
Photocopy and Use Authorization

In presenting this thesis in partial fulfillment of the requirements for an advanced degree at Idaho

State University, I agree that the Library shall make it freely available for inspection. I further

state that permission for extensive copying of my thesis for scholarly purposes maybe granted by

the Dean of the Graduate School, Dean of my academic division, or by the University Librarian.

It is understood that any copying or publication of this thesis for financial gain shall not be

allowed without my written permission.

Signature ___________________________________

Date _______________________________________

ii

Reactor Transient Classification Using Machine Learning

By

Pedro Arturo Mena

A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science

in the Department of Nuclear Engineering

Idaho State University

Summer 2019

iii

Committee Approval

To the Graduate Faculty:

The members of the committee appointed to examine the thesis of Pedro Arturo Mena find it

satisfactory and recommend that it be accepted.

Dr. Leslie Kerby, Major Advisor

Dr. R.A Borrelli, Committee Member (University of Idaho)

 Dr. David Beard, Graduate Faculty Representative

iv

Table of Contents
List of Figures ... vi

List of Tables ... viii

Abstract ... ix

Introduction ..1

Literature Review ...2

Background ...6

Machine Learning ...6

Supervised Learning ...6

Python Packages ..7

NumPy ...7

Pandas ..8

Scikit-learn ...10

TPOT..12

Data Science Methods Used ...18

Data Preprocessing ...18

 Binarization ..18

 Standard Scaler ..19

Robust Scaler ...21

Maximum Absolute Value Scaler ..23

Minimum Maximum Scaler ...24

Normalization ..26

Radial Basis Function Sampling ..28

Feature Agglomeration ..29

Principal Component Analysis ..30

Feature Selectors ...31

Family Wise Error Feature Rate Selection ..31

Select Percentile ...33

Variance Threshold Selection ..33

Machine Learning Classification Models ...35

Naïve Bayes Classification ..35

v

Bayes’ Theorem ...35

Naïve Bayes Advantages & Disadvantages ...36

Gaussian Naïve Bayes..37

Bernoulli Naïve Bayes ...37

Multinomial Naïve Bayes ..38

Naïve Bayes Classification Example ...38

K-Nearest Neighbors ...40

Logistic Regression ..41

Decision Tree Classification ..43

Model Validation ...46

GPWR Reactor Simulator ...48

Data Gathering ..54

Feature Selection ..54

Initial Conditions ...55

Transient Events...55

Data Preparation ...59

Data Compiling...59

Modifications using Python ..59

Data Splitting ..61

Results & Analysis ...64

K-Nearest Neighbors Results ...64

Bernoulli Naïve Bayes Results ...66

Gaussian Naïve Bayes Results ...69

Multinomial Naïve Bayes Results ..72

Logistic Regression Results ...73

Decision Tree Results ...75

Conclusions ..77

Summary ...83

References ...93

Appendix 1. Feature Behavior Graphs ..96

Appendix 2. Sensitivity Analysis Results ..162

vi

List of Figures
Figure 1: Photo of Crack Analysis Using Machine Learning at Purdue Introduction........3

Figure 2: Identification of Material Radiation Damage Using Machine Learning at

University of Wisconsin-Madison ..4

Figure 3: Profit Margin Comparison of Industries that have adopted AI 5

Figure 4: Example of a DataFrame From Project ...10

Figure 5: Example of a Typical TPOT Pipeline ...15

Figure 6: TPOT Classifier Used for Project ...16

Figure 7: TPOT Machine Learning Process from TPOT Documentation 17

Figure 8: Binarization Example Using Scikit-learn ..19

Figure 9: Comparison of Standard Scaled Data and Unscaled Data 20

Figure 10:Example of Standard Scaled Data ...20

Figure 11:Comparison of Robust Scaled Data and Unscaled Data 22

Figure 12: Example of Robust Scaled Data ..22

Figure 13: Comparison of Maximum Absolute Value Scaled Data & Unscaled Data 23

Figure 14: Example of Data Scaled by Maximum Absolute Value Method 24

Figure 15: Comparison of Unscaled Data and Min Max Scaled Data25

Figure 16: Example of Min Max Scaled Data ...26

Figure 17: Comparison of Unscaled Data and Normalized Data 27

Figure 18: Example Normalized Preprocessed Data ...28

Figure 19: Example Code of Family Wise Error Rate Feature Selection32

Figure 20: Output of Family Wise Error Rate Feature Selection Example 32

Figure 21: Example of Variance Threshold Feature Selection ...34

Figure 22: GPWR Simulator Setup at CAES ...49

Figure 23: GPWR Simulator Interface ...52

Figure 24: Information Panel Displayed in GPWR ...52

Figure 25: GPWR Navigation Home Table ..53

Figure 26: Screenshot of a CVS file from the GPWR Simulator ..58

Figure 27: Descriptive Statistics for Dataset ...61

Figure 28: Test Train Split code for project ...63

Figure 29: Sample from X Train Dataset ..63

vii

Figure 30: Confusion Matrix for K-Nearest Neighbors Model ...65

Figure 31: Graph of Misclassifications for K-Nearest Neighbors Model 66

Figure 32: Confusion Matrix for the Bernoulli Naïve Bayes Model Model 68

Figure 33: Graph of Misclassifications for Bernoulli Naïve Bayes Model 68

Figure 34: Confusion Matrix for the Gaussian Naïve Bayes Model 70

Figure 35: Graph of Misclassifications for Gaussian Naïve Bayes Model 70

Figure 36: Classification Matrix for Multinomial Naïve Bayes Model 72

Figure 37: Graph of Misclassifications for Multinomial Naïve Bayes Model 72

Figure 38: Confusion Matrix for the Logistic Regression Model 74

Figure 39: Graph of Misclassifications for Logistic Regression Model 74

Figure 40: Confusion Matrix for Decision Tree Model ...76

Figure 41: Graph of Misclassifications for Decision Tree Model 76

viii

List of Tables
Table 1: TPOT Data Preprocessing Feature Selection/Feature Selection Method 14

Table 2: TPOT Machine Learning Models ..15

Table 3: GPWR Preprogramed Initial Conditions ..50

Table 4: Features Collected from GPWR Simulator ...54

Table 5: K-Nearest Neighbors Model Individual Transient Accuracies 64

Table 6: Bernoulli Naïve Bayes Model Individual Transient Accuracies 66

Table 7: Gaussian Naïve Bayes Model Individual Transient Accuracies 69

Table 8: Multinomial Naïve Bayes Model Individual Transient Accuracies 71

Table 9: Logistic Regression Model Individual Transient Accuracies 73

Table 10: Decision Tree Model Individual Transient Accuracies 75

Table 11: Summary of Machine Learning Model Results ...82

ix

Abstract

 This thesis explores the use of machine learning in identifying nuclear reactor transients.

Models were produced using six supervised learning techniques. Due to the nature of nuclear

power plants, synthetic data was gathered using a reactor simulator. Data was collected on four

different transients and on normal operations. Transients were examined using a combination of

core life and power output. The Python TPOT package was used to preprocess data, as well as

build and validate models. The results of the test showed that the decision tree model produced

the best results with an accuracy of 98.6%, as well as high scores on the other validation

measurements. The other models also performed well with scores in the mid-90s. These high

results show that machine learning has potential to be a tool to assist reactor operators in

diagnosing transients earlier and more accurately and could aid in accident mitigation and

prevention.

Keywords: Machine Learning, Reactor Transients, Python, TPOT

1

Introduction

Artificial Intelligence (AI) and other similar concepts are a popular area of research in the

2010’s. Private industries and governments are looking at using AI to better predict market

conditions, equipment status, preventive maintenance and even increase and improve automation

processes. An example of this would be Coca-Cola‘s use of AI in product development and

marketing. This AI collects data from soft drink fountains that allow the user to mix a

customized drink. This data is then used to determine which mixes may make successful

products at a retail store [1]. Machine learning is a part of AI that has recently begun to be

explored, improved and implemented in various fields including the nuclear industry.

 The purpose of this paper is to explore the ability of machine learning algorithms to

identify transient events occurring within a nuclear reactor. In order to perform this experiment

it was necessary to gather nuclear reactor data to use in creating machine learning models. Due

to the extremely high cost of nuclear reactors, as well as the possible serious health and

environmental consequences of a nuclear power plant accident, it is impossible to stage real-life

situations where an actual nuclear reactor under goes serious transient events or accident

conditions that could be used to gather data. Instead, a reactor simulator will be used in order to

gather the synthetic data needed to apply the machine learning algorithms. Once the data is

gathered, it will be necessary to modify and format the data in a form where the machine

learning algorithms can understand and interpret it. This will be done using data science

packages such as Pandas and NumPy within the Python programming language. Once the data

has been properly formatted the data will be applied using machine learning algorithms within

two python machine learning packages: TPOT and scikit-learn. This will produce several

2

different machine learning models. Finally, each machine learning model created will then be

validated using measurements such as accuracy and precision.

Literature Review

Data is becoming more and more central in many industries across the world. Retailers

are using data to better plan promotions and target customers, i.e., marketing efforts are more

focused on consumer data for targeting key demographics, etc. One industry that has recently

begun using data to affect operations is the nuclear industry. Many of these efforts have focused

on the use of AI and machine learning to perform a variety of functions within the industry.

 One of the most promising data applications within the nuclear industry is the use of AI

and machine learning for preventive maintenance. Shutdowns in the nuclear industry can be

extremely expensive and time consuming. An unexpended failure can lead to several months of

ceased operations, but the hope is that with the use of AI, problems can be found ahead of time,

leading to quicker repair times and shorter down times. One such effort to develop this ability is

happening at Purdue University. Researchers at the university have proposed using a "deep

learning" framework, a form of AI, to identify cracks within a nuclear reactor [2]. The AI is

"trained" using data from over 300,000 crack and non-crack patches. Then, the AI uses video

images from within the reactor itself to determine if there is a crack forming or not. According to

Dr. Mohammad Jahanshahi, of Purdue, the AI was able to identify cracks correctly 98.3% of the

time, a much higher accuracy than other techniques that are currently in use. The full paper on

this has been published by IEEE [3]. Figure 1 shows an example of an image examined by the

AI.

3

Figure 1: Photo of Crack Analysis Using Machine Learning at Purdue [2]

Other applications for the use of AI and machine learning are being explored across the

country. In June of 2018, North Carolina State University (NCSU) was awarded a $3.4 million

grant by the United State Department of Energy (DOE) to develop a control system that will rely

more on AI. The plan is for AI to use machine learning to analyze the data that is collected from

the reactor and alert the operator. It should be stressed that the operator will also have control of

reactor functions. TerraPower is hoping to collaborate with NCSU to determine the best areas to

place many of the sensors and instruments where they will be most effective to gather data [4].

DOE has listed cost reduction through less staff, as well as better training to be goals for this

project [5]. Another project in progress involves collaboration between the University of

Wisconsin-Madison and Oak Ridge National Laboratory. A machine learning program has been

designed to analyze and detect damage to materials caused by radiation. Figure 2 shows some

examples of the classifications identified during this experiment [6].

4

Figure 2: Identification of Material Radiation Damage Using Machine Learning at

University of Wisconsin-Madison [6]

One hurdle that these techniques face is the gathering of data. The majority of nuclear

power plants in the Unites States predate the introduction of digital technology. As such, the

digitalization of existing nuclear power plants is essential in order to properly gather and store

the data that will be needed to use machine learning and other AI techniques. To this end, groups

such as Nuclear Energy Institute (NEI) have been promoting digitalization and other efficiency

improvement measures. The greatest incentive to promote the implementation of digital

equipment and use of AI is the increased boost in profit margin. A study done by McKinsey

Global Institute found that industries that implemented the use of these technologies, either

proactively or partially, saw an increasing profit margin. Figure 3 shows a graphical comparison

from the study [7].

5

Figure 3: Profit Margin Comparison of Industries that have adopted AI [7]

 Companies such as General Electric (GE) have also begun looking into the use of

machine learning and AI for their systems. One of the applications of AI and machine learning

that GE is looking at is the use of data to better inform management. GE hopes that techniques

will result in better information and as a result, better managerial decisions will be made. This

will lead to increased performance and better cost efficiency [8].

6

Background

Machine Learning

 Machine learning is an area of study in the field of computer science. The purpose of

machine learning is to teach computers to make predictions based on patterns and data that are

provided to the computer. This is a critical part of the AI system as it controls the decision-

making aspect of a machine. There are many different methods that can be used in machine

learning to make predictions. These methods are known as machine learning algorithms or

models.

Machine learning systems have several advantages over preprogrammed computer

systems. Where a preprogrammed system only performs the functions that were initially put in

the system, machine learning systems can make changes and adapt to outside changes by

analyzing new data. Machine learning can also be used to find relationships between different

types of data as part of a data mining process. This does introduce the possibility of mistakes or

errors occurring [9]. Today, a variety of industries make use of machine learning in their

business model. These include: marketing, finance, insurance, casinos, retail, manufacturing,

research & development, science, transportation, politics, etc. As the world becomes more data

driven, machine learning will continue to be used in more and more applications.

Supervised Learning

 Machine learning algorithms are built using a variety of methods. This project focused on

building models using the supervised learning technique. Supervised learning is a form of

learning by example. This method uses data that already has an outcome associated with it. This

7

is usually in the form of an output or label. An example of this would be a dataset that

categorizes a set of features as good, fair, poor, etc. A supervised learning model will develop

criteria to make classifications based on the provided labels. This is sometimes referred to as the

supervisor. These criteria can be created in a variety of ways, such as using probabilities derived

from the training features [10]. An advantage of supervised learning is that it allows the user to

specify the desired output labels and the number of labels to train the model on. It should be

noted that supervised models have an increased tendency of model overfitting and training these

models can be computationally expensive in some cases.

Python Packages

NumPy

 NumPy is a Python library that has been designed with several different applications.

These include: the ability to integrate C/C++ and FORTRAN code into Python, preform linear

algebra functions and easy integration with datasets. NumPy was developed by Dr. Travis

Oliphant in 2005 as a successor to Numeric and Numarray. NumPy development is done through

the NumFocus Foundation, a nonprofit organization. Today, NumPy is used by many companies

and organizations, such as Netflix and NASA [11]. NumPy was designed with scientific

computing in mind, but the package also has the ability to help with database construction and

manipulation. NumPy is a free open-source package and is included standard in many Python

distributions such as Cygwin and Anaconda or the library can be downloaded using Pip. Many of

the packages used in this project, such as TPOT and Pandas, use NumPy arrays to perform

numerical operations. At the time of this project, the most current version of NumPy was version

8

1.17.0, which was released in May of 2019. NumPy is able to operate in a Windows, Linux or

Mac OS environments [12].

 One of the most important features in the NumPy library is the ability to create NumPy

arrays also referred to as ndarrays. A NumPy array is a container that allows for the storage

of several different elements. NumPy arrays, while similar to a Python list, have a few key

differences. The first is the ability to operate quicker and take up less memory than a Python list.

This is due to better integration with C/C++ which helps mitigate the loss of efficiency that

higher-level and easier-to-use languages typically have. Also, NumPy has been optimized for

linear algebra operations. NumPy arrays are considered homogenous, meaning that all data is the

same size and is processed the same way, regardless of any differences between elements. These

elements are described by a dtype object that can be built using different data types. Every

NumPy array has a dtype object associated with it. This can tell the user the descriptive

information about the NumPy array, such as type, memory usage, etc. Elements used in code are

taken from the array using indexing. The index represents an object scaler which was part of the

NumPy development.

Pandas

 Pandas is a free, open-source Python package, which aims to help users with data

manipulation, modification and analysis. The package can be downloaded on most Python

distributions, such as Anaconda or via Pip. The package was initially developed by Wes

McKinney in 2008 in response to a need for better data tools and development is ongoing as of

2019. The project receives funding and support from the University of Paris Saclay Center for

Data Science, as well as from Two Sigma. Pandas requires Python version 2.7 or greater but

9

support for all Python 2 versions will be dropped on January 1
st
 of 2020. The most current

version, as of May 2019, is version 0.24.1, released in February of 2019. Pandas only requires

the NumPy package to operate properly. Pandas is designed to work with Windows, Mac OS and

Linux environments [14].

 The goal of the Pandas project is to provide data tools to users in Python. In the past, the

adaptation of Python in data science and statistics had been slow as users had preferred to use

tools such as MATLAB and R. Pandas has the ability to read and convert datasets, typically in a

CSV format, into a structured dataset known as a Pandas DataFrame. A Pandas DataFrame

is a 2-dimensional Python list that allows users to store values in a tabular form. An example of a

DataFrame is shown in Figure 4. Like most Python packages, Pandas is considered high-level

and there are tradeoffs in efficiency for ease-of-use. Cython was used to mitigate this issue.

Pandas has the ability to help the user identify and manage missing values, a common issue in

data science. The package also has the ability to group or sort data by specified user input, such

as individual values within the dataset or data types like floats or strings. Other useful Pandas

functions include the ability to change large groups of data, perform statistical analysis such as

mean, median and standard deviations over the dataset, as well as add, remove and combine parts

of different datasets [15].

10

Figure 4: Example of a DataFrame From Project

Scikit-learn

 This project makes great use of the scikit-learn Python package. The package is a free,

open-source package that can be downloaded through Pip or a Python distribution, such as

Anaconda. Scikit-learn was developed by Dr. David Cournapeau in 2007 as a summer project for

a Google Summer of Code Project. The purpose behind the project was to design a system that

could run complicated machine learning algorithms using Python and maintain a user-friendly

intuitive interface. The first public release of scikit-learn was released on February 1
st
, 2010 and

the French Institute for Research in Computer Science and Automation (INRIA) began heading

the project. Today, scikit-learn development and research is funded by universities, such as the

New York University, University of Sydney, and Columbia University, among others [16]. Many

companies use scikit-learn as part of their information system operations, including: JP Morgan,

Spotify, Booking.com and Change.org. Some of these applications include predicting user’s

preference in music, credit and market trend analysis, as well as targeting users with more

customized add-ons and specials [17].

11

 Similar to many other Python packages, scikit-learn makes use of many modern C++

libraries using Cython, a programming language designed to help bridge C and Python code.

Scikit-learn has been designed to be compatible in both, a Windows or Linux environment. The

latest version of scikit-learn 0.21 requires Python version 3.5 or higher. Scikit-learn relies on

three Python packages to run, NumPy, SciPy and Joblib, which allows the package to be easily

distributed and used. While not required, Pandas is needed in order to take full advantage of the

abilities of the scikit-learn package. In the past, the package has focused on remaining easy to

use and efficient, rather than adding new features. Though, recently scikit-learn has been updated

with new features that assist in data exploration using Pandas. This includes better ways of

dealing with missing values with the SimpleImputer function. Since Python is a high-level

programming language, there are tradeoffs in code efficiency for ease of use. Steps have been

taken in order to manage and mitigate most of these issues: the specification of objects through

interface rather than inheritance, the use of Cython to increase the efficiency of using C++

libraries within Python, and others [18].

 Scikit-learn has the ability to perform several different types of machine learning

algorithms: supervised learning methods, such as classification and regression, as well as

unsupervised methods, like k-means clustering. Currently, scikit-learn has functions to perform

17 different types of supervised machine learning methods, as well as 9 different unsupervised

methods. The package has been designed with functions that help with data preparation, such as

splitting datasets for validation purposes. Scikit-learn also has several functions for data

preprocessing, such as the standard scaler function and model validation and scoring through

measurements, such as accuracy, precision, and goodness of fit. Finally, scikit-learn can make

12

use of Python’s Matplotlib package in order to help users visualize the results of the models

generated. This includes clustering graphs, confusion matrices, etc. [19]

TPOT

 As is the trend with most industries, the idea of implementing automated processes to

improve ease-of-use, results and performance is occurring with machine learning. This is

sometimes referred to as AutoML. New packages and software have been developed to automate

areas of machine learning that are complex and/or time consuming, such as data preprocessing,

feature selection and model selection. While this simplifies the process, it can be

computationally expensive. Python packages that are currently available include: Auto-

WEKA/auto-sklearn, H2O and TPOT. Google is also developing its own cloud-based AutoML

software, called Cloud AutoML, to try and open machine learning to non-data-scientists.

Services available include photo and video analysis/modeling, language translation and data

analysis [20].

 The supervised learning models for this project were created using the Tree-based

Pipeline Optimization Tool (TPOT) package in Python. TPOT was chosen for this project

because it is one of the more mature AutoML Python packages available. Also, it is simple to use

and can evaluate a number of different machine learning models. TPOT was developed by the

Computational Genetics Lab at the University of Pennsylvania with support from the National

Institute of Health. Development began in 2011 and the package continues to be developed by

Epistasis Lab at the University of Pennsylvania. TPOT is open-source and is available for

download from the lab’s GitHub repository for free. TPOT was developed in response to the

growing demand and interest in machine learning applications. The process of creating a

13

machine learning model can be complex and time consuming, even if just limited to supervised

learning. There are multiple models that can be created, as well as many different methods of

data preprocessing. It can be difficult for even an experienced data scientist to develop the best

possible model. The purpose of the TPOT package is to simplify and automate parts of the

machine learning process, while providing better results due to improved data preprocessing and

the use of multiple different supervised learning methods [21].

 TPOT is designed to make use of the scikit-learn Python package for both, data

preprocessing and model construction. As such, the user is required to have the scikit-learn

package installed and imported into the program. TPOT also makes use of NumPy arrays and

Pandas DataFrames and these packages are required as well. The DEAP, SciPy, tqdm, stopit,

and update_checker packages are also needed. These packages are all available for free via

download and can be configured with the Anaconda Python distribution using Pip. Other Python

distributions can be used if the pywin32 module is used. It should be noted that Epistasis Lab

strongly recommends that Python 3 be used rather than Python 2.

TPOT is designed to aid the user in data preparation for supervised learning. This

includes automating feature preprocessing, selection and construction. Doing so can dramatically

simplify the process of preparing data for use in machine learning algorithms and these steps can

be situational, complex and time consuming. It is important to note that the TPOT package

requires the user to do data examination on the data to be used in the supervised learning process.

The package cannot account for missing values, qualitative data and incorrectly formatted

datasets. TPOT uses 9 different preprocessing methods from the scikit-learn Python package:

Binarization, Feature Agglomeration, Maximal Absolute Scaling, Minimum-Maximum Scaling,

Normalization, Principal Component Analysis, Robust Scaling, Standard Scaling and RBF

14

kernel sampling. More detail on these methods will be provided in later sections. These methods

are all implemented within TPOT using scikit-learn functions.

TABLE 1: TPOT Data Preprocessing Feature Selection/Feature Selection Method

Binarization Feature Agglomeration Maximal Absolute Scaling

Minimum-Maximum

Scaling

Normalization Principal Component

Analysis,

Robust Scaling Standard Scaling RBF Kernel Sampling.

Select Family Wise Error Select Percentile Variance Threshold

Selection

Dictionaries can be created so the user can specify which preprocessing techniques are

implemented. In addition to data preprocessing, TPOT makes use of 3 feature selection methods:

Select Family Wise Error, Select Percentile and Variance Threshold Selection. These methods

also use scikit-learn functions run through TPOT and the user can define which methods will be

applied. Again, more detail on these selection methods will be provided in later sections. The

entire process of data preprocessing and selection is known as a pipeline. A visualization of a

typical TPOT pipeline from the paper TPOT: A Tree-based Pipeline Optimization Tool for

Automating Machine Learning is shown in Figure 5.

15

 Figure 5: Example of a Typical TPOT Pipeline[22]

Once the data preprocessing has been completed, TPOT then creates and test several

different machine learning models. TPOT can perform either a regression analysis, where the

user is looking to determine some numerical value using a set of features, or a classification

analysis where features are used to identify some value which represents an object, scenario,

event, etc. For the purposes of this project the classification method was used. The TPOT

Classifier creates and tests models using 6 different techniques: Gaussian naïve, Bayes, Bernoulli

naïve Bayes, multinomial naïve Bayes, k-nearest neighbors, decision tree classification and

logistic regression.

These methods all use the functions from the scikit-learn package. The user is able to use a

TPOT dictionary to specify which methods should be tested when creating the model.

TABLE 2: TPOT Machine Learning Models

Bernoulli Naïve Bayes Multinomial Naïve Bayes Gaussian Naïve Bayes

K-Nearest Neighbors Decision Tree Classification Logistic Regression.

16

The TPOT Classifier also allows the user to define the parameters of the model creation.

One important parameter is the number of generations that will be used in the model creation.

This is the number of iterations that will be used in the optimization process. Typically, the more

generations run, the better the results will be but the process will take longer. Another important

parameter that can be specified is the population size used. This number is the number of

individual pipelines retained in each generation; again a larger population produces better results

but increases the time needed to complete the model. Other parameters that the user can choose

include the random number seed, the TPOT dictionary used in the model creation, and the

verbosity, which is the amount of information shown during the model creation [22]. This project

used: 100 generations, a population size of 100, 10 cross-fold validations and a random state of

5. The TPOT classification code used for this project is shown in Figure 6:

Once the parameters of the TPOT Classifier have been set by the user, the program will

then take the test and train datasets and determine which model is optimal. This process is time

consuming and can take hours to days to run depending on the parameters and dictionaries used.

TPOT will output the type of model that is optimal, as well as a single validation measurement.

By default, TPOT will provide the accuracy of the optimal model, but other forms of validation

measurement, such as precision and recall, can be displayed using the sckit-learn functions. The

optimal results can be stored for further use in the program and optimal pipeline can be exported

for use at a later time. It should be noted that the user will need to ensure that the correct file

name is used to import the data in the exported pipeline, as the exported file will only use a

Figure 6: TPOT Classifier Used for Project

17

placeholder for this. Also, depending on data configuration some slight modifications to the

optimal model code may be needed to ensure that the data is properly read by the exported file.

Figure 7, from the TPOT documentation shows the entire process the package applies in creating

a model.

Figure 7: TPOT Machine Learning Process from TPOT Documentation [21]

18

Data Science Methods Used

Data Preprocessing

Binarization

 Binarization is the process of taking numerical data and converting it into binary\boolean

form. In machine learning, this method is most commonly used in preparing data for use with the

Bernoulli naïve Bayes method, as this method requires data to be distributed in a binary form.

There are other cases where this method could be applied. Binarization of data is particularly

important in training image analyzers, where pixels are assigned a true or false value, based on

the characteristics of the pixel [23].

 Binarization relies on determining a threshold for the data that is to be converted. This

threshold is the standard that determines if the data being converted is classified as a 1, a true

value, or a 0, a false value. The threshold value is dependent on the data and context of the

analysis being performed. The scikit-learn has a preprocessing method .Binarizer(). This

method will convert the user-specified data into binary form. By default, the threshold value is

set to 0. As such, a negative or 0 value will be assigned a 0 and a positive value will be assigned

a 1. The user is able to change this threshold so that the method better fits the analysis. Figure 8,

from the scikit-learn documentation, shows an example of the binarization method [24].

19

Figure 8: Binarization Example Using Scikit-learn

Standard Scaling

 The final data preprocess technique that was used in the TPOT dictionary for this project

was Standard Scaling. Standard Scaling removes the mean and then scales the dataset to its unit

variance. The scaling of the individual data points, z, is given by the following equation:

𝑧 =
𝑋 − µ

𝑆

Where:

µ is the average of the dataset

S is the standard deviation of the dataset

Standard Scaling is necessary for many machine learning algorithms that require centered

data. Also, this prevents bias from features that are of different type. The scikit-learn Standard

Scaling function .StandardScaler(). Figure 9 and 10 show a comparison of unscaled and

standard scaled data.

20

Figure 9: Comparison of Standard Scaled Data and Unscaled Data

Figure 10: Example of Standard Scaled Data

21

Robust Scaler

 The Robust Scaler method scales features using statistical methods. These methods are

the unit variance or the standard deviation of the feature being scaled. These methods are

intended to help deal with outlying data points to prevent machine learning models from

becoming skewed. This is done by removing and storing the median of the feature, and then the

scaling range is calculated using 1
st
 and 3

rd
 quartile ranges as bounds by default. The user is able

to adjust these ranges to better meet the needs of the dataset. The final value of the scaled data

point is calculated using the same equation as the Minimum Maximum Scaler, just with the

chosen statistic, rather than the actual value. Figure 11, shows a comparison of data that is scaled

using the Robust Scaling method and data that is unscaled. Figure 12 shows the output of the

scaling code

The scikit-learn function for robust scaling is .RobustScaler(). The user can

adjust the quartile range for the scaler and control if the data is centered prior to scaling. By

default and for this project, the .RobustScaler() method will use the unit variance. The

following equation is used for the .RobustScaler() method:

𝑆𝑐𝑎𝑙𝑒𝑑 𝑥𝑖 =
𝑥𝑖 − 1𝑠𝑡 𝑞𝑢𝑎𝑡𝑟𝑡𝑖𝑙𝑒 𝑟𝑎𝑛𝑔𝑒(𝑥)

3𝑟𝑑 𝑞𝑢𝑎𝑟𝑡𝑖𝑙𝑒 𝑟𝑎𝑛𝑔𝑒(𝑥) − 1𝑠𝑡 𝑞𝑢𝑎𝑟𝑡𝑖𝑙𝑒 𝑟𝑎𝑛𝑔𝑒(𝑥)

22

Figure 11: Comparison of Robust Scaled Data and Unscaled Data

Figure 12: Example of Robust Scaled Data

23

Maximum Absolute Value Scaler

 The Maximum Absolute Value Scaler method will scale and translate the values in a

dataset so the max value in that set is 1. Scaling in this way helps manage bias that results if the

features are of different measurements, such as temperature and pressure. One issue that needs to

be considered is that this scaling method is sensitive to outliers and failure to properly deal with

this may result in skewed machine learning models. The scikit-learn method,

.MaxAbsScaler() will ignore missing values and they are not changed during this process.

Figure 13 and 14 show a comparison of data that has not been scaled and data that has been

scaled using the Maximum Absolute Value Scaler method [25].

Figure 13: Comparison of Maximum Absolute Value Scaled Data & Unscaled Data

24

Figure 14: Example of Data Scaled by Maximum Absolute Value Method

Minimum Maximum Scaler

 . The Minimum Maximum Scaling method allows the user to scale the data to a particular

range. This range can be specified by the user to better fit the needs of the analysis. This project

used the default range of 0 to 1. Each feature is scaled individually using the following

equations:

𝑋(𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑) =
𝑋 − 𝑋(𝑀𝑖𝑛𝑖𝑚𝑢𝑚)

𝑋(𝑀𝑎𝑥𝑖𝑚𝑢𝑚) − 𝑋(𝑀𝑖𝑛𝑖𝑚𝑢𝑚)

𝑋(𝑆𝑐𝑎𝑙𝑒𝑑) = 𝑋(𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑) ∗ (𝑀𝑎𝑥𝑖𝑚𝑢𝑚 𝐵𝑜𝑢𝑛𝑑 − 𝑀𝑖𝑛𝑖𝑚𝑢𝑚 𝐵𝑜𝑢𝑛𝑑) + 𝑀𝑖𝑛𝑖𝑚𝑢𝑚 𝐵𝑜𝑢𝑛𝑑

Where:

X is the specific point in the dataset being scaled

Maximum Bound is the highest scaled value

Minimum Bound is the lowest scaled value

25

 This method, like Maximum Absolute Scaler method, is useful to scale features that of

different measurements to reduce feature bias in the model. This method is also sensitive to the

presence of outliers which could lead to skewed machine learning models if not dealt with

properly. Also, this method is useful for the multinomial naïve Bayes algorithm, as it scales

negative values to values between 0 and 1, which are compatible with the algorithm. The scikit-

learn method for the Minimum Maximum Scaler is .MinMaxScaler(). This method will

ignore and leave untreated missing values from a dataset. Figure 15 shows a comparison of data

that has been scaled using the .MinMaxScaler() method and unscaled data. Figure 16 shows

the code output using the .MinMaxScaler() method.

Figure 15: Comparison of Unscaled Data and Min Max Scaled Data

26

Figure 16: Example of Min Max Scaled Data

Normalization

 The normalization method samples each feature independently to the unit norm. The

scikit-learn method for normalization is .Normalizer(). The user is able to specify what

type of regularization is used for the normalization, either L1 or L2. L1 is the sum of the

regularization weights and L2 is the sum of the squares of the regularization weights. L1

typically is more robust and less efficient. L2 while less robust, will always be more efficient

than L1. L1 and L2 are often referred to as least absolute deviations and least squares error

respectively. The default setting for this method is L2. Normalization is done using the following

equation:

𝐿2 𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 𝑉𝑎𝑙𝑢𝑒 𝑜𝑓 𝑋 =
𝑋

 √∑ 𝑋𝑖
2𝑛

𝑖=1

Normalizing data can help make the dataset less sensitive to the magnitude of the features

and prevent bias. Also, data normalization is needed if a method such as Gaussian naïve Bayes is

used, as these methods depend on data that is distributed normally. Finally, normalization can

27

help with the convergence of the machine learning algorithm. Figure 17 shows a comparison of

normalized data and unscaled data. Figure 18 shows the output of the normalization method.

Figure 17: Comparison of Unscaled Data and Normalized Data

28

Figure 18: Example Normalized Preprocessed Data

Radial Basis Function Sampling

 Radial Basis Function (RBF) sampling is a form of Random Fourier Features, more

commonly referred to as Random Kitchen Sinks. This technique is intended to replace weight

minimization with randomization in order to improve the classification. The RBF sampler maps

a kernel using a Monte Carlo approximation. This is used in kernel-based machine learning

algorithms, such as k-nearest neighbors and k-means, but is more widely used in neural

networking and other support vector learning applications. RBF sampling is computationally less

expensive than other kernel mapping techniques, such as the Nystroem method, but can be less

accurate. Due to this, RBF Sampling is better used in cases where there are clearer differences

between classes [26].

 In scikit-learn, the RBF Sampling function is .RBFSampler(). The user can specify

the parameters of the kernel, gamma, as well as the dimensionality of the components. As with

other Monte Carlo approximations, the more components used the better the accuracy, but more

computation time is needed. A random number seed may be specified in order to replicate the

29

results. Once the RBFSampler parameters are set, the data must be fit to perform the Monte

Carlo analysis and then transformed to model the kernel map.

Feature Agglomeration

 Feature Agglomeration is a form a Hierarchical clustering, sometimes referred to as

agglomerative clustering. This process takes in the data and groups similar data into a predefined

number of groups or clusters. This technique is used as the basis for some unsupervised learning

algorithms, but it has applications in supervised methods as well. In supervised learning this

method can be used to aid in feature reduction for complex datasets to help deal with models that

are overfit [27].

 The scikit-learn method for Feature Agglomeration, .FeatureAllgomeration(),

merges features together in order to reduce the number features used in a machine learning

algorithm. The user has the ability to enter several parameters to better tune the reductions to the

needs of the analysis. The first of these is the number of clusters that the methods will create.

The default for this method is 2, as this is typically used to determine if it is appropriate to merge

2 features together to reduce overfit. Another key parameter for this method is the ability to

change the linkage criteria of the method. This is called affinity. The linkage criteria available

are: ward, single, complete and average. The ward criterion looks to minimize the variance

between the features being merged. The average criterion uses the average distance of the

features for linkage. The single and complete criteria use the minimum and maximum distances

respectively between the features for linkage. By default and for this project, the ward criterion

was used. Finally, the user can define the affinity, the type of distance, applied to the criterion of

the method. This is the metric that is used for linkage calculations. The options for affinity

30

include: euclidean, l1,l2, manhattan, cosine or precomputed. Since this project uses the ward

criteria the euclidean metric must be used [28].

Principal Component Analysis

 Principal Component Analysis (PCA) is a statistics-based technique that is designed to

reduce the number of dimensions a dataset contains. PCA utilizes orthogonal transformations to

combine correlated variables, using basic statistics and linear algebra techniques to identify

patterns within data rather than using visualization. Once patterns are found within a dataset, it is

then possible to reduce the number of features in that dataset based on the PCA results. This

helps reduce model overfit and produces better machine learning models. PCA is also used in

data compression applications as the original data can be recovered later if needed.

 PCA works by first removing the mean of each of the datasets features by subtracting the

mean value of each feature by the individual points that correspond to that feature. A covariance

matrix is then created; the size of this square matrix is equal to the number of features present in

the dataset. The eigenvectors and eigenvalues of the covariance matrix are then calculated, the

length of this eigenvectors is equal to 1. The eigenvalues are then sorted from highest to lowest,

which shows the significance of each component. Eigenvalues with small significance can be

removed and while some information is lost, that information is small and has less impact on the

model while reducing model over fit. Using the eigenvalues that were kept, a new feature matrix

is created. This matrix is then transposed and multiplied by the transpose of the mean adjusted

data. This will give the new dataset with only the higher significant features left [29]. The user

typically specifies the amount of variance that is acceptable to lose in the reduction. This

technique is also useful for reducing statistical noise.

31

 The scikit-learn function for PCA is .PCA(). The user is able to specify the amount of

explained variance acceptable to lose for the creation of the covariance matrix, as well as specify

and empirical mean, if needed. The function will detect the number of features in the dataset. It

should be noted that PCA requires enough memory to fit all of the data present in the dataset.

This can be a problem for very large datasets. In these cases PCA can be performed in

increments using the IncrementalPCA function [30].

Feature Selectors

 As mentioned before, model overfit due to an abundance of features is a major

consideration when creating a machine learning model. An overfit model may be able to predict

accurately given the general case, but once small variations begin to occur, the model

performance may suffer. In addition to using PCA, three different feature selection methods were

implemented into the TPOT dictionary for this project to improve the model: Family Wise Error

Rate (FWER), Select Percentile and Variance Threshold Selection. This attempts to remove

features that are non-informative from the model.

Family Wise Error Feature Rate Selection

The FWER method is a univariate statistical approach used in hypothesis testing. FWER

is the probability of at least 1 false positive, Type 1 error, in a group of hypothesis test. It is

calculated by taking the probability value (p-value) for a set of tests and rejecting hypothesis that

fail a specified test. A common test for this rejection is the Bonferroni test [31]. This test rejects

p-values based on the following expression:

𝑅𝑒𝑗𝑒𝑐𝑡 𝑖𝑓 𝑝𝑖 ≥
𝛼

ℎ

32

Where:

α is the specified criteria for the hypothesis test

h is the number of hypothesis tested.

 The scikit-learn method for FWER is .SelectFwe. This method uses a statistical

approach in order to calculate the p-value such as Chi-Square or F-value. The F-value is used by

default. Also, an alpha may be specified by the use. The default alpha is 0.05. Figure 19 and 20

show an FWER example from the scikit-learn documentation [32].

 This example loads the wine data from the scikit-learn repository. This set has 178

samples and 13 features. The FWER method used Chi-Squared to find p-values and a 0.01 alpha

was selected to for the evaluation criteria. 5 features from the dataset failed the FWER test and

were removed from the dataset.

Figure 19: Example Code of Family Wise Error Rate Feature Selection

Figure 20: Output of Family Wise Error Rate Feature Selection Example

33

Select Percentile

 The select percentile method, similar to FWER, is another univariate selection method

that uses a statistical test to determine which features should be removed from the dataset. The

key difference between the select percentile method and FWER is that instead of specifying an

alpha for the p-value rejection criteria, the user inputs a percentile value and p-values are either

rejected or accepted based on the scores when compared to that percentile.

 The scikit-learn function for the select percentile technique is .SelectPercentile.

Similar to the FWER function, the user selects the method for determining the p-values of the

desired feature and the percentile for the p-value evaluation. This project uses the default F-value

method for determining the p-values and a 10 percentile for the evaluation criteria.

Variance Threshold Selection

 The variance threshold technique examines the features and does not factor the model

outcomes, unlike univariate methods such as FWER. As such, variance threshold is an ideal

feature selection method for unsupervised learning. Variance threshold selection calculates the

variance of the individual features and removes those that do not meet the user specified

requirements.

 The scikit-learn function for variance threshold is .VarianceThreshold(). This

function requires the user inputs a variance for the evaluation criteria. The default value of this is

0, which removes features that have the same value in all samples. This was the method used for

this project. Figure 21 from the scikit-learn documentation shows a code example of the

technique being applied.

34

Figure 21: Example of Variance Threshold Feature Selection

This example creates a Python list with the 1
st
 and 4

th
 feature, 0 and 3, repeated in each

row. The default variance of 0 is used for the feature selection. Once the method is applied, the

repeated features have been removed from the dataset, leaving only the non-zero variance data in

the set.

35

Machine Learning Classification Models

Naïve Bayes Classification

 Naïve Bayes classification is a supervised machine learning algorithm that relies on

probabilities. This method is based on Bayes’ theorem and assumes statistical independence

between two data points. Naïve Bayes classification is used in a variety of industries, i.e. the

medical industry and spam email detection. Due to the probabilistic nature of naïve Bayes

classification, there are several different models that can be created based on distributions. This

project uses three different naïve Bayes models: Gaussian, Bernoulli and multinomial. Detailed

explanations on each will be given below [33].

Bayes’ Theorem

 Bayes’ theorem when applied for naïve Bayes classification is given by the following

equation:

𝑃(𝑌|𝑋1, … . , 𝑋𝑛) =
𝑃(𝑌) ∗ 𝑃(𝑋1, … . , 𝑋𝑛| 𝑌)

𝑃(𝑋1, … . , 𝑋𝑛)

Where:

P(Y) represents the probability of event Y occurring

𝑃(𝑋1, … . , 𝑋𝑛) represents the probability of the X events occurring

𝑃(𝑋1, … . , 𝑋𝑛| 𝑌) represents the probability of the X events occurring given Y

𝑃(𝑌|𝑋1, … . , 𝑋𝑛) represents the probability of event Y occurring given the X events

36

It is important to note that naïve Bayes always assumes statistical independence; as such the

relationship between the event Y and the X events can be simplified to the following equation:

𝑃(𝑌|𝑋1, … . , 𝑋𝑛) =
(𝑃(𝑌) ∏ 𝑃(𝑋𝑖

𝑛
𝑖=1 |𝑌)

𝑃(𝑋1, … . , 𝑋𝑛| 𝑌)

 Under these assumptions, the Maximum A Posteriori (MAP) technique can be used to

determine P(Y) and P(Xi|Y). In this case the MAP technique estimates P(Y) based on the mode

of P(Xi|Y). The key difference between the several naïve Bayes techniques is how P(Xi|Y) is

calculated.

Naïve Bayes Advantages & Disadvantages

 Naïve Bayes classification models have several advantages over other supervised

classification techniques. The first of these is that the time required to calculate the model is less

than that of other techniques, such as k-nearest neighbors. Also, naïve Bayes techniques can be

performed using less test data than other techniques due to the conditional independence

assumption of the technique. Finally, again due to the conditional independence assumption, the

technique is less likely to suffer from overfitting due to a high number of features in the dataset.

This is because feature distributions are decoupled, allowing each feature distribution to be

estimated as a single distribution. There are drawbacks to this technique though. Statistical

independence is not common in the real world. As such, this technique is poor at creating

estimates and is not a useful tool in regression analysis. Still, real-world applications have proven

it to be an effective classification tool as the dependencies between features tend to cancel out in

the classification process [34].

37

Gaussian Naïve Bayes

 The first naïve Bayes method used for this project was the Gaussian classification

technique. As the name suggests, this method assumes that the probabilities of features are

Gaussian, or a standard normal distribution. Gaussian distributions are symmetrical and only

have a single peak. The Gaussian naïve Bayes technique uses the following equation to calculate

the probability of the set events Xi given event Y:

𝑃(𝑋𝑖|𝑌) = (
1

√2𝜎𝑌
2

) 𝑒
−

𝑋𝑖−µ𝑌

2𝜎𝑦
2

Where:

 µy is the mean of event Y

σy is the standard deviation of event Y

Bernoulli Naïve Bayes

 The Bernoulli naïve Bayes method assumes the data follows a multivariate Bernoulli

distribution. A Bernoulli distribution assumes that the values are boolean, either 0 or 1. Due to

this, the values entered into the model must be converted into this format. The probability of the

set of events Xi given event Y, is found using the following equation:

𝑃(𝑋𝑖|𝑌) = 𝑃(𝑖|𝑦)𝑥𝑖 + (1 − 𝑃(𝑖|𝑦)(1 − 𝑥𝑖)

It should be noted that this method penalizes the score of the model if the feature i does not occur

for a given Y.

38

Multinomial Naïve Bayes

 The final naïve Bayes method used for this project is the multinomial classification

technique. Multinomial distribution is a generalized form of the binomial distribution. Unlike a

binomial distribution, a multinomial distribution can have values other than 0 or 1. This is

typically used to determine the probability of a series of mutually exclusive events occurring at a

given time. A key difference between the multinomial and Bernoulli methods is that the

multinomial technique does not penalize the score of the model if a feature does not occur within

a given data point. Probability of a set of events Xi given event Y is calculated using the

following equation:

𝑃(𝑋𝑖|𝑌) = 𝜃𝑦𝑖 =
𝑁𝑦𝑖 + 𝛼

𝑁𝑦 + 𝛼𝑛

Where:

Nyi is the number of times a features appears in the training set

Ny is the number of times a features occurs in both the testing and training sets

α is a smoothing factor to prevent the nonoccurrence of a feature from penalizing the model

Naïve Bayes Classification Example

 Unlike the k-nearest neighbor, naïve Bayes classification is difficult to visualize as it

makes use of probabilities, rather than distance. As such, this example is provided in order to

demonstrate how a naïve Bayes classification works in real-world applications. Perhaps, the most

common application of naïve Bayes classification is for spam/junk email detection. In this type

of classification there are only two possible outcomes: the email is either spam or it not spam. As

39

naïve Bayes is a supervised method, the first step is to have a training set of email data that is

already classified as either spam or not-spam.

The key with naïve Bayes classification is that the outcome probabilities must be

calculated using the dataset features. The features of this type of dataset would be the words

inside the email. Using the training set data, the probability that if an email contains a certain

word that the email is spam is calculated. Since there are only two outcomes, the probability that

given a certain word that the email is not spam is simply 1 minus the probability that given the

word an email is spam. Typically, common words such as ‘it’ will be assigned neutral

probabilities, while other keywords are assigned higher probabilities. Next, the probability of a

general email being spam or not being spam is determined. This can be done using either the

training dataset, to better tailor the model to a specific email account, or the probability can be

assigned using outside data and assumptions [35].

Once all of the probabilities have been determined, the probabilities of an email being

spam given a certain word, can be calculated using Bayes’ theorem. This process is repeated for

every word in the email. Once probabilities have been done for every word in the email, the

probabilities are then combined so the probability of the email being spam given the set of words

can be determined. This is done using the following equation:

𝑃(𝑆|𝑾) =
𝑃1 ∗ 𝑃2 ∗ … 𝑃𝑁

𝑃1 ∗ 𝑃2 ∗ … 𝑃𝑁 + (1 − 𝑃1)(1 − 𝑃2). . . (1 − 𝑃𝑁)

Where:

𝑃(𝑆|𝑾) is the probability of the email being spam given the set or words

𝑃𝑁 are the probabilities of the email being spam given an individual word

40

Using this total probability, the system determines whether to classify the email as spam or not-

spam, based on user preferences.

K-Nearest Neighbors

 K-nearest neighbors is a supervised machine learning algorithm used in both,

classification and regression models. This method is non-parametric, meaning that the algorithm

does not rely on a set number of parameters and can be flexible depending on the situation. K-

nearest neighbors works by using a user-defined constant integer known as k. K is the number of

nearest neighbors that the algorithm looks for in the classification. A majority vote of the nearest

neighbors is used to determine which class a data point belongs to. This means that the testing

data point will be classified according to which training data it is closest to, in the feature space.

The size of k must be balanced when using this method. If k is too small, the model may be

overfit. If k is too large, the possibility of an under-fit model that leaves out important details

increases [36].

 The k-nearest neighbors algorithm also requires a distance function in order to calculate

the distance between a given testing data point and the different training data points. This

algorithm typically uses Euclidean distance, also known as the straight line distance between two

points in Euclidean space. This is very similar to the distance formula used in basic algebra and

geometry. The Euclidean distance is found using the following equation:

𝐷(𝑥𝑖,𝑥𝑗,) = √ ∑ (𝑥𝑖𝑚 − 𝑥𝑗𝑚)2

𝐷

𝑚=1

 = √||𝑥𝑖||2 + ||𝑥𝑗||2 − 2𝑥𝑖
𝑇𝑥𝑗

𝐷(𝑥𝑖,𝑥𝑗,) is the distance between the 2 points

41

||𝑥𝑖||
2 and ||𝑥𝑗||2 are norm of the respective points

2𝑥𝑖
𝑇𝑥𝑗 is the dot project between the two points.

 The k-nearest neighbors algorithm works best when the data points are scaled to balance

the magnitude of different features and are normalized. K-nearest neighbors is simple in nature

and easy to visualize, especially in datasets with fewer features. Also, with more data and a large

k, the algorithm can produce very accurate results. Unfortunately, there are disadvantages

associated with using k-nearest neighbors. The first is that it can be computationally expensive,

especially with larger datasets. Also, it can be sensitive to statistical noise from features. Finally,

the model can suffer if too many features are used [37].

Logistic Regression

 Logistic regression is a supervised machine learning algorithm designed to deal with

complex scenarios. While its name suggests this method is a regression method, it is actually a

classification method. Similar to the naïve Bayes method, logistic regression uses probabilities to

predict to what class a set of features belongs to, i.e. the probability of Y given X, or a set Xi.

Outputs can be boolean, multinomial or for cases where more than one class exists, One vs. Rest.

An important difference between the two methods is that naïve Bayes assumes the features are

statistically independent, while logistic regression does not. This results in the naïve Bayes

model having more bias but less variance when compared to a logistic regression model. The

decision of which model is best depends on the data used in creating the two models. Typically,

logistic regression is preferred when the data has a large number of features, while naïve Bayes

works better with less complex data. Logistic regression takes the different outcome probabilities

of a given data point and models them using a logistic function [38].

42

 This project involves 5 different categories for classification, as such; the One vs. Rest

method of logistic regression will be used to create the classification model. One vs. Rest logistic

regression uses the following equation:

𝑃(𝑌𝑘|𝑋) =
1

1 + ∑ exp (𝑤𝑗𝑂 + ∑ 𝑤𝑗𝑖𝑋𝑖)
𝑛
𝑖=1

𝑘=1
𝑗=1

Where:

𝑃(𝑌𝑘|𝑋) is the probability of Y belonging to class k given X

𝑤𝑗𝑂 and 𝑤𝑗𝑖 are the weights associated with class j

Scikit-learn has the ability to otimize this equation by modifying the weights with user specified

input [39]. This can be done using three methods: L1, L2 or Elastic Net regularization. L1 solves

issues with weight optimization given by the following equation:

𝐿1 = 𝑚𝑖𝑛𝑤𝑐 |𝑤| + 𝐶 ∑ log (exp (−𝑦𝑖(𝑋𝑖
𝑇𝑤 + 𝑐)) + 1

𝑛

𝑖=1

 L2 minimizes the cost function of the weights using the following equation:

𝐿2 = 𝑚𝑖𝑛𝑤𝑐

1

2
 𝑤𝑇𝑤 + 𝐶 ∑ log (exp (−𝑦𝑖(𝑋𝑖

𝑇𝑤 + 𝑐)) + 1

𝑛

𝑖=1

 and Elastic Net regularization is used when there are issues with both cost and optimization

using the following equation:

43

𝑚𝑖𝑛𝑤𝑐

1 − 𝑝

2
 𝑤𝑇𝑤 + 𝑝 |𝑤| + 𝐶 ∑ log (exp (−𝑦𝑖(𝑋𝑖

𝑇𝑤 + 𝑐)) + 1

𝑛

𝑖=1

Decision Tree Classification

 Decision tree analysis is a non-parametric, supervised learning method that can be used in

both classification and predictive regression. Decision tree analysis, unlike other methods, such

as k-nearest neighbors and naïve Bayes, is designed to deal with statistical noise that can deter a

model’s performance. Common applications for decision tree analysis include: credit and loan

assessment, medical diagnostics and performance evaluation/prediction.

 The top of a decision tree is the outcome of the analysis. Decision tree analysis begins by

taking instances from the data provided. These are typically the different classes of the data

provided to the model. Next, a data point is tested, typically using a true or false evaluation,

though it is possible to use non-boolean responses for testing, if appropriate. Depending on the

outcome, further testing may occur or the model may have enough information to make a

determination and classify a data point. If more testing is needed, the model will continue to

evaluate the data point provided until a determination can be made or there are no more

evaluation metrics to test. A good analogy for a decision tree classification would be a

personality test, such as the Myers-Briggs indicator. In this survey, the respondent is asked

several questions and at the end of the test, the user is put in a class based on the responses to the

questions. In a decision tree classification, the features provided in a data point are the responses

to the questions at each root of the tree [40].

 Decision trees have several advantages over other machine learning methods. Unlike

logistic regression or naïve Bayes methods, decision trees are easy to visualize and conceptually

44

simple. Decision trees can work with both, qualitative and quantitative data, and data does not

need to be of the same type. Also, decision trees are better able to deal with missing values and a

classification can still be done if some features are missing. This reduces the amount of data

preparation that needs to be done in order to perform the analysis. Finally, decision trees are able

to handle multiple output models, which allow the method to apply more complex problems.

Still, there are some disadvantages associated with decision trees. The order of the evaluations in

the tree is extremely important. Some orders may filter out critical data and lead to inaccurate

results and misclassifications. This can be managed by creating several different trees to

determine which order best fits the model. This can be computationally expensive and time

consuming. A better method of dealing with this would be to calculate an evaluation’s entropy.

This will be explained below. Another issue with decision trees is that models can become

overly complex and overfit, if too many features are present. Data preprocessing and selection

methods, such as PCA can be used to help manage this issue.

The order in which each evaluation is performed is a key to the effectiveness of this

method. In order to determine which evaluations provide the most insight or information gain, it

is necessary to calculate the entropy of the evaluation. In this context, entropy is a measure of the

purity/impurity of the data samples. This can be calculated using the following equation:

𝑆 = − ∑ 𝑝 log2 𝑝

Where:

S is the Entropy of the collection of data

45

P is the mass probability function of the evaluation

If the responses to the evaluation are boolean the equation can be expressed as the combination

of the negative responses and the positive responses with the following equation:

𝑆 = −𝑝 log2 𝑝 − 𝑝 log2 𝑝

Evaluations with higher entropy are considered more insightful and are prioritized earlier in the

tree, while those with lower entropy values are placed lower in the tree. This allows the model to

determine the sequence that yields the most gain [40]. This approach is known as a ‘greedy’

algorithm, where the algorithm searches for the optimal result rather than the best.

Decision trees and other machine learning models can be improved using Ensemble

methods. These methods improve models, either through averaging or boosting. One of the

averaging techniques for decision trees is known as random forest. This method constructs

several different decision trees rather than just a single tree. The results from each of the

different trees are averaged and a final result is determined. In classification, the result is

determined by which result received the most votes from the individual tress in the forest.

Regression uses the average of output to determine the final result. The use of random forest can

reduce overfitting and improve accuracy. Another ensemble method that can be used to improve

a decision tree is gradient boosting. Typically used in regression, gradient boosting uses weak

learners and the errors from those learners to compute a residual. The model is then trained on

the residual and the model then tries to predict those residuals. It should be noted that boosting is

a greedy algorithm and can produced overfit results [42].

46

Model Validation

 Once a machine learning model has been trained and tested, it is necessary to validate the

model to determine how well the model performed. Accuracy is the most common validation

measurement used to assess a model’s performance. The accuracy of the model is simply the

number of correct classifications divided by the total number of test classifications performed

[43]. Scikit-learn uses the .accuracy_score() method to measure a model’s accuracy using

the following expression:

𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦(𝑦, 𝑦𝑏𝑎𝑟) =
1

𝑛𝑠𝑎𝑚𝑝𝑙𝑒𝑠
∗ (∑ 1(𝑦𝑏𝑎𝑟 = 𝑦𝑖)

𝑛𝑠𝑎𝑚𝑝𝑙𝑒𝑠−1

𝑖=1

)

 In addition to accuracy, other validation measurements are necessary. Relying only on

accuracy measurements would only tell the user that a misclassification had occurred. Using

other validation measurements allows for further exploration of a model’s mistakes. Measuring a

model’s precision allows the user to see the ratio of true positives to predicted positives. This

shows how many false positive, or type 1 errors, occurred in the model’s testing. Scikit-learn

uses the .precision_score() method to calculate a model’s precision using the following

equation:

𝑃𝑟𝑒𝑐𝑖𝑠𝑜𝑛 =
𝑜𝑓 𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑜𝑓 𝐹𝑎𝑙𝑠𝑒 𝑃ositive + # 𝑜𝑓 𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

 The next validation measurement performed for this project is recall. Recall is a

measurement of a model’s ability to classify positive samples. This is referred to as sensitivity.

Recall allows the user to evaluate a model’s false negative error, or Type II error. Scikit-learn

uses the .recall_score method to calculate a model’s recall using the following equation:

47

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑜𝑓 𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑜𝑓 𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠 + # 𝑜𝑓 𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

In classifying reactor transients, false positive errors potentially result in action that is

costly and time consuming. False negatives can result in potential reactor damage and events

hazardous to the public. Both of these must be considered when evaluating models. As such, it is

necessary to have a validation measurement that balances type 1 and type II error. This

measurement is known as the F1 score. The F1 score measures a weighted average between

precision and recall. Scikit-learn uses the .f1_score() function to calculate a model’s F1

score using the following equation:

𝐹1 = 2 ∗
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙

When dealing with percentages it is important to consider the context of the situation. In

this case, since over 15,000 samples are being looked at, a 1% change in accuracy or precision

would affect 150 samples. As such, it is necessary to use a method that tells the exact number of

Type 1 and Type II errors that occurred and between which transients these occurred. To do this

a confusion matrix can be created. A confusion matrix shows the true positives for each

classification down the diagonal of the matrix. The false positives are shown in the columns and

the false negatives are in the rows. This allows not only for the exact number and type of errors

to be shown, but also where they occurred. This can provide insight into where and why a

classification model is having issues. Confusion matrices will be generated for all six machine

learning models used in this project.

48

GPWR Reactor Simulator

 Data used for this experiment was collected using the Generic Pressurized Water Reactor

(GPWR) simulator at the Center for Advance Energy Studies (CAES). The simulator was

purchased by University of Idaho, Idaho State University, CAES entities from the Western

Service Corporation (WSC). This simulator emulates the behavior of a “generic” pressurized

water reactor (PWR). The thermal output is rated at 4000 MWt/1400 MWe. The simulator does

not directly incorporate the design of any specific PWR. The reactor systems include 1 high-

pressure turbine and 3 low-pressure turbines, and a configuration that includes 2 loops, 4 coolant

pumps and 2 steam generators.[44] The simulator software runs on a standard Windows 10 PC,

Figure 22 shows the simulator at the visualization lab at CAES.

49

Figure 22: GPWR Simulator Setup at CAES

50

 The simulator comes preloaded with 14 different initial conditions for the reactor; factors

that vary include plant power, core life, etc. Table 3 shows the list of the preprogrammed initial

conditions. The simulator has several reactor control panels that allow the user to change the

reactor system, including the operation of pumps, the opening/closing of valves, the flow of

coolant, reactor power, etc. Figure 23 shows an example of the simulator interface that is used to

control the reactor. The simulator is also equipped with an alarm system to inform the user of

abnormal conditions. Similar to an actual reactor, the simulator can be scrammed by the operator

and automatically scrams under certain conditions, including both a reactor trip and a turbine

trip. The simulator is also programmed to emulate the containment structure and engineering

safety features and the behavior of these components under accident conditions, such as a small

break loss of coolant accident (LOCA). The simulator has also been programmed with the ability

to emulate malfunctions of components that could potentially occur within the power plant. The

reactor will behave accordingly in a malfunction. Some of these malfunctions include: heat

exchanger degradation, motor shearing/seizures, valve failure to open/close, etc. These events

can be triggered by the user or programmed as part of an accident scenario.

TABLE 3: GPWR Preprogramed Initial Conditions

BOL, 100%

Power

MOL, 100%

Power

EOL, 100%

Power

BOL, 50%

Power

MOL, 50%

Power

EOL, 50%

Power

BOL, 1% Power MOL, 1% Power EOL, 1% Power BOL, Subcritical

MOL, Subcritical EOL, Subcritical BOL, Xe

Equilibrium

MOL, 5% Power

 The GPWR displays critical parameters to the user. Many of these are those that an

operator would see while running an actual reactor. There are 18 different parameters that are

always displayed to the user, including reactor power (in both MW and a percentage), steam

51

generator pressure and flow and turbine/reactor status. Figure 24 shows how this output is

displayed to the user. The user is also able to see how long the simulator has been running, as

well as pause and restart simulations. The simulation can be run in real-time, slowed down to 0.1

times normal speed or speed up to 10 times normal speed. This can be changed at any time

during the simulation. In addition, the user has the ability to backtrack to a previous time in the

simulation. The software will automatically save conditions every few minutes in order for the

user to easily return to a previous state.

The GPWR simulator also allows for the user to switch between different interfaces in

order to observe, manipulate and record the behavior of components that are not shown on the

reactor interface page. Figure 25 shows the overview home page for the GPWR.

52

Figure 23: GPWR Simulator Interface

Figure 24 Information Panel Displayed in GPWR

53

Figure 25: GPWR Navigation Home Table

54

Data Gathering

Feature Selection

 In order to construct machine learning models it was necessary to decide on the

features that would be measured using the GPWR reactor simulator. The simulator is able

to measure and collect data from several reactor components, such as reactor power

output and steam generator pressure. It was decided that for this model the data gathered

would consist of data that a reactor operator would have access to and be readily

available. Thirty three features were chosen and programmed into the simulator data

collector, including: reactor power output, steam generator temperature, flow and

pressure, as well as reactor temperature. The complete list of features gathered is shown

in Table 4. All of the features collected from the reactor simulator were quantitative in

nature.

TABLE 4: Features Collected from GPWR Simulator

Normalized

Flux

RCS LVL

Loop 1 WR

RCS LVL

Loop 1 NR

Hot Leg 1/ 2

Temperature

Cold Leg 1/

2A

Temperature

Cold Leg

1/2B

Temperature

RC Loop-

1/2A Norm

Flow

RC Loop -

1/2B Norm

Flow

Pressurizer

Surge Line

Temperature

PORV

Discharge

Pressurizer

Temperature

Containment

Pressure

Containment

Temperature

MS Flow

from SG-1

Line-1/2B

SG-1/2

Pressure

Average

Temperature

SG-1/2 NR

Level

FW Flow to

SG-1/2

Pressurizer

Pressure

Pressurizer

Steam

Temperature

Norm

Pressurizer

Level

Pressurizer

Water

Temperature

Generator

Power

MS Flow

from SG-1

Line-1/2A

55

Initial Conditions

 In order to see how the model would be impacted by changes in the reactor

system over time, it was decided that several runs would be conducted changing the

initial conditions of the simulated system for each run. The first change to the system was

the power output of the reactor. Three different conditions were used: full power, where

the reactor is operating as to generate electricity; half power, where the reactor is being

shut down and output is at approximately 50% of capacity; and low power where the

reactor is critical and being prepared for startup, but power generation is between 0 and

1% capacity. The second initial condition changed for the reactor system involves the

stage of the reactor's lifetime. Three different conditions were available for use:

beginning of life (BOL) where the reactor is brand new; middle of life (MOL), where the

reactor is close to 30 years old; and end of life (EOL), where the reactor is close to

decommissioning approximately 60 years into its operating life. Using these two features

it was possible to collect data on nine different initial condition combinations while the

reactor is functioning as intended. Each run was conducted for 1200 seconds and data

was collected for each of the 33 measurable features every second during the run.

Seconds are the smallest increment of time that can be used for data collection.

Transient Events

 In addition to collecting data when the reactor is under normal operating

conditions, four transient events were simulated using the nine different initial condition

configurations. The first transient event selected was a simultaneous trip of all feed water

pumps. In this transient, the primary and auxiliary feed water pumps malfunction and

56

cease operations. The breakers connected to these two pumps also trip. The transient was

programmed to occur 20 seconds after the simulation began. A run under each of the nine

different initial condition configurations was performed and data was collected for 600

seconds after the transient occurred. Under this transient, the runs that were performed at

full power and half power scrammed the second the transient occurred. During the run

that occurred at low power, no scram occurred during the simulation [45].

 The next transient event that was used to collect data was a simultaneous closure

of main steam isolation valves (MSIV). In this transient, a command signal is sent to all

MSIVs after 20 seconds switching the valves from the open position to the closed

position. Data was collected for 600 seconds after the command signal was sent. Each of

the 9 different initial condition configurations was used to collect data on this transient.

In this event, runs performed under full and half power experienced a scram 40 second

after the simulation began, 20 seconds after the command signal was sent. Runs

performed at low power did not scram during the simulation.

 The third transient event used in this experiment was a maximum reactor coolant

rupture combined with a complete loss of offsite power (LOOP). During this transient, a

double ended guillotine break occurs within line 1A of the reactor coolant system (RCS).

This is combined with a complete loss of electrical power to the plant. The transient

occurred 20 seconds after the simulation began and data was collected for 600 seconds

after the transient occurred. Nine separate runs were performed using the initial condition

configurations. During this simulation, the reactor experienced a scram at all power levels

used.

57

 The final transient event used to collect data was a rapid power change. In this

transient, the reactor begins 1400 MWe full power and drops to 1050 MWe,

approximately 75% of the plant’s maximum power, before returning to 1400 MWe. Data

was collected until the reactor reached full power, approximately 1000 seconds. Due to

the nature of this transient, only the reactor core life initial conditions were changed and

three runs were performed.

 After the completion of a run, the data was saved from the reactor simulator to a

comma separated values (CSV) file. In total, 39 different CSV files were generated and

saved. All data gathered directly from the simulator was quantitative. After each run, the

reactor core lifetime feature was added to each instant from the dataset from the run using

either 'BOL', 'MOL' or 'EOL' or. Also, the transient that occurred was added to each

instant in the dataset. It should be noted, that the instances up to the 20 second mark were

labeled as normal operations, as the transient had not yet occurred. These additions were

done using Microsoft Excel. The datasets remained in a CSV format. Figure 26 shows a

screenshot of one of the CSV files collected from the simulator.

58

Figure 26: Screenshot of a CVS file from the GPWR Simulator

59

Data Preparation

Data Compiling

 In order for the data collected from the reactor simulator to be used to create a

machine learning model, some data modifications needed to be performed. First, the data

was in 39 separate datasets, to avoid issues with the constant moving, modifying, loading

etc. of the data these sets were combined into one complete dataset. This set consisted of

30,710 data points, each consisting of the 33 measured features and the features added for

reactor core life and transient event. Also, to minimize confusion and ensure only the data

was imported into the machine learning model, the feature labels and heading

information was not included in the final dataset. These preparations were done using

Microsoft Excel and the final dataset was saved as a CSV file. The 39 individual datasets

will be maintained in the event any unexpected issues occur with the complete dataset.

Modifications using Python

 Once the data was compiled into a single dataset Python was used to modify the

data. All code written for this project was done using Python version 3.7.2, the most up-

to-date version available at the time. The scripts were written using Atom text editor and

all code compiling was done using the Anaconda Python distribution. The complete CSV

file was imported using the Pandas package. This converted the data from a CSV file into

a Pandas DataFrame. No header was used in the importing of the data. The contents of

the DataFrame was then verified using the .head(), .shape() and

.describe() commands. The .head() command allows the user to view the

contents of the first 5 rows of a dataset. This was done to ensure that all the features

60

appear correctly in the DataFrame. The .describe() command provides the

descriptive statistics of the data stored in the DataFrame. This includes the mean,

standard deviation, data point count, as well as the minimum and maximum values of

each feature. The summary statistics for the first and last 3 columns of the dataset are

shown in Figure 27. The .shape() command provides the This allowed for verification

that all the data points had imported into the DataFrame.

 The addition of the reactor core life introduced a qualitative feature into the

dataset. Machine learning algorithms are only able to use quantitative data to produce a

model. In order to properly account for the reactor lifetime, it was necessary to convert

the qualitative data into quantitative data; this was done using dummy variables. Dummy

variables are typically used to represent qualitative data in a 0, 1 scale. In this case, since

there are three different types of qualitative data (BOL, EOL and MOL) three dummy

variables and two extra factors were needed. It was possible to convert this data using the

Pandas function .get_dummies. This function was used to create a dummy variable

DataFrame using the reactor core life column of the dataset. The dummy variable

DataFrame consists of 2 columns. BOL data points were converted to 0,0, EOL data

points were converted to 1,0 and MOL were converted to 0,1. The dummy variable

DataFrame was then added to the end of the dataset using Pandas’ .concat function

which is used to merge two or more DataFrames. Finally, the original reactor core

lifetime column was dropped from the DataFrame. To ensure that the process had been

done correctly, the new DataFrame was explored.

61

Figure 27: Descriptive Statistics for Dataset

 The next step in preparing the data was to prepare the target data of the dataset.

As mentioned earlier, each data point was given a label of the transient event that

occurred when the data was collected. This column was also a qualitative feature. Unlike

the reactor core lifetime, there was no need to use dummy variables when modifying this

dataset. Instead, each transient was designated a number: the feed water pump trip was

assigned 1, the LOCA-LOOP 2, the steam generator valve closure was assigned 3 and the

rapid power change was assigned a 4. Normal operations were assigned 0. Using Pandas’

.map function it was possible to change all the qualitative data to the assigned numerical

value. The dataset was once again explored to ensure that the process had been

implemented correctly.

Data Splitting

 The final step in preparing the reactor simulator dataset was to split the dataset

into a training set and a testing set. In supervised machine learning, data should be split in

order to validate the results. Validation allows for a measurement on the quality of the

model’s results. In the case of this project, validation is critical. Regulatory agencies,

such as the Nuclear Regulatory Commission, have strict requirements in proving that any

system or component within a reactor will behave as it is intended, especially if it will be

relied upon in abnormal events. An important aspect of validation is that the data used in

62

the testing must be completely independent of the data used in creating the model. Failure

to ensure this could result in biased models that do not learn the actual case of the testing

data.

 It is important to balance how much of the data is split between the two sets. If

too little data is put into the training dataset the algorithm will not be able to learn the

differences between the data points, this will result in less accurate models, which will be

less effective in performing the task intended for the model. It is also necessary to have

enough testing data. If the algorithm lacks sufficient testing data it will be difficult to

verify that the model created by the supervised learning algorithm is reliable. Finally, as

is the case in most statistical procedures, it is important that the data splitting be random

to avoid any biases and to provide a good sample for both, the testing and training sets.

 The data splitting for this project was done using the scikit-learn package. This is

done using the test_train_split function. This function uses Bernoulli sampling

in order to create testing and training sets that are pseudo-random. The pseudo-random

nature of the splitting allows for the process to be repeated over and over again with no

changes to the outcome while maintaining the randomness of the selection. The function

requires that features and target data be provided as well, as the desired split between

testing and training data. Also, the user may specify the seed of the random number

generator, if desired. The output will be four different NumPy arrays, two arrays for the

feature and target training data and two arrays will be for the feature and target testing

data. These were labeled as X_test and X_train for the feature data and Y_test

and Y_train for the target data. For this model, the target data will be the numerically-

labeled transient types and the feature data will be the 33 features collected from the

63

reactor simulator. Half of the data collected will be used for training and the other half

will be used for testing. The default random number seed for this function will be used

for all data splitting on this project. The Python code used is shown in Figure 28. Figure

29 shows the output for the X_train array.

Figure 28: Test Train Split code for project

Figure 29: Sample from X Train Dataset

64

Results & Analysis

K-Nearest Neighbors Results

 The entire process of building and evaluating the k-nearest neighbors model in

TPOT took approximately 1 hour and 30 minutes. The accuracy of this model was

98.35%, the precision was 98.02%, recall was calculated to be 98.01%, and the F1 score

was also calculated to be 98.01%. Table 5 shows the individual accuracies for each

transient from this model.

TABLE 5: K-Nearest Neighbors Model Individual Transient Accuracies

Normal

Operations

Feed Water

Pump Trip

LBLOCA +

LOOP
Valve Closure

Rapid Power

Change

100% 96.6% 97.57% 98.01% 97.86%

 The k-nearest neighbors method was able to correctly identify 15,103 instances of

the 15,355 samples tested during the validation process. Of the 252 misclassified

instances, the largest amounts of misclassifications were from the feed water pump trip

transient. 172 of the 252 misclassifications, 60% of total errors, were from this transient.

Of those 172 errors, 95 were false positives and 77 were false negatives. The model’s

biggest issue was distinguishing the feed water pump trip transient from the valve closure

transient: a total of 76 instances, 30% of the total misclassifications were between these

two transients. The k-nearest neighbors model was able to perfectly distinguish normal

operation instances from transient instances as there were no type I or type II errors for

the normal operation transient. Figure 30 shows the confusion matrix for the k-nearest

neighbor model. The code was designed to export the instances where misclassifications

65

occurred. Initial analysis of these instances showed no true pattern or bias of when in the

transient the misclassifications occurred. Figure 31 shows a graph of these

misclassifications.

Figure 30: Confusion Matrix for K-Nearest Neighbors Model

66

Figure 31: Graph of Misclassifications for K-Nearest Neighbors Model

Bernoulli Naïve Bayes Results

 In TPOT, the Bernoulli naïve Bayes model took approximately 1 hour to build

and validate. The accuracy of this model was 97.45%, the precision was calculated to be

97.18%, the recall of the model was 96.73 %, and the F1 score was 96.87%. Table 6

shows the accuracies of the individual transients from this model.

TABLE 6: Bernoulli Naïve Bayes Model Individual Transient Accuracies

Normal

Operations

Feed Water

Pump Trip

LBLOCA +

LOOP
Valve Closure

Rapid Power

Change

100% 90.05% 100% 96.1% 93.72%

0

1

2

3

4

0 50 100 150 200 250 300 350 400 450 500 550 600 650

M
is

cl
as

si
fi

ca
ti

o
n

s

Simulation Time (Seconds)

67

 The Bernoulli naïve Bayes model correctly identified 14,964 instances of the

15,355 tested. Of the 391 incorrect classifications 258 of them, 66% of total

misclassifications, were from the feed water pump trip transient. Of these, 191 were false

positives for the valve closure transient. The model also 33 false positive classifications

for the rapid power change transient. Under this configuration, the model was able to

correctly distinguish between a transient and non-transient event with no Type I or Type

II errors for the normal operations event. The Bernoulli naïve Bayes model had no Type I

errors for the LOCA-LOOP transient, nor were there any Type II errors for the rapid

power change transient. The confusion matrix for the Bernoulli naïve Bayes model is

shown in Figure 32. Initial analysis of the misclassified instances did show some

possible grouping of the misclassifications around the half way point of the simulation,

between 200 & 400 seconds. This is shown in Figure 33. Also of note, most of the

misclassifications occurred at 10 second points. The reason behind this is unclear and this

trend did not occur in the other models.

68

Figure 32: Confusion Matrix for the Bernoulli Naïve Bayes Model

Figure 33: Graph of Misclassifications for Bernoulli Naïve Bayes Model

0

2

4

6

8

10

12

14

0 50 100 150 200 250 300 350 400 450 500 550 600 650

M
is

cl
as

si
fi

ca
ti

o
n

s

Simulation Time (Seconds)

69

Gaussian Naïve Bayes Results

 Similar to the Bernoulli naïve Bayes model, the Gaussian naïve Bayes model took

approximately 1 hour to build and test. The accuracy of this model was found to be

97.45%. The precision was scored at 97.2%, the recall was calculated at 96.83%, and the

F1 score was 96.96%. Table 7 shows the model’s accuracy for the individual transients.

TABLE 7: Gaussian Naïve Bayes Model Individual Transient Accuracies

Normal

Operations

Feed Water

Pump Trip

LBLOCA +

LOOP
Valve Closure

Rapid Power

Change

100% 88.77% 100% 96.59% 94.0%

 This model was able to correctly identify 14,833 of the 15,355 samples tested.

The Gaussian naïve Bayes model performed perfectly in identifying the non-transients

and transients as there were no false positives or negatives for the normal operation

event. There were also no false positives for the LOCA LOOP transient and no false

negative for the rapid power change transient. The model struggled the most with

correctly classifying the feed water pump trip transient. Of the 522 misclassified

transients 337 of them, nearly 65% of all the model’s total errors were from this transient.

Of those, 302 were misclassifications between the feed water pump transient and the

valve closure transient. The confusion matrix for the Gaussian naïve Bayes model is

shown in Figure 34. Initial analysis of the misclassified instances shows that there was

no grouping and that misclassifications were spread throughout the simulation. Figure 35

shows a graph of the misclassifications.

70

Figure 34: Confusion Matrix for the Gaussian Naïve Bayes Model

Figure 35: Graph of Misclassifications for Gaussian Naïve Bayes Model

0

1

2

3

4

0 50 100 150 200 250 300 350 400 450 500 550 600 650

M
is

cl
as

si
fi

ca
ti

o
n

s

Simulation Times (Seconds)

71

Multinomial Naïve Bayes Results

 The multinomial naïve Bayes model took approximately 1 hour to be built and

tested using TPOT. The accuracy of the multinomial naïve Bayes model was 96.71%.

The precision of this model was calculated to be 96.38%, the recall was 95.41%, and the

F1 score was calculated to be 96.10%. Table 8 shows the accuracies of the individual

transients from this model.

TABLE 8: Multinomial Naïve Bayes Model Individual Transient Accuracies

Normal

Operations

Feed Water

Pump Trip

LBLOCA +

LOOP
Valve Closure

Rapid Power

Change

100% 90.05% 100% 96.1% 93.72%

 The multinomial naïve Bayes model was able to correctly classify 14,833 of the

reactor transient instances tested. Similar to the other naïve Bayes models, the

multinomial method was able to perfectly distinguish between transient events and non-

transient events, as there were no Type I or Type II errors for normal operations. The

rapid power transient also had no false negative results and the LOCA LOOP transient

had no false positives. Also, the model struggled most with the feed water pump trip

transient with 296 misclassifications occurring with this transient. The confusion matrix

for this model is shown in Figure 36. The misclassified instances show that most of the

misclassifications are spread throughout the simulation with no pattern or large groups.

This is shown in Figure 37.

72

Figure 36: Classification Matrix for Multinomial Naïve Bayes Model

Figure 37: Graph of Misclassifications for Multinomial Naïve Bayes Model

0

1

2

3

4

5

6

0 50 100 150 200 250 300 350 400 450 500 550 600 650

M
is

cl
as

si
fi

ca
ti

o
n

s

Simulation Time (Seconds)

73

Logistic Regression Results

 The logistic regression model took approximately 48 hours to run. This was the

most computationally expensive of all the models evaluated. The accuracy of the logistic

regression model was found to be 98.55%. The precision was calculated to be 98.41%,

recall was 98.04% and the F1 score was found to be 98.21%. Table 9 shows the

individual accuracies for the reactor transients for this.

 This model correctly identified 15,133 transient instances of the 15,355 samples

tested. The logistic regression model perfectly classified transient and non-transient

events; there were no false positives or negatives from the normal operation event. The

model also had no false positives for the LOCA LOOP and there were no false negatives

for the rapid power change. The model scored well on all the transients with accuracies

above 95% across all 5 events. The model had the highest number of misclassifications

with the feed water pump, though the rapid power change had a lower accuracy. The

largest number of errors, 52, came from false positives of the feed water pump transient

from the valve closure transient. Figure 38 shows the confusion matrix for this model.

No easily identified groups were found when looking at the misclassified instances,

similar to some of the other models the misclassifications appear spread out. Figure 39

shows a graph of the misclassifications.

TABLE 9: Logistic Regression Model Individual Transient Accuracies

Normal

Operations

Feed Water

Pump Trip

LBLOCA +

LOOP
Valve Closure

Rapid Power

Change

100% 96.87% 100% 97.62% 95.71%

74

Figure 38: Confusion Matrix for the Logistic Regression Model

Figure 39: Graph of Misclassifications for Logistic Regression Model

0

1

2

3

4

0 50 100 150 200 250 300 350 400 450 500 550 600 650

M
is

cl
as

si
fi

ca
ti

o
n

s

Simulation Time (Seconds)

75

Decision Tree Results

 The decision tree model took approximately 3 hours to build and validate. The

accuracy of this model was 98.6%, precision was calculated at 98.46%, recall was found

to be 98.1% and the F1 score was 98.27%. Table 10 shows the individual accuracies of

the transient events for the decision tree model.

 The decision tree model was able to classify correctly 15,140 of the 15,355

transient instances tested. The model was able to perfectly classify all of the normal

operation instances and there were no false positive or false negative errors from that

event. The model was able to classify the LOCA LOOP transient with no false positives

and the rapid power change transient had no false negatives. As with the other models,

the decision tree model’s biggest issues were from the feed water pump transient: 35% of

the errors and 76 instances were from this transient. Forty one of those were false

positives with the valve closure transient. The confusion matrix for this model is shown

in Figure 40. Looking at misclassified instances, no obvious grouping appeared. With the

exception of the Bernoulli naïve Bayes model, it appears that the misclassifications

experienced were typically spread out rather than grouped together. Figure 41 shows the

graph for the decision tree model’s misclassifications.

TABLE 10: Decision Tree Model Individual Transient Accuracies

Normal

Operations

Feed Water

Pump Trip

LBLOCA +

LOOP
Valve Closure

Rapid Power

Change

100% 97.33% 100% 97.57% 95.62%

76

Figure 40: Confusion Matrix for Decision Tree Model

Figure 41: Graph of Misclassifications for Decision Tree Model

0

1

2

3

4

0 50 100 150 200 250 300 350 400 450 500 550 600 650

M
is

cl
as

si
fi

ca
ti

o
n

s

Simulation Times (Seconds)

77

Conclusions

 The results from the machine learning models show very positive results. All of

the models had validation scores in the mid-90’s. Table 11 below summarizes the result

from all 6 of the machine learning models. Under the configurations selected for the

TPOT dictionary, all of the models were able to perfectly tell the difference between

normal operations and transient events. It should be noted that the dataset did contain

more of this type of data, but this should not be an issue, as with real nuclear reactors the

amount of data, as well as the quality, will almost certainly be higher for a real reactor

under normal operations. With the exception of the k-nearest neighbors model, the

models were able to able to classify the LOCA LOOP transient with perfect accuracy,

though there were false negative classifications across all these models in the study.

 All of the models had the most difficulty distinguishing between the feed water

pump trip and the valve closure transients, as this transient had the lowest individual

accuracy of the five events across all the models. Also, a large percentage of the total

errors from these models came from false positives between these two transients. The

models appear to have a tendency towards having more Type II error over Type 1, as the

precision of all the models is higher than the recall. Since Type II error can result in a

more dangerous scenario with a nuclear reactor, it is important that the recall always be

considered when making determinations.

In terms of performance, the decision tree, k-nearest neighbors and logistic

regression models were better than the naïve Bayes models, having validation

measurements all above 98%. The decision tree model performed the best. Interestingly,

78

the decision tree model slightly outperformed the logistic regression model. This is

important as the logistic regression model is more computationally expensive, requiring

48 hours to compute on its initial run, while the decision tree model only took 3 hours. In

this case, it is likely the data was not overly complex, so the decision tree model was able

to better fit the data without needing to perform the large amount of feature analysis

required with the logistic regression model. This is encouraging, as time is a major

consideration when selecting a model that will be used in real-time. Using more

sophisticated equipment, it is possible that a decision tree or k-nearest neighbors model

could provide valuable information to reactor operators in a matter of minutes, if a model

needs to be trained quickly. A TPOT model was constructed early on in the experiment

without defining a specific machine learning model to be built. The optimal model from

this run was a decision tree, with an accuracy of 98.57%. This verifies the results from

the individual tests, where the decision tree was the most accurate model. A possible

reason for the small decrease in accuracy is the change in random state that occurred in

the evaluation.

The naïve Bayes models, while having high validation measurements, did not

perform as well as the other three models. The multinomial model had the lowest

accuracy of the six models. A likely cause of this is that the data better fit the Gaussian

and Bernoulli distributions than the multinomial. The accuracies with the feed water

pump transient were the lowest with the Gaussian model only scoring 88% accuracy for

that transient. The most likely cause of this is that the probabilities calculated by the

naïve Bayes models favored the feed water transient over the valve closure, resulting in

the false positive classifications. The overall accuracies of the Gaussian and Bernoulli

79

models were identical. This is likely coincidental, as both models have different

accuracies for three of the individual transients.

In order to see each model’s sensitivity to changes in random numbers, two

additional runs were performed for each model using different random states. No model

experienced a change greater than half of a percent for an overall validation

measurement. The model with the largest change was the multinomial naïve Bayes

model. During the third simulation, the model’s accuracy increased to 97.11% from

96.71% in the initial run. The most interesting change was that all the logistic

regression’s results increased in the additional runs and the decision tree model’s results

decreased. Further exploration of this could help better determine which model is better

for this classification. The k-nearest neighbors model experienced the least changes with

the additional runs.

In the additional runs, there were changes to the individual accuracies as

expected. There was a single false positive of a normal operation point in the third

Bernoulli naïve Bayes model. This was the only normal operation misclassification from

all 18 runs done for this project. Also, the multinomial naïve Bayes model struggled with

the rapid power transient in the third run, with an individual accuracy of 86.11%, the

lowest individual accuracy for any transient in this project. The decision tree and logistic

regression models experienced issues with the LOCA-LOOP transient. In the initial run,

both models had accuracies of 100%. In the additional runs, both models experienced

misclassifications. The decision tree model scored 97.55% and 97.71% and the logistic

regression model scored 99.81% and 99.77% for this transient. The complete results

from this analysis can be found in Appendix 2.

80

Due to the high validation measurements, it does appear from this analysis that

there is promise in the area of applying machine learning to reactor safety. Applying

trained machine learning models to reactor safety could lead to faster transient diagnoses,

accident mitigation, and help keep the general public better informed of issues at a

nuclear power plant. Areas that could be further explored include introducing more

transients and more complex normal operation data to the dataset to see how the models

perform and which models perform better with the more complex data. Another

interesting area would be applying data from other similar reactor simulators to see if the

models change much with a different reactor. Also, further exploration into the errors

within these models to look for more patterns and factors behind the existing errors,

would be another possible area of research. Finally, another worthwhile area of research

would be, exploring other machine learning models, such as unsupervised learning, to see

if the models can blindly group transient data.

81

Confusion Matrix for Decision Tree Model

Misclassification Graph for Decision Tree Model

0

1

2

3

4

0 50 100 150 200 250 300 350 400 450 500 550 600 650

M
is

cl
as

si
fi

ca
ti

o
n

s

Simulation Times (Seconds)

82

Table 11: Summary of Machine Learning Model Results

Overall Validation Measurements Individual Transient Accuracies Time

Accuracy Precision Recall F1 Score

Normal

Operation

Transient

Feed

Water

Pump

Trip

LOCA

+

LOOP

Valve

Closure

Rapid

Power

Change

Time

Required

(Approx.)

K-Nearest

Neighbors
98.35% 98.02%, 98.01% 98.01% 100% 96.6% 97.57% 98.01% 97.86% 1.5 Hours

Bernoulli

Naïve Bayes
97.45%, 97.18%, 96.73 % 96.87%.

100% 90.05% 100% 96.1% 93.72%
1 Hour

Gaussian

Naïve Bayes
97.45% 97.2% 96.83% 96.96%

100% 88.77% 100% 96.59% 94.0%
1 Hour

Multinomial

Naïve Bayes
96.71%. 96.38%, 95.41% 96.10%.

100% 90.05% 100% 96.1% 93.72% 1 Hour

Logistic

Regression
98.55%. 98.41%, 98.04% 98.21%

100% 96.87% 100% 97.62% 95.71%
48 Hours

Decision Tree

Analysis
98.6% 98.46%, 98.1% 98.27%.

100% 97.33% 100% 97.57% 95.62%
3 Hours

83

Summary

 The purpose of this paper is to explore the ability of machine learning algorithms to

identify transient events occurring with a nuclear reactor. In order to perform this experiment, it

was necessary to gather nuclear reactor data to create machine learning models. Due to the

extremely high cost of nuclear reactors, as well as the possible serious health and environmental

consequences of a nuclear power plant accident, it is impossible to create situations where an

actual nuclear reactor experiences serious events or accident conditions that could be used to

gather data. Instead, a reactor simulator was used to gather the synthetic data needed to apply the

machine learning algorithms. Once the data was properly formatted, the data was applied using

machine learning algorithms within two python machine learning packages, TPOT and scikit-

learn. This produced several different machine learning models in the form of supervised

learning. Finally, each machine learning model created was validated using measurements, such

as accuracy and precision.

Data used for this experiment was collected using a Generic Pressurized Water Reactor

(GPWR) simulator at the Center for Advanced Energy Studies (CAES). The simulator was

purchased by University of Idaho, Idaho State University and other CAES institutions from the

Western Service Corporation (WSC). This simulator emulates the behavior of a “generic”

pressurized water reactor (PWR). The output is rated at 4000 MW thermal/1400 MW electric.

The simulator does not directly incorporate the design of any specific PWR. The reactor systems

emulated include a high-pressure turbine and three low-pressure turbines and a configuration that

includes: two loops, four coolant pumps and two steam generators. The interface for the

simulator is shown below.

84

GPWR Simulator Interface

85

The GPWR simulator comes preloaded with 14 different initial conditions for the reactor;

factors that vary include reactor power, core life, etc. These are shown in the table below. The

simulator has several reactor control panels that allow the user to change the reactor system.

These include: the operation of pumps, the opening/closing of valves, the flow of coolant, reactor

power, etc. The simulator is equipped with an alarm system to inform the user of abnormal

conditions occurring within the system. Similar to an actual reactor, the simulator can be

scrammed by the operator and automatically under certain conditions, including both a reactor

trip and a turbine trip. The simulator is also programmed to emulate the containment structure,

engineering safety features and the behavior of these components under accident conditions. The

software was designed with the ability to mimic malfunctions of components that could

potentially occur within a power plant. The reactor will behave accordingly to a malfunction.

Some of these malfunctions include: heat exchanger degradation, motor shearing/seizures, valve

failure to open/close, etc. These events can be triggered by the user or programmed as part of an

accident scenario.

GPWR Preprogramed Initial Conditions

BOL, 100%

Power

MOL, 100%

Power

EOL, 100%

Power

BOL, 50%

Power

MOL, 50%

Power

EOL, 50%

Power

BOL, 1% Power MOL, 1% Power EOL, 1% Power BOL, Subcritical

MOL, Subcritical EOL, Subcritical BOL, Xe

Equilibrium

MOL, 5% Power

In order to construct machine learning models, it was necessary to decide on the features

that would be measured using the GPWR reactor simulator. The simulator is able to measure and

collect data from several reactor components, such as reactor power output and steam generator

pressure. It was decided that for this model, the data gathered would consist of data that a reactor

86

operator would have access to and that would be readily available. Thirty three features were

chosen and programmed into the simulator data collector. These features include: reactor power

output, steam generator temperature and pressure etc. The table below shows these features. All

of the features collected from the reactor simulator were quantitative in nature.

Features Collected from GPWR Simulator

Normalized

Flux

RCS LVL

Loop 1 WR

RCS LVL

Loop 1 NR

Hot Leg 1/ 2

Temperature

Cold Leg 1/

2A

Temperature

Cold Leg

1/2B

Temperature

RC Loop-

1/2A Norm

Flow

RC Loop -

1/2B Norm

Flow

Pressurizer

Surge Line

Temperature

PORV

Discharge

Pressurizer

Temperature

Containment

Pressure

Containment

Temperature

MS Flow

from SG-1

Line-1/2B

SG-1/2

Pressure

Average

Temperature

SG-1/2 NR

Level

FW Flow to

SG-1/2

Pressurizer

Pressure

Pressurizer

Steam

Temperature

Norm

Pressurizer

Level

Pressurizer

Water

Temperature

Generator

Power

MS Flow

from SG-1

Line-1/2A

In order to see how the model would be impacted by changes in the reactor system

overtime, it was decided to conduct several runs changing the initial conditions of the simulated

system. The first change to the system was the reactor power output. Three different conditions

were used: full power, where the reactor is operating as to generate electricity; half power, where

the reactor is being shut down and output is at approximately 50% of capacity, and low power

where the reactor is critical and being prepared for startup but power generation is between 0 and

1% capacity. The second initial condition changed for the reactor system involved the stage of

the reactor's lifetime. Three different conditions were available for use: beginning of life (BOL),

where the reactor is brand new; middle of life (MOL), where the reactor is close to 30 years old;

and end of life (EOL), where the reactor is close to decommissioning, 60 years into its operating

life. Using these two features, it was possible to collect data on nine different initial condition

87

combinations, while the reactor is functioning as intended. Each run was conducted for 1200

seconds and data was collected for each of the thirty three measurable features every second

during the run.

 In addition to collecting data when the reactor is under normal operating

conditions, four transient events were selected to perform runs using the nine different initial

condition configurations. The transient events selected were: a simultaneous trip of all feed water

pumps, a simultaneous closure of all main steam isolation valves (MSIV), a maximum reactor

coolant rupture combined with a complete loss of offsite power (LOOP), and a rapid power

change, where power drops from 100% to 75% and then increases back up, 100% in a 10 minute

period. Runs for the first three transients were done using the nine different configurations, with

the transient occurring 20 seconds after the simulation began. Data was collected for 600 seconds

after the transient occurred. For the rapid power change, due to the nature of the transient only

three runs were done using different core lifetimes. These runs were 1100 seconds long.

After the completion of a run, the data was saved from the reactor simulator to a comma

separated values (CSV) file. In total, thirty nine different CSV files were generated and saved.

After each run, the reactor core lifetime feature was added to each instant from the dataset for the

run using either 'BOL', 'EOL' or 'MOL'. Also, the transient that had occurred was also added to

each instant in the dataset. The initial 20 points in the each transient dataset were labeled as

‘Normal Operation’.

In order to create a machine learning model using the data collected from the reactor

simulator, modifications were needed. The thirty nine CVS files were combined in a single file.

This set consists of 30,710 data points, each consisting of the thirty three measured features, plus

88

the features added for reactor core life and transient event. Time stamps were not included in the

final CSV file. The complete CSV file was imported using Pandas, into a DataFrame for easier

modifications, prior to use in a machine learning model.

The addition of the reactor core lifetime introduced a qualitative feature into the datasets

which machine learning algorithms cannot use. In order to properly account for the reactor

lifetime, it was necessary to convert the qualitative data into quantitative data using dummy

variables. In this case, since there are three different types of qualitative data (BOL, EOL and

MOL), two extra dummy variables were needed. The reactor simulator dataset was split into a

training set and a testing set, with half the data in each. In supervised machine learning

algorithms, data should be split in order to validate the results.

The models for this project were created using the Tree-based Pipeline Optimization Tool

(TPOT) package in Python. TPOT was developed by the Computational Genetics Lab at the

University of Pennsylvania. The package is free and open-source. Data used in machine learning

models must be preprocessed in order to provide reliable results. Also, there are several different

models that can be created. Therefore choosing the best model can be difficult. The purpose of

TPOT is to simplify and automate parts of the process, while providing better results due to

improved data preprocessing and the use of multiple different methods.

 The TPOT package makes use of data preprocessing and model construction

functions within the scikit-learn package. TPOT cannot account for qualitative data or missing

values and as such, the user must perform data exploration prior to using the package.

Preprocessing with TPOT uses nine different preprocessing methods: Binarization, Feature

Agglomeration, Maximal Absolute Scaling, Minimum Maximum Scaling, Normalization,

89

Principal Component Analysis, Robust Scaling, Standard Scaling and RBF kernel sampling. In

addition, TPOT uses three selection methods: Select Family Wise Error, Select Percentile and

Variance Threshold Selection. The process of data preprocessing and selection is known as a

pipeline.

Once the pipeline has been constructed, TPOT will begin creating and validating

supervised learning models. TPOT can perform either a regression analysis or classification. For

classification, TPOT makes use of six different methods: Gaussian naïve Bayes, Bernoulli naïve

Bayes, multinomial naïve Bayes, k-nearest neighbors, decision tree classification and logistic

regression. It should be noted that the user can specify which model, selection and preprocessing

methods are implemented, using a TPOT dictionary.

The TPOT Classifier also allows the user to define the parameters of the model creation.

One important parameter is the number of generations that will be used in the model creation.

This is the number of iterations that will be used in the optimization process. Typically, the more

generations run, the better the results will be. However, the process will take longer. Another

important parameter that can be specified is the population size used. This number is the number

of pipelines in each generation. Again, a larger population produces better results, but increases

the time needed to complete the model.

Once the parameters of the classifier have been set by the user, the program will then take

the test and train datasets and determine which model is optimal. This process is time consuming

and can take days to run, depending on the parameters and dictionaries used. TPOT will output

the type of model that is optimal, as well as a single validation measurement.

90

Models were created using all six of the TPOT Classifiers. The parameters for these

models include: 100 generations, a population size of 100. A dictionary was defined for both

models, including all nine preprocessing methods and the three feature selection methods. To

further evaluate the effectiveness of the model, the following measurements were used: accuracy,

precision, recall and F1 score using scikit-learn.

The results from the classification are good. The models were able to determine transient

and non-transient behavior perfectly, as there were no false positives or negatives with the

normal operations data. While there were errors, the model did well in distinguishing the

different transients. All models scored in the mid-90s on all overall validation measurements and

over 88% on all individual transient accuracies. The table below summarizes the results from this

project. The confusion matrix and misclassification graph for the decision tree model are also

given below. These results indicate that these techniques could be useful tools for assisting

reactor operators in order to diagnose transients at power plants. This could mitigate or prevent

reactor damage and help with overall perception of nuclear power.

91

Confusion Matrix for Decision Tree Model

Graph of Misclassifications for Decision Tree Model

0

1

2

3

4

0 50 100 150 200 250 300 350 400 450 500 550 600 650

M
is

cl
as

si
fi

ca
ti

o
n

s

Simulation Times (Seconds)

92

Summary of Machine Learning Model Results

Overall Validation Measurements Individual Transient Accuracies Time

Accuracy Precision Recall F1 Score

Normal

Operation

Transient

Feed

Water

Pump

Trip

LOCA

+

LOOP

Valve

Closure

Rapid

Power

Change

Time

Required

(Approx.)

K-Nearest

Neighbors
98.35% 98.02%, 98.01% 98.01% 100% 96.6% 97.57% 98.01% 97.86% 1.5 Hours

Bernoulli

Naïve Bayes
97.45%, 97.18%, 96.73 % 96.87%.

100% 90.05% 100% 96.1% 93.72%
1 Hour

Gaussian

Naïve Bayes
97.45% 97.2% 96.83% 96.96%

100% 88.77% 100% 96.59% 94.0%
1 Hour

Multinomial

Naïve Bayes
96.71%. 96.38%, 95.41% 96.10%.

100% 90.05% 100% 96.1% 93.72% 1 Hour

Logistic

Regression
98.55%. 98.41%, 98.04% 98.21%

100% 96.87% 100% 97.62% 95.71%
48 Hours

Decision Tree

Analysis
98.6% 98.46%, 98.1% 98.27%.

100% 97.33% 100% 97.57% 95.62%
3 Hours

93

References

1. B. Marr “The Amazing Ways Coca Cola Uses Artificial Intelligence And Big Data To

Drive Success”, Forbes, September 18, 2017. https://www.forbes.com/sites/bernardmarr/

2017/09/18/the-amazing-ways-coca-cola-uses-artificial-intelligence-ai-and-big-data-to-

drive-success/#7fbeecfe78d2

2. ”System uses ‘deep learning’ to detect cracks in nuclear reactors”, Purdue University,

November 6, 2017. https://www.purdue.edu/newsroom/releases/2017/Q4/system-uses-

deep-learning-to-detect-cracks-in-nuclear-reactors.html

3. D. GALEON, “How Artificial Intelligence Is Making Nuclear Reactors Safer”,

Futurism, November 23, 2017. https://futurism.com/researchers-training-ai-make-

nuclear-reactors-safer

4. R. GRONBERG, “AI could one day control nuclear reactors; NC State researchers

could make it happen”, News Observer, June 6, 2018.

https://www.newsobserver.com/news/local/education/article212560909.html

5. “Modeling-Enhanced Innovations Trailblazing Nuclear Energy Reinvigoration

(MEITNER)”, ARPA-E/Department of Energy, June 4, 2018.

6. S. MILLION-WEAVER “Eagle-eyed machine learning algorithm outdoes human

experts”, University of Wisconsin Madison, July19th, 2018. https://news.wisc.edu/eagle-

eyed-machine-learning-algorithm-outdoes-human-experts/

7. ”Reactor analytics drives nuclear industry towards machine learning”, Nuclear Energy

Insider, November 15, 2017. https://analysis.nuclearenergyinsider.com/reactor-analytics-

drives-nuclear-industry-towards-machine-learning

8. H. VELLA, “What Will the Power Plant of the Future Look Like?”, General Electric

April 26, 2018. https://www.ge.com/power/transform/article.transform.articles.2018

.apr.the-power-plant-of-the-future#

9. N. NILSSON, “Introduction to Machine Learning”, Stanford University November 3,

1998.

10. E. Learned-Miller, “Introduction to Supervised Learning”, University of

Massachusetts, February 17, 2014.

11. A. Ramanujam, “Python at Netflix”. Netflix, April 28, 2019.

https://medium.com/netflix-techblog/python-at-netflix-bba45dae649e

12. T. Oliphant, “Guide to NumPy”. December 7 2006.

https://www.ge.com/power/transform/article.transform.articles.2018

94

13. “Array Objects”, SciPy Community. June 4 2019. https://www.numpy.org/devdocs/

reference/arrays.html

14. W. McKinney, “pandas: powerful Python data analysis toolkit Release 0.24.2.”

March 13 2019.

15. W. McKinney, “pandas: a Foundational Python Library for Data Analysis and

Statistics”.

16. “About Us”, Scikit-learn Developers. Scikit-learn.org. https://scikit-

learn.org/stable/about.html#people

17 “Who is using scikit-learn?”, Scikit-learn Developers. Scikit-learn.org https://scikit-

learn.org/stable/testimonials/testimonials.html

18. Pedregosa et al, scikit-learn: Machine Learning in Python. JMLR 12, pp. 2825-2830,

2011.

19. “Scikit-Learn User Guide Release 0.21.2”. Scikit-Learn, May 24, 2019.

20. “Cloud AutoML”. Alphabet. https://cloud.google.com/automl/docs/

21. “Home-TPOT”, Epistassislabs. https://epistasislab.github.io/tpot/.

22. R. Olson, N. Bartley, R. Urbanowicz, & Moore (2016). “Evaluation of a Tree-based

Pipeline Optimization Tool for Automating Data Science”. GECCO 2016, pages 485-

492.

23. E. Smith, L. Likforman-Sulem, J. Darbon, “Effect of Pre-Processing on

Binarization”. Boise State University, January 1, 2010.

24. “5.3. Preprocessing data”, Scikit-learn Developers. https://scikit-

learn.org/stable/modules/preprocessing.html#.

25. “Compare the effect of different scalers on data with outliers”, Scikit-learn

Developers. https://scikit-learn.org/stable/auto_examples/preprocessing/

plot_all_scaling.html#sphx-glr-auto-examples-preprocessing-plot-all-scaling-py

26. A. Rahimi, B. Recht, “Weighted Sums of Random Kitchen Sinks: Replacing

minimization with randomization in learning.” UC Berkeley.

27. “sklearn.cluster.FeatureAgglomeration”, Scikit-learn Developers. https://scikit-

learn.org/stable/modules/generated/sklearn.cluster.FeatureAgglomeration.html

28. “2.3. Clustering”, Scikit-learn Developers. https://scikit-learn.org/stable/modules

/clustering.html#hierarchical-clustering

https://www.numpy.org/devdocs/%20reference/arrays.html
https://www.numpy.org/devdocs/%20reference/arrays.html
https://scikit-learn.org/stable/auto_examples/preprocessing/
https://scikit-learn.org/stable/modules

95

29. L. Smith, “A Tutorial on Principal Component Analysis”. University of Montreal,

February 26th 2002.

30. “2.5. Decomposing signals in components”, Scikit-learn Developers. https://scikit-

learn.org/stable/modules/decomposition.html#

31. P. Breheny, ”Family Wise Error Rates”. University of Iowa, January 25th, 2016.

32. “1.13. Feature Selection”, Scikit-learn Developers. https://scikit-learn.org/

stable/modules /feature_selection.html#

33. “1.9. Naive Bayes”, Scikit-learn Developers. https://scikit-

learn.org/stable/modules/naive_bayes.html

34. H. Zhang, “The Optimality of Naïve Bayes”. University of New Brunswick

35. J. Eberhardt, “Bayesian Spam Detection”. University of Minnesota Morris.

36.P. Rai. “Supervised Learning: K-Nearest Neighbors and Decision Trees”. University

of Utah, August 25, 2011.

37. “1.6. Nearest Neighbors”, Scikit-learn Developers. https://scikitlearn.org/stable/

modules/neighbors.html#

38. T. Mitchel, “GENERATIVE AND DISCRIMINATIVE CLASSIFIERS: NAIVE

BAYES AND LOGISTIC REGRESSION” , Carnegie Mellon/McGraw Hill, September

23 2017.

39. “1.1. Generalized Linear Models”. Scikit-learn Developers, https://scikit-

learn.org/stable/modules/linear_model.html#logistic-regression

40. R. Mitchel, “Decision Tree Learning”. Princeton University.

41. “1.10. Decision Trees”, Scikit-learn Developers. https://scikit-learn.org/stable/

modules/tree.html

42. “1.11. Ensemble methods”, Scikit-learn Developers. https://scikit-

learn.org/stable/modules /ensemble.html#forest

43. “3.3. Model evaluation: quantifying the quality of predictions”, Scikit-learn

Developers, https://scikit-learn.org/stable/modules/model_evaluation.html#

44. “GENERIC PWR SIMULATOR Training Guide”, WCS, May 2017

45. “GENERIC PWR SIMULATOR Major Transients Report”, WCS, June 2014

https://scikit-learn.org/
https://scikit-learn.org/stable/modules
https://scikit-learn.org/stable/modules

97

Appendix 1.1 Reactor Power Behavior

0

20

40

60

80

100

120

0 200 400 600 800 1000 1200 1400

R
e

ac
to

r
P

o
w

e
r

(%
)

Time (Seconds)

Normal Operations Reactor Power

Low Power MOL

Low Power BOL

Low Power EOL

Half Power BOL

Half Power MOL

Half Power EOL

Full Power BOL

Full Power MOL

Full Power EOL

0

20

40

60

80

100

120

0 100 200 300 400 500 600 700

R

e

a

c

t

o

r

P

o

w

e

r

 (

%)

Time (Seconds)

Feedwater Pump Transient Reactor Power

Low Power MOL

Low Power BOL

Low Power EOL

Half Power EOL

Half Power MOL

Half Power BOL

Full Power BOL

Full Power MOL

Full Power EOL

0

20

40

60

80

100

120

0 200 400 600 800 1000 1200

R
e

ac
to

r
P

o
w

e
r

(%
)

Time (Seconds)

Rapid Power Change Transient Reactor Power

BOL

MOL

EOL

98

0

20

40

60

80

100

120

0 100 200 300 400 500 600 700

R
e

ac
to

r
P

o
w

e
r

(%
)

Time (Seconds)

LOCA-LOOP Transient Reactor Power

Low Power MOL

Low Power EOL

Low Power BOL

Half Power MOL

Half Power EOL

Half Power BOL

Full Power BOL

Full Power MOL

Full Power EOL

0

20

40

60

80

100

120

0 100 200 300 400 500 600 700

R
e

ac
to

r
P

o
w

e
r

(%
)

Time (Seconds)

Valve Closure Transient Reactor Power

Low Power MOL

Low Power BOL

Low Power EOL

Half Power MOL

Half Power BOL

Half Power EOL

Full Power MOL

Full Power BOL

Full Power EOL

99

Appendix 1.2 RCS LVL LOOP 1 WR

0

0.5

1

1.5

2

2.5

3

0 200 400 600 800 1000 1200 1400

R
C

S
LV

L
LO

O
P

 1
 W

R

Time (Seconds)

Normal Operations RCS LVL LOOP 1 WR

Low Power MOL

Low Power BOL

Low Power EOL

Half Power BOL

Half Power MOL

Half Power EOL

Full Power BOL

Full Power MOL

Full Power EOL

0

0.5

1

1.5

2

2.5

3

0 100 200 300 400 500 600 700

R
C

S
LV

L
LO

O
P

 1
 W

R

Time (Seconds)

Feedwater Pump Trip RCS LVL LOOP 1 WR

Low Power MOL

Low Power BOL

Low Power EOL

Half Power EOL

Half Power MOL

Half Power BOL

Full Power BOL

Full Power MOL

Full Power EOL

0

0.5

1

1.5

2

2.5

3

0 200 400 600 800 1000 1200

R
C

S
LV

L
LO

O
P

 1
 W

R

Time (Seconds)

Rapid Power Change Transient RCS LVL LOOP 1
WR

BOL

MOL

EOL

100

0

0.5

1

1.5

2

2.5

3

0 100 200 300 400 500 600 700

R
C

S
LV

L
LO

O
P

 1
 W

R

Time (Seconds)

LOCA-LOOP Transient RCS LVL LOOP 1 WR

Low Power MOL

Low Power BOL

Low Power EOL

Half Power EOL

Half Power MOL

Half Power BOL

Full Power BOL

Full Power MOL

Full Power EOL

0

0.5

1

1.5

2

2.5

3

0 100 200 300 400 500 600 700

R
C

S
LV

L
LO

O
P

 1
 W

R

Time (Seconds)

Valve Closure Transient RCS LVL LOOP 1 WR

Low Power MOL

Low Power BOL

Low Power EOL

Half Power MOL

Half Power BOL

Half Power EOL

Full Power MOL

Full Power BOL

101

Appendix 1.3 RCS LVL LOOP 1 NR

0

1

2

3

4

5

0 200 400 600 800 1000 1200 1400

R
C

S
LV

L
LO

O
P

 1
 W

R

Time (Seconds)

Normal Operations RCS LVL LOOP 1 NR

Low Power MOL

Low Power BOL

Low Power EOL

Half Power BOL

Half Power MOL

Half Power EOL

Full Power BOL

Full Power MOL

Full Power EOL

0

1

2

3

4

5

0 100 200 300 400 500 600 700

R
C

S
LV

L
LO

O
P

 1
 N

R

Time (Seconds)

Feedwater Pump Trip Transient RCS LVL LOOP 1
NR

Low Power MOL

Low Power BOL

Low Power EOL

Half Power EOL

Half Power MOL

Half Power BOL

Full Power BOL

0

1

2

3

4

5

0 200 400 600 800 1000 1200

R
C

S
LV

L
LO

O
P

 1
 N

R

Time (Seconds)

Rapid Power Change Transient RCS LVL LOOP 1
NR

BOL

MOL

EOL

102

0

1

2

3

4

5

0 100 200 300 400 500 600 700

R
C

S
LV

L
LO

O
P

 1
 N

R

Time (Seconds)

LOCA-LOOP Transient RCS LVL LOOP 1 NR

Low Power MOL

Low Power BOL

Low Power EOL

Half Power EOL

Half Power MOL

Half Power BOL

Full Power BOL

Full Power MOL

Full Power EOL

0

1

2

3

4

5

0 100 200 300 400 500 600 700

R
C

S
LV

L
LO

O
P

 1
 N

R

Time (Seconds)

Valve Closure Transient RCS LVL LOOP 1 NR

Low Power MOL

Low Power BOL

Low Power EOL

Half Power MOL

Half Power BOL

Half Power EOL

Full Power MOL

Full Power BOL

Full Power EOL

103

Appendix 1.4 HOT LEG 1 Temperature

560

570

580

590

600

610

620

630

0 200 400 600 800 1000 1200 1400

H
o

t
Le

g
Te

m
p

e
ra

tu
re

 1

Time (Seconds)

Normal Operations HOT LEG 1 Temperature

Low Power MOL

Low Power BOL

Low Power EOL

Half Power BOL

Half Power MOL

Half Power EOL

Full Power BOL

Full Power MOL

Full Power EOL

560

570

580

590

600

610

620

630

0 100 200 300 400 500 600 700

H
O

T
LE

G
 1

 T
EM

P
ER

A
TU

R
E

Time (Seconds)

Feedwater Pump Trip HOT LEG 1 TEMPERATURE

Low Power MOL

Low Power BOL

Low Power EOL

Half Power EOL

Half Power MOL

Half Power BOL

Full Power BOL

Full Power MOL

Full Power EOL

600

605

610

615

620

0 200 400 600 800 1000 1200

H
O

T
LE

G
 1

 T
EM

P
ER

A
TU

R
E

(F
)

Time (Seconds)

Rapid Power Change Transient HOT LEG 1
TEMPERATURE

BOL

MOL

EOL

104

0

100

200

300

400

500

600

700

0 100 200 300 400 500 600 700

H
O

T
LE

G
 1

 T
EM

P
ER

A
TU

R
E

Time (Seconds)

LOCA-LOOP Transient HOT LEG 1 TEMPERATURE

Low Power MOL

Low Power BOL

Low Power EOL

Half Power EOL

Half Power MOL

Half Power BOL

Full Power BOL

Full Power MOL

Full Power EOL

560

570

580

590

600

610

620

630

0 100 200 300 400 500 600 700

H
O

T
LE

G
 1

 A
 T

EM
P

ER
A

TU
R

E
(F

)

Time (Seconds)

Valve Closure Transient HOT LEG 1 A
TEMPERATURE

Low Power MOL

Low Power BOL

Low Power EOL

Half Power MOL

Half Power BOL

Half Power EOL

Full Power MOL

105

Appendix 1.5 HOT LEG 1A Temperature

559

560

561

562

563

564

565

0 200 400 600 800 1000 1200 1400

C
o

ld
 L

e
g

 1
A

 T
e

m
p

e
ra

tu
re

 (
F)

Time (Seconds)

Normal Operations Cold Leg 1A Temperature

Low Power MOL

Low Power BOL

Low Power EOL

Half Power BOL

Half Power MOL

Half Power EOL

Full Power BOL

Full Power MOL

Full Power EOL

558

560

562

564

566

568

570

0 100 200 300 400 500 600 700

C
O

LD
 L

EG
 1

A
 T

EM
P

ER
A

TU
R

E
(F

)

Time (Seconds)

Feedwater Pump Trip COLD LEG 1A
TEMPERATURE

Low Power MOL

Low Power BOL

Low Power EOL

Half Power EOL

Half Power MOL

Half Power BOL

Full Power BOL

554

556

558

560

562

564

0 200 400 600 800 1000 1200

C
O

LD
 L

EG
 1

A
 T

EM
P

ER
A

TU
R

E
(F

)

Time (Seconds)

Rapid Power Change Transient COLD LEG 1A
TEMPERATURE

BOL

MOL

EOL

106

0

100

200

300

400

500

600

0 100 200 300 400 500 600 700

C
O

LD
 L

EG
 1

A
 T

EM
P

ER
A

TU
R

E
(F

)

Time (Seconds)

LOCA-LOOP Transient COLD LEG 1A
TEMPERATURE

Low Power MOL

Low Power BOL

Low Power EOL

Half Power EOL

Half Power MOL

Half Power BOL

Full Power BOL

0

100

200

300

400

500

600

0 100 200 300 400 500 600 700

C
O

LD
 L

EG
 1

A
 T

EM
P

ER
A

TU
R

E
(F

)

Time (Seconds)

Valve Closure Transient COLD LEG 1A
TEMPERATURE

Low Power MOL

Low Power BOL

Low Power EOL

Half Power EOL

Half Power MOL

Half Power BOL

Full Power BOL

107

Appendix 1.6 Cold Leg 1B Temperature

559

560

561

562

563

564

565

0 200 400 600 800 1000 1200 1400

C
o

ld
 L

e
g

 1
B

 T
e

m
p

e
ra

tu
re

 (
F)

Time (Seconds)

Normal Operations Cold Leg 1B Temperature

Low Power MOL

Low Power BOL

Low Power EOL

Half Power BOL

Half Power MOL

Half Power EOL

Full Power BOL

Full Power MOL

Full Power EOL

558

560

562

564

566

568

570

0 100 200 300 400 500 600 700

C
O

LD
 L

EG
 1

B
 T

EM
P

ER
A

TU
R

E
(F

)

Time (Seconds)

Feedwater Pump Trip COLD LEG 1B
TEMPERATURE

Low Power MOL

Low Power BOL

Low Power EOL

Half Power EOL

Half Power MOL

Half Power BOL

Full Power BOL

554

556

558

560

562

564

0 200 400 600 800 1000 1200

C
O

LD
 L

EG
 1

B
 T

EM
P

ER
A

TU
R

E
(F

)

Time (Seconds)

Rapid Power Change Transient COLD LEG 1B
TEMPERATURE

BOL

MOL

EOL

108

0

100

200

300

400

500

600

0 100 200 300 400 500 600 700

C
O

LD
 L

EG
 1

B
 T

EM
P

ER
A

TU
R

E
(F

)

Time (Seconds)

LOCA-LOOP Transient COLD LEG 1B
TEMPERATURE

Low Power MOL

Low Power BOL

Low Power EOL

Half Power EOL

Half Power MOL

Half Power BOL

Full Power BOL

555

560

565

570

575

580

0 100 200 300 400 500 600 700

C
O

LD
 L

EG
 1

 B
 T

EM
P

ER
A

TU
R

E
(F

)

Time (Seconds)

Valve Closure Transient COLD LEG 1B
TEMPERATURE

Low Power MOL

Low Power BOL

Low Power EOL

Half Power MOL

Half Power BOL

Half Power EOL

Full Power MOL

109

Appendix 1.7 Hot Leg 2 Temperature

560

570

580

590

600

610

620

630

0 200 400 600 800 1000 1200 1400

H
o

t
Le

g
2

 T
e

m
p

e
ra

tu
re

 1

Time (Seconds)

Normal Operations Hot Leg 2 Temperature

Low Power MOL

Low Power BOL

Low Power EOL

Half Power BOL

Half Power MOL

Half Power EOL

Full Power BOL

Full Power MOL

Full Power EOL

560

570

580

590

600

610

620

630

0 100 200 300 400 500 600 700

H
O

T
LE

G
 2

 T
EM

P
ER

A
TU

R
E

(F
)

Time (Seconds)

Feedwater Pump Trip Transient HOT LEG 2
TEMPERATURE

Low Power MOL

Low Power BOL

Low Power EOL

Half Power EOL

Half Power MOL

Half Power BOL

Full Power BOL

600

605

610

615

620

0 200 400 600 800 1000 1200

H
O

T
LE

G
 2

 T
EM

P
ER

A
TU

R
E

(F
)

Time (Seconds)

Rapid Power Change Transient HOT LEG 2
TEMPERATURE

BOL

MOL

EOL

110

0

100

200

300

400

500

600

700

0 100 200 300 400 500 600 700

H
O

T
LE

G
 2

 T
EM

P
ER

A
TU

R
E

(F
)

Time (Seconds)

LOCA-LOOP Transient HOT LEG 2 TEMPERATURE

Low Power MOL

Low Power BOL

Low Power EOL

Half Power EOL

Half Power MOL

Half Power BOL

Full Power BOL

Full Power MOL

Full Power EOL

560

570

580

590

600

610

620

630

0 100 200 300 400 500 600 700

H
O

T
LE

G
 2

 T
EM

P
ER

A
TU

R
E

(F
)

Time (Seconds)

Valve Closure Transient HOT LEG 2
TEMPERATURE

Low Power MOL

Low Power BOL

Low Power EOL

Half Power MOL

Half Power BOL

Half Power EOL

Full Power MOL

111

Appendix 1.8 Cold Leg 2A Temperature

559

560

561

562

563

564

565

0 200 400 600 800 1000 1200 1400

C
o

ld
 L

e
g

2
a

Te
m

p
e

ra
tu

re
 (

F)

Time (Seconds)

Normal Operations Cold Leg 2A Temperature

Low Power MOL

Low Power BOL

Low Power EOL

Half Power BOL

Half Power MOL

Half Power EOL

Full Power BOL

Full Power MOL

Full Power EOL

558

560

562

564

566

568

570

0 100 200 300 400 500 600 700

C
O

LD
LE

G
 2

A
 T

EM
P

ER
A

TU
R

E
(F

)

Time (Seconds)

Feedwater Pump Trip Transient COLD LEG 2A TEMPERATURE

Low Power MOL

Low Power BOL

Low Power EOL

Half Power EOL

Half Power MOL

Half Power BOL

Full Power BOL

Full Power MOL

Full Power EOL

554

556

558

560

562

564

0 200 400 600 800 1000 1200C
O

LD
 L

EG
 2

A
 T

EM
P

ER
A

TU
R

E
(F

)

Time (Seconds)

Rapid Power Change Transient COLD LEG 2A
TEMPERATURE

BOL

MOL

EOL

112

0

100

200

300

400

500

600

0 100 200 300 400 500 600 700

C
O

LD
LE

G
 2

A
 T

EM
P

ER
A

TU
R

E
(F

)

Time (Seconds)

LOCA-LOOP Transient COLD LEG 2A TEMPERATURE

Low Power MOL

Low Power BOL

Low Power EOL

Half Power EOL

Half Power MOL

Half Power BOL

Full Power BOL

Full Power MOL

Full Power EOL

555

560

565

570

575

580

0 100 200 300 400 500 600 700C
O

LD
 L

EG
 2

 A
 T

EM
P

ER
A

TU
R

E
(F

)

Time (Seconds)

Valve Closure Transient COLD LEG 2A TEMPERATURE

Low Power MOL

Low Power BOL

Low Power EOL

Half Power MOL

Half Power BOL

Half Power EOL

Full Power MOL

Full Power BOL

Full Power EOL

113

Appendix 1.9 Cold Leg 2B Temperature

559

560

561

562

563

564

565

0 200 400 600 800 1000 1200 1400

C
o

ld
 L

e
g

2
B

 T
e

m
p

e
ra

tu
re

 (
F)

Time (Seconds)

Normal Operations Cold Leg 2B Temperature

Low Power MOL

Low Power BOL

Low Power EOL

Half Power BOL

Half Power MOL

Half Power EOL

Full Power BOL

Full Power MOL

Full Power EOL

558

560

562

564

566

568

570

0 100 200 300 400 500 600 700

C
O

LD
LE

G
 2

B
 T

EM
P

ER
A

TU
R

E
(F

)

Time (Seconds)

Feedwater Pump Trip Transient COLD LEG 2B TEMPERATURE

Low Power MOL

Low Power BOL

Low Power EOL

Half Power EOL

Half Power MOL

Half Power BOL

Full Power BOL

Full Power MOL

Full Power EOL

554

556

558

560

562

564

0 200 400 600 800 1000 1200

C
O

LD
 L

EG
 2

B
 T

EM
P

ER
A

TU
R

E
(F

)

Time (Seconds)

Rapid Power Change Transient COLD LEG 2B
TEMPERATURE

BOL

MOL

EOL

114

0

100

200

300

400

500

600

0 100 200 300 400 500 600 700

C
O

LD
LE

G
 2

B
 T

EM
P

ER
A

TU
R

E
(F

)

Time (Seconds)

LOCA-LOOP Transient COLD LEG 2B TEMPERATURE

Low Power MOL

Low Power BOL

Low Power EOL

Half Power EOL

Half Power MOL

Half Power BOL

Full Power BOL

Full Power MOL

Full Power EOL

555

560

565

570

575

580

0 100 200 300 400 500 600 700C
O

LD
 L

EG
 2

 B
 T

EM
P

ER
A

TU
R

E
(F

)

Time (Seconds)

Valve Closure Transient COLD LEG 2B TEMPERATURE

Low Power MOL

Low Power BOL

Low Power EOL

Half Power MOL

Half Power BOL

Half Power EOL

Full Power MOL

Full Power BOL

Full Power EOL

115

Appendix 1.10 RC LOOP-1A FLOW

99.7

99.8

99.9

100

100.1

100.2

0 200 400 600 800 1000 1200 1400

R
C

 L
O

O
P

-1
A

 F
LO

W
 (

%
)

Time (Seconds)

Normal Operations RC LOOP-1A FLOW

Low Power MOL

Low Power BOL

Low Power EOL

Half Power BOL

Half Power MOL

Half Power EOL

Full Power BOL

Full Power MOL

Full Power EOL

97.5

98

98.5

99

99.5

100

100.5

101

101.5

102

0 100 200 300 400 500 600 700R
C

 L
O

O
P

-1
A

 N
O

R
M

 F
LO

W
 (

LB
/S

)

Time (Seconds)

Feedwater Pump Trip Transient RC LOOP-1A NORM FLOW

Low Power MOL

Low Power BOL

Low Power EOL

Half Power EOL

Half Power MOL

Half Power BOL

Full Power BOL

Full Power MOL

Full Power EOL

99.2

99.4

99.6

99.8

100

100.2

100.4

100.6

0 200 400 600 800 1000 1200R
C

 L
O

O
P

-1
A

 N
O

R
M

 F
LO

W
 (

%
)

Time (Seconds)

Rapid Power Change Transient RC LOOP-1A NORM FLOW

BOL

MOL

EOL

116

0

20

40

60

80

100

120

140

0 100 200 300 400 500 600 700R
C

 L
O

O
P

-1
A

 N
O

R
M

 F
LO

W
 (

LB
/S

)

Time (Seconds)

LOCA-LOOP Transient RC LOOP-1A NORM FLOW

Low Power MOL

Low Power BOL

Low Power EOL

Half Power EOL

Half Power MOL

Half Power BOL

Full Power BOL

Full Power MOL

Full Power EOL

94

95

96

97

98

99

100

101

0 100 200 300 400 500 600 700

R
C

 L
O

O
P

-1
A

 N
O

R
M

 F
LO

W
 (

LB
/S

EC
)

Time (Seconds)

Valve Closure RC LOOP-1A NORM FLOW

Low Power MOL

Low Power BOL

Low Power EOL

Half Power MOL

Half Power BOL

Half Power EOL

Full Power MOL

Full Power BOL

Full Power EOL

117

Appendix 1.11 RC LOOP-1B FLOW

99.7

99.8

99.9

100

100.1

100.2

0 200 400 600 800 1000 1200 1400

R
C

 L
O

O
P

-1
B

 F
LO

W
 (

%
)

Time (Seconds)

Normal Operations RC LOOP-1B FLOW

Low Power MOL

Low Power BOL

Low Power EOL

Half Power BOL

Half Power MOL

Half Power EOL

Full Power BOL

Full Power MOL

Full Power EOL

96

97

98

99

100

101

102

0 100 200 300 400 500 600 700R
C

 L
O

O
P

-1
B

 N
O

R
M

 F
LO

W
 (

LB
/S

)

Time (Seconds)

Feedwater Pump Trip Transient RC LOOP-1B NORM FLOW

Low Power MOL

Low Power BOL

Low Power EOL

Half Power EOL

Half Power MOL

Half Power BOL

Full Power BOL

Full Power MOL

99.4

99.6

99.8

100

100.2

100.4

100.6

0 200 400 600 800 1000 1200R
C

 L
O

O
P

-1
B

 N
O

R
M

 F
LO

W
 (

L%
)

Time (Seconds)

Rapid Power Change Transient RC LOOP-1B NORM FLOW

BOL

MOL

EOL

118

0

20

40

60

80

100

120

140

0 100 200 300 400 500 600 700

R
C

 L
O

O
P

-1
B

 N
O

R
M

 F
LO

W
 (

LB
/S

)

Time (Seconds)

LOCA-LOOP Transient RC LOOP-1B NORM FLOW

Low Power MOL

Low Power BOL

Low Power EOL

Half Power EOL

Half Power MOL

Half Power BOL

Full Power BOL

Full Power MOL

95

96

97

98

99

100

101

0 100 200 300 400 500 600 700

R
C

 L
O

O
P

-1
B

 N
O

R
M

 F
LO

W
 (

LB
/S

EC
)

Time (Seconds)

Valve Closure RC LOOP-1B NORM FLOW

Low Power MOL

Low Power BOL

Low Power EOL

Half Power MOL

Half Power BOL

Half Power EOL

Full Power MOL

Full Power BOL

Full Power EOL

119

Appendix 1.12 RC LOOP-2A FLOW

99.7

99.8

99.9

100

100.1

100.2

0 200 400 600 800 1000 1200 1400

R
C

 L
O

O
P

-2
A

 F
LO

W
 (

%
)

Time (Seconds)

Normal Operations RC LOOP-2A FLOW

Low Power MOL

Low Power BOL

Low Power EOL

Half Power BOL

Half Power MOL

Half Power EOL

Full Power BOL

Full Power MOL

Full Power EOL

97

98

99

100

101

102

0 100 200 300 400 500 600 700

R
C

 L
O

O
P

-2
A

 N
O

R
M

 F
LO

W
 (

LB
/S

)

Time (Seconds)

Feedwater Pump Trip Transient RC LOOP-2A NORM FLOW

Low Power MOL

Low Power BOL

Low Power EOL

Half Power EOL

Half Power MOL

Half Power BOL

Full Power BOL

Full Power MOL

99.2

99.4

99.6

99.8

100

100.2

100.4

100.6

0 200 400 600 800 1000 1200R
C

 L
O

O
P

-2
A

 N
O

R
M

 F
LO

W
 (

L%
)

Time (Seconds)

Rapid Power Change Transient RC LOOP-2A NORM FLOW

BOL

MOL

EOL

120

0

20

40

60

80

100

120

0 100 200 300 400 500 600 700R
C

 L
O

O
P

-2
A

 N
O

R
M

 F
LO

W
 (

LB
/S

)

Time (Seconds)

LOCA-LOOP Transient RC LOOP-2A NORM FLOW

Low Power MOL

Low Power BOL

Low Power EOL

Half Power EOL

Half Power MOL

Half Power BOL

Full Power BOL

Full Power MOL

Full Power EOL

94

95

96

97

98

99

100

101

0 100 200 300 400 500 600 700

R
C

 L
O

O
P

-2
A

 N
O

R
M

 F
LO

W
 (

LB
/S

EC
)

Time (Seconds)

Valve Closure Transient RC LOOP-2A NORM FLOW

Low Power MOL

Low Power BOL

Low Power EOL

Half Power MOL

Half Power BOL

Half Power EOL

Full Power MOL

Full Power BOL

Full Power EOL

121

Appendix 1.13 RC LOOP-2B FLOW

99.6

99.7

99.8

99.9

100

100.1

100.2

0 200 400 600 800 1000 1200 1400

R
C

 L
O

O
P

-2
B

 F
LO

W
 (

%
)

Time (Seconds)

Normal Operations RC LOOP-2B FLOW

Low Power MOL

Low Power BOL

Low Power EOL

Half Power BOL

Half Power MOL

Half Power EOL

Full Power BOL

Full Power MOL

Full Power EOL

96

97

98

99

100

101

102

0 100 200 300 400 500 600 700R
C

 L
O

O
P

-2
B

 N
O

R
M

 F
LO

W
 (

LB
/S

)

Time (Seconds)

Feedwater Pump Trip Transient RC LOOP-2B NORM FLOW

Low Power MOL

Low Power BOL

Low Power EOL

Half Power EOL

Half Power MOL

Half Power BOL

Full Power BOL

Full Power MOL

Full Power EOL

99.2

99.4

99.6

99.8

100

100.2

100.4

100.6

0 200 400 600 800 1000 1200R
C

 L
O

O
P

-2
B

 N
O

R
M

 F
LO

W
 (

L%
)

Time (Seconds)

Rapid Power Change Transient RC LOOP-2B NORM FLOW

BOL

MOL

EOL

122

0

20

40

60

80

100

120

140

0 100 200 300 400 500 600 700R
C

 L
O

O
P

-2
B

 N
O

R
M

 F
LO

W
 (

LB
/S

)

Time (Seconds)

LOCA-LOOP Transient RC LOOP-2B NORM FLOW

Low Power MOL

Low Power BOL

Low Power EOL

Half Power EOL

Half Power MOL

Half Power BOL

Full Power BOL

Full Power MOL

Full Power EOL

95

96

97

98

99

100

101

0 100 200 300 400 500 600 700

R
C

 L
O

O
P

-2
B

 N
O

R
M

 F
LO

W
 (

LB
/S

EC
)

Time (Seconds)

Valve Closure Transient RC LOOP-2B NORM FLOW

Low Power MOL

Low Power BOL

Low Power EOL

Half Power MOL

Half Power BOL

Half Power EOL

Full Power MOL

Full Power BOL

Full Power EOL

123

Appendix 1.14 PRESSURIZER SURGE LINE TEMPERATURE

625

630

635

640

645

650

0 200 400 600 800 1000 1200 1400

P
ZR

 S
U

R
G

E
LI

N
E

TE
M

P
 (

F)

Time (Seconds)

Normal Operations PRESSURIZER SURGE LINE TEMPERATURE

Low Power MOL

Low Power BOL

Low Power EOL

Half Power BOL

Half Power MOL

Half Power EOL

Full Power BOL

Full Power MOL

Full Power EOL

610

615

620

625

630

635

640

645

650

655

0 100 200 300 400 500 600 700

P
ZR

 S
U

R
G

E
LI

N
E

TE
M

P
 (

F)

Time (Seconds)

Feedwater Pump Trip Transient PZR SURGE LINE TEMP

Low Power MOL

Low Power BOL

Low Power EOL

Half Power EOL

Half Power MOL

Half Power BOL

Full Power BOL

Full Power MOL

Full Power EOL

636
638
640
642
644
646
648
650
652
654

0 200 400 600 800 1000 1200

P
ZR

 S
U

R
G

E
LI

N
E

TE
M

P
 (

F)

Time (Seconds)

Rapid Power Change Transient PZR SURGE LINE TEMP

BOL

MOL

EOL

124

0

100

200

300

400

500

600

700

0 100 200 300 400 500 600 700

P
ZR

 S
U

R
G

E
LI

N
E

TE
M

P
 (

F)

Time (Seconds)

LOCA-LOOP Transient PZR SURGE LINE TEMP

Low Power MOL

Low Power BOL

Low Power EOL

Half Power EOL

Half Power MOL

Half Power BOL

Full Power BOL

Full Power MOL

Full Power EOL

600

610

620

630

640

650

660

0 100 200 300 400 500 600 700

P
ZR

 S
U

R
G

E
LI

N
E

TE
M

P
 (

F)

Time (Seconds)

Valve Closure Transient PZR SURGE LINE TEMP

Low Power MOL

Low Power BOL

Low Power EOL

Half Power MOL

Half Power BOL

Half Power EOL

Full Power MOL

Full Power BOL

Full Power EOL

125

Appendix 1.15 PORV DISCHARGE TEMPERATURE

107.7

107.8

107.9

108

108.1

108.2

108.3

0 200 400 600 800 1000 1200 1400

P
O

R
V

 D
IS

C
H

 P
ZR

 T
EM

P
ER

A
TU

R
E

(F
)

Time (Seconds)

Normal Operations PORV DISCHARGE TEMPERATURE

Low Power MOL

Low Power BOL

Low Power EOL

Half Power BOL

Half Power MOL

Half Power EOL

Full Power BOL

Full Power MOL

Full Power EOL

107.7

107.8

107.9

108

108.1

108.2

108.3

0 100 200 300 400 500 600 700

P
O

R
V

 D
IS

C
H

A
R

G
E

P
ZR

 T
EM

P
ER

A
TU

R
E

(F
)

Time (Seconds)

Feedwater Pump Trip Transient PORV DISCHARGE TEMPERATURE

Low Power MOL

Low Power BOL

Low Power EOL

Half Power EOL

Half Power MOL

Half Power BOL

Full Power BOL

Full Power MOL

Full Power EOL

107.73

107.74

107.75

107.76

107.77

107.78

0 200 400 600 800 1000 1200

P
O

R
V

 D
IS

C
H

A
R

G
E

P
ZR

TE

M
P

ER
A

TU
R

E
(F

)

Time (Seconds)

Rapid Power Change Transient PORV DISCHARGE PZR TEMPERATURE

BOL

MOL

EOL

126

106

108

110

112

114

116

118

0 100 200 300 400 500 600 700

P
O

R
V

 D
IS

C
H

A
R

G
E

P
ZR

 T
EM

P
ER

A
TU

R
E

(F
)

Time (Seconds)

LOCA-LOOP Transient PORV DISCHARGE TEMPERATURE

Low Power MOL

Low Power BOL

Low Power EOL

Half Power EOL

Half Power MOL

Half Power BOL

Full Power BOL

Full Power MOL

Full Power EOL

107.7

107.8

107.9

108

108.1

108.2

108.3

0 100 200 300 400 500 600 700

P
O

R
V

 D
IS

C
H

 P
ZR

 T
EM

P
ER

A
TU

R
E

(F
)

Time (Seconds)

Valve Closure Transient PORV DISCH PZR TEMPERATURE

Low Power MOL

Low Power BOL

Low Power EOL

Half Power MOL

Half Power BOL

Half Power EOL

Full Power MOL

Full Power BOL

Full Power EOL

127

Appendix 1.16 CONTAINMENT TEMPERATURE

109.85

109.9

109.95

110

110.05

110.1

110.15

110.2

110.25

110.3

0 200 400 600 800 1000 1200 1400C
O

N
TA

IN
M

EN
T

TE
M

P
ER

A
TU

R
E

(F
)

Time (Seconds)

Normal Operations CONTAINMENT TEMPERATURE

Low Power MOL

Low Power BOL

Low Power EOL

Half Power BOL

Half Power MOL

Half Power EOL

Full Power BOL

Full Power MOL

Full Power EOL

109.85

109.9

109.95

110

110.05

110.1

110.15

110.2

110.25

110.3

0 100 200 300 400 500 600 700C
O

N
TA

IN
M

EN
T

TE
M

P
ER

A
TU

R
E

(F
)

Time (Seconds)

Feedwater Pump Trip Transient CONTAINMENT TEMPERATURE

Low Power MOL

Low Power BOL

Low Power EOL

Half Power EOL

Half Power MOL

Half Power BOL

Full Power BOL

Full Power MOL

Full Power EOL

109.9

109.92

109.94

109.96

109.98

110

110.02

0 200 400 600 800 1000 1200

C
O

N
TA

IN
M

EN
T

TE
M

P
ER

A
TU

R
E

(F
)

Time (Seconds)

Rapid Power Change Transient CONTAINMENT TEMPERATURE

BOL

MOL

EOL

128

0

50

100

150

200

250

300

0 100 200 300 400 500 600 700

C
O

N
TA

IN
M

EN
T

TE
M

P
ER

A
TU

R
E

(F
)

Time (Seconds)

LOCA-LOOP Transient CONTAINMENT TEMPERATURE

Low Power MOL

Low Power BOL

Low Power EOL

Half Power EOL

Half Power MOL

Half Power BOL

Full Power BOL

Full Power MOL

Full Power EOL

109.85

109.9

109.95

110

110.05

110.1

110.15

110.2

110.25

110.3

0 100 200 300 400 500 600 700C
O

N
TA

IN
M

EN
T

TE
M

P
ER

A
TU

R
E

(F
)

Time (Seconds)

Valve Closure Transient CONTAINMENT TEMPERATURE

Low Power MOL

Low Power BOL

Low Power EOL

Half Power MOL

Half Power BOL

Half Power EOL

Full Power MOL

Full Power BOL

Full Power EOL

129

Appendix 1.17 SG-1 NR LEVEL

53

53.2

53.4

53.6

53.8

54

54.2

0 200 400 600 800 1000 1200 1400

SG
-1

 N
R

 L
EV

EL
 (

%
)

Time (Seconds)

Normal Operations SG-1 NR LEVEL

Low Power MOL

Low Power BOL

Low Power EOL

Half Power BOL

Half Power MOL

Half Power EOL

Full Power BOL

Full Power MOL

Full Power EOL

0

10

20

30

40

50

60

0 100 200 300 400 500 600 700

SG
-1

 N
R

 L
EV

EL
 (

%
)

Time (Seconds)

Feedwater Pump Trip Transient SG-1 NR LEVEL

Low Power MOL

Low Power BOL

Low Power EOL

Half Power EOL

Half Power MOL

Half Power BOL

Full Power BOL

Full Power MOL

Full Power EOL

53

53.5

54

54.5

55

55.5

0 200 400 600 800 1000 1200

SG
-1

 N
R

 L
EV

EL
 (

%
)

Time (Seconds)

Rapid Power Change Transient SG-1 NR LEVEL

BOL

MOL

EOL

130

0

20

40

60

80

100

120

0 100 200 300 400 500 600 700

SG
-1

 N
R

 L
EV

EL
 (

%
)

Time (Seconds)

LOCA-LOOP Transient SG-1 NR LEVEL

Low Power MOL

Low Power BOL

Low Power EOL

Half Power EOL

Half Power MOL

Half Power BOL

Full Power BOL

Full Power MOL

Full Power EOL

0

10

20

30

40

50

60

70

0 100 200 300 400 500 600 700

SG
-1

 N
R

 L
EV

EL
 (

%
)

Time (Seconds)

Valve Closure Transient SG-1 NR LEVEL

Low Power MOL

Low Power BOL

Low Power EOL

Half Power MOL

Half Power BOL

Half Power EOL

Full Power MOL

Full Power BOL

Full Power EOL

131

Appendix 1.18 SG-1 NR LEVEL

53

53.2

53.4

53.6

53.8

54

54.2

0 200 400 600 800 1000 1200 1400

SG
-2

 N
R

 L
EV

EL
 (

%
)

Time (Seconds)

Normal Operations SG-2 NR LEVEL

Low Power MOL

Low Power BOL

Low Power EOL

Half Power BOL

Half Power MOL

Half Power EOL

Full Power BOL

Full Power MOL

Full Power EOL

0

10

20

30

40

50

60

0 100 200 300 400 500 600 700

SG
-2

 N
R

 L
EV

EL
 (

%
)

Time (Seconds)

Feedwater Pump Trip Transient SG-2 NR LEVEL

Low Power MOL

Low Power BOL

Low Power EOL

Half Power EOL

Half Power MOL

Half Power BOL

Full Power BOL

Full Power MOL

Full Power EOL

53

53.5

54

54.5

55

55.5

0 200 400 600 800 1000 1200

SG
-2

 N
R

 L
EV

EL
 (

%
)

Time (Seconds)

Rapid Power Change Transient SG-2 NR LEVEL

BOL

MOL

EOL

132

0

20

40

60

80

100

120

0 100 200 300 400 500 600 700

SG
-2

 N
R

 L
EV

EL
 (

%
)

Time (Seconds)

LOCA-LOOP Transient SG-2 NR LEVEL

Low Power MOL

Low Power BOL

Low Power EOL

Half Power EOL

Half Power MOL

Half Power BOL

Full Power BOL

Full Power MOL

Full Power EOL

0

10

20

30

40

50

60

70

0 100 200 300 400 500 600 700

SG
-2

 N
R

 L
EV

EL
 (

%
)

Time (Seconds)

Valve Closure Transient SG-2 NR LEVEL

Low Power MOL

Low Power BOL

Low Power EOL

Half Power MOL

Half Power BOL

Half Power EOL

Full Power MOL

Full Power BOL

Full Power EOL

133

Appendix 1.19 FW FLOW TO SG-1

0

500

1000

1500

2000

2500

3000

0 200 400 600 800 1000 1200 1400

FW
 F

LO
W

 T
O

 S
G

-1
(L

B
/S

)

Time (Seconds)

Normal Operations FW FLOW TO SG-1

Low Power MOL

Low Power BOL

Low Power EOL

Half Power BOL

Half Power MOL

Half Power EOL

Full Power BOL

Full Power MOL

Full Power EOL

0

500

1000

1500

2000

2500

3000

0 100 200 300 400 500 600 700

FW
 F

LO
W

 T
O

 S
G

-1
 (

LB
/S

)

Time (Seconds)

Feedwater Pump Trip Transient FW FLOW TO SG-1

Low Power MOL

Low Power BOL

Low Power EOL

Half Power EOL

Half Power MOL

Half Power BOL

Full Power BOL

Full Power MOL

Full Power EOL

0

500

1000

1500

2000

2500

3000

0 200 400 600 800 1000 1200

FW
 F

LO
W

 T
O

 S
G

-1
 (

LB
/S

)

Time (Seconds)

Rapid Power Change Transient FW FLOW TO SG-1

BOL

MOL

EOL

134

0

500

1000

1500

2000

2500

3000

0 100 200 300 400 500 600 700

FW
 F

LO
W

 T
O

 S
G

-1
 (

LB
/S

)

Time (Seconds)

LOCA-LOOP Transient FW FLOW TO SG-1

Low Power MOL

Low Power BOL

Low Power EOL

Half Power EOL

Half Power MOL

Half Power BOL

Full Power BOL

Full Power MOL

Full Power EOL

0

500

1000

1500

2000

2500

3000

0 100 200 300 400 500 600 700

FW
 F

LO
W

 T
O

 S
G

-1
 (

LB
/S

)

Time (Seconds)

Valve Closure Transient FW FLOW TO SG-1

Low Power MOL

Low Power BOL

Low Power EOL

Half Power MOL

Half Power BOL

Half Power EOL

Full Power MOL

Full Power BOL

Full Power EOL

135

Appendix 1.20 FW FLOW TO SG-2

0

500

1000

1500

2000

2500

3000

0 200 400 600 800 1000 1200 1400

FW
 F

LO
W

 T
O

 S
G

-2
 (

LB
/S

)

Time (Seconds)

Normal Operations FW FLOW TO SG-2

Low Power MOL

Low Power BOL

Low Power EOL

Half Power BOL

Half Power MOL

Half Power EOL

Full Power BOL

Full Power MOL

Full Power EOL

0

500

1000

1500

2000

2500

3000

0 100 200 300 400 500 600 700

FW
 F

LO
W

 T
O

 S
G

-2
 (

LB
/S

)

Time (Seconds)

Feedwater Pump Trip Transient FW FLOW TO SG-2

Low Power MOL

Low Power BOL

Low Power EOL

Half Power EOL

Half Power MOL

Half Power BOL

Full Power BOL

Full Power MOL

0

500

1000

1500

2000

2500

3000

0 200 400 600 800 1000 1200

FW
 F

LO
W

 T
O

 S
G

-2
 (

LB
/S

)

Time (Seconds)

Rapid Power Change Transient FW FLOW TO SG-2

BOL

MOL

EOL

136

0

500

1000

1500

2000

2500

3000

0 100 200 300 400 500 600 700

FW
 F

LO
W

 T
O

 S
G

-2
 (

LB
/S

)

Time (Seconds)

LOCA-LOOP Transient FW FLOW TO SG-2

Low Power MOL

Low Power BOL

Low Power EOL

Half Power EOL

Half Power MOL

Half Power BOL

Full Power BOL

Full Power MOL

Full Power EOL

0

500

1000

1500

2000

2500

3000

0 100 200 300 400 500 600 700

FW
 F

LO
W

 T
O

 S
G

-2
 (

LB
/S

)

Time (Seconds)

Valve Closure Transient FW FLOW TO SG-2

Low Power MOL

Low Power BOL

Low Power EOL

Half Power MOL

Half Power BOL

Half Power EOL

Full Power MOL

Full Power BOL

Full Power EOL

137

Appendix 1.21 MS FLOW FROM SG-1 LINE-1A

0

200

400

600

800

1000

1200

1400

0 200 400 600 800 1000 1200 1400

M
S

FL
O

W
 F

R
O

M
 S

G
-1

 L
IN

E-
1

A
 (

LB
/S

)

Time (Seconds)

Normal Operations MS FLOW FROM SG-1 LINE-1A

Low Power MOL

Low Power BOL

Low Power EOL

Half Power BOL

Half Power MOL

Half Power EOL

Full Power BOL

Full Power MOL

Full Power EOL

0

200

400

600

800

1000

1200

1400

0 100 200 300 400 500 600 700

M
S

FL
O

W
 F

R
O

M
 S

G
-1

 L
IN

E-
1

A
 (

LB
/S

)

Time (Seconds)

Feedwater Pump Trip Transient MS FLOW FROM SG-1 LINE-1A

Low Power MOL

Low Power BOL

Low Power EOL

Half Power EOL

Half Power MOL

Half Power BOL

Full Power BOL

Full Power MOL

Full Power EOL

0

200

400

600

800

1000

1200

1400

0 200 400 600 800 1000 1200

M
S

FL
O

W
 F

R
O

M
 S

G
-1

 L
IN

E-
1

A

(L
B

/S
)

Time (Seconds)

Rapid Power Change Transient MS FLOW FROM SG-1 LINE-1A

BOL

MOL

EOL

138

0

200

400

600

800

1000

1200

1400

0 100 200 300 400 500 600 700

M
S

FL
O

W
 F

R
O

M
 S

G
-1

 L
IN

E-
1

A
 (

LB
/S

)

Time (Seconds)

LOCA-LOOP Transient MS FLOW FROM SG-1 LINE-1A

Low Power MOL

Low Power BOL

Low Power EOL

Half Power EOL

Half Power MOL

Half Power BOL

Full Power BOL

Full Power MOL

Full Power EOL

0

200

400

600

800

1000

1200

1400

0 100 200 300 400 500 600 700

M
S

FL
O

W
 S

G
-1

 L
IN

E
1

A
 (

LB
/S

)

Time (Seconds)

Valve Closure Transient MS FLOW SG-1 LINE-1A

Low Power MOL

Low Power BOL

Low Power EOL

Half Power MOL

Half Power BOL

Half Power EOL

Full Power MOL

Full Power BOL

Full Power EOL

139

Appendix 1.22 MS FLOW FROM SG-1 LINE-1B

0

200

400

600

800

1000

1200

1400

0 200 400 600 800 1000 1200 1400

M
S

FL
O

W
 F

R
O

M
 S

G
-1

 L
IN

E-
1

B
 (

LB
/S

)

Time (Seconds)

Normal Operations MS FLOW FROM SG-1 LINE-1B

Low Power MOL

Low Power BOL

Low Power EOL

Half Power BOL

Half Power MOL

Half Power EOL

Full Power BOL

Full Power MOL

Full Power EOL

0

200

400

600

800

1000

1200

1400

0 100 200 300 400 500 600 700

M
S

FL
O

W
 F

R
O

M
 S

G
-1

 L
IN

E-
1

B
 (

LB
/S

)

Time (Seconds)

Feedwater Pump Trip Transient MS FLOW FROM SG-1 LINE-1B

Low Power MOL

Low Power BOL

Low Power EOL

Half Power EOL

Half Power MOL

Half Power BOL

Full Power BOL

Full Power MOL

Full Power EOL

0

200

400

600

800

1000

1200

1400

0 200 400 600 800 1000 1200M
S

FL
O

W
 F

R
O

M
 S

G
-1

 L
IN

E-
1

B

(L
B

/S
)

Time (Seconds)

Rapid Power Change Transient MS FLOW FROM SG-1 LINE-1B

BOL

MOL

EOL

140

0

200

400

600

800

1000

1200

1400

0 100 200 300 400 500 600 700

M
S

FL
O

W
 F

R
O

M
 S

G
-1

 L
IN

E-
1

B
 (

LB
/S

)

Time (Seconds)

LOCA-LOOP Transient MS FLOW FROM SG-1 LINE-1B

Low Power MOL

Low Power BOL

Low Power EOL

Half Power EOL

Half Power MOL

Half Power BOL

Full Power BOL

Full Power MOL

Full Power EOL

0

200

400

600

800

1000

1200

1400

0 100 200 300 400 500 600 700

M
S

FL
O

W
 S

G
-1

 L
IN

E
1

B
 (

LB
/S

)

Time (Seconds)

Valve Closure Transient MS FLOW SG-1 LINE-1B

Low Power MOL

Low Power BOL

Low Power EOL

Half Power MOL

Half Power BOL

Half Power EOL

Full Power MOL

Full Power BOL

Full Power EOL

141

Appendix 1.23 MS FLOW FROM SG-2 LINE-1A

0

200

400

600

800

1000

1200

1400

0 200 400 600 800 1000 1200 1400

M
S

FL
O

W
 F

R
O

M
 S

G
-2

 L
IN

E-
1

A
 (

LB
/S

)

Time (Seconds)

Normal Operations MS FLOW FROM SG-2 LINE-1A

Low Power MOL

Low Power BOL

Low Power EOL

Half Power BOL

Half Power MOL

Half Power EOL

Full Power BOL

Full Power MOL

Full Power EOL

0

200

400

600

800

1000

1200

1400

0 100 200 300 400 500 600 700

M
S

FL
O

W
 F

R
O

M
 S

G
-2

 L
IN

E-
1

A
 (

LB
/S

)

Time (Seconds)

Feedwater Pump Trip Transient MS FLOW FROM SG-2 LINE-1A

Low Power MOL

Low Power BOL

Low Power EOL

Half Power EOL

Half Power MOL

Half Power BOL

Full Power BOL

Full Power MOL

Full Power EOL

0

200

400

600

800

1000

1200

1400

0 200 400 600 800 1000 1200

M
S

FL
O

W
 F

R
O

M
 S

G
-2

 L
IN

E-
1

A

(L
B

/S
)

Time (Seconds)

Rapid Power Change Transient MS FLOW FROM SG-2 LINE-1A

BOL

MOL

EOL

142

0

200

400

600

800

1000

1200

1400

0 100 200 300 400 500 600 700

M
S

FL
O

W
 F

R
O

M
 S

G
-2

 L
IN

E-
1

A
 (

LB
/S

)

Time (Seconds)

LOCA-LOOP Transient MS FLOW FROM SG-2 LINE-1A

Low Power MOL

Low Power BOL

Low Power EOL

Half Power EOL

Half Power MOL

Half Power BOL

Full Power BOL

Full Power MOL

Full Power EOL

0

200

400

600

800

1000

1200

1400

0 100 200 300 400 500 600 700

M
S

FL
O

W
 S

G
-2

 L
IN

E
1

A
 (

LB
/S

)

Time (Seconds)

Valve Closure Transient MS FLOW SG-2 LINE-1A

Low Power MOL

Low Power BOL

Low Power EOL

Half Power MOL

Half Power BOL

Half Power EOL

Full Power MOL

Full Power BOL

Full Power EOL

143

Appendix 1.24 MS FLOW FROM SG-2 LINE-1B

0

200

400

600

800

1000

1200

1400

0 200 400 600 800 1000 1200 1400

M
S

FL
O

W
 F

R
O

M
 S

G
-2

 L
IN

E-
1

B
 (

LB
/S

)

Time (Seconds)

Normal Operations MS FLOW FROM SG-2 LINE-1B

Low Power MOL

Low Power BOL

Low Power EOL

Half Power BOL

Half Power MOL

Half Power EOL

Full Power BOL

Full Power MOL

Full Power EOL

0

200

400

600

800

1000

1200

1400

0 100 200 300 400 500 600 700M
S

FL
O

W
 F

R
O

M
 S

G
-2

 L
IN

E-
1

B

(L
B

/S
)

Time (Seconds)

Feedwater Pump Trip Transient MS FLOW FROM SG-2 LINE-1B

Low Power MOL

Low Power BOL

Low Power EOL

Half Power EOL

Half Power MOL

Half Power BOL

Full Power BOL

Full Power MOL

0

200

400

600

800

1000

1200

1400

0 200 400 600 800 1000 1200M
S

FL
O

W
 F

R
O

M
 S

G
-2

 L
IN

E-
1

B

(L
B

/S
)

Time (Seconds)

Rapid Power Change Transient MS FLOW FROM SG-2 LINE-1B

BOL

MOL

EOL

144

0

200

400

600

800

1000

1200

1400

0 100 200 300 400 500 600 700

M
S

FL
O

W
 F

R
O

M
 S

G
-2

 L
IN

E-
1

B
 (

LB
/S

)

Time (Seconds)

LOCA-LOOP Transient MS FLOW FROM SG-2 LINE-1B

Low Power MOL

Low Power BOL

Low Power EOL

Half Power EOL

Half Power MOL

Half Power BOL

Full Power BOL

Full Power MOL

Full Power EOL

0

200

400

600

800

1000

1200

1400

0 100 200 300 400 500 600 700

M
S

FL
O

W
 S

G
-2

 L
IN

E
1

B
 (

LB
/S

)

Time (Seconds)

Valve Closure Transient MS FLOW SG-2 LINE-1B

Low Power MOL

Low Power BOL

Low Power EOL

Half Power MOL

Half Power BOL

Half Power EOL

Full Power MOL

Full Power BOL

Full Power EOL

145

Appendix 1.25 SG-1 PRESSURE

1020

1040

1060

1080

1100

1120

1140

1160

0 200 400 600 800 1000 1200 1400

SG
-1

 P
R

ES
SU

R
E

(P
SI

G
)

Time (Seconds)

Normal Operations SG-1 PRESSURE

Low Power MOL

Low Power BOL

Low Power EOL

Half Power BOL

Half Power MOL

Half Power EOL

Full Power BOL

Full Power MOL

Full Power EOL

1020

1040

1060

1080

1100

1120

1140

1160

1180

0 100 200 300 400 500 600 700

SG
-1

 P
R

ES
SU

R
E

"(
P

SI
G

)

Time (Seconds)

Feedwater Pump Trip Transient SG-1 PRESSURE

Low Power MOL

Low Power BOL

Low Power EOL

Half Power EOL

Half Power MOL

Half Power BOL

Full Power BOL

Full Power MOL

Full Power EOL

980

1000

1020

1040

1060

1080

1100

0 200 400 600 800 1000 1200SG
-1

 P
R

ES
SU

R
E

(P
SI

G
)

Time (Seconds)

Rapid Power Change Transient SG-1 PRESSURE

BOL

MOL

EOL

146

0

200

400

600

800

1000

1200

1400

0 100 200 300 400 500 600 700

SG
-1

 P
R

ES
SU

R
E

"(
P

SI
G

)

Time (Seconds)

LOCA-LOOP Transient SG-1 PRESSURE

Low Power MOL

Low Power BOL

Low Power EOL

Half Power EOL

Half Power MOL

Half Power BOL

Full Power BOL

Full Power MOL

Full Power EOL

0

200

400

600

800

1000

1200

1400

0 100 200 300 400 500 600 700

SG
-1

 P
R

ES
SU

R
E

(P
SI

G
)

Time (Seconds)

Valve Closure Transient SG-1 PRESSURE

Low Power MOL

Low Power BOL

Low Power EOL

Half Power MOL

Half Power BOL

Half Power EOL

Full Power MOL

Full Power BOL

Full Power EOL

147

Appendix 1.26 SG-2 PRESSURE

1020

1040

1060

1080

1100

1120

1140

1160

0 200 400 600 800 1000 1200 1400

SG
-2

 P
R

ES
SU

R
E

(P
SI

G
)

Time (Seconds)

Normal Operations SG-2 PRESSURE

Low Power MOL

Low Power BOL

Low Power EOL

Half Power BOL

Half Power MOL

Half Power EOL

Full Power BOL

Full Power MOL

Full Power EOL

1020

1040

1060

1080

1100

1120

1140

1160

1180

0 100 200 300 400 500 600 700

SG
-2

 P
R

ES
SU

R
E

"(
P

SI
G

)

Time (Seconds)

Feedwater Pump Trip Transient SG-2 PRESSURE

Low Power MOL

Low Power BOL

Low Power EOL

Half Power EOL

Half Power MOL

Half Power BOL

Full Power BOL

Full Power MOL

Full Power EOL

980

1000

1020

1040

1060

1080

1100

0 200 400 600 800 1000 1200SG
-2

 P
R

ES
SU

R
E

(P
SI

G
)

Time (Seconds)

Rapid Power Change Transient SG-2 PRESSURE

BOL

MOL

EOL

148

0

200

400

600

800

1000

1200

1400

0 100 200 300 400 500 600 700

SG
-2

 P
R

ES
SU

R
E

"(
P

SI
G

)

Time (Seconds)

LOCA-LOOP Transient SG-2 PRESSURE

Low Power MOL

Low Power BOL

Low Power EOL

Half Power EOL

Half Power MOL

Half Power BOL

Full Power BOL

Full Power MOL

Full Power EOL

0

200

400

600

800

1000

1200

1400

0 100 200 300 400 500 600 700

SG
-2

 P
R

ES
SU

R
E

(P
SI

G
)

Time (Seconds)

Valve Closure Transient SG-2 PRESSURE

Low Power MOL

Low Power BOL

Low Power EOL

Half Power MOL

Half Power BOL

Half Power EOL

Full Power MOL

Full Power BOL

Full Power EOL

149

Appendix 1.27 AVERAGE TEMPERATURE

560

565

570

575

580

585

590

0 200 400 600 800 1000 1200 1400

A
V

ER
A

G
E

TE
M

P
ER

A
TU

R
E

(F
)

Time (Seconds)

Normal Operations AVERAGE TEMPERATURE

Low Power MOL

Low Power BOL

Low Power EOL

Half Power BOL

Half Power MOL

Half Power EOL

Full Power BOL

Full Power MOL

Full Power EOL

560

565

570

575

580

585

590

595

0 100 200 300 400 500 600 700

A
V

ER
A

G
E

TE
M

P
ER

A
TU

R
E

(F
)

Time (Seconds)

Feedwater Pump Trip Transient AVERAGE TEMPERATURE

Low Power MOL

Low Power BOL

Low Power EOL

Half Power EOL

Half Power MOL

Half Power BOL

Full Power BOL

Full Power MOL

Full Power EOL

581
582
583
584
585
586
587
588
589
590

0 200 400 600 800 1000 1200A
V

ER
A

G
E

TE
M

P
ER

A
TU

R
E

(F
)

Time (Seconds)

Rapid Power Change Transient AVERAGE TEMPERATURE

BOL

MOL

EOL

150

0

100

200

300

400

500

600

700

0 100 200 300 400 500 600 700

A
V

ER
A

G
E

TE
M

P
ER

A
TU

R
E

(F
)

Time (Seconds)

LOCA-LOOP Transient AVERAGE TEMPERATURE

Low Power MOL

Low Power BOL

Low Power EOL

Half Power EOL

Half Power MOL

Half Power BOL

Full Power BOL

Full Power MOL

Full Power EOL

560

565

570

575

580

585

590

595

600

605

0 100 200 300 400 500 600 700

A
V

ER
A

G
E

TE
M

P
ER

A
TU

R
E

(F
)

Time (Seconds)

Valve Closure Transient AVERAGE TEMPERATURE

Low Power MOL

Low Power BOL

Low Power EOL

Half Power MOL

Half Power BOL

Half Power EOL

Full Power MOL

Full Power BOL

Full Power EOL

151

Appendix 1.28 PRESSURIZER PRESSURE

2230

2235

2240

2245

2250

2255

2260

0 200 400 600 800 1000 1200 1400

P
R

ES
SU

R
IZ

ER
 P

R
ES

SU
R

E
(P

SI
G

)

Time (Seconds)

Normal Operations PRESSURIZER PRESSURE

Low Power MOL

Low Power BOL

Low Power EOL

Half Power BOL

Half Power MOL

Half Power EOL

Full Power BOL

Full Power MOL

Full Power EOL

1950

2000

2050

2100

2150

2200

2250

2300

0 100 200 300 400 500 600 700

P
R

ES
SU

R
IZ

ER
 P

R
ES

SU
R

E
(P

SI
G

)

Time (Seconds)

Feedwater Pump Trip Transient PRESSURIZER PRESSURE

Low Power MOL

Low Power BOL

Low Power EOL

Half Power EOL

Half Power MOL

Half Power BOL

Full Power BOL

Full Power MOL

Full Power EOL

2200

2210

2220

2230

2240

2250

2260

2270

0 200 400 600 800 1000 1200

P
R

ES
SU

R
IZ

ER
 P

R
ES

SU
R

E
(P

SI
G

)

Time (Seconds)

Rapid Power Change Transient PRESSURIZER PRESSURE

BOL

MOL

EOL

152

0

500

1000

1500

2000

2500

0 100 200 300 400 500 600 700

P
R

ES
SU

R
IZ

ER
 P

R
ES

SU
R

E
(P

SI
G

)

Time (Seconds)

LOCA-LOOP Transient PRESSURIZER PRESSURE

Low Power MOL

Low Power BOL

Low Power EOL

Half Power EOL

Half Power MOL

Half Power BOL

Full Power BOL

Full Power MOL

Full Power EOL

2000

2050

2100

2150

2200

2250

2300

2350

0 100 200 300 400 500 600 700

P
R

ES
SU

R
IZ

ER
 P

R
ES

SU
R

E
(P

SI
G

)

Time (Seconds)

Valve Closure Transient PRESSURIZER PRESSURE

Low Power MOL

Low Power BOL

Low Power EOL

Half Power MOL

Half Power BOL

Half Power EOL

Full Power MOL

Full Power BOL

Full Power EOL

153

Appendix 1.29 PRESSURIZER LEVEL

0

10

20

30

40

50

60

0 200 400 600 800 1000 1200 1400

P
R

ES
SU

R
IZ

ER
 L

EV
EL

 (
%

)

Time (Seconds)

Normal Operations PRESSURIZER LEVEL

Low Power MOL

Low Power BOL

Low Power EOL

Half Power BOL

Half Power MOL

Half Power EOL

Full Power BOL

Full Power MOL

Full Power EOL

0

10

20

30

40

50

60

70

0 100 200 300 400 500 600 700

N
O

R
M

 P
R

ES
SU

R
IZ

ER
 L

EV
EL

 (
%

)

Time (Seconds)

Feedwater Pump Trip Transient NORM PRESSURIZER LEVEL

Low Power MOL

Low Power BOL

Low Power EOL

Half Power EOL

Half Power MOL

Half Power BOL

Full Power BOL

Full Power MOL

Full Power EOL

0

10

20

30

40

50

60

0 200 400 600 800 1000 1200

 P
R

ES
SU

R
IZ

ER
 L

EV
EL

 (
%

)

Time (Seconds)

Rapid Power Change Transient PRESSURIZER LEVEL

BOL

MOL

EOL

154

0

10

20

30

40

50

60

0 100 200 300 400 500 600 700

N
O

R
M

 P
R

ES
SU

R
IZ

ER
 L

EV
EL

 (
%

)

Time (Seconds)

LOCA-LOOP Transient NORM PRESSURIZER LEVEL

Low Power MOL

Low Power BOL

Low Power EOL

Half Power EOL

Half Power MOL

Half Power BOL

Full Power BOL

Full Power MOL

Full Power EOL

0

10

20

30

40

50

60

70

80

0 100 200 300 400 500 600 700

N
O

R
M

 P
R

ES
SU

R
IZ

ER
 L

EV
EL

 (
%

)

Time (Seconds)

Valve Closure Transient NORM PRESSURIZER LEVEL

Low Power MOL

Low Power BOL

Low Power EOL

Half Power MOL

Half Power BOL

Half Power EOL

Full Power MOL

Full Power BOL

Full Power EOL

155

Appendix 1.30 PRESSURIZER WATER TEMPERATURE

652.4

652.6

652.8

653

653.2

653.4

653.6

653.8

654

654.2

0 200 400 600 800 1000 1200 1400

P
R

ES
SU

R
IZ

ER
 W

A
TE

R
 T

EM
P

ER
A

TU
R

E
(F

)

Time (Seconds)

Normal Operations PRESSURIZER WATER TEMPERATURE

Low Power MOL

Low Power BOL

Low Power EOL

Half Power BOL

Half Power MOL

Half Power EOL

Full Power BOL

Full Power MOL

Full Power EOL

635

640

645

650

655

660

0 100 200 300 400 500 600 700

P
R

ES
SU

R
IZ

ER
 W

A
TE

R
 T

EM
P

ER
A

TU
R

E
(F

)

Time (Seconds)

Feedwater Pump Trip Transient PRESSURIZER WATER TEMPERATURE

Low Power MOL

Low Power BOL

Low Power EOL

Half Power EOL

Half Power MOL

Half Power BOL

Full Power BOL

Full Power MOL

Full Power EOL

650

651

652

653

654

655

0 200 400 600 800 1000 1200P
R

ES
SU

R
IZ

ER
 W

A
TE

R

TE
M

P
ER

A
TU

R
E

(F
)

Time (Seconds)

Rapid Power Change Transient PRESSURIZER WATER TEMPERATURE

BOL

MOL

EOL

156

0

100

200

300

400

500

600

700

0 100 200 300 400 500 600 700

P
R

ES
SU

R
IZ

ER
 W

A
TE

R
 T

EM
P

ER
A

TU
R

E
(F

)

Time (Seconds)

LOCA-LOOP Transient PRESSURIZER WATER TEMPERATURE

Low Power MOL

Low Power BOL

Low Power EOL

Half Power EOL

Half Power MOL

Half Power BOL

Full Power BOL

Full Power MOL

635

640

645

650

655

660

0 100 200 300 400 500 600 700

P
R

ES
SU

R
IZ

ER
 W

A
TE

R
 T

EM
P

ER
A

TU
R

E
(F

)

Time (Seconds)

Valve Closure Transient PRESSURIZER WATER TEMPERATURE

Low Power MOL

Low Power BOL

Low Power EOL

Half Power MOL

Half Power BOL

Half Power EOL

Full Power MOL

Full Power BOL

Full Power EOL

157

Appendix 1.31 PRESSURIZER STEAM TEMPERATURE

652.4

652.6

652.8

653

653.2

653.4

653.6

653.8

654

654.2

0 200 400 600 800 1000 1200 1400

P
R

ES
SU

R
IZ

ER
 S

TE
A

M
 T

EM
P

ER
A

TU
R

E
(F

)

Time (Seconds)

Normal Operations PRESSURIZER STEAM TEMPERATURE

Low Power MOL

Low Power BOL

Low Power EOL

Half Power BOL

Half Power MOL

Half Power EOL

Full Power BOL

Full Power MOL

Full Power EOL

635

640

645

650

655

660

0 100 200 300 400 500 600 700

P
R

ES
SU

R
IZ

ER
 S

TE
A

M
TE

M
P

ER
A

TU
R

E
(F

)

Time (Seconds)

Feedwater Pump Trip Transient PRESSURIZER STEAM TEMPERATURE

Low Power MOL

Low Power BOL

Low Power EOL

Half Power EOL

Half Power MOL

Half Power BOL

Full Power BOL

Full Power MOL

Full Power EOL

650

651

652

653

654

655

0 200 400 600 800 1000 1200P
R

ES
SU

R
IZ

ER
 S

TE
A

M

TE
M

P
ER

A
TU

R
E

(F
)

Time (Seconds)

Rapid Power Change Transient PRESSURIZER STEAM TEMPERATURE

BOL

MOL

EOL

158

0

100

200

300

400

500

600

700

0 100 200 300 400 500 600 700

P
R

ES
SU

R
IZ

ER
 S

TE
A

M
TE

M
P

ER
A

TU
R

E
(F

)

Time (Seconds)

LOCA-LOOP Transient PRESSURIZER STEAM TEMPERATURE

Low Power MOL

Low Power BOL

Low Power EOL

Half Power EOL

Half Power MOL

Half Power BOL

Full Power BOL

Full Power MOL

Full Power EOL

635

640

645

650

655

660

0 100 200 300 400 500 600 700

P
R

ES
SU

R
IZ

ER
 S

TE
A

M
 T

EM
P

ER
A

TU
R

E
(F

)

Time (Seconds)

Valve Closure Transient PRESSURIZER STEAM TEMPERATURE

Low Power MOL

Low Power BOL

Low Power EOL

Half Power MOL

Half Power BOL

Half Power EOL

Full Power MOL

Full Power BOL

Full Power EOL

159

Appendix 1.32 Reactor Power (MW)

0

200

400

600

800

1000

1200

1400

1600

0 200 400 600 800 1000 1200 1400

R
e

ac
to

r
P

o
w

e
r

(M
W

)

Time (Seconds)

Normal Operations POWER GENERATED(MW)

Low Power MOL

Low Power BOL

Low Power EOL

Half Power BOL

Half Power MOL

Half Power EOL

Full Power BOL

Full Power MOL

Full Power EOL

-200

0

200

400

600

800

1000

1200

1400

1600

1800

0 100 200 300 400 500 600 700

P
R

ES
SU

R
IZ

ER
 S

TE
A

M
TE

M
P

ER
A

TU
R

E
(M

W
e

)

Time (Seconds)

Feedwater Pump Trip Transient POWER GENERATED

Low Power MOL

Low Power BOL

Low Power EOL

Half Power EOL

Half Power MOL

Half Power BOL

Full Power BOL

Full Power MOL

Full Power EOL

0

200

400

600

800

1000

1200

1400

1600

0 200 400 600 800 1000 1200

G
EN

ER
A

TE
D

 P
O

W
ER

 (
M

W
)

Time (Seconds)

Rapid Power Change Transient GENERATED POWER

BOL

MOL

EOL

160

0

200

400

600

800

1000

1200

1400

1600

0 100 200 300 400 500 600 700

P
R

ES
SU

R
IZ

ER
 S

TE
A

M
TE

M
P

ER
A

TU
R

E
(M

W
e

)

Time (Seconds)

LOCA-LOOP Transient POWER GENERATED

Low Power MOL

Low Power BOL

Low Power EOL

Half Power EOL

Half Power MOL

Half Power BOL

Full Power BOL

Full Power MOL

-200

0

200

400

600

800

1000

1200

1400

1600

0 100 200 300 400 500 600 700P
R

ES
SU

R
IZ

ER
 S

TE
A

M
 G

EN
ER

A
TE

D

P
O

W
ER

 (
M

W
)

Time (Seconds)

Valve Closure Transient GENERATED POWER

Low Power MOL

Low Power BOL

Low Power EOL

Half Power MOL

Half Power BOL

Half Power EOL

Full Power MOL

Full Power BOL

Full Power EOL

161

Appendix 2.1 Results from Second Run of Machine Learning Models

Overall Validation Measurements Individual Transient Accuracies

Accuracy Precision Recall F1 Score

Normal

Operation

Transient

Feed

Water

Pump

Trip

LOCA

+

LOOP

Valve

Closure

Rapid

Power

Change

K-Nearest

Neighbors

98.34% 97.94%, 98.09% 98.00% 100% 94.78% 98.11% 98.43% 98.80%

Bernoulli

Naïve Bayes

98.06%, 97.87%, 97.32% 97.53%. 100% 93.95% 100% 99.88% 93.72%

Gaussian

Naïve Bayes

98.21% 98.03% 97.65% 97.82% 100% 96.71% 99.74% 96.71 95.21%

Multinomial

Naïve Bayes

96.64%. 96.29%, 95.60% 95.74%. 100% 89.11% 100% 100% 86.11%

Logistic

Regression

98.67% 98.54% 98.15% 98.33% 100% 97.58% 99.77% 97.90% 95.21%

Decision Tree

Analysis

98.49% 98.19% 98.28% 98.24% 100% 97.21% 97.55% 97.15% 99.27%

Appendix 2.2 Results from Third Run of Machine Learning Models

Overall Validation Measurements Individual Transient Accuracies

Accuracy Precision Recall F1 Score

Normal

Operation

Transient

Feed

Water

Pump

Trip

LOCA

+

LOOP

Valve

Closure

Rapid

Power

Change

K-Nearest

Neighbors

98.51% 98.21%, 98.35% 98.27% 100% 97.98% 97.93% 97.94% 96.29%

Bernoulli

Naïve Bayes

97.74%, 97.51%, 96.75% 97.03%. 99.98% 94.17% 100% 99.92% 88.08%

Gaussian

Naïve Bayes

97.41% 97.15% 96.75% 96.93% 100% 93.33% 100% 94.70% 94.75%

Multinomial

Naïve Bayes

97.11%. 96.80%, 96.62% 96.62%. 100% 87.08% 100% 99.51% 95.29%

Logistic

Regression

98.60% 98.41% 98.09% 98.24% 100% 96.80% 99.81% 98.07% 95.44%

Decision Tree

Analysis

98.34% 97.94% 98.15% 98.04% 100% 94.90% 97.78% 98.22% 99.53%

