. The boxplots in Figure 10 give a visual representation of the post-test 
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results for each experimental group. Notice that observation 85 is an extreme outlier. This 

student had high calculus readiness but did not do well on the post-test. In order to 

determine the effect of this outlier on the data analysis, all calculations were computed 

both with and without the outlier present in the data. Removing this outlier did not have 

any effect on the significance of any variables. So, the outlier was left in the sample for 

the final data analysis. 

 

Figure 10. Side-by-side boxplots comparing post-test scores for each type of practice and 
each level of readiness. 
 

 

 Mental effort rating results. The learners rated their mental effort during two 

different phases of the experiment: during the learning phase and during the testing 

phase. These mental effort ratings were collected using the Paas Mental Effort 
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Measurement Scale (PMEMS). The PMEMS is a 9-point Likert scale with effort ratings 

ranging from 1 (very, very low mental effort) to 9 (very, very high mental effort). During 

the three-week learning phase of the experiment, the learners were asked to rate the 

mental effort required for each homework problem they completed (both worked 

examples and practice problems). The 146 mental effort ratings reported by each learner 

were then averaged to find the mean mental effort during learning. The PMEMS was also 

used to collect mental effort ratings on the post-test. The post-test contained 20 questions 

and the mean mental effort rating during testing was computed by averaging the 20 

ratings provided by each learner. Table 13 summarizes the mean mental effort ratings for  

the learning phase and for the testing phase for each group and for the combined sample. 

  

Table 13 
 
Summary of mean mental effort ratings during the learning and testing phases of the 
experiment. 
 
   Learning Phase  Testing Phase 
Group 𝑵𝑵   Mean 𝑺𝑺𝑺𝑺  Mean 𝑺𝑺𝑺𝑺 
Combined Sample 88  5.05 1.10  5.40 1.22 
 
Type of Practice: 

       

   Self Explanation Prompts 29  5.11 0.91  5.46 1.10 
   Instructional Explanations 30  4.84 1.38  5.37 1.46 
   Control 29  5.20 0.94  5.38 1.11 
 
Level of Readiness: 

       

   Low Readiness 29  5.20 1.14  5.77 1.17 
   Medium Readiness 31  5.50 0.64  5.63 0.71 
   High Readiness 28  4.39 1.17  4.78 1.49 
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As can be seen in the scatterplots shown in Figure 11, there was a high correlation 

(𝑟𝑟 = .85) between mental effort ratings reported by learners during the learning phase 

and those reported during the testing phase. A regression analysis showed that there was 

a significant linear relationship between the score reported during the two phases of the 

experiment, 𝑡𝑡(86) = 14.88, 𝑝𝑝 < .001. The positive correlation indicates that learners 

who reported high (or low) mental efforts on the homework tended to also report high (or 

low) mental effort on the exam. 

 Notice that the grouped scatterplot on the left in Figure 11 shows that the lowest 

mental effort ratings were reported by learners with high readiness for calculus, while the 

highest mental effort ratings were reported by learners with low readiness for calculus. 

Learners with medium readiness for calculus tended to report more average mental effort 

scores. Notice that these types of trends are not apparent when the scatterplot is grouped 

by type of practice, as shown in the scatterplot on the right. 

  

Figure 11. Grouped scatterplots comparing the mean mental effort during learning to the mean 
mental effort during testing. The plot on the right classifies each point by type of practice and the 
plot on the left classifies each point by level of readiness. 
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Homework completion rates. When considering mental effort ratings, it is 

important to recognize that not all students completed all of the problems. Although 

students had opportunities to complete 146 homework problems (including worked 

examples and/or practice problems) and were asked to report the mental effort rating 146 

times, there were some students who did not complete all of the problems. In order to 

consider this in the data analysis, the homework completion rate was included as a 

covariate when the research questions were answered. Table 14 provides a summary of 

the homework completion rates for each group and for the combined sample. 

Table 14 
 
Summary of homework completion rates 
 
Group 𝑵𝑵 Mean 𝑺𝑺𝑺𝑺 
Combined Sample 88 95.40% 8.01% 
 
Type of Practice: 

   

   Self Explanation Prompts 29 93.81% 9.96% 
   Instructional Explanations 30 97.24% 3.70% 
   Control 29 95.09% 8.92% 
 
Level of Readiness: 

   

   Low Readiness 29 95.68% 5.49% 
   Medium Readiness 31 94.21% 10.90% 
   High Readiness 28 96.43% 6.37% 
 

 Notice that the mean homework completion rate of 95.40% was relatively high. A 

two-way ANOVA was used to determine whether there was difference in the completion 

rates among different treatment groups. The analysis found no difference in homework 

completion rates based on type of practice, 𝐹𝐹(2, 79) = 1.32, 𝑝𝑝 = .27, partial 𝜂𝜂2 =

.032), or level of readiness, 𝐹𝐹(2, 79) = 0.53, 𝑝𝑝 = .59, partial η2 = .013. There was 
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also no interaction effect between type of practice and readiness, 𝐹𝐹(4, 79) = 0.66, 𝑝𝑝 =

.62, partial 𝜂𝜂2 = .032.  

MIE calculations and results. The multidimensional instructional efficiency 

(MIE) measure, as described by Tuovinen and Paas (2004), was computed using 

standardized scores for mental effort during learning (𝑧𝑧𝐸𝐸𝐸𝐸), mental effort during testing 

(𝑧𝑧𝐸𝐸𝐸𝐸), and post-test scores (𝑧𝑧𝑃𝑃) with the formula 𝑀𝑀𝑀𝑀𝑀𝑀 = (𝑧𝑧𝑃𝑃 − 𝑧𝑧𝐸𝐸𝐸𝐸 − 𝑧𝑧𝐸𝐸𝐸𝐸)/√3. A 

positive value for the MIE indicates that the performance was high relative to mental 

effort; a negative value indicates the performance was low relative to effort. Table 15 

provides a summary of the MIE measure for the combined sample as well as each group.  

 Figure 12 provides a visual summary of the MIE measurements by type of 

practice and by level of readiness. Notice that there were a few outliers in the MIE data. 

The most concerning outlier is observation #23. The data for this student show that she 

had the lowest score on the post-test and had the third highest mean mental effort during 

learning and the highest mean mental effort during testing. Because her performance was 

extremely low and her mental effort was extremely high, this led to her having a 

particularly low MIE measurement. In order to examine the effect of this outlier on the 

data analysis, all computations involving the MIE were completed both with and without 

the outlier present. Removing the outlier did not affect the significance of any of the 

variables except for the homework completion rate covariate. When evaluating the 

impact of homework completion rates it will be important to consider this outlier. 
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Table 15 
 
Summary of MIE measurements 
 
Group 𝑵𝑵 Mean 𝑺𝑺𝑺𝑺 
Combined Sample 88 0 1.42 
 
Type of Practice: 

   

   Self Explanation Prompts 29 -0.08 1.31 
   Instructional Explanations 30 0.16 1.57 
   Control 29 -0.09 1.40 
 
Level of Readiness: 

   

   Low Readiness 29 -0.51 1.40 
   Medium Readiness 31 -0.32 0.95 
   High Readiness 28 0.88 1.50 
 
 
 

   

 

 

Figure 12. Side-by-side boxplots comparing MIE for each type of practice and each level 
of readiness. 
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Results for Research Questions 1 - 3 

 Research Questions 1-3 investigate the efficiency of the treatments using the MIE. 

A two-way ANCOVA with two covariates was used to determine whether or not there 

was a main effect due to type of practice, a main effect due to level of readiness, and/or 

an interaction effect on MIE. In addition to two independent variables (type of practice 

and level of readiness), the ANCOVA test took into account two covariates (pre-test 

scores and homework completion rates). Including the covariates in the analysis allowed 

us to determine the effect of type of practice and readiness on the efficiency of instruction 

(MIE) after adjusting for prior knowledge (pre-test scores) and differences in the number 

of learning tasks completed by each learner (homework completion rates). 

 An ANCOVA test was shown to be an appropriate procedure for this situation 

because the following five assumptions of an ANCOVA test were satisfied. First, the data 

used in the experiment was generated by randomly assigning subjects to experimental 

groups, so the groups were independent random samples. Second, Levene’s test verified 

homogeneity of variances, 𝐹𝐹(8, 79) = 0.70, 𝑝𝑝 = .69. Third, as shown in Figure 13, the 

residuals for the MIE were normally distributed, making it reasonable to assume 

normality of treatment groups. Fourth, regression analyses verified that there was a linear 

relationship between the covariates and the dependent variable. In particular, there was a 

linear relationship between pretest scores and MIE, 𝑡𝑡(86) = 3.30, 𝑝𝑝 = .01, 𝑟𝑟 = .34, and 

between homework completion rates and MIE, 𝑡𝑡(86) = 2.73, 𝑝𝑝 = .01, 𝑟𝑟 = .28. Fifth, 

homogeneity of regression slopes was verified through tests for an interaction between 

type of practice and level of readiness on each covariate. Non-significant interactions 
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were found both for pre-test scores, 𝐹𝐹(4, 79) = 0.38, 𝑝𝑝 = .82, and for homework 

completion rates, 𝐹𝐹(4, 79) = 0.66, 𝑝𝑝 = .62. 

 

 

Figure 13. Normal probability plot verifying normality of the residuals for the MIE. 
 
 

Table 16 shows the results of the ANCOVA test. Note that both covariates (pre-

test score and homework completion rate) are significant. Additionally, there was a 

significant main effect for level of readiness. Type of practice and the interaction term 

were not significant. However, recall that there was one student with an unusually low 

value for the MIE. Including this extreme outlier in the data analysis did not affect any 

results except for the significance of the homework completion rate covariate. As shown 

in Table 16, with the outlier present homework completion rate was a significant 

predictor of the MIE, 𝐹𝐹(1, 77) = 5.30, 𝑝𝑝 = .024, partial 𝜂𝜂2 = .064. If the outlier is 

removed from the data the homework completion rate is not a significant predictor of the 
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MIE, 𝐹𝐹(1, 76) = 3.86, 𝑝𝑝 = .053, partial η2 = .048. Notice that the effect size for 

homework completion rate is relatively small both with and without the outlier. 

Regardless of whether or not it is considered to be a significant predictor of MIE, 

homework completion rate does not account for much of the variance in MIE scores. 

 

Table 16 
 
Two-way ANCOVA for MIE, including the interaction term. 
 
Dependent Variable:  Multidimensional Instructional Efficiency (MIE)  
Source 𝑺𝑺𝑺𝑺 𝒅𝒅𝒅𝒅 𝑴𝑴𝑴𝑴 𝑭𝑭 𝒑𝒑 Partial 𝜼𝜼𝟐𝟐 
Intercept 8.71 1 8.71 6.11 .016 .073 
Pre-test Score 10.12 1 10.12 7.09 .009 .084 
HW Completion 7.55 1 7.55 5.30 .024 .064 
Type of Practice 1.30 2 0.65 .45 .637 .012 
Level of Readiness 18.83 2 9.42 6.60 .002 .146 
Practice*Readiness 11.66 4 2.92 2.04 .097 .096 
Error 109.85 77 1.43    
Total 175.75 88     
  

Research Question 1. Research question #1 asked if there was a main effect due 

to type of practice (worked examples with self-explanation prompts, worked examples 

with instructional explanations, or practice problems). As can be seen in Table 16, the 

type of practice was not significant, 𝐹𝐹(2, 77) = 0.45, 𝑝𝑝 = .64, 𝜂𝜂2 = 0.012. This result 

indicates that the three types of practice had equivalent instructional efficiency, after 

adjusting for pre-test scores and homework completion rates. This does not support the 

hypothesis that the worked example groups would be more efficient than the control 

group. 
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Research Question 2. Research question #2 asked if there was a main effect due 

to level of readiness (high, medium, or low). Table 16 shows that level of readiness was 

significant when adjusted for pre-test scores and homework completion rates. A planned  

Dunn-Bonferroni analysis was conducted to compare the mean MIE among the three 

readiness groups. Table 17 provides the results of the post-hoc test. There is evidence to 

show that the high readiness group has a distinct mean MIE when compared to the low 

and medium readiness groups. However, there is no evidence of a difference in the  

mean MIE for the low and medium readiness groups. Because the mean MIE is positive 

for the high readiness group (𝑀𝑀 = 0.88, 𝑆𝑆𝑆𝑆 = 1.50) and negative for the other groups 

(medim readiness: 𝑀𝑀 = −0.32, 𝑆𝑆𝑆𝑆 = 0.95 and low readiness: 𝑀𝑀 = −0.51, 𝑆𝑆𝑆𝑆 = 1.40) 

the test provides evidence that the homework assignments were more efficient for 

learners with high readiness than they were for learners with low or medium readiness.  

 

Research Question 3. The third research question asked whether there was an 

interaction effect between type of practice and level of readiness on MIE. As was shown 

in Table 16, there was not a significant interaction effect, 𝐹𝐹(4, 77) = 2.04, 𝑝𝑝 = .097,

partial 𝜂𝜂2 = .096. This does not support the hypothesis that the most efficient type of 

Table 17 
 
Planned Dunn-Bonferroni analysis to compare mean MIE among the three readiness 
groups. 
 
Comparison Groups 𝑡𝑡 𝑑𝑑𝑑𝑑 𝑝𝑝 
Low readiness vs. Medium readiness −0.61 58 . 545  
Medium readiness vs. High readiness   3.72 57 . 000* 
Low readiness vs. High readiness −3.62 55 . 001* 
Note: *Significant at 𝐹𝐹𝐹𝐹𝐹𝐹 = .05    
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practice depends on the level of readiness of the learner. However, even though the result 

was not statistically significant at the 𝛼𝛼 = .05 level of significance, the effect size is still 

relatively large.  The value of partial 𝜂𝜂2 shows that approximately 9.6% of the variability 

in MIE values can be explained by the interaction between the type of practice and level 

of readiness of the learner. The lack of statistical significance may be due to a lack of 

power in the test for the significance of the interaction effect. The a priori power 

calculations completed in Chapter III (see page 46) were for the power of the main effect.  

Similar a priori power calculations indicate that in order to have 80% power when testing 

the interaction effect, the sample size would need to be at least 103 students.  As such, it 

is possible that the lack of a significant interaction in this experiment was due to low 

statistical power. 

Results for Research Questions 4 – 6 

The first three research questions investigated the efficiency of the experimental 

treatments. The last three research questions asked similar questions regarding the 

effectiveness of the treatments. The post-test was used as a measure of effectiveness. 

Similar to the first three questions, research questions #4-6 were also answered using a 

two-way ANCOVA with two covariates.  

 The five assumptions for an ANCOVA test were again verified, this time using 

the post-test (rather than the MIE) as the dependent variable. First, the data used in the 

experiment was generated by randomly assigning subjects to experimental groups, so the 

groups were independent random samples. Second, Levene’s test verified homogeneity of 

variances, 𝐹𝐹(8, 79) = 1.60, 𝑝𝑝 = .14. Third, as shown in Figure 14, the residuals for the 
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post-test were normally distributed, making it reasonable to assume normality of 

treatment groups. Fourth, regression analyses verified that there was a linear relationship  

between the covariates and the dependent variable. In particular, there was a linear 

relationship between pre- and post-test scores, 𝑡𝑡(86) = 3.50, 𝑝𝑝 = .001, 𝑟𝑟 = .35, and 

between homework completion rates and post-test scores, 𝑡𝑡(86) = 3.77, 𝑝𝑝 < .001, 𝑟𝑟 =

.38. Fifth, homogeneity of regression slopes was verified through tests for an interaction 

between type of practice and level of readiness on each covariate. Because this 

computation does not depend on the dependent variable, the calculations done while 

verifying the assumptions for the ANCOVA test used to answer research questions #1-3 

still apply. Therefore, it was once again reasonable to assume homogeneity of regression 

slopes. 

 

Figure 14. Normal probability plot verifying normality of the residuals for the post-test. 
 

 The results of the ANCOVA analysis for the post-test score are shown below in 

Table 18. The table shows that both covariates (pre-test score and homework completion 
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rate) are significant. Additionally, there is a significant main effect for level of readiness. 

Type of practice and the interaction effect were not significant. 

Table 18 
 
Two-way ANCOVA for post-test scores, including the interaction term. 
 
Dependent Variable:  Post-test scores  
Source 𝑺𝑺𝑺𝑺 𝒅𝒅𝒅𝒅 𝑴𝑴𝑴𝑴 𝑭𝑭 𝒑𝒑 Partial 𝜼𝜼𝟐𝟐 
Intercept 37.50 1 37.50 0.30 .587 .004 
Pre-test Score 1031.02 1 1031.02 8.19 .005 .096 
HW Completion 1797.99 1 1797.99 14.27 .000 .156 
Type of Practice 28.15 2 14.07 0.11 .894 .003 
 Level of Readiness 1072.48 2 536.24 4.26 .018 .100 
Practice*Readiness 972.23 4 243.06 1.93 .114 .091 
Error 9699.03 77 125.96    
Total 417054.69 88     
 

Research Question 4. Question #4 asked whether there was a significant main 

effect due to type of practice on student performance. The ANCOVA test showed that 

type of practice was not significant (see Table 18). This result does not support the 

hypothesis that the type of practice problems learners completed (worked examples with 

instructional explanations, worked examples with self-explanation prompts, or practice 

problems) would affect their performance on the post-test. Because the a priori power 

calculations described in Chapter 3 indicate that the sample size was large enough for the 

test to have sufficient power, it is unlikely that this result reflects a Type II error. 

Additionally, the low value of partial 𝜂𝜂2 (.003) indicates that only 0.3% of the variation 

in post-test scores can be explained by the type of practice completed by the learners. 
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Therefore, this result indicates that the type of practice really had no effect on post-test 

scores. 

Research Question 5. Research question #5 asked if there was a main effect on 

post-test scores due to level of readiness (high, medium, or low). Table 18 shows that 

level of readiness was significant when adjusted for pre-test scores and homework 

completion rates. A planned Dunn-Bonferroni analysis was conducted to compare the 

mean post-test scores among the three readiness groups. Table 19 provides the results of 

the post-hoc test. In this case there is evidence to show that the low readiness group is 

significantly different from the high readiness group. However, there is not enough 

evidence to distinguish the medium readiness group from either the low or the high 

readiness groups. Because the mean post-test score for learners in the high readiness 

group (𝑀𝑀 = 73.13, 𝑆𝑆𝑆𝑆 = 13.06) is greater than the mean post-test score for learners in 

the low readiness group (𝑀𝑀 = 61.55, 𝑆𝑆𝑆𝑆 = 14.41), there is evidence that the homework 

assignments were more effective for learners with high calculus readiness than for 

learners with low calculus readiness.  

Research Question 6. The final research question asked if there was an 

interaction effect between type of practice and level of readiness on post-test scores. As 

Table 19 
 
Planned Dunn-Bonferroni analysis to compare the mean post-test score among the three 
readiness groups. 
 
Comparison Groups 𝑡𝑡 𝑑𝑑𝑑𝑑 𝑝𝑝 
Low readiness vs. Medium readiness −1.97 58 . 054  
Medium readiness vs. High readiness −1.63 57 . 108    
Low readiness vs. High readiness −3.17 55 . 002* 
Note: *Significant at 𝐹𝐹𝐹𝐹𝐹𝐹 = .05     
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shown in Table 18, the interaction effect was not significant. As such, this experiment 

does not provide evidence to support the hypothesis that the most effective type of 

practice depends on the readiness of the learner. However, as was seen for research 

question 3, the lack of statistical significance may be due to low statistical power. The 

relatively large effect size indicates that 9.1% of the variability in post-test scores can be 

explained by the interaction.  

Summary of Results 

 This experiment examined the effect of type of practice and level of readiness on 

the efficiency and effectiveness of opportunities to practice in a calculus course. The 

results of the experiment showed that type of practice did not have a significant effect on 

the efficiency or effectiveness of the instruction. Additionally, there was not an 

interaction effect between type of practice and readiness.   

 The level of readiness was found to have a significant main effect on both the 

efficiency (as measured by MIE) and effectiveness (as measured by post-test scores) of 

calculus practice, after adjusting for homework completion and pre-test scores. The 

assignments were found to have significantly higher efficiency and effectiveness for 

learners of high readiness than for those with low or medium readiness. As such, 

readiness was found to be critically important for success in calculus. 
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CHAPTER V 

Conclusions 

 The purpose of this research study was to explore the efficiency and effectiveness 

of using worked examples to provide opportunities for learners with varying levels of 

readiness to practice in a Calculus I course. As part of the study, the researcher developed 

two sets of worked examples, one set with self-explanation prompts and the other set 

with instructional explanations. These examples were used on homework assignments 

over a three-week period during the unit on differentiation in a Calculus I course. The 

learners in the course were divided into three groups: two experimental groups and a 

control group.  

 This chapter will provide a discussion of the experimental results and will offer 

conclusions based on the research. In particular, this chapter includes a discussion of the 

results of the experiment, a discussion of the effectiveness of the instructional design 

process in developing the examples, a discussion of technical issues encountered during 

the experiment, recommendations for practitioners, and recommendations for future 

research. 

Discussion of Experimental Results 

 The results of this experiment answered six research questions on the efficiency 

and effectiveness of calculus instruction for learners with different levels of readiness and 

who completed different types of practice. Based on the results described in Chapter IV, 

we see that this study highlights the critical importance of readiness for calculus. 

 

 



 

 

95 

Additionally, the study found that the type of practice (worked examples or traditional 

homework) did not impact the effectiveness or efficiency of the instruction. Also, this 

experiment did not have a statistically significant interaction and thus did not provide 

support for the hypothesized interaction effect that suggested that the best type of practice 

would depend on the level of readiness of the learner. However, the test for the 

significance of the interaction term had relatively low power and that may have 

contributed to the lack of significance. 

 The critical important of readiness. This experiment clearly demonstrated the 

critical important of calculus readiness for learners in a Calculus I course. The readiness 

of the learner was found to affect both the effectiveness and the efficiency of the 

assignments, after adjusting for prior calculus knowledge and homework completion 

rates.  

The effectiveness of the instruction was measured using post-test scores. The 

mean post-test scores for low, medium, and high readiness learners (with standard 

deviation in parentheses) were 61.55 (14.41), 68.02 (10.95), and 73.13 (13.06), 

respectively. As shown in Chapter IV, research question #5 demonstrated that there was a 

significant difference in the mean post-test scores of the three readiness groups, even 

after adjusting for prior calculus knowledge and homework completion rates. Further 

analysis of the post-test scores showed that 20% of the learners in the combined sample 

failed the test (received a score below 60%). However, a greater percentage of students in 

the low readiness group failed the exam (41%) than in the medium (12%) or high (7%) 

readiness groups.  
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This result on the effect of readiness on the effectiveness of instruction supports 

and confirms existing literature on the readiness of the learner. The MDTP Calculus 

Readiness Test assessed knowledge on topics related to algebraic manipulation skills, the 

function concept, and trigonometry (see Table 7 on page 62 for a more detailed list of 

topics covered on the MDTP). The results of this experiment support Kay and Kletskin’s 

(2012) claim that these three topics are necessary for success in calculus. Additionally, 

the results of this experiment provide support for Pyzdrowski et al.’s (2013) finding that 

calculus readiness is correlated with student performance.  

The efficiency of the instruction was measured using the MIE. Recall that MIE 

measures the efficiency of the instruction by comparing student performance to mental 

effort, both during learning and during testing. A positive value for the MIE is desirable 

because it shows that student performance is high relative to the level of mental effort. A 

negative value for the MIE indicates inefficiency in the instruction because student 

performance is low relative to the level of mental effort. Research question #2 found that 

there was a significant difference in MIE scores among the three readiness groups. 

Further analysis of the data found the 95% confidence intervals (CIs) for the MIE for 

low, medium, and high readiness learners were [-0.85, 0.05], [-0.70, 0.16], and [0.23, 

1.16], respectively. Note that because the CIs for low and medium readiness learners 

contain zero, there is not enough evidence to determine whether those groups have a 

positive or negative MIE. Although these CIs do not definitively determine the efficiency 

or inefficiency of the instruction for the low and medium readiness groups, they do show 

that the high readiness group was more efficient than either the low or medium groups. 
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Because the 95% CI for MIE for the high readiness group includes only positive values, 

we can be 95% confident that for high readiness learners, the MIE score is positive and 

thus represents high instructional efficiency. 

One possible explanation for this result could be the finding of Schwonke et al. 

(2013) that leaners with low readiness do not use learning aids in a learning-oriented 

way. The possible inefficiency in the instruction for low and medium readiness learners 

may be due to how they used the examples. For example, the learners in the worked 

example groups were provided with cognitive aids such as self-explanation prompts or 

instructional explanations. Failure to use these cognitive aids appropriately, or other non-

learning oriented behaviors, may have reduced the overall instructional efficiency for 

those groups.  

No effect due to type of practice. Research questions #1 and #4 found that the 

type of practice completed by the learners had no effect on either the effectiveness or 

efficiency of the instruction. Several previous researchers have found that although there 

was no difference in student performance between learners who viewed worked examples 

and learners who solved practice problems, there was a difference in the efficiency and 

worked examples were found to be more efficient (i.e. Boekhout et al., 2010; Hoffman & 

Nadelson, 2009; Nievelstein et al., 2013; Vogel-Walcutt et al., 2011). Therefore the 

finding that the type of practice had no effect on the effectiveness of the instruction is 

consistent with earlier research, but the finding that the type of practice had no effect on 

the efficiency of the instruction contradicts prior worked example research. 
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One possible explanation for the difference between the result of this study and 

the result of previous research could be the length of the experiment. Because the 

experiment was conducted over a three-week period and was situated in a classroom 

setting, it was much more difficult to control for other variables than it would have been 

in prior research that was conducted in a laboratory setting or for a shorter length of time. 

During the three-week period of the experiment, students received instruction from the 

instructor during class and also were able to get help from tutors. These other variables 

may have lessened the impact of the type of practice completed by the learners.  

In order to explore the effect of tutoring on the survey results, the learners were 

asked to report the number of times they met with a tutor during the experiment. Sixty-

three percent of the learners indicated that they received help from a tutor during the 

three weeks of the experiment. The mean number of tutoring visits per student during the 

three weeks was 4.16 (𝑆𝑆𝑆𝑆 = 4.59). However, the mean number of visits did not vary by 

type of practice, 𝐹𝐹(2, 79) = 0.47, 𝑝𝑝 = .63, partial 𝜂𝜂2 = .012, or by level of readiness, 

𝐹𝐹(2, 79) = 1.30, 𝑝𝑝 = .28, partial 𝜂𝜂2 = .03. There was also not an interaction effect on 

the number of tutoring visits between type of practice and readiness, 𝐹𝐹(4, 79) = 0.60,

𝑝𝑝 = .66, partial η2 = .030). This indicates tutoring probably was not a confounding 

variable. 

Lack of interaction between readiness and type of practice. It was 

hypothesized that there would be an interaction effect between level of readiness and type 

of practice. As demonstrated through the results of research questions #3 and #6 in 

Chapter IV, this study did not provide statistical evidence of an interaction between 
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readiness and type of practice for either student performance or MIE. All types of 

practice were found to be similarly effective (as measured by MIE) for learners with all 

levels of readiness. However, the lack of interaction may have been due to low statistical 

power.  The interaction effect had a moderate effect size on both MIE (partial 𝜂𝜂2 = .096) 

and student performance (partial 𝜂𝜂2 = .091). These medium effect sizes are similar to 

values of partial 𝜂𝜂2 that were reported for significant results obtained by other researchers 

(i.e. Boekhout et al., 2010; Booth et al., 2013; Hilbert & Renkl, 2009; Ngu & Yeung, 

2012; Richey & Nokes-Malach, 2013; Wong et al., 2012) in worked example research 

(see effect sizes reported in summary of worked example research in Appendix A).  

 Due to the expertise reversal effect, it was expected that learners with high 

readiness would benefit most from completing practice problems only (with no worked 

examples) while learners with low or medium readiness would benefit most from viewing 

worked examples. Several researchers (i.e. Kalyuga, 2007; Salden, Aleven, Schwonke, & 

Renkl, 2009; Schwonke et al., 2009) have found evidence that worked examples are more 

effective for novices than they are for experts. However, as explained in detail in Chapter 

II, most studies on worked examples have been conducted in algebra or geometry using 

highly structured problems. The introduction of the limit concept in calculus leads to 

more abstract concepts than those in algebra. Consequently, calculus problems tend to be 

less-structured than the highly-structured problems typical of an algebraic context. The 

lack of an expertise reversal effect on problems that are less-structured than algebra 

problems would be consistent with Nievelstein et al. (2013) who found that the expertise 
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reversal effect did not occur when worked examples were used with less-structured 

problems.  

Although the interaction effect in this experiment failed to achieve statistical 

significance, the results of the experiment do not necessarily contradict prior research that 

did find an interaction effect.  In particular, Berthold and Renkl (2009) found that self-

explanations helped foster conceptual knowledge when learners answered the prompts 

correctly, but that they hindered learning for learners with low readiness who lacked the 

necessary cognitive skills to answer the prompts correctly. Based on Berthold and 

Renkl’s (2009) finding, the hypothesis for this experiment was that worked examples 

with self-explanation prompts would be more beneficial for learners with medium or high 

readiness while worked examples with instructional explanations would be better for 

learners with low readiness. Although the interaction effect was not statistically 

significant, the means plot (see Figure 15) shows results that are consistent with this 

hypothesis. 

 

Figure 15. Means plot for post-test scores showing the direction of the comparison among 
treatment conditions supports the hypothesis that that worked examples with self-explanation 
prompts would be more beneficial for learners with medium or high readiness while worked 
examples with instructional explanations would be better for learners with low readiness.  
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Discussion of Effectiveness of Instructional Design Process 

 Chapter III detailed use of the Kemp Model (Morrison et al., 2011) in following a 

rigorous instructional design process to design and develop the worked examples. This 

experiment provides a source of confirmative evaluation for the examples as called for by 

the Kemp Model (see Figure 8 on page 51). 

 The results of this experiment show that providing a combination of worked 

examples and practice problems is as effective as providing learners with practice 

problems only. Prior to the development of the examples, the instructor was using only 

practice problems on the homework assignments. This study confirms that worked 

examples can be used to replace some of the practice problems with equal efficiency and 

effectiveness. However, the design and development of the worked examples was much 

more time consuming than developing practice problems. It was probably not worth the 

extra time required to develop the examples because they were not found to be more 

effective or efficient than using practice problems.  

 Although the faded examples were found to be as efficient and effective as using 

only practice problems, only high readiness learners were found to have positive 

instructional efficiency (as measured by MIE). This indicates that changes need to be 

made to the instructional design of the unit in order to accommodate learners with low or 

medium readiness. Remediation activities that help improve the algebra skills of low or 

medium readiness learners might help improve the instructional efficiency and 

effectiveness of the unit for these learners and should be incorporated into the course. 
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 In a survey administered to the students at the end of the unit, the learners in the 

two worked example groups were asked what they found to be the most helpful aspect of 

using the worked examples. Table 20 summarizes the responses to this open-ended 

question. Note that the students appreciated seeing step-by-step solutions to problems, 

liked being able to watch the video more than once outside of class, and benefited from 

the additional explanations provided by the examples of both concepts and procedures. 

  

In addition to asking the learners what they felt was most helpful about the video 

worked examples, the survey also asked what they did not like about viewing the 

examples. Table 21 summarizes the results to this open-ended question. The top three 

responses were that viewing the videos took longer than it would have taken to just 

complete the practice problems, that there were occasional technical problems, and that 

there was nothing they didn’t like about the videos. Indicating that the videos over-

explained or took too long on easy problems was a response that was reported more often 

Table 20 
 
Summary of survey responses to the question: “What was the most helpful aspect of 
viewing the video examples?” 
 
Response Percentage 
Provided a step-by-step solution 25% 
Allowed for repetition of instruction outside of class 23% 
Provided added explanations of concepts 15% 
Provided added explanations of procedures 11% 
Provided a visual example 7% 
Helped solve the practice problems 5% 
No response 5% 
Hearing the audio 3% 
They were a convenient source for answers to questions 3% 
Allowed me to pause when I didn’t understand 2% 
Provided a variety of examples 2% 
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by learners with high (38%) or medium (38%) readiness than it was for learners with low 

readiness (24%). 

Based on these responses, it appears that the instructional design might be 

improved by providing different examples for learners based on their readiness. For high 

readiness learners in particular, it would be beneficial to find ways to shorten the videos 

and ensure that the video examples are examples of more complicated problems where 

they are most likely to be useful and not examples of the simpler homework problems. 

Also, in this experiment the learners were required to watch all of the videos. When the 

videos are used with classes in the future, it might be beneficial to consider making some 

video examples optional so students can chose whether or not to view the videos. 

  

 

Table 21 
 
Summary of survey responses to the question: “What did you not like about viewing the 
video examples?” 
 
Response Percentage 
Videos over-explained or took too long on easy problems 34% 
Occasional technical problems 20% 
Nothing – I liked the videos 10% 
No response 8% 
Videos didn’t help with practice problems 5% 
Didn’t like self-explanation prompts 5% 
Couldn’t ask questions while watching the videos 3% 
Videos didn’t provide enough explanations 3% 
Didn’t like the segmentation of the videos 3% 
Videos were boring 2% 
Provided a variety of examples 2% 
Would have liked to see more videos and fewer practice problems 2% 
Would have liked to see fewer videos and more practice problems 2% 
Too many types of questions on the assignments 2% 
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Technical Issues 

 The examples developed for use in this experiment utilized video and audio and 

were delivered online. The experiment was conducted in a face-to-face class and the 

experimental worked examples were assigned to the learners as part of their homework 

assignments for the class. Using online examples requires particular care in order to 

ensure that technical issues are kept at a minimum. This experiment utilized a careful 

formative evaluation process in order to minimize the technical issues encountered during 

the experiment. The following discussion will address some of the technical problems 

encountered during the development of the examples and during their use in the 

experiment. In particular, technical issues that were resolved during the piloting semester 

and those that arose during the actual experiment will be discussed. 

 Technical issues during the piloting semester. During the Fall 2014 semester, 

the complete set of examples was used in a Calculus I course. This piloting semester 

identified several important technical issues that were able to be resolved.  

 The most severe technical issue that was encountered and resolved during the 

piloting semester dealt with the method used for providing feedback to the learners, 

especially on the practice problems. The original design called for the learners to 

complete the problems, using pencil and paper, in a homework notebook. They would 

then type their answer into the LMS, which would automatically check to see if the 

answer was correct and provide the learners with feedback. The purpose of having them 

type the answer into the LMS was to allow for immediate feedback on the correctness of 

their solution. The LMS supposedly had a fairly robust method for checking if two 
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equations were functionally equivalent, so the LMS should have been able to determine 

the correctness of the solution, even when the student typed the solution into the 

computer in a format different from that entered by the instructor. Two problems arose 

based on this design for entering answers into the LMS. First, the LMS was not always as 

accurate at determining functional equivalence as the documentation provided by the 

LMS supplier claimed it would be. Second, the learners struggled to type equations into 

the LMS correctly. Even when using an HTML equation editor, the learners frequently 

missed parentheses or other important features of equations that led the LMS to mark the 

problem as incorrect, even when the learner had the correct answer written in their 

homework notebook.  

 The combination of these two problems made it very difficult for the learners to 

trust the feedback they got from the LMS, which was a very significant source of 

frustration to the learners. It quickly became apparent to the researcher that these 

technical problems were overshadowing any positive effects of using worked examples 

on the assignments. So, in the middle of the piloting semester a change was made to the 

way to the learners received feedback on the problems. Rather than typing the answer 

into the LMS, the students were provided with a button they could click that would show 

them the correct answer to the practice problem. They were still required to show their 

work in their homework notebook, but they could check their answers without having to 

type the equation into the LMS. Anecdotal evidence of the success of this modification 

was provided through an email sent to the researcher from one of the top students in the 

class. In an email sent on October 9, 2014, he said: 
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I personally prefer this way so much better. The problem with the last type was 

that I spent time half for my algebraic skills but the other half for technical issues. 

This was difficult because I had to focus on technical things before I could pay 

attention [to] what I was learning. Since I do not have to deal with those technical 

issues anymore, I can do the homework faster, and I can actually focus only on 

my calculation[s] (what matters most regarding of LEARNING). 

The piloting semester was also helpful in identifying design changes that would 

improve the quality of the worked example. In particular, the learners reported that the 

segmentation of the worked examples was frustrating and interrupted their learning. The 

decision to segment the examples had been based on prior research that showed 

segmentation helped improve the effectiveness of the examples (Wong et al., 2012). 

However, when the segmentation was reviewed based on the feedback provided during 

the piloting semester, it was determined that the videos paused more often than they 

needed to. As such, the segmentation of the videos was reviewed and revised at the end 

of the pilot study. 

 Technical issues during the experiment. During the piloting semester, most of 

the potential technical issues were identified and were able to be corrected prior to 

implementing the worked examples in the experiment. As such, there were relatively few 

technical issues that occurred during the actual experiment. However, a few unanticipated 

issues did arise.  

 Two students reported that their Internet filter was blocking the web page that was 

used to provide answers to the practice problems to the learners. For an unknown reason, 
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the Internet filter had classified the website as adult/mature content. Because the students 

who encountered this problem were using rented computers, they did not have access to 

the password needed to override the block. This prevented them from completing their 

homework on their own computers. Both students were able to complete the homework 

by borrowing a computer from someone else, but this was a very inconvenient solution. 

The researcher contacted the Internet filtering company and asked them to reclassify the 

website as educational. The company complied and within a few days the affected 

students quit seeing the block and were able to access the answers on their personal 

computers.  

 The LMS that was used to distribute the homework assignments experienced 

intermittent campus-wide downtime during the experiment. These downtimes were 

infrequent and typically quite short, but caused frustration to students who were unable to 

access the homework assignments during the outage. Additionally, similar campus-wide 

problems with the LMS occasionally caused content embedded in the LMS to load more 

slowly than normal. At the end of the experiment the learners completed a survey and 

were asked if they encountered technology issues during the experiment. If they 

answered yes, they were asked to describe the problems they encountered. Of the 87 

students who responded to the survey, 63% said they encountered no technology 

problems while working on the homework. Twenty-nine percent of the students reported 

there were times when the videos loaded slowly (either due to campus-wide LMS issues 

or due to limited Internet bandwidth in student apartments), 14% reported occasional 

LMS outages, and 6% of the learners reported the LMS occasionally did not save their 
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submitted responses (a known problem related to the LMS outages). All of the 

technology problems reported by the students were due either to LMS outages or limited 

Internet bandwidth on campus or in student apartments. 

 Although these technical issues were a source of frustration to some learners, they 

were not significant enough to impact the final results of the study. Many of the survey 

responses indicated that the technical issues occurred “once” or “a few times”, but the 

issues did not occur on most of the homework. Also, homework completion rates were 

very high (mean completion rate of 95%) which indicates that LMS outages or slowly 

loading videos did not prevent the learners from completing the assignments. 

Additionally, a two-sample 𝑡𝑡-test was used to compare the post-test scores of learners 

who reported they encountered technology problems with those who did not and found 

that there was not a significant difference, 𝑡𝑡(63.06) = 0.11, 𝑝𝑝 = .91. Similarly, there 

was also no difference in MIE scores, 𝑡𝑡(61) = −0.10, 𝑝𝑝 = .92. 

Recommendations for Future Practice 

 This study illustrated the critical importance of calculus readiness. Learners who 

were not ready for calculus did not perform as well in the course as learners with 

adequate calculus readiness. Additionally, the assignments were found to be less efficient 

for learners with low readiness than they were for learners with high readiness. 

Therefore, it is highly recommended that instructional designers, math departments, and 

calculus instructors carefully consider techniques that ensure the calculus readiness of 

their students. This could include both restricting registration to students who 

demonstrate adequate readiness and providing remediation for learners with lower 
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readiness who register for calculus. This study adds support to the recommendations of 

Rassmussen, Ellis, and Zazkis (2013) who found that successful calculus programs 

typically have a method in place to assess and ensure the content readiness of their 

learners prior to registration. 

 This experiment also found that worked examples were as effective and as 

efficient as practice problems for calculus students. Therefore, providing worked 

examples to give learners opportunities to practice would be one possible technique that 

could be used in calculus courses. These worked examples should use tools such as 

instructional explanations and self-explanation prompts in order to help the learners 

develop adequate schema.   

 The instructional design process used in this experiment depended on a careful 

formative evaluation process. Future practitioners are encouraged to ensure that the 

worked examples are well designed and thoroughly tested prior to their implementation.  

Recommendations for Future Research 

 This research study added to the existing literature on worked examples by 

providing evidence of their effectiveness and efficiency when used in a university-level 

calculus classroom. Very little research had been done previously on using worked 

examples with learners at the calculus level. Most prior research had been conducted with 

middle-school and high-school students in algebra or geometry courses. Although this 

study extends those results to more mature learners with more abstract content, there is 

additional research that should be done. 
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 This experiment failed to find evidence of an interaction effect, possibly because 

of low statistical power.  It would be beneficial to repeat the experiment with more 

learners to see if the increased power provided by a larger sample provides evidence that 

different types of practice are more efficient and/or effective for learners with different 

levels of readiness.  

 This experiment focused on one of the five units in a Calculus I class. The unit on 

differentiation was selected as the unit to be used in this study because it is a unit that 

contains a good mix of conceptual and procedural ideas that depend greatly on the 

algebra skills of the learner. Future research should look at whether the same results 

would be seen if worked examples were used for a different unit or for the entire course.  

The examples used in this study were embedded in the LMS. As explained earlier 

in this chapter, there were some problems with the speed and stability of the LMS. Future 

research might use other methods to distribute the worked examples in order to eliminate 

some of the technological issues related to an unstable LMS. 

An unsolicited email received from a student during the experiment highlighted 

an unexpected effect of the treatments. Referring to the experimental homework 

assignments, the student stated “I love doing homework this way…it is easier to 

internalize the materials when they’re tailored by the teacher for the student, rather than 

generic problems out of the book.” To this student, the benefit of the homework 

assignment was that it was created by the instructor. Because the researcher was also the 

instructor of the course, this perception of personalization of the content may have been 

an unintended benefit of the experimental assignments. Future research should look at the 
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difference when the worked examples and practice problems are developed by the 

instructor and when they are developed by someone other than the instructor of the 

course. 

 This study considered student performance by looking at scores on a post-test. 

The post-test contained both conceptual and procedural questions, but the data analysis 

considered the total post-test grade and did not distinguish between questions that 

assessed conceptual knowledge and questions that assessed procedural knowledge. The 

worked examples (both with self-explanation prompts and instructional explanations) 

were expected to improve conceptual understanding more than problem solving because 

the examples specifically identified connections between mathematical concepts and 

mathematical procedures. Although this study found no difference in total post-test scores 

among the three treatment groups, there may have been a difference in conceptual 

understanding among the learners. Future research should specifically assess conceptual 

and procedural knowledge in order to determine how the two types of worked examples 

compare to problem solving in the development of conceptual understanding.  

 Currently, cognitive load theorists are researching methods to individually 

measure the three types of cognitive load (germane, extraneous, and intrinsic) (Ayres & 

Van Gog, 2009; Kalyuga, 2009; Kirschner et al., 2011; Van Gog et al., 2009). The 

worked examples used in this study were expected to be more effective and efficient than 

practice problems because they were expected to decrease extraneous cognitive load. 

However, the mental effort measurement used in this study was a measurement of total 

cognitive load and did not distinguish among the three types of load. Cognitive load is 
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additive (Ayres, 2006). This means that two learners could have the same total cognitive 

load, even though one learner had a high extraneous load and low germane load and the 

other learner had a low extraneous load and high germane load. Therefore, because this 

study relied on total cognitive load measurements, we are unable to determine whether 

the three groups differed on the level of extraneous cognitive load. Future research should 

look at the effect of worked examples with self-explanation prompts and worked 

examples with instructional explanations on extraneous cognitive load. 

The examples prepared for use in this experiment were intended to provide 

learners with an opportunity to practice applying new calculus knowledge and skills. 

They were not intended to be the sole source of instruction on the topic of differentiation. 

The examples were used in a face-to-face class and the instructor provided in-class 

instruction and in-class activities that gave the learners their first exposure to the concepts 

and procedures. Learners used the worked examples as part of their homework that was 

done outside of class. Future research should determine whether different results would 

be found if the worked examples were used to replace instruction. Worked examples 

similar to those used in this study could be a valuable tool in an online course and 

research that investigates the effectiveness and efficiency of such examples in a calculus 

context would add valuable new insight to the existing worked examples literature. 

 The Joint Mathematics Meetings that were held in January 2015 included 33 talks 

that mentioned a flipped or inverted classroom in the title of the talk (“Joint Mathematics 

Meeting Full Program,” 2015). The frequency of flipped classrooms as a topic at this 

large conference of university-level mathematics faculty shows that flipped classrooms 
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are currently a popular topic among university mathematics faculty. In a flipped 

classroom, learners are provided with activities that help introduce the content prior to 

attending class. Worked examples like the ones developed in this study could potentially 

be used to provide learners with examples they could view prior to attending class. This 

study found that the worked examples were as effective as practice problems. Future 

research could consider whether such examples are an effective tool for providing 

instruction prior to class in a flipped classroom. 

Summary 

 This dissertation details the results of an experiment to determine the 

effectiveness and efficiency of worked examples as a technique for providing learners in 

a Calculus I course with opportunities to practice. In addition to considering the type of 

practice completed by the learner, the readiness of the learner was also incorporated into 

the analysis. 

 The theoretical framework for this study was based in Cognitive Load Theory. 

The worked examples were expected to reduce the extraneous load experienced by 

learners as they completed their homework. By reducing the extraneous load, more 

cognitive resources were available to devote to the development of schema. In order to 

facilitate the development of schema and increase the germane load of the learners, self-

explanation prompts and instructional explanations were added to the examples.  

 The data analysis answered six research questions. The first three research 

questions addressed the instructional efficiency of the examples, as measured using MIE. 

These three questions were answered using a two-way ANCOVA with two covariates. 
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The results of the first question showed that the type of practice (worked examples with 

self-explanation prompts, worked examples with instructional explanations, or practice 

problems) completed by the learner did not affect the MIE, while the results of the second 

question showed that the readiness of the learner did have an effect on the MIE after 

adjusting for prior calculus knowledge and homework completion rates. In particular, 

learners with high readiness had positive instructional efficiency that was significantly 

higher than the instructional efficiency of learners with low or medium readiness. The 

third research question showed that there was no interaction effect on MIE between type 

of practice and readiness of the learner.  

 The final three research questions answered similar questions about the 

effectiveness of the instruction, as measured by post-test scores. Again, these questions 

were answered using a two-way ANCOVA with two covariates. The results for the fourth 

question found that type of practice did not have a significant main effect on student 

performance while the results for the fifth question indicated that level of readiness did 

have a significant main effect, even after controlling for prior knowledge and homework 

completion. The findings for the final research question showed that there was not an 

interaction effect on student performance between type of practice and level of readiness. 

 These results highlight the critical importance of the readiness of the learner and 

future practitioners are advised to consider ways to ensure the readiness of the learner, 

either through placement testing or through remediation. The results of this experiment 

also show that worked examples can be used to replace some practice problems on 
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homework without adversely affecting the efficiency or effectiveness of the homework 

assignments. 

One of the key features that ensured the success of this experiment was the use of 

a careful instructional design process, including a detailed evaluation procedure. The 

Kemp Model was very useful in outlining the steps of the instructional design process. 

Following the outlined steps led to a final version of the worked examples that was 

greatly improved when compared to the first version. Although there were some 

technological issues during the experiment, most of the potential technology problems 

were identified and solved prior to the final implementation because of the feedback 

obtained through the instructional design process. 
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Table A1 
 
Summary Table of Worked Example Research 

 
Author Date Type of 

Examples 
Content 
Area 

Age of 
Subjects 

In a 
classroom 
setting? 

Research Questions Findings Effect Size 

Ayres 2013 Paper Algebra Year 8 
students 
(𝑛𝑛 = 54) 

No They hypothesized that isolating the 
elements of problems that typically cause 
students the most difficulty because of the 
high cognitive load and having the students 
spend time practicing that part of the 
solution would help students learn. In order 
to test this hypothesis they compared the 
performance of students in three groups: the 
targeted-isolated elements group, the equal-
isolated elements group, and the full 
worked-example group. The targeted-
isolated elements group spent more time 
studying just those parts of the problem that 
had high cognitive load. The equal-isolated 
elements group spent equal time studying 
each part of the problem. The worked 
examples group studied the entire worked 
example.  

They found that the targeted-isolated 
group did better than the full worked-
example group on knowledge, cognitive 
load, and transfer. There was an 
interaction between prior knowledge and 
group where students with low prior 
knowledge did best with the equal-
isolated elements and students with high 
prior knowledge did equally well. 

Not reported 

Boekhout, 
Van Gog, 
Van de Wiel, 
Gerards-Last, 
& Geraets 

2010 Paper Medical 
(diagnosing 
physical 
complaints 
of patients) 

Undergrads 
(𝑛𝑛 = 134) 

No They explored the difference between 1st 
and 2nd year students (to see the effect of 
expertise). Also looked at the difference in 
using expert models and student models to 
create the examples. The hypothesis was 
that there were be an interaction between 
model expertise and student expertise. 

All students performed better when 
viewing the expert example. But the 1st 
year students required less mental effort - 
so their learning was more efficient. 

Effect of 
student 
expertise (1st 
year students 
vs. 2nd year 
students) on 
mental effort 
𝜂𝜂2 = .122 and 
on retention 
𝜂𝜂2 =  .031 
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Author Date Type of 
Examples 

Content 
Area 

Age of 
Subjects 

In a 
classroom 
setting? 

Research Questions Findings Effect Size 

Booth, 
Lange, 
Koedinger, & 
Newton 

2013 Cognitive 
tutor 

Algebra I Experiment 
1: high 
school 
students 
(𝑛𝑛 = 134); 
Experiment 
2: 8th grade 
students 
(𝑛𝑛 = 64). 

Yes. 
Using a 
total of 
eight 
worked 
examples. 

Compared three groups: Correct examples 
only, Incorrect examples only, and a 
combination of correct and incorrect 
examples. "In Experiment 1, students 
working with the Algebra I Cognitive Tutor 
were randomly assigned to complete their 
unit on solving two-step linear equations 
with the traditional Tutor program (control) 
or one of three versions which incorporated 
examples; results indicate that explaining 
worked examples during guided practice 
leads to improved conceptual understanding 
compared with guided practice alone. In 
Experiment 2, a more comprehensive 
battery of conceptual and procedural tests 
was used to determine which type of 
examples is most beneficial for improving 
different facets of student learning. Results 
suggest that incorrect examples, either alone 
or in combination with correct examples, 
may be especially beneficial for fostering 
conceptual understanding" (p.24). 

"Experiment 1 indicated that combining 
guided practice with worked example 
problems benefited students’ conceptual 
knowledge (Hypotheses 1a and 1b); 
Experiment 2 measured the impacts of 
particular types of examples. Results 
indicated that students performed best 
after explaining incorrect examples; in 
particular, students in the Combined 
condition gained more knowledge than 
those in the Correct only condition about 
the conceptual features in the equation, 
while students who studied only 
incorrect examples displayed improved 
encoding of conceptual features in the 
equations compared with those who only 
received correct examples (Hypothesis 
2)" (p. 31) 

Experiment 2: 
Main effect of 
condition 𝜂𝜂2 =
.009; 
multivariate 
effect of 
condition 𝜂𝜂2 =
.13 

Corbalan, 
Paas, & 
Cuypers 

2010 eLearning Linear 
Algebra 

Undergrads 
(𝑛𝑛 = 9 and 
𝑛𝑛 = 34) 

Yes.  
For 3 sets 
of problems 

In this article the authors describe the 
results of two studies investigating whether 
feedback should be provided on each step 
of a problem or provided all at once at the 
end of the problem. In particular, they 
wanted to know how the timing of the 
feedback effected the motivation and 
transfer of students. The second study 
extended the first by including more 
subjects and by looking at student 
performance, mental effort (a measurement 
of cognitive load), motivation and transfer 
in addition to looking at student 
preferences.  

The first study found that students 
preferred having feedback provided at 
each step of the solving process rather 
than just getting feedback on whether 
their answer was correct. 
In the second study they found that 
feedback on each step led to the best 
results in each of these areas. Mental 
effort was higher for students in the 
feedback on final step group 

Effect on 
Mental effort 
𝑑𝑑 = 0.36 
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Author Date Type of 
Examples 

Content 
Area 

Age of 
Subjects 

In a 
classroom 
setting? 

Research Questions Findings Effect Size 

Darabi, 
Nelson, 
Meeker, 
Liang, & 
Boulware 

2010 eLearning Engineering Undergrads 
(𝑛𝑛 =  32) 

Yes.  
For three 
class 
sessions: 
one 
introduct-
ory, one 
learning, 
and one 
testing 

Looked at the effect of worked examples vs. 
conventional problem solving in helping 
learners develop mental models 

The worked example participants 
progressed more in their development of 
the mental model than the problem 
solving participants did. 

None reported 

Gentner, 
Loewenstein, 
& Thompson 

2003 Paper Case-
based 
examples 

Business Undergrads 
(𝑛𝑛 =  48,
𝑛𝑛 =  128,
𝑛𝑛 =  158) 

Yes.  
For one 
lesson 

In these three experiments they 
hypothesized that having students compare 
two examples to look for similarities would 
help increase transfer. 

Their findings supported their 
hypotheses 

Not reported 

Hilbert & 
Renkl 

2009 Paper Concept 
mapping 

Experiment 
1: Police 
academy 
(𝑛𝑛 = 30) 
Experiment 
2: 11th 
graders 
(𝑛𝑛 =  76) 

No They conducted two experiments - in the 
first they compared a group that viewed 
worked examples to one that didn't - they 
found no significant difference. So they 
conducted a second experiment where they 
included self-explanation prompts 

Self-explanation prompts led to better 
performance. 

Experiment 2: 
self-
explanation 
prompts vs 
concept 
mapping on 
their own - 
effect on 
performance 
𝜂𝜂2  =  .076 

Jarodzka, 
Van Gog, 
Dorr, 
Scheiter, & 
Gerjets 

2013 Computer- 
based with 
eye-
tracking  

Fish 
Identifica-
tion 

Undergrads 
(𝑛𝑛 =  75) 

No Used eye-tracking data from expert models 
to create examples that helped guide the 
learner's eye to the look at the correct place 
on the screen. Would help the learners 
know what important information to attend 
to, more than the learners who viewed 
examples without eye-tracking data. 

Students who viewed the example with 
the eye-tracking data had more coherent 
eye-tracking data on the performance 
assessment 

𝜂𝜂2 = .39 
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Author Date Type of 
Examples 

Content 
Area 

Age of 
Subjects 

In a 
classroom 
setting? 

Research Questions Findings Effect Size 

Kay & 
Edwards 

2012 Video 
podcasts 

Middle 
School 
Math 

Middle 
School 
Students 
(𝑛𝑛 = 136) 

No. 
Learners 
viewed one 
example 

This study looked at student attitudes and 
performance as a result of using video 
podcast worked examples to teach middle-
school mathematics principles. 

"Students were positive about the quality 
of worked example video podcasts and 
appreciated the step-by-step, easy-to-
follow explanations, diagrams, and being 
able to control the pace of learning. 
Learning performance increased 
significantly after using worked example 
video podcasts. There were no gender or 
grade level differences in attitudes 
toward worked example video podcasts 
or learning performance" (p. 1). 

Pre- vs. Post-
test: 𝑑𝑑 = 2.72 

Kay & 
Kletskin 

2012 Video 
podcasts 

Pre-
calculus 

Undergrads 
enrolled in 
calculus 
(𝑛𝑛 = 288) 

No. 
Participa-
tion was 
voluntary. 

"Four key research questions were 
addressed regarding the use of problem-
based video podcasts in the realm of pre-
calculus mathematics: 
1) Why do students choose to use or not to 
use video podcasts? (open-ended response); 
2) How often are video podcasts used? 
(tracking data and student feedback); 3) 
How did students rate the usefulness and 
quality of video podcasts? (survey data); 
and 4) Did student understanding of pre-
calculus knowledge improve as a result of 
using video podcasts? (survey questions)" 
(p 622) 

Two-thirds of the students chose to use 
the podcasts. The most commonly cited 
reasons for not using them were that they 
felt they already knew the material. 
Almost 90% of those who used the 
podcasts said they were useful. Student 
self-reported data says precalculus 
understanding increased. 

None reported 

Miller  2010 In-class 
examples 

Calculus Undergrads 
(𝑛𝑛 = 22) 

No. 
Students 
volunteered 
to 
participate 

Used the three step method 1) review a 
computer worked example as a class 2) 
have the teacher go over an example in 
class, and 3) have the students work an 
example in small groups. 

Participants in these voluntary review 
sessions did better than non-participants - 
but the fact that they participated is 
confounded with the type of review 
session. 

None reported 
(The significant 
𝑝𝑝-values were 
𝑝𝑝 = .06 and 
𝑝𝑝 = .08) 

Moreno & 
Valdez 

2007 Paper 
cased-based 
examples 

Pre-service 
teacher 
education 

Experiments
1 and 2: pre-
service 
teachers 
(𝑛𝑛 = 53) and 
(𝑛𝑛 = 55) 

Yes . 
Not fully 
integrated 
with 
classroom 
instruction 

Research questions: 1) Does the format of 
the case affect student recall? 2) Does the 
presentation of the example affect transfer? 
and 3) Do presentation and/or format affect 
learning perceptions? 

Students did better with video examples 
than with other static formats. Viewing 
several examples for one concept helped. 

For tests of 
transfer, effect 
size for group 
was 𝜂𝜂2 = .17. 
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Author Date Type of 
Examples 

Content 
Area 

Age of 
Subjects 

In a 
classroom 
setting? 

Research Questions Findings Effect Size 

Newton, 
Star, & 
Lynch 

2010 Paper Algebra High school 
students 
(𝑛𝑛 = 6) 

Yes . 
In a 3-week 
long 
remedial/ 
review 
summer 
school 
course 

In this study the authors used worked 
examples to help teach students flexibility 
in solving algebra problems. In this context 
of this study they defined flexibility as the 
awareness of different methods of solving 
problems and the ability to choose a method 
appropriate for a particular problem. The 
authors were particularly interested in 
students who struggled in math.. The course 
specifically focused on promoting 
flexibility. Data was collected through a 
pre-test, an intermediate assessment, and a 
post-test as well as a series of interviews 
with the students. 

The authors found that the students were 
often aware of multiple approaches to 
solve problems and could solve them 
when prompted, but did not typically use 
non-standard approaches unless 
prompted. If students did choose to use a 
non-standard approach it was usually on 
more difficult problems where using a 
non-standard approach could make the 
problem easier to complete (e.g. by 
avoiding fractions). Additionally, they 
found that if a student was very familiar 
with one approach to solving a problem, 
they were less likely to use an alternate 
approach. Overall, students were more 
concerned with the accuracy of a 
solution that with the efficiency of their 
method. They did not find that students 
were confused by seeing different 
approaches (which was a concern for 
struggling students). 

None reported 

Ngu & 
Yeung 

2012 Paper Algebra 
problems in 
a chemistry 
context 

Experiments 
1, 2, 3, and 
4: Grade 11 
Students 𝑛𝑛 =
23, 𝑛𝑛 = 33, 
𝑛𝑛 = 40, and 
𝑛𝑛 = 43, 
respectively 

Yes. 
For two 
days 

The authors hypothesized that the MC 
(multiple components) approach would be 
more effective for learning that using 
worked examples to teach algebra ideas in a 
chemistry context. The four experiments 
tested different combinations of symbolic 
equations (symbols, hints, and categorizing 
statements in the question prompt) as part 
of the MC method. 

They found the MC method to be 
preferable to worked examples. They 
found that hints, or the use of strategies 
to remind the learner to access earlier 
knowledge plays a critical role in 
facilitating transfer. 

Effect on 
transfer 
between MC 
and WE 
groups. 
Experiment 1: 
𝜂𝜂2 = .18; 
Experiment 2: 
𝜂𝜂2 = .20; 
Experiment 3: 
𝜂𝜂2 =  .03; 
Experiment 4: 
𝜂𝜂2 = .05 
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Author Date Type of 
Examples 

Content 
Area 

Age of 
Subjects 

In a 
classroom 
setting? 

Research Questions Findings Effect Size 

Ngu & 
Yeung 

2013 Paper Algebra 
problems in 
a chemistry 
context 

High school 
students 
(𝑛𝑛 = 22) in 
Malaysia 

Yes. 
For two 
days 

1. Students in the equation worked 
examples condition would outperform those 
in the text editing condition on the 
conceptually more difficult molarity 
problems. 
2. Students in the equation worked 
examples condition would develop a 
superior 2-step solution strategy for solving 
molarity problems. 

Worked examples led to better transfer 
and more common use of 2-step solution 
or multi-step solutions than the textedit 
technique 

Effect on 
transfer 
between two 
groups 𝜂𝜂2 =
0.20 

Nievelstein, 
Van Gog, 
Van Dijck, & 
Boshuizen 

2013 eLearning Law 
Education 

First year 
law students  
(𝑛𝑛 =  75) 

No Tested whether the expertise reversal effect 
was evident in a less-structured domain 
(solving legal cases). Had 3 independent 
variables 1) worked examples vs problem 
solving; 2) process steps vs no problem 
steps; and 3) first-year vs third year 
students. 

No expertise reversal effect; worked 
examples were more efficient (better 
performance after investing less time). 

Main effect due 
to worked 
examples for 
first year 
students: 
Cohen's 𝑓𝑓 =
 1.24 and for 
third year 
students: 
Cohen's 𝑓𝑓 =
 1.02 

Quilici & 
Mayer 

1996 Paper Statistics College 
students in 
three 
experiments 
(𝑛𝑛 = 81, 
𝑛𝑛 = 54, 𝑛𝑛 =
128) 

No Experiment 1 compared three groups: no 
example, one example, and three examples. 
The hypothesis was that viewing three 
examples would help with schema 
construction on what to consider when 
deciding what statistical test to use. 
Experiment 2 tried to determine if some 
examples were more likely to promote 
schema development than others. Example 
3 added to the previous examples by going 
beyond categorizing examples and rather 
having the students solve them. 

Experiment 1 found that examples 
helped with schema development - but 
both the one example and three example 
groups showed such development. 
Experiment 2 found that students 
developed schema better when they 
viewed examples that differed - using the 
same situation with different statistical 
details in the different examples 
hampered schema acquisition. 
Experiment 3 found that lower ability 
students had a harder time categorizing 
problems. 

None reported 

Reed, 
Corbet, 
Hoffman, 
Wagner, 
Hoffman, & 
MacLaren 

2012 Cognitive 
tutor 

Arithmetic 
and algebra 

High School 
students 
(𝑛𝑛 = 128) 

Yes. 
Three 
sessions, 
separated 
by several 
weeks. 

Compared four groups 1) Cognitive tutor; 
2) Static Table, 3) Static Graphics, 4) 
Interactive Graphics. Groups 2-4 viewed 
worked examples alternating with practice 
problems. Group 1 was the control group 
and just used the hints and tips in the 
cognitive tutor. 

There was no difference among the four 
groups on a delayed post-test. The CT 
group made the fewest mistakes during 
the learning, but they also took the 
longest and then there was no difference 
on the post-test. Worked examples were 
more efficient.  

No significant 
differences on 
post-test. 
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Author Date Type of 
Examples 

Content 
Area 

Age of 
Subjects 

In a 
classroom 
setting? 

Research Questions Findings Effect Size 

Richey & 
Nokes-
Malach 

2013 Paper All three 
experiment
s: 
Electricity 
and 
Electrical 
circuits 

Experiment 
1: Middle 
school 
students  
(𝑛𝑛 =  97) 
Experiments 
2 and 3: 
Undergrad 
psychology 
students 
(𝑛𝑛 =  84 
and  
𝑛𝑛 =  92)  
  

Experiment 
1: Yes - 
students 
received 
class 
participatio
n points for 
completing 
activities. 
Experiment
s 2 and 3: 
No 

They did three experiments to compare the 
results when instructional explanations were 
provided and when they were withheld.  

Students in both experiments did better 
when instructional explanations were 
withheld. The result was more distinct in 
the second example with college students 
- possibly because it was in a more 
controlled laboratory setting, rather than 
in a classroom setting. And also possibly 
because this type of example is more 
appropriate for college students than 
middle school students because they 
have more experience working through 
materials on their own. Providing 
instructional explanations interfered with 
conceptual understanding more than with 
procedural. 

Providing vs. 
Withholding 
effect on 
conceptual 
understanding: 
Experiment 1 - 
𝜂𝜂2  =  .04; 
Experiment 2 - 
𝜂𝜂2  =  .07; 
Experiment 3 - 
𝜂𝜂2  =  .23 

Rourke & 
Sweller 

2009 Paper Art and 
Design 

1st year 
Undergrads 

No Used worked examples to teach 
characteristics of different designers’ work. 
Considered the difference for expert and 
novice students. Expected worked examples 
to help in spite of the ill-defined problem. 

Examples were preferable to problem 
solving - for both near and far transfer. 
Worked-example effect is evident in an 
ill-defined domain. No expertise reversal 
effect. 

Main effect due 
to type of 
instruction 
(examples vs 
problem 
solving): 𝜂𝜂2  =
 .69,𝜂𝜂2 = .54 

Scheiter, 
Gerjets, & 
Schuh 

2009 Computer 
based with 
animations 

Algebra 
word 
problems 

9th grade 
(𝑛𝑛 = 32) 

No They "tested the assumption that hybrid 
animations, where a realistic animation of 
the problem statement is morphed into a 
more abstract representation of the problem 
statement and of subsequently carried-out 
solution steps, can improve problem-
solving performance compared to a text- 
only version of the instructional materials." 
(p. 492). 

Worked example group spent less time Effect of 
condition on 
transfer for 
similar 
problems 𝑓𝑓 =
0.71 
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Author Date Type of 
Examples 

Content 
Area 

Age of 
Subjects 

In a 
classroom 
setting? 

Research Questions Findings Effect Size 

Schwonke, 
Renkl, Krieg, 
Wittwer, 
Aleven, & 
Salden 

2009 Computer 
based 
tutored 
problem 
solving 
with faded 
worked 
examples 

Geometry Eighth and 
Ninth Grade 
Students 
(𝑛𝑛 = 50) 

No "Recently it has been argued that the 
worked-example effect, as postulated by 
Cognitive Load Theory, might only occur 
when compared to unsupported problem-
solving, but not when compared to well-
sup- ported or tutored problem-solving as 
instantiated, for example, in Cognitive 
Tutors. In two experiments, we compared a 
standard Cognitive Tutor with a version that 
was enriched with faded worked examples” 
(p. 258). 

"In Experiment 1, students in the 
example condition needed less learning 
time to acquire a comparable amount of 
procedural skills and conceptual 
understanding. In Experiment 2, the 
efficiency advantage was replicated. In 
addition, students in the example 
condition acquired a deeper conceptual 
understanding. The present findings 
demonstrate that the worked-example 
effect is indeed robust and can be found 
even when compared to well-supported 
learning by problem-solving” (p. 258). 

Experiment 1: 
Students in 
example group 
spent 
significantly 
less time 
Cohen's 𝑑𝑑 =
 −0.88 
Experiment 2: 
Examples 
better for 
transfer 𝑑𝑑 =
 .73 

Schwonke, 
Renkl, 
Salden, & 
Aleven 

2011 Cognitive 
tutor 

Geometry Ninth grade 
students 
(𝑛𝑛 = 125) 

No They investigated the effects of fading 
sequences differing in the ratio of worked 
steps and to-be-solved problem steps on 
cognitive load and learning outcomes. 
Expected more worked steps to be 
beneficial for conceptual skills more than 
procedural skills. 

"Problem solving alone had an advantage 
over higher proportions of example-
based learning – yet, only with respect to 
the acquisition of procedural knowledge. 
Generally, this finding points to the 
importance of problem solving 
opportunities for the development of 
procedural skills (Trafton & Reiser, 
1993). For conceptual knowledge, on the 
other hand, no ratio of worked steps and 
to-be-solved steps had an advantage over 
another" (p. 61). 

To-be-solve 
steps had 
higher 
cognitive load 
that worked 
steps with 
effect size 
𝜂𝜂2  =  .27 for 
easy steps and 
.29 for hard 
steps.  
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Author Date Type of 
Examples 

Content 
Area 

Age of 
Subjects 

In a 
classroom 
setting? 

Research Questions Findings Effect Size 

Sweller & 
Cooper 

1985 Paper Algebra Experiment 
1: 22 year 9 
students, 22 
year 11 
students, and 
18 math ed 
university 
students; 
Experiment 
2: year 9 
students 
(𝑛𝑛 = 20) 
Experiment 
3: year 9 
students 
(𝑛𝑛 = 22) 
Experiment 
4: year 8 
students 
(𝑛𝑛 = 40) 
Experiment 
5: year 8 
students 
(𝑛𝑛 = 24) 

No Experiment 1: Tested memory of students 
and ability to correctly use a procedure they 
remembered from a previous example 
problem. Experiment 2: Compared a 
worked example group with a non-worked 
example group. Experiment 3: Compared a 
worked example group with a problem 
solving group - used more complicated 
problems than Experiment 2. Experiment 4: 
Similar to experiment 3, except learners 
were reminded to make sure they 
completely understood a worked example 
before going on to a practice problem. 
Experiment 5: Similar to experiment 4 
except the learners in the two groups were 
paired based on similar ability and then the 
conventional problem solver was timed and 
the paired student in the worked example 
group was given the same amount of time. 

Experiment 1: Year 11 students were 
more like university students in ability to 
remember, but more like year 9 students 
in ability to select correct procedures. 
They concluded more experienced 
problem solvers have schemas that link 
specific skills to specific types of 
problems.   
Experiment 2: The worked example 
group spent less time with "no 
discernable detriment to their problem 
solving skills".  
Experiment 3: Worked examples may 
help with schema development as 
evidenced by the fact that the worked 
example group made fewer errors on the 
test problems than the traditional 
problem solving group did.  
Experiment 4: The benefits of worked 
examples may be decreased when 
dissimilar problems are inserted between 
viewing the example and seeing the 
results.  
Example 5: Students in worked example 
group viewed a lot more examples than 
the conventional group. 

None reported 
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Content 
Area 

Age of 
Subjects 

In a 
classroom 
setting? 

Research Questions Findings Effect Size 

Van Gog 2011 Video with 
expert 
model 
solving the 
problem 

Problem 
solving - 
Frog Leap 
problem - 
moving 
frogs from 
one side of 
the river to 
another on 
stones 

Undergrads 
(𝑛𝑛 =  32) 

No. This article looked at the difference in using 
a worked example before asking a student 
to work a problem and asking a student to 
work a problem before providing a worked 
example. The author noted that prior 
research had shown that an example-
problem pair was more effective than a 
problem-example pair. However, prior 
research had looked at pairs of problems 
that used different types of problem solving 
techniques. She hypothesized that if using 
several example-practice pairs for problems 
that all used the same problem solving 
technique, then the order of the example 
and the practice problem would not matter. 
One group completed an e-Learning lesson 
that used an example-practice-example-
practice sequence the other completed the 
same lesson but used a practice-example-
practice-example sequence.  

The author concluded that the order the 
problems are presented in does not 
matter as much as the number of 
opportunities to practice a particular 
problem solving technique. 

Not a 
significant 
result 

Van Gog & 
Kester 

2012 Paper Trouble-
shooting 
electrical 
circuits 

Undergrads 
(𝑛𝑛 =  40) 

No Compared worked examples only to 
example problem pairs. Hypothesized that 
there would be no difference in an 
immediate retention test, but that a test one 
week later would show the example 
problem pairs were better, due to the testing 
effect. 

Surprisingly, they saw the opposite of 
their hypothesis - the students who saw 
only examples did better on tests of far 
transfer then those who saw example-
problem pairs. The testing effect did not 
seem to apply for teaching problem 
solving. 

Effect on 
student 
performance 
one week after 
training: 
Cohen's 𝑑𝑑 =
 .66 

Van Gog, 
Kester, & 
Paas 

2011 Paper Trouble-
shooting 
electrical 
circuits 

High School 
Students  
(𝑛𝑛 =  103) 

No Compared four groups: 1) worked examples 
only, 2) examples then problem solving, 3) 
problem solving then examples, 4) problem 
solving only. 

"Results showed that the problem 
solving only and problem-example pairs 
conditions were less effective [an 
efficient] than the examples only and 
example-problem pairs conditions." 

Main effect on 
mental effort 
due to group 
𝜂𝜂2 =  .20; 
when included 
student 
performance 
𝜂𝜂2 =  .17 
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In a 
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Research Questions Findings Effect Size 

Vogel-
Walcutt, 
Gebrim, 
Bowers, 
Carper & 
Nicholson 

2011 eLearning  Military 
Simulation 
tasks 

Undergrads 
(𝑛𝑛 =  78) 

No Compared an eLearning lesson using CLT 
(worked examples) to one using a 
constructivist approach (problem based 
learning (PBL)). 

Found no difference in the acquisition of 
procedural, conceptual or declarative 
knowledge. CLT had a slight advantage 
in integrated knowledge. But they argued 
that CLT is more efficient in regards to 
both time and cost. Creating PBL 
activities might not be worth the cost. 

Effect size (ES) 
= 0.04 (They 
didn't report 
what type of 
measurement 
they used). 

Wong, 
Leahy, 
Marcus, & 
Sweller 

2012 Video/ 
Static 
Graphics 

Origami Ten and 
eleven year 
old children 
(𝑛𝑛 = 66) 

No Compared four groups: 1) static graphic 
short segments, 2) static graphic long 
segment, 3) animated graphics short 
segments, 4) animated graphics long 
segments 

They found the animations are effective 
if they are provided in short segments. 
They found that providing long segments 
significantly increased the cognitive load 
and thus negated the positive effects of 
using the animation. 

Animation 
superior to 
static graphics 
𝜂𝜂2 = .123; 
significant 
interaction 
effect 𝜂𝜂2 =
.080 
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List of Mathematical Problems in Practice Assignments 
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List of Mathematical Problems in Problem Sets 

Lesson 1A: Tangent Lines 

Exercise # Exercise Prompt Objective(s) Problem 
Type 

1A.1 Find the slope of the secant line for the function 𝑓𝑓(𝑥𝑥) = 3𝑥𝑥2 −
2𝑥𝑥 + 1 through the points where 𝑥𝑥 = 1 and 𝑥𝑥 = 3. 

Obj. 1A.3 Fully Worked 

1A.2 Find the slope of the secant line for the function 𝑓𝑓(𝑥𝑥) = 12
𝑥𝑥−5

 
through the points where 𝑥𝑥 = −1 and 𝑥𝑥 = 4. 

Obj. 1A.3 Partially 
Worked 

1A.3 Find the slope of the secant line for the function 𝑓𝑓(𝑥𝑥) = 2𝑥𝑥(𝑥𝑥 −
3) through the points where 𝑥𝑥 = 2 and 𝑥𝑥 = 3. 

Obj. 1A.3 Practice 

1A.4 Find the slope of the secant line for the function 𝑓𝑓(𝑥𝑥) =
√𝑥𝑥2 + 4𝑥𝑥 + 4 through the points where 𝑥𝑥 = 1 and 𝑥𝑥 = 4. 

Obj. 1A.3 Practice 

1A.5 Find the slope of the tangent line for the function 𝑓𝑓(𝑥𝑥) = 2𝑥𝑥
𝑥𝑥−1

 at 
the point 𝑥𝑥 = 2. 

Obj. 1A.4 Fully Worked 

1A.6 Find the slope of the line tangent to the curve 𝑓𝑓(𝑥𝑥) = √𝑥𝑥 − 3 at 
the point 𝑥𝑥 = 4. 

Obj. 1A.4 Partially 
Worked 

1A.7 Find the slope of the line tangent to the curve 𝑓𝑓(𝑥𝑥) = 8𝑥𝑥2 −
12𝑥𝑥 + 1 at the point 𝑥𝑥 = 1. 

Obj. 1A.4 Practice 

1A.8 Find the slope of the line tangent to the curve 𝑓𝑓(𝑥𝑥) = 1
𝑥𝑥−2

 at the 
point 𝑥𝑥 = −4. 

Obj. 1A.4 Practice 

1A.9 Consider the function 𝑓𝑓(𝑥𝑥) = 4 − 𝑥𝑥2.  
a. Graph the function. 
b. Sketch the secant line to 𝑓𝑓(𝑥𝑥) through the points where 

𝑥𝑥 = 1 and 𝑥𝑥 = 2. 
c. Sketch the tangent line to 𝑓𝑓(𝑥𝑥) at the point 𝑥𝑥 = 1.  
d. Find the slope of the secant line though the points 

where 𝑥𝑥 = 1 and 𝑥𝑥 = 2. 
e.  Find the slope of the tangent line at the point 𝑥𝑥 = 1. 
f. Explain how the slopes you found in parts d and e are 

related to the graph you drew in parts a, b, and c. 

Obj. 1A.1 
Obj. 1A.2 
Obj. 1A.3 
Obj. 1A.4 

Fully Worked 

1A.10 Consider the function 𝑓𝑓(𝑥𝑥) = √𝑥𝑥 + 5. 
a. Graph the function. 
b. Sketch the secant line to 𝑓𝑓(𝑥𝑥) through the points where 

𝑥𝑥 = −1 and 𝑥𝑥 = 4. 
c. Sketch the tangent line to 𝑓𝑓(𝑥𝑥) at the point 𝑥𝑥 = −1.  
d. Find the slope of the secant line though the points 

where 𝑥𝑥 = −1 and 𝑥𝑥 = 4. 
e.  Find the slope of the tangent line at the point 𝑥𝑥 = −1. 
f. Explain how the slopes you found in parts d and e are 

related to the graph you drew in parts a, b, and c. 

Obj. 1A.1 
Obj. 1A.2 
Obj. 1A.3 
Obj. 1A.4 

Practice 

1A.11 A rock is thrown vertically into the air. The height of the rock at 
time 𝑡𝑡 (in seconds) is given by the equation 𝑠𝑠(𝑡𝑡) = −16𝑡𝑡2 +
32𝑡𝑡 + 4.  

a. Find the average velocity of the rock from time 𝑡𝑡 = 0 
to 𝑡𝑡 = 2. 

b. Find the instantaneous velocity of the rock at time 𝑡𝑡 =
1.  

Obj. 1A.3 
Obj. 1A.4 
Obj. 1A.5 

Partially 
Worked 
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Exercise # Exercise Prompt Objective(s) Problem 
Type 

1A.12 A particle is moving horizontally along a line. The position of 
the particle on the line at time 𝑡𝑡 (in seconds) is given by the 
equation 𝑠𝑠(𝑡𝑡) = −𝑡𝑡3 − 2𝑡𝑡2. 

a. Find the average velocity of the rock from time 𝑡𝑡 = 0 
to 𝑡𝑡 = 4. 

b. Find the instantaneous velocity of the rock at time 𝑡𝑡 =
4. 

Obj. 1A.3 
Obj. 1A.4 
Obj. 1A.5 

Practice 

1A.13 Explain how slopes of secant and tangent lines are related to 
average and instantaneous rates of change.  

Obj. 1A.5 Practice 
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Lesson 1B: Derivatives at a Point 

Exercise # Exercise Prompt Objective(s) Problem 
Type 

1B.1 Find 𝑓𝑓′(2) where 𝑓𝑓(𝑥𝑥) = −𝑥𝑥2 + 4. Obj. 1B.2 Fully Worked 
1B.2 Find 𝑓𝑓′(−1) where 𝑓𝑓(𝑥𝑥) = 1

3𝑥𝑥−4
. Obj. 1B.2 Fully Worked 

1B.3 Find 𝑓𝑓′(0) where 𝑓𝑓(𝑥𝑥) = 3𝑥𝑥(𝑥𝑥 − 1). Obj. 1B.2 Partially 
Worked 

1B.4 Find 𝑓𝑓′(4) where 𝑓𝑓(𝑥𝑥) = 𝑥𝑥2 + 3𝑥𝑥. Obj. 1B.2 Practice 
1B.5 Find 𝑓𝑓′(−1) where 𝑓𝑓(𝑥𝑥) = √2𝑥𝑥 + 5.  Obj. 1B.2 Practice 
1B.6 Let 𝑓𝑓(𝑥𝑥) = 𝑥𝑥2 + 9.  

a. Sketch the graph of 𝑓𝑓(𝑥𝑥). 
b. Find 𝑓𝑓′(−1), 𝑓𝑓′(0), and 𝑓𝑓′(2). 
c. Explain what each of the derivatives you found in part 

b indicates about the graph of 𝑓𝑓(𝑥𝑥).  

Obj. 1B.3 Partially 
Worked 

1B.7 Let 𝑓𝑓(𝑥𝑥) = 𝑥𝑥3 + 3𝑥𝑥 + 1. 
a. Sketch the graph of 𝑓𝑓(𝑥𝑥). 
b. Find 𝑓𝑓′(−1) and 𝑓𝑓′(1). 
c. If you did part a correctly, you will have found that 

𝑓𝑓′(−1) = 𝑓𝑓′(1). Explain how that is possible. Use a 
drawing as part of your explanation. 

Obj. 1B.3 Practice 

1B.8 State the definition of a derivative for a function 𝑓𝑓(𝑥𝑥) at the 
point 𝑥𝑥 = 𝑎𝑎. Explain what the derivative tells us about the 
function 𝑓𝑓(𝑥𝑥). 

Obj. 1A.4 
Obj. 1B.1 

Practice 

1B.9 For the function shown in the graph below, please identify each 
point where the function is not differentiable and explain why 
the function is not differentiable at that point. 
 

 
 

Obj. 1B.4 Fully Worked 

1B.10 For the function shown in the graph below, please identify each 
point where the function is not differentiable and explain why 
the function is not differentiable at that point. 

 
 

Obj. 1B.4 Practice 
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Lesson 1C: The Derivative as a Function 

Exercise # Exercise Prompt Objective(s) Problem 
Type 

1C.1 Use the definition of the derivative to find the derivative of 
𝑓𝑓(𝑥𝑥) = 𝑥𝑥3 − 2𝑥𝑥. 

Obj. 1C.1 Fully Worked 

1C.2 Use the definition of the derivative to find 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

 where 𝑦𝑦 = 𝑥𝑥−1
2𝑥𝑥+4

. Obj. 1C.1 
Obj. 1C.3 

Partially 
Worked 

1C.3 Use the definition of the derivative to find 𝑓𝑓′(𝑥𝑥) where 𝑓𝑓(𝑥𝑥) =
√𝑥𝑥2 − 2. 

Obj. 1C.1 
Obj. 1C.3 

Partially 
Worked 

1C.4 Use the definition of the derivative to find 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

 where 𝑦𝑦 = 2𝑥𝑥2 +
√𝑥𝑥 

Obj. 1C.1 
Obj. 1C.3 

Practice 

1C.5 Use the definition of the derivative to find the derivative of 
𝑓𝑓(𝑥𝑥) = 𝑥𝑥−2 

Obj. 1C.1 Practice 

1C.6 The following graph shows the graph of a function and the 
graph of its derivative. Determine which graph represents the 
function and which graph is the derivative. 
 

 

Obj. 1C.2 Fully Worked 

1C.7 The following graph shows the graph of a function and the 
graph of its derivative. Determine which graph represents the 
function and which graph is the derivative. 
 

 

Obj. 1C.2 Practice 

1C.8 The following graph shows the graph of a function and the 
graph of its derivative. Determine which graph represents the 
function and which graph is the derivative. 
 

 

Obj. 1C.2 Practice 

1C.9 Find the equation of the line tangent to the graph of 𝑦𝑦 = 2𝑥𝑥2 at 
the point 𝑥𝑥 = 1. 

Obj. 1C.1 
Obj. 1C.4 

Fully Worked 
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Exercise # Exercise Prompt Objective(s) Problem 
Type 

1C.10 Find the equation of the line tangent to the graph of 𝑦𝑦 = 4𝑥𝑥2 −
3𝑥𝑥 + 2 at the point 𝑥𝑥 = 1. 

Obj. 1C.1 
Obj. 1C.4 

Partially 
Worked 

1C.11 Find the equation of the line tangent to the graph of 𝑦𝑦 = 1
𝑥𝑥−1

 at 
the point 𝑥𝑥 = 5. 

Obj. 1C.1 
Obj. 1C.4 

Practice 

1C.12 Find the equation of the line tangent to the graph of 𝑦𝑦 =
−3𝑥𝑥2 − 1 at the point 𝑥𝑥 = −2. 

Obj. 1C.1 
Obj. 1C.4 

Practice 
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Lesson 2A: Basic Differentiation Rules 

Exercise # Exercise Prompt Objective(s) Problem 
Type 

2A.1 Find the derivative of 𝑓𝑓(𝑥𝑥) = 3𝑥𝑥2 − 2𝑥𝑥 + 1 Obj. 2A.1 Fully Worked 
2A.2 Find the derivative of 𝑓𝑓(𝑥𝑥) = 2𝑥𝑥

3
5 Obj. 2A.2 Fully Worked 

2A.3 Find 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

 where 𝑦𝑦 = 3𝑥𝑥2(𝑥𝑥3 − 2) Obj. 2A.1 
Obj. 2A.3 

Fully Worked 

2A.4 Find 𝑓𝑓′(𝑥𝑥) where 𝑓𝑓(𝑥𝑥) = 𝑥𝑥2+3𝑥𝑥+2
3𝑥𝑥−1

 Obj. 2A.1 
Obj. 2A.4 

Fully Worked 

2A.5 Find 𝑓𝑓′(𝑥𝑥) where 𝑓𝑓(𝑥𝑥) = −5𝑥𝑥 + 𝑥𝑥3 Obj. 2A.1 Practice 
2A.6 Find 𝑓𝑓′(𝑥𝑥) where 𝑓𝑓(𝑥𝑥) = 1

𝑥𝑥
+ 𝑒𝑒𝑥𝑥 Obj. 2A.5 

Obj. 1A.6 
Partially 
Worked 

2A.7 Find the derivative of 𝑓𝑓(𝑥𝑥) = 𝑥𝑥
2
3(𝑥𝑥2 + 5) Obj. 2A.6 Partially 

Worked 
2A.8 Find the derivative of 𝑦𝑦 = −8𝑥𝑥2 + 4𝑥𝑥 + 𝜋𝜋 Obj. 2A.1 Practice 
2A.9 Find 𝑓𝑓′(𝑥𝑥) where 𝑓𝑓(𝑥𝑥) = −𝑒𝑒𝑥𝑥(𝑥𝑥2 − 2) Obj. 2A.5 

Obj. 2A.6 
Practice 

2A.10 Find 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

 where 𝑦𝑦 = 3𝑒𝑒𝑥𝑥

𝑥𝑥2+1
. Obj. 2A.6 Practice 

2A.11 Find the derivative of √𝑥𝑥�𝑥𝑥
2+3𝑥𝑥+1�
3𝑥𝑥2

 Obj. 2A.6 Practice 

2A.12 Find the equation of the line tangent to the graph of 𝑦𝑦 =
−8𝑥𝑥2 − 2𝑥𝑥 + 1 at the point 𝑥𝑥 = −2. 

Obj. 1C.4 
Obj. 2A.1 

Practice 
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Lesson 2B: Trigonometric Rules 

Exercise # Exercise Prompt Objective(s) Problem 
Type 

2B.1 Find the derivative of 𝑦𝑦 = 3 tan 𝑥𝑥. Obj. 2B.1 Fully Worked 
2B.2 Find the derivative of 𝑦𝑦 = 4𝑥𝑥2 cos 𝑥𝑥. Obj. 2B.1 Fully Worked 
2B.3 Find the derivative of 𝑦𝑦 = √𝑥𝑥 cot 𝑥𝑥 Obj. 2B.1 Fully Worked 
2B.4 Find the slope of the line tangent to the curve 𝑦𝑦 = 1

2
sec 𝑥𝑥 at the 

point 𝑥𝑥 = 𝜋𝜋. 

Obj. 2B.1 Partially 
Worked 

2B.5 Find 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

 where 𝑟𝑟 = 3 tan 𝑠𝑠
4𝑒𝑒𝑠𝑠+4

. Obj. 2B.1 Partially 
Worked 

2B.6 Find the derivative of 𝑦𝑦 = 3 cos 𝑥𝑥 + 4 sin 𝑥𝑥. Obj. 2B.1 Practice 
2B.7 Find the derivative of 𝑟𝑟 = 3 csc 𝑡𝑡 + 4 sec 𝑡𝑡. Obj. 2B.1 Practice 
2B.8 Find the derivative of 𝑦𝑦 = (3𝑥𝑥 + 2) sin 𝑥𝑥 at the point 𝑥𝑥 = 𝜋𝜋

2
. Obj. 2B.1 Practice 

2B.9 Find the instantaneous rate of change for the function 𝑓𝑓(𝑥𝑥) =
3 sin 𝑥𝑥 + 𝑥𝑥 cos 𝑥𝑥 at the point 𝑥𝑥 = 0. 

Obj. 2B.1 Practice 

2B.10 Find the derivative of 𝑦𝑦 = sec 𝑥𝑥 tan 𝑥𝑥 Obj. 2B.1 Practice 
2B.11 Find the first and second derivatives of the function 𝑦𝑦 = 3𝑥𝑥2 +

2 sin 𝑥𝑥. 
Obj. 2B.2 Fully Worked 

2B.12 Find the first and second derivatives of the function 𝑦𝑦 =
2𝑥𝑥 cos 𝑥𝑥. 

Obj. 2B.2 Partially 
Worked 

2B.13 Find the first and second derivatives of the function 𝑦𝑦 = 2 csc 𝑥𝑥. Obj. 2B.2 Practice 
2B.14 The position of a particle moving along a horizontal line is 

given by the position function 𝑠𝑠 = 2𝑡𝑡3 sin 𝑡𝑡.  
a. Find the average rate of change of the particle over the 

interval 1 ≤ 𝑡𝑡 ≤ 3. 
b. Find the instantaneous rate of change of the particle at 

the point 𝑡𝑡 = 1. 

Obj. 1A.5 
Obj. 2B.1 

Partially 
Worked 

2B.15 The position of a particle moving along a horizontal line is 
given by the position function 𝑠𝑠 = (2𝑡𝑡 − 1) cos 𝑡𝑡.  

c. Find the average rate of change of the particle over the 
interval 0 ≤ 𝑡𝑡 ≤ 𝜋𝜋. 

d. Find the instantaneous rate of change of the particle at 
the point 𝑡𝑡 = 0. 

Obj. 1A.5 
Obj. 2B.1 

Practice 
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Lesson 2C: The Chain Rule 

Exercise # Exercise Prompt Objective(s) Problem 
Type 

2C.1 Find the derivative of 𝑦𝑦 = (3𝑥𝑥2 + 2𝑥𝑥)5 Obj. 2C.1 Fully Worked 
2C.2 Find 𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑
 where 𝑦𝑦 = sin (2𝑥𝑥 − 3). Obj. 2C.1 Fully Worked 

2C.3 Find the derivative of 𝑦𝑦 = �tan(𝑥𝑥2).  Obj. 2C.2 Fully Worked 
2C.4 Find 𝑓𝑓′(𝑥𝑥) where 𝑓𝑓(𝑥𝑥) = cos(𝑒𝑒3𝑥𝑥+2). Obj. 2C.2 Fully Worked 
2C.5 

Find 𝑓𝑓′(𝑥𝑥) for the function 𝑓𝑓(𝑥𝑥) = � 𝑥𝑥−1
2𝑥𝑥+3

 
Obj. 2C.1 Partially 

Worked 
2C.6 Find the derivative of 𝑦𝑦 = �2 sin�√𝑥𝑥2 − 3𝑥𝑥 + 2��

3
  Obj. 2C.2 Partially 

Worked 
2C.7 Find 𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑
 for 𝑦𝑦 = 𝑒𝑒3𝑥𝑥. Obj. 2C.1 Practice 

2C.8 Find the derivative of 𝑦𝑦 = −csc (𝑥𝑥2 + 2) Obj. 2C.1 Practice 
2C.9 Find the derivative of 𝑦𝑦 = 𝑒𝑒𝑥𝑥2 + sec(2𝑥𝑥). Obj. 2C.1 Practice 
2C.10 Find 𝑓𝑓′(𝑥𝑥) where 𝑓𝑓(𝑥𝑥) = �3 + 𝑥𝑥2 + sin (4𝑥𝑥). Obj. 2C.2 Practice 
2C.11 Find the first and second derivative of 𝑦𝑦 = (𝑥𝑥2 − 3)−2. Obj. 2B.2 

Obj. 2C.2 
Practice 

2C.12 Find the equation of the line tangent to the graph of 𝑦𝑦 = 3𝑥𝑥𝑒𝑒4𝑥𝑥2 
at the point 𝑥𝑥 = 0. 

Obj. 1C.4 
Obj. 2C.1 

Practice 
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Lesson 3A: Applications 

Exercise # Exercise Prompt Objective(s) Problem 
Type 

3A.1 A particle is moving along a horizontal axis. The position of the 
particle at time 𝑡𝑡 (measured in seconds) is given by the equation 
𝑥𝑥(𝑡𝑡) = 𝑡𝑡3 − 𝑡𝑡2 − 𝑡𝑡 + 7.  

a. Find the position of the particle at time 𝑡𝑡 = 2. 
b. Find the displacement of the particle from time 𝑡𝑡 = 0 

to 𝑡𝑡 = 5. 
c. Find the times when the particle changes direction. 
d. Find the total distance traveled by the particle between 

time 𝑡𝑡 = 0 and 𝑡𝑡 = 5. 

Obj. 3A.1 Fully Worked 

3A.2 A particle is moving along a horizontal axis. The position of the 
particle at time 𝑡𝑡 (measured in seconds) is given by the equation 
𝑥𝑥(𝑡𝑡) = 2𝑡𝑡3 − 14𝑡𝑡2 + 60𝑡𝑡 + 6  

a. Find the instantaneous velocity of the particle at time 
𝑡𝑡 = 4. 

b. Find the speed of the particle when 𝑡𝑡 = 4. 
c. Find the times when the particle changes direction. 
d. Find the acceleration of the particle at time 𝑡𝑡 = 3. 

Obj. 3A.1 Partially 
Worked 

3A.3 A particle is moving along a horizontal axis. The position of the 
particle at time 𝑡𝑡 (measured in seconds) is given by the equation 
𝑥𝑥(𝑡𝑡) = 3𝑡𝑡4 − 16𝑡𝑡3 − 42𝑡𝑡2 + 120𝑡𝑡  

a. Find the velocity, speed, and acceleration of the 
particle at time 𝑡𝑡 = 3. 

b. Find the times when the particle changes direction. 
c. Find the total distance traveled by the particle from 𝑡𝑡 =

0 to 𝑡𝑡 = 7. 

Obj. 3A.1 Practice 

3A.4 Suppose that a stone is thrown vertically upward from the edge 
of a cliff with an initial velocity of 64 ft/sec from a height of 32 
ft above the ground. The height 𝑠𝑠 (in feet) of the stone above the 
ground 𝑡𝑡 seconds after it is thrown is 𝑠𝑠(𝑡𝑡) = −16𝑡𝑡2 + 64𝑡𝑡 +
32. 

a. When does the stone reach its highest point? 
b. When does the stone strike the ground? 
c. With what velocity will the stone strike the ground? 

Obj. 3A.1 Fully Worked 

3A.5 Suppose that a stone is thrown vertically upward from the edge 
of a cliff with an initial velocity of 22 ft/sec from a height of 10 
ft above the ground. The height 𝑠𝑠 (in feet) of the stone above the 
ground 𝑡𝑡 seconds after it is thrown is 𝑠𝑠(𝑡𝑡) = −16𝑡𝑡2 + 22𝑡𝑡 +
10. 

a. When does the stone reach its highest point? 
b. When does the stone strike the ground? 
c. With what velocity will the stone strike the ground? 

Obj. 3A.1 Practice 

3A.6 Consider the cost function 𝐶𝐶(𝑥𝑥) = −0.01𝑥𝑥2 + 40𝑥𝑥 + 100, 0 ≤
𝑥𝑥 ≤ 1500. Find the average and marginal cost functions. Then 
determine the average and marginal cost when 𝑥𝑥 = 1000. 
Interpret each of these values. 

Obj. 3A.2 Fully Worked 
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Exercise # Exercise Prompt Objective(s) Problem 
Type 

3A.7 Consider the cost function 𝐶𝐶(𝑥𝑥) = −0.04𝑥𝑥2 + 100𝑥𝑥 +
800, 0 ≤ 𝑥𝑥 ≤ 1000. Find the average and marginal cost 
functions. Then determine the average and marginal cost when 
𝑥𝑥 = 500. Intepret each of these values. 

Obj. 3A.2 Practice 

3A.8 A drug is injected into a patient’s bloodstream. The 
concentration of the drug in the bloodstream t hours after the 
drug is injected is given by 𝐶𝐶(𝑡𝑡) = 0.12𝑡𝑡

𝑡𝑡2+𝑡𝑡+1
. Find the rate of 

change of the concentration 30 minutes after injection. 

Obj. 3A.3 Fully Worked 

3A.9 The speed of blood flowing along the central axis (in cm/s) of a 
certain artery is 𝑆𝑆(𝑅𝑅) = 1.8 × 105𝑅𝑅2 where R is the radius of 
the artery measured in cm. Find the rate of change of the speed 
with respect to the radius if an artery has a radius of 1.2 ×
10−2 cm. 

Obj. 3A.3 Fully Worked 

3A.10 When a bactericide was added to a nutrient broth in which 
bacteria were growing, the bacterium population continued to 
grow for a while, but then stopped growing and began to 
decline. The size of the population at time 𝑡𝑡 (in hours) is given 
by 𝑏𝑏(𝑡𝑡) = 106 + 104𝑡𝑡 − 103𝑡𝑡2. How long did it take for the 
population to stop growing? 

Obj. 3A.3 Practice 

3A.11 The number of gallons of water in a tank 𝑡𝑡 minutes after the 
tank has started to drain is 𝑄𝑄(𝑡𝑡) = 200(30 − 𝑡𝑡)2. How fast is 
the water running out at the end of 10 minutes? What is the 
average rate at which the water flows out during the first 10 
minutes? 

Obj. 3A.3 Practice 
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Lesson 3B: Implicit Differentiation 

Exercise # Exercise Prompt Objective(s) Problem 
Type 

3B.1 Determine whether 𝑥𝑥2𝑦𝑦3 + 3𝑥𝑥 sin𝑦𝑦 = 2 is implicitly or 
explicitly defined. Then find 𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑
. 

Obj. 3B.1 
Obj. 3B.2 

Fully Worked 

3B.2 Determine whether 𝑦𝑦 = 3𝑥𝑥−1
4𝑥𝑥2+3𝑥𝑥−2

 is implicitly or explicitly 

defined. Then find 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

. 

Obj. 3B.1 
Obj. 3B.2 

Fully Worked 

3B.3 Determine whether 2𝑥𝑥(𝑥𝑥 + 2𝑦𝑦)3 = 7 is implicitly or explicitly 
defined. Then find 𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑
. 

Obj. 3B.1 
Obj. 3B.2 

Partially 
Worked 

3B.4 Determine whether 𝑦𝑦 = sin(2𝑥𝑥𝑥𝑥) is implicitly or explicitly 
defined. Then find 𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑
. 

Obj. 3B.1 
Obj. 3B.2 

Practice 

3B.5 Determine whether 𝑦𝑦 = cot3�√3𝑥𝑥2� is implicitly or explicitly 
defined. Then find 𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑
. 

Obj. 3B.1 
Obj. 3B.2 

Practice 

3B.6 Find the equation of the tangent and normal lines to the curve 
𝑥𝑥2𝑦𝑦 + 𝑥𝑥𝑦𝑦2 = 3𝑥𝑥 − 8 at the point (2,−1). 

Obj. 3B.3 
Obj. 3B.4 

Fully Worked 

3B.7 Find the equation of the tangent and normal lines to the curve 
𝑥𝑥2𝑦𝑦 + 3𝑥𝑥𝑥𝑥 − 2𝑦𝑦2 = −28 at the point (2,−2). 

Obj. 3B.3 
Obj. 3B.4 

Partially 
Worked 

3B.8 Find the equation of the tangent and normal lines to the curve 
sin(3𝑥𝑥 + 2𝑦𝑦) = cos (4𝑥𝑥 + 2𝑦𝑦) at the point �𝜋𝜋

2
, 𝜋𝜋
4
�. 

Obj. 3B.3 
Obj. 3B.4 

Practice 

3B.9 For the equation 3𝑥𝑥2𝑦𝑦 + 4𝑥𝑥𝑥𝑥 − 2𝑥𝑥𝑦𝑦2 = 6, find the equation of 
the tangent line and the normal line at the point (−1,2). Then 
sketch the tangent line and normal line on the graph at the given 
point. 

 

Obj. 3B.3 
Obj. 3B.4 
Obj. 3B.5 

Partially 
Worked 

3B.10 For the equation (2𝑥𝑥2 − 3𝑦𝑦2)2 = 16, find the equation of the 
tangent line and the normal line at the point (2,2). Then sketch 
the tangent line and normal line on the graph at the given point. 

 

Obj. 3B.3 
Obj. 3B.4 
Obj. 3B.5 

Practice 
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Exercise # Exercise Prompt Objective(s) Problem 
Type 

3B.11 Find 𝑑𝑑
2𝑦𝑦

𝑑𝑑𝑥𝑥2
 for the following implicitly defined equation: 𝑦𝑦2 −

4𝑥𝑥 − 5𝑦𝑦 = 1 

Obj. 3B.2 
Obj. 3B.6 

Fully Worked 

3B.12 Find 𝑑𝑑
2𝑦𝑦

𝑑𝑑𝑥𝑥2
 for the following implicitly defined equation: 𝑥𝑥2 +

2𝑥𝑥𝑥𝑥 + 𝑦𝑦2 = 9 

Obj. 3B.2 
Obj. 3B.6 

Partially 
Worked 

3B.13 Find 𝑑𝑑
2𝑦𝑦

𝑑𝑑𝑥𝑥2
 for the following implicitly defined equation: 𝑥𝑥𝑥𝑥 +

2𝑦𝑦2 = 2 

Obj. 3B.2 
Obj. 3B.6 

Practice 

3B.14 Find 𝑑𝑑
2𝑦𝑦

𝑑𝑑𝑥𝑥2
 for the following implicitly defined equation: 3√𝑥𝑥 −

4𝑦𝑦2 = 0 

Obj. 3B.2 
Obj. 3B.6 

Practice  

3B.15 Find 𝑑𝑑
2𝑦𝑦

𝑑𝑑𝑥𝑥2
 for the following implicitly defined equation: 𝑥𝑥2𝑦𝑦2 =

4 

Obj. 3B.2 
Obj. 3B.6 

Practice 
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Lesson 3C: Related Rates 

Exercise # Exercise Prompt Objective(s) Problem 
Type 

3C.1 Assume that 3𝑥𝑥2 − 2𝑥𝑥𝑥𝑥 + 4𝑦𝑦2 = 15. Find 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

 when 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 3, 𝑥𝑥 =
1, and 𝑦𝑦 = 2. 

Obj. 3C.1 Fully Worked 

3C.2 Assume that 3𝑟𝑟2 + 4𝑠𝑠 = −1. Find 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

 when 𝑟𝑟 = 1, 𝑠𝑠 = −1, and 
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= −3. 

Obj. 3C.1 Fully Worked 

3C.3 Assume that 𝐿𝐿 = √𝑎𝑎2 + 𝑏𝑏2. Find 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

 when 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 2, 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= −1, 
𝑎𝑎 = 3, and 𝑏𝑏 = 4. 

Obj. 3C.1 Practice 

3C.4 A 26-foot ladder is leaning against a house when its base starts 
to slide away (see picture). By the time the base is 24 ft from the 
house, the base is moving at the rate of 3 ft/sec. How fast is the 
top of the ladder sliding down the wall then? 
 

 

Obj. 3C.1 Fully Worked 

3C.5 A girl is flying a kite at a height of 200 feet. The wind is 
carrying the kite horizontally away from her at a rate of 25 ft/sec 
(the kite stays at the same height). How fast must she let out the 
string when the string is 250 feet long? 

Obj. 3C.1 Practice 

3C.6 A spherical balloon is inflated with helium at the rate of 80𝜋𝜋 ft3 
per minute. How fast is the balloon’s radius increasing at the 
instant the radius of the balloon is 4 ft? How fast is the surface 
area increasing? 

Obj. 3C.1 Fully Worked 

3C.7 A piston is seated at the top of a cylindrical chamber with radius 
5 cm when it starts moving into the chamber at a constant speed 
of 3 cm/s (see picture). What is the rate of change of the volume 
of the cylinder when the piston is 2 cm from the base of the 
chamber? 
 
[insert picture – see Briggs & Stratton pg 179] 

Obj. 3C.1 Partially 
Worked 
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Exercise # Exercise Prompt Objective(s) Problem 
Type 

3C.8 A 12-foot ladder is leaning against a house when its base starts 
to slide away (see picture). When the base of the ladder is 4 ft 
from the house, the base of the ladder is moving at the rate of 3 
ft/sec and the top of the ladder is moving down the wall at the 
rate of 1.06 ft/sec. How fast is the area of the triangle formed by 
the ladder changing when the base of the ladder is 4 ft from the 
house? 
 

 

Obj. 3C.1 Practice 

3C.9 At a sand and gravel plan, sand is falling off a conveyor onto a 
conical pile at a rate of 10 cubic feet per minute. The diameter 
of the base of the cone is approximately three times the altitude. 
At what rate is the height of the pile changing when the pile is 
15 feet high? 

Obj. 3C.1 Partially 
Worked 

3C.10 Two boats leave a port at the same time, one travelling west at 
20 mi/hr and the other traveling south at 15 miles per hour. At 
what rate is the distance between them changing 30 minutes 
after they leave the port? 

Obj. 3C.1 Practice 

3C.12 A boat is pulled towards a dock by a rope attached to the bow of 
the boat. The rope is attached to a winch that is on the dock. The 
winch is 6 feet vertically above the bow of the boat. The rope is 
hauled in at a rate of 2 ft/sec. How fast is the boat approaching 
the dock when 10 feet of rope are out? 

Obj. 3C.1 Practice 
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Lesson 4A: Exponential and Logarithmic Functions 

Exercise # Exercise Prompt Objective(s) Problem 
Type 

4A.1 Find the derivative of 𝑦𝑦 = 3𝑥𝑥2−2  Obj. 4A.1 Fully Worked 
4A.2 Find the derivative of 𝑦𝑦 = log2(𝑥𝑥2 − 4𝑥𝑥 + 1) Obj. 4A.2 Fully Worked 
4A.3 Find the derivative of 𝑦𝑦 = ln(2𝑥𝑥) + 4−𝑥𝑥 Obj. 4A.1 

Obj. 4A.2 
Fully Worked 

4A.4 Find the derivative of 𝑦𝑦 = 𝑥𝑥2 + 2𝑥𝑥 Obj. 4A.1 
Obj. 4A.2 

Fully Worked 

4A.5 Find the derivative of 𝑦𝑦 = log7(sin(4𝑥𝑥 − 2))  Obj. 4A.2 Partially 
Worked 

4A.6 Find the derivative of 𝑓𝑓(𝑥𝑥) = ln(52𝑥𝑥−4)  Obj. 4A.1 
Obj. 4A.2 

Partially 
Worked 

4A.7 The functions 𝑓𝑓(𝑥𝑥) = log3 𝑥𝑥 and 𝑓𝑓−1(𝑥𝑥) = 3𝑥𝑥 are inverses of 
each other.  

a. Sketch the graph of 𝑓𝑓(𝑥𝑥) and 𝑓𝑓−1(𝑥𝑥). 
b. Find 𝑓𝑓′(9) and (𝑓𝑓−1)′(2). 
c. Illustrate the derivative you found on part b on the 

graph you drew for part a. 
d. The derivative rule for inverses states that (𝑓𝑓−1)′(𝑏𝑏) =

1
𝑓𝑓′�𝑓𝑓−1(𝑏𝑏)� 

. Show that the derivatives you found in part 

𝑏𝑏 satisfy this inequality. 

Obj. 4A.1 
Obj. 4A.2 

Partially 
Worked 

4A.8 Find the derivative of 𝑓𝑓(𝑥𝑥) = sin (log3 √2𝑥𝑥 − 1) Obj. 4A.2 Practice 
4A.9 Find the derivative of 𝑓𝑓(𝑥𝑥) = 75𝑥𝑥−ln (2𝑥𝑥) Obj. 4A.1 

Obj. 4A.2 
Practice 

4A.10 Find the derivative of 𝑓𝑓(𝑥𝑥) = ln � 𝑥𝑥−1
𝑥𝑥2+3

� Obj. 4A.2 Practice 

4A.11 Find the derivative of 𝑓𝑓(𝑥𝑥) = �sec(2𝑥𝑥5) + 3𝑥𝑥   Obj. 4A.1 
 

Practice 
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Lesson 4B: Logarithmic Differentiation 

Exercise # Exercise Prompt Objective(s) Problem 
Type 

4B.1 Use logarithmic differentiation to take the derivative of 𝑦𝑦 =
3𝑥𝑥�𝑥𝑥2−4+2�

2

𝑥𝑥−1
 

Obj. 4B.1 Fully Worked 

4B.2 Use logarithmic differentiation to take the derivative of 𝑦𝑦 =
�(𝑥𝑥2 − 4)5(2𝑥𝑥 − 1)3 

Obj. 4B.1 Fully Worked 

4B.3 Use logarithmic differentiation to take the derivative of 𝑦𝑦 =
(3𝑥𝑥)𝑥𝑥−1 

Obj. 4B.1 Fully Worked 

4B.4 Use logarithmic differentiation to take the derivative of 𝑦𝑦 =
(3𝑥𝑥−2)4

5𝑥𝑥2
 

Obj. 4B.1 Partially 
Worked 

4B.5 Use logarithmic differentiation to take the derivative of 𝑦𝑦 =
(sin 𝑥𝑥)3𝑥𝑥−2 

Obj. 4B.1 Partially 
Worked 

4B.6 Use logarithmic differentiation to take the derivative of 𝑦𝑦 =
𝑥𝑥2−4

(sin 𝑥𝑥)3
 

Obj. 4B.1 Practice 

4B.7 Use logarithmic differentiation to take the derivative of 𝑦𝑦 =
(5𝑥𝑥2 + 3)2𝑥𝑥 

Obj. 4B.1 Practice 

4B.8 For what types of functions is logarithmic differentiation 
helpful? When is it required? 

Obj. 4B.2 Practice 

4B.9 Take the derivative of 𝑦𝑦 = (3𝑥𝑥 + 4)2 + cos 𝑥𝑥. Logarithmic 
differentiation may or may not be useful.  

Obj. 4B.2 Fully Worked 

4B.10 Take the derivative of 𝑦𝑦 = (𝑥𝑥2 + 3)𝑥𝑥−4. Logarithmic 
differentiation may or may not be useful.  

Obj. 4B.2 Partially 
Worked 

4B.11 Take the derivative of 𝑦𝑦 = (𝑥𝑥2 − 4𝑥𝑥 + 7)5. Logarithmic 
differentiation may or may not be useful.  

Obj. 4B.2 Practice 

4B.12 Use logarithmic differentiation to derive the differentiation rule 
for 𝑦𝑦 = 𝑎𝑎𝑥𝑥. 

Obj. 4B.3 Practice 
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Lesson 4C: Inverse Trigonometric Functions 

Exercise # Exercise Prompt Objective(s) Problem 
Type 

4C.1 Find 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

 for 𝑦𝑦 = sin−1(𝑥𝑥2 − 3) Obj. 4C.2 Fully Worked 

4C.2 Find 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

 for 𝑦𝑦 = tan−1(𝑥𝑥) + cos (3𝑥𝑥) Obj. 4C.2 Fully Worked 

4C.3 Find 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

 for 𝑦𝑦 = tan−1 √𝑥𝑥2 − 5 Obj. 4C.2 Fully Worked 

4C.4 Find 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

 for 𝑦𝑦 = sec−1 𝑥𝑥 − √𝑥𝑥2 − 1, 𝑥𝑥 > 1 Obj. 4C.2 Fully 
Worked 

4C.5 Find 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

 for 𝑦𝑦 = (sin−1 𝑥𝑥 + tan−1 𝑥𝑥)3 Obj. 4C.2 Partially 
Worked 

4C.6 Find 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

 for 𝑦𝑦 = tan−1(ln 2𝑥𝑥) Obj. 4C.2 Practice 

4C.7 Find 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

 for 𝑦𝑦 = sec−1(cos2 8𝑥𝑥)  Obj. 4C.2 Practice 

4C.8 Find 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

 for 𝑦𝑦 = log2(𝑥𝑥2) + sin−1(𝑥𝑥2) Obj. 4C.2 Practice 

4C.9 Find 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

 for 𝑦𝑦 = arcsec (1 + 𝑥𝑥) Obj. 4C.2 Practice 

4C.10 Use implicit differentiation to derive the differentiation formula 
for 𝑦𝑦 = sec−1 𝑥𝑥. Carefully show all of your work. 

Obj. 4C.1 Fully Worked 

4C.11 Use implicit differentiation to derive the differentiation formula 
for 𝑦𝑦 = tan−1 𝑥𝑥. Carefully show all of your work. 

Obj. 4C.1 Practice 

4C.12 Use implicit differentiation to derive the differentiation formula 
for 𝑦𝑦 = sin−1 𝑥𝑥. Carefully show all of your work. 

Obj. 4C.1 Practice 
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APPENDIX C 

Learner Characteristics 
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Table C1 
 
Learner Characteristics for Calclulus I 
 

Consideration Response 

Physical Age Range: Adults. Approximately 18 – 40 in age. 

Educational Range: Undergraduate students. Many of them will be first semester 
freshman who are adjusting to the increased demands of a 
university course. Most learners are majoring in math or 
science. Most learners will continue to study calculus by taking 
Math 113 or Math 215 the semester following this course, 
although FDMath 112 is a terminal course for a small number of 
students. 

Gender: Learners are predominantly male. Typically only about 5-15% 
of the learners are female. 

Language Skills: Most of the learners are native English speakers, although there 
are typically 2-4 non-native English speakers in the course. 

Prerequisite 
Knowledge/Skills: 

Students are expected to have a solid foundational 
understanding of algebraic principles. In particular they should 
know: the concept of a function, function notation, graphs of 
functions, polynomial functions, rational functions, exponential 
functions, logarithmic functions, trigonometric functions, 
properties of logarithms, properties of exponents, trigonometric 
identities, and the unit circle. 

Students will have varying levels of perquisite knowledge/skills. 
Some students will have taken Math 109: Precalculus in the 
previous semester while other students will have had a 
significant amount of time pass between taking Precalculus and 
Calculus. For some students that length of time is as long as four 
or five years. 

Several of the learners will have taken Calculus in high school 
(either not for college credit or they did not score high enough 
on the AP test to qualify for college credit). Other learners will 
be retaking FDMath 112 for the second time after failing the 
course. 

Learner Attitudes: There are large variations in attitudes related to the course. 
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Table C1 
 
Learner Characteristics for Calclulus I 
 

Consideration Response 

However, most learners, as math and science majors, are 
interested in the topics in the course. In particular, many 
students are interested in how the topics in the course can be 
used in applications and in how they will use the content in their 
future courses. 

Learning Style 
Preferences: 

Learners are typically most familiar with lecture based math 
courses. They are familiar with traditional homework 
assignments given from a textbook. They are accustomed to the 
answers to the problems being provided in an answer guide in 
the back of the book.  

Attitudinal Factors: Many students are very busy with responsibilities outside of 
school such as families and work. Approximately half of the 
learners are married and many of them have children. This at 
times might impact their ability and desire to work on assigned 
coursework.  

Environmental 
Factors: 

The homework assignments will be delivered online through the 
learning management system. Most learners are familiar with 
the LMS will be familiar with the online environment. Like any 
other content delivered online, there is a strong possibility that 
technology issues will occur. Some learners are more equipped 
to solve technology issues than others. Help may need to be 
provided for some. 
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Instructional Objectives 
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Instructional Objectives 

Calculus I: Unit 2 – Differentiation 

Lesson 1: The Concept of the Derivative 

Lesson 1A: Tangent Lines 

• Objective 1A.1: After completing Lesson 1A, learners will be able to explain the 
concept of a secant line. 

• Objective 1A.2: After completing Lesson 1A, learners will be able to explain the 
concept of a tangent line. 

• Objective 1A.3: After completing Lesson 1A, learners will be able to compute the 
slope of a secant line when given a function and two points. 

• Objective 1A.4: After completing Lesson 1A, learners will be able to use the limit 
of a difference quotient to compute the slope of a tangent line when given a 
function and one point. 

• Objective 1A.5: After completing Lesson 1A, learners will be able to explain the 
connection between slopes and rates of change. 

Lesson 1B: Derivatives at a Point 

• Objective 1B.1: After completing Lesson 1B, learners will be able to state the 
definition of a derivative at a point. 

• Objective 1B.2: After completing Lesson 1B, learners will be able to compute the 
derivative of a function at a point using the definition of a derivative when given a 
function and a point. 

• Objective 1B.3: After completing Lesson 1B, learners will be able to use a graph 
to explain why non-linear functions have different derivatives at different points. 

• Objective 1B.4: After completing Lesson 1B, learners who are provided with the 
graph of a function will be able to identify points where a function is not 
differentiable. 

Lesson 1C: The Derivative as a Function 

• Objective 1C.1: After completing Lesson 1C, learners will be able to compute the 
derivative using the definition of a derivative when given a function. 

• Objective 1C.2: After completing Lesson 1C, learners who are provided with a 
graph of a function and its derivative will be able to identify which curve is the 
function and which curve is the derivative. 

 

 



 

 

159 

• Objective 1C.3: After completing Lesson 1C, learners will be able to use prime 
notation and Leibnitz notation for the derivative interchangeably. 

• Objective 1C.4: After completing Lesson 1C, learners will be able to find the 
equation of the tangent line for a given function at a given point. 

Lesson 2: Differentiation Rules 

Lesson 2A: Basic Differentiation Rules 

• Objective 2A.1: After completing Lesson 2A, learners will be able to take the 
derivative of polynomial functions. 

• Objective 2A.2: After completing Lesson 2A, learners will be able to take the 
derivative of power functions. 

• Objective 2A.3: After completing Lesson 2A, learners will be able to take the 
derivative of products of functions. 

• Objective 2A.4: After completing Lesson 2A, learners will be able to take the 
derivative of quotients of functions. 

• Objective 2A.5: After completing Lesson 2A, learners will be able to take the 
derivative of 𝑦𝑦 = 𝑒𝑒𝑥𝑥. 

• Objective 2A.6: After completing Lesson 2A, learners will be able to take the 
derivative of functions involving a combination of polynomial, power, and 
exponential functions. 

Lesson 2B: Trigonometric Rules 

• Objective 2B.1: After completing Lesson 2B, the learners will be able to take the 
derivative of functions involving trigonometric functions. 

• Objective 2B.2: After completing Lesson 2B, the learners will be able to find 
second derivatives of functions using the basic differentiation and/or 
trigonometric differentiation rules. 

Lesson 2C: The Chain Rule 

• Objective 2C.1: After completing Lesson 2C, the learners will be able to take the 
derivative of composed functions using the chain rule. 

• Objective 2C.2: After completing Lesson 2C, the learners will be able to take the 
derivative of functions made up of compositions of more than two functions using 
repeated applications of the same rule. 
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Lesson 3: Rates of Change 

Lesson 3A: Applications 

• Objective 3A.1: After completing Lesson 3A, when given a position function 
𝑠𝑠(𝑡𝑡), learners will be able to correctly analyze motion along a line.  

• Objective 3A.2: After completing Lesson 3A, given a cost function 𝐶𝐶(𝑥𝑥), learners 
will be able to use a marginal cost function. 

• Objective 3A.3: After completing Lesson 3A, learners will be able to interpret the 
rate of change for a given pair of independent and dependent variables. 

Lesson 3B: Implicit Differentiation 

• Objective 3B.1: After completing Lesson 3B, learners will be able to explain the 
difference between implicitly and explicitly defined equations. 

• Objective 3B.2: After completing Lesson 3B, learners will be able to find the first 
derivative of an implicitly defined equation using implicit differentiation. 

• Objective 3B.3: After completing Lesson 3B, learners will be able to find the 
equation of the tangent line for an implicitly defined function. 

• Objective 3B.4: After completing Lesson 3B, learners will be able to find the 
equation of the normal line for an implicitly defined function. 

• Objective 3B.5: After completing Lesson 3B, learners who are given the graph of 
a curve will be able to sketch the tangent line and the normal line at a given point 
on the graph. 

• Objective 3B.6: After completing Lesson 3B, learners will be able to find the 
second derivative of an implicitly defined equation using implicit differentiation. 

Lesson 3C: Related Rates  

• Objective 3C.1: After completing Lessons 3C and 3D, learners will be able to 
solve related rates problems. 

Lesson 4: Derivatives of Inverses 

Lesson 4A: Exponential and Logarithmic Functions 

• Objective 4A.1: After completing Lesson 4A, learners will be able to take the 
derivative of exponential functions. 

• Objective 4A.2: After completing Lesson 4A, learners will be able to take the 
derivative of logarithmic functions. 
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Lesson 4B: Logarithmic Differentiation 

• Objective 4B.1: After completing Lesson 4B, learners will be able to use 
logarithmic differentiation to take the derivative of functions. 

• Objective 4B.2: After completing Lesson 4B, learners will be able to identify 
functions where logarithmic differentiation would be optimal for taking the 
derivative. 

• Objective 4B.3: After completing Lesson 4B, learners will be able to derive the 
differentiation rule for 𝑦𝑦 = 𝑎𝑎𝑥𝑥 using logarithmic differentiation. 

Lesson 4C: Inverse Trigonometric Functions 

• Objective 4C.1: After completing Lesson 4C, learners will be able to derive the 
differentiation rules for the inverse trigonometric functions using implicit 
differentiation. 

• Objective 4C.2: After completing Lesson 4C, learners will be able to take the 
derivative of functions involving inverse trigonometric functions. 
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APPENDIX E 

Survey Results – Instructional Objectives Survey 
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Instructional Objectives Survey Results 
 
Lesson 1A 
The objectives for this lesson accurately describe what 
a student should be expected to learn in this lesson. 

Strongly 
Disagree 

Disagree Agree Strongly 
Agree 

0 0 1 2 

Do you have any suggestions for improving the 
objectives for this sub-lesson? 

Is it necessary to delineate so much? It seems 
that you could combine these down to just one or 
two considering that this is a prerequisite 
knowledge. 
 

Lesson 1B 
The objectives for this lesson accurately describe what 
a student should be expected to learn in this lesson. 

Strongly 
Disagree 

Disagree Agree Strongly 
Agree 

0 0 1 2 

Do you have any suggestions for improving the 
objectives for this sub-lesson? 

None. 
 
 

Lesson 1C 
The objectives for this lesson accurately describe what 
a student should be expected to learn in this lesson. 

Strongly 
Disagree 

Disagree Agree Strongly 
Agree 

0 0 1 1 

Do you have any suggestions for improving the 
objectives for this sub-lesson? 

None. 
 
 

Lesson 2A 
The objectives for this lesson accurately describe what 
a student should be expected to learn in this lesson. 

Strongly 
Disagree 

Disagree Agree Strongly 
Agree 

0 0 0 3 

Do you have any suggestions for improving the 
objectives for this sub-lesson? 

None. 
 
 

Lesson 2B 
The objectives for this lesson accurately describe what 
a student should be expected to learn in this lesson. 

Strongly 
Disagree 

Disagree Agree Strongly 
Agree 

0 1 0 2 

Do you have any suggestions for improving the 
objectives for this sub-lesson? 

I think it might be important to tie the trig 
derivative rules back to the definition of the 
derivative. Students should be able to show how 
to generate these rules from the definition. Also, 
they could verify the accuracy of these rules 
graphically. 
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Lesson 2C 
The objectives for this lesson accurately describe what 
a student should be expected to learn in this lesson. 

Strongly 
Disagree 

Disagree Agree Strongly 
Agree 

0 0 0 3 

Do you have any suggestions for improving the 
objectives for this sub-lesson? 

Wording on Objective 2C.2: When I first read 
this I was thinking that you meant 2nd and 3rd 
derivatives—but I think you mean extending the 
chain rule to involve more than two functions in 
the composition. Maybe consider a different 
wording to make it more clear. 
 

Lesson 3A 
The objectives for this lesson accurately describe what 
a student should be expected to learn in this lesson. 

Strongly 
Disagree 

Disagree Agree Strongly 
Agree 

0 0 1 2 

Do you have any suggestions for improving the 
objectives for this sub-lesson? 
 

None. 

Lesson 3B 
The objectives for this lesson accurately describe what 
a student should be expected to learn in this lesson. 

Strongly 
Disagree 

Disagree Agree Strongly 
Agree 

0 0 1 2 

Do you have any suggestions for improving the 
objectives for this sub-lesson? 

Objective 3B.4 - After reading the tasks, I do not 
know that this is an important objective. You 
might consider deleting it. But, if this is 
considered an application of the derivative, then 
leave it.  
 
Objective 3B.5 - This objective is very similar to 
previous objectives, other than the normal part. 
Is it necessary? 
 

Lesson 3C 
The objectives for this lesson accurately describe what 
a student should be expected to learn in this lesson. 

Strongly 
Disagree 

Disagree Agree Strongly 
Agree 

0 0 1 2 

Do you have any suggestions for improving the 
objectives for this sub-lesson? 

Do you also want to focus on how students are 
able to set-up the problem? 
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Lesson 4A 
The objectives for this lesson accurately describe what 
a student should be expected to learn in this lesson. 

Strongly 
Disagree 

Disagree Agree Strongly 
Agree 

0 1 0 2 

Do you have any suggestions for improving the 
objectives for this sub-lesson? 

I would teach this objective after logarithmic 
differentiation. These derivative rules can be 
derived using implicit and logarithmic 
differentiation. I think that understanding how to 
use implicit differentiation to do these 
derivatives is a great connection to implicit and 
logarithmic differentiation and will help the 
students understand better how derivative rules 
are created. I would not just want them to do 
these derivatives with memorized rules. Also, I 
like to include exponential functions like x^x at 
this point. 
 

Lesson 4B 
The objectives for this lesson accurately describe what 
a student should be expected to learn in this lesson. 

Strongly 
Disagree 

Disagree Agree Strongly 
Agree 

 0 0  0 3  

Do you have any suggestions for improving the 
objectives for this sub-lesson? 

None. 
 
 

Lesson 4C 
The objectives for this lesson accurately describe what 
a student should be expected to learn in this lesson. 

Strongly 
Disagree 

Disagree Agree Strongly 
Agree 

0  1 0 2 

Do you have any suggestions for improving the 
objectives for this sub-lesson? 

Objective 4C.1 - Do you need justification as to 
why you only focus on three of them? 

 
I think it is necessary at this point to demonstrate 
why we need these derivatives, so I would 
include some practical applications. I really agree 
with the fact that you expect them to derive these 
inverse trig derivatives and not just memorize 
them. 
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Task Analysis 

 This task analysis lists the tasks that are required in order for a learner to meet the 

objectives for the unit on differentiation in a FDMath 112: Calculus I course. Unit 2, the unit 

covering differentiation, will comprise 3 weeks of instruction. The instruction has been divided 

into four lessons, each consisting of four sub-lessons as shown in Table E1. A task analysis was 

done for each of the twelve sub-lessons. For each objective, a list of tasks was given. Then each 

task was classified as to knowledge type, difficulty, duration, and importance. 

Table F1. 
 
Lessons and Sub-lessons in Unit 2 
 
Unit 2: Differentiation 
 
Lesson 1: The Concept of the Derivative 
 Lesson 1A: Tangent Lines  
 Lesson 1B: Derivatives at a Point  
 Lesson 1C: The Derivative as a Function 

 
 

Lesson 2: Differentiation Rules 
 Lesson 2A: Basic Differentiation Rules  
 Lesson 2B: Trigonometric Rules  
 Lesson 2C: The Chain Rule 

 
 

Lesson 3: Rates of Change 
 Lesson 3A: Applications  
 Lesson 3B: Implicit Differentiation  
 Lesson 3C: Related Rates 

 
 

Lesson 4: Derivatives of Inverses 
 Lesson 4A: Exponential and Logarithmic Functions  
 Lesson 4B: Logarithmic Differentiation  
 Lesson 4C: Inverse Trigonometric Functions  
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Task Analysis for Lesson 1A: Tangent Lines 
 

Objectives  
Tasks 

Knowledge 
Type 

(Declarative, 
Procedural, 
Structural) 

Difficulty 
(Low, 

Medium, 
or High) 

Duration 
(Low, 

Medium, 
or High) 

Importance 
(Low, Medium, 

or High) 

Objective 1A.1: After completing Lesson 1A, learners will be able to explain the concept of a secant line. 
Correctly explain that a secant line is a line 
connecting two points on a curve. 

D L L H 

Correctly illustrate a secant line with a drawing. D L L H 
Objective 1A.2: After completing Lesson 1A, learners will be able to explain the concept of a tangent line. 
Correctly describe how to approximate a tangent line 
by gradually decreasing the distance between two 
points used to form a secant line. 

P M L H 

Correctly illustrate a tangent line with a drawing. D M L H 
Explain how a tangent line is different from a secant 
line. 

S M L H 

Objective 1A.3: After completing Lesson 1A, learners will be able to compute the slope of a secant line 
when given a function and two points. 
When given a function 𝑓𝑓(𝑥𝑥) and two points 𝑥𝑥 = 𝑎𝑎 
and 𝑥𝑥 = 𝑏𝑏, correctly find 𝑓𝑓(𝑎𝑎) and 𝑓𝑓(𝑏𝑏). 

P L L H 

After finding 𝑓𝑓(𝑎𝑎) and 𝑓𝑓(𝑏𝑏), correctly compute ∆𝑦𝑦 =
𝑓𝑓(𝑏𝑏) − 𝑓𝑓(𝑎𝑎). 

P L L H 

Correctly compute ∆𝑥𝑥 = 𝑏𝑏 − 𝑎𝑎 P L L H 
Computing the slope of the tangent line as ∆𝑦𝑦

∆𝑥𝑥
=

𝑓𝑓(�)−𝑓𝑓(𝑎𝑎)
𝑏𝑏−𝑎𝑎

 

P M M H 

Objective 1A.4: After completing Lesson 1A, learners will be able to use the limit of a difference quotient 
to compute the slope of a tangent line when given a function and one point. 
When given a function 𝑓𝑓(𝑥𝑥) and a point 𝑥𝑥 = �, 
correctly form the difference quotient 𝑓𝑓(𝑥𝑥+ℎ)−𝑓𝑓(𝑥𝑥)

ℎ
. 

P H M H 

After forming the difference quotient, correctly 
evaluating the limit lim

ℎ→0

𝑓𝑓(𝑥𝑥+ℎ)−𝑓𝑓(𝑥𝑥)
ℎ

. 
P M M H 

Objective 1A.5: After completing Lesson 1A, learners will be able to explain the connection between 
slopes and rates of change. 
Correctly explain that the slope of a secant line 
represents an average rate of change. 

S M L H 

Correctly explain that the slope of a tangent line 
represents an instantaneous rate of change. 

S M L H 
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Task Analysis for Lesson 1B: Derivatives at a Point 
 

Objectives  
Tasks 

Knowledge 
Type 

(Declarative, 
Procedural, 
Structural) 

Difficulty 
(Low, 

Medium, 
or High) 

Duration 
(Low, 

Medium, 
or High) 

Importance 
(Low, Medium, 

or High) 

Objective 1B.1: After completing Lesson 1B, learners will be able to state the definition of a derivative at 
a point. 
Correctly state that the definition of a derivative is: 
𝑓𝑓′(𝑎𝑎) = lim

ℎ→0

𝑓𝑓(𝑎𝑎+ℎ)−𝑓𝑓(𝑎𝑎)
ℎ

. 
D L L H 

Correctly state that the derivative gives the slope of 
the tangent line to the curve at the point 𝑥𝑥 = 𝑎𝑎. 

S L L H 

Correctly state that the derivative gives the 
instantaneous rate of change of a function at a point. 

S L L H 

Correctly state that the derivative gives the slope of 
the curve at a point. 

S L L H 

Objective 1B.2: After completing Lesson 1B, learners will be able to compute the derivative of a function 
at a point using the definition of a derivative when given a function and a point 
When given a function 𝑓𝑓(𝑥𝑥) and a point 𝑥𝑥 = 𝑎𝑎, 
correctly evaluate the difference quotient 𝑓𝑓(𝑎𝑎+ℎ)−𝑓𝑓(𝑎𝑎)

ℎ
 

P H M H 

Correctly evaluate the limit of the difference quotient 
as ℎ → 0. 

P M M H 

Objective 1B.3: After completing Lesson 1B, learners will be able to use a graph to explain why non-
linear functions have different derivatives at different points. 
When given a graph of a function and a point, 
correctly represent the derivative at the point by 
drawing a tangent line and describing the derivative as 
the slope of the tangent line. 

S M L M 

When given a graph of a non-linear function and 
several points, correctly drawing different tangent 
lines and explaining that the derivative is different 
because the slopes are different. 

S M M M 

When given the graph of a non-linear function and 
two points that have the same derivative, correctly 
explaining that the derivative is the same because the 
slope of the tangent lines are the same (although the 
tangent lines are different). 

S H M M 

Objective 1B.4: After completing Lesson 1B, learners who are provided with the graph of a function will 
be able to identify points where a function is not differentiable. 
Correctly identify cusps as points where a function is 
not differentiable. 

D L L M 

Correctly identify sharp corners as points where a 
function is not differentiable. 

D L L M 

Correctly identify vertical tangents as points where a 
function is not differentiable. 

D L L M 

Correctly identify discontinuities as points where a 
function is not differentiable. 

D L L M 
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Task Analysis for Lesson 1C: The Derivative as a Function 
 

Objectives  
Tasks 

Knowledge 
Type 

(Declarative, 
Procedural, 
Structural) 

Difficulty 
(Low, 

Medium, 
or High) 

Duration 
(Low, 

Medium, 
or High) 

Importance 
(Low, Medium, 

or High) 

Objective 1C.1: After completing Lesson 1C, learners will be able to compute the derivative using the 
definition of a derivative when given a function. 
When given a function 𝑓𝑓(𝑥𝑥), correctly evaluate the 
difference quotient 𝑓𝑓(𝑥𝑥+ℎ)−𝑓𝑓(𝑥𝑥)

ℎ
 

P H M H 

Correctly evaluate the limit of the difference quotient 
as ℎ → 0. 

P M M H 

Objective 1C.2: After completing Lesson 1C, learners who are provided with a graph of a function and its 
derivative will be able to identify which curve is the function and which curve is the derivative. 
When provided with the graph a function and the 
graph of its derivative, correctly connect horizontal 
tangent lines with zeroes of the derivative. 

S H M M 

Correctly connect positive values of the derivative 
with an increasing function. 

S H M M 

Correctly connect negative values of the derivative 
with a decreasing function.  

S H M M 

Correctly identify use the above features to 
distinguish between the graph of the function and the 
graph of its derivative. 

S H M M 

Objective 1C.3: After completing Lesson 1C, learners will be able to use prime notation and Leibnitz 
notation for the derivative interchangeably. 
Correctly use 𝑓𝑓′(𝑥𝑥) as the notation for the derivative 
of 𝑓𝑓(𝑥𝑥). 

D L L M 

Correctly use 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

 as the notation for the derivative of 
𝑦𝑦(𝑥𝑥). 

D L L M 

Correctly use 𝑓𝑓′′(𝑥𝑥) as the notation for the second 
derivative of 𝑓𝑓(𝑥𝑥). 

D L L M 

Correctly use 𝑑𝑑
2𝑦𝑦

𝑑𝑑𝑥𝑥2
 as the notation for the second 

derivative of 𝑦𝑦(𝑥𝑥). 

D M L M 

Correctly use 𝑑𝑑
𝑑𝑑𝑑𝑑
� 𝑓𝑓(𝑥𝑥)� as notation for the derivative 

of 𝑓𝑓(𝑥𝑥). 

D M L M 

Objective 1C.4: After completing Lesson 1C, learners will be able to find the equation of the tangent line 
for a given function at a given point. 
Given a function 𝑓𝑓(𝑥𝑥), correctly compute 𝑓𝑓′(𝑥𝑥) and 
identify it as the general equation for the slope of the 
tangent line. 

P M M H 

After finding 𝑓𝑓′(𝑥𝑥) and given a point 𝑥𝑥 = 𝑎𝑎, correctly 
compute 𝑓𝑓′(𝑎𝑎) and identify it as the slope of the 
tangent line at the point 𝑥𝑥 = 𝑎𝑎. 

P M M H 

Correctly computing the equation of the tangent line 
using the point-slope equation for a line. 

P L M H 
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Task Analysis for Lesson 2A: Basic Differentiation Rules 
 

Objectives  
Tasks 

Knowledge 
Type 

(Declarative, 
Procedural, 
Structural) 

Difficulty 
(Low, 

Medium, 
or High) 

Duration 
(Low, 

Medium, or 
High) 

Importance 
(Low, 

Medium, or 
High) 

Objective 2A.1: After completing Lesson 2A, learners will be able to take the derivative of polynomial 
functions. 
Correctly take the derivative of constant functions 
using the constant rule: 𝑑𝑑

𝑑𝑑𝑑𝑑
(𝑐𝑐) = 0. 

P L L H 

Correctly take the derivative of 𝑥𝑥𝑛𝑛 using the power 
rule: 𝑑𝑑

𝑑𝑑𝑑𝑑
(𝑥𝑥𝑛𝑛) = 𝑛𝑛𝑥𝑥𝑛𝑛−1 where 𝑛𝑛 is a positive integer. 

P L L H 

Correctly take the derivative of constant multiples of 
functions using the constant multiple rule: 
𝑑𝑑
𝑑𝑑𝑑𝑑
�𝑘𝑘𝑘𝑘(𝑥𝑥)� = 𝑘𝑘𝑓𝑓′(𝑥𝑥). 

P L L H 

Correctly take the derivative of sums using the sum 
rule: 𝑑𝑑

𝑑𝑑𝑑𝑑
�𝑓𝑓(𝑥𝑥) + 𝑔𝑔(𝑥𝑥)� = 𝑓𝑓′(𝑥𝑥) + 𝑔𝑔′(𝑥𝑥). 

P L L H 

Correctly take the derivative of differences using the 
difference rule: 𝑑𝑑

𝑑𝑑𝑑𝑑
�𝑓𝑓(𝑥𝑥) − 𝑔𝑔(𝑥𝑥)� = 𝑓𝑓′(𝑥𝑥) − 𝑔𝑔′(𝑥𝑥). 

P L L H 

Objective 2A.2: After completing Lesson 2A, learners will be able to take the derivative of power 
functions. 
Correctly take the derivative of functions of the form 
𝑦𝑦 = 𝑥𝑥𝑛𝑛, where 𝑛𝑛 is any real number, using the power 
rule: 𝑑𝑑

𝑑𝑑𝑑𝑑
(𝑥𝑥𝑛𝑛) = 𝑛𝑛𝑥𝑥𝑛𝑛−1. 

P L L H 

Objective 2A.3: After completing Lesson 2A, learners will be able to take the derivative of products of 
functions. 
Correctly identify a function as a product. S H M H 
Correctly take the derivative using the product rule: 
𝑑𝑑
𝑑𝑑𝑑𝑑
�𝑓𝑓(𝑥𝑥)𝑔𝑔(𝑥𝑥)� = 𝑓𝑓(𝑥𝑥)𝑔𝑔′(𝑥𝑥) + 𝑓𝑓′(𝑥𝑥)𝑔𝑔(𝑥𝑥). 

P M M H 

Objective 2A.4: After completing Lesson 2A, learners will be able to take the derivative of quotients of 
functions 
Correctly identify functions formed by quotients. S M M H 
Correctly take the derivative using the quotient rule: 
𝑑𝑑
𝑑𝑑𝑑𝑑
�𝑓𝑓(𝑥𝑥)
𝑔𝑔(𝑥𝑥)

� = 𝑔𝑔(𝑥𝑥)𝑓𝑓′(𝑥𝑥)−𝑓𝑓(𝑥𝑥)𝑔𝑔′(𝑥𝑥)
𝑔𝑔(𝑥𝑥)2

 
P M M H 

Objective 2A.5: After completing Lesson 2A, learners will be able to take the derivative of 𝑦𝑦 = 𝑒𝑒𝑥𝑥. 
Correctly take the derivative of 𝑦𝑦 = 𝑒𝑒𝑥𝑥 using the rule 
𝑑𝑑
𝑑𝑑𝑑𝑑

(𝑒𝑒𝑥𝑥) = 𝑒𝑒𝑥𝑥. 
P M M H 

Objective 2A.6: After completing Lesson 2A, learners will be able to take the derivative of functions 
involving a combination of polynomial, power, and exponential functions. 
Correctly identify which differentiation rules are 
required to take the derivative of a given function. 

S H M H 

Correctly apply two or more differentiation rules for 
the same function. 

P M M H 
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Task Analysis for Lesson 2B: Trigonometric Rules 
 

Objectives  
Tasks 

Knowledge 
Type 

(Declarative, 
Procedural, 
Structural) 

Difficulty 
(Low, 

Medium, 
or High) 

Duration 
(Low, 

Medium, or 
High) 

Importance 
(Low, 

Medium, or 
High) 

Objective 2B.1: After completing Lesson 2B, the learners will be able to take the derivative of functions 
involving trigonometric functions. 
Correctly take the derivative of equations involving 
the sine function. 

P L M H 

Correctly take the derivative of equations involving 
the cosine function. 

P L M H 

Correctly take the derivative of equations involving 
the tangent function. 

P M M H 

Correctly take the derivative of equations involving 
the cosecant function. 

P M M H 

Correctly take the derivative of equations involving 
the secant function. 

P M M H 

Correctly take the derivative of equations involving 
the cotangent function. 

P M M H 

Correctly take the derivative of equations formed 
from a combination of polynomial, power, 𝑒𝑒𝑥𝑥, and 
trigonometric functions. 

P H H H 

Objective 2B.2: After completing Lesson 2B, the learners will be able to find second derivatives of 
functions using the basic differentiation and/or trigonometric differentiation rules. 
Correctly take the second derivative of polynomial 
functions. 

P L L H 

Correctly take the second derivative of power 
functions. 

P L L H 

Correctly take the second derivative of 𝑦𝑦 = 𝑒𝑒𝑥𝑥 P L L H 
Correctly take the second derivative of trigonometric 
functions. 

P M M H 

Correctly take the second derivative of equations 
formed from a combination of polynomial, power, 𝑒𝑒𝑥𝑥, 
and trigonometric functions. 

P H M H 
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Task Analysis for Lesson 2C: The Chain Rule 
 

Objectives  
Tasks 

Knowledge 
Type 

(Declarative, 
Procedural, 
Structural) 

Difficulty 
(Low, 

Medium, 
or High) 

Duration 
(Low, 

Medium, or 
High) 

Importance 
(Low, 

Medium, or 
High) 

Objective 2C.1: After completing Lesson 2C, the learners will be able to take the derivative of 
composed functions using the chain rule. 
Correctly identify an equation as the composition of 
two functions. 

S H H H 

Correctly take the derivative of composed functions 
using the chain rule: 𝑑𝑑

𝑑𝑑𝑑𝑑
�𝑓𝑓�𝑔𝑔(𝑥𝑥)�� = 𝑓𝑓′�𝑔𝑔(𝑥𝑥)�𝑔𝑔′(𝑥𝑥). 

P M H H 

Objective 2C.2: After completing Lesson 2C, the learners will be able to take the derivative of functions 
made up of compositions of more than two functions using repeated applications of the same rule. 
Correctly identify an equation as the composition of 
three or more functions 

S H H H 

Correctly use repeated applications of the chain rule 
to take the derivative of equations that are the 
composition of three or more functions. 

P H H H 

Correctly identify which of the differentiation rules 
learned so far are required to take the derivative of an 
equation formed by a combination or composition of 
polynomial, power, 𝑒𝑒𝑥𝑥, and trigonometric functions. 

S H H H 

Correctly take the derivative of an equation formed by 
a combination or composition of polynomial, power, 
𝑒𝑒𝑥𝑥, and trigonometric functions. 

P H H H 
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Task Analysis for Lesson 3A: Applications 
 

Objectives  
Tasks 

Knowledg
e Type 

(Declarati
ve, 

Procedura
l, 

Structural) 

Difficult
y 

(Low, 
Medium, 
or High) 

Duration 
(Low, 

Medium, 
or High) 

Importan
ce 

(Low, 
Medium, 
or High) 

Objective 3A.1: After completing Lesson 3A, when given a position function 𝑠𝑠(𝑡𝑡), learners will be able 
to correctly analyze motion along a line. 
Given a position function 𝑠𝑠(𝑡𝑡) and a time interval 𝑎𝑎 ≤
𝑡𝑡 ≤ 𝑏𝑏, correctly find the displacement of the object 
over the given time interval. 

P L L M 

Given a position function 𝑠𝑠(𝑡𝑡), and a time 
interval � ≤ 𝑡𝑡 ≤ 𝑏𝑏, correctly find the average 
velocity of the object over the given time interval. 

P M L M 

Given a position function 𝑠𝑠(𝑡𝑡), correctly find and 
interpret the velocity function.  

P M M H 

Given a position function 𝑠𝑠(𝑡𝑡), correctly find and 
interpret the acceleration function. 

P M M H 

Given a position function 𝑠𝑠(𝑡𝑡), correctly find and 
interpret the jerk function. 

P M L L 

Given a position function 𝑠𝑠(𝑡𝑡), correctly find and 
interpret the speed function. 

P M M H 

Correctly evaluate the velocity, acceleration, jerk, or 
speed functions at a given point in time. 

P M M H 

Objective 3A.2: After completing Lesson 3A, given a cost function 𝐶𝐶(𝑥𝑥), learners will be able to use a 
marginal cost function. 
Given a cost function 𝐶𝐶(𝑥𝑥), correctly compute the 
cost of producing 𝑥𝑥 = 𝑎𝑎 items. 

P L L 
 

L 

Given the cost function 𝐶𝐶(𝑥𝑥), correctly compute the 
average cost of producing 𝑥𝑥 = 𝑎𝑎 items. 

P M L L 

Given a cost function 𝐶𝐶(𝑥𝑥), correctly compute the 
marginal cost at a production level of 𝑥𝑥 = 𝑎𝑎 items. 

P M M L 

Correctly explain that the marginal cost is roughly the 
cost of producing one more item at that particular 
production level. 

S H M L 

Objective 3A.3: After completing Lesson 3A, learners will be able to interpret the rate of change for a 
given pair of independent and dependent variables. 
Given an independent variable, 𝑥𝑥, and a dependent 
variable, 𝑦𝑦, correctly interpret the derivative as the 
instantaneous rate of change of 𝑦𝑦 with respect to 𝑥𝑥. 

D M L M 

Correctly interpret the meaning of instantaneous rate 
of change when provided with a real-world context 
for the independent variable, 𝑥𝑥, and the dependent 
variable, 𝑦𝑦. 
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Task Analysis for Lesson 3B: Implicit Differentiation 
 

Objectives  
Tasks 

Knowledge 
Type 

(Declarative, 
Procedural, 
Structural) 

Difficulty 
(Low, 

Medium, or 
High) 

Duration 
(Low, 

Medium, 
or High) 

Importance 
(Low, 

Medium, 
or High) 

Objective 3B.1: After completing Lesson 3B, learners will be able to explain the difference between 
implicitly and explicitly defined equations. 
Correctly define explicitly defined equations as 
equations that are written in the form 𝑦𝑦 = 𝑓𝑓(𝑥𝑥). 

D L L M 

Correctly define implicitly defined equations as 
equations that are written in the form 𝑓𝑓(𝑥𝑥, 𝑦𝑦) =
𝑔𝑔(𝑥𝑥, 𝑦𝑦). 

D L L M 

Correctly identify a given equation as being explicitly 
or implicitly defined. 

D L L M 

Objective 3B.2: After completing Lesson 3B, learners will be able to find the first derivative of an 
implicitly defined equation using implicit differentiation. 
Correctly differentiate each side of an implicitly 
defined equation. 

P H M H 

Correctly use algebra to solve for 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

. P M M H 

Objective 3B.3: After completing Lesson 3B, learners will be able to find the equation of the tangent 
line for an implicitly defined function. 
Given an implicitly defined function and a point, 
correctly find 𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑
. 

P M M H 

Evaluate 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

 at the given point to find the slope of the 
tangent line. 

P M M H 

Correctly use the point-slope equation of a line to find 
the equation of the tangent line. 

P M M H 

Objective 3B.4: After completing Lesson 3B, learners will be able to find the equation of the normal 
line for an implicitly defined function. 
Correctly use the fact that the normal line is the 
negative reciprocal of the slope of the tangent line to 
find the slope of the normal line. 

P L L L 

Correctly use the point-slope equation of a line to find 
the equation of the normal line. 

P M M L 

Objective 3B.5: After completing Lesson 3B, learners who are given the graph of a curve will be able to 
sketch the tangent line and the normal line at a given point on the graph. 
Correctly sketch the tangent line at the given point, 
either by hand or using technology. 

S L L H 

Correctly sketch the normal line at the given point, 
either by hand or using technology. 

S L L L 

Objective 3B.6: After completing Lesson 3B, learners will be able to find the second derivative of an 
implicitly defined equation using implicit differentiation. 
After finding 𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑
, correctly differentiate both sides of the 

equation to find 𝑑𝑑
2𝑦𝑦

𝑑𝑑𝑥𝑥2
. 

P H M M 

Substitute 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

 into the equation for 𝑑𝑑
2𝑦𝑦

𝑑𝑑𝑥𝑥2
. P M M M 

Correctly simplify the equation for 𝑑𝑑
2𝑦𝑦

𝑑𝑑𝑥𝑥2
. P H M M 
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Task Analysis for Lessons 3C: Related Rates 
 

Objectives  
Tasks 

Knowledge 
Type 

(Declarative, 
Procedural, 
Structural) 

Difficulty 
(Low, 

Medium, or 
High) 

Duration 
(Low, 

Medium, or 
High) 

Importanc
e 

(Low, 
Medium, 
or High) 

Objective 3C.1: After completing Lesson 3C, learners will be able to solve related rates problems. 
Correctly solve related-rates problems that involve 
standard geometric formulas (such as area, volume, 
surface area, etc.) 

P M H M 

Correctly solve related-rates problems that involve the 
Pythagorean Theorem. 

P M H M 

Correctly solve related-rates problems that involve 
trigonometric functions. 

P H H M 

Correctly solve related-rates problems that involve 
similar triangles 

P H H M 

Correctly identify the correct approach to solving a 
given related-rates problem. 

S H H M 
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Task Analysis for Lesson 4A: Exponential and Logarithmic Functions 
 

Objectives  
Tasks 

Knowledge 
Type 

(Declarative, 
Procedural, 
Structural) 

Difficulty 
(Low, 

Medium, or 
High) 

Duration 
(Low, 

Medium, or 
High) 

Importanc
e 

(Low, 
Medium, 
or High) 

Lesson 4A.1: After completing Lesson 4A, learners will be able to take the derivative of exponential 
functions. 
Correctly take the derivative of exponential functions 
of the form 𝑦𝑦 = 𝑎𝑎𝑥𝑥 using the rule 𝑑𝑑

𝑑𝑑𝑑𝑑
(𝑎𝑎𝑥𝑥) = 𝑎𝑎𝑥𝑥 ln𝑎𝑎. 

P M M H 

Correctly take the derivative of functions that are a 
combination or composition of polynomial, power, 
exponential, and trigonometric functions. 

P H M H 

Lesson 4A.2: After completing Lesson 4A, learners will be able to take the derivative of logarithmic 
functions. 
Correctly take the derivative of the natural log 
function using the rule 𝑑𝑑

𝑑𝑑𝑑𝑑
(ln 𝑥𝑥) = 1

𝑥𝑥
. 

P M M H 

Correctly take the derivative of the general 
logarithmic functions using the rule 𝑑𝑑

𝑑𝑑𝑑𝑑
(log𝑏𝑏 𝑥𝑥) =

1
𝑥𝑥 ln 𝑏𝑏

. 

P H M H 

Correctly take the derivative of functions that are a 
combination or composition of polynomial, power, 
exponential, logarithmic, and trigonometric functions. 

P H H H 
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Task Analysis for Lessons 4B: Logarithmic Differentiation 
 

Objectives  
Tasks 

Knowledge 
Type 

(Declarative, 
Procedural, 
Structural) 

Difficulty 
(Low, 

Medium, or 
High) 

Duration 
(Low, 

Medium, or 
High) 

Importance 
(Low, 

Medium, or 
High) 

Lesson 4B.1: After completing Lesson 4B, learners will be able to use logarithmic differentiation to take 
the derivative of functions 
Correctly take then natural log of both sides of an 
equation. 

P L M M 

Correctly use properties of logarithms to rewrite the 
equation as the sum and difference of multiples of 
logarithms. 

P M M M 

Correctly use implicit differentiation to find 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

. P M M M 

Correctly substitute the original equation for 𝑦𝑦 in for 
the 𝑦𝑦 in the equation in 𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑
. 

P M M M 

Lesson 4B.2: After completing Lesson 4B, learners will be able to identify functions where logarithmic 
differentiation would be optimal for taking the derivative.  
Correctly identify functions with quotients of products 
as being functions where logarithmic differentiation 
may be beneficial. 

S M M M 

Correctly identify functions with a variable base 
raised to a variable power as ones where logarithmic 
differentiation is necessary for taking the derivative. 

S H M M 

Lesson 4B.3: After completing Lesson 4B, learners will be able to derive the differentiation rule for 𝑦𝑦 =
𝑎𝑎𝑥𝑥 using logarithmic differentiation. 
Correctly use logarithmic differentiation to find the 
derivative of 𝑦𝑦 = 𝑎𝑎𝑥𝑥. 

P M M M 
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Task Analysis for Lessons 4C: Inverse Trigonometric Functions 
 

Objectives  
Tasks 

Knowledge 
Type 

(Declarative, 
Procedural, 
Structural) 

Difficulty 
(Low, 

Medium, or 
High) 

Duration 
(Low, 

Medium, or 
High) 

Importance 
(Low, 

Medium, or 
High) 

Lesson 4C.1: After completing Lesson 4C, learners will be able to derive the differentiation rules for the 
inverse trigonometric functions using implicit differentiation. 
Correctly derive the differentiation rule for 
𝑑𝑑
𝑑𝑑𝑑𝑑

(sin−1 𝑥𝑥). 
S M M M 

Correctly derive the differentiation rule for 
𝑑𝑑
𝑑𝑑𝑑𝑑

(tan−1 𝑥𝑥). 
S M M M 

Correctly derive the differentiation rule for 
𝑑𝑑
𝑑𝑑𝑑𝑑

(sec−1 𝑥𝑥). 
S H M M 

Lesson 4C.1: After completing Lesson 4C, learners will be able to take the derivative of functions 
involving inverse trigonometric functions. 
Correctly take the derivative of inverse trigonometric 
functions. 

P M M H 

Correctly take the derivative of functions that are a 
combination or composition of polynomial, power, 
exponential, logarithmic, trigonometric, and inverse 
trigonometric functions. 

P H H H 
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Learning Hierarchy 
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Learning Hierarchy 
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APPENDIX H 

Worked Example Wireframe 
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Worked Example Wireframe 

 

CAPTIVATE SKIN 
Size: 640 x 480 
Skin: Cool Blue (modified) 
Playback Controls: On 

• Playbar overlay 
• Play 
• Forward 
• Back 
• Mute 
• Progress Bar 

Table of Contents: Off 
Borders: Show borders 

• All sides 
• Rounded corners 
• Color #003D54 
• Width: 15 

Auto Play: Off 
 
 
 

 

POWERPOINTCONTENT 
SLIDE: 
Slide Size: Standard (4:3) 
Title:  

• Font: Cambria  
• Font Size: 30 
• Blue background  
• Blue, Accent 1, 80% 

lighter 
Body: 

• Font: Cambria 
• Font Size: 28 
• White background 

Math Equations: 
• Font: Cambria Math 
• Font Size: 28 
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SCREEN CAPTURE OF 
SMARTPEN SCREENCASTS 
Recorded using Captivate 
Size: 640 x 480 
Zoom: 150% 
Margins: Leave 2 lines at top and 
one line at bottom to 
accommodate question prompt 
and playback controls. 
 
 
 

 

CONTENT WITHIN SKIN 
Question Prompt: Added as an 
image on the Master Slide – 
Width: 640 
Question Pop-up Boxes:  

• Style: Default Caption 
Style 

• Caption: Halo 
• Font: Myriad Pro 
• Style: Regular 
• Size: 15 pt 
• Color: Black 

 

IMPORT INTO LMS 
Embedded: swf file 
Size: 656 x 492 
Question Type: Composite 
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APPENDIX I 

Survey Results – Worked Examples Design Survey 
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Worked Examples Survey Results 

Survey Demographics: 

• Total Number of Respondents: 10 
o 4 - Subject Matter Experts 
o 6 - Students 

• Type of computer used 
o 5 - PC 
o 4 - MAC 
o 0 - Other 

• Internet Browser used (1 respondent used two browsers) 
o 1 - Internet Explorer 
o 3 - Mozilla Firefox 
o 4 - Google Chrome 
o 3 - Safari 
o 0 - Other 

Example #1: Smartpen Screencast 
Refer back to the first example (the Smartpen screencast). Please indicate your level of 
agreement with each of the following statements. 

 
 
If you disagreed with any of the above statements, please explain why. 
 
Response Changes made to address this comment 
I had to click the image to restart the audio 
several times. I am not sure if this was a 
technical difficulty or simply the method for 
proceeding. 

Changed the way videos were imported to the 
Captivate file in order to eliminate the need to 
click the image to restart the audio. 

I could not scroll up and down the page, except 
for using my arrow buttons on the keyboard 
(seemed to happen with all of them). 

This problem occurs only in the Safari web 
browser. It is a problem with the LMS. The 
Faculty Technology Center suggested that 
students be advised to use Firefox. 
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Do you have any other suggestions or comments related to this example? 
 
Response Changes made to address this comment 
The writing with the SmartPen was a little bit 
small and thin. Also, the green color is not the 
best for clear visibility. One other item--you 
might want to change the wording from "take 
the derivative" to "find the derivative" or 
something like that. This is a technicality, but 
there is better mathematical language. : ) 

Increased the size of the Smartpen screencasts.  
 
It is not possible to change the color of the ink. 
 
Revised mathematical language. 

Before starting the next part it says: "Click on 
the image to restart the audio" I feel like it 
should say: "Click on the image to continue" 

Changed the way videos were imported to the 
Captivate file in order to eliminate the need to 
click the image to restart the audio. 

The timing of the question boxes in the 
animation was a little confusing. 

Added an explanation of the question boxes in 
the introductory training video. 

If there was some way to get around "click on 
the image to continue with the audio" I would 
use it. Could the next button continue with the 
audio without having to click on the image? 

Changed the way videos were imported to the 
Captivate file in order to eliminate the need to 
click the image to restart the audio. 

I appreciated the interaction and explanation of 
the videos. It was clean and clear. 

 

The pencast was small and hard to see and 
there was no full screen option. I would suggest 
having a full screen option, or using a smaller 
page for the penchant so that it is easier to see. 
I liked having a pause button and a progress bar 
so that I can pause and also so that I know how 
much longer there is in each section. I knew the 
answers to the questions, but that was because I 
have taken your class, the material in the 
pencast did not seem to cover the answers to 
the questions. 

Increased the size of the Smartpen screencasts. 
 
There is no full screen option when the 
example is embedded in the LMS. 
 
Added improved learner controls, including a 
pause button and a progress bar. 

I had a little trouble with switching from video 
back to the powerpoint. If was doing similarly 
prepared examples frequently, it would be a 
problem. The writing in the videos was smaller 
than the powerpoint; I would have preferred the 
writing in the video to be larger. 

Changed the way videos were imported to the 
Captivate file in order to eliminate the need to 
click the image to restart the audio. 
 
Increased the size of the Smartpen screencasts.  

There was one time when I didn't know how to 
restart the video to watch you take the 
derivative again. So maybe you could have it 
written somewhere that you need to click on 
the image again to have it replay. 

Changed the way videos were imported to the 
Captivate file in order to eliminate the need to 
click the image to restart the audio. 
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Example #2: Narrated PowerPoint 
 
Refer back to the second example (the narrated PowerPoint). Please indicate your level of 
agreement with each of the following statements. 
 

 
 
If you disagreed with any of the above statements, please explain why. 
 
Response Changes made to address this comment 
Navigation was not as good as in exercise 1 
because it was impossible to pause the 
narration. Also, another technicality, you said 
that "since the function is implicitly defined, 
we have to use implicit differentiation." This 
was true for this example, but it is not always 
true. Sometimes you can solve for y in terms of 
x and use explicit differentiation. : ) 

Added improved learner controls, including a 
pause button and a progress bar. 
 
Revised mathematical language. 

Working through the problems with the steps 
just appearing doesn't show the process as well 
as I would like. 

Added a pause between each step of the 
process. 
 
Increased use of color and animation to help 
make steps more obvious. 
 
Used Smartpen pencasts on very complicated 
problems with a lot of steps. 

The navigation was a little difficult because the 
back and forward buttons only allow jumping 
from one part to another rather than being able 
to scroll to a specific point in the explanation. 

Added improved learner controls, including a 
pause button and a progress bar. 
 

Again, I could not scroll with my mouse, I had 
to use the arrow keys on my keyboard. 

This problem occurs only in the Safari web 
browser. It is a problem with the LMS. The 
Faculty Technology Center suggested that 
students be advised to use Firefox. 

I feel like the power point was not as effective 
in teaching as the smartpen screencast. The 
steps of how to take the derivative are there but 
how you go to those points was not as easily 
understood as the smartpen screencast. 

Used Smartpen pencasts on very complicated 
problems with a lot of steps. 
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Do you have any other suggestions or comments related to this example? 
 
Response Changes made to address this comment 
This one is easier to read (no small green 
writing), but the lack of a "pause button" is 
detrimental. 

Added improved learner controls, including a 
pause button and a progress bar. 
 

Because you can change the color of the text it 
might be good for teaching things like notation. 

 

The volume of your voice was higher in this 
example than in the smart pen video. 

Found a method for calibrating the audio to 
ensure the volume is consistent throughout the 
example. 

The color made a nice touch to correlate the 
derivative steps with the term. 

 

I loved the colors! It helped SO much! I also 
appreciated the explanation on how to take the 
derivative of the colored parts. I could easily 
follow and check my work. 

 

I did not like that I could not pause or rewind. I 
like having a progress bar, but it isn't as 
important as a pause feature and the ability to 
rewind. I really liked the colored breakdown of 
the derivation. Again, I knew the answers to the 
questions, but that was because I have taken 
your class, the material in the pencast did not 
seem to cover the answers to the questions. 

Added improved learner controls, including a 
pause button and a progress bar. 
 

It is also possible to put handwriting on a 
PowerPoint using the pen tool (assuming you 
have a pad and a pen that works as a mouse.) 

 

 
Example #3: Combined Narrated PowerPoint and Smartpen Screencast 
 
Refer back to the third example (the combined narrated PowerPoint and Smartpen 
screencast). Please indicate your level of agreement with each of the following 
statements. 
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If you disagreed with any of the above statements, please explain why. 
 
Response Changes made to address this comment 
Same trouble as in exercise 2, because there is 
no way to pause the narration for the parts 
without the SmartPen. I realize this is not a 
huge problem, because there is a "back" button 
and you can hear complete steps again--it's just 
that the ability to pause without having to 
repeat whole steps is nice. 

Added improved learner controls, including a 
pause button and a progress bar. 
 
 

In your directions above (in this survey), did 
you mean to say "Refer back to the third 
partially worked example" I'm not sure what 
the problem was, but I could not find a place to 
put the answer for question 11 on my first try. 
It said "Record your final answer in I-Learn, 
but I couldn't find a place to put it. Nor did I 
see the radio buttons that asked me to rate the 
mental work needed. After I submitted the third 
question the first time, I saw that I hadn't 
answered those questions. That is why you will 
see that I did problem 3 a second time. 

This problem occurs only in the Safari web 
browser. It is a problem with the LMS. The 
Faculty Technology Center suggested that 
students be advised to use Firefox. 

 
Do you have any other suggestions or comments related to this example? 
 
Response Changes made to address this comment 
The audio was a bit quiet in general in all the 
exercises. I had to crank my volume control. 

Found a method for calibrating the audio to 
ensure the volume is consistent throughout the 
example. 

SmartPen audio seems louder gives you a little 
shock when you start it. I think this is the best 
format. allows moving fast through content that 
should already be known then the "new" 
concept can be done slowly by hand. 

Found a method for calibrating the audio to 
ensure the volume is consistent throughout the 
example. 

Because you used both a narrated PPT and a 
smart pen video in this example, I had to 
change the volume setting. Not a big deal. 

Found a method for calibrating the audio to 
ensure the volume is consistent throughout the 
example. 

I admit, this one was challenging. I got lost in 
my math at several places. I thought the video 
was very well done, but I personally needed 
more explanation to solve it. If a student was 
taking the class, I think they would be able to 
figure it out without further explanation. 

 

For whatever reason I could [not] scroll with 
my mouse. I liked the close up of the pencast 
better this time. 

This problem occurs only in the Safari web 
browser. It is a problem with the LMS. The 
Faculty Technology Center suggested that 
students be advised to use Firefox. 

The writing in the video seemed larger this Increased the size of the Smartpen screencasts. 
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Response Changes made to address this comment 
time. One problem was that the video went 
black at the end. I had to rewind and pause to 
get the expression for y" in order to simplify 

Changed the way videos were imported to the 
Captivate file in order to eliminate the need to 
click the image to restart the audio. This will 
also avoid the problem experienced by this 
respondent. 

I thought that the combination of the 
powerpoint and the smartpen were the best 
teaching tool yet. I also think that it would be 
good to put the correct answer to the second 
derivative within the powerpoint at the end. 

 

 
 
Example #4: Narrated PowerPoint with Mathematica Screen Capture 
 
Refer back to the fourth example (the narrated PowerPoint with Mathematica screen 
capture). Please indicate your level of agreement with each of the following statements. 
 

 
 
If you disagreed with any of the above statements, please explain why. 
 
Response Changes made to address this comment 
The Mathematica graphing explanation was a 
bit quick for me; I couldn't follow it fast 
enough while I was making notes. This is due 
in part to the fact that, once again, there was no 
pause button. The narration kept moving ahead 
and I couldn't stop it to make sure I understood 
as it went along. 

Added improved learner controls, including a 
pause button and a progress bar. 
 
 

During the Mathematica section there's no way 
to fast forward or rewind. 

Added improved learner controls, including a 
pause button and a progress bar. 

At first I could not scroll with my mouse, but 
for whatever reason, scrolling began working 
after I used the equation editor. (?) 

This problem occurs only in the Safari web 
browser. It is a problem with the LMS. The 
Faculty Technology Center suggested that 
students be advised to use Firefox. 
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Do you have any other suggestions or comments related to this example? 
 
Response Changes made to address this comment 
Portions of the audio track for this one faded 
in and out. That was distracting and made 
parts of it hard to hear. One other small detail, 
which is not a huge deal. Once Mathematica 
generated a graph, you called it "the equation 
of the graph" rather than "the graph of the 
equation." : ) 

Found a method for calibrating the audio to 
ensure the volume is consistent throughout the 
example. 
 
Revised mathematical language. 

The keystroke audio can be a little annoying. 
In Khan Academies "Intro to JS and 
Animation" they have it set up to where a 
video is watched where the presenter will type 
code then afterwards the user can edit the 
code themselves. This would probably be a 
pretty cool feature for Mathematica examples. 
https://www.khanacademy.org/computing/cs/
programming/animation-basics/p/intro-to-
animation ( I would just skip to the last 10 
seconds, note how text can only be changed 
when paused and it changes back when the 
video is replayed.) 

Deleted the keystroke audio. 
 

For all four of the questions, when I hit the 
submit button, it showed me the answers that 
I had typed in and it showed (with the red X) 
that I had missed the question asking me to 
rate the mental requirements for the problem. 
When students see that red X they panic. 
Would it be possible to have that not come up 
after submitting? 

Changed settings in the LMS so that all 
answers are marked as correct. 

This was very well put together.  
I really like having a pause button and the 
ability to rewind, both of which are missing 
from this form. 

Added improved learner controls, including a 
pause button and a progress bar. 
 

One thing I noticed when looking through the 
example again was that you can move 
backward and forward through the scenes, but 
you can't rewind or fast forward within a 
scene. So, if you're looking for a particular 
point in a scene you have to rewind, then 
play, and then wait for that point to come up 
while you watch. 

Added improved learner controls, including a 
pause button and a progress bar. 
 

For viewing complex graphs in a presentation 
I agree that mathmatica is the best way to do 
it. It was a very effective visual aid. 
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Overall Comments 
 
Do you have any general comments or suggestions regarding the design of the worked 
examples? 
 
Response Changes made to address this comment 
For me, there were three keys that 
overshadowed everything else: 1. Having the 
ability to pause the narration is important. 2. 
Size of typing makes a difference in visibility. 
3. Audio needs to be clear, loud enough, and 
not too fast. 

Added improved learner controls, including a 
pause button and a progress bar. 
 
Increased font size. 
 
Found a method for calibrating the audio to 
ensure the volume is consistent throughout the 
example. 

I loved all 4 types of examples. If a student 
misses a question in the partially worked 
examples, is there somewhere that he can go 
to see how to do the problem? 

 

Maybe it would be better to use more than 
one example. 

 

It isn't a commonly used format, but I thought 
that it served well and was able to keep 
clarity. As with any recorded tutorials it could 
be too slow/too fast according to the viewer 
so it could be nice to have speed 
manipulation. They were rather short though 
and navigation was clear enough that I believe 
the quality is sufficient for general satisfaction 
of a group. 

Added improved learner controls, including a 
pause button and a progress bar. 
 

I felt like the steps shown were adequate for a 
typical calculus student. (You might need to 
add more detail if the student came in 
unprepared or had problems with algebra.) On 
the partially worked examples I presumed that 
you intended for the students to fill in the 
missing steps as they worked the problem. 

 

Again, I loved the colors. The mathamatica 
explanation was very useful. I believe this is a 
very modern way of doing homework and 
will be appreciated by several students. I also 
appreciated the visual aid of the last example, 
even though I forgot how to correctly answer 
the problem. I believe the combination of the 
powerpoints, mathamatica, and pen were 
perfectly used. 
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Response Changes made to address this comment 
The pencast has a nice look (being able to see 
the letters form) but is harder to see than 
typed examples. I've always found having the 
ability to pause and rewind recorded lectures 
VERY helpful. The volume level of your 
videos seems to be just right, I could easily 
hear it with the volume on my computer at a 
medium setting. 

Increased the size of the Smartpen screencasts. 
 
Added improved learner controls, including a 
pause button and a progress bar. 
 

I liked the "next" button that allows you to 
pause and interact with the video. This is 
similar to some of the videos I've watched on 
Undacity. 

 

They all worked and were easy to use. I also 
believe if these were used as homework 
assignments there should always be a correct 
answer given at the end. So that the students 
can check to see if they go it or not, and if 
they didn't then they can go back and rework 
it until they get the right answer. 

 

I didn't understand why I missed the problems 
that asked me about the level of difficulty. 
Since it was my opinion, it should have been 
correct. I think you can fix that by making it a 
multiple answer problem instead of multiple 
choice. 

Changed settings in the LMS so that all 
answers are marked as correct. 
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Performance Assessments 

 

 



 

 

196 

Performance Assessments 

Exam Questions – Linked to Objectives 

 

Question # Pre-test Question  Post-test Question Lesson Objective(s) 
1a Please state the definition of the derivative.  Please state the definition of the derivative.  Lesson 1 Objective 1B.1 

 

1b Explain in your own words what a derivative 
tells us about a function. 

Explain how the definition of the derivative 
is connected to the slope of a secant line 
and to the slope of a tangent line. Please 
use a drawing as part of your explanation. 

Lesson 1 Objective 1A.1 
Objective 1A.2 
Objective 1A.3 

2 Use the definition of the derivative to find 
𝑓𝑓′(𝑥𝑥) where 𝑓𝑓(𝑥𝑥) = 𝑥𝑥2 + 3. 

Use the definition of the derivative to find 
𝑓𝑓′(1) where 𝑓𝑓(𝑥𝑥) = 𝑥𝑥2 − 1. 

Lesson 1 Objective 1B.2 

3  Use the definition of the derivative to find 
𝑓𝑓′(𝑥𝑥) where 𝑓𝑓(𝑥𝑥) = 𝑥𝑥

2𝑥𝑥−3
.  

Lesson 1 Objective 1A.4 
Objective 1C.1 
Objective 1C.3 

 
4 Find the equation of the tangent line for the 

curve 𝑦𝑦 = 5𝑥𝑥2 − 3𝑥𝑥 + 1 at the point 𝑥𝑥 = 2. 
Find the equation of the tangent line for the 
curve 𝑦𝑦 = 2√𝑥𝑥 − 1 + 3 at the point 𝑥𝑥 = 5. 

Lesson 1 Objective 1A.4 
Objective 1C.4 
Objective 2A.2 
Objective 2C.1 
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Question # Pre-test Question  Post-test Question Lesson Objective(s) 
5  Each of the following graphs shows the 

graph of a function, 𝑓𝑓(𝑥𝑥). For which of the 
graphs is it true that 𝑓𝑓′(−2) = 𝑓𝑓′(2)? 
Carefully explain your answer. 
 
 

 

 

 

 

Lesson 1 Objective 1B.3 
 

6 The graph of 𝑓𝑓(𝑥𝑥) is shown below. Find any 
points where 𝑓𝑓(𝑥𝑥) is not differentiable and 
explain why the function is not differentiable 
at each of those points. 

 

The graph of 𝑓𝑓(𝑥𝑥) is shown below. Find 
any points where 𝑓𝑓(𝑥𝑥) is not differentiable 
and explain why the function is not 
differentiable at each of those points. 

 

Lesson 1 Objective 1B.4 
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Question # Pre-test Question  Post-test Question Lesson Objective(s) 
7 The following figure shows the graph of a 

function and the graph of its derivative. 
Determine which graph is the function and 
which is the derivative. Carefully justify your 
answer. 

 

The following figure shows the graph of a 
function and the graph of its derivative. 
Determine which graph is the function and 
which is the derivative. Carefully justify 
your answer. 

 

Lesson 1 Objective 1C.2 

8a Find the derivative of the following function: 
𝑓𝑓(𝑥𝑥) = 2𝑥𝑥2𝑒𝑒𝑥𝑥  

Find the derivative of the following 
function: 𝑓𝑓(𝑥𝑥) = −2𝑒𝑒2𝑥𝑥(𝑥𝑥2 + 3) 

Lesson 2 Objective 2A.1 
Objective 2A.3 
Objective 2A.5 
Objective 2A.6 
Objective 2C.1 
Objective 4A.1 

8b Find the derivative of the following function: 
𝑓𝑓(𝑥𝑥) = cos(2𝑥𝑥) 

Find the derivative of the following 

function: 𝑓𝑓(𝑥𝑥) = sin�1
𝑥𝑥
 

Lesson 2 Objective 2A.2 
Objective 2B.1 
Objective 2C.2 

8c Find the derivative of the following function: 
𝑓𝑓(𝑥𝑥) = 4𝑥𝑥+2

𝑥𝑥−1
 

Find the derivative of the following 
function: 𝑓𝑓(𝑥𝑥) = sec (2𝑥𝑥)

1+4𝑥𝑥
 

Lesson 2 Objective 2A.1 
Objective 2A.4 
Objective 2A.6 
Objective 2B.1 
Objective 2C.1 

9 Find 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

 and 𝑑𝑑
2𝑦𝑦

𝑑𝑑𝑥𝑥2
 where 𝑦𝑦 = 2 sin(𝑥𝑥3) Find 𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑
 and 𝑑𝑑

2𝑦𝑦
𝑑𝑑𝑥𝑥2

 where  
𝑦𝑦 = −3 csc(𝑥𝑥2) 

Lesson 2 Objective 2A.1 
Objective 2A.3 
Objective 2B.1 
Objective 2B.2 
Objective 2C.1 
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Question # Pre-test Question  Post-test Question Lesson Objective(s) 
10 Find 𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑
 and 𝑑𝑑

2𝑦𝑦
𝑑𝑑𝑥𝑥2

 where 2𝑥𝑥2 + 𝑦𝑦2 = 3 Find 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

 and 𝑑𝑑
2𝑦𝑦

𝑑𝑑𝑥𝑥2
 where ln(𝑥𝑥𝑥𝑥) = 3 Lesson 3 Objective 2A.3 

Objective 3B.2 
Objective 3B.6 
Objective 4A.2 

11 Find the equation of the tangent and normal 
lines to the graph of the equation 4𝑥𝑥2𝑦𝑦 +
3𝑥𝑥𝑦𝑦2 = 7 at the point (1,1). 

Find the equation of the tangent and 
normal lines to the graph of the equation 
𝑥𝑥2 − 3𝑥𝑥𝑦𝑦 + 𝑦𝑦2 = −1 at the point (1,2). 

Lesson 3 Objective 2A.3 
Objective 3B.2 
Objective 3B.3 
Objective 3B.4 

12 A particle is moving along a horizontal axis. 
The position of the particle at time 𝑡𝑡 
(measured in seconds) is given by the 
equation 𝑠𝑠(𝑡𝑡) = 2𝑡𝑡3 − 4𝑡𝑡. Find the particle’s 
position, velocity, speed, and acceleration 
when 𝑡𝑡 = 3. Please include units for each 
answer.  

A particle is moving along a horizontal 
axis. The position of the particle at time 𝑡𝑡 
(measured in seconds) is given by the 
equation 𝑠𝑠(𝑡𝑡) = −2𝑡𝑡2 + 4𝑡𝑡 − 9. Find the 
particle’s position, velocity, speed, and 
acceleration when 𝑡𝑡 = 3. Please include 
units for each answer.  

Lesson 3 Objective 3A.1 

13 A tank of water in the shape of a cone (with 
the point at the bottom) is leaking water at a 
constant rate of 2 ft3/hour. The radius of the 
tank is 5 ft and the height of the tank is 14 
feet. At what rate is the depth of the water in 
the tank changing when the depth of the water 
is 6 ft? (Hint: The volume of a cone can be 
found using the equation 𝑉𝑉 = 1

3
𝜋𝜋𝑟𝑟2ℎ). 

A tank of water in the shape of a cone 
(with the point at the bottom) is leaking 
water at a constant rate of 2 ft3/hour. The 
radius of the tank is 5 ft and the height of 
the tank is 14 feet. At what rate is the depth 
of the water in the tank changing when the 
depth of the water is 6 ft? (Hint: The 
volume of a cone can be found using the 
equation 𝑉𝑉 = 1

3
𝜋𝜋𝑟𝑟2ℎ). 

Lesson 3 Objective 3C.1 

14a Find the derivative of the function  
𝑦𝑦 = log2(𝑥𝑥 − 1) 

Find the derivative of the function 𝑦𝑦 =
38𝑥𝑥−1 + log5(𝑥𝑥 − 1) 

Lesson 4 Objective 3C.1 
Objective 4A.1 
Objective 4A.2 

14b Find the derivative of the function  
𝑦𝑦 = sin−1(2𝑥𝑥). 

Find the derivative of the function 𝑦𝑦 =
sin−1 √1 − 𝑥𝑥2  , 0 < 𝑥𝑥 < 1 

Lesson 4 Objective 4C.1 
Objective 3C.2 
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Question # Pre-test Question  Post-test Question Lesson Objective(s) 
14c Find the derivative of the function  

𝑦𝑦 = (3𝑥𝑥)𝑥𝑥−1 
Find the derivative of the function 𝑦𝑦 =
(2 + 𝑥𝑥)3−𝑥𝑥 

Lesson 4 Objective 3A.3 
Objective 4A.2 
Objective 4B.1 
Objective 4B.2 

15  Derive the differentiation rule for 𝑦𝑦 =
tan−1 𝑥𝑥. 

Lesson 4 Objective 4C.1 
Objective 4C.2 
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APPENDIX K 

Post-test Scoring Rubric 
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Unit 2 Exam Rubric 

1. Please state the definition of the derivative.  

 4: 𝑓𝑓′(𝑥𝑥) =  lim
ℎ→0

𝑓𝑓(𝑥𝑥+ℎ)−𝑓𝑓(𝑥𝑥)
ℎ

 

 3: Missing the limit, but have the correct difference quotient 

2: Limit with an incorrect difference quotient (but still close to the difference quotient) 
OR they define it as the slope of the tangent line, or instantaneous rate of change, with no 
equation 

1: Incorrect difference quotient or limit OR they refer to “slope” or “change” without a 
complete explanation 

0: Not a correct equation without a correct explanation 

Explain how the definition of the derivative is connected to the slope of a secant line 
and to the slope of a tangent line. Please use a drawing as part of your explanation. 

4: Correctly use a drawing to explain that the derivative is the slope of the tangent line 
and we find it by finding slopes of secant lines and taking the limit as the two points used 
to form the secant line get closer and closer to each other. 

3: Give a correct explanation without a drawing OR give an explanation that is mostly 
correct, but missing some details 

2: Gives an incomplete explanation without a drawing OR gives an explanation that is 
mostly correct without a valid drawing 

1: Makes some connections between slopes and the derivative 

0: Does not make any connection between the derivative and slopes 

2. Use the definition of the derivative to find 𝒇𝒇′(𝟏𝟏) where 𝒇𝒇(𝒙𝒙) = 𝒙𝒙𝟐𝟐 − 𝟏𝟏. 

4: Correctly show the work of using the limit of the difference quotient to find the 
derivative 𝑓𝑓′(𝑥𝑥) = 2𝑥𝑥. Must show correct work leading to the correct answer. 

3: Use the correct definition of the derivative, but make arithmetic/algebra mistakes. May 
or may not have answer of 𝑓𝑓′(𝑥𝑥) = 2𝑥𝑥, although they do have an answer. 

2: Have the correct answer, but did not use the correct difference quotient OR set up the 
definition correctly, but were not able to compute the limit and did not get an answer. 

1: Set up the definition incorrectly (but on the right track) and did not get right answer 

0: None of the above 
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3. Use the definition of the derivative to find 𝒇𝒇′(𝒙𝒙) where 𝒇𝒇(𝒙𝒙) = 𝒙𝒙
𝟐𝟐𝟐𝟐−𝟑𝟑

.  

4: Correctly show the work of using the limit of the difference quotient to find the 
derivative 𝑓𝑓′(𝑥𝑥) = −3

(2𝑥𝑥−3)2. Must show correct work leading to the correct answer. 

3: Use the correct definition of the derivative, but make arithmetic/algebra mistakes. May 
or may not have answer of 𝑓𝑓′(𝑥𝑥) = −3

(2𝑥𝑥−3)2, although they do have an answer. 

2: Have the correct answer, but did not use the correct difference quotient OR set up the 
definition correctly, but were not able to compute the limit and did not get an answer. 

1: Set up the definition incorrectly (but on the right track) and did not get right answer 

0: None of the above 

4. Find the equation of the tangent line for the curve 𝒚𝒚 = 𝟐𝟐√𝒙𝒙 − 𝟏𝟏 + 𝟑𝟑 at the point 𝒙𝒙 =
𝟓𝟓. 
 

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

=
1

√𝑥𝑥 − 1 
; 
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑�𝑥𝑥=5

=
1
2

 

(𝑦𝑦 − 7) =
1
2

(𝑥𝑥 − 5) OR 𝑦𝑦 =
1
2
𝑥𝑥 +

9
2

 

 
4: Found the correct derivative and equation of the tangent line (did not have to solve for 
y) 
 
3: Found the correct derivative, but due to a minor arithmetic mistake, missed one of the 
three numbers 7, 5, and ½ in the equation (𝑦𝑦 − 7) = 1

2
(𝑥𝑥 − 5). 

 
2: Got the answer (𝑦𝑦 − 7) = 1

√𝑥𝑥−1 
(𝑥𝑥 − 5) OR found the correct derivative, but missed 

two of the three numbers: 7, 5, and ½ 
 
1: Found the correct point on the line with the wrong slope OR found the derivative 𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑
=

1
√𝑥𝑥−1 

 and didn’t go any further 
 
0: Did not find the slop for the tangent line or the correct point on the curve 
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5. Each of the following graphs shows the graph of a function, 𝒇𝒇(𝒙𝒙). For which of the 
following graphs is it true that 𝒇𝒇′(−𝟐𝟐) = 𝒇𝒇′(𝟐𝟐)? Carefully explain your answer. 

 
 
 
 

 

Correct answer: Graph #2 is the only one where 𝑓𝑓′(−2) = 𝑓𝑓′(2) because it is the only 
graph where the slope of the tangent line at the point 𝑥𝑥 = −2 is the same as the slope of 
the tangent line at the point 𝑥𝑥 = 2. 
 
4: They correctly select Graph #2 as the answer, and give a clear explanation of why 
 
3: They correctly select Graph #2 but give an inadequate explanation 
 
2: They correctly select Graph #2 as the answer, but offer no explanation OR they select 
both graphs #2 and #3 with a correct explanation (even though the slopes are not the 
same for graph #3) 
 
1: They select Graph #1 and #3 because those graphs have the same y-values at x = 2 and 
x = -2. 
 
0: None of the above. 
 

6. The graph of 𝒇𝒇(𝒙𝒙) is shown below. Find any points where 𝒇𝒇(𝒙𝒙) is not differentiable 
and explain why the function is not differentiable at each of those points. 
 
Not differentiable at x = 1 (not continuous) x= 4 (sharp 
corner), or x = 5 (sharp corner) 

4: Correctly identifies all three points and the correct 
reasons 

3: Correctly identifies at least 2 points and gives the 
correct reason for both 

2: Correctly identifies at least one point and gives the correct reason 

1: Correctly identifies at least one point, but does not give the correct reason for any of 
the points 

0: Does not give any correct points or reasons 

Graph #1 Graph #2 Graph #3 
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7. The following figure shows the graph of a function and the graph of its derivative. 
Determine which graph is the function and which is the derivative. Carefully justify 
your answer. 

The darker curve is the original function. The lighter curve 
is the derivative. 

4: Correctly identifies each curve and clearly explains their 
answer. 

3: Correctly identifies each curve, but gives a weak or unclear explanation 

2: Correctly identifies each curve, but does not give a correct explanation. 

1: Does not correctly identify the curves, but gives some explanations that are at least on 
the right track. 

0: Does not correctly identify each curve and does not give any reasonable explanation 

8. Find the derivative of each of the following functions 
a. 𝒇𝒇(𝒙𝒙) = −𝟐𝟐𝒆𝒆𝟐𝟐𝟐𝟐(𝒙𝒙𝟐𝟐 + 𝟑𝟑)    𝑓𝑓′(𝑥𝑥) = −4𝑒𝑒2𝑥𝑥(𝑥𝑥2 + 3) − 2𝑒𝑒2𝑥𝑥(2𝑥𝑥) 

4: Correctly found the derivative (do not need to simplify) 

3: Used the correct differentiation rules, but made minor arithmetic or algebra 
errors or simplified incorrectly. 

2: Used the product rule incorrectly or with major arithmetic or algebra errors. 

1: Did not use the product rule, but took the derivative of each term correctly. 

0: Did not use the product rule and did not take any derivatives correctly 

b. 𝒇𝒇(𝒙𝒙) = 𝐬𝐬𝐬𝐬𝐬𝐬�𝟏𝟏
𝒙𝒙

     𝑓𝑓′(𝑥𝑥) = �cos�1
𝑥𝑥

 ��1
2
�1
𝑥𝑥
�
−12� �− 1

𝑥𝑥2
� =

−cos�1𝑥𝑥
2𝑥𝑥2√𝑥𝑥

 

    

4: Correctly found the derivative (do not need to simplify) 

3: Used the correct differentiation rules, but made minor arithmetic or algebra 
errors or simplified incorrectly. 

2: Used the chain rule incorrectly or with major arithmetic or algebra errors. 

1: Did not use the chain rule, but took the derivative of some of the terms 
correctly. 

0: Did not use the chain rule and did not take any derivatives correctly 
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c. 𝒇𝒇(𝒙𝒙) = 𝐬𝐬𝐬𝐬𝐬𝐬 (𝟐𝟐𝟐𝟐)
𝟏𝟏+𝟒𝟒𝟒𝟒

    𝑓𝑓′(𝑥𝑥) = (1+4𝑥𝑥)2 sec2𝑥𝑥 tan2𝑥𝑥−4sec2𝑥𝑥
(1+4𝑥𝑥)2  

4: Correctly found the derivative (do not need to simplify) 

3: Used the correct differentiation rules, but made minor arithmetic or algebra 
errors or simplified incorrectly. 

2: Used the quotient rule incorrectly or with major arithmetic or algebra errors or 
forgot to use the chain rule. 

1: Did not use the quotient rule, but took the derivative of each term correctly. 

0: Did not use the product rule and did not take any derivatives correctly 

9. Find 𝒅𝒅𝒅𝒅
𝒅𝒅𝒅𝒅

 and 𝒅𝒅
𝟐𝟐𝒚𝒚

𝒅𝒅𝒙𝒙𝟐𝟐
 where 𝒚𝒚 = −𝟑𝟑𝐜𝐜𝐜𝐜𝐜𝐜�𝒙𝒙𝟐𝟐� 

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 6𝑥𝑥 csc(𝑥𝑥2) cot(𝑥𝑥2) ;  

 
𝑑𝑑2𝑦𝑦
𝑑𝑑𝑥𝑥2

= −12𝑥𝑥2 csc3(𝑥𝑥2) + 6 csc(𝑥𝑥2) cot(𝑥𝑥2) − 12𝑥𝑥2 csc(𝑥𝑥2) cot2(𝑥𝑥2) 

4: Found the correct 1st and 2nd derivatives (The 2nd derivative does not necessarily need 
to be simplified, so the correct answer could take several different forms). 

3: Found the correct 1st derivative and used the product rule on the 2nd derivative, but 
made minor algebra/arithmetic errors 

2: Made minor errors finding the 1st derivative but used the right technique to find the 
second derivative (based on incorrect 1st derivative) OR found the correct 1st derivative, 
but did not use the product rule or made other major errors on the 2nd derivative. 

1: Although there are some correct pieces, neither derivative is correct. 

0: No correct pieces. 
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10. Find 𝒅𝒅𝒅𝒅
𝒅𝒅𝒅𝒅

 and 𝒅𝒅
𝟐𝟐𝒚𝒚

𝒅𝒅𝒙𝒙𝟐𝟐
 where 𝐥𝐥𝐥𝐥(𝒙𝒙𝒙𝒙) = 𝟑𝟑 

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= −
𝑦𝑦
𝑥𝑥

;  
𝑑𝑑2𝑦𝑦
𝑑𝑑𝑥𝑥2

=
−𝑥𝑥 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 + 𝑦𝑦

𝑥𝑥2
= 0 

4: Found the correct 1st and 2nd derivatives using implicit differentiation 

3: Found the correct 1st derivative and found the correct 2nd derivative, but didn’t plug 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

 
into the second derivative and simplify to get 0 OR used the correct procedure, but made 
minor arithmetic/algebra errors. 

2: Made minor errors finding the 1st derivative but used the right technique to find the 
second derivative (based on incorrect 1st derivative) OR found the correct 1st derivative, 
but did not use the quotient rule or made other major errors on the 2nd derivative. 

1: Although they used implicit differentiation, neither derivative is correct. 

0: No correct pieces. 

11. Find the equation of the tangent and normal lines to the graph of the equation 𝒙𝒙𝟐𝟐 −
𝟑𝟑𝟑𝟑𝟑𝟑 + 𝒚𝒚𝟐𝟐 = −𝟏𝟏 at the point (𝟏𝟏,𝟐𝟐). 

 

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

=
2𝑥𝑥 − 3𝑦𝑦
3𝑥𝑥 − 2𝑦𝑦

;  
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑�(1,2)

= 4 

Tangent line: (𝑦𝑦 − 2) = 4(𝑥𝑥 − 1) 

Normal line: (𝑦𝑦 − 2) = −1
4

(𝑥𝑥 − 1) 

4: Found all correct answers 

3: Found the correct derivative and one of the lines 

2: Found the correct derivative and one of the lines OR made minor arithmetic errors to 
get the incorrect slope, but used the right process to find the lines 

1: Made major errors in finding the derivative, but found equations of two lines with 
opposite reciprocal slopes 

0: Incorrect derivatives and equations of lines do not have opposite reciprocal slopes 
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12. A particle is moving along a horizontal axis. The position of the particle at time 𝒕𝒕 
(measured in seconds) is given by the equation 𝒙𝒙(𝒕𝒕) = −𝟐𝟐𝒕𝒕𝟐𝟐 + 𝟒𝟒𝟒𝟒 − 𝟗𝟗. Find the 
particle’s position, velocity, speed, and acceleration when 𝒕𝒕 = 𝟑𝟑. Please include units for 
each answer. 

 
Position = -15 units; Velocity = -8 units/second; Speed = 8 units/second; Acceleration = -
4 units/sec2 

4: Has all the correct answers and correct units 

3: Has 3 of the four correct answers with correct units OR all 4 correct answers with only 
2 or 3 having correct units 

2: Has 2 of the four correct answers with correct units OR 3 correct answers with 1 or 2 
having correct units 

1: Has 1 correct answer with correct units OR 2 correct answers with no correct units 

0: Has at most 1 correct answer with no correct units. 

13. A tank of water in the shape of a cone (with the point at the bottom) is leaking water at 
a constant rate of 𝟐𝟐 𝐟𝐟𝐟𝐟𝟑𝟑/𝐡𝐡𝐡𝐡𝐡𝐡𝐡𝐡. The radius of the tank is 5 ft and the height of the tank is 
14 feet. At what rate is the depth of the water in the tank changing when the depth of 
the water is 6 ft? (Hint: The equation for the volume of a cone is 𝑽𝑽 = 𝟏𝟏

𝟑𝟑
𝝅𝝅𝒓𝒓𝟐𝟐𝒉𝒉) 

 

Equation: 𝑉𝑉 =
1
3
𝜋𝜋𝑟𝑟2ℎ →  𝑉𝑉 =

1
3
𝜋𝜋 �

ℎ
3
�
2

ℎ 

 

𝑉𝑉 =
𝜋𝜋

27
ℎ3  →  

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

=
𝜋𝜋
9
ℎ2
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

 →  −2 =
𝜋𝜋
9

(6)2
𝑑𝑑ℎ
𝑑𝑑𝑑𝑑

 →  
𝑑𝑑ℎ
𝑑𝑑𝑑𝑑

= −
2
𝜋𝜋

 units per second  

 

4: found the correct answer (either exact or as a decimal) 

3: Found the correct derivative 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝜋𝜋
9
ℎ2 𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑
, but made arithmetic errors after that 

2: Found the equation for 𝑉𝑉 in terms of ℎ: 𝑉𝑉 = 1
3
𝜋𝜋 �ℎ

3
�
2
ℎ OR 𝑉𝑉 = 𝜋𝜋

27
ℎ3 

1: Drew the correct picture; Took the derivative of V, but not correctly. 

0: Did not try to take the derivative of V 
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14. Find the derivative of each of the following functions. Please simplify your answers. 
a. 𝒚𝒚 = 𝟑𝟑𝟖𝟖𝟖𝟖−𝟏𝟏 + 𝐥𝐥𝐥𝐥𝐥𝐥𝟓𝟓(𝒙𝒙 − 𝟏𝟏) 𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑
= 8 ∗ 38𝑥𝑥−1 ln 3 + 1

(𝑥𝑥−1) ln 5
 

4: Correctly found the derivative and simplified correctly (they don’t really need 
to do anything to simplify, though) 

3: Used the correct differentiation rules, but made minor arithmetic or algebra 
errors or simplified incorrectly. 

2: Used one of the chain, log, or exponential rules incorrectly or with major 
arithmetic or algebra errors. 

1: Used two of the chain, log, or exponential rules incorrectly 

0: Did not take any derivatives correctly 
 

b. 𝒚𝒚 = 𝐬𝐬𝐬𝐬𝐬𝐬−𝟏𝟏 √𝟏𝟏 − 𝒙𝒙𝟐𝟐  ,𝟎𝟎 < 𝒙𝒙 < 𝟏𝟏; 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 1
�1−(1−𝑥𝑥2)

∗ 1
2√1−𝑥𝑥2

∗ (−2𝑥𝑥) = −1
√1−𝑥𝑥2

 

4: Correctly found the derivative and simplified correctly 

3: Used the correct differentiation rules, but made minor arithmetic or algebra 
errors or simplified incorrectly. Or did not simplify completely. 

2: Used one of the chain and inverse sine rules incorrectly or with major 
arithmetic or algebra errors. 

1: Had mistakes in both the chain and inverse sine rules 

0: Did not take any derivatives correctly 
 

c. 𝒚𝒚 = (𝟐𝟐 + 𝒙𝒙)𝟑𝟑−𝒙𝒙; 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= (2 + 𝑥𝑥)3−𝑥𝑥 �3−𝑥𝑥
𝑥𝑥
− ln(2 + 𝑥𝑥)� 

4: Correctly found the derivative using logarithmic differentiation and simplified 
correctly 

3: Used logarithmic differentiation with the correct differentiation rules, but 
made minor arithmetic or algebra errors or simplified incorrectly. 

2: Used logarithmic differentiation but used one of the required differentiation 
rules incorrectly or with major arithmetic or algebra errors OR did not correctly 
use the properties of logarithms to rewrite the function 

1: Took the derivative without using logarithmic differentiation. 

0: Did not take any derivatives correctly 
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15. Derive the differentiation rule for 𝒚𝒚 =
𝐭𝐭𝐭𝐭𝐭𝐭−𝟏𝟏 𝒙𝒙. 

4: Derived the rule correctly with clear 
explanations 

3: Showed correct math computations, 
without any explanation 

2: Drew the correct triangle, but took the 
derivative incorrectly OR took the 
derivative correctly but drew the 
incorrect triangle 

1: Had some correct parts, but neither 
the derivative nor the triangle were 
correct. 

0: Not on the right track 
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