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ABSTRACT 

An obstacle classification method using Convolutional Neural Network for autonomous 

wheelchair navigation 

 

Thesis Abstract--Idaho State University (2019) 

This thesis aims to build a curb and edge detection method for autonomous wheelchair navigation 

using Convolutional Neural Networks (CNNs). In contrary to a deterministic approach, CNNs use 

a statistical inference approach to the classification problem. For this, a comprehensive dataset of 

curb and edge examples is collected. The training and test dataset was collected around Idaho State 

University and the Measurement and Control Engineering Research Center. After the neural 

network is trained using the dataset, it is tested using images not utilized for training.  

The entire system consists of the electric wheelchair, a Kinect 360 and a laptop. The Kinect 360 is 

used to capture images, and the laptop runs the CNN algorithm to classify the collected pictures. 

The configuration of the CNN is such that a number of feature detectors and a number of hidden 

layer neurons are varied in order to test the accuracy of the classification algorithm. An optimum 

configuration for the available training and test set is realized. 

The final CNN shows almost 100 percent accuracy for images with distinct curbs and edges. It 

still shows reasonable accuracy for images with partially hidden curbs or gently sloping edges. 

Key Words: Obstacle Detection, Vision Processing, Autonomous Vehicles, Autonomous 

Wheelchair, 

Convolutional Neural Networks, Kinect 360, Curbs and Edges Detection, Deep Learning, Keras, 

OpenNI, OpenCV 
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1. INTRODUCTION 

Neural Networks (NN) were first conceived in the late 1950s, [1]. There were two primary reasons 

behind why neural networks couldn’t be implemented to a large extent when they were first 

developed. The two reasons were computational power and data/memory. The computational 

power during that time was simply not enough for training neural networks. The advent of Graphic 

Processing Units was crucial to the implementation and subsequent rise of NN. The second reason 

is the lack of data. Neural network algorithms are very data hungry. Without enough data, 

overfitting occurs. The real breakthrough for neural networks happened in 2012 when a 

Convolutional Neural Network (CNN) called AlexNet, designed by Alex Krizhevsky, won the 

ImageNet Large-Scale Visual Recognition Challenge, [2]. Every year since then, the challenge has 

been won by CNNs, [3]. Due to its proven track record in image classification problems, CNN can 

be considered as one of the best ways for detection of obstacles such as curbs and edges in 

autonomous vehicles. 

1.1 Background 

In USA, there were 3.3 million people using wheelchair in 2011, [4]. According to Wheelchair 

Foundation, with the world population increasing by 187,500 each day, there is an additional need 

for almost 3,500 wheelchairs every day (1.85% of the world population).That means that every 

hour of every day, there is the need for 145 more wheelchairs in the world. This statistic is based 

on  a study conducted in 2016, [5]. A number of wheelchair users utilize powered wheelchairs due 

to the severity of their disability. The power wheelchair market was expected to be $3.9 billion in 

2018 which translates to around 550,000 wheelchairs, [6],[30].  

A research by the American Congress of Rehabilitation Medicine in 2011 shows that tips and falls 

accounted for 87.8% of accidents in motorized wheelchairs. Of this percentage, 20-30% of the 
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accidents were caused by uneven surfaces, [7].  

1.2 Literature Review 

Many companies and institutions including DARPA, Google and Stanford university, 

among others, are currently working on autonomous vehicles technology, [8]. Among the many 

problems that need to be considered to develop an autonomous vehicle for an urban environment, 

planning, control and perception of the vehicle are the most important. The autonomous vehicle 

needs to plan its route, control its speed and direction to follow the planned route and finally be 

able to perceive its surrounding to avoid any collisions. Without any one of these, the vehicle will 

fail in its desired function. 

 Intelligent wheelchair solutions like NAVchair, [9] have been developed for elderly people 

who use ultrasonic and infrared sensors for obstacle detection. Drive-Safe Systems (DSS) have 

also been implemented for visually impaired users, [10]. DSS allows users to safely navigate by 

following walls. It can identify obstacles using two bumpers, five infrared and five ultrasonic 

sensors. While these sensors based navigation systems are simple and easy to install, they can run 

into issues like reflections and poor angular resolution. It collects data from the sensor nodes from 

around the wheelchair and can detect obstacles as low as three inches and as high as 60 inches 

from ground level. If the DSS detects the obstacle it can slow down or even stop the wheelchair to 

avoid collision, [10]. 

 Vision-based perception can be considered as an alternative to sensor-based perception. 

These methods can use depth information as well as image processing and computer vison based 

solutions to detect obstacles and navigate surroundings, [11].  
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1.3 Thesis Goal 

The goal of the thesis can be summarized as stated below: 

• gain an understanding of Artificial and Convolutional Neural Networks (CNNs) 

• interface between the Kinect sensor and Python code to capture images for classification 

by the use of neural network 

• collect a dataset of curbs and edges for training and test of CNN 

• implement curb and edge classifier using CNN 

1.4 Thesis Organization 

In Chapter 2, Artificial Neural Network (ANN), Convolutional Neural network (CNN), Kinect, 

and programming tools like Python, Keras, Open Natural Interaction and Open Computer Vision 

libraries are discussed. Chapter 3 focuses on implementation of ANN and CNN in Python using 

Keras, dataset used for training the two neural networks and the output of the neural network. In 

Chapter 4, the experimental setup for image capture and classification is described. Chapter 5 

discusses the conclusion of the research and future work needed to move further towards the end 

goal. The appendix contains the code that was used in the research but weren’t included in Chapter 

3. 
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2. THEORY 

2.1 Machine Learning 

Machine learning is training machines using algorithms and statistics. It is completing tasks 

through experience and pattern recognition, as opposed to following hard and fast rules.  It does 

so by analyzing data, identifying patterns, and making decisions with little to no human 

intervention. 

2.2 Artificial Neural Network 

Artificial Neural Networks (ANNs) are one of the most important techniques used in 

machine learning, [12]. As the name suggests, it consists of a network of nodes with each node 

acting as a single neuron. It tries to emulate human brain in this manner. Thus, they are bio-inspired 

and are intended to learn as humans do. They recognize patterns in numerical data, normally 

organized in clusters or vectors, into which all real-world data must be translated. For example, 

images can be translated into their RGB values, customers can be translated into their specifics 

like age, weight, income, etc. 

2.2.1 Biological Inspiration 

A human neural system consists of three stages: receptors, neural network and effectors. In 

Figure 2.1, the receptors receive signals in form of stimuli from either external or internal sources 

and send them to the neural network in form of electrical impulses. The neural network processes 

the electrical signal and provides the proper decision as output in form of electrical impulses. The 

effectors finally translate the electrical impulses into proper response to the outside environment. 

The communication is not unidirectional; there is a feedback loop between all three stages, [13]. 



5 

 

 

Figure 2.1: Biological Neural System 

 

The basic component of the neural network is a neuron. A neuron mainly has three distinct 

parts, dendrites, cell body and axon, as shown in Figure 2.2. Dendrites are tree-like structures that 

receive signals from other neurons where each line is connected to a single neuron. The cell body 

takes in signals from the dendrites, then sums and thresholds them. The axon carries the signal 

from cell body to other neurons. The axon connects to dendrites through synapses. The signal 

transfer through the synapses is usually chemical diffusion but may be electrical impulses, [13].  

The signals from each synapse may excite or inhibit the target neuron i.e., helping or 

hindering firing. The neuron fires when certain conditions are met such as, excitation signals 

exceeding inhibitory signal by a certain amount in a given period of time. If weight is assigned to 

each incoming signal, the excitation signals have positive weight while inhibitory signals have 

negative weight. Therefore, it can be said that: “A neuron fires only if the total weight of the 

synapses that receive impulses in the period of latent summation exceeds the threshold.”, [13] 
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Figure 2.2: Schematic diagram of biological neurons [14] 

A biological neural network is a network of neurons connected by synapses to perform a 

certain task. Multiple neural networks are interconnected to form large scale brain networks. A 

brain may contain about 86 billion neurons and more than 100 trillion synaptic connections, [14].  

2.2.2 An Artificial Neuron Model 

An artificial neuron is a mathematical function meant to simulate the behavior of a 

biological neuron. It is also known as perceptron. It consists of summation, multiplication and 

activation function, as seen in Figure 2.3. The output of artificial neuron is given by: 

 

0

n

j kj k

j

y w x
=

 
=  

 
  

(2.1) 

where, y is the output, x is the input and φ is the activation function. j and k are the indices for the 

neural network layer and the artificial neuron in the layer.  
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Figure 2.3: A simple artificial neuron model [15] 

The output of an artificial neuron is equivalent to the output of a biological neuron. The 

output value may be transmitted to the next layer of neurons but may also be transmitted as an 

output of the neural network as a part of the output vector. By itself, it has almost no learning 

capabilities, [12]. The weights are calculated, and the activation function is predetermined as per 

the application. 

Multiple neurons can be combined to form a single layer of neural network. Multiple layers 

are stacked next to each other to form a complete Artificial Neural Network (ANN), as seen in 

Figure 2.4. An ANN can be trained to perform complex tasks. 

 

Figure 2.4: A simple Artificial Neural Network [12] 
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Using enough data, an ANN can learn patterns in numerical data and train its weights to 

emulate the system that represent the given data. With this, it can model complex patterns and 

predict output of high-level systems. It can be used with anomaly detection, natural language 

processing, image classification, and forecasting, [14].  

2.2.3 Back-propagation 

Back-propagation is the shorthand for the backward propagation of errors. It is used in 

artificial neural networks to determine the gradient needed to calculate the weights of the network. 

It is a popular neural network learning algorithm because it is conceptually simple, 

computationally efficient and often, works.  

Back propagation works in two stages: 

1. Feedforward Propagation 

In feedforward propagation, the training data is fed through the network and the output is 

calculated. In this phase, initially the weights of the network are randomly generated, and they are 

not changed. 

2. Feedback Propagation 

In feedback propagation, output from the randomized network is compared with the desired 

output. The error is calculated by subtracting calculated output from desired output. The error is 

then backpropagated through the multiple layers of the neural network while minimizing errors on 

every layer. This results in updating weights of all the layers in the neural network.  

These two stages are repeated multiple times until the error is within satisfactory limits. 

2.2.4 Theoretical background of back-propagation  

While the following derivation primarily focuses on application for artificial neural 

networks, it can also be applied for other gradient-based learning methods, [16].  
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Assume a multilayer feedforward artificial neural network M. The cost function of the 

neural network is given by, [16]: 

 ( , ( , ))p p pE C D M Z W=  (2.2) 

where, pZ  is the input vector, W is the weight vector, 
pD is the desired output and p is the input 

index. 

A neural network is simply a stack of modules each of which implements the following 

function, [16]: 

 
1( , )n n nX F W X −=  (2.3) 

where, nX  is the vector representing output of the module, nW  is the vector representing the 

weights of the module (a subset of W), 1nX −  is the module representing the input vector as well as 

the output vector of previous module and input 0X  to the first module is the input pattern pZ .  

If the partial derivative of 
pE with respect to nX can be calculated, the partial derivatives of 

pE

with respect to nW  and 1nX −  can be calculated using backward recurrence:  

 
1( , )

p p

n n

n n

E F E
W X

W W X

  

  
−=  (2.4) 

 
1

1

( , )
p p

n n

n n

E F E
W X

X X X

  

  
−

−

=  (2.5) 

  
 

where,  
1( , )n n

F
W X

W




−

 is the Jacobian of F with respect to W at point 1( , )n nW X −  and 

1( , )n n

F
W X

X




−

 is the Jacobian of F with respect to X. When these equations are applied to all the 
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layers in reverse order, the partial derivatives of the cost functions with respect to all the parameters 

can be computed. This is called back-propagation, [16]. 

In traditional neural network, each layer also has an activation function, for example: a 

sigmoid function.  

 
1n n nY W X −=  

(2.6) 

 ( )n nX F Y=  
(2.7) 

where, F is the activation function, nW is the weight vector, 1nX −  is the input vector of the layer, 

nX is the output vector and nY  is the vector of weighted sums. Using the chain rule on above 

equations, one can obtain the following, [16]: 

 
'( )

p p
i

ni i

n n

E E
f y

y x

 
=

 
 (2.8) 

 
1

p p
j

nij i

n n

E E
x

w y
−

 
=

 
 (2.9) 

 

1

p p
ik

nk i
in n

E E
w

x y−

 
=

 
  (2.10) 

 The above equations can be written is matrix form as: 

 
'( )

p p

n

n n

E E
F Y

Y X

 
=

 
 (2.11) 

 

 
1

p p

n

n n

E E
X

W Y
−

 
=

 
 (2.12) 

 

1

p p
T

n

n n

E E
W

X Y−

 
=

 
 (2.13) 

 A simple gradient descent algorithm for weight adjustment can be derived as, [16]: 
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( ) ( 1)

E
W t W t

W



= − −


 (2.14) 

 It can also be written as: 

 
( 1) ( )

E
W t W t

W



+ = −


 (2.15) 

where,  is the learning or adaptation rate. In its simplest form, it is a scalar constant. However, it 

may also be a diagonal matrix.  

2.2.5 Activation functions 

Activation function can be defined as the transfer function of a node in a neural network. 

It may introduce non-linearity into the model which can make the neural network more flexible in 

modeling and classification. The types of activation functions can be divided into two groups: 

a. Linear Activation Function 

A linear activation function is also known as the identity function. It can be visualized as a 

line. Using this activation function, output of a node isn’t restricted in any range. While this 

activation function is simplest to implement, it doesn’t help with the complexity and non-linearity 

of usual kinds of data normally fed through a neural network, [17]. 

Each layer of the neural network is activated by a linear function. The linearity is then 

transferred to the next layer which in turn gets transferred on. Therefore, with linear activation, the 

neural network ends up being a simple linear function as shown in Figure 2.5. This means, the 

neural network can be replaced by a single linear layer. This removes all the advantage of stacking 

multiple layers for deep learning, [17].  
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Figure 2.5: Linear activation function [18] 

The equation is given by: f(x) = x 

The range of output is from -infinity to infinity. 

b. Non-linear Activation Function 

Non-linear activation functions are the most used functions in machine learning. Non-

linearity helps the neural network adapt and generalize to different types of data, [17]. Different 

types of activation functions are used for different applications. Some of them are listed below: 

1. Sigmoid Activation Function 

A sigmoid function is also known as a logistic activation function. The mathematical 

equation is given as: 

 1
( )

1 x
f x

e−
=

+
 (2.16) 
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Figure 2.6: Sigmoid activation function [18] 

The main advantage of the sigmoid function is its range. The value of the function is 

bounded by [0,1] as seen in Figure 2.6. Therefore, it is especially used in models where a 

probability is being predicted. Since probability ranges from 0-1, sigmoid makes a good fit. For a 

multiclass problem i.e., classification for multiple classes, a generalized logistic function called 

SoftMax function is used, [17].  

The sigmoid function is monotonic and differentiable. However, its derivative is not 

monotonic. This can cause a neural network to get stuck during training. At the higher values of x, 

the function tends to not respond to changes in x. This can cause a vanishing gradient problem. 

The network may learn very slowly or stop learning altogether. However, there are workarounds 

to the problem and the sigmoid function is still widely used in classification problems, [17]. 

2. Tanh or Hyperbolic tangent activation function 

Tanh or Hyperbolic tangent activation function is very similar to the sigmoid function but 

has a range of [-1,1]. It also has a higher gradient than the sigmoid function as shown in Figure 

2.7. The negative inputs are mapped strongly negative and near zero inputs are mapped close to 

zero.  
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The mathematical equation is given by: 

 

2

2
( ) tanh( ) 1 2 (2 ) 1

1 x
f x x sigmoid x

e−
= = − = −

+
 (2.17) 

Hyperbolic tangent activations functions are generally used to classify between two classes 

as it can strongly distinguish between negative and positive inputs. However, it can fall victim to 

similar issues as sigmoid function like the vanishing gradient problem, [17]. 

 

Figure 2.7: Hyperbolic Tangent activation function [18] 

3. Softmax activation function 

 Softmax activation function is generally used in multi-class classification problems. One 

of the advantages of softmax is that it arranges the output such that it provides the probability for 

each class, [19]. The output ranges from (0-1) and the sum of all outputs is always 1.  As such, it 

is always in the output layer of a neural network.  
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It is defined as: 

 

1

( )
i

j

x

i n
x

j

e
f x

e
=

=


 (2.18) 

where, ix  and jx  are the ith and jth output of the output layer with n outputs. 

4. Rectified Linear Unit (ReLU) activation function 

Rectified Linear Unit activation function is currently the most used activation function. 

ReLU is computationally less expensive than tanh or sigmoid functions. It is used in almost all 

CNNs or deep learning, [17]. It is defined as: 

 ( ) max(0, )f x x=  
(2.19) 

 

 

Figure 2.8: Rectified Linear Unit activation function [18] 

While similar to linear activation, it is non-linear in nature. As seen in Figure 2.8, it blocks 

all negative inputs and passes positive values as is, [18]. It can act as a good approximator for any 

function. However, it is not a bound function, [0,infinity). This means the node outputs may blow 

up after activation. 

Since it filters negative inputs, it causes a sparsity in activations, i.e. not all neurons activate 

in the network. However, this can bring about the dying ReLU problem. Since it filters all negative 

values, its gradient can be zero for some datasets. This means, it may not adapt to some dataset 
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which has predominantly negative values. This can be solved using the leaky ReLU activation 

function, [18]. In leaky ReLU, instead of completely filtering the negative values, it has a slightly 

horizontal line instead of a horizontal line for x<0.  This is depicted in Figure 2.9. 

 

 

Figure 2.9: ReLU and Leaky ReLU [18] 

2.2.6 Cost Functions 

A cost function is a measure of how accurate or good a neural network is with respect to 

its training and test samples. It compares output of the neural network with the expected output. It 

may depend on various parameters such as weights and biases. A cost function is a single value, 

even for multi-class neural networks, as it is a measure of how good a neural network is instead of 

how good each output is. 

A cost function should have following properties: 

1. The average of the cost function must be computable. 

 1
x

x

C C
n

=   (2.20) 

where, Cx is the cost of each output and n is the number of outputs.  

This allows for computation of the gradient with respect to weights and biases for a single 

example and application of the gradient descent method. 
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2. The cost function should be independent of any activation values of a neural network except its 

output. This restriction is applied for the sake of backpropagation. If the cost function was 

dependent on anything other than the output values, the backpropagation wouldn’t be applicable. 

With this, only the gradient of the last layer is dependent on the cost function while the other layers 

dependent on the next layer. 

2.2.6.1 Types of cost functions 

1. Quadratic cost 

Quadratic cost is also known as mean squared error, maximum likelihood or sum of squared 

errors. It calculates the average of square of errors. It is always positive. The values closer to zero 

are considered better. 

It is given by:  

 
2

1

0.5
( )

n

MSE i i

i

C Y Y
n =

= −  (2.21) 

where, iY  is the desired output and iY is the calculated output.  

The gradient of the cost function with respect to output of the neural network is given by:  

 

1

1
( )

n

MSE i i

i

C Y Y
n =

 = −  (2.22) 

2. Cross entropy cost 

Cross entropy is one of the most widely used cost functions in ANNs. It is defined as, [20]: 

 
_

1

1
log( ) (1 )log(1 )

n

cross entropy

i

C Y Y Y Y
n =

= − − − −  (2.23) 

where, Y  is the desired output and Y is the neural network output. 

A special class of cross-entropy, binary cross entropy is used for classification, [20]. In 

binary cross entropy: 
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(2.24) 

 

Figure 2.10: Binary cross entropy function, Y=0 [20] 

 

Figure 2.11: Binary cross entropy function, Y=1 [20] 

From Figure 2.10 and Figure 2.11, it can be seen that the cross-entropy converges towards 

zero when the expected value is close to the output value. It also spikes in value the farther the 

output gets from the expected value. This is a highly desirable property of a cost function. It can 

also help alleviate the vanishing gradient problem of sigmoid and tanh activation functions, [20]. 

If the output layer of a neural network is activated using the sigmoid function, it is almost always 

advisable to use cross entropy as the cost function. 
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Other than the ones discussed above, there are other cost functions such as exponential cost, 

Hellinger Distance, Kullback-Leibler Distance and Itakura-Saito Distance. 

2.2.7 Weight initialization 

 The output of a perceptron is given by: 

 

0

n

j kj k

j

y w x
=

 
=  

 


 

(2.25) 

where, y is the output, x is the input and φ is the activation function. j and k are the indices for the 

neural network layer and the artificial neuron in the layer.  

 Weights of the perceptron play a huge part in the learning capability of a perceptron and 

therefore, the entire neural network. A neural network “learns” by adapting its weights to the input 

data. Therefore, initial values of weights may determine speed and accuracy of the neural network. 

 There are multiple ways to initialize the weights of a neural network: 

1. Zero initialization 

Initialize all weights to zero. This causes the output of each neuron and subsequently output 

of the neural network to be zero. Since the gradient of loss function is the same for all layers, the 

weights are adapted by the same value in next iteration. This continues on for all iterations and the 

consequent neural network has symmetric hidden layers. This makes it no better than linear 

approximation of given data, [21].   

2. Random initialization  

Random weight initialization is better than zero weight initialization. This assures that the 

layers aren’t identical in nature and provides non-linearity for better adaption of weights. However, 

issues can arise when all the weights are initialized very high or very low. For low value 

initializations, similar issues as zero initialization may occur. For high value initialization, the 



20 

 

neural network may suffer from the vanishing gradient problem. Many solutions have been 

proposed for this such as He initialization and Xavier initialization, [21].  

2.3 Convolutional Neural Network 

Convolutional Neural Network (CNN) is one of the most widely used neural network 

architecture today. It is generally used for image classification, image segmentation and object 

detection problems. A CNN normally takes in an order three tensor as input, image with height H, 

width W and three channels (R, G, B color channels).  However, higher order tensors can also be 

used, [22]. The input is then passed through a series of layers for processing. There are multiple 

types of layers of which convolution, ReLU activation and pooling layers are an integral part of 

most CNNs.  

The main advantage of Convolution Neural Networks over other image processing 

techniques is that it requires very little image pre-processing as it learns all the necessary filters 

during training. This independence from hand-tailored filters is a major selling point for CNNs.  

 

Figure 2.12: Structure of Convolutional Neural Network [23] 

2.3.1 Convolution Layer 

The convolution layer is always the first part of a CNN. It is also the most important layer 

in a CNN, thus the name convolutional neural network. 
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2.3.1.1 Convolution 

A convolution kernel is overlaid on top of the input matrix (or image) and the product 

between the numbers of the same location in kernel and input is calculated. A singular number is 

then obtained by summing all the products together. The kernel is then moved down by one 

element. These steps are repeated until it reaches the bottom border of the input matrix. The kernel 

is again moved to the top and moved to the right by one element. All these steps are repeated again 

until the kernel has moved to the bottom right of the matrix, [22].  

For example: 

1 2 3 1
1 1 12 16 11

4 5 6 1 *
1 1 24 28 17

7 8 9 1

 
    

=    
    

 

 

Step 1: 1 1 1 4 1 2 1 5 12 +  +  +  =  

Step 2: 1 4 1 7 1 5 1 8 24 +  +  +  =  

For order three tensors, the convolution process is done similarly. Suppose, an input order 

three tensor of size 3l lH W  . Then, the convolution kernel overlaid on the input tensor will be 

of size 3H W  . The convolution is performed with the same steps as the convolution between 

two simple matrices as described above. The kernel is moved from top to bottom and left to right 

to complete the convolution. 

In the convolution layer, multiple convolution kernels are used. Assuming D kernels are 

used, the final output of the convolution layer is of size ( 1) ( 1)l lH H W W D− +  − +  . All the 

kernels are grouped into an order four tensor f  of size lH W D D   . 

Another important concept in convolution is called stride. In the above example, the kernel 

is overlaid with the input matrix at all possible spatial locations, which corresponds to the stride 
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s=1. . However, if stride is increased (s>1), the kernel will skip s-1 pixel locations. While this 

creates a smaller output, details from the input may be lost, [22]. 

Assuming a stride of 1, the convolution layer can be expressed in the following equation: 

 
1 1 1 1

1 1 1

, , , , , , ,
0 0 0

l

l l l l l l

l

H W D
l

i j d i j d d i i j j d
i j d

y f x+ + + +

− − −

+ +
= = =

=   (2.26) 

 The above equation is repeated for all 10 ld D +  , and for any spatial location 
1 1( , )l li j+ +

 

that satisfies the following conditions: 

1 1
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0 1

0 1
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+ +

  − + =
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 In this equation, 1 1, ,l l l

l

i i j j d
x + ++ +

is the element of lx indexed by (
1 1, ,l j li i j j d+ ++ + ). 

Higher values mean that the patterns in the kernel matches that part of the image more 

closely than the ones with lower values. This is called feature matching and the kernels are also 

called feature detectors. As the name suggests, each feature detector represents a separate feature. 

The output of the feature detectors is also called feature maps, [23].  

2.3.1.2 Significance of convolution 

 The convolution kernels can highlight different features of the image. For example, let us 

take the following convolution kernel: 

1 2 1

0 0 0

1 2 1

K

 
 

=  
 − − − 

 

 When this kernel is convolved over Figure 2.13(a), it highlights horizontals edges of the 

image as shown in Figure 2.13(b). If the kernel is transposed and then convolved over the image, 

it highlights the vertical edges as shown in Figure 2.13(c). 
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                                   (a)                                                             (b)                                                      (c) 

Figure 2.13: (a) Lenna Image, (b) Horizontal Edges Highlight, (c) Vertical Edges Highlight [22] 

 As the CNN gets deeper, it can learn more complex patterns such as curves, triangles or 

even cat’s head. And since each convolution kernel is overlaid over the whole image, it doesn’t 

matter where the pattern exists in the input image. For example, if multiple cats appear in an image, 

the same “cat head like pattern” may be activated at multiple locations. It also means that no matter 

how the cat is positioned, a CNN will  detect its head pattern, [22]. 

 In a deep neural network, convolution also helps parameter sharing among different layers. 

For example, if a CNN has learned to identify “dog head like pattern” and “cat head like pattern”, 

it doesn’t need to devote two different kernels for them. The CNN may learn “eye-like pattern” 

and “animal-fur-texture-pattern” which are shared by both dog and cat head patterns. 

Combinations of kernels like these can form deep and hierarchical structures very effective at 

learning features from images for visual recognition, [22]. 

 A key concept of CNN, and also deep learning, is distributed representation. In a classifier 

of N objects, a CNN may extract M features from a single object. However, all M features may be 

useful for classifying all N objects, [22]. 
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2.3.2 ReLU layer 

ReLU activation is applied to the output of the convolution layer. The purpose of this layer 

is to increase the non-linearity of the CNN. Since the input of CNN, i.e. images, are non-linear in 

nature, non-linearity must be maintained in the output of the convolution layer, [22].  

 

Figure 2.14: ReLU function [18] 

 This property is useful for recognizing complex patterns and objects. For example, instead 

of using the shape of the head of a cat as the evidence for “presence of cat” in an image, it may 

also detect other features such as torso, fur, legs, etc. This can provide higher confidence for 

“presence of cat” in the image, [22]. 

2.3.3 Pooling 

 The pooling layer pools multiple values in the feature maps generated by the convolution 

and ReLU layers into a single value. This reduces the number of data points, thus reducing the size 

of neural network while not losing anything of significant value.  

Let lx  be the input, order three tensor of size l l lH W D  , of the pooling layer ( thl  layer). 

Pooling layer requires no weights so there is no training done for this layer. The size of pooling 

operation ( H W ) is specified in the CNN structure. Let us suppose 
lH  is divisible by H  and 

lW  is divisible by W  and the stride of the pooling operation is equal to the pooling spatial extent. 

That is, the strides in vertical and horizontal direction are H and W respectively. The most 
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commonly used pooling setup is H=W=2 with a stride of 2.  Then, the size of the output tensor y  

or 1lx + , 
1 1 1   ,l l lH W and D+ + +

 can be calculated as, [22]: 

1 1 1, ,
l l

l l l lH W
H W D D

H W

+ + += = =  

There are two main types of pooling: 

a. Max Pooling 

 In max pooling, the pooling operation maps a subregion into its maximum value. Since 

higher value means higher similarity with a pattern in a feature detector, it is basically 

acknowledging the presence of that pattern in the image while discarding the unnecessary values 

which signifies the lack of similarity with the pattern, [22].  

It is mathematically defined as: 

 
1 1 1 1, , , ,0 ,0

maxl l l l

l

i j d i H i j W j di H j W
y x+ + + + +  +   

=  (2.27) 

where, 
1 1 1 1 1  0  ,0 , 0l l l l l li H j W and d D D+ + + + +      =  

Example: 

0 4 1 7

3 2 5 1 4 7
2 2 max

1 3 0 0 3 2
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  pooling

 
 
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 

 

b. Average Pooling 

 In average pooling, the pooling operation maps a subregion into its average value, [22]. 

The output of average pooling represents the average similarity between the image and a feature 

detector.   
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1
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=   (2.28) 
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where, 
1 1 1 1 1  0  ,0 , 0l l l l l li H j W and d D D+ + + + +      =  

Example: 

0 4 1 7

3 2 5 1 2.25 3.5
2 2

1 3 0 0 1.75 0.75
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 
 

 

2.3.4 Flattening 

 The flattening layer converts the output from convolution and pooling layers into a one 

column matrix. So, it basically takes the feature maps generated from the previous layer and 

restructures them into a 1n matrix where n is the number of data points generated. 

Example: 

1

1 0 0

0 1 0

1

 
 

   →    
 
 

 

2.3.5 Full Connection 

 A full connection layer is an ANN attached at the end of the CNN as shown in Figure 2.12. 

This layer takes in the input from its preceding layers (convolution, ReLU and pooling) and outputs 

N values (an N dimensional vector) where N is the number of classes the network can choose from. 

The output may be represented in different ways depending on the activation function and cost 

function used in the full connection layer, [22]. Figure 2.15 shows the structure of a simple fully 

connected layer.  
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Figure 2.15: Fully Connected Layer [33] 

 Assuming the output of the flattening layer is same as the example in previous section, the 

inputs to the fully connected layer, Input 1, 2, 3 and 4 would be 1, 0, 0 and 1 respectively. 

2.4 Keras 

Keras is a high-level neural network API in Python. It can use popular machine learning 

and mathematical libraries  such as TensorFlow, Theano or CNTK. It was designed to speed up 

the process of implementation and experimentation of neural networks, [24].  

The advantages of Keras are, [24]: 

1. Easy and fast prototyping due to its accessibility, modularity and extensibility. 

2. Runs on both CPU and GPU. 

3. Supports different types of neural networks such as CNN and Recurrent Neural Network (RNN) 

or the combination of both. 

2.4.1 Keras Installation 

 Keras can be installed in many ways depending on the python editor that is used. It also 

has a few dependencies that need to be installed before it can be used. The dependencies are 

TensorFlow, Theano and CNTK, depending on the preferred backend. There are other optional 
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dependencies: cuDNN, HDF5, h5py, graphviz and pydot. Keras can be installed for most virtual 

environments by using pip command: 

pip install keras 

For Anaconda, Keras can be installed using conda command: 

conda install keras 

2.4.2 Basic functions of Keras 

The core data structure of Keras is a model which defines how layers are organized. Sequential 

model is used for this research. Sequential and some core functions are described below. 

a. Sequential: It builds a linear stack of layers.  

b. .add(): It stacks layers to the model. For example: convolution, fully connected, pooling, 

etc. 

c. .compile(): It configures the learning process of the model with hyperparameters such as 

optimizer, loss function and metrics of evaluation. 

d. .fit(): Its fits the model to the training set and validates the model with the given test set. 

The number of epochs and batch size is also defined with this function. 

e. .predict(): It predicts the output of the model using the given input. 

Example of the usage of these functions are detailed in Chapter 3. 

2.5 Kinect 

Kinect, coined from the words ‘kinetic’ and ‘connect’, is a sensor device by MicrosoftTM. 

When it was released in 2010, MicrosoftTM planned to market it primarily for gaming. However, 

numerous developers, tech enthusiasts and researchers soon developed new applications to use 

Kinect with.  

The Kinect used in this project is the original Kinect for XBOX 360. Recently, MicrosoftTM 
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has released another from the Kinect line/family, Project Kinect for Azure, which it plans to deploy 

for machine learning applications. Azure is Microsoft's branding for all things AI. What 

this thesis project is attempting to do can be likened to a small portion of what Project Kinect for 

Azure is attempting to achieve.  

Kinect 360 was used to capture images in this project. It is essentially a little black 

rectangular box with an RGB camera, a depth sensor and an array of four microphones. The RGB 

camera detects red, green and blue color components, hence the name RGB. The depth sensor is a 

combination of a monochrome CMOS sensor and ultraviolet radiation that projects a 3D imagery 

of the environment in front of the Kinect.   

2.6 Kinect control using Python  

 Kinect is controlled using Python using Open Natural Interaction 2 (OpenNI2) and Open 

Computer Vision (OpenCV) libraries.  

 OpenNI2 is an open source software project designed to operate and interact with Natural 

Interaction (NI) devices, [25].  Natural Interaction devices are devices that can capture body 

movements and sounds that allows the user to interact with computers more naturally. Some of 

these devices are Kinect and Wavi X-tion. OpenNI2 is written in C with Python wrappers being 

available. OpenNI2 accesses the RGB or depth sensor in the Kinect and sends the video stream to 

the computer.  

 Open Source Computer Vision Library is an open source computer vision and machine 

learning software library. OpenCV was built to provide a common infrastructure for computer 

vision applications and to accelerate the use of machine perception in the commercial products, 

[26]. OpenCV captures frames from the video stream accessed using OpenNI2. 

 The code for RGB image capture is included in the Appendix.  
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2.7 Wheelchair 

The wheelchair used for this project is PermobilTM M300 Corpus HD. It is a heavy duty 

powered wheelchair designed to carry up to 450lbs. It can reach a maximum speed of 5.1 mph. 

The wheelchair is fitted with two batteries sized 74Ah, each with a nominal voltage of 12 Volts. 

The electronics are safeguarded by a circuit breaker of 63A. The power usage of the wheelchair is 

monitored by ExtechTM PM120 Power Monitor. The wheelchair is controlled using a joystick 

control system attached to the right arm rest. The joystick module is R-net CJSM-sw manufactured 

by Curtiss-WrightTM, [31].  
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3. EXPERIMENTAL SETUP AND IMPLEMENTATION OF NEURAL 

NETWORK 

3.1 Experimental Setup 

3.1.1 Block Diagram 

Figure 3.1 shows the block diagram of the setup used for image capture and transfer from 

Kinect to the computer. The computer is also connected to an Arduino which controls the joystick 

control mechanism for the wheelchair joystick. 

 

Figure 3.1: Block diagram of the experimental setup  

3.1.2 Current Setup for Image Capture 

 

Figure 3.2: Setup for Image Capture 
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 Figure 3.2 shows the experimental setup for the project. The Kinect is powered by a 120V 

60Hz inverter which in turn gets its power from a 12V battery. The Kinect is then connected to a 

laptop which classifies the images captured by the Kinect. 

3.1.3 Computer Specification 

Processor: Intel® CoreTM i7-6700HQ CPU @ 2.60Hz (8 CPUs), ~2.GHz 

RAM: 8192 MB 

Operating System: Windows 10 Home 64-bit (10.0, Build 17134) 

GPU: NVIDIA® GeForce® GTX 960M 

Average training time for CNN for one epoch: 7 minutes 

3.2 Artificial Neural Network 

 While a CNN is designed for image classification, it is still built on top of an ANN(fully 

connected layer). Therefore, to understand and demonstrate the working of an ANN, a simple 

prediction model was trained using a churn dataset found in Kaggle, [29]. 

3.2.1 Predictive Churn Model 

A churn is defined as the ratio of customer cancellation to the number of active customers. 

A predictive churn model or churn modeling is used to measure the immediate and future risk of 

customer cancellation. The probability of churn can be predicted using statistical and machine 

learning techniques.    

3.2.2 Dataset and Data preprocessing 

 

Figure 3.3: Sample of dataset for churn modeling 

 Figure 3.3 shows a sample of the dataset used for churn modeling. The data represents 
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customers of a fictional bank in Europe. The data fields are “RowNumber”, “CustomerID”, 

“Surname”, “CreditScore”, etc. The data field “Exited” provides information regarding whether 

the customer has left the bank, “1” for customer who have left and “0” for those who haven’t.  

 Before the data is used for training a neural network, it is preprocessed to remove redundant 

data and encode labels such as “Geography” and “Gender” into usable values. 

 “RowNumber”, “CustomerID” and “Surname” have no influence over churn and are 

therefore discarded. Labels such as “Geography” and “Gender” are encoded into binary values for 

usage in neural network as they may influence the customer from leaving or staying with the bank. 

For this neural network, they are encoded as: 

Geography: France = 0 0 

                    Spain = 0 1 

                    Germany = 1 0 

Gender: Male = 1 

              Female = 0 

Since “Geography” has now been encoded into two bits, the total number of input variables 

increases to eleven. 

Finally, parameters like “CreditScore”, “Age”, “Balance” and “EstimatedSalary” are 

standardized into similar range as the rest of the parameters. In their original form, these 

parameters may dominate other parameters in the neural network as they are much larger in 

comparison.  Therefore, the values of these parameters are scaled in the range of 0 to 1.  

The dataset is also divided into two parts, training set and test set. The training set 

( _ , _X train Y train ) is used to train the weights of the model and the test set ( _ , _X test Y test ) is 

used to determine the accuracy of the trained model. This ensures that the trained model isn’t only 
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accurate for the training data and can fit data outside of the set used to train it. Normally the data 

is divided by a ratio 4:1 or 9:1 depending on the size of the dataset. 

3.2.3 ANN implementation using Keras 

 The ANN code was written in Anaconda using Spyder IDE in Python 3.6.7. It was executed 

in both Spyder and Pyscripter IDE. 

 

 

Figure 3.4: Artificial Neural Network Code in Keras 

Figure 3.4 shows the code for the implementation of ANN in Python using Keras. Each line is 

discussed below: 

1. classifier = Sequential()  

This initiates a sequence of layers named classifier. Initially, the defined sequence is empty. 

The layers that are defined after this function call are added sequentially to the neural network.  

2. classifier.add() adds a layer to the neural network. “Dense” layer means each of the neuron of 

the layer is connected to all the inputs for that layer. This is also called a fully connected layer.  
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a. Input layer: classifier.add(Dense(output_dim=6, init=’uniform’, activation=’relu’, 

input_dim=11)) 

Since there are 11 independent variables chosen to model the churn process, the number of 

inputs for the input layer is taken as 11 (input_dim=11). The input layer has 6 neurons and therefore, 

it has 6 outputs (output_dim=6). The activation function is chosen as ReLU which is considered 

one of the best activation functions for input and hidden layers (activation=’relu’). The weights 

are initialized in uniform random distribution (init=’uniform’). This also ensures that all the 

weights are initialized to a small value. 

b. Hidden Layer: classifier.add(Dense(output_dim=6, init=’uniform’, activation=’relu’)) 

The number of inputs isn’t defined for this layer as the number of outputs for the previous 

layer (input layer) has already been defined. The weights and activation function of this layer is 

defined to be same as the input layer. 

c. Output Layer: classifier.add(Dense(output_dim=1, init=’uniform’, activation=’sigmoid’)) 

Since there are only two possible outputs for churn modeling, a single output can be used 

to represent them. Sigmoid is chosen as the activation function as it provides an output that can be 

interpreted as a probability. A higher value represents higher probability for customer cancellation.  

3. classifier.compile(optimizer=’adam’, loss=’binary_crossentropy’, metrics=[‘accuracy’]) 

classifier.compile() compiles the given neural network with configurations for loss 

function, optimizer and metrics for performance. For this model, adam, a highly efficient stochastic 

gradient descent algorithm, [32] is chosen as the optimizer. Since the activation function for the 

output layer is a sigmoid function, the output ranges from 0 to 1. The possible outputs are 0 and 1. 

Thus, binary cross entropy(Equation 2.24)  is used as the cost function. Finally, the accuracy is 

chosen as the criteria for evaluation of the neural network.  
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4. classifier.fit(X_train, Y_train, batch_size=10, nb_epoch=10) 

classifier.fit() trains the weights of the neural network to fit the training data. The weights 

are updated after every ten training set samples (batch_size=10). The neural network is also trained 

for the given training set ten times (nb_epoch=10). 

5. Y_pred = classifier.predict(X_test) 

    Y_pred = (Y_pred>0.5)  

classifier.predict() predicts the output using the test data. For this neural network, a 

probability greater than 50% is rounded up to 100% and less than 50% is rounded down to 0%. 

6. cm = confusion_matrix(Y_test, Y_pred) 

confusion_matrix() generates confusion matrix that compares the output prediction with 

the correct output from the test data. For example, if  

58 7

14 26
cm

 
=  
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This means the model made 84 correct predictions and 21 incorrect ones. So, higher 

numbers in the diagonal of the confusion matrix means better model. 

3.2.4 Results 

 As seen in Figure 3.5, the neural network manages 83.13% accuracy for the training set 

and 84.1% for the test set. 

 

Figure 3.5: Output of the ANN code 
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3.2.5 Optimizing and tuning the ANN 

 Other than making the neural network deeper (adding more layers), the classifier can be 

optimized by tuning its hyperparameters. Hyperparameters are the parameters of the network that 

aren’t changed during the training. Examples of hyperparameters are loss function, optimizer, 

number of epochs, batch size, activation functions, etc.  

 Another technique for optimization is called dropout. This is generally used to prevent 

overfitting of the neural network. In this method, some of the neurons are randomly dropped out 

during some of the training iterations. Due to this, it can decrease or remove the over-reliance of 

the classifier on some of the neurons which can cause overfitting of the model.  

3.3 Convolutional Neural Network (Image Classification) 

3.3.1 Image Classification 

 Image classification is defined as the process of extracting information from images in 

order to divide them into distinct classes. There are two types of classifications, supervised and 

unsupervised. Image classification is a complex process, the accuracy of which is mainly related 

to the characteristics of the dataset, complexity of the problem under analysis, and the robustness 

of the classification algorithm, [27]. 

3.3.2 Dataset 

 For this thesis, image classification is done for a curb-edge dataset. The dataset consists of 

272 images which has been divided into training and test dataset at the ratio of 25:9. The images 

were collected around Idaho State University (ISU) main campus and Measurement and Control 

Engineering Research Center (MCERC). The images are divided by folders. This also serves as 

classification for Keras. For example, all the images in the folder training_set/Curbs are used as 

training data classified as curbs by the code. Edges and test sets are arranged in a similar manner.  
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                                           (a)                                                                                            (b)    

Figure 3.6: Image example for (a) Curb and (b) Edge 

Figure 3.6 shows examples of images in training and test sets. 

3.3.3 CNN implementation in Keras  

 The CNN code was written in Anaconda using Spyder IDE in Python 3.6.7. It was executed 

in both Spyder and Pyscripter IDE. 

 

Figure 3.7: Building a CNN in Keras 
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Figure 3.8: Training a CNN in Keras 

Figure 3.7 shows the code for building a CNN in Keras and Figure 3.8 shows the code for 

training the CNN. 

1. classifier = Sequential() 

This defines a sequence of layers named classifier. The layers that are defined after this 

function call are added sequentially to the neural network.  

2. classifier.add() adds layer to the neural network.   

a. Convolution Layer 1: classifier.add(Conv2D(32, (3, 3), input_shape = (64, 64, 3), activation 

= 'relu')) 

 The CNN is started with a convolution layer with a convolution kernel of size 3 3

(Conv2D(32, (3, 3))). The depth of the kernel is three for RGB image inputs. The number of 

convolution kernels or feature detectors is initialized at 32. The CNN is also trained with higher 
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(and lower) number of feature detectors to check for optimization. The convolution layer expects 

a 64 by 64 RGB image as input. ReLU is the activation function of the layer. It is considered the 

best activation function for image classification tasks in CNNs.  

b. Max Pooling Layer 1: classifier.add(MaxPooling2D(pool_size = (2, 2))) 

 The output of the convolution layer is connected to a max pooling layer of size 2 2 .  

c. Convolution and Max Pooling Layer 2: classifier.add(Conv2D(32, (3, 3), activation = 'relu')) 

         classifier.add(MaxPooling2D(pool_size = (2, 2)))  

 A second convolution and max pooling layer is added so the CNN may be able to identify 

complex patterns using the combination of convolution layers, i.e. increasing the depth of the deep 

CNN. 

d. Flattening Layer: classifier.add(Flatten()) 

 The output of the preceding layers is flattened to form a column matrix for input into the 

fully connected layer.  

e. Fully connected layer: classifier.add(Dense(output_dim = 128, activation = 'relu')) 

     classifier.add(Dense(output_dim = 1, activation = 'sigmoid')) 

 This creates a fully connected layer consisting of two layers. The hidden layer has 128 

neurons and ReLU activation function. Number of neurons for hidden layer is a hyperparameter 

which can be optimized with trial and error. There is no hard and fast rule for choosing the size of 

hidden layer. The output layer has one output using a sigmoid activation function.  

f. classifier.compile(optimizer = 'adam', loss = 'binary_crossentropy', metrics = ['accuracy']) 

 The CNN is compiled using the same hyperparameters as the previous example. It uses 

“adam”[32] optimizer, “binary cross entropy” loss function and “accuracy” as the metric of 

evaluation. 
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g. classifier.fit_generator(training_set, steps_per_epoch = 200, epochs = 5, validation_data = 

test_set, validation_steps = 72) 

 classifier.fit_generator() fits the CNN to the given training set (training_set) and validates 

it using the test set (validation_steps = 72). The CNN is trained using the training set over three 

iterations (epochs = 3). 
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4. RESULT AND DISCUSSION 

4.1 Output of the CNN 

 Table 4.1 shows the results of the training and validation as generated by the Keras code.  

Table 4.1: Training and validation results for CNN training 

Epoch loss Acc val_loss val_acc 

1 0.5821 0.6775 0.7338 0.6806 

2 0.4066 0.8125 1.1449 0.7222 

3 0.2746 0.8860 1.2715 0.6944 

4 0.1839 0.9305 2.4657 0.6389 

5 0.1528 0.9410 1.5821 0.7500 

 

 In Table 4.1, “acc” gives the accuracy of the neural network for the training set. “val_acc” 

gives the accuracy for the test set. Similarly, “loss” is the value of loss function of the neural 

network for the training set. “val_loss” is the loss function for test set. 

The CNN scores an accuracy of 94.10% for training set and 75% for test set. The accuracy 

for test data decreases when the number of epochs is increased. This may indicate overfitting as 

the size of the training set is relatively small.  

4.2 Testing different configurations of CNN 

The CNN was tested with two of its hyperparameters varied. The two hyperparameters 

were number of feature detectors (convolution kernels) in convolution layer and number of 

neurons in the hidden layer of fully connected layer (ANN). The accuracy results are summarized 

in Table 4.2 and 4.3. 
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Table 4.2: Accuracy comparison for different numbers of feature detectors 

Accuracy (%) 16 feature 

detectors 

32 feature 

detectors 

64 feature 

detectors 

128 feature 

detectors 

Training Set 93.35 94.10 96.40 89.85 

Test Set 63.89 75 66.67 66.67 
 

 

Table 4.3: Accuracy comparison for different sized hidden layers 

Accuracy(%) 64 hidden layer 

neurons 

128 hidden layer 

neurons 

256 hidden layer 

neurons 

Training Set 94.15 94.10 97.50 

Test Set 61.11 75 69.44 

  

From the data in Table 4.2 and 4.3, a CNN with 32 feature detectors and 128 hidden layer 

neurons can be seen as performing best when both training and test set accuracies are considered. 

While 64 feature detectors and 256 hidden layers configurations sport higher accuracy for training 

set, they score lower for the test set. This may indicate overfitting. 

4.3 Testing with novel images 

The CNN is also tested with some images of curbs and edges that are not included in the 

training or test set. For the separate set of images as shown in Figure 4.4, it scores an accuracy of 

100%. 
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Figure 4.4: Images not included in the training and test sets (set 1) 

 Another set of 10 images, shown in Table 4.4, were also collected for the test of the CNN. 

These images contain partially visible curbs or gently sloping edges or neither curbs nor edges. 

The CNN still shows good accuracy for the curbs and edges (4 out of 5) but it will always label 

the images without a curb or edge as one or other as the classifier has been trained to classify every 

image as either curb or edge. 

 

 

 

 

 

 

 

 

 



45 

 

Table 4.4: Set 2 of images and classification by different configurations of the CNN 

Images 32 Feature detectors 64 feature detectors 128 feature detectors 

 

(1) None 

Curb Edge Curb 

 

(2) None 

Edge Edge Edge 

 

(3) None 

Edge Edge Edge 

 

(4) None 

Curb Curb Curb 

 

(5) None 

Edge Edge Edge 
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(6) Partial Curb 

Edge Curb Edge 

 

(7) Partial Curb 

Curb Edge Edge 

 

(8) Slight Edge 

Edge Edge Edge 

 

(9) Slight Edge 

Edge Edge Edge 

 

(10) Curb 

Curb Curb Curb 
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 Table 4.4 shows the images used for classification and the prediction by CNNs with 

different number of feature detectors. The first column contains the images and the 2nd, 3rd and 4th 

columns contain the predictions made by CNNs with 32, 64 and 128 feature detectors respectively.  

 For images (1)-(5), images do not contain any curb or edge. The classifier still classifies 

the images into one of the two classes. It is to be expected as the classifier has been trained to find 

either curb or edge in every image. However, there is still some information to be gained from 

these outputs. In image (1), the crack on the road may be triggering the features the CNN has been 

trained to detect for curbs. In image (2) and (3), the color gradient from the white line to the darker 

road may be triggering the features of an edge where the higher plane would generally be lit better 

than the lower. Similar information cannot be extracted from image (4) and (5). The CNNs with 

64 and 128 feature detectors perform similarly for image (1)-(5) with only 64 feature detector CNN 

being an outlier for image (1). 

 Images (6)–(10) contain curbs, partially hidden or fully visible, and edges with slight 

gradient. For this set, CNN with 32 and 64 feature detectors get 4 out 5 correct, however they err 

for different images. 32 feature detectors can still be considered better as it predicts a curb correctly 

for the image with more distinct curb(image (7)) while 64 feature detectors do not. 128 feature 

detectors CNN fares worse in this set than the other two with two errors.  

4.4 Optimizing the CNN 

 The accuracy of the CNN can be improved by making it deeper, i.e. adding more layers to 

it. Higher number of convolution layers allows the CNN to detect more complex features. A deeper 

fully connected layer increases the non-linearity of the neural network which also increases the 

accuracy of classification. All the techniques that are used for optimization and tuning of ANNs 
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can be applied to fully connected layer of CNN to increase its accuracy. All said, the most effective 

method for higher accuracy would be a larger dataset. 
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5. CONCLUSION AND FUTURE WORK 

5.1 Conclusion 

 The application of ANNs and CNNs is on the rise recently. Due to rise in computation and 

memory capabilities of computers and availability of a variety of datasets, neural networks are 

applied in fields like robotics, medicine, computer vision, etc. CNNs are especially good at image 

classification due to its convolution layers. The convolution layer can learn patterns in an image 

class and with multiple convolution layers stacked, they can learn complex patterns like “dog head 

shape”, “animal fur texture”, etc. This research shows that a CNN can be used to detect curbs and 

images even with a small dataset. 

5.2 Future Work 

 Since the final goal of the research is to develop an autonomous wheelchair, the neural 

network must also be trained to detect other common obstacles such as human beings, animals, 

vehicles, etc. For this, the training will require a much larger dataset which will also increase the 

time required for training of the classifier. Images should also be collected from diverse source. 

Since the images used for training of this CNN was all captured around Idaho State University, it 

may cause an unknown bias in the classifier during training such as color of the road or the 

sidewalk. 

 Adding more layers to the CNN is a good method to increase the accuracy of the network. 

However, this increases the amount of time required for training. In order to train the neural 

network within a reasonable amount of time, hardware acceleration may be required. Pre-trained 

models such as LeNet[16] and AlexNet[2] can also be used and tuned according to need. 

 Currently, the code only uses RGB sensor of the Kinect. Future extensions in the classifier 

may also use the depth sensor of the Kinect. Using the RGB and depth sensor at the same time 
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wasn’t possible in the current code as there was no data available for depth sensor images for 

training. 
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7. APPENDIX 

7.1 Data preprocessing for Artificial Neural Network 

The dataset for churn modeling is preprocessed using the Scikit-learn and Pandas libraries. 

Pandas  is used to read data from the .csv file containing the data from the bank customer. Scikit-

learn is used to encode labels and scale the higher valued parameters into standard magnitudes. 

 

7.2 Image pre-processing for Convolution Neural Network 

 The images are preprocessed for the CNN using Keras’ ImageDataGenerator API. The 

pixel data of all the images (training and test set)are scaled by 1/255. This creates uniformity 

between all the images and a few images aren’t able to influence the neural network more than the 

others.  

In order to create some variety in the training set, some filters are applied randomly. The 

filters used are shearing, zoom and horizontal flip. All the input images are set to size 64 64 as 
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the convolution layer expects an input of that size. Larger sizes like 128 128  or 256 256  can be 

used to gain more information from the image. But using larger sizes will significantly increase 

the training time of the classifier.  

 

7.3 Single Prediction in Convolutional Neural Network using Keras 

 

7.4 Image Capture using Kinect 

 The code is interfaced with Kinect using OpenNI2. Since, the image received from the 

Kinect is in BGR format, OpenCV is used to convert the image to RGB format. Image from Kinect 

is captured every two seconds. 
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