
In presenting this thesis in partial fulfillment of the requirements for an advanced

degree at Idaho State University, I agree that the Library shall make it freely available for

inspection. I further state that permission for extensive copying of my thesis for scholarly

purposes may be granted by the Dean of the Graduate School, Dean of my academic divi-

sion, or by the University Librarian. It is understood that any copying or publication of this

thesis for financial gain shall not be allowed without my written permission.

Signature

Date

i

Rastered Beam Interaction Vertex Reconstruction in the CLAS12 Detector

by

David Friant

A thesis

submitted in partial fulfillment

of the requirements for the degree of

Master of Science in Physics

Idaho State University

Summer 2019

ii

To the Graduate Faculty:

The members of the committee appointed to examine the thesis of David Friant find it

satisfactory and recommend that it be accepted.

Dr. Tony Forest,

Major Advisor

Dr. Dan Dale,

Committee Member

Dr. David Beard,

Graduate Faculty Representative

iii

Contents

Abstract . vii

1 Introduction . 1

2 Theory . 4

2.1 Drift Chambers . 4

2.1.1 Typical Construction and Principle of Operation 4

2.1.2 Addition of a Magnetic Field . 6

2.1.3 CLAS12 . 6

2.2 Track Reconstruction Elements . 10

2.2.1 Coordinate Systems . 10

2.2.2 Runge-Kutta Approximation . 12

2.2.3 Kalman Fitter . 13

2.3 Rastered Beam . 16

3 Simulation and Reconstruction . 17

3.1 Physical Setup . 17

3.2 Simulation . 18

3.3 Current Reconstruction Algorithms . 20

3.4 Proposed Reconstruction Algorithm . 21

3.4.1 Parameters . 22

3.4.2 Overarching Algorithm . 23

3.4.3 Reconstruction . 23

iv

3.4.4 Grid Search . 23

3.4.5 Vertex Search . 24

4 Analysis . 25

4.1 ΔZ Comparisons . 26

4.2 ΔZ Summary Table . 31

4.3 ΔZ Dependence on Raster Radius . 32

4.4 ΔX and ΔY . 33

4.5 Efficiency . 36

5 Conclusion . 37

References . 39

Appendix A Example Program Calls and Example GCard 42

A.1 Example GCard . 42

A.2 Program Calls . 47

Appendix B Descriptions of Hit Based and Time Based Reconstructions . 48

B.1 Definition of Terms . 48

B.2 Hit Based Algorithm . 49

B.2.1 Hits to Clusters . 49

B.2.2 Clusters to Segments . 49

B.2.3 Segments to Crosses . 50

B.2.4 Crosses to Tracks Part I . 50

B.2.5 Crosses to Tracks Part II . 52

B.3 Time Based Algorithm . 52

B.3.1 Hits to Clusters . 52

B.3.2 Clusters to Segments . 53

B.3.3 Reconstructing Tracks . 53

v

Appendix C Source Code For Raster Based Reconstruction 54

vi

Abstract

Rastered Beam Interaction Vertex Reconstruction in the CLAS12 Detector

The thesis reports the results of an improved track reconstruction program that is used

to determine the momentum and interaction vertex of particles scattering in experiments

performed using the CLAS12 Detector at Jefferson Lab. Particles are reconstructed from

the CLAS12 drift chamber and scintillator detector sub-systems. The improved algorithm

performs a three dimensional grid search in momentum space in an attempt to minimize

the distance of closest approach between the particle’s path and the transverse location

of the incident electrons that scatter from nucleons in a cryogenic target. Analysis has

shown that the new algorithm is capable of improving the reconstruction in the X and Y

directions (orthogonal to the incident electrons) by a factor of no less than ten, while at least

maintaining the quality of the reconstruction in the Z direction for a subset of input events.

Key Words: CLAS12, Rastered Beam, Reconstruction

vii

Chapter 1

Introduction

The CLAS12 is a charged and neutral particle detector constructed in Jefferson Lab’s

Hall B. The detector is used to reconstruct nuclear physics interactions that result when

GeV energy electrons interact with select targets. CLAS12’s precursor, the original CLAS

(CEBAF Large Acceptance Spectrometer), was built to facilitate measurements of excited

states of nucleons and characterize nucleon-nucleon correlations. Contemporaneous with the

12GeV upgrade to Jefferson Lab’s accelerator, CLAS was removed and CLAS12 was built

in its place.1

CLAS12 is designed to not only continue the mission of its predecessor, but to also

measure generalized parton distributions of nucleons and search for exotic forms of matter.

It is currently slated to perform experiments for more than ten years into the future and will

likely continue to contribute even after that.1 Figure 1.1 shows a model of the detector with

labels detailing some of the sub detector’s and other components. It is important to note

here that CLAS12 is not a singular detector, but instead a suite of detectors which can be

correlated together in order to more precisely reconstruct the interactions that occur within

the physics target.

Alongside the construction of CLAS12, several software packages have been created to

handle simulating the detector response, reconstructing events from detector the detector

response, and visualizing the reconstructed interactions. For simulation, the CLAS Collab-

1

oration has developed a package that provides all of the necessary information to GEMC2

(GEant4 Monte-Carlo), a general program designed to make interfacing with Geant43 eas-

ier. The program used for viewing events is called CED (CLAS Event Display), and is a

continuation of a program originally designed for use with the CLAS. Most importantly for

this document, as it is the topic of discussion, is the reconstruction software. Known as

clas12-offline-software4, it is a collection of various (mostly) java programs used to process

the data collected from CLAS12 and reconstruct the observed particle mass, momentum,

and location within the detector.

This thesis is two-fold in purpose. First, it is intended to provide an understanding of

the current methods used to reconstruct particle trajectories from the drift chamber sub-

detectors of CLAS12. This includes both a theoretical understanding of the underlying

algorithms and physics as well as the actual implementation of those ideas. The second

purpose is to present an additional method of reconstruction which takes the already existing

drift chamber reconstruction output and further refines it so that interactions which arise

from a rastered beam may be reconstructed more accurately.

It should be noted that, in the context of this thesis, the primary motivation behind

the development of this new reconstruction algorithm is to allow for the reconstruction of

events from a physics target that contains two polarized target regions separated by some

distance. More details will be given about the target in the Simulation and Reconstruction

chapter. Semi-Inclusive Deep Ineslatic Scattering (SIDIS) events are of particle interest.

SIDIS events only consider the scattered incident particle, an electron in this case, and the

highest energy hadron produced by the interaction, if any. The core idea is that when the

scattered particle interacts with a parton in the struck particle, there will be a primary

product hadron accompanied by a hadron shower. The kinematics of this primary product

and the scattered particle are believed to encode most of the information about the struck

parton.

2

Figure 1.1: A 3-D model of the entire CLAS12 detector. The components marked as Regions

1, 2, and 3 indicate the drift chambers.5

3

Chapter 2

Theory

This chapter is meant to provide sufficient knowledge and background to understand

the general workings of the CLAS12 drift chambers, the most critical elements of the re-

construction process, and the rasterization of the scattered electrons. With regards to the

drift chambers, particular attention is paid to the geometry and physical construction as

that directly effects the acceptance of the detector. The elements of the most importance

discussed here are the concepts of Runge-Kutta approximations and Kalman Fitters. Both

are used heavily in the reconstruction process. And finally, the discussion about rastered

beams gives background as to why this project exists to begin with.

2.1 Drift Chambers

The CLAS12 drift chambers are designed to determine the momentum of charged particles

moving through them. The following sections provide a brief overview of drift chambers in

general.

2.1.1 Typical Construction and Principle of Operation

Drift chambers are charged particle detectors that are designed to measure the trajectory

of a particle’s path through the detector. The trajectory is backed out from discrete position

4

and momentum data from wires within the chamber. This process is typically called Inverse

Kinematics.

Typically, drift chambers are constructed out of a chamber filled with an ionizable gas

and planes of conducting wire. The wire planes are arranged to be ideally perpendicular to

the particle’s direction of motion and come in two alternating types: cathode planes and

anode (sense) planes. The planes are designed to create a nearly uniform static electric field

which will drive electrons towards the sense planes. As described in the next paragraph,

the sense wires collect ionized electrons, producing an electronic signal. That electronic

signal propagates in both directions along the sense wire and away from the location of the

ionization. The signal’s propagation is measured by a pair of coupled timers at either end of

the wire. It is common to have multiple sets of layers which are oriented differently, though

still perpendicularly to the direction of motion, to increase the accuracy of the reconstructed

trajectories.6

The general principle of producing an electronic signal in a drift chamber is as follows.

A charged particle moves through the drift chamber and ionizes atoms along its path. The

electrons, which have been separated from these atoms, are now accelerated towards the

anode wires (sense wires). If the anode wire is very thin, the electric field near to it becomes

very strong, causing the electrons to pick up a great deal of speed and cause a Townsend

avalanche. A Townsend avalanche is a cascading series of ionizations which help to amplify

the signal.7 This signal being a voltage pulse traveling towards either end of the wire from

the point where the electrons hit. Using the coupled timers at the ends, it is then possible

to use the difference in time of signal propagation to calculate the position along the wire of

the hit.

This position along the axis of the wire is only one dimensional information about a

particle traveling through 3D space. It is, however, possible to couple the timing information

from multiple nearby sense wires and a measurement of the time the liberated electrons take

to reach the sense wire to calculate the distance of closest approach (DOCA) to each of them.

This then gives a position along the axis of each wire as well as a radius perpendicular to that

5

axis at that point. If all of this information is known perfectly, then the vector component

of the path which lies in the plane of a circle defined by the aforementioned radius will be

tangent to that circle. Combining that information with the change in hit position along

the axis of each wire allows for the ultimate measurement of the particle’s path through the

detector.

2.1.2 Addition of a Magnetic Field

The inclusion of a magnetic field into a drift chamber allows for the reconstruction of not

just the path of the particle, but also the magnitude of its momentum. A uniform magnetic

field perpendicular to the particle’s direction of motion, for example, would cause the path

to bend into some section of a circle, thus changing the expected hit position along the wires

of the sense planes. Using these hits, it is then possible to reconstruct the radius of curvature

of the path. With the assumption the particle carries the usual elementary charge, it is then

possible to calculate the particle’s momentum by equating the central force and magnetic

force as shown in equation 2.1.

γmv2

r
= qvB =⇒ γmv = qBr (2.1)

2.1.3 CLAS12

CLAS12’s drift chambers are the primary source of path information for interaction

reconstruction within the entire detector suite and are the focus of this document. As such,

it is important to make as clear as possible their construction.

CLAS12’s Drift Chamber Construction

The CLAS12 Detector’s drift chamber is broken up into 18 separate sub-chambers as

shown in figure 2.1. There are six chambers in each of three regions which are approximately

2.1, 3.3, and 4.5 meters away from the physics target position. Within each region, the six

6

Figure 2.1: The three regions and six sectors per region in the drift chambers.5

triangular chambers are arranged to be in symmetric sectors around the beam axis with

angular coverage between 5° and 40° as measured at the target location with respect to the

beam axis. The design of the detector allows for a momentum resolution of less than one

percent.8

Within each region and sector are two superlayers of wire planes which are arranged

such that the axes of the wires lie in parallel planes that are rotated by 12° with respect

to each other. Within each superlayer are 6 layers of sense wires. Each layer has 112 sense

wires which have a hexagonal arrangement of cathode wires around them. These hexagonal

arrangements are referred to as cells. They grow in size from region 1 to region 3 and provide

a spatial resolution of approximately 300µm.8

7

Magnetic Fields

The CLAS12 detector has two magnetic fields, one solenoidal field at the target and one

toroidal field centered around the second drift chamber region. The solenoidal field points

primarily in the direction of the beamline with a central value of 5 Tesla, and is designed to

prevent Möller electrons, a primary background, from entering the detector by redirecting

their trajectories to be down the beamline.9 The toroidal field is actually the result of six

smaller coils, one in each sector, which all contribute to create a field that is primarily in the

phi (azimuthal about the beam line) direction.10 This is designed to bend particles either into

or away from the beam line through the drift chambers which allows for the reconstruction

of the particle’s momentum. See figure 2.2.

8

Figure 2.2: The strength of both the solenoidal (left) and toroidal (center) magnetic fields.

9

2.2 Track Reconstruction Elements

This section describes the theory behind and implementation of several of the more

opaque components of the reconstruction algorithms.

2.2.1 Coordinate Systems

The collaboration has defined two coordinate systems in addition to the lab system to

reduce the complexity of the reconstruction process within the drift chambers. The lab

coordinate system is defined by a right-handed system such that the positive y-direction is

upwards, against the pull of gravity and the positve z-direction is down the beam line. This

results in the positive x-direction bisecting what is known as sector one as shown in figure

2.3.

The sector coordinate system is defined by rotating the sector of interest about the Z

axis into the position of sector one as per figure 2.3. This rotation will naturally be some

multiple of 60° and will only take into account ±30°about the 0°angle. The tilted sector

coordinate system takes a sector coordinate system and rotates it about the y-axis, again

as per figure 2.3, by 25° such that the Z-direction is now perpendicular to the sector drift

chambers. Transformations between these different coordinate systems are typically handled

by rotation matrices. The matrices 2.2, 2.3, and 2.4 operate on vectors to rotate about the

X, Y, and Z axes respectively.11


1 0 0

0 cos(θ) −sin(θ)

0 sin(θ) cos(θ)

 (2.2)


cos(θ) 0 −sin(θ)

0 1 0

sin(θ) 0 cos(θ)

 (2.3)

10

Figure 2.3: The lab coordinate system and sectors as seen when looking down the beam line.

11


1 0 0

0 cos(θ) −sin(θ)

0 sin(θ) cos(θ)

 (2.4)

It follows then that to transform from the tilted sector coordinate system to the sector

coordinate system, one would use matrix 2.3 with θ = 25◦. Likewise, to transform from the

sector coordinate system for sector n to the lab coordinate system, one would use matrix 2.4

with θ = (n− 1)30◦.

2.2.2 Runge-Kutta Approximation

The Runge-Kutta approximations are a family of numerical methods used to approximate

solutions to ordinary differential equations. The simplest member of this family is Euler’s

method as shown in equations 2.5 and 2.6. Here it is important to see that f(t, y) = df
dt

and

h is the step size in t. It is straightforward to see that it is possible to achieve an arbitrary

level of accuracy by allowing h to be arbitrarily small.12

xn+1 = xn + hf(tn, yn) (2.5)

tn+1 = tn + h (2.6)

However, it is often either not possible or not feasible to allow h to become arbitrarily

small. This has motivated the use of the higher order Runge-Kutta methods as they are more

algorithmically efficient at giving approximations of the same quality. This allows for larger

step sizes and thus fewer steps. Of these methods, the 4th order method, often referred to

simply as ”the Runge-Kutta method,” is used in the drift chamber reconstruction process.

At its core, the 4th order method is a weighted average of 4 different approximations as seen

in equations 2.7 through 2.12.12

k1 = f(tn, xn) (2.7)

k2 = f(tn +
h

2
, xn + h

k1
2

) (2.8)

12

k3 = f(tn +
h

2
, xn + h

k2
2

) (2.9)

k4 = f(tn + h, xn + hk3) (2.10)

xn+1 = xn +
h

6
(k1 + 2k2 + 2k3 + k4) (2.11)

tn+1 = tn + h (2.12)

It is important to note here that all members of the Runge-Kutta family do accumulate

errors as they step through more iterations. The error in a single step, called the Local

Truncation Error, is of the order O(h5), and the accumulated error is of the order O(h4).12

Jefferson Lab’s software team has implemented the 4th order algorithm into an object

called a Swimmer. This Swimmer is given maps of the magnetic fields and a state vector

which incudes the position, momentum, and charge of the particle of interest. The swimmer

can then be called upon to swim (step) the particle until it meets certain position criteria

such as a particular value along the z-axis.

2.2.3 Kalman Fitter

The Kalman Fitter is built on the concept of a Kalman Filter. A Kalman Filter is a

statistical algorithm which combines a hypothetical model with measurements to find the

Best Linear Unbiased Estimate (BLUE) of an evolved system. Included in this section is

a description of the Kalman Filter process, a summary of the mathematics of it, and a

discussion of the implementation used in the Hit Based and Time Based Reconstruction

algorithms.

In general, the Kalman Filter Algorithm proceeds as follows. First, the initial state

vector of interest and its associated uncertainties are evolved until there is a measurement

available to compare against. The algorithm then compares the predicted and measured

values and takes a weighted average of them wherein more weight is given to values with

smaller uncertainties. The state vector is updated and the algorithm repeats. It is worth

mentioning that the Kalman Filter is efficient in the sense that there is no need to keep track

of old state vectors. There is instead a covariance matrix which is updated every step.13

13

A summary of the mathematics of the Kalman Filter is layed out in equations 2.13

through 2.28. It is quoted from An Introduction to Kalman Filtering with Applications by

Miller and Leskiw.13

Let xxx(t) be a state vector which satisfies the deterministic ordinary differential system

ẋ̇ẋx(t) = F (t)xxx(t) (2.13)

xxx(t0) = xxx0 (2.14)

Then in the Kalman theory we have:

System model

Ẋ̇ẊX(t) = F (t)XXX(t) + VVV (t) (2.15)

XXX(t0) = x̂̂x̂x0 (2.16)

where VVV (t) has mean zero and cross-covariance matrix S(t, s) = B(t)Ω(t)B′(t)δ(t− s) where

Ω(t) is a positive definite spectral density matrix and B(t) is a square matrix. The random

initial condition x̂̂x̂x0 has mean xxx0 and positive definite covariance matrix P0.

Measurement model

ZZZk = Hkxxx(tk) + vvvk, k = 1, 2, ... (2.17)

where vvvk has mean zero and positive definite covariance matrix Rk. It is assumed that VVV (t),

x̂̂x̂x0, and vvvk, k = 1, 2, ... are independent.

State estimate propagation

˙̂ẋ̂ẋ̂x(t) = F (t)x̂̂x̂x(t), t0 ≤ t < tl (2.18)

x̂̂x̂x(t0) = x̂̂x̂x0 (2.19)

and

˙̂ẋ̂ẋ̂x = F (t)x̂̂x̂x(t) (2.20)

has initial condition x̂̂x̂x(tk) in [tk, tk+1, ...), k = 1, 2, ...

14

Error covariance propagation

Ṗ (t) = F (t)P (t) + P (t)F ′(t) +B(t)Ω(t)B′(t), t0 ≤ t < tl (2.21)

P (t0) = P0 (2.22)

and

Ṗ (t) = F (t)P (t) + P (t)F ′(t) +B(t)Ω(t)B′(t) (2.23)

has initial condition P (tk) in [tk, tk+1, ...), k = 1, 2, ...

State estimate update

x̂̂x̂x(tk) = (I −KkHk)x̂̂x̂x(t−k) +KkZZZk (2.24)

= P (tk)[P−1(t−k)x̂̂x̂x(t−k) +H ′kRk
−1ZZZk], k = 1, 2, ... (2.25)

Error covariance update

P (tk) = [P−1(t−k) +H ′kR
−1

kHk]−1 (2.26)

= (I −KkHk)P (t−k), k = 1, 2, ... (2.27)

Gain matrix

Kk = P (tk)H ′kR
−1

k, k = 1, 2, ... (2.28)

This is implemented in the Fitter as a method of refining a trajectory provided by cal-

culations done on the raw hits. In essence, this method takes the initial state vector and

steps it to each drift chamber region using the Runge-Kutta based Swimmer discussed in the

previous section. At each region, the Kalman Filter is used to refine the trajectory. After

finishing with the third region, the algorithm then steps back to near the starting location

of the inital state vector and repeates the process up to 30 times. The algorithm will exit

early if the χ2 is sufficiently small.

15

2.3 Rastered Beam

A rastered beam is the intentional movement of the incident electrons, ideally translating

without rotation, over the surface of the target. The primary purpose of this is to distribute

the energy deposited into the target more uniformly and avoid localized target heating that

would result in physical changes to the target. In the case of a cryogenic target, overheating

can cause localized target boiling, reducing the effective length of the target, and result in a

lower luminosity of the experiment. In the case of a polarized target, overheating can impact

the ability of the target to be polarized resulting in a need to recover target polarization

through annealing.

As already stated, the ideal case is a raster that purely translates the incident electrons

in the plane perpendicular to the electron momentum without any rotation. The underlying

assumption used to determine the kinematics of an observed scattering event is that the

incident electrons were directed parallel to a coordinate axis. In the CLAS12, the reference

coordinate system aligns the z-axis such that it points parallel to the incident electron’s

momentum. The scattered electron’s azimuthal angle with respect to this axis is used to

quantify kinematic variables in the reaction and the cross section. Most notably, this angle

is used to determine the amount of four-momentum that was transferred to the target. It

follows that an angular offset in the incident electron beam would be an error that propagates

to the measured kinematics and cross-sections.

Unfortunately, it is nigh impossible to be able to achieve pure translation in a real lab

setting. It is preferable then to simply minimize the changes in incident angle to such a

degree that the contribution to systematic errors are minimal. In the common case of using

a dipole magnet to create raster behavior, it is sufficient that the angular size of the target

relative to the magnet’s position be quite small. This ensures that any particle that hits the

target will also have a small relative change in angle compared to any other particle.

16

Chapter 3

Simulation and Reconstruction

This chapter describes the steps taken to determine the efficacy of the proposed recon-

struction algorithm. Included are a description of the physical setup of the actual polarized

SIDIS dual target, a description of the simulations done to gather test data, and a discussion

of both the current and proposed reconstruction algorithms. The ultimate goal of the pro-

posed reconstruction algorithm is to be able to confidently state which of the two subtargets

any given event spawned from.

3.1 Physical Setup

Figure 3.1 provides a general description of the target used in the simulation. In the

simulation, the setup is centered in the middle of the solenoid magnet with a gap of four

centimeters between the two targets. Each target is two centimeters long and has a radius of

one centimeter. Each of the targets can be independently polarized and may contain either

NH3 or ND3. Additionally, there is a carbon foil centered between the two targets. This foil

is used to normalize away particles scattered off of the nitrogen in the two main targets.

17

Figure 3.1: A description of the general geometry of the polarized dual target.14

3.2 Simulation

All of the data used to analyze the efficacy of the proposed reconstruction algorithm

was generated using GEMC version 4a.2.4. GEMC (GEant4 Monte-Carlo)2 takes as input

configuration files called GCards. These GCards direct the program to load in certain

tagged releases of the files (geometry, magnetic fields, etc.) required to simulate the desired

experiment. The CLAS12 software team has created a repository containing various different

revisions of tags which can be used.15 A sample GCard can be found in Appendix A.

Additionally, the GCards allow the user to set certain parameters within the simulation.

Of particular importance are scaling the magnetic field vectors and specifying the manner

in which the simulated particles are generated. The magnetic field scales are set by simply

passing in the desired scale factor. The event generator is somewhat more complicated. It is

broken into four different components: beam momentum, momentum spread, beam position,

and position spread. The beam momentum has four parameters: simulated particle, momen-

tum magnitude, momentum polar angle, and momentum azimuthal angle. The momentum

spread has three parameters: plus or minus momentum spread, plus or minus polar angle,

18

and plus or minus azimuthal angle. The beam position has three parameters: X-position,

Y-position, and Z-position. the position spread has two parameters: spread radius in the

X-Y plane and Z-position spread. A full description of all available options can be found at

https://gemc.jlab.org/gemc/html/documentation/options.html.

It should be noted here that the ranges for the momentum were provided by Dr. Tony

Forest and that they are indicative of the expected kinematic range of the actual experiment.

e- In Up e- In Down e- Out Up e- Out Down

Toroid Scale -1.0 -1.0 1.0 1.0

|P | 4.75± 3.25GeV 4.75± 3.25GeV 4.75± 3.25GeV 4.75± 3.25GeV

φ 22.5± 17.5◦ 22.5± 17.5◦ 22.5± 17.5◦ 22.5± 17.5◦

θ 0.0± 180.0◦ 0.0± 180.0◦ 0.0± 180.0◦ 0.0± 180.0◦

X 0.0cm 0.0cm 0.0cm 0.0cm

Y 0.0cm 0.0cm 0.0cm 0.0cm

R 1.0cm 1.0cm 1.0cm 1.0cm

Z −3.0± 1.0cm 3.0± 1.0cm −3.0± 1.0cm 3.0± 1.0cm

π+ Up π+ Down π- Up π- Down

Toroid Scale 1.0 1.0 -1.0 -1.0

|P | 1.8± 1.0GeV 1.8± 1.0GeV 1.8± 1.0GeV 1.8± 1.0GeV

φ 45.0± 45.0◦ 45.0± 45.0◦ 45.0± 45.0◦ 45.0± 45.0◦

θ 0.0± 180.0◦ 0.0± 180.0◦ 0.0± 180.0◦ 0.0± 180.0◦

X 0.0cm 0.0cm 0.0cm 0.0cm

Y 0.0cm 0.0cm 0.0cm 0.0cm

R 1.0cm 1.0cm 1.0cm 1.0cm

Z −3.0± 1.0cm 3.0± 1.0cm −3.0± 1.0cm 3.0± 1.0cm

Table 3.1: Descriptions of the non-default parameters used generate the eight data sets.

Inbending and outbending are shortened to In and Out respectively. Upstream and Down-

stream are shortened to Up and Down respectively.

19

Four pairs of data sets were generated for this analysis. Each pair consists of one 5000

event data set generated uniformly within each subtarget and was later combined to make

a single 10000 event data set. The four ultimate data sets are labeled as such: electron-

inbending, electron-outbending, postive pion, and negative pion. The toroidal field was set

such the the pions are always inbending. The two electron set parameters differ only by the

scale of the toroid. In one case it is set such that electrons bend into the beam line and in

the other case they bend away. In the case of the pions, the toroid scale is set such that

particles always bend into the beamline. Table 3.1 shows all of the non-default parameters

used to generate each data set.

After GEMC has been run, the resulting EVIO (Event Input Output) files must be

converted to HIPO (High Performance Output) files. This is done by calling one of the

utilities packaged in clas12-offline-software, evio2hipo. Once that is done, the upstream and

downstream components of each pair of data sets are merged using another clas12-offline-

software program, hipo-utils. Examples for running all of these can be found in Appendix A.

All that remains then is to run the HIPO files through the two pre-existing reconstruction

algorithms and then the proposed algorithm.

3.3 Current Reconstruction Algorithms

There are currently two drift chamber reconstruction algorithms. The first, called Hit

Based, feeds into the second, called Time Based. The following paragraphs are brief descrip-

tions of both of them. Appendix B holds lengthy descriptions of both algorithms.

The Hit Based algorithm is the first pass at reconstruction and is largely used to lay

groundwork for the Time Based algorithm. In broad strokes, the Hit Based algorithm works

by first collecting all of the drift chamber hits and grouping them by their superlayer. Those

groups are then processed and a linear fit is attempted. That fit is then used to find a

position-momentum state vector between the superlayers of each region. Finally, a combi-

nation of a Kalman Fitter and the Runge-Kutta based Swimmer are used to reconstruct the

20

trajectory of the particle and, thus, the interaction vertex.

The Time Based algorithm works by taking the tracks already reconstructed by the Hit

Based reconstruction and refining them further. First, the groups of hits are regathered

and some of the likely-extraneous hits are culled using timing information. Those groups

then undergo another test to check whether or not the entire group should be thrown out or

not. The Kalman-Fitter and Swimmer are then used again to find the new trajectories and

interaction vertices.

Both of these reconstruction algorithms are run on each HIPO file by calling the notsouseful-

util program that is packaged as a part of clas12-offline-software. Once again, an example

of the command to call the program can be found in Appendix A.

3.4 Proposed Reconstruction Algorithm

The Raster Based algorithm takes the output of both the Time and Hit Based algorithms

and attempts to fit them to an off-axis beam position. This is achieved by performing a grid

search through a small region of momentum space about a state vector provided by older

algorithms. The actual vertex is found by swimming all of these slightly varied state vectors

to the beam line and calculating the DOCA. Please note that the source code for this is

found in its entirety in Appendix C.

This program currently only exists in a fork off of Jefferson Lab’s official GitHub reposi-

tory. The address for this is https://github.com/friadavi/clas12-offline-software. Should the

reader wish to run the program, they may run the fritracking program which is packaged

with the rest of the clas12-offline-software in the aforementioned fork. An example of calling

the program may be found in Appendix A.

For this analysis, the data sets reconstructed by the Hit and Time based algorithms were

reconstructed multiple times while the two grid search parameters, span and samples, were

varied independently. The span was varied, inclusively, between values of 0.001 and 0.015

(0.1 and 1.5%). The number of samples was varied, again inclusively, between 3 and 10.

21

This allows for an analysis of the reconstruction as a function of the two independently.

3.4.1 Parameters

This algorithm takes a variety of input parameters which control both the extent and

granularity of the two searches involved as well as various other variables. These parameters

are listed and explained below.

Input The name and path to the input file to reconstruct.

Output The name and path of the output file. Any preexisting file will be overwritten.

Engine The output from which engine to reconstruct. The options at present are Hit Based

and Time Based. In the event that this parameter is not specified, the algorithm will

preferentially take the Time Based if available, and Hit Based if not.

Solenoid The scale factor of the magnetic field generated by the solenoid.

Toroid The scale factor of the magnetic field generated by the toroid.

Grid Search Span The span in each Cartesian dimension in momentum space about which

the grid search will take place. This value is provided as a percentage such that the

span of the search is px,y,z(1± value).

Grid Search Samples The number of evenly spaced sample points to take in each mo-

mentum dimension. This includes the edges of the span, as such this number should

never be less than two. It is recommended to always use an odd number, that way the

starting value is included in the search.

Vertex Search Upper Bound The upper bound in the z-direction in which to search for

the DOCA to the beam position.

Vertex Search Lower Bound The lower bound in the z-direction in which to search for

the DOCA to the beam position.

22

Vertex Samples The number of evenly spaced sample points to take in each iteration of

the vertex search. This includes upper and lower bounds, as such this number should

not be less than two.

Vertex Iterations The number of recursive iterations to go through in the vertex search.

Threads The maximum number of threads that can be used in the reconstruction.

3.4.2 Overarching Algorithm

The algorithm begins by parsing commandline options; it stops the reconstruction if any

errors occur. After that, the magnetic field maps are initialized and scaled if necessary. Then,

for each event within the input file, the reconstruction algorithm is run and the output, if

any, is written to the output file.

3.4.3 Reconstruction

This begins by reading in whichever output banks are required, as dictated by the Engine

commandline parameter. Then the beam position is read in from the simulation bank. If the

event is real data, then the beam position is assumed to be at x = 0, y = 0. There is currently

an assumed radius of error of 0.5mm in the beam position. The algorithm then collects a

state vector output by the Hit Based and Time Based algorithm. This state vector’s position

is just upstream of the region 1 drift chamber and will be the starting point of the search.

The grid search is run and the output is written to the data banks.

3.4.4 Grid Search

This sub-algorithm starts by computing the upper and lower bounds of the momentum

space in which to search. Arrays to store the output of each search point are then created

and a ThreadPool is established to allow for the multithreading of the vertex searches for

each grid search sample point. A vertex search job thread is then submitted for every sample

23

point in the three dimensional momentum search space. For the Grid Search Samples value

n, there are n3 sample points, each evenly spaced in all three dimensions.

After all submitted jobs have been completed, the algorithm searches through all of the

outputs and identifies interaction vertices which are either within the beam line’s margin of

error or a local minimum. All other points are culled. Any points whose interaction vertex

z value is outside of the vertex search bounds is culled. Finally, the algorithm searches

through all surviving interaction vertices and selects for output the one whose initial starting

momentum deviated the least from the Hit Based or Time Based momentum.

The source code for this method starts on line 611 of Appendix C.

3.4.5 Vertex Search

This sub-algorithm begins by swimming from the state vector provided by the grid search

to each sample z value within the search region. The samples points are evenly spaced

throughout the region and include the boundaries. The swim outputs are collected, and the

DOCA for each one is calculated. All local minima among the DOCAs are added to a list. If

this is the last iteration, the algorithm returns the output which corresponds to the smallest

DOCA, failing gracefully if no swims performed successfully.

In the event that there are more iterations to go, this algorithm recursively calls itself on

each local minima. The bounds of the recursive search search are as follows: if the minimum

is at a boundary of the search region it is recentered on the boundary without changing the

actual distance spanned and the function is called without decrementing the iteration count.

Otherwise, the search region is recentered on the point associated with the local minimum

and the boundaries are shrunk to coincide with the nearest neighbor sample points. The

iteration count is decremented and the function is called. The output of each new search is

collected and the one with the smallest DOCA is returned.

The source code for this method starts on line 782 of Appendix C.

24

Chapter 4

Analysis

Before moving into the analysis proper, it is worth summarizing what exactly is being

analyzed and to what end. Four data sets, each initially of 10,000 events, have been generated

and run through the Hit Based and Time Based reconstruction algorithms. The ouputs of

the old reconstructions were then fed into the proposed reconstruction multiple times while

varying the number of samples used and the span of the search. These data sets consist of

events that were generated within the volume of the subtargets of the polarized SIDIS dual

target. Two of the data sets consist of electrons, one with an in-bending toroid configuration

and one with an out-bending configuration. The other two data sets are π+ and π- particles,

each with a toroid configuration which will cause them to bend into the beam line. The goal

is to determine with how much confidence one can state which of the targets a particle was

generated from.

The analysis will be presented as follows. First a comparison of typical ΔZ values will be

shown. Then an examination of the effect of the raster radius on the reconstruction will be

provided. That will be followed by an examination of typical ΔX and ΔY reconstructions.

Finally, a discussion of the reconstruction efficiency will be presented.

25

4.1 ΔZ Comparisons

Figures 4.1 through 4.4 show histograms and associated Gaussian fits of the differences

between the generated Z positions and the reconstructed Z positions for both the current

and proposed reconstruction algorithms. It is immediately obvious that the electrons are

reconstructed more accurately and precisely than the pions. Furthermore, it is worth looking

at the number of entries in each figure. They indicate that it is perhaps unwise to put too

much weight in the pion reconstructions due to likely insufficient statistics. Regardless, the σ

of each fit to the proposed algorithm data shows an improvement over the current algorithm.

Commentary on what can be said for confidence in determining which target any given event

came from is reserved for the Conclusion section.

26

Figure 4.1: The difference between the generated and reconstructed Z positions of the inter-

action vertex for the HB/TB algorithm as well as the Raster Based for in-bending electrons.

Span = 0.005, Samples = 7

27

Figure 4.2: The difference between the generated and reconstructed Z positions of the inter-

action vertex for the HB/TB algorithm as well as the Raster Based for out-bending electrons.

Span = 0.005, Samples = 7

28

Figure 4.3: The difference between the generated and reconstructed Z positions of the in-

teraction vertex for the HB/TB algorithm as well as the Raster Based for in-bending π-s.

Span = 0.005, Samples = 7

29

Figure 4.4: The difference between the generated and reconstructed Z positions of the in-

teraction vertex for the HB/TB algorithm as well as the Raster Based for in-bending π+s.

Span = 0.005, Samples = 7

30

4.2 ΔZ Summary Table

Table 4.1 summarizes the ΔZ fit information for the varying spans for each data set. One

should note the general trend towards a larger σ as the span grows.

Span e- in-bending ΔZ (cm) e- outbending ΔZ (cm) π
-
ΔZ (cm) π

+
ΔZ (cm)

0.001 −0.15± 0.46 −0.15± 0.43 −0.28± 0.71 −0.22± 0.78

0.002 −0.15± 0.51 −0.16± 0.48 −0.28± 0.73 −0.26± 0.82

0.003 −0.16± 0.54 −0.19± 0.52 −0.26± 0.72 −0.26± 0.91

0.004 −0.13± 0.58 −0.17± 0.57 −0.26± 0.79 −0.29± 0.91

0.005 −0.11± 0.63 −0.17± 0.65 −0.20± 0.84 −0.26± 0.88

0.006 −0.14± 0.62 −0.20± 0.62 −0.25± 0.83 −0.24± 0.81

0.007 −0.14± 0.63 −0.21± 0.63 −0.25± 0.78 −0.25± 0.91

0.008 −0.12± 0.66 −0.19± 0.66 −0.23± 0.73 −0.19± 1.00

0.009 −0.09± 0.67 −0.15± 0.74 −0.21± 0.83 −0.11± 0.92

0.010 −0.11± 0.76 −0.17± 0.78 −0.20± 0.87 −0.17± 0.92

0.011 −0.14± 0.76 −0.21± 0.82 −0.22± 0.90 −0.21± 0.96

0.012 −0.13± 0.79 −0.19± 0.82 −0.16± 0.91 −0.17± 0.96

0.013 −0.10± 0.82 −0.17± 0.84 −0.15± 0.91 −0.12± 0.94

0.014 −0.14± 0.88 −0.13± 0.91 −0.14± 0.82 −0.14± 0.97

0.015 −0.12± 0.91 −0.14± 0.95 −0.18± 0.95 −0.12± 0.90

Table 4.1: A summary of the ΔZ fit information for the different spans of each data set.

31

4.3 ΔZ Dependence on Raster Radius

Figures 4.5 and 4.6 show the relation between the raster radius and the quality of the

reconstruction in the Z direction for in-bending electrons. While the number of events is,

unfortunately, small for the center the graphs still seem to suggest that the raster radius

doesn’t have any significant effect. The out-bending electrons behave nearly identically. The

number of events in both of the pion data sets are too small to be able to say with any

confidence whether or not the raster radius has any effect.

Figure 4.5: Color-coded subsets of the generated X and Y positions which correlate to

in-bending electron events successfully reconstructed by the proposed algorithm. Span =

0.005, Samples = 7

32

Figure 4.6: ΔZ histogram of the subsets described by figure 4.5

4.4 ΔX and ΔY

Figures 4.7 and 4.8 show histograms of the ΔX and ΔY which are typical of all recon-

structed data sets. The improvement over the current reconstruction algorithm is obviously

substantial, being an order of magnitude smaller in σ.

33

Figure 4.7: The difference between the generated and reconstructed X positions of the

interaction vertex for the HB/TB algorithm as well as the Raster Based for in-bending

electrons. Span = 0.005, Samples = 7

34

Figure 4.8: The difference between the generated and reconstructed Y positions of the

interaction vertex for the HB/TB algorithm as well as the Raster Based for in-bending

electrons. Span = 0.005, Samples = 7

35

4.5 Efficiency

Figure 4.9 shows the efficiency of the proposed algorithm. There is a general upwards

trend in efficiency, though it should be noted that this comes at a cost in the form of a larger

σ. This can be seen by comparing figure 4.9 to table 4.1.

Figure 4.9: The efficiency of the proposed reconstruction algorithm for in-bending electrons.

Note that this is not the total efficiency. Span = 0.005, Samples = 7

36

Chapter 5

Conclusion

The goal of this project was ultimately to determine to what level of confidence one can

say which of the targets, or possibly the foil, any given event came from. To that end, a 5σ

confidence level corresponds to 8mm if there is no carbon foil and 4mm if there is. With that

stated, it is clear, by inspection of table 4.1, that one can state with 4σ confidence which

of the targets an event came from if the carbon foil is present. However, the removal of the

carbon foil allows for 5σ confidence for electron events with search spans up to 1% (0.010).

Even the smallest search spans for can claim 5σ confidence. With the carbon foil, the best

that can be claimed for electrons in 4σ and only 2σ for pions.

It was found that the raster radius has no meaningful effect on the quality of reconstruc-

tion. Unfortunately, the span of the search does, though this could likely be mitigated by

choosing more sample points. The efficiency, however does generally increase with increasing

span. And lastly, the new algorithm’s X and Y reconstructions are consistently an order of

magnitude better than the current algorithm regardless of particle or toroidal field.

With respect to the relationship between the reconstruction efficiency and the span of the

search, it would seem that the Raster Based Algorithm is acting as a filter of sorts. As the

span increases, both the sigma of the reconstruction and the efficiency increases. This seems

to suggest that broadening the quantity of events which can be successfully reconstructed

results in a worse quality of reconstruction. This, in turn, would seem to suggest that the

37

algorithm intrinsically culls out events which can not be reconstructed well enough.

In the future, it would likely be worthwhile to further pursue examinations of the effects

of fit parameters on the reconstruction quality and efficiency. In particular, the covariance of

the number of samples and span should be thoroughly explored so as to better pick optimized

parameters for each.

38

References

1Jefferson Lab, Experimental Hall B, https://www.jlab.org/research/hall-b (Accessed 12

May 2019).

2Jefferson Lab, GEant4 Monte-Carlo, https://gemc.jlab.org/gemc/html/index.html (Ac-

cessed 02 June 2019).

3CERN, GEANT4 A Simulation Toolkit, https://geant4.web.cern.ch/ (Accessed 02 June

2019).

4Jefferson Lab, clas12-offline-software, https://github.com/JeffersonLab/clas12-offline-software

(Accessed 02 June 2019).

5CLAS12 Drift Chamber Group, CLAS12 Drift Chambers, (unpublished) (2007).

6F. Sauli, “Principles of Operation of Multiwire Proportional and Drift Chambers”, (1977).

7W. R. Leo, Techniques for Nuclear and Particle Physics Experiments: A How to Approach

(1987).

8CLAS12 - Drift Chambers (DC), Jefferson Lab (Mar. 2017).

9CLAS12 - Solenoid Magnet, Jefferson Lab (Mar. 2017).

10CLAS12 - TORUS Magnet, Jefferson Lab (Mar. 2017).

11G. Arfken, Mathematical methods for physicists, Seventh (Academic Press, Inc., San Diego,

2013).

12D. Griffiths and D. Higham, Numerical methods for ordinary differential equations: initial

value problems, Springer Undergraduate Mathematics Series (Springer London, 2010).

39

13K. Miller and D. Leskiw, An introduction to kalman filtering with applications (Krieger

Publishing Company, 1987).

14T. Forest, Private communication.

15Jefferson Lab, clas12Tags, https://github.com/gemc/clas12Tags.

40

Appendices

41

Appendix A

Example Program Calls and Example

GCard

This appendix contains examples of program calls used throughout the reconstruction

process and an example GCard.

A.1 Example GCard

Below is an example GCard that could be fed into GEMC.

1 <gcard>

2

3 <!-- target. Notice variation give the target type. Can be: lH2, lD2,

↪→ ND3

4 <detector name="experiments/clas12/targets/cad/" factory="CAD"/>

5 <detector name="experiments/clas12/targets/target" factory="TEXT"

↪→ variation="cad"/>

6 -->

7 <!-- PolTarg -->

8 <detector name="/jlab/workdir/Thesis/Scripts/detectors/clas12/targets/

↪→ target" factory="TEXT" variation="PolTarg"/>

42

9 <detector name="/jlab/workdir/Thesis/Scripts/detectors/clas12/targets/

↪→ PolTarg/" factory="CAD"/>

10

11 <!-- central detectors -->

12 <detector name="experiments/clas12/cnd/cnd" factory="

↪→ TEXT" variation="original"/>

13 <detector name="experiments/clas12/bst/bst" factory="

↪→ TEXT" variation="java"/>

14 <!-- detector name="experiments/clas12/bstShield/bstShield"

↪→ factory="TEXT" variation="w51" -->

15 <detector name="experiments/clas12/micromegas/micromegas" factory="

↪→ TEXT" variation="michel"/>

16

17

18 <!--ctof, cad -->

19 <detector name="experiments/clas12/ctof/ctof" factory="TEXT"

↪→ variation="cad"/>

20 <detector name="experiments/clas12/ctof/javacad/" factory="CAD"/>

21

22 <!--high threshold cherenkov -->

23 <detector name="experiments/clas12/htcc/htcc" factory="TEXT"

↪→ variation="original"/>

24

25 <!-- magnets -->

26 <detector name="experiments/clas12/magnets/solenoid" factory="TEXT"

↪→ variation="original"/>

27 <detector name="experiments/clas12/magnets/cad/" factory="CAD" />

28

29

30 <!-- Beamline configuration: FT is used -->

31 <detector name="experiments/clas12/ft/ft" factory="

↪→ TEXT" variation="FTOn"/>

32 <detector name="experiments/clas12/beamline/cadBeamline/" factory="CAD

↪→ "/>

43

33 <detector name="experiments/clas12/beamline/vacuumLine/" factory="CAD

↪→ "/>

34 <detector name="experiments/clas12/beamline/beamline" factory="

↪→ TEXT" variation="FTOn"/>

35

36 <!-- forward carriage -->

37 <detector name="experiments/clas12/fc/forwardCarriage" factory="TEXT"

↪→ variation="TorusSymmetric"/>

38

39 <detector name="experiments/clas12/dc/dc" factory="TEXT"

↪→ variation="java"/>

40 <detector name="experiments/clas12/ftof/ftof" factory="TEXT"

↪→ variation="java"/>

41 <detector name="experiments/clas12/ec/ec" factory="TEXT"

↪→ variation="java"/>

42 <detector name="experiments/clas12/pcal/pcal" factory="TEXT"

↪→ variation="java"/>

43 <detector name="experiments/clas12/ltcc/ltcc" factory="TEXT"

↪→ variation="original"/>

44 <detector name="experiments/clas12/ltcc/cad_cone/" factory="CAD"/>

45 <detector name="experiments/clas12/ltcc/cad/" factory="CAD"/>

46

47

48 <!-- you can scale the fields here. Remember torus -1 means e-

↪→ INBENDING -->

49 <option name="SCALE_FIELD" value="TorusSymmetric, -1.0"/>

50 <option name="SCALE_FIELD" value="clas12-newSolenoid, -1.0"/>

51

52 <!-- hall field -->

53 <option name="HALL_FIELD" value="clas12-newSolenoid"/>

54

55 <!-- fields, precise mode -->

56 <option name="FIELD_PROPERTIES" value="TorusSymmetric, 2*mm,

↪→ G4ClassicalRK4, linear"/>

44

57 <option name="FIELD_PROPERTIES" value="clas12-newSolenoid, 1*mm,

↪→ G4ClassicalRK4, linear"/>

58

59

60 <!-- beam conditions -->

61 <option name="BEAM_P" value="e-, 4.75*GeV, 22.5*deg, 0*deg"/>

62 <option name="BEAM_V" value="(0.0, 0.0, 3.0)cm"/>

63 <option name="SPREAD_P" value="3.25*GeV, 17.5*deg, 180*deg"/>

64 <option name="SPREAD_V" value="(1.0, 1.0)cm"/>

65

66

67 <option name="SAVE_ALL_MOTHERS" value="0"/>

68 <option name="RECORD_MIRRORS" value="1"/>

69

70 <option name="PHYSICS" value="FTFP_BERT + STD + Optical"/>

71

72 <option name="OUTPUT" value="evio, out.ev"/>

73

74 <!-- Will print message every 10 events -->

75 <option name="PRINT_EVENT" value="10" />

76

77

78 <!-- Run Number 11, picked up by digitization routines -->

79 <option name="RUNNO" value="11" />

80

81

82 <!-- RF Signal needs event time window defined by LUMI_EVENT.

83 If Backround is activated make sure to use LUMI_EVENT below instead

↪→ .-->

84 <option name="LUMI_EVENT" value="0, 248.5*ns, 4*ns" />

85 <option name="RFSETUP" value="0.499, 40, 20" />

86

87

88

45

89 <!-- beam background. for 250 ns timewindow we have 124,000 e- on

90 a LH2 target at 10ˆ35 luminosity

91 I suggest in this case to set SAVE_ALL_MOTHERS to 0

92 or the many tracks will slow down the simulation a lot

93 For background studies use field in fast mode:

94 -->

95

96 <!--

97 <option name="LUMI_EVENT" value="124000, 248.5*ns, 4*ns" />

98 <option name="LUMI_P" value="e-, 10.6*GeV, 0*deg, 0*deg" />

99 <option name="LUMI_V" value="(0.0, 0.0, -10)cm" />

100 <option name="LUMI_SPREAD_V" value="(0.03, 0.03)cm" />

101 -->

102

103 <!-- production threshold for passive volumes -->

104 <!-- beamline shielding: 10cm-->

105 <option name="PRODUCTIONCUTFORVOLUMES" value="innerShieldAndFlange,

↪→ outerFlange, outerMount, nut1, nut2, nut3, nut4, nut5, nut6,

↪→ nut7, nut8, nut9, taggerInnerShield, main-cone, main-cone,

↪→ adjuster1, adjuster2, adjuster3, DSShieldFrontLead,

↪→ DSShieldBackLead, DSShieldInnerAss, DSShieldBackAss,

↪→ DSShieldFrontAss, DSShieldBackCover, DSShieldFrontCover,

↪→ DSShieldFlangeAttachment, DSShieldFlange, 100" />

106

107 <!-- vacuum line: 10cm-->

108 <option name="PRODUCTIONCUTFORVOLUMES" value="

↪→ connectUpstreamToTorusPipe, connectTorusToDownstreamPipe,

↪→ downstreamPipeFlange, 100" />

109

110 <!-- torus magnet: 10cm-->

111 <option name="PRODUCTIONCUTFORVOLUMES" value="BoreShield, CenterTube,

↪→ DownstreamShieldingPlate, DownstreamVacuumJacket, WarmBoreTube,

↪→ apex, Shield1, Shield2, Shield3, Shield4, Shield5, Shield6,

↪→ Shield7, shell1a, shell1b, shell2a, shell2b, shell3a, shell3b,

46

↪→ shell4a, shell4b, shell5a, shell5b, shell6a, shell6b, 100" />

112

113

114 <!-- Commented: To remove a detector, set his existance to no. For

↪→ example to remove the forward micromegas.

115 <detector name="FMT">

116 <existence exist="no" />

117 </detector>

118 -->

119

120

121 </gcard>

A.2 Program Calls

An example of the gemc program call:

1 bash gemc -USE_GUI=0 -gcard=/some/path/to/input.gcard -N=10000 -DATABASE=/some

↪→ /path/to/local/database.sqlite -OUTPUT="evio, /some/path/to/output.evio"

An example of the evio2hipo program call:

1 bash evio2hipo -n 10000 -r 11 -s -1.0 -t -1.0 -o /some/path/to/output.hipo /

↪→ some/path/to/input.evio

An example of the hipo-utils program call:

1 bash hipo-utils -merge -o /some/path/to/output.hipo /some/path/to/input1.hipo

↪→ /some/path/to/input2.hipo

An example of the notsouseful-util program call:

1 bash notsouseful-util -n 10000 -c 2 -i /some/path/to/input.hipo -o /some/path/

↪→ to/output.hipo

An example of the fritracking program call:

1 bash fritracking -s -1.0 -t -1.0 -i /some/path/to/input.hipo -o /some/path/to/

↪→ output.hipo -x 3 -g 7 0.005 -v 9 2 -z -4.0 4.0

47

Appendix B

Descriptions of Hit Based and Time

Based Reconstructions

This appendix contains descriptions of the previously existing drift chamber reconstruc-

tion algorithms, Hit Based and Time Based. These descriptions are current as of coatjava

release 5c.7.4.

B.1 Definition of Terms

There are several terms which must be first understood before reading further:

DOCA Distance of Closest Approach, i.e. the shortest distance between some point in

space and some defined path.

Hit A representation of a measurement from an individual wire.

Cluster A representation of groups of physically close hits.

Segment A representation of a linear fit to a cluster.

Cross A representation of a position and momentum unit vector of the particle’s trajectory

at the midplane between two superlayers as reconstructed from the segments of both

superlayers.

48

Trajectory A general position and momentum vector at some point in space.

Track A representation of a reconstructed path through the detector.

Road A representation of a collection of segments.

Swimmer A software tool utilizing a fourth order Runge-Kutta approximation to step, or

”swim”, a particle’s trajectory through the detector.

B.2 Hit Based Algorithm

The Hit Based algorithm takes the raw drift chamber hit positions, but not any time

information beyond that which gives the position along any given wire, and attempts to

perform track reconstruction. In general, this is simply used as a step to then perform the

Time Based reconstruction.

B.2.1 Hits to Clusters

Raw hits are all initially sorted into clumps. Clumps are the rawest form of a cluster as

they are created by independently taking each superlayer in each sector and adding the hits

found therein to the clump. The clump is then processed to remove hits caused by noise.

This is determined by whether or not the DOCA for that hit is greater than the size of the

cell. The list of clumps is then processed into a list of clusters by removing any clumps which

have less than four total hits within them. A linear fit is then performed on the hits which

comprise each cluster. The clusters are split into multiple clusters if necessary by means of

checking the χ2 of a linear fit. Following that step, the program updates the raw hits with

various additional information and stores them as well as the clusters.

B.2.2 Clusters to Segments

Segments are built by first excluding any clusters with more than fourteen hits from

consideration. Then, for each remaining cluster, the information from the linear fit is taken

49

from the tests done in the previous step and set in the segment accordingly. Some segments

may then be culled if their average DOCA between the raw hit and the cluster fit line is too

large.

B.2.3 Segments to Crosses

Crosses are created by looping over all sectors and regions in order and identifying seg-

ments in the first superlayer of each region. For each of those segments, it then loops through

again to find a corresponding segment in the second superlayer. A check is done to see if the

segments are both physically close and have a consistent slope from one to the other. If the

segments pass both of those requirements, the cross is created.

Crosses are then arranged into short lists which correspond to possible tracks. To do this,

all of the crosses are first sorted into a list containing only crosses from its region. Then,

for every possible combination of three crosses such that there is always a cross from each

region, the algorithm performs an approximate fit. This fit returns the trajectory of the fit

at each of the cross positions. If the angle between any pair of corresponding crosses and

trajectories is too great, the triplet of crosses is not considered for a track reconstruction.

Those do that pass this test are then checked again. This time a projection of the track

onto the x-y plane is checked for linearity. Any triplets remaining are now bases for track

candidates.

B.2.4 Crosses to Tracks Part I

The algorithm now takes the triplets of crosses from the previous step and attempts to

fit actual tracks from them. For each triplet, the first step is to perform another fit, this time

parametric. This fit is formed by constraining the parametric trajectory to be tangent to the

momentum unit vector of each cross as it passes through them. Any triplets which fail to

produce a satisfactory trajectory are culled. At this point the algorithm splits finding track

candidates into two branches. The first is the case where the cross triplet is indeed a full

triplet without any members missing, and the torus magnet has been scaled down to a value

50

near zero. This is looking for straight tracks in the torus region. Otherwise the algorithm

will search for linked helices, one from the torus region and one from the solenoid.

Straight Tracks

This sub-algorithm first fits the projections of the crosses onto both the x-z and y-z planes

to lines. If the fit is ok for each of those, the track is then assumed to be straight and the

interaction vertex is assumed to be wherever the linear fits intersect the z = 0 plane. The

particle is also assumed to be a muon. This track candidate is then further refined by passing

it through a Kalman fitter. The candidate is then added to the list of track candidates.

Linked Helices

First, track candidates that don’t have at least five segments within their crosses are

culled. Then four initial fits are performed, one for each combination of one of the region

one segments being coupled with one of the region three segments. In these fits, the slopes of

the segments are used to calculate the momentum and charge of the particle. Those values

are then input into a swimmer which will swim from the region one cross to the x-y plane

of the region two cross and then on to the x-y plane of the region three cross. If the χ2 is

bad or the integrated magnetic field over the path is zero, the candidate is culled.

The momentum and charge are reconstructed, again, from the second segment of the

region 1 and 3 crosses. If the momentum is greater than 11GeV, it is set to 11GeV. A state

vector is formed from combining the region 1 cross information with the momentum. A

Kalman fitter is created and attempts to fit the crosses. If this fails, the candidate is culled.

The χ2 of the fit between the Kalman fit and the crosses is calculated, and the candidate

is culled if the value is too large. One final check to see if the Kalman fit either failed or if

the final state vector produced by it is done. If passed, the candidate is added to the list of

track candidates.

51

B.2.5 Crosses to Tracks Part II

Now that the sub-algorithms have finished, the overall algorithm now attempts to extrap-

olate from the existing information to see if any other track candidates can be constructed.

First, any tracks overlapping the track with the best χ2 are culled. The algorithm then con-

structs roads out of all of the currently existing segments. This process, in essence, simply

orders the segments in terms of sectors and superlayers then finds sequences of them which

could indicate a track. A list of crosses belonging to those roads is then constructed. Missing

road segments, called pseudosegments, are extrapolated from the existing segments.

The pseudosegments are added to the preexisting list of segments, and the process of

making crosses is undertaken again. These new crosses are combined with the old ones and

used to create new cross triplets. These triplets are then fed into the track candidate finder,

as per Crosses to Tracks Part I. Once again, overlapping tracks are culled. If any track

candidates have survived, they are written to the Hit Based data banks.

B.3 Time Based Algorithm

The Time Based algorithm takes the output of the Hit Based Algorithm and includes

more time information in order to refine the reconstruction.

B.3.1 Hits to Clusters

This reconstruction begins by recomposing the clusters from the Hit Based Reconstruc-

tion and further refining them. First, for each cluster the algorithm removes secondary hits,

which are defined as hits that lie within the same layer as another hit and fail a test com-

paring the relative DOCA’s. The clusters are then refit with the aforementioned χ2 test if

necessary to ensure that the most accurate clusters have been found. Next, the algorithm

attempts to resolve the left-right ambiguity in the cluster’s linear fit, i.e. determine on which

side of which wires the particle passed. Finally, the clusters and associated hits are updated

with this new information.

52

B.3.2 Clusters to Segments

Each cluster is subjected to a test wherein the average DOCA of the hits within the

cluster is calculated and then compared to the average cell size of the cells where those hits

were recorded. Clusters which fail this test are culled. The clusters then undergo the same

process as the Hit Based clusters. All of the Hit Based tracks are now read into memory

and the hit-segment associations are set accordingly.

B.3.3 Reconstructing Tracks

The algorithm now begins track reconstruction, failing if the Hit Based Tracks were not

saved correctly. First, all of the Hit Based track information stored in the data banks are read

into an array, and all of the segment-track associations are set. The algorithm now considers

each track, failing if the track has less than four segments, and creating crosses in the same

fashion as the Hit Based algorithm. These tracks are now run through a Kalman fitter. The

track is culled if the interaction vertex is too large. Finally, for each surviving track, the

overall trajectory is calculated and associated hits and segments are set accordingly.

53

Appendix C

Source Code For Raster Based

Reconstruction

This appendix contains the source code for the Raster Based reconstruction algorithm.

There are some minor cosmetic changes to improve readability in this document.

1 package org.jlab.service.dc;

2

3 import java.io.File;

4 import java.io.IOException;

5 import java.util.ArrayList;

6 import java.util.Arrays;

7 import java.util.concurrent.Callable;

8 import java.util.concurrent.ExecutionException;

9 import java.util.concurrent.ExecutorService;

10 import java.util.concurrent.Executors;

11 import java.util.concurrent.Future;

12 import java.util.concurrent.TimeUnit;

13 import java.util.logging.Level;

14 import java.util.logging.Logger;

15 import org.jlab.clas.swimtools.MagFieldsEngine;

16 import org.jlab.clas.swimtools.Swim;

17 import org.jlab.clas.swimtools.Swimmer;

54

18 import org.jlab.io.base.DataBank;

19 import org.jlab.io.base.DataEvent;

20 import org.jlab.io.hipo.HipoDataEvent;

21 import org.jlab.io.hipo.HipoDataSource;

22 import org.jlab.io.hipo.HipoDataSync;

23 import org.jlab.jnp.hipo.schema.SchemaFactory;

24 import org.jlab.rec.dc.Constants;

25

26 /**

27 * This class is intended to be used to reconstruct the interaction vertex

↪→ from

28 * previously calculated HB/TB and CVT data

29 *

30 * @author friant

31 */

32 public class DCRBEngine extends DCEngine {

33 //Global Variables

34 static String engine = "";

35 static float solVal = -1.0f * -1.0f;//-1.0 multiplier to

↪→ correct for sign convention mismatch

36 static float torVal = -1.0f;

37 static float zMinGlobal = -10.0f;

38 static float zMaxGlobal = 10.0f;

39 static float percentGridSearch = 0.10f;

40 static int samplesGridSearch = 5;

41 static int iterationsVertex = 2;

42 static int samplesVertex = 5;

43 static int maxThreads = 1;

44

45 /**

46 * Constructor

47 */

48 public DCRBEngine() {

49 super("DCRB");

55

50 }

51

52 /**

53 * Main method

54 *

55 * @param args

56 */

57 public static void main(String[] args){

58 //Ensure that RasterBased Data Banks are defined in the program

59 SchemaFactory fact = new SchemaFactory();

60 fact.initFromDirectory("CLAS12DIR", "etc/bankdefs/hipo");

61

62 //Hipo Reader and Writer

63 HipoDataSource reader = new HipoDataSource();

64 HipoDataSync writer = new HipoDataSync(fact);

65

66 //Files

67 File inputFile;

68 File outputFile;

69

70 //Command Line Options

71 boolean help = false;

72

73 //Required

74 String input = "";

75 String output = "";

76

77 //Optional

78 String gridSearchSamples = "";

79 String gridSearchPercent = "";

80 String solenoid = "";

81 String toroid = "";

82 String vertexSamples = "";

83 String vertexIterations = "";

56

84 String threads = "";

85 String lowerBound = "";

86 String upperBound = "";

87

88 //Parse

89 for(int i = 0; i < args.length; i++){

90 switch(args[i]){

91 case "-i":

92 if(i + 1 < args.length){

93 input = args[i + 1];

94 }

95 else{

96 System.out.println("Missing Parameter For Option -i");

97 return;

98 }

99 break;

100 case "-o":

101 if(i + 1 < args.length){

102 output = args[i + 1];

103 }

104 else{

105 System.out.println("Missing Parameter For Option -o");

106 return;

107 }

108 break;

109 case "-e":

110 if(i + 1 < args.length){

111 engine = args[i + 1];

112 }

113 else{

114 System.out.println("Missing Parameter For Option -e");

115 return;

116 }

117 break;

57

118 case "-g":

119 if(i + 2 < args.length){

120 gridSearchSamples = args[i + 1];

121 gridSearchPercent = args[i + 2];

122 }

123 else{

124 System.out.println("Missing Parameter For Option -g");

125 return;

126 }

127 break;

128 case "-h":

129 help = true;

130 break;

131 case "-s":

132 if(i + 1 < args.length){

133 solenoid = args[i + 1];

134 }

135 else{

136 System.out.println("Missing Parameter For Option -s");

137 return;

138 }

139 break;

140 case "-t":

141 if(i + 1 < args.length){

142 toroid = args[i + 1];

143 }

144 else{

145 System.out.println("Missing Parameter For Option -t");

146 return;

147 }

148 break;

149 case "-v":

150 if(i + 2 < args.length){

151 vertexSamples = args[i + 1];

58

152 vertexIterations = args[i + 2];

153 }

154 else{

155 System.out.println("Missing Parameter For Option -v");

156 return;

157 }

158 break;

159 case "-x":

160 if(i + 1 < args.length){

161 threads = args[i + 1];

162 }

163 else{

164 System.out.println("Missing Parameter For Option -x");

165 return;

166 }

167 break;

168 case "-z":

169 if(i + 2 < args.length){

170 lowerBound = args[i + 1];

171 upperBound = args[i + 2];

172 }

173 else{

174 System.out.println("Missing Parameter For Option -z");

175 return;

176 }

177 break;

178 }

179 }

180

181 //Attempt to use command line parameters to set values

182 ////Input File

183 if(input.isEmpty()){

184 System.out.println("Input File Required");

185 help = true;

59

186 }

187 else{

188 inputFile = new File(input);

189 if(inputFile.exists() && !inputFile.isDirectory()){

190 reader.open(inputFile);

191 }

192 else{

193 System.out.println("Input File Not Found");

194 return;

195 }

196 }

197 ////output File

198 if(output.isEmpty()){

199 System.out.println("Output File Required");

200 help = true;

201 }

202 else{

203 outputFile = new File(output);

204 if(outputFile.exists() && !outputFile.isDirectory()){

205 outputFile.delete();

206 }

207 try{

208 outputFile.createNewFile();

209 writer.open(outputFile.getAbsolutePath());

210 }

211 catch(IOException e){

212 System.out.println("Could Not Create Output File");

213 return;

214 }

215 }

216 ////Engine

217 if(!engine.isEmpty()){

218 if(!(engine.equals("DCHB") || engine.equals("DCTB"))){

219 System.out.println("Invalid Engine Specifified");

60

220 help = true;

221 }

222 }

223 ////Grid Search Parameters

224 if(!(gridSearchSamples.isEmpty() || gridSearchPercent.isEmpty())){

225 try{

226 samplesGridSearch = Integer.parseInt(gridSearchSamples);

227 percentGridSearch = Float.parseFloat(gridSearchPercent);

228 }

229 catch(NumberFormatException e){

230 System.out.println("Invalid Number Format For Grid Search

↪→ Parameters");

231 help = true;

232 }

233 }

234 ////Solenoid Scale

235 if(!solenoid.isEmpty()){

236 try{

237 solVal = Float.parseFloat(solenoid);

238 solVal = -1.0f * solVal;//-1.0 multiplier to correct for sign

↪→ convention mismatch

239 }

240 catch(NumberFormatException e){

241 System.out.println("Invalid Number Format For Solenoid");

242 help = true;

243 }

244 }

245 ////Toroid Scale

246 if(!toroid.isEmpty()){

247 try{

248 torVal = Float.parseFloat(toroid);

249 }

250 catch(NumberFormatException e){

251 System.out.println("Invalid Number Format For Toroid");

61

252 help = true;

253 }

254 }

255 ////Vertex Search Parameters

256 if(!(vertexSamples.isEmpty() || vertexIterations.isEmpty())){

257 try{

258 samplesVertex = Integer.parseInt(vertexSamples);

259 iterationsVertex = Integer.parseInt(vertexIterations);

260 }

261 catch(NumberFormatException e){

262 System.out.println("Invalid Number Format For Vertex Search

↪→ Parameters");

263 help = true;

264 }

265 }

266 ////Threads

267 if(!threads.isEmpty()){

268 try{

269 maxThreads = Integer.parseInt(threads);

270 }

271 catch(NumberFormatException e){

272 System.out.println("Invalid Number Format For Number Of

↪→ Threads To Use");

273 help = true;

274 }

275 }

276 ////Target Bounds

277 if(!(lowerBound.isEmpty() || upperBound.isEmpty())){

278 try{

279 zMinGlobal = Float.parseFloat(lowerBound);

280 zMaxGlobal = Float.parseFloat(upperBound);

281 }

282 catch(NumberFormatException e){

283 System.out.println("Invalid Number Format For Target Bounds");

62

284 help = true;

285 }

286 }

287

288 //Print help message and exit

289 if(help){

290 printHelp();

291 return;

292 }

293

294 //Init Engines

295 MagFieldsEngine magField = new MagFieldsEngine();

296 magField.init();

297 DCRBEngine thisEngine = new DCRBEngine();

298 thisEngine.init();

299

300 //Apply magnetic field scaling

301 Swimmer.setMagneticFieldsScales(solVal, torVal, 0.0);

302

303 //Process data events

304 int count = 0;

305 while(reader.hasEvent()){

306 DataEvent event = reader.getNextEvent();

307 if(!event.hasBank("RasterBasedTrkg::RBHits")){

308 ((HipoDataEvent)event).initDictionary(fact);

309 }

310 thisEngine.processDataEvent(event);

311 writer.writeEvent(event);

312 System.out.println("EVENT " + count + " PROCESSED\r\n");

313 count++;

314 }

315

316 //Tidy up before leaving

317 reader.close();

63

318 writer.close();

319 }

320

321 /**

322 * Print help message to the terminal

323 */

324 private static void printHelp(){

325 System.out.println(

326 "FriTracking Command Line Options: \r\n"

327 + " -Required: \r\n"

328 + " -i Input Hipo File \r\n"

329 + " Requires 1 Parameter: \r\n"

330 + " 1 (String): Path to desired input file. \r\n"

331 + " Ex: -i /path/to/my/input/file.hipo \r\n"

332 + " \r\n"

333 + " -o Output Hipo File \r\n"

334 + " Requires 1 Parameter: \r\n"

335 + " 1 (String): Path to the desried ouput file. \r\n"

336 + " Will overwrite file if exists. \r\n"

337 + " Ex: -o /path/to/my/output/file.hipo \r\n"

338 + " \r\n"

339 + " -Optional: \r\n"

340 + " -e Engine To Source Data From \r\n"

341 + " Requires 1 Parameter: \r\n"

342 + " 1 (String): Either \"DCHB\" or \"DCTB\" \r\n"

343 + " Default Behavior: \r\n"

344 + " Use DCTB if available and DCHB if not. \r\n"

345 + " Ex: -e DCHB \r\n"

346 + " \r\n"

347 + " -g Grid Search Parameters \r\n"

348 + " Requires 2 Parameters: \r\n"

349 + " 1 (Int): The number of samples to take per\r\n"

350 + " momentum dimension around the \r\n"

351 + " region-1 cross. \r\n"

64

352 + " 2 (Float): The percent of the nominal value \r\n"

353 + " to search within. \r\n"

354 + " Default Behavior: \r\n"

355 + " 5 Samples within 10% of the nominal value \r\n"

356 + " Ex: -g 7 0.02 \r\n"

357 + " \r\n"

358 + " -h Print This Message \r\n"

359 + " \r\n"

360 + " -s Solenoid Field Scale Factor \r\n"

361 + " Requires 1 Parameter \r\n"

362 + " 1 (Float): The number by which to scale the \r\n"

363 + " solenoid’s magnetic field. Note: \r\n"

364 + " a value of 0.0 will likely cause \r\n"

365 + " failure. \r\n"

366 + " Default Behavior: \r\n"

367 + " Scale by -1.0. \r\n"

368 + " Ex: -s 0.05 \r\n"

369 + " \r\n"

370 + " -t Toroid Field Scale Factor \r\n"

371 + " Requires 1 Parameter \r\n"

372 + " 1 (Float): The number by which to scale the \r\n"

373 + " toroid’s magnetic field. Note: a \r\n"

374 + " value of 0.0 will likely cause \r\n"

375 + " failure. \r\n"

376 + " Default Behavior: \r\n"

377 + " Scale by -1.0. \r\n"

378 + " Ex: -s 0.1 \r\n"

379 + " \r\n"

380 + " -v Vertex Search Parameters \r\n"

381 + " Requires 2 Parameters: \r\n"

382 + " 1 (Int): The number of samples to take \r\n"

383 + " within the target range to find \r\n"

384 + " the best z value. \r\n"

385 + " 2 (Int): The number of recursive \r\n"

65

386 + " iterations to go through about \r\n"

387 + " each local minima. \r\n"

388 + " Default Behavior: \r\n"

389 + " 5 samples with 2 iterations. \r\n"

390 + " Ex: -v 10 2 \r\n"

391 + " \r\n"

392 + " -x Threads To Use \r\n"

393 + " Requires 1 Parameter: \r\n"

394 + " 1 (Int): The maximum number of threads to \r\n"

395 + " use while searching for minima. \r\n"

396 + " Default Behavior: \r\n"

397 + " Only use 1 thread. \r\n"

398 + " Ex: -x 4 \r\n"

399 + " \r\n"

400 + " -z Target Bounds \r\n"

401 + " Requires 2 Parameters: \r\n"

402 + " 1 (Float): The lower bound in the \r\n"

403 + " z-direction in which to search \r\n"

404 + " for the interaction vertex. \r\n"

405 + " [Unit = cm] \r\n"

406 + " 2 (Float): The upper bound in the \r\n"

407 + " z-direction in which to search \r\n"

408 + " for the interaction vertex. \r\n"

409 + " [Unit = cm] \r\n"

410 + " Default Behavior: \r\n"

411 + " Lower Bound = -10.0, Upper Bound = 10.0. \r\n"

412 + " Ex: -z -2.5 5.0 \r\n"

413 + "\r\n");

414 }

415

416 /**

417 * Initialize the engine

418 *

419 * @return

66

420 */

421 @Override

422 public boolean init() {

423 // Load cuts

424 Constants.Load();

425 super.setStartTimeOption();

426 super.LoadTables();

427 return true;

428 }

429

430 /**

431 * Generic process data event function

432 *

433 * @param event

434 * @return

435 */

436 @Override

437 public boolean processDataEvent(DataEvent event){

438 boolean hasCVTData = event.hasBank("CVTRec::Tracks");

439 boolean hasHBData = event.hasBank("HitBasedTrkg::HBTracks");

440

441 if(hasCVTData && hasHBData){

442 //processDataEventBoth(event);//Just use HB for now

443 processDataEventHB(event);

444 }

445 else if(hasCVTData){

446 processDataEventCVT(event);

447 }

448 else if(hasHBData){

449 processDataEventHB(event);

450 }

451

452 return true;

453 }

67

454

455 /**

456 * Process data event for when HB and CVT data is available

457 *

458 * @param event

459 * @return

460 */

461 public boolean processDataEventBoth(DataEvent event){

462 System.out.println("Process for Both CVT and HB Not Yet Implemented");

463 return true;

464 }

465

466 /**

467 * Process data event for when only CVT data is available

468 *

469 * @param event

470 * @return

471 */

472 public boolean processDataEventCVT(DataEvent event){

473 System.out.println("Process for CVT Not Yet Implemented");

474 return true;

475 }

476

477 /**

478 * Process data event for when only HB/TB data is available

479 *

480 * @param event

481 * @return

482 */

483 public boolean processDataEventHB(DataEvent event) {

484 //Pull info out of TB/HB Banks

485 String sourceTracks;

486 String sourceCrosses;

487 if(engine.isEmpty()){

68

488 if(event.hasBank("TimeBasedTrkg::TBTracks")){

489 event.appendBank(copyBank(event, "TimeBasedTrkg::TBHits",

↪→ "RasterBasedTrkg::RBHits"));

490 event.appendBank(copyBank(event, "TimeBasedTrkg::TBClusters",

↪→ "RasterBasedTrkg::RBClusters"));

491 event.appendBank(copyBank(event, "TimeBasedTrkg::TBSegments",

↪→ "RasterBasedTrkg::RBSegments"));

492 event.appendBank(copyBank(event, "TimeBasedTrkg::TBCrosses",

↪→ "RasterBasedTrkg::RBCrosses"));

493 sourceTracks = "TimeBasedTrkg::TBTracks";

494 sourceCrosses = "TimeBasedTrkg::TBCrosses";

495 }

496 else{

497 event.appendBank(copyBank(event, "HitBasedTrkg::HBHits", "

↪→ RasterBasedTrkg::RBHits"));

498 event.appendBank(copyBank(event, "HitBasedTrkg::HBClusters",

↪→ "RasterBasedTrkg::RBClusters"));

499 event.appendBank(copyBank(event, "HitBasedTrkg::HBSegments",

↪→ "RasterBasedTrkg::RBSegments"));

500 event.appendBank(copyBank(event, "HitBasedTrkg::HBCrosses",

↪→ "RasterBasedTrkg::RBCrosses"));

501 sourceTracks = "HitBasedTrkg::HBTracks";

502 sourceCrosses = "HitBasedTrkg::HBCrosses";

503 }

504 }

505 else if(engine.equals("DCHB")){

506 if(event.hasBank("TimeBasedTrkg::TBTracks")){

507 event.appendBank(copyBank(event, "HitBasedTrkg::HBHits",

↪→ "RasterBasedTrkg::RBHits"));

508 event.appendBank(copyBank(event, "HitBasedTrkg::HBClusters",

↪→ "RasterBasedTrkg::RBClusters"));

509 event.appendBank(copyBank(event, "HitBasedTrkg::HBSegments",

↪→ "RasterBasedTrkg::RBSegments"));

69

510 event.appendBank(copyBank(event, "HitBasedTrkg::HBCrosses",

↪→ "RasterBasedTrkg::RBCrosses"));

511 sourceTracks = "HitBasedTrkg::HBTracks";

512 sourceCrosses = "HitBasedTrkg::HBCrosses";

513 }

514 else{

515 return false;

516 }

517 }

518 else if(engine.equals("DCTB")){

519 if(event.hasBank("TimeBasedTrkg::TBTracks")){

520 event.appendBank(copyBank(event, "TimeBasedTrkg::TBHits",

↪→ "RasterBasedTrkg::RBHits"));

521 event.appendBank(copyBank(event, "TimeBasedTrkg::TBClusters",

↪→ "RasterBasedTrkg::RBClusters"));

522 event.appendBank(copyBank(event, "TimeBasedTrkg::TBSegments",

↪→ "RasterBasedTrkg::RBSegments"));

523 event.appendBank(copyBank(event, "TimeBasedTrkg::TBCrosses",

↪→ "RasterBasedTrkg::RBCrosses"));

524 sourceTracks = "TimeBasedTrkg::TBTracks";

525 sourceCrosses = "TimeBasedTrkg::TBCrosses";

526 }

527 else{

528 return false;

529 }

530 }

531 else{

532 return false;

533 }

534

535 //Create the RBTracks Bank

536 DataBank rbBank = copyBank(event, sourceTracks,

537 "RasterBasedTrkg::RBTracks");

538

70

539 //Raster variables

540 float rasterX = 0.0f;

541 float rasterY = 0.0f;

542 float rasterUX = 0.05f;//0.5mm uncertainty in either direction

543 float rasterUY = 0.05f;//0.5mm uncertainty in either direction

544 if(event.hasBank("MC::Particle")){

545 rasterX = event.getBank("MC::Particle").getFloat("vx", 0);

546 rasterY = event.getBank("MC::Particle").getFloat("vy", 0);

547 }

548 float[] rasterInfo = new float[]{rasterX, rasterUX,

549 rasterY, rasterUY};

550

551 //Calculate the interaction vertex for each for each track in the

↪→ event

552 for(int i = 0; i < rbBank.rows(); i++){

553 float[] trackInfo = new float[7];

554 trackInfo[0] = event.getBank(sourceTracks).getFloat("t1_x" , i);

555 trackInfo[1] = event.getBank(sourceTracks).getFloat("t1_y" , i);

556 trackInfo[2] = event.getBank(sourceTracks).getFloat("t1_z" , i);

557 trackInfo[3] = event.getBank(sourceTracks).getFloat("t1_px", i);

558 trackInfo[4] = event.getBank(sourceTracks).getFloat("t1_py", i);

559 trackInfo[5] = event.getBank(sourceTracks).getFloat("t1_pz", i);

560 trackInfo[6] = (float)(event.getBank(sourceTracks).getByte("q", i)

↪→);

561

562 //Calculate

563 float[] output = new float[8];

564 Arrays.fill(output, Float.NaN);

565 float doca = -1.0f;

566 try {

567 doca = interactionVertexGridSearch(samplesGridSearch,

↪→ rasterInfo, trackInfo, percentGridSearch, output);

568 } catch (InterruptedException | ExecutionException exception) {

71

569 Logger.getLogger(DCRBEngine.class.getName()).log(Level.SEVERE,

↪→ null, exception);

570 System.out.println(exception);

571 }

572

573 //Make sure that the momentum is pointing in the right direction

574 if(output[5] < 0.0){

575 output[3] = output[3] * -1.0f;

576 output[4] = output[4] * -1.0f;

577 output[5] = output[5] * -1.0f;

578 }

579

580 //System.out.println("Doca: " + doca);

581 //System.out.println(Arrays.toString(output));

582

583 //Set Values

584 rbBank.setFloat("Vtx0_x", i, output[0]);

585 rbBank.setFloat("Vtx0_y", i, output[1]);

586 rbBank.setFloat("Vtx0_z", i, output[2]);

587 rbBank.setFloat("p0_x", i, output[3]);

588 rbBank.setFloat("p0_y", i, output[4]);

589 rbBank.setFloat("p0_z", i, output[5]);

590 rbBank.setFloat("doca", i, doca);

591 }

592

593 //Put Tracks in Event

594 event.appendBank(rbBank);

595

596 return true;

597 }

598

599 /**

600 * This method performs a three dimensional grid search within the

601 * uncertainty in the track’s momentum.

72

602 *

603 * @param samples the number of samples to ake in each dimension

604 * @param rasterInfo the array {x, uncert x, y, uncert y}

605 * @param trackInfo the array{vx, vy, vz, px, py, pz}

606 * @param uncertainty + or - percent uncertainty in track momentum

607 * @param out the array to fill with the ultimate swim output

608 * result

609 * @return the doca of the ultimate swim output result

610 */

611 private float interactionVertexGridSearch(int samples, float[] rasterInfo,

↪→ float[] trackInfo, float uncertainty, float[] out) throws

↪→ InterruptedException, ExecutionException{

612 //define bounds

613 float upperBoundPX = trackInfo[3] * (1.0f + uncertainty);

614 float lowerBoundPX = trackInfo[3] * (1.0f - uncertainty);

615 float upperBoundPY = trackInfo[4] * (1.0f + uncertainty);

616 float lowerBoundPY = trackInfo[4] * (1.0f - uncertainty);

617 float upperBoundPZ = trackInfo[5] * (1.0f + uncertainty);

618 float lowerBoundPZ = trackInfo[5] * (1.0f - uncertainty);

619

620 //choose the max radius of uncertainty to check doca against

621 float rasterErr = Math.max(rasterInfo[1], rasterInfo[3]);

622

623 //define useful arrays

624 float[][][][] output = new float[samples][samples][samples][8];

625 ArrayList<ArrayList<ArrayList<Future<Float>>>> doca = new ArrayList();

626 ArrayList<int[]> localMinIndices = new ArrayList<>();

627

628 //Define thread service

629 ExecutorService ex = Executors.newFixedThreadPool(maxThreads);

630

631 //Find the interaction vertices and docas to sift through

632 for(int i = 0; i < samples; i++){

633 doca.add(new ArrayList<>());

73

634 for(int j = 0; j < samples; j++){

635 doca.get(i).add(new ArrayList<>());

636 for(int k = 0; k < samples; k++){

637 //Set Swimmer params

638 float[] swimParams = new float[]{

639 trackInfo[0],

640 trackInfo[1],

641 trackInfo[2],

642 lowerBoundPX + i * (upperBoundPX - lowerBoundPX) /

↪→ (samples - 1),

643 lowerBoundPY + j * (upperBoundPY - lowerBoundPY) /

↪→ (samples - 1),

644 lowerBoundPZ + k * (upperBoundPZ - lowerBoundPZ) /

↪→ (samples - 1),

645 trackInfo[6]};

646

647 //Get interaction vertices

648 doca.get(i).get(j).add(ex.submit(new ThreadedVertexFinder(

649 iterationsVertex,

650 samplesVertex,

651 zMinGlobal,

652 zMaxGlobal,

653 rasterInfo[0],

654 rasterInfo[2],

655 swimParams,

656 output[i][j][k])));

657 }

658 }

659 }

660

661 //Wait for all tasks to finish

662 ex.shutdown();

663 ex.awaitTermination(10, TimeUnit.DAYS);//Arbitrarily large

664

74

665 //Find local mins

666 for(int i = 0; i < samples; i++){

667 for(int j = 0; j < samples; j++){

668 for(int k = 0; k < samples; k++){

669 //check if within rasterErr

670 if(doca.get(i).get(j).get(k).get() < rasterErr){

671 localMinIndices.add(new int[]{i, j, k});

672 continue;

673 }

674 //check if unrealistically massive

675 if(doca.get(i).get(j).get(k).get() > Float.MAX_VALUE /

↪→ 2.0){

676 continue;

677 }

678 //check px component

679 if(i == 0 && doca.get(i).get(j).get(k).get() > doca.get(i

↪→ + 1).get(j).get(k).get()){

680 continue;

681 }

682 else if (i > 0 && i < samples - 1 && (doca.get(i).get(j).

↪→ get(k).get() > doca.get(i + 1).get(j).get(k).get()

↪→ || doca.get(i).get(j).get(k).get() > doca.get(i - 1)

↪→ .get(j).get(k).get())){

683 continue;

684 }

685 else if(i == samples - 1 && doca.get(i).get(j).get(k).get

↪→ () > doca.get(i - 1).get(j).get(k).get()){

686 continue;

687 }

688 //check py component

689 if(j == 0 && doca.get(i).get(j).get(k).get() > doca.get(i)

↪→ .get(j + 1).get(k).get()){

690 continue;

691 }

75

692 else if (j > 0 && j < samples - 1 && (doca.get(i).get(j).

↪→ get(k).get() > doca.get(i).get(j + 1).get(k).get()

↪→ || doca.get(i).get(j).get(k).get() > doca.get(i).get

↪→ (j - 1).get(k).get())){

693 continue;

694 }

695 else if(j == samples - 1 && doca.get(i).get(j).get(k).get

↪→ () > doca.get(i).get(j - 1).get(k).get()){

696 continue;

697 }

698 //check pz component

699 if(k == 0 && doca.get(i).get(j).get(k).get() > doca.get(i)

↪→ .get(j).get(k + 1).get()){

700 continue;

701 }

702 else if (k > 0 && k < samples - 1 && (doca.get(i).get(j).

↪→ get(k).get() > doca.get(i).get(j).get(k + 1).get()

↪→ || doca.get(i).get(j).get(k).get() > doca.get(i).get

↪→ (j).get(k - 1).get())){

703 continue;

704 }

705 else if(k == samples - 1 && doca.get(i).get(j).get(k).get

↪→ () > doca.get(i).get(j).get(k - 1).get()){

706 continue;

707 }

708 //add to local min list

709 localMinIndices.add(new int[]{i, j, k});

710 }

711 }

712 }

713

714 //Cull values that fail zMinGlobal < z < zMaxGlobal

715 for(int i = 0; i < localMinIndices.size(); i++){

716 int[] idx = localMinIndices.get(i);

76

717 if(output[idx[0]][idx[1]][idx[2]][2] < zMinGlobal || output[idx

↪→ [0]][idx[1]][idx[2]][2] > zMaxGlobal){

718 localMinIndices.remove(i);

719 i--;

720 }

721 }

722

723 //Exit

724 int[] i;

725 switch(localMinIndices.size()){

726 case 0:

727 //Fail gracefully

728 Arrays.fill(out, Float.NaN);

729 return Float.NaN;

730 case 1:

731 //Only one value

732 i = localMinIndices.get(0);

733 System.arraycopy(output[i[0]][i[1]][i[2]], 0, out, 0, 8);

734 return doca.get(i[0]).get(i[1]).get(i[2]).get();

735 default:

736 //Find value which minimizes change from nominal track

737 float minIdxDiff = Float.MAX_VALUE;

738 float minDoca = Float.MAX_VALUE;

739 boolean inRasterErr = false;

740 int minIndex = 0;

741 for(int[] idx : localMinIndices){

742 float swimDoca = doca.get(idx[0]).get(idx[1]).get(idx[2]).

↪→ get();

743 //System.out.println("idx: " + Arrays.toString(idx) + ",

↪→ doca: " + swimDoca + ", z: " + output[idx[0]][idx

↪→ [1]][idx[2]][2]);

744 if(swimDoca < rasterErr){

745 inRasterErr = true;

77

746 float idxDiff = (float)Math.sqrt(Math.pow(idx[0] - (

↪→ float)samples / 2, 2.0) +

747 Math.pow(idx[1] - (

↪→ float)samples /

↪→ 2, 2.0) +

748 Math.pow(idx[2] - (

↪→ float)samples /

↪→ 2, 2.0));

749 if(idxDiff < minIdxDiff){

750 minIdxDiff = idxDiff;

751 minIndex = localMinIndices.indexOf(idx);

752 }

753 }

754 else if(inRasterErr == false){

755 if(swimDoca < minDoca){

756 minDoca = swimDoca;

757 minIndex = localMinIndices.indexOf(idx);

758 }

759 }

760

761 }

762 i = localMinIndices.get(minIndex);

763 //System.out.println("Winner: " + Arrays.toString(i));

764 System.arraycopy(output[i[0]][i[1]][i[2]], 0, out, 0, 8);

765 return doca.get(i[0]).get(i[1]).get(i[2]).get();

766 }

767 }

768

769 /**

770 * This method uses a swimmer to calculate the beam’s doca position

↪→ relative to the raster beam axis.

771 *

772 * @param iterations The maximum number of recursive steps

78

773 * @param samples The number of sample points to take between zMin

↪→ and zMax for each step.

774 * @param zMin The lower bound of the area of interest. Should be

↪→ below the lower bound of the target

775 * @param zMax The upper bound of the area of interest. Should be

↪→ above the upper bound of the target

776 * @param rasterX The rasterized beam x position

777 * @param rasterY The rasterized beam y postiion

778 * @param swim A Swim class which has been set to the position

↪→ and momentum of interest

779 * @param out A pointer to a float array which will be filled by

↪→ this method. Will be set to the Swim output or NaN

780 * @return the doca to the rasterized beam coords; -1.0 if no mimimum was

↪→ found

781 */

782 private float findInteractionVertex(int iterations, int samples, float

↪→ zMin, float zMax, float rasterX, float rasterY, Swim swim, float[]

↪→ out){

783 //Define useful arrays

784 float[][] swimOutput = new float[samples][8];

785 float[] doca = new float[samples];

786 int[] docaIndex = new int[samples];

787 int docaLength = 0;

788 int[] localMin = new int[samples];

789 int localMinLength = 0;

790

791 //Get swim outputs

792 for(int i = 0; i < samples; i++){

793 double[] temp = swim.SwimToPlaneLab(zMin + i * (zMax - zMin) / (

↪→ samples - 1));

794 if(temp == null){

795 swimOutput[i] = null;

796 continue;

797 }

79

798 for(int j = 0; j < 8; j++){

799 swimOutput[i][j] = (float)temp[j];

800 }

801 }

802

803 //Calculate the doca for each sample point

804 for(int i = 0; i < samples; i++){

805 if(swimOutput[i] == null){

806 continue;

807 }

808 doca[docaLength] = (float)Math.sqrt(Math.pow(rasterX - swimOutput[

↪→ i][0], 2.0f) + Math.pow(rasterY - swimOutput[i][1], 2.0f));

809 docaIndex[docaLength] = i;

810 docaLength++;

811 }

812

813 //Handle variable docaLengths

814 switch(docaLength){

815 case 0:

816 //Fail gracefully

817 localMinLength = 0;

818 break;

819 case 1:

820 //Set only point as local minimum

821 localMinLength = 1;

822 localMin[0] = 0;

823 break;

824 default:

825 //Find local minima

826 if(doca[0] < doca[1]){

827 localMin[localMinLength] = 0;

828 localMinLength++;

829 } for(int i = 1; i < docaLength - 1; i++){

830 if(doca[i] < doca[i - 1] && doca[i] < doca[i + 1]){

80

831 localMin[localMinLength] = i;

832 localMinLength++;

833 }

834 } if(doca[docaLength - 1] < doca[docaLength - 2]){

835 localMin[localMinLength] = docaLength - 1;

836 localMinLength++;

837 } break;

838 }

839

840 //Exit?

841 if(iterations == 1){

842 int index = -1;

843 float smallest = Float.MAX_VALUE;

844

845 //Find a minimum?

846 if(localMinLength == 0){

847 Arrays.fill(out, Float.NaN);

848 return Float.MAX_VALUE;

849 }

850

851 //Find the smallest doca

852 for(int i = 0; i < localMinLength; i++){

853 if(doca[localMin[i]] < smallest){

854 index = i;

855 }

856 }

857 System.arraycopy(swimOutput[localMin[index]], 0, out, 0, 8);

858 return doca[localMin[index]];

859 }

860

861 //Recursively call this method on each of the local minima

862 float[][] minOut = new float[localMinLength][8];

863 float[] minDoca = new float[localMinLength];

864 for(int i = 0; i < localMinLength; i++){

81

865 if(docaIndex[localMin[i]] == 0){

866 float newZMin = zMin - (zMax - zMin) / 2;

867 float newZMax = zMax - (zMax - zMin) / 2;

868 if(newZMin < 2.0 * zMinGlobal - zMaxGlobal){

869 Arrays.fill(minOut[i], Float.NaN);

870 minDoca[i] = Float.MAX_VALUE;

871 }

872 else{

873 minDoca[i] = findInteractionVertex(iterations, samples,

↪→ newZMin, newZMax, rasterX, rasterY, swim, minOut[i])

↪→ ;

874 }

875 }

876 else if(docaIndex[localMin[i]] == samples - 1){

877 float newZMin = zMin + (zMax - zMin) / 2;

878 float newZMax = zMax + (zMax - zMin) / 2;

879 if(newZMin > 2.0 * zMaxGlobal - zMinGlobal){

880 Arrays.fill(minOut[i], Float.NaN);

881 minDoca[i] = Float.MAX_VALUE;

882 }

883 else{

884 minDoca[i] = findInteractionVertex(iterations, samples,

↪→ newZMin, newZMax, rasterX, rasterY, swim, minOut[i])

↪→ ;

885 }

886 }

887 else{

888 minDoca[i] = findInteractionVertex(iterations - 1, samples,

↪→ swimOutput[localMin[i]][2] - (zMax - zMin) / (samples -

↪→ 1), swimOutput[localMin[i]][2] + (zMax - zMin) / (

↪→ samples - 1), rasterX, rasterY, swim, minOut[i]);

889 }

890 }

891

82

892 //Find the smallest doca

893 int index = -1;

894 float smallest = Float.MAX_VALUE;

895 for(int i = 0; i < localMinLength; i++){

896 if(minOut[i] != null && minDoca[i] < smallest)

897 {

898 index = i;

899 }

900 }

901

902 //Exit

903 if(index == -1){

904 Arrays.fill(out, Float.NaN);

905 return Float.MAX_VALUE;

906 }

907 System.arraycopy(minOut[index], 0, out, 0, 8);

908 return minDoca[index];

909 }

910

911 /**

912 * This class is a passthrough class to allow the findInteractionVertex

913 * method to be threaded

914 */

915 private class ThreadedVertexFinder implements Callable<Float>{

916 //Copies of method parameters

917 int iterations;

918 int samples;

919 float zMin;

920 float zMax;

921 float rasterX;

922 float rasterY;

923 Swim swim;

924 float[] out;

925

83

926 //Constructor

927 public ThreadedVertexFinder(int _iterations, int _samples, float _zMin

↪→ , float _zMax, float _rasterX, float _rasterY, float[]

↪→ _swimParams, float[] _out){

928 iterations = _iterations;

929 samples = _samples;

930 zMin = _zMin;

931 zMax = _zMax;

932 rasterX = _rasterX;

933 rasterY = _rasterY;

934 swim = new Swim();

935 swim.SetSwimParameters(_swimParams[0], _swimParams[1], _swimParams

↪→ [2], _swimParams[3], _swimParams[4], _swimParams[5], (int)

↪→ _swimParams[6]);

936 out = _out;

937 }

938

939 //Passthrough

940 @Override

941 public Float call(){

942 return findInteractionVertex(iterations, samples, zMin, zMax,

↪→ rasterX, rasterY, swim, out);

943 }

944 }

945

946 /**

947 * Provides a copy mechanism from a pre-existing dataBank to a new one.

948 * Note that this does not natively append the new bank to the old event.

949 *

950 * @param event

951 * @param oldBank

952 * @param newBank

953 */

84

954 private DataBank copyBank(DataEvent event, String oldBankName, String

↪→ newBankName){

955 DataBank oldBank = event.getBank(oldBankName);

956 if(oldBank == null){

957 return null;

958 }

959

960 DataBank newBank = event.createBank(newBankName, oldBank.rows());

961 for(int i = 0; i < oldBank.rows(); i++){

962 for(int j = 0; j < oldBank.columns(); j++){

963 switch(oldBank.getDescriptor().getProperty("type", oldBank.

↪→ getColumnList()[j])){

964 case 1://Byte

965 newBank.setByte(oldBank.getColumnList()[j], i, (byte)(

↪→ oldBank.getByte(oldBank.getColumnList()[j], i)))

↪→ ;

966 break;

967 case 2://Short

968 newBank.setShort(oldBank.getColumnList()[j], i, (short

↪→)(oldBank.getShort(oldBank.getColumnList()[j], i

↪→)));

969 break;

970 case 3://Int

971 newBank.setInt(oldBank.getColumnList()[j], i, (int)(

↪→ oldBank.getInt(oldBank.getColumnList()[j], i)));

972 break;

973 case 4://Unused

974 break;

975 case 5://Float

976 newBank.setFloat(oldBank.getColumnList()[j], i, (float

↪→)(oldBank.getFloat(oldBank.getColumnList()[j], i

↪→)));

977 break;

978 case 6://Double

85

979 newBank.setDouble(oldBank.getColumnList()[j], i, (

↪→ double)(oldBank.getDouble(oldBank.getColumnList

↪→ ()[j], i)));

980 break;

981 }

982 }

983 }

984 return newBank;

985 }

986 }

86

