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Abstract  

  This thesis explores the use of machine learning in identifying nuclear reactor transients.  

Models were produced using six supervised learning techniques. Due to the nature of nuclear 

power plants, synthetic data was gathered using a reactor simulator. Data was collected on four 

different transients and on normal operations. Transients were examined using a combination of 

core life and power output. The Python TPOT package was used to preprocess data, as well as 

build and validate models. The results of the test showed that the decision tree model produced 

the best results with an accuracy of 98.6%, as well as high scores on the other validation 

measurements. The other models also performed well with scores in the mid-90s. These high 

results show that machine learning has potential to be a tool to assist reactor operators in 

diagnosing transients earlier and more accurately and could aid in accident mitigation and 

prevention.  
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Introduction 

Artificial Intelligence (AI) and other similar concepts are a popular area of research in the 

2010’s. Private industries and governments are looking at using AI to better predict market 

conditions, equipment status, preventive maintenance and even increase and improve automation 

processes. An example of this would be Coca-Cola‘s use of AI in product development and 

marketing. This AI collects data from soft drink fountains that allow the user to mix a 

customized drink. This data is then used to determine which mixes may make successful 

products at a retail store [1]. Machine learning is a part of AI that has recently begun to be 

explored, improved and implemented in various fields including the nuclear industry. 

 The purpose of this paper is to explore the ability of machine learning algorithms to 

identify transient events occurring within a nuclear reactor.  In order to perform this experiment 

it was necessary to gather nuclear reactor data to use in creating machine learning models. Due 

to the extremely high cost of nuclear reactors, as well as the possible serious health and 

environmental consequences of a nuclear power plant accident, it is impossible to stage real-life 

situations where an actual nuclear reactor under goes serious transient events or accident 

conditions that could be used to gather data. Instead, a reactor simulator will be used in order to 

gather the synthetic data needed to apply the machine learning algorithms. Once the data is 

gathered, it will be necessary to modify and format the data in a form where the machine 

learning algorithms can understand and interpret it. This will be done using data science 

packages such as Pandas and NumPy within the Python programming language. Once the data 

has been properly formatted the data will be applied using machine learning algorithms within 

two python machine learning packages: TPOT and scikit-learn. This will produce several 
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different machine learning models. Finally, each machine learning model created will then be 

validated using measurements such as accuracy and precision. 

Literature Review  

Data is becoming more and more central in many industries across the world. Retailers 

are using data to better plan promotions and target customers, i.e., marketing efforts are more 

focused on consumer data for targeting key demographics, etc. One industry that has recently 

begun using data to affect operations is the nuclear industry. Many of these efforts have focused 

on the use of AI and machine learning to perform a variety of functions within the industry. 

 One of the most promising data applications within the nuclear industry is the use of AI 

and machine learning for preventive maintenance. Shutdowns in the nuclear industry can be 

extremely expensive and time consuming. An unexpended failure can lead to several months of 

ceased operations, but the hope is that with the use of AI, problems can be found ahead of time, 

leading to quicker repair times and shorter down times. One such effort to develop this ability is 

happening at Purdue University. Researchers at the university have proposed using a "deep 

learning" framework, a form of AI, to identify cracks within a nuclear reactor [2]. The AI is 

"trained" using data from over 300,000 crack and non-crack patches. Then, the AI uses video 

images from within the reactor itself to determine if there is a crack forming or not. According to 

Dr. Mohammad Jahanshahi, of Purdue, the AI was able to identify cracks correctly 98.3% of the 

time, a much higher accuracy than other techniques that are currently in use. The full paper on 

this has been published by IEEE [3].  Figure 1 shows an example of an image examined by the 

AI.  
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Figure 1: Photo of Crack Analysis Using Machine Learning at Purdue [2] 
 

Other applications for the use of AI and machine learning are being explored across the 

country. In June of 2018, North Carolina State University (NCSU) was awarded a $3.4 million 

grant by the United State Department of Energy (DOE) to develop a control system that will rely 

more on AI. The plan is for AI to use machine learning to analyze the data that is collected from 

the reactor and alert the operator. It should be stressed that the operator will also have control of 

reactor functions. TerraPower is hoping to collaborate with NCSU to determine the best areas to 

place many of the sensors and instruments where they will be most effective to gather data [4]. 

DOE has listed cost reduction through less staff, as well as better training to be goals for this 

project [5]. Another project in progress involves collaboration between the University of 

Wisconsin-Madison and Oak Ridge National Laboratory. A machine learning program has been 

designed to analyze and detect damage to materials caused by radiation. Figure 2 shows some 

examples of the classifications identified during this experiment [6]. 
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Figure 2: Identification of Material Radiation Damage Using Machine Learning at 

University of Wisconsin-Madison [6] 

One hurdle that these techniques face is the gathering of data. The majority of nuclear 

power plants in the Unites States predate the introduction of digital technology. As such, the 

digitalization of existing nuclear power plants is essential in order to properly gather and store 

the data that will be needed to use machine learning and other AI techniques. To this end, groups 

such as Nuclear Energy Institute (NEI) have been promoting digitalization and other efficiency 

improvement measures. The greatest incentive to promote the implementation of digital 

equipment and use of AI is the increased boost in profit margin. A study done by McKinsey 

Global Institute found that industries that implemented the use of these technologies, either 

proactively or partially, saw an increasing profit margin. Figure 3 shows a graphical comparison 

from the study [7].  
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Figure 3: Profit Margin Comparison of Industries that have adopted AI [7] 
 

 Companies such as General Electric (GE) have also begun looking into the use of 

machine learning and AI for their systems. One of the applications of AI and machine learning 

that GE is looking at is the use of data to better inform management. GE hopes that techniques 

will result in better information and as a result, better managerial decisions will be made. This 

will lead to increased performance and better cost efficiency [8]. 
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Background 

Machine Learning  

 Machine learning is an area of study in the field of computer science. The purpose of 

machine learning is to teach computers to make predictions based on patterns and data that are 

provided to the computer. This is a critical part of the AI system as it controls the decision-

making aspect of a machine. There are many different methods that can be used in machine 

learning to make predictions. These methods are known as machine learning algorithms or 

models.  

Machine learning systems have several advantages over preprogrammed computer 

systems. Where a preprogrammed system only performs the functions that were initially put in 

the system, machine learning systems can make changes and adapt to outside changes by 

analyzing new data. Machine learning can also be used to find relationships between different 

types of data as part of a data mining process. This does introduce the possibility of mistakes or 

errors occurring [9]. Today, a variety of industries make use of machine learning in their 

business model. These include: marketing, finance, insurance, casinos, retail, manufacturing, 

research & development, science, transportation, politics, etc.  As the world becomes more data 

driven, machine learning will continue to be used in more and more applications.  

Supervised Learning 

 Machine learning algorithms are built using a variety of methods. This project focused on 

building models using the supervised learning technique. Supervised learning is a form of 

learning by example. This method uses data that already has an outcome associated with it. This 
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is usually in the form of an output or label. An example of this would be a dataset that 

categorizes a set of features as good, fair, poor, etc.  A supervised learning model will develop 

criteria to make classifications based on the provided labels. This is sometimes referred to as the 

supervisor. These criteria can be created in a variety of ways, such as using probabilities derived 

from the training features [10]. An advantage of supervised learning is that it allows the user to 

specify the desired output labels and the number of labels to train the model on. It should be 

noted that supervised models have an increased tendency of model overfitting and training these 

models can be computationally expensive in some cases.   

Python Packages  

NumPy  

 NumPy is a Python library that has been designed with several different applications. 

These include: the ability to integrate C/C++ and FORTRAN code into Python, preform linear 

algebra functions and easy integration with datasets. NumPy was developed by Dr. Travis 

Oliphant in 2005 as a successor to Numeric and Numarray. NumPy development is done through 

the NumFocus Foundation, a nonprofit organization. Today, NumPy is used by many companies 

and organizations, such as Netflix and NASA [11]. NumPy was designed with scientific 

computing in mind, but the package also has the ability to help with database construction and 

manipulation. NumPy is a free open-source package and is included standard in many Python 

distributions such as Cygwin and Anaconda or the library can be downloaded using Pip. Many of 

the packages used in this project, such as TPOT and Pandas, use NumPy arrays to perform 

numerical operations. At the time of this project, the most current version of NumPy was version 



  

8 
 

1.17.0, which was released in May of 2019.  NumPy is able to operate in a Windows, Linux or 

Mac OS environments [12]. 

 One of the most important features in the NumPy library is the ability to create NumPy 

arrays also referred to as ndarrays. A NumPy array is a container that allows for the storage 

of several different elements. NumPy arrays, while similar to a Python list, have a few key 

differences. The first is the ability to operate quicker and take up less memory than a Python list. 

This is due to better integration with C/C++ which helps mitigate the loss of efficiency that 

higher-level and easier-to-use languages typically have.  Also, NumPy has been optimized for 

linear algebra operations. NumPy arrays are considered homogenous, meaning that all data is the 

same size and is processed the same way, regardless of any differences between elements. These 

elements are described by a dtype object that can be built using different data types. Every 

NumPy array has a dtype object associated with it. This can tell the user the descriptive 

information about the NumPy array, such as type, memory usage, etc. Elements used in code are 

taken from the array using indexing. The index represents an object scaler which was part of the 

NumPy development.  

Pandas 

 Pandas is a free, open-source Python package, which aims to help users with data 

manipulation, modification and analysis. The package can be downloaded on most Python 

distributions, such as Anaconda or via Pip. The package was initially developed by Wes 

McKinney in 2008 in response to a need for better data tools and development is ongoing as of 

2019. The project receives funding and support from the University of Paris Saclay Center for 

Data Science, as well as from Two Sigma. Pandas requires Python version 2.7 or greater but 
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support for all Python 2 versions will be dropped on January 1
st
 of 2020. The most current 

version, as of May 2019, is version 0.24.1, released in February of 2019. Pandas only requires 

the NumPy package to operate properly. Pandas is designed to work with Windows, Mac OS and 

Linux environments [14].  

 The goal of the Pandas project is to provide data tools to users in Python. In the past, the 

adaptation of Python in data science and statistics had been slow as users had preferred to use 

tools such as MATLAB and R. Pandas has the ability to read and convert datasets, typically in a 

CSV format, into a structured dataset known as a Pandas DataFrame.  A Pandas DataFrame 

is a 2-dimensional Python list that allows users to store values in a tabular form. An example of a 

DataFrame is shown in Figure 4. Like most Python packages, Pandas is considered high-level 

and there are tradeoffs in efficiency for ease-of-use. Cython was used to mitigate this issue. 

Pandas has the ability to help the user identify and manage missing values, a common issue in 

data science.  The package also has the ability to group or sort data by specified user input, such 

as individual values within the dataset or data types like floats or strings. Other useful Pandas 

functions include the ability to change large groups of data, perform statistical analysis such as 

mean, median and standard deviations over the dataset, as well as add, remove and combine parts 

of different datasets [15].  
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Figure 4: Example of a DataFrame From Project 

Scikit-learn 

 This project makes great use of the scikit-learn Python package. The package is a free, 

open-source package that can be downloaded through Pip or a Python distribution, such as 

Anaconda. Scikit-learn was developed by Dr. David Cournapeau in 2007 as a summer project for 

a Google Summer of Code Project. The purpose behind the project was to design a system that 

could run complicated machine learning algorithms using Python and maintain a user-friendly 

intuitive interface. The first public release of scikit-learn was released on February 1
st
, 2010 and 

the French Institute for Research in Computer Science and Automation (INRIA) began heading 

the project. Today, scikit-learn development and research is funded by universities, such as the 

New York University, University of Sydney, and Columbia University, among others [16]. Many 

companies use scikit-learn as part of their information system operations, including: JP Morgan, 

Spotify, Booking.com and Change.org. Some of these applications include predicting user’s 

preference in music, credit and market trend analysis, as well as targeting users with more 

customized add-ons and specials [17].  
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 Similar to many other Python packages, scikit-learn makes use of many modern C++ 

libraries using Cython, a programming language designed to help bridge C and Python code. 

Scikit-learn has been designed to be compatible in both, a Windows or Linux environment. The 

latest version of scikit-learn 0.21 requires Python version 3.5 or higher. Scikit-learn relies on 

three Python packages to run, NumPy, SciPy and Joblib, which allows the package to be easily 

distributed and used. While not required, Pandas is needed in order to take full advantage of the 

abilities of the scikit-learn package. In the past, the package has focused on remaining easy to 

use and efficient, rather than adding new features. Though, recently scikit-learn has been updated 

with new features that assist in data exploration using Pandas. This includes better ways of 

dealing with missing values with the SimpleImputer function. Since Python is a high-level 

programming language, there are tradeoffs in code efficiency for ease of use. Steps have been 

taken in order to manage and mitigate most of these issues: the specification of objects through 

interface rather than inheritance, the use of Cython to increase the efficiency of using C++ 

libraries within Python, and others [18].  

 Scikit-learn has the ability to perform several different types of machine learning 

algorithms: supervised learning methods, such as classification and regression, as well as 

unsupervised methods, like k-means clustering. Currently, scikit-learn has functions to perform 

17 different types of supervised machine learning methods, as well as 9 different unsupervised 

methods. The package has been designed with functions that help with data preparation, such as 

splitting datasets for validation purposes. Scikit-learn also has several functions for data 

preprocessing, such as the standard scaler function and model validation and scoring through 

measurements, such as accuracy, precision, and goodness of fit. Finally, scikit-learn can make 
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use of Python’s Matplotlib package in order to help users visualize the results of the models 

generated. This includes clustering graphs, confusion matrices, etc. [19] 

TPOT 

 As is the trend with most industries, the idea of implementing automated processes to 

improve ease-of-use, results and performance is occurring with machine learning. This is 

sometimes referred to as AutoML. New packages and software have been developed to automate 

areas of machine learning that are complex and/or time consuming, such as data preprocessing, 

feature selection and model selection. While this simplifies the process, it can be 

computationally expensive. Python packages that are currently available include: Auto-

WEKA/auto-sklearn, H2O and TPOT. Google is also developing its own cloud-based AutoML 

software, called Cloud AutoML, to try and open machine learning to non-data-scientists. 

Services available include photo and video analysis/modeling, language translation and data 

analysis [20].  

 The supervised learning models for this project were created using the Tree-based 

Pipeline Optimization Tool (TPOT) package in Python.  TPOT was chosen for this project 

because it is one of the more mature AutoML Python packages available. Also, it is simple to use 

and can evaluate a number of different machine learning models. TPOT was developed by the 

Computational Genetics Lab at the University of Pennsylvania with support from the National 

Institute of Health. Development began in 2011 and the package continues to be developed by 

Epistasis Lab at the University of Pennsylvania. TPOT is open-source and is available for 

download from the lab’s GitHub repository for free. TPOT was developed in response to the 

growing demand and interest in machine learning applications. The process of creating a 
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machine learning model can be complex and time consuming, even if just limited to supervised 

learning. There are multiple models that can be created, as well as many different methods of 

data preprocessing. It can be difficult for even an experienced data scientist to develop the best 

possible model. The purpose of the TPOT package is to simplify and automate parts of the 

machine learning process, while providing better results due to improved data preprocessing and 

the use of multiple different supervised learning methods [21].  

 TPOT is designed to make use of the scikit-learn Python package for both, data 

preprocessing and model construction. As such, the user is required to have the scikit-learn 

package installed and imported into the program. TPOT also makes use of NumPy arrays and 

Pandas DataFrames and these packages are required as well. The DEAP, SciPy, tqdm, stopit, 

and update_checker packages are also needed. These packages are all available for free via 

download and can be configured with the Anaconda Python distribution using Pip. Other Python 

distributions can be used if the pywin32 module is used. It should be noted that Epistasis Lab 

strongly recommends that Python 3 be used rather than Python 2.  

TPOT is designed to aid the user in data preparation for supervised learning. This 

includes automating feature preprocessing, selection and construction. Doing so can dramatically 

simplify the process of preparing data for use in machine learning algorithms and these steps can 

be situational, complex and time consuming. It is important to note that the TPOT package 

requires the user to do data examination on the data to be used in the supervised learning process. 

The package cannot account for missing values, qualitative data and incorrectly formatted 

datasets. TPOT uses 9 different preprocessing methods from the scikit-learn Python package: 

Binarization, Feature Agglomeration, Maximal Absolute Scaling, Minimum-Maximum Scaling, 

Normalization, Principal Component Analysis, Robust Scaling, Standard Scaling and RBF 
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kernel sampling. More detail on these methods will be provided in later sections. These methods 

are all implemented within TPOT using scikit-learn functions.  

TABLE 1: TPOT Data Preprocessing Feature Selection/Feature Selection Method  

Binarization Feature Agglomeration Maximal Absolute Scaling 

Minimum-Maximum 

Scaling 

Normalization Principal Component 

Analysis,  

Robust Scaling Standard Scaling  RBF Kernel Sampling. 

Select Family Wise Error Select Percentile Variance Threshold 

Selection 

 

Dictionaries can be created so the user can specify which preprocessing techniques are 

implemented. In addition to data preprocessing, TPOT makes use of 3 feature selection methods: 

Select Family Wise Error, Select Percentile and Variance Threshold Selection.  These methods 

also use scikit-learn functions run through TPOT and the user can define which methods will be 

applied. Again, more detail on these selection methods will be provided in later sections. The 

entire process of data preprocessing and selection is known as a pipeline. A visualization of a 

typical TPOT pipeline from the paper TPOT: A Tree-based Pipeline Optimization Tool for 

Automating Machine Learning is shown in Figure 5. 
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 Figure 5: Example of a Typical TPOT Pipeline[22] 

Once the data preprocessing has been completed, TPOT then creates and test several 

different machine learning models. TPOT can perform either a regression analysis, where the 

user is looking to determine some numerical value using a set of features, or a classification 

analysis where features are used to identify some value which represents an object, scenario, 

event, etc. For the purposes of this project the classification method was used. The TPOT 

Classifier creates and tests models using 6 different techniques: Gaussian naïve, Bayes, Bernoulli 

naïve Bayes, multinomial naïve Bayes, k-nearest neighbors, decision tree classification and 

logistic regression.  

These methods all use the functions from the scikit-learn package. The user is able to use a 

TPOT dictionary to specify which methods should be tested when creating the model.  

TABLE 2: TPOT Machine  Learning Models  

Bernoulli Naïve Bayes Multinomial Naïve Bayes Gaussian Naïve Bayes  

K-Nearest Neighbors Decision Tree Classification  Logistic Regression. 
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The TPOT Classifier also allows the user to define the parameters of the model creation. 

One important parameter is the number of generations that will be used in the model creation. 

This is the number of iterations that will be used in the optimization process. Typically, the more 

generations run, the better the results will be but the process will take longer. Another important 

parameter that can be specified is the population size used. This number is the number of 

individual pipelines retained in each generation; again a larger population produces better results 

but increases the time needed to complete the model. Other parameters that the user can choose 

include the random number seed, the TPOT dictionary used in the model creation, and the 

verbosity, which is the amount of information shown during the model creation [22]. This project 

used: 100 generations, a population size of 100, 10 cross-fold validations and a random state of 

5.  The TPOT classification code used for this project is shown in Figure 6: 

Once the parameters of the TPOT Classifier have been set by the user, the program will 

then take the test and train datasets and determine which model is optimal. This process is time 

consuming and can take hours to days to run depending on the parameters and dictionaries used. 

TPOT will output the type of model that is optimal, as well as a single validation measurement. 

By default, TPOT will provide the accuracy of the optimal model, but other forms of validation 

measurement, such as precision and recall, can be displayed using the sckit-learn functions. The 

optimal results can be stored for further use in the program and optimal pipeline can be exported 

for use at a later time. It should be noted that the user will need to ensure that the correct file 

name is used to import the data in the exported pipeline, as the exported file will only use a 

Figure 6: TPOT Classifier Used for Project  
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placeholder for this. Also, depending on data configuration some slight modifications to the 

optimal model code may be needed to ensure that the data is properly read by the exported file.  

Figure 7, from the TPOT documentation shows the entire process the package applies in creating 

a model.  

 

Figure 7: TPOT Machine Learning Process from TPOT Documentation [21] 
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Data Science Methods Used 

Data Preprocessing  

Binarization 

 Binarization is the process of taking numerical data and converting it into binary\boolean 

form. In machine learning, this method is most commonly used in preparing data for use with the 

Bernoulli naïve Bayes method, as this method requires data to be distributed in a binary form. 

There are other cases where this method could be applied. Binarization of data is particularly 

important in training image analyzers, where pixels are assigned a true or false value, based on 

the characteristics of the pixel [23].  

 Binarization relies on determining a threshold for the data that is to be converted. This 

threshold is the standard that determines if the data being converted is classified as a 1, a true 

value, or a 0, a false value. The threshold value is dependent on the data and context of the 

analysis being performed. The scikit-learn has a preprocessing method .Binarizer(). This 

method will convert the user-specified data into binary form. By default, the threshold value is 

set to 0. As such, a negative or 0 value will be assigned a 0 and a positive value will be assigned 

a 1. The user is able to change this threshold so that the method better fits the analysis. Figure 8, 

from the scikit-learn documentation, shows an example of the binarization method [24]. 
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Figure 8: Binarization Example Using Scikit-learn 

 

Standard Scaling 

 The final data preprocess technique that was used in the TPOT dictionary for this project 

was Standard Scaling. Standard Scaling removes the mean and then scales the dataset to its unit 

variance. The scaling of the individual data points, z, is given by the following equation: 

𝑧 =
𝑋 − µ

𝑆
 

Where:  

µ is the average of the dataset  

S is the standard deviation of the dataset  

Standard Scaling is necessary for many machine learning algorithms that require centered 

data. Also, this prevents bias from features that are of different type. The scikit-learn Standard 

Scaling function .StandardScaler(). Figure 9 and 10 show a comparison of unscaled and 

standard scaled data.   
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Figure 9: Comparison of Standard Scaled Data and Unscaled Data  

 

Figure 10: Example of Standard Scaled Data 
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Robust Scaler  

 The Robust Scaler method scales features using statistical methods. These methods are 

the unit variance or the standard deviation of the feature being scaled. These methods are 

intended to help deal with outlying data points to prevent machine learning models from 

becoming skewed. This is done by removing and storing the median of the feature, and then the 

scaling range is calculated using 1
st
 and 3

rd
 quartile ranges as bounds by default. The user is able 

to adjust these ranges to better meet the needs of the dataset. The final value of the scaled data 

point is calculated using the same equation as the Minimum Maximum Scaler, just with the 

chosen statistic, rather than the actual value. Figure 11, shows a comparison of data that is scaled 

using the Robust Scaling method and data that is unscaled.  Figure 12 shows the output of the 

scaling code  

The scikit-learn function for robust scaling is .RobustScaler(). The user can 

adjust the quartile range for the scaler and control if the data is centered prior to scaling. By 

default and for this project, the .RobustScaler() method will use the unit variance. The 

following equation is used for the .RobustScaler() method: 

𝑆𝑐𝑎𝑙𝑒𝑑 𝑥𝑖 =
𝑥𝑖 − 1𝑠𝑡 𝑞𝑢𝑎𝑡𝑟𝑡𝑖𝑙𝑒 𝑟𝑎𝑛𝑔𝑒(𝑥)

3𝑟𝑑 𝑞𝑢𝑎𝑟𝑡𝑖𝑙𝑒 𝑟𝑎𝑛𝑔𝑒(𝑥) − 1𝑠𝑡 𝑞𝑢𝑎𝑟𝑡𝑖𝑙𝑒 𝑟𝑎𝑛𝑔𝑒(𝑥) 
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Figure 11: Comparison of Robust Scaled Data and Unscaled Data 

 

 

Figure 12: Example of Robust Scaled Data  
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Maximum Absolute Value Scaler  

 The Maximum Absolute Value Scaler method will scale and translate the values in a 

dataset so the max value in that set is 1.  Scaling in this way helps manage bias that results if the 

features are of different measurements, such as temperature and pressure. One issue that needs to 

be considered is that this scaling method is sensitive to outliers and failure to properly deal with 

this may result in skewed machine learning models. The scikit-learn method, 

.MaxAbsScaler() will ignore missing values and they are not changed during this process. 

Figure 13 and 14 show a comparison of data that has not been scaled and data that has been 

scaled using the Maximum Absolute Value Scaler method [25]. 

  

Figure 13: Comparison of Maximum Absolute Value Scaled Data & Unscaled Data 
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Figure 14: Example of Data Scaled by Maximum Absolute Value Method 

Minimum Maximum Scaler  

 . The Minimum Maximum Scaling method allows the user to scale the data to a particular 

range. This range can be specified by the user to better fit the needs of the analysis. This project 

used the default range of 0 to 1. Each feature is scaled individually using the following 

equations:  

𝑋(𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑) =
𝑋 − 𝑋(𝑀𝑖𝑛𝑖𝑚𝑢𝑚)

𝑋(𝑀𝑎𝑥𝑖𝑚𝑢𝑚) − 𝑋(𝑀𝑖𝑛𝑖𝑚𝑢𝑚)
 

𝑋(𝑆𝑐𝑎𝑙𝑒𝑑) = 𝑋(𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑) ∗ (𝑀𝑎𝑥𝑖𝑚𝑢𝑚 𝐵𝑜𝑢𝑛𝑑 − 𝑀𝑖𝑛𝑖𝑚𝑢𝑚 𝐵𝑜𝑢𝑛𝑑) + 𝑀𝑖𝑛𝑖𝑚𝑢𝑚 𝐵𝑜𝑢𝑛𝑑  

Where: 

X is the specific point in the dataset being scaled 

Maximum Bound is the highest scaled value 

Minimum Bound is the lowest scaled value  
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 This method, like Maximum Absolute Scaler method, is useful to scale features that of 

different measurements to reduce feature bias in the model. This method is also sensitive to the 

presence of outliers which could lead to skewed machine learning models if not dealt with 

properly. Also, this method is useful for the multinomial naïve Bayes algorithm, as it scales 

negative values to values between 0 and 1, which are compatible with the algorithm. The scikit-

learn method for the Minimum Maximum Scaler is .MinMaxScaler(). This method will 

ignore and leave untreated missing values from a dataset. Figure 15 shows a comparison of data 

that has been scaled using the .MinMaxScaler() method and unscaled data. Figure 16 shows 

the code output using the .MinMaxScaler() method.  

 

Figure 15: Comparison of Unscaled Data and Min Max Scaled Data 
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Figure 16: Example of Min Max Scaled Data 

Normalization  

 The normalization method samples each feature independently to the unit norm. The 

scikit-learn method for normalization is .Normalizer(). The user is able to specify what 

type of regularization is used for the normalization, either L1 or L2. L1 is the sum of the 

regularization weights and L2 is the sum of the squares of the regularization weights. L1 

typically is more robust and less efficient. L2 while less robust, will always be more efficient 

than L1.  L1 and L2 are often referred to as least absolute deviations and least squares error 

respectively. The default setting for this method is L2. Normalization is done using the following 

equation:  

𝐿2 𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 𝑉𝑎𝑙𝑢𝑒 𝑜𝑓 𝑋 =
𝑋 

 √∑ 𝑋𝑖
2𝑛

𝑖=1  

 

Normalizing data can help make the dataset less sensitive to the magnitude of the features 

and prevent bias. Also, data normalization is needed if a method such as Gaussian naïve Bayes is 

used, as these methods depend on data that is distributed normally. Finally, normalization can 



  

27 
 

help with the convergence of the machine learning algorithm. Figure 17 shows a comparison of 

normalized data and unscaled data.  Figure 18 shows the output of the normalization method.  

 

Figure 17: Comparison of Unscaled Data and Normalized Data 

 



  

28 
 

 

Figure 18: Example Normalized Preprocessed Data 

Radial Basis Function Sampling  

 Radial Basis Function (RBF) sampling is a form of Random Fourier Features, more 

commonly referred to as Random Kitchen Sinks.  This technique is intended to replace weight 

minimization with randomization in order to improve the classification. The RBF sampler maps 

a kernel using a Monte Carlo approximation. This is used in kernel-based machine learning 

algorithms, such as k-nearest neighbors and k-means, but is more widely used in neural 

networking and other support vector learning applications. RBF sampling is computationally less 

expensive than other kernel mapping techniques, such as the Nystroem method, but can be less 

accurate. Due to this, RBF Sampling is better used in cases where there are clearer differences 

between classes [26].  

 In scikit-learn, the RBF Sampling function is .RBFSampler(). The user can specify 

the parameters of the kernel, gamma, as well as the dimensionality of the components.  As with 

other Monte Carlo approximations, the more components used the better the accuracy, but more 

computation time is needed. A random number seed may be specified in order to replicate the 
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results. Once the RBFSampler parameters are set, the data must be fit to perform the Monte 

Carlo analysis and then transformed to model the kernel map.  

Feature Agglomeration  

 Feature Agglomeration is a form a Hierarchical clustering, sometimes referred to as 

agglomerative clustering. This process takes in the data and groups similar data into a predefined 

number of groups or clusters. This technique is used as the basis for some unsupervised learning 

algorithms, but it has applications in supervised methods as well. In supervised learning this 

method can be used to aid in feature reduction for complex datasets to help deal with models that 

are overfit [27].  

 The scikit-learn method for Feature Agglomeration, .FeatureAllgomeration(), 

merges features together in order to reduce the number features used in a machine learning 

algorithm. The user has the ability to enter several parameters to better tune the reductions to the 

needs of the analysis. The first of these is the number of clusters that the methods will create. 

The default for this method is 2, as this is typically used to determine if it is appropriate to merge 

2 features together to reduce overfit.  Another key parameter for this method is the ability to 

change the linkage criteria of the method. This is called affinity. The linkage criteria available 

are: ward, single, complete and average. The ward criterion looks to minimize the variance 

between the features being merged. The average criterion uses the average distance of the 

features for linkage. The single and complete criteria use the minimum and maximum distances 

respectively between the features for linkage. By default and for this project, the ward criterion 

was used. Finally, the user can define the affinity, the type of distance, applied to the criterion of 

the method. This is the metric that is used for linkage calculations. The options for affinity 
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include: euclidean, l1,l2, manhattan, cosine or precomputed.  Since this project uses the ward 

criteria the euclidean metric must be used [28].  

Principal Component Analysis  

 Principal Component Analysis (PCA) is a statistics-based technique that is designed to 

reduce the number of dimensions a dataset contains. PCA utilizes orthogonal transformations to 

combine correlated variables, using basic statistics and linear algebra techniques to identify 

patterns within data rather than using visualization. Once patterns are found within a dataset, it is 

then possible to reduce the number of features in that dataset based on the PCA results. This 

helps reduce model overfit and produces better machine learning models. PCA is also used in 

data compression applications as the original data can be recovered later if needed.    

 PCA works by first removing the mean of each of the datasets features by subtracting the 

mean value of each feature by the individual points that correspond to that feature. A covariance 

matrix is then created; the size of this square matrix is equal to the number of features present in 

the dataset. The eigenvectors and eigenvalues of the covariance matrix are then calculated, the 

length of this eigenvectors is equal to 1. The eigenvalues are then sorted from highest to lowest, 

which shows the significance of each component. Eigenvalues with small significance can be 

removed and while some information is lost, that information is small and has less impact on the 

model while reducing model over fit. Using the eigenvalues that were kept, a new feature matrix 

is created. This matrix is then transposed and multiplied by the transpose of the mean adjusted 

data. This will give the new dataset with only the higher significant features left [29]. The user 

typically specifies the amount of variance that is acceptable to lose in the reduction. This 

technique is also useful for reducing statistical noise.   
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 The scikit-learn function for PCA is .PCA(). The user is able to specify the amount of 

explained variance acceptable to lose for the creation of the covariance matrix, as well as specify 

and empirical mean, if needed. The function will detect the number of features in the dataset. It 

should be noted that PCA requires enough memory to fit all of the data present in the dataset. 

This can be a problem for very large datasets. In these cases PCA can be performed in 

increments using the IncrementalPCA function [30].  

Feature Selectors 

 As mentioned before, model overfit due to an abundance of features is a major 

consideration when creating a machine learning model. An overfit model may be able to predict 

accurately given the general case, but once small variations begin to occur, the model 

performance may suffer. In addition to using PCA, three different feature selection methods were 

implemented into the TPOT dictionary for this project to improve the model: Family Wise Error 

Rate (FWER), Select Percentile and Variance Threshold Selection. This attempts to remove 

features that are non-informative from the model. 

Family Wise Error Feature Rate Selection   

The FWER method is a univariate statistical approach used in hypothesis testing. FWER 

is the probability of at least 1 false positive, Type 1 error, in a group of hypothesis test. It is 

calculated by taking the probability value (p-value) for a set of tests and rejecting hypothesis that 

fail a specified test. A common test for this rejection is the Bonferroni test [31]. This test rejects 

p-values based on the following expression: 

𝑅𝑒𝑗𝑒𝑐𝑡 𝑖𝑓 𝑝𝑖  ≥
𝛼

ℎ
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Where:  

α is the specified criteria for the hypothesis test  

h is the number of hypothesis tested. 

 The scikit-learn method for FWER is .SelectFwe. This method uses a statistical 

approach in order to calculate the p-value such as Chi-Square or F-value. The F-value is used by 

default. Also, an alpha may be specified by the use. The default alpha is 0.05.  Figure 19 and 20 

show an FWER example from the scikit-learn documentation [32].  

 This example loads the wine data from the scikit-learn repository. This set has 178 

samples and 13 features. The FWER method used Chi-Squared to find p-values and a 0.01 alpha 

was selected to for the evaluation criteria. 5 features from the dataset failed the FWER test and 

were removed from the dataset.  

 

 
Figure 19: Example Code of Family Wise Error Rate Feature Selection 

 

Figure 20: Output of Family Wise Error Rate Feature Selection Example 



  

33 
 

Select Percentile  

 The select percentile method, similar to FWER, is another univariate selection method 

that uses a statistical test to determine which features should be removed from the dataset. The 

key difference between the select percentile method and FWER is that instead of specifying an 

alpha for the p-value rejection criteria, the user inputs a percentile value and p-values are either 

rejected or accepted based on the scores when compared to that percentile.  

 The scikit-learn function for the select percentile technique is .SelectPercentile. 

Similar to the FWER function, the user selects the method for determining the p-values of the 

desired feature and the percentile for the p-value evaluation. This project uses the default F-value 

method for determining the p-values and a 10 percentile for the evaluation criteria.  

Variance Threshold Selection  

 The variance threshold technique examines the features and does not factor the model 

outcomes, unlike univariate methods such as FWER. As such, variance threshold is an ideal 

feature selection method for unsupervised learning. Variance threshold selection calculates the 

variance of the individual features and removes those that do not meet the user specified 

requirements.  

 The scikit-learn function for variance threshold is .VarianceThreshold(). This 

function requires the user inputs a variance for the evaluation criteria. The default value of this is 

0, which removes features that have the same value in all samples. This was the method used for 

this project. Figure 21 from the scikit-learn documentation shows a code example of the 

technique being applied.  
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Figure 21: Example of Variance Threshold Feature Selection  

This example creates a Python list with the 1
st
 and 4

th
 feature, 0 and 3, repeated in each 

row. The default variance of 0 is used for the feature selection. Once the method is applied, the 

repeated features have been removed from the dataset, leaving only the non-zero variance data in 

the set.  
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Machine Learning Classification Models  

Naïve Bayes Classification 

  Naïve Bayes classification is a supervised machine learning algorithm that relies on 

probabilities. This method is based on Bayes’ theorem and assumes statistical independence 

between two data points. Naïve Bayes classification is used in a variety of industries, i.e. the 

medical industry and spam email detection. Due to the probabilistic nature of naïve Bayes 

classification, there are several different models that can be created based on distributions. This 

project uses three different naïve Bayes models: Gaussian, Bernoulli and multinomial. Detailed 

explanations on each will be given below [33].   

Bayes’ Theorem 

 Bayes’ theorem when applied for naïve Bayes classification is given by the following 

equation: 

𝑃(𝑌|𝑋1, … . , 𝑋𝑛) =
𝑃(𝑌) ∗ 𝑃( 𝑋1, … . , 𝑋𝑛| 𝑌)

𝑃(𝑋1, … . , 𝑋𝑛)
 

Where:  

P(Y) represents the probability of event Y occurring 

𝑃(𝑋1, … . , 𝑋𝑛) represents the probability of the X events occurring  

𝑃( 𝑋1, … . , 𝑋𝑛| 𝑌) represents the probability of the X events occurring given Y  

𝑃(𝑌|𝑋1, … . , 𝑋𝑛) represents the probability of event Y occurring given the X events  
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It is important to note that naïve Bayes always assumes statistical independence; as such the 

relationship between the event Y and the X events can be simplified to the following equation: 

𝑃(𝑌|𝑋1, … . , 𝑋𝑛) =  
(𝑃(𝑌) ∏ 𝑃(𝑋𝑖

𝑛
𝑖=1 |𝑌)

𝑃( 𝑋1, … . , 𝑋𝑛| 𝑌) 
  

 Under these assumptions, the Maximum A Posteriori (MAP) technique can be used to 

determine P(Y) and P(Xi|Y). In this case the MAP technique estimates P(Y) based on the mode 

of P(Xi|Y). The key difference between the several naïve Bayes techniques is how P(Xi|Y) is 

calculated.  

Naïve Bayes Advantages & Disadvantages 

 Naïve Bayes classification models have several advantages over other supervised 

classification techniques. The first of these is that the time required to calculate the model is less 

than that of other techniques, such as k-nearest neighbors. Also, naïve Bayes techniques can be 

performed using less test data than other techniques due to the conditional independence 

assumption of the technique. Finally, again due to the conditional independence assumption, the 

technique is less likely to suffer from overfitting due to a high number of features in the dataset. 

This is because feature distributions are decoupled, allowing each feature distribution to be 

estimated as a single distribution.  There are drawbacks to this technique though. Statistical 

independence is not common in the real world. As such, this technique is poor at creating 

estimates and is not a useful tool in regression analysis. Still, real-world applications have proven 

it to be an effective classification tool as the dependencies between features tend to cancel out in 

the classification process [34].  
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Gaussian Naïve Bayes 

 The first naïve Bayes method used for this project was the Gaussian classification 

technique. As the name suggests, this method assumes that the probabilities of features are 

Gaussian, or a standard normal distribution.  Gaussian distributions are symmetrical and only 

have a single peak.  The Gaussian naïve Bayes technique uses the following equation to calculate 

the probability of the set events Xi given event Y: 

𝑃(𝑋𝑖|𝑌) = (
1

√2𝜎𝑌
2

) 𝑒
−

𝑋𝑖−µ𝑌

2𝜎𝑦
2

        

Where: 

 µy is the mean of event Y  

σy is the standard deviation of event Y  

Bernoulli Naïve Bayes  

 The Bernoulli naïve Bayes method assumes the data follows a multivariate Bernoulli 

distribution. A Bernoulli distribution assumes that the values are boolean, either 0 or 1. Due to 

this, the values entered into the model must be converted into this format. The probability of the 

set of events Xi given event Y, is found using the following equation: 

𝑃(𝑋𝑖|𝑌) = 𝑃(𝑖|𝑦)𝑥𝑖 + (1 − 𝑃(𝑖|𝑦)(1 − 𝑥𝑖) 

It should be noted that this method penalizes the score of the model if the feature i does not occur 

for a given Y.  
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Multinomial Naïve Bayes  

 The final naïve Bayes method used for this project is the multinomial classification 

technique. Multinomial distribution is a generalized form of the binomial distribution. Unlike a 

binomial distribution, a multinomial distribution can have values other than 0 or 1. This is 

typically used to determine the probability of a series of mutually exclusive events occurring at a 

given time. A key difference between the multinomial and Bernoulli methods is that the 

multinomial technique does not penalize the score of the model if a feature does not occur within 

a given data point. Probability of a set of events Xi given event Y is calculated using the 

following equation: 

𝑃(𝑋𝑖|𝑌) = 𝜃𝑦𝑖 =
𝑁𝑦𝑖 +  𝛼

𝑁𝑦 +  𝛼𝑛
 

Where: 

Nyi is the number of times a features appears in the training set  

Ny is the number of times a features occurs in both the testing and training sets  

α is a smoothing factor to prevent the nonoccurrence of a feature from penalizing the model 

Naïve Bayes Classification Example  

 Unlike the k-nearest neighbor, naïve Bayes classification is difficult to visualize as it 

makes use of probabilities, rather than distance. As such, this example is provided in order to 

demonstrate how a naïve Bayes classification works in real-world applications. Perhaps, the most 

common application of naïve Bayes classification is for spam/junk email detection. In this type 

of classification there are only two possible outcomes: the email is either spam or it not spam. As 
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naïve Bayes is a supervised method, the first step is to have a training set of email data that is 

already classified as either spam or not-spam.  

The key with naïve Bayes classification is that the outcome probabilities must be 

calculated using the dataset features. The features of this type of dataset would be the words 

inside the email. Using the training set data, the probability that if an email contains a certain 

word that the email is spam is calculated. Since there are only two outcomes, the probability that 

given a certain word that the email is not spam is simply 1 minus the probability that given the 

word an email is spam. Typically, common words such as ‘it’ will be assigned neutral 

probabilities, while other keywords are assigned higher probabilities. Next, the probability of a 

general email being spam or not being spam is determined. This can be done using either the 

training dataset, to better tailor the model to a specific email account, or the probability can be 

assigned using outside data and assumptions [35].  

Once all of the probabilities have been determined, the probabilities of an email being 

spam given a certain word, can be calculated using Bayes’ theorem. This process is repeated for 

every word in the email. Once probabilities have been done for every word in the email, the 

probabilities are then combined so the probability of the email being spam given the set of words 

can be determined. This is done using the following equation:  

𝑃(𝑆|𝑾) =
𝑃1 ∗ 𝑃2 ∗ … 𝑃𝑁

𝑃1 ∗ 𝑃2 ∗ … 𝑃𝑁 + (1 − 𝑃1)(1 − 𝑃2). . . (1 − 𝑃𝑁)
 

Where:  

𝑃(𝑆|𝑾) is the probability of the email being spam given the set or words  

𝑃𝑁 are the probabilities of the email being spam given an individual word  
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Using this total probability, the system determines whether to classify the email as spam or not-

spam, based on user preferences. 

K-Nearest Neighbors 

 K-nearest neighbors is a supervised machine learning algorithm used in both, 

classification and regression models. This method is non-parametric, meaning that the algorithm 

does not rely on a set number of parameters and can be flexible depending on the situation. K-

nearest neighbors works by using a user-defined constant integer known as k. K is the number of 

nearest neighbors that the algorithm looks for in the classification. A majority vote of the nearest 

neighbors is used to determine which class a data point belongs to. This means that the testing 

data point will be classified according to which training data it is closest to, in the feature space. 

The size of k must be balanced when using this method. If k is too small, the model may be 

overfit. If k is too large, the possibility of an under-fit model that leaves out important details 

increases [36].   

 The k-nearest neighbors algorithm also requires a distance function in order to calculate 

the distance between a given testing data point and the different training data points. This 

algorithm typically uses Euclidean distance, also known as the straight line distance between two 

points in Euclidean space. This is very similar to the distance formula used in basic algebra and 

geometry. The Euclidean distance is found using the following equation:  

𝐷(𝑥𝑖,𝑥𝑗,) =  √ ∑ (𝑥𝑖𝑚 − 𝑥𝑗𝑚)2

𝐷

𝑚=1

 = √||𝑥𝑖||2 + ||𝑥𝑗||2 − 2𝑥𝑖
𝑇𝑥𝑗    

𝐷(𝑥𝑖,𝑥𝑗,) is the distance between the 2 points 
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||𝑥𝑖||
2 and ||𝑥𝑗||2 are norm of the respective points   

2𝑥𝑖
𝑇𝑥𝑗 is the dot project between the two points.  

 The k-nearest neighbors algorithm works best when the data points are scaled to balance 

the magnitude of different features and are normalized. K-nearest neighbors is simple in nature 

and easy to visualize, especially in datasets with fewer features. Also, with more data and a large 

k, the algorithm can produce very accurate results. Unfortunately, there are disadvantages 

associated with using k-nearest neighbors. The first is that it can be computationally expensive, 

especially with larger datasets. Also, it can be sensitive to statistical noise from features. Finally, 

the model can suffer if too many features are used [37].   

Logistic Regression  

 Logistic regression is a supervised machine learning algorithm designed to deal with 

complex scenarios. While its name suggests this method is a regression method, it is actually a 

classification method. Similar to the naïve Bayes method, logistic regression uses probabilities to 

predict to what class a set of features belongs to, i.e. the probability of Y given X, or a set Xi. 

Outputs can be boolean, multinomial or for cases where more than one class exists, One vs. Rest.  

An important difference between the two methods is that naïve Bayes assumes the features are 

statistically independent, while logistic regression does not. This results in the naïve Bayes 

model having more bias but less variance when compared to a logistic regression model. The 

decision of which model is best depends on the data used in creating the two models. Typically, 

logistic regression is preferred when the data has a large number of features, while naïve Bayes 

works better with less complex data. Logistic regression takes the different outcome probabilities 

of a given data point and models them using a logistic function [38].   
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 This project involves 5 different categories for classification, as such; the One vs. Rest 

method of logistic regression will be used to create the classification model. One vs. Rest logistic 

regression uses the following equation: 

𝑃(𝑌𝑘|𝑋) =
1

1 + ∑ exp (𝑤𝑗𝑂 +  ∑ 𝑤𝑗𝑖𝑋𝑖)
𝑛
𝑖=1

𝑘=1
𝑗=1

 

 

Where:  

𝑃(𝑌𝑘|𝑋)  is the probability of Y belonging to class k given X  

𝑤𝑗𝑂 and 𝑤𝑗𝑖 are the weights associated with class j  

Scikit-learn has the ability to otimize this equation by modifying the weights with user specified 

input [39]. This can be done using three methods: L1, L2 or Elastic Net regularization. L1 solves 

issues with weight optimization given by the following equation: 

𝐿1 =  𝑚𝑖𝑛𝑤𝑐 |𝑤| + 𝐶 ∑ log (exp (−𝑦𝑖(𝑋𝑖
𝑇𝑤 + 𝑐)) + 1

𝑛

𝑖=1

 

 L2 minimizes the cost function of the weights using the following equation: 

𝐿2 =  𝑚𝑖𝑛𝑤𝑐

1

2
 𝑤𝑇𝑤 + 𝐶 ∑ log (exp (−𝑦𝑖(𝑋𝑖

𝑇𝑤 + 𝑐)) + 1

𝑛

𝑖=1

 

 and Elastic Net regularization is used when there are issues with both cost and optimization 

using the following equation:  
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𝑚𝑖𝑛𝑤𝑐

1 − 𝑝

2
 𝑤𝑇𝑤 + 𝑝 |𝑤| + 𝐶 ∑ log (exp (−𝑦𝑖(𝑋𝑖

𝑇𝑤 + 𝑐)) + 1

𝑛

𝑖=1

 

Decision Tree Classification  

 Decision tree analysis is a non-parametric, supervised learning method that can be used in 

both classification and predictive regression. Decision tree analysis, unlike other methods, such 

as k-nearest neighbors and naïve Bayes, is designed to deal with statistical noise that can deter a 

model’s performance. Common applications for decision tree analysis include: credit and loan 

assessment, medical diagnostics and performance evaluation/prediction.  

 The top of a decision tree is the outcome of the analysis. Decision tree analysis begins by 

taking instances from the data provided. These are typically the different classes of the data 

provided to the model. Next, a data point is tested, typically using a true or false evaluation, 

though it is possible to use non-boolean responses for testing, if appropriate. Depending on the 

outcome, further testing may occur or the model may have enough information to make a 

determination and classify a data point. If more testing is needed, the model will continue to 

evaluate the data point provided until a determination can be made or there are no more 

evaluation metrics to test. A good analogy for a decision tree classification would be a 

personality test, such as the Myers-Briggs indicator. In this survey, the respondent is asked 

several questions and at the end of the test, the user is put in a class based on the responses to the 

questions. In a decision tree classification, the features provided in a data point are the responses 

to the questions at each root of the tree [40].  

 Decision trees have several advantages over other machine learning methods. Unlike 

logistic regression or naïve Bayes methods, decision trees are easy to visualize and conceptually 
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simple. Decision trees can work with both, qualitative and quantitative data, and data does not 

need to be of the same type. Also, decision trees are better able to deal with missing values and a 

classification can still be done if some features are missing. This reduces the amount of data 

preparation that needs to be done in order to perform the analysis. Finally, decision trees are able 

to handle multiple output models, which allow the method to apply more complex problems. 

Still, there are some disadvantages associated with decision trees. The order of the evaluations in 

the tree is extremely important. Some orders may filter out critical data and lead to inaccurate 

results and misclassifications. This can be managed by creating several different trees to 

determine which order best fits the model. This can be computationally expensive and time 

consuming. A better method of dealing with this would be to calculate an evaluation’s entropy. 

This will be explained below.  Another issue with decision trees is that models can become 

overly complex and overfit, if too many features are present. Data preprocessing and selection 

methods, such as PCA can be used to help manage this issue.   

The order in which each evaluation is performed is a key to the effectiveness of this 

method. In order to determine which evaluations provide the most insight or information gain, it 

is necessary to calculate the entropy of the evaluation. In this context, entropy is a measure of the 

purity/impurity of the data samples. This can be calculated using the following equation:  

𝑆 = − ∑ 𝑝 log2 𝑝   

 

Where: 

S is the Entropy of the collection of data  
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P is the mass probability function of the evaluation  

If the responses to the evaluation are boolean the equation can be expressed as the combination 

of the negative responses and the positive responses with the following equation: 

𝑆 = −𝑝 log2 𝑝 − 𝑝 log2 𝑝 

Evaluations with higher entropy are considered more insightful and are prioritized earlier in the 

tree, while those with lower entropy values are placed lower in the tree. This allows the model to 

determine the sequence that yields the most gain [40]. This approach is known as a ‘greedy’ 

algorithm, where the algorithm searches for the optimal result rather than the best.  

Decision trees and other machine learning models can be improved using Ensemble 

methods. These methods improve models, either through averaging or boosting. One of the 

averaging techniques for decision trees is known as random forest. This method constructs 

several different decision trees rather than just a single tree. The results from each of the 

different trees are averaged and a final result is determined. In classification, the result is 

determined by which result received the most votes from the individual tress in the forest.  

Regression uses the average of output to determine the final result. The use of random forest can 

reduce overfitting and improve accuracy. Another ensemble method that can be used to improve 

a decision tree is gradient boosting. Typically used in regression, gradient boosting uses weak 

learners and the errors from those learners to compute a residual. The model is then trained on 

the residual and the model then tries to predict those residuals. It should be noted that boosting is 

a greedy algorithm and can produced overfit results [42].  
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Model Validation  

 Once a machine learning model has been trained and tested, it is necessary to validate the 

model to determine how well the model performed. Accuracy is the most common validation 

measurement used to assess a model’s performance. The accuracy of the model is simply the 

number of correct classifications divided by the total number of test classifications performed 

[43]. Scikit-learn uses the .accuracy_score() method to measure a model’s accuracy using 

the following expression:  

𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦(𝑦, 𝑦𝑏𝑎𝑟) =
1

𝑛𝑠𝑎𝑚𝑝𝑙𝑒𝑠
∗ ( ∑ 1(𝑦𝑏𝑎𝑟 =  𝑦𝑖)

𝑛𝑠𝑎𝑚𝑝𝑙𝑒𝑠−1 

𝑖=1

) 

 In addition to accuracy, other validation measurements are necessary. Relying only on 

accuracy measurements would only tell the user that a misclassification had occurred. Using 

other validation measurements allows for further exploration of a model’s mistakes. Measuring a 

model’s precision allows the user to see the ratio of true positives to predicted positives. This 

shows how many false positive, or type 1 errors, occurred in the model’s testing. Scikit-learn 

uses the .precision_score() method to calculate a model’s precision using the following 

equation:  

𝑃𝑟𝑒𝑐𝑖𝑠𝑜𝑛 =
# 𝑜𝑓 𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

# 𝑜𝑓 𝐹𝑎𝑙𝑠𝑒 𝑃ositive + # 𝑜𝑓 𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠
 

 The next validation measurement performed for this project is recall. Recall is a 

measurement of a model’s ability to classify positive samples. This is referred to as sensitivity. 

Recall allows the user to evaluate a model’s false negative error, or Type II error. Scikit-learn 

uses the .recall_score method to calculate a model’s recall using the following equation: 
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𝑅𝑒𝑐𝑎𝑙𝑙 =
# 𝑜𝑓 𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

# 𝑜𝑓 𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠 + # 𝑜𝑓 𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠
 

In classifying reactor transients, false positive errors potentially result in action that is 

costly and time consuming. False negatives can result in potential reactor damage and events 

hazardous to the public. Both of these must be considered when evaluating models. As such, it is 

necessary to have a validation measurement that balances type 1 and type II error. This 

measurement is known as the F1 score. The F1 score measures a weighted average between 

precision and recall. Scikit-learn uses the .f1_score() function to calculate a model’s F1 

score using the following equation:  

𝐹1 = 2 ∗
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 

When dealing with percentages it is important to consider the context of the situation. In 

this case, since over 15,000 samples are being looked at, a 1% change in accuracy or precision 

would affect 150 samples. As such, it is necessary to use a method that tells the exact number of 

Type 1 and Type II errors that occurred and between which transients these occurred. To do this 

a confusion matrix can be created. A confusion matrix shows the true positives for each 

classification down the diagonal of the matrix. The false positives are shown in the columns and 

the false negatives are in the rows. This allows not only for the exact number and type of errors 

to be shown, but also where they occurred. This can provide insight into where and why a 

classification model is having issues. Confusion matrices will be generated for all six machine 

learning models used in this project.  
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GPWR Reactor Simulator  

 Data used for this experiment was collected using the Generic Pressurized Water Reactor 

(GPWR) simulator at the Center for Advance Energy Studies (CAES). The simulator was 

purchased by University of Idaho, Idaho State University, CAES entities from the Western 

Service Corporation (WSC). This simulator emulates the behavior of a “generic” pressurized 

water reactor (PWR). The thermal output is rated at 4000 MWt/1400 MWe. The simulator does 

not directly incorporate the design of any specific PWR. The reactor systems include 1 high-

pressure turbine and 3 low-pressure turbines, and a configuration that includes 2 loops, 4 coolant 

pumps and 2 steam generators.[44]  The simulator software runs on a standard Windows 10 PC, 

Figure 22 shows the simulator at the visualization lab at CAES. 
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Figure 22: GPWR Simulator Setup at CAES  
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 The simulator comes preloaded with 14 different initial conditions for the reactor; factors 

that vary include plant power, core life, etc. Table 3 shows the list of the preprogrammed initial 

conditions. The simulator has several reactor control panels that allow the user to change the 

reactor system, including the operation of pumps, the opening/closing of valves, the flow of 

coolant, reactor power, etc. Figure 23 shows an example of the simulator interface that is used to 

control the reactor. The simulator is also equipped with an alarm system to inform the user of 

abnormal conditions. Similar to an actual reactor, the simulator can be scrammed by the operator 

and automatically scrams under certain conditions, including both a reactor trip and a turbine 

trip. The simulator is also programmed to emulate the containment structure and engineering 

safety features and the behavior of these components under accident conditions, such as a small 

break loss of coolant accident (LOCA). The simulator has also been programmed with the ability 

to emulate malfunctions of components that could potentially occur within the power plant. The 

reactor will behave accordingly in a malfunction. Some of these malfunctions include: heat 

exchanger degradation, motor shearing/seizures, valve failure to open/close, etc. These events 

can be triggered by the user or programmed as part of an accident scenario.  

TABLE 3: GPWR Preprogramed Initial Conditions 

BOL, 100% 

Power 

MOL, 100% 

Power 

EOL, 100% 

Power 

BOL, 50% 

Power 

MOL, 50% 

Power 

EOL, 50% 

Power 

BOL, 1% Power MOL, 1% Power EOL, 1% Power BOL, Subcritical 

MOL, Subcritical  EOL, Subcritical  BOL, Xe 

Equilibrium  

MOL, 5% Power  

 

 The GPWR displays critical parameters to the user. Many of these are those that an 

operator would see while running an actual reactor. There are 18 different parameters that are 

always displayed to the user, including reactor power (in both MW and a percentage), steam 
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generator pressure and flow and turbine/reactor status. Figure 24 shows how this output is 

displayed to the user. The user is also able to see how long the simulator has been running, as 

well as pause and restart simulations. The simulation can be run in real-time, slowed down to 0.1 

times normal speed or speed up to 10 times normal speed. This can be changed at any time 

during the simulation.  In addition, the user has the ability to backtrack to a previous time in the 

simulation. The software will automatically save conditions every few minutes in order for the 

user to easily return to a previous state.  

The GPWR simulator also allows for the user to switch between different interfaces in 

order to observe, manipulate and record the behavior of components that are not shown on the 

reactor interface page. Figure 25 shows the overview home page for the GPWR.  
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Figure 23: GPWR Simulator Interface  

 

 

Figure 24 Information Panel Displayed in GPWR
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Figure 25: GPWR Navigation Home Table 
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Data Gathering  

Feature Selection 

 In order to construct machine learning models it was necessary to decide on the 

features that would be measured using the GPWR reactor simulator. The simulator is able 

to measure and collect data from several reactor components, such as reactor power 

output and steam generator pressure. It was decided that for this model the data gathered 

would consist of data that a reactor operator would have access to and be readily 

available. Thirty three features were chosen and programmed into the simulator data 

collector, including: reactor power output, steam generator temperature, flow and 

pressure, as well as reactor temperature. The complete list of features gathered is shown 

in Table 4. All of the features collected from the reactor simulator were quantitative in 

nature.  

TABLE 4: Features Collected from GPWR Simulator 

Normalized 

Flux 

RCS LVL 

Loop 1 WR 

RCS LVL 

Loop 1 NR 

Hot Leg 1/ 2 

Temperature  

Cold Leg 1/ 

2A 

Temperature 

Cold Leg 

1/2B 

Temperature 

RC Loop- 

1/2A Norm 

Flow  

RC Loop -

1/2B Norm 

Flow 

Pressurizer 

Surge Line 

Temperature 

PORV 

Discharge 

Pressurizer 

Temperature 

Containment 

Pressure  

Containment 

Temperature 

MS Flow 

from SG-1 

Line-1/2B 

SG-1/2 

Pressure  

Average 

Temperature  

SG-1/2 NR 

Level  

FW Flow to 

SG-1/2 

Pressurizer 

Pressure  

Pressurizer 

Steam  

Temperature 

Norm 

Pressurizer 

Level 

Pressurizer 

Water 

Temperature 

Generator 

Power  

MS Flow 

from SG-1 

Line-1/2A 
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Initial Conditions 

 In order to see how the model would be impacted by changes in the reactor 

system over time, it was decided that several runs would be conducted changing the 

initial conditions of the simulated system for each run. The first change to the system was 

the power output of the reactor. Three different conditions were used: full power, where 

the reactor is operating as to generate electricity; half power, where the reactor is being 

shut down and output is at approximately 50% of capacity; and low power where the 

reactor is critical and being prepared for startup, but power generation is between 0 and 

1% capacity. The second initial condition changed for the reactor system involves the 

stage of the reactor's lifetime. Three different conditions were available for use: 

beginning of life (BOL) where the reactor is brand new; middle of life (MOL), where the 

reactor is close to 30 years old; and end of life (EOL), where the reactor is close to 

decommissioning approximately 60 years into its operating life. Using these two features 

it was possible to collect data on nine different initial condition combinations while the 

reactor is functioning as intended. Each run was conducted for 1200 seconds and data 

was collected for each of the 33 measurable features every second during the run. 

Seconds are the smallest increment of time that can be used for data collection. 

Transient Events 

 In addition to collecting data when the reactor is under normal operating 

conditions, four transient events were simulated using the nine different initial condition 

configurations. The first transient event selected was a simultaneous trip of all feed water 

pumps. In this transient, the primary and auxiliary feed water pumps malfunction and 
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cease operations. The breakers connected to these two pumps also trip. The transient was 

programmed to occur 20 seconds after the simulation began. A run under each of the nine 

different initial condition configurations was performed and data was collected for 600 

seconds after the transient occurred.  Under this transient, the runs that were performed at 

full power and half power scrammed the second the transient occurred. During the run 

that occurred at low power, no scram occurred during the simulation [45].  

 The next transient event that was used to collect data was a simultaneous closure 

of main steam isolation valves (MSIV). In this transient, a command signal is sent to all 

MSIVs after 20 seconds switching the valves from the open position to the closed 

position. Data was collected for 600 seconds after the command signal was sent. Each of 

the 9 different initial condition configurations was used to collect data on this transient. 

In this event, runs performed under full and half power experienced a scram 40 second 

after the simulation began, 20 seconds after the command signal was sent. Runs 

performed at low power did not scram during the simulation.  

 The third transient event used in this experiment was a maximum reactor coolant 

rupture combined with a complete loss of offsite power (LOOP). During this transient, a 

double ended guillotine break occurs within line 1A of the reactor coolant system (RCS). 

This is combined with a complete loss of electrical power to the plant. The transient 

occurred 20 seconds after the simulation began and data was collected for 600 seconds 

after the transient occurred. Nine separate runs were performed using the initial condition 

configurations. During this simulation, the reactor experienced a scram at all power levels 

used.  
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 The final transient event used to collect data was a rapid power change. In this 

transient, the reactor begins 1400 MWe full power and drops to 1050 MWe, 

approximately 75% of the plant’s maximum power, before returning to 1400 MWe. Data 

was collected until the reactor reached full power, approximately 1000 seconds. Due to 

the nature of this transient, only the reactor core life initial conditions were changed and 

three runs were performed.  

 After the completion of a run, the data was saved from the reactor simulator to a 

comma separated values (CSV) file. In total, 39 different CSV files were generated and 

saved.  All data gathered directly from the simulator was quantitative. After each run, the 

reactor core lifetime feature was added to each instant from the dataset from the run using 

either 'BOL', 'MOL'  or 'EOL' or. Also, the transient that occurred was added to each 

instant in the dataset. It should be noted, that the instances up to the 20 second mark were 

labeled as normal operations, as the transient had not yet occurred. These additions were 

done using Microsoft Excel. The datasets remained in a CSV format.  Figure 26 shows a 

screenshot of one of the CSV files collected from the simulator.  
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Figure 26: Screenshot of a CVS file from the GPWR Simulator
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Data Preparation 

Data Compiling  

 In order for the data collected from the reactor simulator to be used to create a 

machine learning model, some data modifications needed to be performed. First, the data 

was in 39 separate datasets, to avoid issues with the constant moving, modifying, loading 

etc. of the data these sets were combined into one complete dataset. This set consisted of 

30,710 data points, each consisting of the 33 measured features and the features added for 

reactor core life and transient event. Also, to minimize confusion and ensure only the data 

was imported into the machine learning model, the feature labels and heading 

information was not included in the final dataset. These preparations were done using 

Microsoft Excel and the final dataset was saved as a CSV file. The 39 individual datasets 

will be maintained in the event any unexpected issues occur with the complete dataset.  

Modifications using Python 

 Once the data was compiled into a single dataset Python was used to modify the 

data. All code written for this project was done using Python version 3.7.2, the most up-

to-date version available at the time. The scripts were written using Atom text editor and 

all code compiling was done using the Anaconda Python distribution. The complete CSV 

file was imported using the Pandas package. This converted the data from a CSV file into 

a Pandas DataFrame. No header was used in the importing of the data. The contents of 

the DataFrame was then verified using the .head(), .shape() and 

.describe() commands. The .head() command allows the user to view the 

contents of the first 5 rows of a dataset. This was done to ensure that all the features 
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appear correctly in the DataFrame. The .describe() command provides the 

descriptive statistics of the data stored in the DataFrame. This includes the mean, 

standard deviation, data point count, as well as the minimum and maximum values of 

each feature. The summary statistics for the first and last 3 columns of the dataset are 

shown in Figure 27. The .shape() command provides the This allowed for verification 

that all the data points had imported into the DataFrame.  

 The addition of the reactor core life introduced a qualitative feature into the 

dataset. Machine learning algorithms are only able to use quantitative data to produce a 

model. In order to properly account for the reactor lifetime, it was necessary to convert 

the qualitative data into quantitative data; this was done using dummy variables. Dummy 

variables are typically used to represent qualitative data in a 0, 1 scale. In this case, since 

there are three different types of qualitative data (BOL, EOL and MOL) three dummy 

variables and two extra factors were needed. It was possible to convert this data using the 

Pandas function .get_dummies. This function was used to create a dummy variable 

DataFrame using the reactor core life column of the dataset. The dummy variable 

DataFrame consists of 2 columns. BOL data points were converted to 0,0, EOL data 

points were converted to 1,0 and MOL were converted to 0,1. The dummy variable 

DataFrame was then added to the end of the dataset using Pandas’ .concat function 

which is used to merge two or more DataFrames. Finally, the original reactor core 

lifetime column was dropped from the DataFrame. To ensure that the process had been 

done correctly, the new DataFrame was explored.  
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Figure 27: Descriptive Statistics for Dataset  

 The next step in preparing the data was to prepare the target data of the dataset. 

As mentioned earlier, each data point was given a label of the transient event that 

occurred when the data was collected. This column was also a qualitative feature. Unlike 

the reactor core lifetime, there was no need to use dummy variables when modifying this 

dataset. Instead, each transient was designated a number: the feed water pump trip was 

assigned 1, the LOCA-LOOP 2, the steam generator valve closure was assigned 3 and the 

rapid power change was assigned a 4. Normal operations were assigned 0. Using Pandas’ 

.map function it was possible to change all the qualitative data to the assigned numerical 

value. The dataset was once again explored to ensure that the process had been 

implemented correctly.  

Data Splitting  

 The final step in preparing the reactor simulator dataset was to split the dataset 

into a training set and a testing set. In supervised machine learning, data should be split in 

order to validate the results. Validation allows for a measurement on the quality of the 

model’s results. In the case of this project, validation is critical. Regulatory agencies, 

such as the Nuclear Regulatory Commission, have strict requirements in proving that any 

system or component within a reactor will behave as it is intended, especially if it will be 

relied upon in abnormal events. An important aspect of validation is that the data used in 
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the testing must be completely independent of the data used in creating the model. Failure 

to ensure this could result in biased models that do not learn the actual case of the testing 

data.  

  It is important to balance how much of the data is split between the two sets. If 

too little data is put into the training dataset the algorithm will not be able to learn the 

differences between the data points, this will result in less accurate models, which will be 

less effective in performing the task intended for the model. It is also necessary to have 

enough testing data. If the algorithm lacks sufficient testing data it will be difficult to 

verify that the model created by the supervised learning algorithm is reliable. Finally, as 

is the case in most statistical procedures, it is important that the data splitting be random 

to avoid any biases and to provide a good sample for both, the testing and training sets.  

 The data splitting for this project was done using the scikit-learn package. This is 

done using the test_train_split function. This function uses Bernoulli sampling 

in order to create testing and training sets that are pseudo-random. The pseudo-random 

nature of the splitting allows for the process to be repeated over and over again with no 

changes to the outcome while maintaining the randomness of the selection. The function 

requires that features and target data be provided as well, as the desired split between 

testing and training data. Also, the user may specify the seed of the random number 

generator, if desired. The output will be four different NumPy arrays, two arrays for the 

feature and target training data and two arrays will be for the feature and target testing 

data. These were labeled as X_test and X_train for the feature data and Y_test 

and Y_train for the target data. For this model, the target data will be the numerically-

labeled transient types and the feature data will be the 33 features collected from the 
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reactor simulator. Half of the data collected will be used for training and the other half 

will be used for testing. The default random number seed for this function will be used 

for all data splitting on this project. The Python code used is shown in Figure 28. Figure 

29 shows the output for the X_train array.   

 

Figure 28: Test Train Split code for project 

 

Figure 29: Sample from X Train Dataset  
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Results & Analysis  

K-Nearest Neighbors Results  

 The entire process of building and evaluating the k-nearest neighbors model in 

TPOT took approximately 1 hour and 30 minutes. The accuracy of this model was 

98.35%, the precision was 98.02%, recall was calculated to be 98.01%, and the F1 score 

was also calculated to be 98.01%. Table 5 shows the individual accuracies for each 

transient from this model. 

TABLE 5: K-Nearest Neighbors Model Individual Transient Accuracies  

Normal 

Operations 

Feed Water 

Pump Trip 

LBLOCA + 

LOOP 
Valve Closure 

Rapid Power 

Change 

100% 96.6% 97.57% 98.01% 97.86% 

 

 The k-nearest neighbors method was able to correctly identify 15,103 instances of 

the 15,355 samples tested during the validation process. Of the 252 misclassified 

instances, the largest amounts of misclassifications were from the feed water pump trip 

transient. 172 of the 252 misclassifications, 60% of total errors, were from this transient. 

Of those 172 errors, 95 were false positives and 77 were false negatives. The model’s 

biggest issue was distinguishing the feed water pump trip transient from the valve closure 

transient: a total of 76 instances, 30% of the total misclassifications were between these 

two transients. The k-nearest neighbors model was able to perfectly distinguish normal 

operation instances from transient instances as there were no type I or type II errors for 

the normal operation transient. Figure 30 shows the confusion matrix for the k-nearest 

neighbor model. The code was designed to export the instances where misclassifications 
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occurred. Initial analysis of these instances showed no true pattern or bias of when in the 

transient the misclassifications occurred. Figure 31 shows a graph of these 

misclassifications.  

 

Figure 30: Confusion Matrix for K-Nearest Neighbors Model 
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Figure 31: Graph of Misclassifications for K-Nearest Neighbors Model 
 

Bernoulli Naïve Bayes Results  

  In TPOT, the Bernoulli naïve Bayes model took approximately 1 hour to build 

and validate. The accuracy of this model was 97.45%, the precision was calculated to be 

97.18%, the recall of the model was 96.73 %, and the F1 score was 96.87%. Table 6 

shows the accuracies of the individual transients from this model.  

TABLE 6: Bernoulli Naïve Bayes Model Individual Transient Accuracies  

Normal 

Operations 

Feed Water 

Pump Trip 

LBLOCA + 

LOOP 
Valve Closure 

Rapid Power 

Change 

100% 90.05% 100% 96.1% 93.72% 
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 The Bernoulli naïve Bayes model correctly identified 14,964 instances of the 

15,355 tested. Of the 391 incorrect classifications 258 of them, 66% of total 

misclassifications, were from the feed water pump trip transient. Of these, 191 were false 

positives for the valve closure transient. The model also 33 false positive classifications 

for the rapid power change transient. Under this configuration, the model was able to 

correctly distinguish between a transient and non-transient event with no Type I or Type 

II errors for the normal operations event. The Bernoulli naïve Bayes model had no Type I 

errors for the LOCA-LOOP transient, nor were there any Type II errors for the rapid 

power change transient. The confusion matrix for the Bernoulli naïve Bayes model is 

shown in Figure 32.  Initial analysis of the misclassified instances did show some 

possible grouping of the misclassifications around the half way point of the simulation, 

between 200 & 400 seconds. This is shown in Figure 33. Also of note, most of the 

misclassifications occurred at 10 second points. The reason behind this is unclear and this 

trend did not occur in the other models.  
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Figure 32: Confusion Matrix for the Bernoulli Naïve Bayes Model 

 

Figure 33: Graph of Misclassifications for Bernoulli Naïve Bayes Model 
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Gaussian Naïve Bayes Results  

 Similar to the Bernoulli naïve Bayes model, the Gaussian naïve Bayes model took 

approximately 1 hour to build and test.  The accuracy of this model was found to be 

97.45%. The precision was scored at 97.2%, the recall was calculated at 96.83%, and the 

F1 score was 96.96%.  Table 7 shows the model’s accuracy for the individual transients.  

TABLE 7: Gaussian Naïve Bayes Model Individual Transient Accuracies  

Normal 

Operations 

Feed Water 

Pump Trip 

LBLOCA + 

LOOP 
Valve Closure 

Rapid Power 

Change 

100% 88.77% 100% 96.59% 94.0% 

 

 This model was able to correctly identify 14,833 of the 15,355 samples tested. 

The Gaussian naïve Bayes model performed perfectly in identifying the non-transients 

and transients as there were no false positives or negatives for the normal operation 

event. There were also no false positives for the LOCA LOOP transient and no false 

negative for the rapid power change transient. The model struggled the most with 

correctly classifying the feed water pump trip transient. Of the 522 misclassified 

transients 337 of them, nearly 65% of all the model’s total errors were from this transient. 

Of those, 302 were misclassifications between the feed water pump transient and the 

valve closure transient. The confusion matrix for the Gaussian naïve Bayes model is 

shown in Figure 34.  Initial analysis of the misclassified instances shows that there was 

no grouping and that misclassifications were spread throughout the simulation. Figure 35 

shows a graph of the misclassifications.  
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Figure 34: Confusion Matrix for the Gaussian Naïve Bayes Model 

 

Figure 35: Graph of Misclassifications for Gaussian Naïve Bayes Model 
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Multinomial Naïve Bayes Results  

 The multinomial naïve Bayes model took approximately 1 hour to be built and 

tested using TPOT. The accuracy of the multinomial naïve Bayes model was 96.71%. 

The precision of this model was calculated to be 96.38%, the recall was 95.41%, and the 

F1 score was calculated to be 96.10%.  Table 8 shows the accuracies of the individual 

transients from this model.  

TABLE 8: Multinomial Naïve Bayes Model Individual Transient Accuracies  

Normal 

Operations 

Feed Water 

Pump Trip 

LBLOCA + 

LOOP 
Valve Closure 

Rapid Power 

Change 

100% 90.05% 100% 96.1% 93.72% 

 

 The multinomial naïve Bayes model was able to correctly classify 14,833 of the 

reactor transient instances tested. Similar to the other naïve Bayes models, the 

multinomial method was able to perfectly distinguish between transient events and non-

transient events, as there were no Type I or Type II errors for normal operations.  The 

rapid power transient also had no false negative results and the LOCA LOOP transient 

had no false positives. Also, the model struggled most with the feed water pump trip 

transient with 296 misclassifications occurring with this transient. The confusion matrix 

for this model is shown in Figure 36.  The misclassified instances show that most of the 

misclassifications are spread throughout the simulation with no pattern or large groups. 

This is shown in Figure 37.  
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Figure 36: Classification Matrix for Multinomial Naïve Bayes Model  

 

Figure 37: Graph of Misclassifications for Multinomial Naïve Bayes Model 
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Logistic Regression Results  

 The logistic regression model took approximately 48 hours to run. This was the 

most computationally expensive of all the models evaluated. The accuracy of the logistic 

regression model was found to be 98.55%. The precision was calculated to be 98.41%, 

recall was 98.04% and the F1 score was found to be 98.21%. Table 9 shows the 

individual accuracies for the reactor transients for this. 

 This model correctly identified 15,133 transient instances of the 15,355 samples 

tested. The logistic regression model perfectly classified transient and non-transient 

events; there were no false positives or negatives from the normal operation event. The 

model also had no false positives for the LOCA LOOP and there were no false negatives 

for the rapid power change. The model scored well on all the transients with accuracies 

above 95% across all 5 events. The model had the highest number of misclassifications 

with the feed water pump, though the rapid power change had a lower accuracy. The 

largest number of errors, 52, came from false positives of the feed water pump transient 

from the valve closure transient. Figure 38 shows the confusion matrix for this model.  

No easily identified groups were found when looking at the misclassified instances, 

similar to some of the other models the misclassifications appear spread out. Figure 39 

shows a graph of the misclassifications.  

TABLE 9: Logistic Regression Model Individual Transient Accuracies  

Normal 

Operations 

Feed Water 

Pump Trip 

LBLOCA + 

LOOP 
Valve Closure 

Rapid Power 

Change 

100% 96.87% 100% 97.62% 95.71% 
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Figure 38: Confusion Matrix for the Logistic Regression Model  

 

Figure 39: Graph of Misclassifications for Logistic Regression Model 
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Decision Tree Results  

 The decision tree model took approximately 3 hours to build and validate. The 

accuracy of this model was 98.6%, precision was calculated at 98.46%, recall was found 

to be 98.1% and the F1 score was 98.27%. Table 10 shows the individual accuracies of 

the transient events for the decision tree model.  

 The decision tree model was able to classify correctly 15,140 of the 15,355 

transient instances tested. The model was able to perfectly classify all of the normal 

operation instances and there were no false positive or false negative errors from that 

event. The model was able to classify the LOCA LOOP transient with no false positives 

and the rapid power change transient had no false negatives.  As with the other models, 

the decision tree model’s biggest issues were from the feed water pump transient: 35% of 

the errors and 76 instances were from this transient. Forty one of those were false 

positives with the valve closure transient. The confusion matrix for this model is shown 

in Figure 40. Looking at misclassified instances, no obvious grouping appeared. With the 

exception of the Bernoulli naïve Bayes model, it appears that the misclassifications 

experienced were typically spread out rather than grouped together. Figure 41 shows the 

graph for the decision tree model’s misclassifications.  

TABLE 10: Decision Tree Model Individual Transient Accuracies  

Normal 

Operations 

Feed Water 

Pump Trip 

LBLOCA + 

LOOP 
Valve Closure 

Rapid Power 

Change 

100% 97.33% 100% 97.57% 95.62% 
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Figure 40: Confusion Matrix for Decision Tree Model  

 

Figure 41: Graph of Misclassifications for Decision Tree Model 
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Conclusions 

 The results from the machine learning models show very positive results. All of 

the models had validation scores in the mid-90’s. Table 11 below summarizes the result 

from all 6 of the machine learning models.  Under the configurations selected for the 

TPOT dictionary, all of the models were able to perfectly tell the difference between 

normal operations and transient events. It should be noted that the dataset did contain 

more of this type of data, but this should not be an issue, as with real nuclear reactors the 

amount of data, as well as the quality, will almost certainly be higher for a real reactor 

under normal operations. With the exception of the k-nearest neighbors model, the 

models were able to able to classify the LOCA LOOP transient with perfect accuracy, 

though there were false negative classifications across all these models in the study.  

 All of the models had the most difficulty distinguishing between the feed water 

pump trip and the valve closure transients, as this transient had the lowest individual 

accuracy of the five events across all the models. Also, a large percentage of the total 

errors from these models came from false positives between these two transients. The 

models appear to have a tendency towards having more Type II error over Type 1, as the 

precision of all the models is higher than the recall. Since Type II error can result in a 

more dangerous scenario with a nuclear reactor, it is important that the recall always be 

considered when making determinations.  

In terms of performance, the decision tree, k-nearest neighbors and logistic 

regression models were better than the naïve Bayes models, having validation 

measurements all above 98%. The decision tree model performed the best. Interestingly, 
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the decision tree model slightly outperformed the logistic regression model. This is 

important as the logistic regression model is more computationally expensive, requiring 

48 hours to compute on its initial run, while the decision tree model only took 3 hours. In 

this case, it is likely the data was not overly complex, so the decision tree model was able 

to better fit the data without needing to perform the large amount of feature analysis 

required with the logistic regression model. This is encouraging, as time is a major 

consideration when selecting a model that will be used in real-time. Using more 

sophisticated equipment, it is possible that a decision tree or k-nearest neighbors model 

could provide valuable information to reactor operators in a matter of minutes, if a model 

needs to be trained quickly. A TPOT model was constructed early on in the experiment 

without defining a specific machine learning model to be built. The optimal model from 

this run was a decision tree, with an accuracy of 98.57%.  This verifies the results from 

the individual tests, where the decision tree was the most accurate model. A possible 

reason for the small decrease in accuracy is the change in random state that occurred in 

the evaluation.   

The naïve Bayes models, while having high validation measurements, did not 

perform as well as the other three models. The multinomial model had the lowest 

accuracy of the six models. A likely cause of this is that the data better fit the Gaussian 

and Bernoulli distributions than the multinomial. The accuracies with the feed water 

pump transient were the lowest with the Gaussian model only scoring 88% accuracy for 

that transient. The most likely cause of this is that the probabilities calculated by the 

naïve Bayes models favored the feed water transient over the valve closure, resulting in 

the false positive classifications. The overall accuracies of the Gaussian and Bernoulli 
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models were identical. This is likely coincidental, as both models have different 

accuracies for three of the individual transients.  

In order to see each model’s sensitivity to changes in random numbers, two 

additional runs were performed for each model using different random states. No model 

experienced a change greater than half of a percent for an overall validation 

measurement. The model with the largest change was the multinomial naïve Bayes 

model. During the third simulation, the model’s accuracy increased to 97.11% from 

96.71% in the initial run. The most interesting change was that all the logistic 

regression’s results increased in the additional runs and the decision tree model’s results 

decreased. Further exploration of this could help better determine which model is better 

for this classification. The k-nearest neighbors model experienced the least changes with 

the additional runs.  

In the additional runs, there were changes to the individual accuracies as 

expected. There was a single false positive of a normal operation point in the third 

Bernoulli naïve Bayes model. This was the only normal operation misclassification from 

all 18 runs done for this project. Also, the multinomial naïve Bayes model struggled with 

the rapid power transient in the third run, with an individual accuracy of 86.11%, the 

lowest individual accuracy for any transient in this project. The decision tree and logistic 

regression models experienced issues with the LOCA-LOOP transient. In the initial run, 

both models had accuracies of 100%. In the additional runs, both models experienced 

misclassifications. The decision tree model scored 97.55% and 97.71% and the logistic 

regression model scored 99.81% and 99.77% for this transient.  The complete results 

from this analysis can be found in Appendix 2.    
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Due to the high validation measurements, it does appear from this analysis that 

there is promise in the area of applying machine learning to reactor safety. Applying 

trained machine learning models to reactor safety could lead to faster transient diagnoses, 

accident mitigation, and help keep the general public better informed of issues at a 

nuclear power plant. Areas that could be further explored include introducing more 

transients and more complex normal operation data to the dataset to see how the models 

perform and which models perform better with the more complex data. Another 

interesting area would be applying data from other similar reactor simulators to see if the 

models change much with a different reactor. Also, further exploration into the errors 

within these models to look for more patterns and factors behind the existing errors, 

would be another possible area of research. Finally, another worthwhile area of research 

would be, exploring other machine learning models, such as unsupervised learning, to see 

if the models can blindly group transient data. 
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Confusion Matrix for Decision Tree Model  

 

Misclassification Graph for Decision Tree Model 
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Table 11: Summary of Machine Learning Model Results  

Overall Validation Measurements Individual Transient Accuracies Time 

 

Accuracy Precision Recall F1 Score 

Normal 

Operation 

Transient 

Feed 

Water 

Pump  

Trip 

LOCA 

+ 

LOOP 

Valve 

Closure 

Rapid 

Power 

Change 

 

Time 

Required 

(Approx.) 

K-Nearest 

Neighbors 
98.35% 98.02%, 98.01% 98.01% 100% 96.6% 97.57% 98.01% 97.86% 1.5 Hours 

Bernoulli 

Naïve Bayes 
97.45%, 97.18%, 96.73 % 96.87%. 

100% 90.05% 100% 96.1% 93.72% 
1 Hour 

Gaussian 

Naïve Bayes 
97.45% 97.2% 96.83% 96.96% 

100% 88.77% 100% 96.59% 94.0% 
1 Hour 

Multinomial 

Naïve Bayes 
96.71%. 96.38%, 95.41% 96.10%. 

100% 90.05% 100% 96.1% 93.72% 1 Hour 

Logistic 

Regression 
98.55%. 98.41%, 98.04% 98.21% 

100% 96.87% 100% 97.62% 95.71% 
48 Hours 

Decision Tree 

Analysis 
98.6% 98.46%, 98.1% 98.27%. 

100% 97.33% 100% 97.57% 95.62% 
3 Hours 
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Summary  

 The purpose of this paper is to explore the ability of machine learning algorithms to 

identify transient events occurring with a nuclear reactor.  In order to perform this experiment, it 

was necessary to gather nuclear reactor data to create machine learning models. Due to the 

extremely high cost of nuclear reactors, as well as the possible serious health and environmental 

consequences of a nuclear power plant accident, it is impossible to create situations where an 

actual nuclear reactor experiences serious events or accident conditions that could be used to 

gather data. Instead, a reactor simulator was used to gather the synthetic data needed to apply the 

machine learning algorithms. Once the data was properly formatted, the data was applied using 

machine learning algorithms within two python machine learning packages, TPOT and scikit-

learn. This produced several different machine learning models in the form of supervised 

learning.  Finally, each machine learning model created was validated using measurements, such 

as accuracy and precision. 

Data used for this experiment was collected using a Generic Pressurized Water Reactor 

(GPWR) simulator at the Center for Advanced Energy Studies (CAES). The simulator was 

purchased by University of Idaho, Idaho State University and other CAES institutions from the 

Western Service Corporation (WSC). This simulator emulates the behavior of a “generic” 

pressurized water reactor (PWR). The output is rated at 4000 MW thermal/1400 MW electric. 

The simulator does not directly incorporate the design of any specific PWR. The reactor systems 

emulated include a high-pressure turbine and three low-pressure turbines and a configuration that 

includes: two loops, four coolant pumps and two steam generators. The interface for the 

simulator is shown below.  
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GPWR Simulator Interface 
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The GPWR simulator comes preloaded with 14 different initial conditions for the reactor; 

factors that vary include reactor power, core life, etc. These are shown in the table below. The 

simulator has several reactor control panels that allow the user to change the reactor system. 

These include: the operation of pumps, the opening/closing of valves, the flow of coolant, reactor 

power, etc. The simulator is equipped with an alarm system to inform the user of abnormal 

conditions occurring within the system. Similar to an actual reactor, the simulator can be 

scrammed by the operator and automatically under certain conditions, including both a reactor 

trip and a turbine trip. The simulator is also programmed to emulate the containment structure, 

engineering safety features and the behavior of these components under accident conditions.  The 

software was designed with the ability to mimic malfunctions of components that could 

potentially occur within a power plant. The reactor will behave accordingly to a malfunction. 

Some of these malfunctions include: heat exchanger degradation, motor shearing/seizures, valve 

failure to open/close, etc. These events can be triggered by the user or programmed as part of an 

accident scenario. 

GPWR Preprogramed Initial Conditions 

BOL, 100% 

Power 

MOL, 100% 

Power 

EOL, 100% 

Power 

BOL, 50% 

Power 

MOL, 50% 

Power 

EOL, 50% 

Power 

BOL, 1% Power MOL, 1% Power EOL, 1% Power BOL, Subcritical 

MOL, Subcritical  EOL, Subcritical  BOL, Xe 

Equilibrium  

MOL, 5% Power  

 

In order to construct machine learning models, it was necessary to decide on the features 

that would be measured using the GPWR reactor simulator. The simulator is able to measure and 

collect data from several reactor components, such as reactor power output and steam generator 

pressure. It was decided that for this model, the data gathered would consist of data that a reactor 
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operator would have access to and that would be readily available. Thirty three features were 

chosen and programmed into the simulator data collector. These features include: reactor power 

output, steam generator temperature and pressure etc. The table below shows these features. All 

of the features collected from the reactor simulator were quantitative in nature.  

Features Collected from GPWR Simulator 

Normalized 

Flux 

RCS LVL 

Loop 1 WR 

RCS LVL 

Loop 1 NR 

Hot Leg 1/ 2 

Temperature  

Cold Leg 1/ 

2A 

Temperature 

Cold Leg 

1/2B 

Temperature 

RC Loop- 

1/2A Norm 

Flow  

RC Loop -

1/2B Norm 

Flow 

Pressurizer 

Surge Line 

Temperature 

PORV 

Discharge 

Pressurizer 

Temperature 

Containment 

Pressure  

Containment 

Temperature 

MS Flow 

from SG-1 

Line-1/2B 

SG-1/2 

Pressure  

Average 

Temperature  

SG-1/2 NR 

Level  

FW Flow to 

SG-1/2 

Pressurizer 

Pressure  

Pressurizer 

Steam  

Temperature 

Norm 

Pressurizer 

Level 

Pressurizer 

Water 

Temperature 

Generator 

Power  

MS Flow 

from SG-1 

Line-1/2A 

 

 

In order to see how the model would be impacted by changes in the reactor system 

overtime, it was decided to conduct several runs changing the initial conditions of the simulated 

system. The first change to the system was the reactor power output. Three different conditions 

were used: full power, where the reactor is operating as to generate electricity; half power, where 

the reactor is being shut down and output is at approximately 50% of capacity, and low power 

where the reactor is critical and being prepared for startup but power generation is between 0 and 

1% capacity. The second initial condition changed for the reactor system involved the stage of 

the reactor's lifetime.  Three different conditions were available for use: beginning of life (BOL), 

where the reactor is brand new; middle of life (MOL), where the reactor is close to 30 years old; 

and end of life (EOL), where the reactor is close to decommissioning, 60 years into its operating 

life. Using these two features, it was possible to collect data on nine different initial condition 
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combinations, while the reactor is functioning as intended. Each run was conducted for 1200 

seconds and data was collected for each of the thirty three measurable features every second 

during the run. 

 In addition to collecting data when the reactor is under normal operating 

conditions, four transient events were selected to perform runs using the nine different initial 

condition configurations. The transient events selected were: a simultaneous trip of all feed water 

pumps, a simultaneous closure of all main steam isolation valves (MSIV), a maximum reactor 

coolant rupture combined with a complete loss of offsite power (LOOP), and a rapid power 

change, where power drops from 100% to 75% and then increases back up, 100% in a 10 minute 

period. Runs for the first three transients were done using the nine different configurations, with 

the transient occurring 20 seconds after the simulation began. Data was collected for 600 seconds 

after the transient occurred. For the rapid power change, due to the nature of the transient only 

three runs were done using different core lifetimes. These runs were 1100 seconds long.  

After the completion of a run, the data was saved from the reactor simulator to a comma 

separated values (CSV) file. In total, thirty nine different CSV files were generated and saved.  

After each run, the reactor core lifetime feature was added to each instant from the dataset for the 

run using either 'BOL', 'EOL' or 'MOL'. Also, the transient that had occurred was also added to 

each instant in the dataset. The initial 20 points in the each transient dataset were labeled as 

‘Normal Operation’. 

In order to create a machine learning model using the data collected from the reactor 

simulator, modifications were needed. The thirty nine CVS files were combined in a single file. 

This set consists of 30,710 data points, each consisting of the thirty three measured features, plus 
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the features added for reactor core life and transient event. Time stamps were not included in the 

final CSV file. The complete CSV file was imported using Pandas, into a DataFrame for easier 

modifications, prior to use in a machine learning model. 

The addition of the reactor core lifetime introduced a qualitative feature into the datasets 

which machine learning algorithms cannot use. In order to properly account for the reactor 

lifetime, it was necessary to convert the qualitative data into quantitative data using dummy 

variables. In this case, since there are three different types of qualitative data (BOL, EOL and 

MOL), two extra dummy variables were needed. The reactor simulator dataset was split into a 

training set and a testing set, with half the data in each. In supervised machine learning 

algorithms, data should be split in order to validate the results. 

The models for this project were created using the Tree-based Pipeline Optimization Tool 

(TPOT) package in Python. TPOT was developed by the Computational Genetics Lab at the 

University of Pennsylvania. The package is free and open-source. Data used in machine learning 

models must be preprocessed in order to provide reliable results. Also, there are several different 

models that can be created. Therefore choosing the best model can be difficult. The purpose of 

TPOT is to simplify and automate parts of the process, while providing better results due to 

improved data preprocessing and the use of multiple different methods.  

 The TPOT package makes use of data preprocessing and model construction 

functions within the scikit-learn package.  TPOT cannot account for qualitative data or missing 

values and as such, the user must perform data exploration prior to using the package. 

Preprocessing with TPOT uses nine different preprocessing methods: Binarization, Feature 

Agglomeration, Maximal Absolute Scaling, Minimum Maximum Scaling, Normalization, 
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Principal Component Analysis, Robust Scaling, Standard Scaling and RBF kernel sampling. In 

addition, TPOT uses three selection methods: Select Family Wise Error, Select Percentile and 

Variance Threshold Selection. The process of data preprocessing and selection is known as a 

pipeline. 

Once the pipeline has been constructed, TPOT will begin creating and validating 

supervised learning models. TPOT can perform either a regression analysis or classification. For 

classification, TPOT makes use of six different methods: Gaussian naïve Bayes, Bernoulli naïve 

Bayes, multinomial naïve Bayes, k-nearest neighbors, decision tree classification and logistic 

regression. It should be noted that the user can specify which model, selection and preprocessing 

methods are implemented, using a TPOT dictionary.  

The TPOT Classifier also allows the user to define the parameters of the model creation. 

One important parameter is the number of generations that will be used in the model creation. 

This is the number of iterations that will be used in the optimization process. Typically, the more 

generations run, the better the results will be. However, the process will take longer. Another 

important parameter that can be specified is the population size used. This number is the number 

of pipelines in each generation. Again, a larger population produces better results, but increases 

the time needed to complete the model.  

Once the parameters of the classifier have been set by the user, the program will then take 

the test and train datasets and determine which model is optimal. This process is time consuming 

and can take days to run, depending on the parameters and dictionaries used. TPOT will output 

the type of model that is optimal, as well as a single validation measurement.  
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Models were created using all six of the TPOT Classifiers. The parameters for these 

models include: 100 generations, a population size of 100. A dictionary was defined for both 

models, including all nine preprocessing methods and the three feature selection methods. To 

further evaluate the effectiveness of the model, the following measurements were used: accuracy, 

precision, recall and F1 score using scikit-learn. 

The results from the classification are good. The models were able to determine transient 

and non-transient behavior perfectly, as there were no false positives or negatives with the 

normal operations data. While there were errors, the model did well in distinguishing the 

different transients. All models scored in the mid-90s on all overall validation measurements and 

over 88% on all individual transient accuracies. The table below summarizes the results from this 

project. The confusion matrix and misclassification graph for the decision tree model are also 

given below. These results indicate that these techniques could be useful tools for assisting 

reactor operators in order to diagnose transients at power plants. This could mitigate or prevent 

reactor damage and help with overall perception of nuclear power.  
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Confusion Matrix for Decision Tree Model  

 

Graph of Misclassifications for Decision Tree Model 
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Summary of Machine Learning Model Results  

Overall Validation Measurements Individual Transient Accuracies Time 

 

Accuracy Precision Recall F1 Score 

Normal 

Operation 

Transient 

Feed 

Water 

Pump  

Trip 

LOCA 

+ 

LOOP 

Valve 

Closure 

Rapid 

Power 

Change 

 

Time 

Required 

(Approx.) 

K-Nearest 

Neighbors 
98.35% 98.02%, 98.01% 98.01% 100% 96.6% 97.57% 98.01% 97.86% 1.5 Hours 

Bernoulli 

Naïve Bayes 
97.45%, 97.18%, 96.73 % 96.87%. 

100% 90.05% 100% 96.1% 93.72% 
1 Hour 

Gaussian 

Naïve Bayes 
97.45% 97.2% 96.83% 96.96% 

100% 88.77% 100% 96.59% 94.0% 
1 Hour 

Multinomial 

Naïve Bayes 
96.71%. 96.38%, 95.41% 96.10%. 

100% 90.05% 100% 96.1% 93.72% 1 Hour 

Logistic 

Regression 
98.55%. 98.41%, 98.04% 98.21% 

100% 96.87% 100% 97.62% 95.71% 
48 Hours 

Decision Tree 

Analysis 
98.6% 98.46%, 98.1% 98.27%. 

100% 97.33% 100% 97.57% 95.62% 
3 Hours 
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Appendix 1.1 Reactor Power Behavior 
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Appendix 1.2 RCS LVL LOOP 1 WR 
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Appendix 1.3 RCS LVL LOOP 1 NR
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Appendix 1.4 HOT LEG 1 Temperature 
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Appendix 1.5 HOT LEG 1A Temperature

 

559

560

561

562

563

564

565

0 200 400 600 800 1000 1200 1400

C
o

ld
 L

e
g 

 1
A

 T
e

m
p

e
ra

tu
re

 (
F)

 

Time (Seconds) 

Normal Operations Cold Leg 1A Temperature   

Low Power MOL

Low Power BOL

Low Power EOL

Half Power BOL

Half Power MOL

Half Power EOL

Full Power BOL

Full Power MOL

Full Power EOL

558

560

562

564

566

568

570

0 100 200 300 400 500 600 700

C
O

LD
 L

EG
 1

A
 T

EM
P

ER
A

TU
R

E 
(F

) 

Time (Seconds) 

Feedwater Pump Trip COLD LEG 1A 
TEMPERATURE 

Low Power MOL

Low Power BOL

Low Power EOL

Half Power EOL

Half Power MOL

Half Power BOL

Full Power BOL

554

556

558

560

562

564

0 200 400 600 800 1000 1200

C
O

LD
 L

EG
 1

A
 T

EM
P

ER
A

TU
R

E 
(F

) 

Time (Seconds) 

Rapid Power Change Transient COLD LEG 1A 
TEMPERATURE 

BOL

MOL

EOL



106 
 

 

 

  

0

100

200

300

400

500

600

0 100 200 300 400 500 600 700

C
O

LD
 L

EG
 1

A
 T

EM
P

ER
A

TU
R

E 
(F

) 

Time (Seconds) 

LOCA-LOOP Transient COLD LEG 1A 
TEMPERATURE 

Low Power MOL

Low Power BOL

Low Power EOL

Half Power EOL

Half Power MOL

Half Power BOL

Full Power BOL

0

100

200

300

400

500

600

0 100 200 300 400 500 600 700

C
O

LD
 L

EG
 1

A
 T

EM
P

ER
A

TU
R

E 
(F

) 

Time (Seconds) 

Valve Closure Transient COLD LEG 1A 
TEMPERATURE 

Low Power MOL

Low Power BOL

Low Power EOL

Half Power EOL

Half Power MOL

Half Power BOL

Full Power BOL



107 
 

Appendix 1.6  Cold Leg 1B Temperature  
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Appendix 1.7 Hot Leg 2 Temperature
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Appendix 1.8 Cold Leg 2A Temperature
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Appendix 1.9 Cold Leg 2B Temperature
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Appendix 1.10  RC LOOP-1A FLOW
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Appendix 1.11  RC LOOP-1B FLOW
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Appendix 1.12  RC LOOP-2A FLOW
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Appendix 1.13  RC LOOP-2B FLOW
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Appendix 1.14 PRESSURIZER  SURGE LINE TEMPERATURE
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Appendix 1.15 PORV DISCHARGE TEMPERATURE
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Appendix 1.16 CONTAINMENT TEMPERATURE
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Appendix 1.17 SG-1 NR LEVEL
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Appendix 1.18 SG-1 NR LEVEL
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Appendix 1.19 FW FLOW TO SG-1
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Appendix 1.20 FW FLOW TO SG-2
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Appendix 1.21 MS FLOW FROM SG-1 LINE-1A
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Appendix 1.22 MS FLOW FROM SG-1 LINE-1B
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Appendix 1.23 MS FLOW FROM SG-2 LINE-1A
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Appendix 1.24 MS FLOW FROM SG-2 LINE-1B
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Appendix 1.25 SG-1 PRESSURE
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Appendix 1.26 SG-2 PRESSURE
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Appendix 1.27 AVERAGE TEMPERATURE
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Appendix 1.28 PRESSURIZER PRESSURE
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Appendix 1.29 PRESSURIZER LEVEL
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Appendix 1.30 PRESSURIZER WATER TEMPERATURE
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Appendix 1.31 PRESSURIZER STEAM TEMPERATURE
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Appendix 1.32 Reactor Power (MW)
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Appendix 2.1 Results from Second Run of Machine Learning Models  

Overall Validation Measurements Individual Transient Accuracies 

 

Accuracy Precision Recall F1 Score 

Normal 

Operation 

Transient 

Feed 

Water 

Pump 

Trip 

LOCA 

+ 

LOOP 

Valve 

Closure 

Rapid 

Power 

Change 

 

K-Nearest 

Neighbors 

98.34% 97.94%, 98.09% 98.00% 100% 94.78% 98.11% 98.43% 98.80% 

Bernoulli 

Naïve Bayes 

98.06%, 97.87%, 97.32% 97.53%. 100% 93.95% 100% 99.88% 93.72% 

Gaussian 

Naïve Bayes 

98.21% 98.03% 97.65% 97.82% 100% 96.71% 99.74% 96.71 95.21% 

Multinomial 

Naïve Bayes 

96.64%. 96.29%, 95.60% 95.74%. 100% 89.11% 100% 100% 86.11% 

Logistic 

Regression 

98.67% 98.54% 98.15% 98.33% 100% 97.58% 99.77% 97.90% 95.21% 

Decision Tree 

Analysis 

98.49% 98.19% 98.28% 98.24% 100% 97.21% 97.55% 97.15% 99.27% 

 

 

 

 

 



 

Appendix 2.2 Results from Third Run of Machine Learning Models  

Overall Validation Measurements Individual Transient Accuracies 

 

Accuracy Precision Recall F1 Score 

Normal 

Operation 

Transient 

Feed 

Water 

Pump 

Trip 

LOCA 

+ 

LOOP 

Valve 

Closure 

Rapid 

Power 

Change 

 

K-Nearest 

Neighbors 

98.51% 98.21%, 98.35% 98.27% 100% 97.98% 97.93% 97.94% 96.29% 

Bernoulli 

Naïve Bayes 

97.74%, 97.51%, 96.75% 97.03%. 99.98% 94.17% 100% 99.92% 88.08% 

Gaussian 

Naïve Bayes 

97.41% 97.15% 96.75% 96.93% 100% 93.33% 100% 94.70% 94.75% 

Multinomial 

Naïve Bayes 

97.11%. 96.80%, 96.62% 96.62%. 100% 87.08% 100% 99.51% 95.29% 

Logistic 

Regression 

98.60% 98.41% 98.09% 98.24% 100% 96.80% 99.81% 98.07% 95.44% 

Decision Tree 

Analysis 

98.34% 97.94% 98.15% 98.04% 100% 94.90% 97.78% 98.22% 99.53% 

 


