In presenting this thesis in partial fulfillment of the requirements for an advanced degree at Idaho State University, I agree that the Library shall make it freely available for inspection. I further state that permission for extensive copying of my thesis for scholarly purposes may be granted by the Dean of the Graduate School, Dean of my academic division, or by the University Librarian. It is understood that any copying or publication of this thesis for financial gain shall not be allowed without my written permission.

Signature \qquad

Date \qquad

Rastered Beam Interaction Vertex Reconstruction in the CLAS12 Detector
by

David Friant

A thesis
submitted in partial fulfillment
of the requirements for the degree of
Master of Science in Physics
Idaho State University
Summer 2019

To the Graduate Faculty:

The members of the committee appointed to examine the thesis of David Friant find it satisfactory and recommend that it be accepted.

Dr. Tony Forest,
Major Advisor

Dr. Dan Dale, Committee Member

Dr. David Beard,
Graduate Faculty Representative

Contents

Abstract vii
1 Introduction 1
2 Theory 4
2.1 Drift Chambers 4
2.1.1 Typical Construction and Principle of Operation 4
2.1.2 Addition of a Magnetic Field 6
2.1.3 CLAS12 6
2.2 Track Reconstruction Elements 10
2.2.1 Coordinate Systems 10
2.2.2 Runge-Kutta Approximation 12
2.2.3 Kalman Fitter 13
2.3 Rastered Beam 16
3 Simulation and Reconstruction 17
3.1 Physical Setup 17
3.2 Simulation 18
3.3 Current Reconstruction Algorithms 20
3.4 Proposed Reconstruction Algorithm 21
3.4.1 Parameters 22
3.4.2 Overarching Algorithm 23
3.4.3 Reconstruction 23
3.4.4 Grid Search 23
3.4.5 Vertex Search 24
4 Analysis 25
$4.1 \Delta \mathrm{Z}$ Comparisons 26
4.2Δ Z Summary Table 31
4.3 $\Delta \mathrm{Z}$ Dependence on Raster Radius 32
4.4 $\Delta \mathrm{X}$ and $\Delta \mathrm{Y}$ 33
4.5 Efficiency 36
5 Conclusion 37
References 39
Appendix A Example Program Calls and Example GCard 42
A. 1 Example GCard 42
A. 2 Program Calls 47
Appendix B Descriptions of Hit Based and Time Based Reconstructions 48
B. 1 Definition of Terms 48
B. 2 Hit Based Algorithm 49
B.2.1 Hits to Clusters 49
B.2.2 Clusters to Segments 49
B.2.3 Segments to Crosses 50
B.2.4 Crosses to Tracks Part I 50
B.2.5 Crosses to Tracks Part II 52
B. 3 Time Based Algorithm 52
B.3.1 Hits to Clusters 52
B.3.2 Clusters to Segments 53
B.3.3 Reconstructing Tracks 53

Appendix C Source Code For Raster Based Reconstruction

Abstract
Rastered Beam Interaction Vertex Reconstruction in the CLAS12 Detector

The thesis reports the results of an improved track reconstruction program that is used to determine the momentum and interaction vertex of particles scattering in experiments performed using the CLAS12 Detector at Jefferson Lab. Particles are reconstructed from the CLAS12 drift chamber and scintillator detector sub-systems. The improved algorithm performs a three dimensional grid search in momentum space in an attempt to minimize the distance of closest approach between the particle's path and the transverse location of the incident electrons that scatter from nucleons in a cryogenic target. Analysis has shown that the new algorithm is capable of improving the reconstruction in the X and Y directions (orthogonal to the incident electrons) by a factor of no less than ten, while at least maintaining the quality of the reconstruction in the Z direction for a subset of input events.

Key Words: CLAS12, Rastered Beam, Reconstruction

Chapter 1

Introduction

The CLAS12 is a charged and neutral particle detector constructed in Jefferson Lab's Hall B. The detector is used to reconstruct nuclear physics interactions that result when GeV energy electrons interact with select targets. CLAS12's precursor, the original CLAS (CEBAF Large Acceptance Spectrometer), was built to facilitate measurements of excited states of nucleons and characterize nucleon-nucleon correlations. Contemporaneous with the 12 GeV upgrade to Jefferson Lab's accelerator, CLAS was removed and CLAS12 was built in its place. ${ }^{1}$

CLAS12 is designed to not only continue the mission of its predecessor, but to also measure generalized parton distributions of nucleons and search for exotic forms of matter. It is currently slated to perform experiments for more than ten years into the future and will likely continue to contribute even after that. ${ }^{1}$ Figure 1.1 shows a model of the detector with labels detailing some of the sub detector's and other components. It is important to note here that CLAS12 is not a singular detector, but instead a suite of detectors which can be correlated together in order to more precisely reconstruct the interactions that occur within the physics target.

Alongside the construction of CLAS12, several software packages have been created to handle simulating the detector response, reconstructing events from detector the detector response, and visualizing the reconstructed interactions. For simulation, the CLAS Collab-
oration has developed a package that provides all of the necessary information to GEMC ${ }^{2}$ (GEant4 Monte-Carlo), a general program designed to make interfacing with Geant4 ${ }^{3}$ easier. The program used for viewing events is called CED (CLAS Event Display), and is a continuation of a program originally designed for use with the CLAS. Most importantly for this document, as it is the topic of discussion, is the reconstruction software. Known as clas12-offline-software ${ }^{4}$, it is a collection of various (mostly) java programs used to process the data collected from CLAS12 and reconstruct the observed particle mass, momentum, and location within the detector.

This thesis is two-fold in purpose. First, it is intended to provide an understanding of the current methods used to reconstruct particle trajectories from the drift chamber subdetectors of CLAS12. This includes both a theoretical understanding of the underlying algorithms and physics as well as the actual implementation of those ideas. The second purpose is to present an additional method of reconstruction which takes the already existing drift chamber reconstruction output and further refines it so that interactions which arise from a rastered beam may be reconstructed more accurately.

It should be noted that, in the context of this thesis, the primary motivation behind the development of this new reconstruction algorithm is to allow for the reconstruction of events from a physics target that contains two polarized target regions separated by some distance. More details will be given about the target in the Simulation and Reconstruction chapter. Semi-Inclusive Deep Ineslatic Scattering (SIDIS) events are of particle interest. SIDIS events only consider the scattered incident particle, an electron in this case, and the highest energy hadron produced by the interaction, if any. The core idea is that when the scattered particle interacts with a parton in the struck particle, there will be a primary product hadron accompanied by a hadron shower. The kinematics of this primary product and the scattered particle are believed to encode most of the information about the struck parton.

Figure 1.1: A 3-D model of the entire CLAS12 detector. The components marked as Regions 1,2 , and 3 indicate the drift chambers. ${ }^{5}$

Chapter 2

Theory

This chapter is meant to provide sufficient knowledge and background to understand the general workings of the CLAS12 drift chambers, the most critical elements of the reconstruction process, and the rasterization of the scattered electrons. With regards to the drift chambers, particular attention is paid to the geometry and physical construction as that directly effects the acceptance of the detector. The elements of the most importance discussed here are the concepts of Runge-Kutta approximations and Kalman Fitters. Both are used heavily in the reconstruction process. And finally, the discussion about rastered beams gives background as to why this project exists to begin with.

2.1 Drift Chambers

The CLAS12 drift chambers are designed to determine the momentum of charged particles moving through them. The following sections provide a brief overview of drift chambers in general.

2.1.1 Typical Construction and Principle of Operation

Drift chambers are charged particle detectors that are designed to measure the trajectory of a particle's path through the detector. The trajectory is backed out from discrete position
and momentum data from wires within the chamber. This process is typically called Inverse Kinematics.

Typically, drift chambers are constructed out of a chamber filled with an ionizable gas and planes of conducting wire. The wire planes are arranged to be ideally perpendicular to the particle's direction of motion and come in two alternating types: cathode planes and anode (sense) planes. The planes are designed to create a nearly uniform static electric field which will drive electrons towards the sense planes. As described in the next paragraph, the sense wires collect ionized electrons, producing an electronic signal. That electronic signal propagates in both directions along the sense wire and away from the location of the ionization. The signal's propagation is measured by a pair of coupled timers at either end of the wire. It is common to have multiple sets of layers which are oriented differently, though still perpendicularly to the direction of motion, to increase the accuracy of the reconstructed trajectories. ${ }^{6}$

The general principle of producing an electronic signal in a drift chamber is as follows. A charged particle moves through the drift chamber and ionizes atoms along its path. The electrons, which have been separated from these atoms, are now accelerated towards the anode wires (sense wires). If the anode wire is very thin, the electric field near to it becomes very strong, causing the electrons to pick up a great deal of speed and cause a Townsend avalanche. A Townsend avalanche is a cascading series of ionizations which help to amplify the signal. ${ }^{7}$ This signal being a voltage pulse traveling towards either end of the wire from the point where the electrons hit. Using the coupled timers at the ends, it is then possible to use the difference in time of signal propagation to calculate the position along the wire of the hit.

This position along the axis of the wire is only one dimensional information about a particle traveling through 3D space. It is, however, possible to couple the timing information from multiple nearby sense wires and a measurement of the time the liberated electrons take to reach the sense wire to calculate the distance of closest approach (DOCA) to each of them. This then gives a position along the axis of each wire as well as a radius perpendicular to that
axis at that point. If all of this information is known perfectly, then the vector component of the path which lies in the plane of a circle defined by the aforementioned radius will be tangent to that circle. Combining that information with the change in hit position along the axis of each wire allows for the ultimate measurement of the particle's path through the detector.

2.1.2 Addition of a Magnetic Field

The inclusion of a magnetic field into a drift chamber allows for the reconstruction of not just the path of the particle, but also the magnitude of its momentum. A uniform magnetic field perpendicular to the particle's direction of motion, for example, would cause the path to bend into some section of a circle, thus changing the expected hit position along the wires of the sense planes. Using these hits, it is then possible to reconstruct the radius of curvature of the path. With the assumption the particle carries the usual elementary charge, it is then possible to calculate the particle's momentum by equating the central force and magnetic force as shown in equation 2.1.

$$
\begin{equation*}
\frac{\gamma m v^{2}}{r}=q v B \Longrightarrow \gamma m v=q B r \tag{2.1}
\end{equation*}
$$

2.1.3 CLAS12

CLAS12's drift chambers are the primary source of path information for interaction reconstruction within the entire detector suite and are the focus of this document. As such, it is important to make as clear as possible their construction.

CLAS12's Drift Chamber Construction

The CLAS12 Detector's drift chamber is broken up into 18 separate sub-chambers as shown in figure 2.1. There are six chambers in each of three regions which are approximately 2.1, 3.3, and 4.5 meters away from the physics target position. Within each region, the six

Figure 2.1: The three regions and six sectors per region in the drift chambers. ${ }^{5}$
triangular chambers are arranged to be in symmetric sectors around the beam axis with angular coverage between 5° and 40° as measured at the target location with respect to the beam axis. The design of the detector allows for a momentum resolution of less than one percent. ${ }^{8}$

Within each region and sector are two superlayers of wire planes which are arranged such that the axes of the wires lie in parallel planes that are rotated by 12° with respect to each other. Within each superlayer are 6 layers of sense wires. Each layer has 112 sense wires which have a hexagonal arrangement of cathode wires around them. These hexagonal arrangements are referred to as cells. They grow in size from region 1 to region 3 and provide a spatial resolution of approximately $300 \mu \mathrm{~m} .{ }^{8}$

Magnetic Fields

The CLAS12 detector has two magnetic fields, one solenoidal field at the target and one toroidal field centered around the second drift chamber region. The solenoidal field points primarily in the direction of the beamline with a central value of 5 Tesla, and is designed to prevent Möller electrons, a primary background, from entering the detector by redirecting their trajectories to be down the beamline. ${ }^{9}$ The toroidal field is actually the result of six smaller coils, one in each sector, which all contribute to create a field that is primarily in the phi (azimuthal about the beam line) direction. ${ }^{10}$ This is designed to bend particles either into or away from the beam line through the drift chambers which allows for the reconstruction of the particle's momentum. See figure 2.2.

Figure 2.2: The strength of both the solenoidal (left) and toroidal (center) magnetic fields.

2.2 Track Reconstruction Elements

This section describes the theory behind and implementation of several of the more opaque components of the reconstruction algorithms.

2.2.1 Coordinate Systems

The collaboration has defined two coordinate systems in addition to the lab system to reduce the complexity of the reconstruction process within the drift chambers. The lab coordinate system is defined by a right-handed system such that the positive y-direction is upwards, against the pull of gravity and the positve z-direction is down the beam line. This results in the positive x -direction bisecting what is known as sector one as shown in figure 2.3.

The sector coordinate system is defined by rotating the sector of interest about the Z axis into the position of sector one as per figure 2.3. This rotation will naturally be some multiple of 60° and will only take into account $\pm 30^{\circ}$ about the 0° angle. The tilted sector coordinate system takes a sector coordinate system and rotates it about the y-axis, again as per figure 2.3 , by 25° such that the Z-direction is now perpendicular to the sector drift chambers. Transformations between these different coordinate systems are typically handled by rotation matrices. The matrices $2.2,2.3$, and 2.4 operate on vectors to rotate about the X, Y, and Z axes respectively. ${ }^{11}$

$$
\begin{align*}
& {\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & \cos (\theta) & -\sin (\theta) \\
0 & \sin (\theta) & \cos (\theta)
\end{array}\right]} \tag{2.2}\\
& {\left[\begin{array}{ccc}
\cos (\theta) & 0 & -\sin (\theta) \\
0 & 1 & 0 \\
\sin (\theta) & 0 & \cos (\theta)
\end{array}\right]} \tag{2.3}
\end{align*}
$$

Figure 2.3: The lab coordinate system and sectors as seen when looking down the beam line.

$$
\left[\begin{array}{ccc}
1 & 0 & 0 \tag{2.4}\\
0 & \cos (\theta) & -\sin (\theta) \\
0 & \sin (\theta) & \cos (\theta)
\end{array}\right]
$$

It follows then that to transform from the tilted sector coordinate system to the sector coordinate system, one would use matrix 2.3 with $\theta=25^{\circ}$. Likewise, to transform from the sector coordinate system for sector n to the lab coordinate system, one would use matrix 2.4 with $\theta=(n-1) 30^{\circ}$.

2.2.2 Runge-Kutta Approximation

The Runge-Kutta approximations are a family of numerical methods used to approximate solutions to ordinary differential equations. The simplest member of this family is Euler's method as shown in equations 2.5 and 2.6. Here it is important to see that $f(t, y)=\frac{d f}{d t}$ and h is the step size in t. It is straightforward to see that it is possible to achieve an arbitrary level of accuracy by allowing h to be arbitrarily small. ${ }^{12}$

$$
\begin{gather*}
x_{n+1}=x_{n}+h f\left(t_{n}, y n\right) \tag{2.5}\\
t_{n+1}=t_{n}+h \tag{2.6}
\end{gather*}
$$

However, it is often either not possible or not feasible to allow h to become arbitrarily small. This has motivated the use of the higher order Runge-Kutta methods as they are more algorithmically efficient at giving approximations of the same quality. This allows for larger step sizes and thus fewer steps. Of these methods, the 4th order method, often referred to simply as "the Runge-Kutta method," is used in the drift chamber reconstruction process. At its core, the 4th order method is a weighted average of 4 different approximations as seen in equations 2.7 through 2.12. ${ }^{12}$

$$
\begin{gather*}
k_{1}=f\left(t_{n}, x_{n}\right) \tag{2.7}\\
k_{2}=f\left(t_{n}+\frac{h}{2}, x_{n}+h \frac{k_{1}}{2}\right) \tag{2.8}
\end{gather*}
$$

$$
\begin{gather*}
k_{3}=f\left(t_{n}+\frac{h}{2}, x_{n}+h \frac{k_{2}}{2}\right) \tag{2.9}\\
k_{4}=f\left(t_{n}+h, x_{n}+h k_{3}\right) \tag{2.10}\\
x_{n+1}=x_{n}+\frac{h}{6}\left(k_{1}+2 k_{2}+2 k_{3}+k_{4}\right) \tag{2.11}\\
t_{n+1}=t_{n}+h \tag{2.12}
\end{gather*}
$$

It is important to note here that all members of the Runge-Kutta family do accumulate errors as they step through more iterations. The error in a single step, called the Local Truncation Error, is of the order $O\left(h^{5}\right)$, and the accumulated error is of the order $O\left(h^{4}\right) .{ }^{12}$

Jefferson Lab's software team has implemented the 4th order algorithm into an object called a Swimmer. This Swimmer is given maps of the magnetic fields and a state vector which incudes the position, momentum, and charge of the particle of interest. The swimmer can then be called upon to swim (step) the particle until it meets certain position criteria such as a particular value along the z -axis.

2.2.3 Kalman Fitter

The Kalman Fitter is built on the concept of a Kalman Filter. A Kalman Filter is a statistical algorithm which combines a hypothetical model with measurements to find the Best Linear Unbiased Estimate (BLUE) of an evolved system. Included in this section is a description of the Kalman Filter process, a summary of the mathematics of it, and a discussion of the implementation used in the Hit Based and Time Based Reconstruction algorithms.

In general, the Kalman Filter Algorithm proceeds as follows. First, the initial state vector of interest and its associated uncertainties are evolved until there is a measurement available to compare against. The algorithm then compares the predicted and measured values and takes a weighted average of them wherein more weight is given to values with smaller uncertainties. The state vector is updated and the algorithm repeats. It is worth mentioning that the Kalman Filter is efficient in the sense that there is no need to keep track of old state vectors. There is instead a covariance matrix which is updated every step. ${ }^{13}$

A summary of the mathematics of the Kalman Filter is layed out in equations 2.13 through 2.28. It is quoted from An Introduction to Kalman Filtering with Applications by Miller and Leskiw. ${ }^{13}$

Let $\boldsymbol{x}(t)$ be a state vector which satisfies the deterministic ordinary differential system

$$
\begin{gather*}
\dot{\boldsymbol{x}}(t)=F(t) \boldsymbol{x}(t) \tag{2.13}\\
x\left(t_{0}\right)=\boldsymbol{x}_{0} \tag{2.14}
\end{gather*}
$$

Then in the Kalman theory we have:

System model

$$
\begin{gather*}
\dot{\boldsymbol{X}}(t)=F(t) \boldsymbol{X}(t)+\boldsymbol{V}(t) \tag{2.15}\\
\boldsymbol{X}\left(t_{0}\right)=\hat{\boldsymbol{x}}_{0} \tag{2.16}
\end{gather*}
$$

where $\boldsymbol{V}(t)$ has mean zero and cross-covariance matrix $S(t, s)=B(t) \Omega(t) B^{\prime}(t) \delta(t-s)$ where $\Omega(t)$ is a positive definite spectral density matrix and $B(t)$ is a square matrix. The random initial condition $\hat{\boldsymbol{x}}_{0}$ has mean \boldsymbol{x}_{0} and positive definite covariance matrix P_{0}.

Measurement model

$$
\begin{equation*}
\boldsymbol{Z}_{k}=H_{k} \boldsymbol{x}\left(t_{k}\right)+\boldsymbol{v}_{k}, k=1,2, \ldots \tag{2.17}
\end{equation*}
$$

where \boldsymbol{v}_{k} has mean zero and positive definite covariance matrix R_{k}. It is assumed that $\boldsymbol{V}(t)$, $\hat{\boldsymbol{x}}_{0}$, and $\boldsymbol{v}_{k}, k=1,2, \ldots$ are independent.

State estimate propagation

$$
\begin{gather*}
\dot{\hat{\boldsymbol{x}}}(t)=F(t) \hat{\boldsymbol{x}}(t), t_{0} \leq t<t_{l} \tag{2.18}\\
\hat{\boldsymbol{x}}\left(t_{0}\right)=\hat{\boldsymbol{x}}_{0} \tag{2.19}
\end{gather*}
$$

and

$$
\begin{equation*}
\dot{\hat{\boldsymbol{x}}}=F(t) \hat{\boldsymbol{x}}(t) \tag{2.20}
\end{equation*}
$$

has initial condition $\hat{\boldsymbol{x}}\left(t_{k}\right)$ in $\left[t_{k}, t_{k+1}, \ldots\right), k=1,2, \ldots$

Error covariance propagation

$$
\begin{gather*}
\dot{P}(t)=F(t) P(t)+P(t) F^{\prime}(t)+B(t) \Omega(t) B^{\prime}(t), t_{0} \leq t<t_{l} \tag{2.21}\\
P\left(t_{0}\right)=P_{0} \tag{2.22}
\end{gather*}
$$

and

$$
\begin{equation*}
\dot{P}(t)=F(t) P(t)+P(t) F^{\prime}(t)+B(t) \Omega(t) B^{\prime}(t) \tag{2.23}
\end{equation*}
$$

has initial condition $P\left(t_{k}\right)$ in $\left[t_{k}, t_{k+1}, \ldots\right), k=1,2, \ldots$

State estimate update

$$
\begin{gather*}
\hat{\boldsymbol{x}}\left(t_{k}\right)=\left(I-K_{k} H_{k}\right) \hat{\boldsymbol{x}}\left(t_{k}^{-}\right)+K_{k} \boldsymbol{Z}_{k} \tag{2.24}\\
=P\left(t_{k}\right)\left[P^{-1}\left(t_{k}^{-}\right) \hat{\boldsymbol{x}}\left(t_{k}^{-}\right)+H^{\prime}{ }_{k} R_{k}{ }^{-1} \boldsymbol{Z}_{k}\right], k=1,2, \ldots \tag{2.25}
\end{gather*}
$$

Error covariance update

$$
\begin{gather*}
P\left(t_{k}\right)=\left[P^{-1}\left(t_{k}^{-}\right)+H_{k}^{\prime} R^{-1}{ }_{k} H_{k}\right]^{-1} \tag{2.26}\\
=\left(I-K_{k} H_{k}\right) P\left(t_{k}^{-}\right), k=1,2, \ldots \tag{2.27}
\end{gather*}
$$

Gain matrix

$$
\begin{equation*}
K_{k}=P\left(t_{k}\right) H_{k}^{\prime} R_{k}^{-1}, k=1,2, \ldots \tag{2.28}
\end{equation*}
$$

This is implemented in the Fitter as a method of refining a trajectory provided by calculations done on the raw hits. In essence, this method takes the initial state vector and steps it to each drift chamber region using the Runge-Kutta based Swimmer discussed in the previous section. At each region, the Kalman Filter is used to refine the trajectory. After finishing with the third region, the algorithm then steps back to near the starting location of the inital state vector and repeates the process up to 30 times. The algorithm will exit early if the χ^{2} is sufficiently small.

2.3 Rastered Beam

A rastered beam is the intentional movement of the incident electrons, ideally translating without rotation, over the surface of the target. The primary purpose of this is to distribute the energy deposited into the target more uniformly and avoid localized target heating that would result in physical changes to the target. In the case of a cryogenic target, overheating can cause localized target boiling, reducing the effective length of the target, and result in a lower luminosity of the experiment. In the case of a polarized target, overheating can impact the ability of the target to be polarized resulting in a need to recover target polarization through annealing.

As already stated, the ideal case is a raster that purely translates the incident electrons in the plane perpendicular to the electron momentum without any rotation. The underlying assumption used to determine the kinematics of an observed scattering event is that the incident electrons were directed parallel to a coordinate axis. In the CLAS12, the reference coordinate system aligns the z-axis such that it points parallel to the incident electron's momentum. The scattered electron's azimuthal angle with respect to this axis is used to quantify kinematic variables in the reaction and the cross section. Most notably, this angle is used to determine the amount of four-momentum that was transferred to the target. It follows that an angular offset in the incident electron beam would be an error that propagates to the measured kinematics and cross-sections.

Unfortunately, it is nigh impossible to be able to achieve pure translation in a real lab setting. It is preferable then to simply minimize the changes in incident angle to such a degree that the contribution to systematic errors are minimal. In the common case of using a dipole magnet to create raster behavior, it is sufficient that the angular size of the target relative to the magnet's position be quite small. This ensures that any particle that hits the target will also have a small relative change in angle compared to any other particle.

Chapter 3

Simulation and Reconstruction

This chapter describes the steps taken to determine the efficacy of the proposed reconstruction algorithm. Included are a description of the physical setup of the actual polarized SIDIS dual target, a description of the simulations done to gather test data, and a discussion of both the current and proposed reconstruction algorithms. The ultimate goal of the proposed reconstruction algorithm is to be able to confidently state which of the two subtargets any given event spawned from.

3.1 Physical Setup

Figure 3.1 provides a general description of the target used in the simulation. In the simulation, the setup is centered in the middle of the solenoid magnet with a gap of four centimeters between the two targets. Each target is two centimeters long and has a radius of one centimeter. Each of the targets can be independently polarized and may contain either NH_{3} or ND_{3}. Additionally, there is a carbon foil centered between the two targets. This foil is used to normalize away particles scattered off of the nitrogen in the two main targets.

Figure 3.1: A description of the general geometry of the polarized dual target. ${ }^{14}$

3.2 Simulation

All of the data used to analyze the efficacy of the proposed reconstruction algorithm was generated using GEMC version 4a.2.4. GEMC (GEant4 Monte-Carlo) ${ }^{2}$ takes as input configuration files called GCards. These GCards direct the program to load in certain tagged releases of the files (geometry, magnetic fields, etc.) required to simulate the desired experiment. The CLAS12 software team has created a repository containing various different revisions of tags which can be used. ${ }^{15}$ A sample GCard can be found in Appendix A.

Additionally, the GCards allow the user to set certain parameters within the simulation. Of particular importance are scaling the magnetic field vectors and specifying the manner in which the simulated particles are generated. The magnetic field scales are set by simply passing in the desired scale factor. The event generator is somewhat more complicated. It is broken into four different components: beam momentum, momentum spread, beam position, and position spread. The beam momentum has four parameters: simulated particle, momentum magnitude, momentum polar angle, and momentum azimuthal angle. The momentum spread has three parameters: plus or minus momentum spread, plus or minus polar angle,
and plus or minus azimuthal angle. The beam position has three parameters: X-position, Y-position, and Z-position. the position spread has two parameters: spread radius in the X-Y plane and Z-position spread. A full description of all available options can be found at https://gemc.jlab.org/gemc/html/documentation/options.html.

It should be noted here that the ranges for the momentum were provided by Dr. Tony Forest and that they are indicative of the expected kinematic range of the actual experiment.

	e- In Up	e- In Down	e- Out Up	e- Out Down
Toroid Scale	-1.0	-1.0	1.0	1.0
$\|P\|$	$4.75 \pm 3.25 \mathrm{GeV}$			
ϕ	$22.5 \pm 17.5^{\circ}$	$22.5 \pm 17.5^{\circ}$	$22.5 \pm 17.5^{\circ}$	$22.5 \pm 17.5^{\circ}$
θ	$0.0 \pm 180.0^{\circ}$	$0.0 \pm 180.0^{\circ}$	$0.0 \pm 180.0^{\circ}$	$0.0 \pm 180.0^{\circ}$
X	0.0 cm	0.0 cm	0.0 cm	0.0 cm
Y	0.0 cm	0.0 cm	0.0 cm	0.0 cm
R	1.0 cm	1.0 cm	1.0 cm	1.0 cm
Z	$-3.0 \pm 1.0 \mathrm{~cm}$	$3.0 \pm 1.0 \mathrm{~cm}$	$-3.0 \pm 1.0 \mathrm{~cm}$	$3.0 \pm 1.0 \mathrm{~cm}$
	$\pi+\mathrm{Up}$	$\pi+$ Down	π - Up	π - Down
Toroid Scale	1.0	1.0	-1.0	-1.0
$\|P\|$	$1.8 \pm 1.0 \mathrm{GeV}$			
ϕ	$45.0 \pm 45.0^{\circ}$	$45.0 \pm 45.0^{\circ}$	$45.0 \pm 45.0^{\circ}$	$45.0 \pm 45.0^{\circ}$
θ	$0.0 \pm 180.0^{\circ}$	$0.0 \pm 180.0^{\circ}$	$0.0 \pm 180.0^{\circ}$	$0.0 \pm 180.0^{\circ}$
X	0.0 cm	0.0 cm	0.0 cm	0.0 cm
Y	0.0 cm	0.0 cm	0.0 cm	0.0 cm
R	1.0 cm	1.0 cm	1.0 cm	1.0 cm
Z	$-3.0 \pm 1.0 \mathrm{~cm}$	$3.0 \pm 1.0 \mathrm{~cm}$	$-3.0 \pm 1.0 \mathrm{~cm}$	$3.0 \pm 1.0 \mathrm{~cm}$

Table 3.1: Descriptions of the non-default parameters used generate the eight data sets. Inbending and outbending are shortened to In and Out respectively. Upstream and Downstream are shortened to Up and Down respectively.

Four pairs of data sets were generated for this analysis. Each pair consists of one 5000 event data set generated uniformly within each subtarget and was later combined to make a single 10000 event data set. The four ultimate data sets are labeled as such: electroninbending, electron-outbending, postive pion, and negative pion. The toroidal field was set such the the pions are always inbending. The two electron set parameters differ only by the scale of the toroid. In one case it is set such that electrons bend into the beam line and in the other case they bend away. In the case of the pions, the toroid scale is set such that particles always bend into the beamline. Table 3.1 shows all of the non-default parameters used to generate each data set.

After GEMC has been run, the resulting EVIO (Event Input Output) files must be converted to HIPO (High Performance Output) files. This is done by calling one of the utilities packaged in clas12-offline-software, evio2hipo. Once that is done, the upstream and downstream components of each pair of data sets are merged using another clas12-offlinesoftware program, hipo-utils. Examples for running all of these can be found in Appendix A. All that remains then is to run the HIPO files through the two pre-existing reconstruction algorithms and then the proposed algorithm.

3.3 Current Reconstruction Algorithms

There are currently two drift chamber reconstruction algorithms. The first, called Hit Based, feeds into the second, called Time Based. The following paragraphs are brief descriptions of both of them. Appendix B holds lengthy descriptions of both algorithms.

The Hit Based algorithm is the first pass at reconstruction and is largely used to lay groundwork for the Time Based algorithm. In broad strokes, the Hit Based algorithm works by first collecting all of the drift chamber hits and grouping them by their superlayer. Those groups are then processed and a linear fit is attempted. That fit is then used to find a position-momentum state vector between the superlayers of each region. Finally, a combination of a Kalman Fitter and the Runge-Kutta based Swimmer are used to reconstruct the
trajectory of the particle and, thus, the interaction vertex.
The Time Based algorithm works by taking the tracks already reconstructed by the Hit Based reconstruction and refining them further. First, the groups of hits are regathered and some of the likely-extraneous hits are culled using timing information. Those groups then undergo another test to check whether or not the entire group should be thrown out or not. The Kalman-Fitter and Swimmer are then used again to find the new trajectories and interaction vertices.

Both of these reconstruction algorithms are run on each HIPO file by calling the notsousefulutil program that is packaged as a part of clas12-offline-software. Once again, an example of the command to call the program can be found in Appendix A.

3.4 Proposed Reconstruction Algorithm

The Raster Based algorithm takes the output of both the Time and Hit Based algorithms and attempts to fit them to an off-axis beam position. This is achieved by performing a grid search through a small region of momentum space about a state vector provided by older algorithms. The actual vertex is found by swimming all of these slightly varied state vectors to the beam line and calculating the DOCA. Please note that the source code for this is found in its entirety in Appendix C.

This program currently only exists in a fork off of Jefferson Lab's official GitHub repository. The address for this is https://github.com/friadavi/clas12-offline-software. Should the reader wish to run the program, they may run the fritracking program which is packaged with the rest of the clas12-offline-software in the aforementioned fork. An example of calling the program may be found in Appendix A.

For this analysis, the data sets reconstructed by the Hit and Time based algorithms were reconstructed multiple times while the two grid search parameters, span and samples, were varied independently. The span was varied, inclusively, between values of 0.001 and 0.015 (0.1 and 1.5\%). The number of samples was varied, again inclusively, between 3 and 10 .

This allows for an analysis of the reconstruction as a function of the two independently.

3.4.1 Parameters

This algorithm takes a variety of input parameters which control both the extent and granularity of the two searches involved as well as various other variables. These parameters are listed and explained below.

Input The name and path to the input file to reconstruct.

Output The name and path of the output file. Any preexisting file will be overwritten.

Engine The output from which engine to reconstruct. The options at present are Hit Based and Time Based. In the event that this parameter is not specified, the algorithm will preferentially take the Time Based if available, and Hit Based if not.

Solenoid The scale factor of the magnetic field generated by the solenoid.

Toroid The scale factor of the magnetic field generated by the toroid.

Grid Search Span The span in each Cartesian dimension in momentum space about which the grid search will take place. This value is provided as a percentage such that the span of the search is $p_{x, y, z}(1 \pm$ value $)$.

Grid Search Samples The number of evenly spaced sample points to take in each momentum dimension. This includes the edges of the span, as such this number should never be less than two. It is recommended to always use an odd number, that way the starting value is included in the search.

Vertex Search Upper Bound The upper bound in the z-direction in which to search for the DOCA to the beam position.

Vertex Search Lower Bound The lower bound in the z-direction in which to search for the DOCA to the beam position.

Vertex Samples The number of evenly spaced sample points to take in each iteration of the vertex search. This includes upper and lower bounds, as such this number should not be less than two.

Vertex Iterations The number of recursive iterations to go through in the vertex search.

Threads The maximum number of threads that can be used in the reconstruction.

3.4.2 Overarching Algorithm

The algorithm begins by parsing commandline options; it stops the reconstruction if any errors occur. After that, the magnetic field maps are initialized and scaled if necessary. Then, for each event within the input file, the reconstruction algorithm is run and the output, if any, is written to the output file.

3.4.3 Reconstruction

This begins by reading in whichever output banks are required, as dictated by the Engine commandline parameter. Then the beam position is read in from the simulation bank. If the event is real data, then the beam position is assumed to be at $x=0, y=0$. There is currently an assumed radius of error of 0.5 mm in the beam position. The algorithm then collects a state vector output by the Hit Based and Time Based algorithm. This state vector's position is just upstream of the region 1 drift chamber and will be the starting point of the search. The grid search is run and the output is written to the data banks.

3.4.4 Grid Search

This sub-algorithm starts by computing the upper and lower bounds of the momentum space in which to search. Arrays to store the output of each search point are then created and a ThreadPool is established to allow for the multithreading of the vertex searches for each grid search sample point. A vertex search job thread is then submitted for every sample
point in the three dimensional momentum search space. For the Grid Search Samples value n , there are n^{3} sample points, each evenly spaced in all three dimensions.

After all submitted jobs have been completed, the algorithm searches through all of the outputs and identifies interaction vertices which are either within the beam line's margin of error or a local minimum. All other points are culled. Any points whose interaction vertex z value is outside of the vertex search bounds is culled. Finally, the algorithm searches through all surviving interaction vertices and selects for output the one whose initial starting momentum deviated the least from the Hit Based or Time Based momentum.

The source code for this method starts on line 611 of Appendix C.

3.4.5 Vertex Search

This sub-algorithm begins by swimming from the state vector provided by the grid search to each sample z value within the search region. The samples points are evenly spaced throughout the region and include the boundaries. The swim outputs are collected, and the DOCA for each one is calculated. All local minima among the DOCAs are added to a list. If this is the last iteration, the algorithm returns the output which corresponds to the smallest DOCA, failing gracefully if no swims performed successfully.

In the event that there are more iterations to go, this algorithm recursively calls itself on each local minima. The bounds of the recursive search search are as follows: if the minimum is at a boundary of the search region it is recentered on the boundary without changing the actual distance spanned and the function is called without decrementing the iteration count. Otherwise, the search region is recentered on the point associated with the local minimum and the boundaries are shrunk to coincide with the nearest neighbor sample points. The iteration count is decremented and the function is called. The output of each new search is collected and the one with the smallest DOCA is returned.

The source code for this method starts on line 782 of Appendix C.

Chapter 4

Analysis

Before moving into the analysis proper, it is worth summarizing what exactly is being analyzed and to what end. Four data sets, each initially of 10,000 events, have been generated and run through the Hit Based and Time Based reconstruction algorithms. The ouputs of the old reconstructions were then fed into the proposed reconstruction multiple times while varying the number of samples used and the span of the search. These data sets consist of events that were generated within the volume of the subtargets of the polarized SIDIS dual target. Two of the data sets consist of electrons, one with an in-bending toroid configuration and one with an out-bending configuration. The other two data sets are $\pi+$ and π - particles, each with a toroid configuration which will cause them to bend into the beam line. The goal is to determine with how much confidence one can state which of the targets a particle was generated from.

The analysis will be presented as follows. First a comparison of typical $\Delta \mathrm{Z}$ values will be shown. Then an examination of the effect of the raster radius on the reconstruction will be provided. That will be followed by an examination of typical $\Delta \mathrm{X}$ and $\Delta \mathrm{Y}$ reconstructions. Finally, a discussion of the reconstruction efficiency will be presented.

4.1 $\Delta \mathrm{Z}$ Comparisons

Figures 4.1 through 4.4 show histograms and associated Gaussian fits of the differences between the generated Z positions and the reconstructed Z positions for both the current and proposed reconstruction algorithms. It is immediately obvious that the electrons are reconstructed more accurately and precisely than the pions. Furthermore, it is worth looking at the number of entries in each figure. They indicate that it is perhaps unwise to put too much weight in the pion reconstructions due to likely insufficient statistics. Regardless, the σ of each fit to the proposed algorithm data shows an improvement over the current algorithm. Commentary on what can be said for confidence in determining which target any given event came from is reserved for the Conclusion section.

Figure 4.1: The difference between the generated and reconstructed Z positions of the interaction vertex for the $\mathrm{HB} / \mathrm{TB}$ algorithm as well as the Raster Based for in-bending electrons.

Span $=0.005$, Samples $=7$

DCRB and DCTB ΔZ Comparison: electron

Figure 4.2: The difference between the generated and reconstructed Z positions of the interaction vertex for the $\mathrm{HB} / \mathrm{TB}$ algorithm as well as the Raster Based for out-bending electrons.

Span $=0.005$, Samples $=7$

Figure 4.3: The difference between the generated and reconstructed Z positions of the interaction vertex for the $\mathrm{HB} / \mathrm{TB}$ algorithm as well as the Raster Based for in-bending $\pi^{-} \mathrm{s}$.

Span $=0.005$, Samples $=7$

Figure 4.4: The difference between the generated and reconstructed Z positions of the interaction vertex for the $\mathrm{HB} / \mathrm{TB}$ algorithm as well as the Raster Based for in-bending $\pi^{+} \mathrm{s}$. Span $=0.005$, Samples $=7$

4.2Δ Z Summary Table

Table 4.1 summarizes the $\Delta \mathrm{Z}$ fit information for the varying spans for each data set. One should note the general trend towards a larger σ as the span grows.

Span	e- in-bending $\Delta \mathrm{Z}(\mathrm{cm})$	e- outbending $\Delta \mathrm{Z}(\mathrm{cm})$	$\pi^{-} \Delta \mathrm{Z}(\mathrm{cm})$	$\pi^{+} \Delta \mathrm{Z}(\mathrm{cm})$
0.001	-0.15 ± 0.46	-0.15 ± 0.43	-0.28 ± 0.71	-0.22 ± 0.78
0.002	-0.15 ± 0.51	-0.16 ± 0.48	-0.28 ± 0.73	-0.26 ± 0.82
0.003	-0.16 ± 0.54	-0.19 ± 0.52	-0.26 ± 0.72	-0.26 ± 0.91
0.004	-0.13 ± 0.58	-0.17 ± 0.57	-0.26 ± 0.79	-0.29 ± 0.91
0.005	-0.11 ± 0.63	-0.17 ± 0.65	-0.20 ± 0.84	-0.26 ± 0.88
0.006	-0.14 ± 0.62	-0.20 ± 0.62	-0.25 ± 0.83	-0.24 ± 0.81
0.007	-0.14 ± 0.63	-0.21 ± 0.63	-0.25 ± 0.78	-0.25 ± 0.91
0.008	-0.12 ± 0.66	-0.19 ± 0.66	-0.23 ± 0.73	-0.19 ± 1.00
0.009	-0.09 ± 0.67	-0.15 ± 0.74	-0.21 ± 0.83	-0.11 ± 0.92
0.010	-0.11 ± 0.76	-0.17 ± 0.78	-0.20 ± 0.87	-0.17 ± 0.92
0.011	-0.14 ± 0.76	-0.21 ± 0.82	-0.22 ± 0.90	-0.21 ± 0.96
0.012	-0.13 ± 0.79	-0.19 ± 0.82	-0.16 ± 0.91	-0.17 ± 0.96
0.013	-0.10 ± 0.82	-0.17 ± 0.84	-0.15 ± 0.91	-0.12 ± 0.94
0.014	-0.14 ± 0.88	-0.13 ± 0.91	-0.14 ± 0.82	-0.14 ± 0.97
0.015	-0.12 ± 0.91	-0.14 ± 0.95	-0.18 ± 0.95	-0.12 ± 0.90

Table 4.1: A summary of the $\Delta \mathrm{Z}$ fit information for the different spans of each data set.

$4.3 \Delta Z$ Dependence on Raster Radius

Figures 4.5 and 4.6 show the relation between the raster radius and the quality of the reconstruction in the Z direction for in-bending electrons. While the number of events is, unfortunately, small for the center the graphs still seem to suggest that the raster radius doesn't have any significant effect. The out-bending electrons behave nearly identically. The number of events in both of the pion data sets are too small to be able to say with any confidence whether or not the raster radius has any effect.

Generated X, Y Position Subsets

Figure 4.5: Color-coded subsets of the generated X and Y positions which correlate to in-bending electron events successfully reconstructed by the proposed algorithm. Span $=$ 0.005, Samples $=7$

Ring ΔZ Comparison

Figure 4.6: $\Delta \mathrm{Z}$ histogram of the subsets described by figure 4.5

$4.4 \Delta \mathrm{X}$ and $\Delta \mathrm{Y}$

Figures 4.7 and 4.8 show histograms of the $\Delta \mathrm{X}$ and $\Delta \mathrm{Y}$ which are typical of all reconstructed data sets. The improvement over the current reconstruction algorithm is obviously substantial, being an order of magnitude smaller in σ.

DCRB and DCTB $\triangle \mathrm{X}$ Comparison: electron

Figure 4.7: The difference between the generated and reconstructed X positions of the interaction vertex for the $\mathrm{HB} / \mathrm{TB}$ algorithm as well as the Raster Based for in-bending electrons. Span $=0.005$, Samples $=7$

DCRB and DCTB ΔY Comparison: electron

Figure 4.8: The difference between the generated and reconstructed Y positions of the interaction vertex for the $\mathrm{HB} / \mathrm{TB}$ algorithm as well as the Raster Based for in-bending electrons. Span $=0.005$, Samples $=7$

4.5 Efficiency

Figure 4.9 shows the efficiency of the proposed algorithm. There is a general upwards trend in efficiency, though it should be noted that this comes at a cost in the form of a larger σ. This can be seen by comparing figure 4.9 to table 4.1.

DCRB Reconstruction Efficiency as a Function of Span

Figure 4.9: The efficiency of the proposed reconstruction algorithm for in-bending electrons. Note that this is not the total efficiency. Span $=0.005$, Samples $=7$

Chapter 5

Conclusion

The goal of this project was ultimately to determine to what level of confidence one can say which of the targets, or possibly the foil, any given event came from. To that end, a 5σ confidence level corresponds to 8 mm if there is no carbon foil and 4 mm if there is. With that stated, it is clear, by inspection of table 4.1 , that one can state with 4σ confidence which of the targets an event came from if the carbon foil is present. However, the removal of the carbon foil allows for 5σ confidence for electron events with search spans up to 1% (0.010). Even the smallest search spans for can claim 5σ confidence. With the carbon foil, the best that can be claimed for electrons in 4σ and only 2σ for pions.

It was found that the raster radius has no meaningful effect on the quality of reconstruction. Unfortunately, the span of the search does, though this could likely be mitigated by choosing more sample points. The efficiency, however does generally increase with increasing span. And lastly, the new algorithm's X and Y reconstructions are consistently an order of magnitude better than the current algorithm regardless of particle or toroidal field.

With respect to the relationship between the reconstruction efficiency and the span of the search, it would seem that the Raster Based Algorithm is acting as a filter of sorts. As the span increases, both the sigma of the reconstruction and the efficiency increases. This seems to suggest that broadening the quantity of events which can be successfully reconstructed results in a worse quality of reconstruction. This, in turn, would seem to suggest that the
algorithm intrinsically culls out events which can not be reconstructed well enough.
In the future, it would likely be worthwhile to further pursue examinations of the effects of fit parameters on the reconstruction quality and efficiency. In particular, the covariance of the number of samples and span should be thoroughly explored so as to better pick optimized parameters for each.

References

${ }^{1}$ Jefferson Lab, Experimental Hall B, https://www.jlab.org/research/hall-b (Accessed 12 May 2019).
${ }^{2}$ Jefferson Lab, GEant4 Monte-Carlo, https://gemc.jlab.org/gemc/html/index.html (Accessed 02 June 2019).
${ }^{3} \mathrm{CERN}$, GEANT4 A Simulation Toolkit, https://geant4.web.cern.ch/ (Accessed 02 June 2019).
${ }^{4}$ Jefferson Lab, clas12-offline-software, https://github.com/JeffersonLab/clas12-offline-software (Accessed 02 June 2019).
${ }^{5}$ CLAS12 Drift Chamber Group, CLAS12 Drift Chambers, (unpublished) (2007).
${ }^{6}$ F. Sauli, "Principles of Operation of Multiwire Proportional and Drift Chambers", (1977).
${ }^{7}$ W. R. Leo, Techniques for Nuclear and Particle Physics Experiments: A How to Approach (1987).
${ }^{8}$ CLAS12 - Drift Chambers (DC), Jefferson Lab (Mar. 2017).
${ }^{9}$ CLAS12 - Solenoid Magnet, Jefferson Lab (Mar. 2017).
${ }^{10}$ CLAS12 - TORUS Magnet, Jefferson Lab (Mar. 2017).
${ }^{11}$ G. Arfken, Mathematical methods for physicists, Seventh (Academic Press, Inc., San Diego, 2013).
${ }^{12}$ D. Griffiths and D. Higham, Numerical methods for ordinary differential equations: initial value problems, Springer Undergraduate Mathematics Series (Springer London, 2010).
${ }^{13}$ K. Miller and D. Leskiw, An introduction to kalman filtering with applications (Krieger Publishing Company, 1987).
${ }^{14} \mathrm{~T}$. Forest, Private communication.
${ }^{15}$ Jefferson Lab, clas12Tags, https://github.com/gemc/clas12Tags.

Appendices

Appendix A

Example Program Calls and Example GCard

This appendix contains examples of program calls used throughout the reconstruction process and an example GCard.

A. 1 Example GCard

Below is an example GCard that could be fed into GEMC.

1
2
3

4
5

6

7

8

```
<gcard>
```

<!-- target. Notice variation give the target type. Can be: lH2, lD2,
 \(\hookrightarrow\) ND3
 <detector name="experiments/clas12/targets/cad/" factory="CAD"/>
<detector name="experiments/clas12/targets/target" factory="TEXT"
 ↔ variation="cad"/>
-->
```
<!-- PolTarg -->
<detector name="/jlab/workdir/Thesis/Scripts/detectors/clas12/targets/
    \hookrightarrow target" factory="TEXT" variation="PolTarg"/>
```

```
<detector name="/jlab/workdir/Thesis/Scripts/detectors/clas12/targets/
    \hookrightarrow PolTarg/" factory="CAD"/>
```

```
<!-- central detectors -->
<detector name="experiments/clas12/cnd/cnd" factory="
    \hookrightarrow TEXT" variation="original"/>
    <detector name="experiments/clas12/bst/bst" factory="
    \hookrightarrow TEXT" variation="java"/>
    <!-- detector name="experiments/clas12/bstShield/bstShield"
    \hookrightarrowactory="TEXT" variation="w51" -->
    <detector name="experiments/clas12/micromegas/micromegas" factory="
    \hookrightarrow TEXT" variation="michel"/>
```

<!--ctof, cad -->
<detector name="experiments/clas12/ctof/ctof" factory="TEXT"
\hookrightarrow variation="cad"/>
<detector name="experiments/clas12/ctof/javacad/" factory="CAD"/>
<!--high threshold cherenkov -->
<detector name="experiments/clas12/htcc/htcc" factory="TEXT"
↔ variation="original"/>
<!-- magnets -->
<detector name="experiments/clas12/magnets/solenoid" factory="TEXT"
↔ variation="original"/>
<detector name="experiments/clas12/magnets/cad/" factory="CAD" />
<!-- Beamline configuration: FT is used -->
<detector name="experiments/clas12/ft/ft" factory="
 \(\hookrightarrow\) TEXT" variation="FTOn"/>
<detector name="experiments/clas12/beamline/cadBeamline/" factory="CAD
 \(\hookrightarrow\) " />

```
<detector name="experiments/clas12/beamline/vacuumLine/" factory="CAD
        \hookrightarrow "/>
<detector name="experiments/clas12/beamline/beamline" factory="
    \hookrightarrow TEXT" variation="FTOn"/>
<!-- forward carriage -->
<detector name="experiments/clas12/fc/forwardCarriage" factory="TEXT"
    \hookrightarrow variation="TorusSymmetric"/>
<detector name="experiments/clas12/dc/dc" factory="TEXT"
    \hookrightarrow variation="java"/>
<detector name="experiments/clas12/ftof/ftof" factory="TEXT"
    \hookrightarrow variation="java"/>
<detector name="experiments/clas12/ec/ec" factory="TEXT"
    \hookrightarrow variation="java"/>
<detector name="experiments/clas12/pcal/pcal" factory="TEXT"
    \hookrightarrow variation="java"/>
<detector name="experiments/clas12/ltcc/ltcc" factory="TEXT"
    \hookrightarrow variation="original"/>
<detector name="experiments/clas12/ltcc/cad_cone/" factory="CAD"/>
<detector name="experiments/clas12/ltcc/cad/" factory="CAD"/>
<!-- you can scale the fields here. Remember torus -1 means e-
    \hookrightarrow INBENDING -->
<option name="SCALE_FIELD" value="TorusSymmetric,_-1.0"/>
<option name="SCALE_FIELD" value="clas12-newSolenoid,^-1.0"/>
<!-- hall field -->
<option name="HALL_FIELD" value="clas12-newSolenoid"/>
<!-- fields, precise mode -->
<option name="FIELD_PROPERTIES" value="TorusSymmetric, „பЧபЧ 2*mm,」
    \hookrightarrow G4ClassicalRK4,七linear"/>
```

```
<option name="FIELD_PROPERTIES" value="clas12-newSolenoid, 1*mm,
    \hookrightarrow G4ClassicalRK4,ьlinear"/>
```

```
<!-- beam conditions -->
<option name="BEAM_P" value="e-,_4.75*GeV,_22.5*deg,_0*deg"/>
<option name="BEAM_V" value="(0.0,_0.0,_3.0) cm"/>
<option name="SPREAD_P" value=" 3.25*GeV,_17.5*deg, 180*deg"/>
<option name="SPREAD_V" value="(1.0,_1.0)cm"/>
```

<option name="SAVE_ALL_MOTHERS" value="0"/>
<option name="RECORD_MIRRORS" value="1"/>
<option name="PHYSICS" value="FTFP_BERT ${ }_{4}+$ STD $_{4}+{ }_{\text {+ Optical }} /$ />
<option name="OUTPUT" value="evio, _out.ev"/>
<!-- Will print message every 10 events -->
<option name="PRINT_EVENT" value="10" />
<!-- Run Number 11, picked up by digitization routines -->
<option name="RUNNO" value="11" />

```
<!-- RF Signal needs event time window defined by LUMI_EVENT.
    If Backround is activated make sure to use LUMI_EVENT below instead
        \hookrightarrow .-->
```


<option name="RFSETUP" value="0.499, 40, -20" />
$<!--$ beam background. for 250 ns timewindow we have 124,000 e- on
a LH2 target at 10^35 luminosity
I suggest in this case to set SAVE_ALL_MOTHERS to 0
or the many tracks will slow down the simulation a lot
For background studies use field in fast mode:
-->

<!--
 <option name="LUMI_EVENT" value="124000, ᄂ248.5*ns, ५4*ns" />
 <option name="LUMI_P" value="e-,七10.6*GeV, 〕0*deg, „0*deg" />

 <option name="LUMI_SPREAD_V" value=" (0.03, 〕0.03) cm" />
 -->
<!-- production threshold for passive volumes -->
<!-- beamline shielding: \(10 \mathrm{~cm}-->\)
<option name="PRODUCTIONCUTFORVOLUMES" value="innerShieldAndFlange, \(七\)

 \(\hookrightarrow\) DSShieldBackLead, DSShieldInnerAss, DSShieldBackAss,
 \(\hookrightarrow\) DSShieldFrontAss, цDSShieldBackCover, ᄂDSShieldFrontCover, \(七\)
 \(\hookrightarrow\) DSShieldFlangeAttachment, 乞DSShieldFlange, 七七100" />

```
<!-- vacuum line: 10cm-->
<option name="PRODUCTIONCUTFORVOLUMES" value="
    connectUpstreamToTorusPipe,ьconnectTorusToDownstreamPipe,ь
    \hookrightarrow downstreamPipeFlange,ьч100" />
```

 <!-- torus magnet: \(10 \mathrm{~cm}-->\)
 <option name="PRODUCTIONCUTFORVOLUMES" value="BoreShield, \({ }^{\text {CenterTube, }}\)
 \(\hookrightarrow\) DownstreamShieldingPlate, „DownstreamVacuumJacket, 」WarmBoreTube, ь


```
\hookrightarrow shell4a,&shell4b, shell5a,,shell5b, shell6a,sshell6b,ь100" />
```


A. 2 Program Calls

An example of the gemc program call:
1 bash gemc -USE_GUI=0 -gcard=/some/path/to/input.gcard -N=10000 -DATABASE=/some $\hookrightarrow / p a t h / t o / l o c a l / d a t a b a s e . s q l i t e ~-O U T P U T=" e v i o, s / s o m e / p a t h / t o / o u t p u t . e v i o " ~$

An example of the evio2hipo program call:
1 bash evio2hipo -n 10000 -r 11 -s -1.0 -t -1.0 -o /some/path/to/output.hipo /
\hookrightarrow some/path/to/input.evio
An example of the hipo-utils program call:
1 bash hipo-utils -merge -o /some/path/to/output.hipo /some/path/to/input1.hipo
$\hookrightarrow /$ some/path/to/input2.hipo
An example of the notsouseful-util program call:
1 bash notsouseful-util -n 10000 -c 2 -i /some/path/to/input.hipo -o /some/path/ \hookrightarrow to/output.hipo

An example of the fritracking program call:
1 bash fritracking -s -1.0 -t -1.0 -i /some/path/to/input.hipo -o /some/path/to/ \hookrightarrow output.hipo -x $3-\mathrm{g} 70.005-\mathrm{v} 92-\mathrm{z}-4.04 .0$

Appendix B

Descriptions of Hit Based and Time Based Reconstructions

This appendix contains descriptions of the previously existing drift chamber reconstruction algorithms, Hit Based and Time Based. These descriptions are current as of coatjava release 5c.7.4.

B. 1 Definition of Terms

There are several terms which must be first understood before reading further:
DOCA Distance of Closest Approach, i.e. the shortest distance between some point in space and some defined path.

Hit A representation of a measurement from an individual wire.

Cluster A representation of groups of physically close hits.

Segment A representation of a linear fit to a cluster.

Cross A representation of a position and momentum unit vector of the particle's trajectory at the midplane between two superlayers as reconstructed from the segments of both superlayers.

Trajectory A general position and momentum vector at some point in space.

Track A representation of a reconstructed path through the detector.

Road A representation of a collection of segments.

Swimmer A software tool utilizing a fourth order Runge-Kutta approximation to step, or
"swim", a particle's trajectory through the detector.

B. 2 Hit Based Algorithm

The Hit Based algorithm takes the raw drift chamber hit positions, but not any time information beyond that which gives the position along any given wire, and attempts to perform track reconstruction. In general, this is simply used as a step to then perform the Time Based reconstruction.

B.2.1 Hits to Clusters

Raw hits are all initially sorted into clumps. Clumps are the rawest form of a cluster as they are created by independently taking each superlayer in each sector and adding the hits found therein to the clump. The clump is then processed to remove hits caused by noise. This is determined by whether or not the DOCA for that hit is greater than the size of the cell. The list of clumps is then processed into a list of clusters by removing any clumps which have less than four total hits within them. A linear fit is then performed on the hits which comprise each cluster. The clusters are split into multiple clusters if necessary by means of checking the χ^{2} of a linear fit. Following that step, the program updates the raw hits with various additional information and stores them as well as the clusters.

B.2.2 Clusters to Segments

Segments are built by first excluding any clusters with more than fourteen hits from consideration. Then, for each remaining cluster, the information from the linear fit is taken
from the tests done in the previous step and set in the segment accordingly. Some segments may then be culled if their average DOCA between the raw hit and the cluster fit line is too large.

B.2.3 Segments to Crosses

Crosses are created by looping over all sectors and regions in order and identifying segments in the first superlayer of each region. For each of those segments, it then loops through again to find a corresponding segment in the second superlayer. A check is done to see if the segments are both physically close and have a consistent slope from one to the other. If the segments pass both of those requirements, the cross is created.

Crosses are then arranged into short lists which correspond to possible tracks. To do this, all of the crosses are first sorted into a list containing only crosses from its region. Then, for every possible combination of three crosses such that there is always a cross from each region, the algorithm performs an approximate fit. This fit returns the trajectory of the fit at each of the cross positions. If the angle between any pair of corresponding crosses and trajectories is too great, the triplet of crosses is not considered for a track reconstruction. Those do that pass this test are then checked again. This time a projection of the track onto the $\mathrm{x}-\mathrm{y}$ plane is checked for linearity. Any triplets remaining are now bases for track candidates.

B.2.4 Crosses to Tracks Part I

The algorithm now takes the triplets of crosses from the previous step and attempts to fit actual tracks from them. For each triplet, the first step is to perform another fit, this time parametric. This fit is formed by constraining the parametric trajectory to be tangent to the momentum unit vector of each cross as it passes through them. Any triplets which fail to produce a satisfactory trajectory are culled. At this point the algorithm splits finding track candidates into two branches. The first is the case where the cross triplet is indeed a full triplet without any members missing, and the torus magnet has been scaled down to a value
near zero. This is looking for straight tracks in the torus region. Otherwise the algorithm will search for linked helices, one from the torus region and one from the solenoid.

Straight Tracks

This sub-algorithm first fits the projections of the crosses onto both the $\mathrm{x}-\mathrm{z}$ and $\mathrm{y}-\mathrm{z}$ planes to lines. If the fit is ok for each of those, the track is then assumed to be straight and the interaction vertex is assumed to be wherever the linear fits intersect the $z=0$ plane. The particle is also assumed to be a muon. This track candidate is then further refined by passing it through a Kalman fitter. The candidate is then added to the list of track candidates.

Linked Helices

First, track candidates that don't have at least five segments within their crosses are culled. Then four initial fits are performed, one for each combination of one of the region one segments being coupled with one of the region three segments. In these fits, the slopes of the segments are used to calculate the momentum and charge of the particle. Those values are then input into a swimmer which will swim from the region one cross to the $\mathrm{x}-\mathrm{y}$ plane of the region two cross and then on to the $\mathrm{x}-\mathrm{y}$ plane of the region three cross. If the χ^{2} is bad or the integrated magnetic field over the path is zero, the candidate is culled.

The momentum and charge are reconstructed, again, from the second segment of the region 1 and 3 crosses. If the momentum is greater than 11 GeV , it is set to 11 GeV . A state vector is formed from combining the region 1 cross information with the momentum. A Kalman fitter is created and attempts to fit the crosses. If this fails, the candidate is culled. The χ^{2} of the fit between the Kalman fit and the crosses is calculated, and the candidate is culled if the value is too large. One final check to see if the Kalman fit either failed or if the final state vector produced by it is done. If passed, the candidate is added to the list of track candidates.

B.2.5 Crosses to Tracks Part II

Now that the sub-algorithms have finished, the overall algorithm now attempts to extrapolate from the existing information to see if any other track candidates can be constructed. First, any tracks overlapping the track with the best χ^{2} are culled. The algorithm then constructs roads out of all of the currently existing segments. This process, in essence, simply orders the segments in terms of sectors and superlayers then finds sequences of them which could indicate a track. A list of crosses belonging to those roads is then constructed. Missing road segments, called pseudosegments, are extrapolated from the existing segments.

The pseudosegments are added to the preexisting list of segments, and the process of making crosses is undertaken again. These new crosses are combined with the old ones and used to create new cross triplets. These triplets are then fed into the track candidate finder, as per Crosses to Tracks Part I. Once again, overlapping tracks are culled. If any track candidates have survived, they are written to the Hit Based data banks.

B. 3 Time Based Algorithm

The Time Based algorithm takes the output of the Hit Based Algorithm and includes more time information in order to refine the reconstruction.

B.3.1 Hits to Clusters

This reconstruction begins by recomposing the clusters from the Hit Based Reconstruction and further refining them. First, for each cluster the algorithm removes secondary hits, which are defined as hits that lie within the same layer as another hit and fail a test comparing the relative DOCA's. The clusters are then refit with the aforementioned χ^{2} test if necessary to ensure that the most accurate clusters have been found. Next, the algorithm attempts to resolve the left-right ambiguity in the cluster's linear fit, i.e. determine on which side of which wires the particle passed. Finally, the clusters and associated hits are updated with this new information.

B.3.2 Clusters to Segments

Each cluster is subjected to a test wherein the average DOCA of the hits within the cluster is calculated and then compared to the average cell size of the cells where those hits were recorded. Clusters which fail this test are culled. The clusters then undergo the same process as the Hit Based clusters. All of the Hit Based tracks are now read into memory and the hit-segment associations are set accordingly.

B.3.3 Reconstructing Tracks

The algorithm now begins track reconstruction, failing if the Hit Based Tracks were not saved correctly. First, all of the Hit Based track information stored in the data banks are read into an array, and all of the segment-track associations are set. The algorithm now considers each track, failing if the track has less than four segments, and creating crosses in the same fashion as the Hit Based algorithm. These tracks are now run through a Kalman fitter. The track is culled if the interaction vertex is too large. Finally, for each surviving track, the overall trajectory is calculated and associated hits and segments are set accordingly.

Appendix C

Source Code For Raster Based

Reconstruction

This appendix contains the source code for the Raster Based reconstruction algorithm. There are some minor cosmetic changes to improve readability in this document.
2
3
4
5
6
7
8

```
```

1 package org.jlab.service.dc;

```
```

1 package org.jlab.service.dc;

```
import java.io.File;
```

import java.io.File;
import java.io.IOException;
import java.io.IOException;
import java.util.ArrayList;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.Arrays;
import java.util.concurrent.Callable;
import java.util.concurrent.Callable;
import java.util.concurrent.ExecutionException;
import java.util.concurrent.ExecutionException;
import java.util.concurrent.ExecutorService;
import java.util.concurrent.ExecutorService;
import java.util.concurrent.Executors;
import java.util.concurrent.Executors;
import java.util.concurrent.Future;
import java.util.concurrent.Future;
import java.util.concurrent.TimeUnit;
import java.util.concurrent.TimeUnit;
import java.util.logging.Level;
import java.util.logging.Level;
import java.util.logging.Logger;
import java.util.logging.Logger;
import org.jlab.clas.swimtools.MagFieldsEngine;
import org.jlab.clas.swimtools.MagFieldsEngine;
import org.jlab.clas.swimtools.Swim;
import org.jlab.clas.swimtools.Swim;
import org.jlab.clas.swimtools.Swimmer;

```
import org.jlab.clas.swimtools.Swimmer;
```

```
import org.jlab.io.base.DataBank;
import org.jlab.io.base.DataEvent;
import org.jlab.io.hipo.HipoDataEvent;
import org.jlab.io.hipo.HipoDataSource;
import org.jlab.io.hipo.HipoDataSync;
import org.jlab.jnp.hipo.schema.SchemaFactory;
import org.jlab.rec.dc.Constants;
/**
    * This class is intended to be used to reconstruct the interaction vertex
        from
    * previously calculated HB/TB and CVT data
    *
    * @author friant
    */
public class DCRBEngine extends DCEngine {
    //Global Variables
    static String engine = "";
    static float solVal = -1.0f * -1.0f;//-1.0 multiplier to
    correct for sign convention mismatch
    static float torVal = -1.0f;
    static float zMinGlobal = -10.0f;
    static float zMaxGlobal = 10.0f;
    static float percentGridSearch = 0.10f;
    static int samplesGridSearch = 5;
    static int iterationsVertex = 2;
    static int samplesVertex = 5;
    static int maxThreads = 1;
    /**
        * Constructor
        */
    public DCRBEngine() {
        super("DCRB");
```

\}

```
/**
```

 * Main method
 *
 * @param args
 */
 public static void main(String[] args) \{
//Ensure that RasterBased Data Banks are defined in the program
SchemaFactory fact = new SchemaFactory();
fact.initFromDirectory("CLAS12DIR", "etc/bankdefs/hipo");
//Hipo Reader and Writer
HipoDataSource reader = new HipoDataSource();
HipoDataSync writer = new HipoDataSync(fact);
//Files
File inputFile;
File outputFile;
//Command Line Options
boolean help = false;
//Required
String input = "";
String output = "";
//Optional
String gridSearchSamples = "";
String gridSearchPercent = "";
String solenoid = "";
String toroid = "";
String vertexSamples = "";
String vertexIterations = "";

```
String threads = "";
String lowerBound = "";
    String upperBound = "";
    //Parse
    for(int i = 0; i < args.length; i++){
    switch(args[i]) {
        case "-i":
            if(i + 1 < args.length){
            input = args[i + 1];
        }
        else{
            System.out.println("Missing Parameter For Option -i");
            return;
            }
            break;
        case "-○":
            if(i + 1 < args.length){
            output = args[i + 1];
        }
        else{
            System.out.println("Missing Parameter For Option -o");
            return;
        }
        break;
        case "-e":
        if(i + 1 < args.length){
            engine = args[i + 1];
        }
        else{
            System.out.println("Missing Parameter For Option -e");
            return;
        }
        break;
```

```
case "-g":
    if(i + 2 < args.length){
        gridSearchSamples = args[i + 1];
        gridSearchPercent = args[i + 2];
    }
    else{
        System.out.println("Missing Parameter For Option -g");
        return;
    }
    break;
case "-h":
    help = true;
    break;
case "-s":
    if(i + 1 < args.length){
        solenoid = args[i + 1];
    }
    else{
        System.out.println("Missing Parameter For Option -s");
        return;
    }
    break;
case "-t":
    if(i + 1 < args.length){
        toroid = args[i + 1];
    }
    else{
        System.out.println("Missing Parameter For Option -t");
        return;
    }
    break;
case "-v":
    if(i + 2 < args.length){
    vertexSamples = args[i + 1];
```

```
        vertexIterations = args[i + 2];
            }
            else{
                    System.out.println("Missing Parameter For Option -v");
                    return;
            }
            break;
            case "-x":
            if(i + 1 < args.length){
            threads = args[i + 1];
            }
            else{
            System.out.println("Missing Parameter For Option -x");
            return;
            }
            break;
        case "-z":
        if(i + 2 < args.length){
            lowerBound = args[i + 1];
            upperBound = args[i + 2];
        }
        else{
        System.out.println("Missing Parameter For Option -z");
        return;
        }
        break;
    }
    }
    //Attempt to use command line parameters to set values
    ////Input File
    if(input.isEmpty()){
        System.out.println("Input File Required");
        help = true;
```

\}
else $\{$
inputFile = new File(input);
if(inputFile.exists() \&\& !inputFile.isDirectory()) \{
reader.open(inputFile);
\}
else\{
System.out.println("Input File Not Found");
return;
\}
\}
////output File
if(output.isEmpty()) \{
System.out.println("Output File Required");
help = true;
\}
else\{
outputFile = new File(output);
if(outputFile.exists() \&\& !outputFile.isDirectory()) \{
outputFile.delete();
\}
try $\{$
outputFile.createNewFile();
writer.open(outputFile.getAbsolutePath());
\}
catch (IOException e) \{
System.out.println("Could Not Create Output File");
return;
\}
\}
////Engine
if(!engine.isEmpty()) \{
if(!(engine.equals("DCHB") || engine.equals("DCTB"))) \{
System.out.println("Invalid Engine Specifified");

```
        help = true;
    }
    }
    ////Grid Search Parameters
    if(!(gridSearchSamples.isEmpty() || gridSearchPercent.isEmpty())){
        try{
            samplesGridSearch = Integer.parseInt(gridSearchSamples);
            percentGridSearch = Float.parseFloat(gridSearchPercent);
    }
        catch (NumberFormatException e) {
        System.out.println("Invalid Number Format For Grid Search
            \hookrightarrow Parameters");
        help = true;
        }
}
////Solenoid Scale
if(!solenoid.isEmpty()) {
        try{
        solVal = Float.parseFloat(solenoid);
        solVal = -1.0f * solVal;//-1.0 multiplier to correct for sign
            Convention mismatch
    }
    catch(NumberFormatException e) {
        System.out.println("Invalid Number Format For Solenoid");
        help = true;
    }
}
////Toroid Scale
if(!toroid.isEmpty()) {
    try{
        torVal = Float.parseFloat(toroid);
    }
    catch (NumberFormatException e) {
        System.out.println("Invalid Number Format For Toroid");
```

```
        help = true;
    }
}
////Vertex Search Parameters
if(!(vertexSamples.isEmpty() || vertexIterations.isEmpty())){
        try{
            samplesVertex = Integer.parseInt(vertexSamples);
            iterationsVertex = Integer.parseInt(vertexIterations);
    }
        catch (NumberFormatException e) {
        System.out.println("Invalid Number Format For Vertex Search
            \hookrightarrow Parameters");
        help = true;
        }
}
////Threads
if(!threads.isEmpty()) {
    try{
        maxThreads = Integer.parseInt(threads);
    }
    catch (NumberFormatException e) {
        System.out.println("Invalid Number Format For Number Of
            \hookrightarrow Threads To Use");
        help = true;
    }
}
////Target Bounds
if(!(lowerBound.isEmpty() || upperBound.isEmpty())){
    try{
        zMinGlobal = Float.parseFloat(lowerBound);
        zMaxGlobal = Float.parseFloat(upperBound);
    }
    catch (NumberFormatException e) {
        System.out.println("Invalid Number Format For Target Bounds");
```

```
            help = true;
            }
}
//Print help message and exit
if(help) {
        printHelp();
        return;
    }
    //Init Engines
    MagFieldsEngine magField = new MagFieldsEngine();
    magField.init();
    DCRBEngine thisEngine = new DCRBEngine();
    thisEngine.init();
    //Apply magnetic field scaling
    Swimmer.setMagneticFieldsScales(solVal, torVal, 0.0);
    //Process data events
    int count = 0;
    while(reader.hasEvent()) {
        DataEvent event = reader.getNextEvent();
    if(!event.hasBank("RasterBasedTrkg::RBHits")) {
        ((HipoDataEvent)event).initDictionary(fact);
    }
    thisEngine.processDataEvent(event);
    writer.writeEvent (event);
    System.out.println("EVENT " + count + " PROCESSED\r\n");
    count++;
}
//Tidy up before leaving
reader.close();
```

```
        writer.close();
}
/**
    * Print help message to the terminal
    */
```

private static void printHelp() \{
System.out.println(
"FriTracking Command Line Options: \r\n"
+ " -Required: \r\n"
+ " -i Input Hipo File \r\n"
+ " Requires 1 Parameter: $\backslash r \backslash n "$
+ " 1 (String): Path to desired input file. \r\n"
+ " Ex: -i /path/to/my/input/file.hipo \r\n"
+ " $\backslash r \backslash n "$
+ " -o Output Hipo File \r\n"
+ " Requires 1 Parameter: \r\n"
+ " 1 (String): Path to the desried ouput file. \r\n"
+ " Will overwrite file if exists. \r\n"
+ " Ex: -o /path/to/my/output/file.hipo \r\n"
+ "
+ " -Optional:
+ " -e Engine To Source Data From \r\n"
+ " Requires 1 Parameter: \r\n"
+ " 1 (String): Either \"DCHB\" or \"DCTB\" $\backslash r \backslash n "$
+ " Default Behavior: $\backslash r \backslash n "$
+ " Use DCTB if available and DCHB if not. \r\n"
+ " Ex: -e DCHB $\backslash r \backslash n "$
+ " $\backslash r \backslash n "$
+ " -g Grid Search Parameters $\ln \backslash \mathrm{n}$ "
+ " Requires 2 Parameters: \r\n"
+ " 1 (Int): The number of samples to take per $\backslash r \backslash n "$
+ " momentum dimension around the \r\n"
+ " region-1 cross. \r\n"

386	+	"	iterations to go through about	$\backslash r \backslash n "$
387	+	"	each local minima.	$\backslash r \backslash n "$
388	$+$	"	Default Behavior:	$\backslash r \backslash n "$
389	+	"	5 samples with 2 iterations.	$\backslash r \backslash n "$
390	+	"	Ex: -v 102	$\backslash r \backslash n "$
391	+	"		$\backslash r \backslash n "$
392	+	" -x	Threads To Use	$\backslash r \backslash n "$
393	+	"	Requires 1 Parameter:	$\backslash r \backslash n "$
394	+	"	1 (Int) : The maximum number of threads to	$\backslash r \backslash n "$
395	$+$	"	use while searching for minima.	$\backslash r \backslash n "$
396	+	"	Default Behavior:	$\backslash r \backslash n "$
397	+	"	Only use 1 thread.	$\backslash r \backslash n "$
398	$+$	"	Ex: -x 4	$\backslash r \backslash n "$
399	+	"		$\backslash r \backslash n "$
400	+	" -z	Target Bounds	$\backslash r \backslash n "$
401	+	"	Requires 2 Parameters:	$\backslash r \backslash n "$
402	+	"	1 (Float): The lower bound in the	$\backslash r \backslash n "$
403	+	"	z-direction in which to search	$\backslash r \backslash n "$
404	+	"	for the interaction vertex.	$\backslash r \backslash n "$
405	+	"	[Unit $=\mathrm{cm}$]	$\backslash r \backslash n "$
406	+	"	2 (Float): The upper bound in the	$\backslash r \backslash n "$
407	+	"	z-direction in which to search	$\backslash r \backslash n "$
408	+	"	for the interaction vertex.	$\backslash r \backslash n "$
409	+	"	[Unit $=\mathrm{cm}$]	$\backslash r \backslash n "$
410	+	"	Default Behavior:	$\backslash r \backslash n "$
411	+	"	Lower Bound $=-10.0$, Upper Bound $=10.0$.	$\backslash r \backslash n "$
412	+	"	Ex: -z -2.5 5.0	$\backslash r \backslash n "$
413	+	" \(
) \ \n");				
414	\}			
415				
416	/**			
417	* Initi	ialize the	ngine	
418	*			
419	* Oretur	urn		

```
        */
@Override
public boolean init() {
        // Load cuts
        Constants.Load();
        super.setStartTimeOption();
        super.LoadTables();
        return true;
}
/**
    * Generic process data event function
    *
    * @param event
    * @return
    */
@Override
public boolean processDataEvent(DataEvent event){
    boolean hasCVTData = event.hasBank("CVTRec::Tracks");
    boolean hasHBData = event.hasBank("HitBasedTrkg::HBTracks");
    if(hasCVTData && hasHBData){
        //processDataEventBoth(event);//Just use HB for now
        processDataEventHB (event);
    }
    else if(hasCVTData){
        processDataEventCVT(event);
    }
    else if(hasHBData) {
        processDataEventHB (event);
    }
    return true;
}
```

```
/**
    * Process data event for when HB and CVT data is available
    *
    * @param event
        * @return
        */
public boolean processDataEventBoth(DataEvent event){
        System.out.println("Process for Both CVT and HB Not Yet Implemented");
        return true;
}
/**
    * Process data event for when only CVT data is available
    *
    * @param event
    * Ereturn
    */
public boolean processDataEventCVT(DataEvent event) {
        System.out.println("Process for CVT Not Yet Implemented");
        return true;
}
/**
    * Process data event for when only HB/TB data is available
    *
    * @param event
    * @return
    */
public boolean processDataEventHB(DataEvent event) {
    //Pull info out of TB/HB Banks
    String sourceTracks;
    String sourceCrosses;
    if(engine.isEmpty()) {
```

 if(event.hasBank("TimeBasedTrkg::TBTracks")) \{
 event. appendBank (copyBank (event, "TimeBasedTrkg::TBHits",
 \(\hookrightarrow\) "RasterBasedTrkg::RBHits"));
 event.appendBank(copyBank(event, "TimeBasedTrkg::TBClusters",
 \(\hookrightarrow\) "RasterBasedTrkg: :RBClusters"));
 event.appendBank (copyBank (event, "TimeBasedTrkg::TBSegments",
 \(\hookrightarrow\) "RasterBasedTrkg: :RBSegments"));
 event.appendBank (copyBank(event, "TimeBasedTrkg::TBCrosses",
 \(\hookrightarrow\) "RasterBasedTrkg::RBCrosses"));
 sourceTracks = "TimeBasedTrkg::TBTracks";
 sourceCrosses = "TimeBasedTrkg::TBCrosses";
 \}
 else\{
 event.appendBank(copyBank(event, "HitBasedTrkg::HBHits",
 \(\hookrightarrow\) RasterBasedTrkg: :RBHits"));
 event.appendBank (copyBank(event, "HitBasedTrkg::HBClusters",
 \(\hookrightarrow\) "RasterBasedTrkg::RBClusters"));
 event.appendBank(copyBank(event, "HitBasedTrkg::HBSegments",
 \(\hookrightarrow\) "RasterBasedTrkg::RBSegments"));
 event.appendBank(copyBank(event, "HitBasedTrkg: HBCrosses",
 \(\hookrightarrow\) "RasterBasedTrkg: :RBCrosses"));
 sourceTracks = "HitBasedTrkg: HBTracks";
 sourceCrosses = "HitBasedTrkg::HBCrosses";
 \}
 \}
else if(engine.equals("DCHB")) \{
if(event.hasBank("TimeBasedTrkg::TBTracks")) \{
event.appendBank (copyBank(event, "HitBasedTrkg::HBHits",
\hookrightarrow "RasterBasedTrkg::RBHits"));
event.appendBank(copyBank(event, "HitBasedTrkg::HBClusters",
\hookrightarrow "RasterBasedTrkg::RBClusters"));
event.appendBank (copyBank(event, "HitBasedTrkg::HBSegments",
\hookrightarrow "RasterBasedTrkg::RBSegments"));

```
        event.appendBank(copyBank(event, "HitBasedTrkg::HBCrosses",
                \hookrightarrow "RasterBasedTrkg::RBCrosses"));
        sourceTracks = "HitBasedTrkg::HBTracks";
        sourceCrosses = "HitBasedTrkg::HBCrosses";
    }
    else{
        return false;
    }
    }
    else if(engine.equals("DCTB")) {
    if(event.hasBank("TimeBasedTrkg::TBTracks")) {
        event.appendBank(copyBank(event, "TimeBasedTrkg::TBHits",
        \hookrightarrow "RasterBasedTrkg::RBHits"));
        event.appendBank(copyBank(event, "TimeBasedTrkg::TBClusters",
                \hookrightarrow "RasterBasedTrkg::RBClusters"));
        event.appendBank(copyBank(event, "TimeBasedTrkg::TBSegments",
                \hookrightarrow "RasterBasedTrkg::RBSegments"));
        event.appendBank(copyBank(event, "TimeBasedTrkg::TBCrosses",
            \hookrightarrow "RasterBasedTrkg::RBCrosses"));
        sourceTracks = "TimeBasedTrkg::TBTracks";
        sourceCrosses = "TimeBasedTrkg::TBCrosses";
    }
    else{
        return false;
    }
    }
    else{
    return false;
    }
    //Create the RBTracks Bank
    DataBank rbBank = copyBank(event, sourceTracks,
                                "RasterBasedTrkg::RBTracks");
```

```
//Raster variables
float rasterX = 0.0f;
float rasterY = 0.0f;
float rasterUX = 0.05f;//0.5mm uncertainty in either direction
float rasterUY = 0.05f;//0.5mm uncertainty in either direction
if(event.hasBank("MC::Particle")) {
    rasterX = event.getBank("MC::Particle").getFloat("vx", 0);
    rasterY = event.getBank("MC::Particle").getFloat("vy", 0);
}
float[] rasterInfo = new float[]{rasterX, rasterUX,
                                    rasterY, rasterUY};
```

```
//Calculate the interaction vertex for each for each track in the
```

//Calculate the interaction vertex for each for each track in the
event
event
for(int i = 0; i < rbBank.rows(); i++) {
for(int i = 0; i < rbBank.rows(); i++) {
float[] trackInfo = new float[7];
float[] trackInfo = new float[7];
trackInfo[0] = event.getBank(sourceTracks).getFloat("t1_x" , i);
trackInfo[0] = event.getBank(sourceTracks).getFloat("t1_x" , i);
trackInfo[1] = event.getBank(sourceTracks).getFloat("t1_Y" , i);
trackInfo[1] = event.getBank(sourceTracks).getFloat("t1_Y" , i);
trackInfo[2] = event.getBank(sourceTracks).getFloat("t1_z" , i);
trackInfo[2] = event.getBank(sourceTracks).getFloat("t1_z" , i);
trackInfo[3] = event.getBank(sourceTracks).getFloat("t1_px", i);
trackInfo[3] = event.getBank(sourceTracks).getFloat("t1_px", i);
trackInfo[4] = event.getBank(sourceTracks).getFloat("t1_py", i);
trackInfo[4] = event.getBank(sourceTracks).getFloat("t1_py", i);
trackInfo[5] = event.getBank(sourceTracks).getFloat("t1_pz", i);
trackInfo[5] = event.getBank(sourceTracks).getFloat("t1_pz", i);
trackInfo[6] = (float)(event.getBank(sourceTracks).getByte("q", i)
trackInfo[6] = (float)(event.getBank(sourceTracks).getByte("q", i)
\hookrightarrow);

```
        \hookrightarrow );
```

 //Calculate
 float[] output = new float [8];
 Arrays.fill(output, Float.NaN);
 float doca \(=-1.0 f\);
 try \{
 doca \(=\) interactionVertexGridSearch(samplesGridSearch,
 \(\hookrightarrow\) rasterInfo, trackInfo, percentGridSearch, output);
 \} catch (InterruptedException | ExecutionException exception) \{
 Logger.getLogger (DCRBEngine.class.getName ()) . log (Level.SEVERE,
 \(\hookrightarrow\) null, exception);
 System. out. println(exception);
 \}
 //Make sure that the momentum is pointing in the right direction
 if(output[5] < 0.0)\{
 output[3] = output[3] *-1.0f;
 output[4] = output[4] *-1.0f;
 output[5] = output[5] *-1.0f;
 \}
 //System.out.println("Doca: " + doca);
 //System. out.println(Arrays.toString(output));
 //Set Values
 rbBank.setFloat("Vtx0_x", i, output[0]);
 rbBank.setFloat("Vtx0_y", i, output[1]);
 rbBank.setFloat("Vtx0_z", i, output[2]);
 rbBank.setFloat("p0_x", i, output[3]);
 rbBank.setFloat("p0_y", i, output[4]);
 rbBank.setFloat ("p0_z", i, output[5]);
 rbBank.setFloat("doca", i, doca);
 \}
 //Put Tracks in Event
 event.appendBank(rbBank);
 return true;
 \}
/**
* This method performs a three dimensional grid search within the
* uncertainty in the track's momentum.


```
for(int j = 0; j < samples; j++){
    doca.get(i).add(new ArrayList<>());
        for(int k = 0; k < samples; k++) {
            //Set Swimmer params
            float[] swimParams = new float[]{
                    trackInfo[0],
                    trackInfo[1],
                    trackInfo[2],
                    lowerBoundPX + i * (upperBoundPX - lowerBoundPX) /
                \hookrightarrow(samples - 1),
            lowerBoundPY + j * (upperBoundPY - lowerBoundPY) /
                \hookrightarrow(samples - 1),
            lowerBoundPZ + k * (upperBoundPZ - lowerBoundPZ) /
                \hookrightarrow(samples - 1),
            trackInfo[6]};
```

 //Get interaction vertices
 doca.get (i).get(j).add(ex.submit(new ThreadedVertexFinder(
 iterationsVertex,
 samplesVertex,
 zMinGlobal,
 zMaxGlobal,
 rasterInfo[0],
 rasterInfo[2],
 swimParams,
 output[i][j][k])));
 \}
 \}
 \}

```
//Wait for all tasks to finish
ex.shutdown();
ex.awaitTermination(10, TimeUnit.DAYS);//Arbitrarily large
```

//Find local mins
for(int $i=0 ; i<s a m p l e s ; ~ i++)\{$
for(int $j=0 ; j<$ samples; j++) \{
for (int $k=0 ; k<$ samples; $k++$) \{
//check if within rasterErr
if(doca.get(i).get(j).get(k).get() < rasterErr)\{
localMinIndices.add(new int[]\{i, j, k\});
continue;
\}
//check if unrealistically massive
if(doca.get(i).get(j).get(k).get() > Float.MAX_VALUE /
\hookrightarrow 2.0) \{
continue;
\}
//check px component
if(i $==0 \& \& \operatorname{doca}$.get(i).get(j).get(k).get() $>\operatorname{doca}$.get(i
$\hookrightarrow+1) \cdot \operatorname{get}(j) \cdot \operatorname{get}(\mathrm{k}) \cdot \operatorname{get}(\mathrm{)})\{$
continue;
\}
else if (i > 0 \&\& $i<s a m p l e s-1 \& \& ~(d o c a . g e t(i) . g e t(j)$.
$\hookrightarrow \operatorname{get}(k) \cdot \operatorname{get}()>\operatorname{doca} \cdot g e t(i+1) \cdot \operatorname{get}(j) \cdot \operatorname{get}(k) \cdot \operatorname{get}()$
$\hookrightarrow|\mid \operatorname{doca} \cdot g e t(i) \cdot g e t(j)$.get (k).get() $>\operatorname{doca} \cdot g e t(i-1)$
$\hookrightarrow \quad . \operatorname{get}(j) \cdot \operatorname{get}(k) \cdot \operatorname{get}()))\{$
continue;
\}
else if(i == samples -1 \&\& doca.get(i).get(j).get(k).get
$\hookrightarrow()>\operatorname{doca} \cdot g e t(i-1) \cdot g e t(j) \cdot g e t(k) \cdot g e t())\{$
continue;
\}
//check py component
if(j $==0$ \&\& doca.get(i).get(j).get(k).get() $>\operatorname{doca}$.get(i)
\hookrightarrow.get (j + 1).get (k).get()) \{
continue;
\}
else if (j>0 \&\& $j<$ samples $-1 \& \&(\operatorname{doca} . g e t(i) . g e t(j)$.
\hookrightarrow get (k).get () > doca.get(i).get (j + 1).get (k).get()
$\hookrightarrow|\mid$ doca.get(i).get(j).get(k).get() $>$ doca.get(i).get
$\hookrightarrow(j-1) \cdot \operatorname{get}(k) \cdot \operatorname{get}()))\{$
continue;
\}
else if(j == samples $-1 \& \& \operatorname{doca.get(i).get(j).get(k).get~}$
$\hookrightarrow()>\operatorname{doca} \cdot g e t(i) \cdot \operatorname{get}(j-1) \cdot \operatorname{let}(k) \cdot g e t())\{$
continue;
\}
//check pz component
if(k == 0 \&\& doca.get(i).get(j).get(k).get() > doca.get(i)
\hookrightarrow.get (j).get (k + 1).get()) \{
continue;
\}
else if $(\mathrm{k}>0 \& \& \mathrm{k}<$ samples $-1 \& \&(\operatorname{doca} \cdot \operatorname{get}(i) \cdot \operatorname{get}(j)$.
$\hookrightarrow \operatorname{get}(\mathrm{k}) \cdot \operatorname{get}()>\operatorname{doca} \cdot \operatorname{get}(\mathrm{i}) \cdot \operatorname{get}(j) \cdot \operatorname{get}(\mathrm{k}+1) \cdot \operatorname{get}()$
$\hookrightarrow ~|\mid ~ d o c a . g e t(i) . g e t(j) . g e t(k) . g e t()>\operatorname{doca} \cdot g e t(i)$.get
$\hookrightarrow(j) \cdot \operatorname{get}(\mathrm{k}-1) \cdot \operatorname{get}(\mathrm{)}))\{$
continue;
\}
else if(k == samples $-1 \& \& \operatorname{doca}$.get(i).get(j).get(k).get
$\hookrightarrow()>\operatorname{doca} \cdot g e t(i) . g e t(j) . g e t(k-1) \cdot g e t())\{$
continue;
\}
//add to local min list
localMinIndices.add(new int[]\{i, j, k\});
\}
\}
\}
//Cull values that fail zMinGlobal $<z<z M a x G l o b a l$
for(int $i=0 ; i<l o c a l M i n I n d i c e s . s i z e() ; ~ i++)\{$
int[] idx = localMinIndices.get(i);

```
    if(output[idx[0]][idx[1]][idx[2]][2] < zMinGlobal || output[idx
        \hookrightarrow [0]][idx[1]][idx[2]][2] > zMaxGlobal){
        localMinIndices.remove(i);
        i--;
    }
}
//Exit
int[] i;
switch(localMinIndices.size()) {
    case 0:
        //Fail gracefully
        Arrays.fill(out, Float.NaN);
        return Float.NaN;
    case 1:
        //Only one value
        i = localMinIndices.get(0);
        System.arraycopy(output[i[0]][i[1]][i[2]], 0, out, 0, 8);
        return doca.get(i[0]).get(i[1]).get(i[2]).get();
    default:
        //Find value which minimizes change from nominal track
        float minIdxDiff = Float.MAX_VALUE;
        float minDoca = Float.MAX_VALUE;
        boolean inRasterErr = false;
        int minIndex = 0;
        for(int[] idx : localMinIndices) {
            float swimDoca = doca.get(idx[0]).get(idx[1]).get(idx[2]).
                \hookrightarrowget();
            //System.out.println("idx: " + Arrays.toString(idx) + ",
                \hookrightarrow doca: " + swimDoca + ", z: " + output[idx[0]][idx
                \hookrightarrow [1]][idx[2]][2]);
            if(swimDoca < rasterErr){
                inRasterErr = true;
```

746

```
            float idxDiff = (float)Math.sqrt(Math.pow(idx[0] - (
                    \hookrightarrow float)samples / 2, 2.0) +
                                    Math.pow(idx[1] - (
                                    \hookrightarrow float)samples /
                                    4 2, 2.0) +
                                    Math.pow(idx[2] - (
                                    \hookrightarrow float) samples /
                                    \hookrightarrow 2, 2.0));
            if(idxDiff < minIdxDiff){
                minIdxDiff = idxDiff;
                minIndex = localMinIndices.indexOf(idx);
            }
            }
            else if(inRasterErr == false) {
            if(swimDoca < minDoca){
            minDoca = swimDoca;
            minIndex = localMinIndices.indexOf(idx);
            }
            }
            }
            i = localMinIndices.get(minIndex);
            //System.out.println("Winner: " + Arrays.toString(i));
            System.arraycopy(output[i[0]][i[1]][i[2]], 0, out, 0, 8);
            return doca.get(i[0]).get(i[1]).get(i[2]).get();
        }
}
/**
    * This method uses a swimmer to calculate the beam's doca position
            \hookrightarrowrelative to the raster beam axis.
    *
    * @param iterations The maximum number of recursive steps
```

* @param samples The number of sample points to take between zMin
\hookrightarrow and zMax for each step.

```
* @param zMin
The lower bound of the area of interest. Should be
```

 \(\hookrightarrow\) below the lower bound of the target
    ```
    * Eparam zMax The upper bound of the area of interest. Should be
    above the upper bound of the target
    * @param rasterX The rasterized beam x position
    * @param rasterY The rasterized beam y postiion
    * @param swim A Swim class which has been set to the position
    and momentum of interest
    * Gparam out A pointer to a float array which will be filled by
        \hookrightarrow ~ t h i s ~ m e t h o d . ~ W i l l ~ b e ~ s e t ~ t o ~ t h e ~ S w i m ~ o u t p u t ~ o r ~ N a N
    * @return the doca to the rasterized beam coords; -1.0 if no mimimum was
        found
    */
    private float findInteractionVertex(int iterations, int samples, float
        \hookrightarrow zMin, float zMax, float rasterX, float rasterY, Swim swim, float[]
        \hookrightarrow out){
```

 //Define useful arrays
 float[][] swimOutput = new float[samples][8];
 float[] doca = new float[samples];
 int [] docaIndex = new int [samples];
 int docaLength \(=0\);
 int[] localMin = new int[samples];
 int localMinLength \(=0\);
 //Get swim outputs
 for (int \(i=0 ; i<s a m p l e s ; i++)\{\)
 double[] temp \(=\) swim.SwimToPlaneLab(zMin + i * (zMax - zMin) / (
 \(\hookrightarrow\) samples - 1));
 if (temp \(==\) null) \{
 swimOutput[i] = null;
 continue;
 \}
    ```
    for(int j = 0; j < 8; j++){
```

 swimOutput[i][j] = (float)temp[j];
 \}
 \}
//Calculate the doca for each sample point
for (int $i=0 ; i<s a m p l e s ; i++)\{$
if(swimOutput[i] == null) \{
continue;
\}
doca[docaLength] = (float)Math.sqrt(Math.pow(rasterX - swimOutput [
\hookrightarrow i] [0], 2.0f) + Math.pow(rasterY - swimOutput[i][1], 2.0f));
docaIndex[docaLength] = i;
docaLength++;
$\}$
//Handle variable docalengths
switch(docaLength) \{
case 0 :
//Fail gracefully
localMinLength $=0$;
break;
case 1:
//Set only point as local minimum
localMinLength = 1;
localMin[0] $=0$;
break;
default:
//Find local minima
if(doca[0] < doca[1])\{
localMin[localMinLength] $=0$;
localMinLength++;
\} for(int $i=1$; $i<d o c a L e n g t h-1 ; i++)\{$
if(doca[i] < doca[i - 1] \&\& doca[i] < doca[i + 1])\{

```
        localMin[localMinLength] = i;
        localMinLength++;
        }
        } if(doca[docaLength - 1] < doca[docaLength - 2]){
        localMin[localMinLength] = docaLength - 1;
        localMinLength++;
    } break;
}
//Exit?
if(iterations == 1){
    int index = -1;
    float smallest = Float.MAX_VALUE;
    //Find a minimum?
    if(localMinLength == 0){
        Arrays.fill(out, Float.NaN);
        return Float.MAX_VALUE;
    }
    //Find the smallest doca
    for(int i = 0; i < localMinLength; i++){
        if(doca[localMin[i]] < smallest){
            index = i;
        }
    }
    System.arraycopy(swimOutput[localMin[index]], 0, out, 0, 8);
    return doca[localMin[index]];
}
```

```
//Recursively call this method on each of the local minima
float[][] minOut = new float[localMinLength][8];
float[] minDoca = new float[localMinLength];
for(int i = 0; i < localMinLength; i++){
```

if(docaIndex[localMin[i]] == 0)\{
float newZMin $=$ zMin $-(z M a x-z M i n) / 2 ;$
float newZMax $=$ zMax $-(z M a x-z M i n) / 2 ;$
if(newZMin < 2.0 * zMinGlobal - zMaxGlobal) \{
Arrays.fill(minOut[i], Float.NaN);
minDoca[i] = Float.MAX_VALUE;
\}
else\{
minDoca[i] = findInteractionVertex(iterations, samples,
\hookrightarrow newZMin, newZMax, rasterX, rasterY, swim, minOut[i])
\hookrightarrow;
\}
\}
else if(docaIndex[localMin[i]] == samples - 1)\{
float newZMin $=$ zMin $+(z M a x-z M i n) / 2 ;$
float newZMax $=$ zMax $+(z M a x-z M i n) / 2 ;$
if(newZMin > 2.0 * zMaxGlobal - zMinGlobal) \{
Arrays.fill(minOut[i], Float.NaN);
minDoca[i] = Float.MAX_VALUE;
\}
else\{
minDoca[i] = findInteractionVertex(iterations, samples,
\hookrightarrow newZMin, newZMax, rasterX, rasterY, swim, minOut[i])
\hookrightarrow;
\}
\}
else $\{$
minDoca[i] = findInteractionVertex(iterations - 1, samples,
\hookrightarrow swimOutput[localMin[i]][2] - (zMax - zMin) / (samples -
\hookrightarrow 1), swimOutput[localMin[i]][2] + (zMax - zMin) / (
\hookrightarrow samples - 1), rasterX, rasterY, swim, minOut[i]);
\}
\}
//Find the smallest doca
int index $=-1$;
float smallest $=$ Float. MAX_VALUE;
for (int $i=0 ; i<l o c a l M i n L e n g t h ; i++)\{$
if(minOut[i] != null \&\& minDoca[i] < smallest)
\{
index = i;
\}
\}
//Exit
if(index $==-1$) \{
Arrays.fill(out, Float.NaN);
return Float. MAX_VALUE;
\}
System. arraycopy (minOut [index], 0, out, 0, 8);
return minDoca[index];
\}
/**
* This class is a passthrough class to allow the findInteractionvertex
* method to be threaded
*/
private class ThreadedVertexFinder implements Callable<Float>\{
//Copies of method parameters
int iterations;
int samples;
float zMin ;
float zMax ;
float rasterX;
float rasterY;
Swim swim;
float[] out;
//Constructor
public ThreadedVertexFinder(int _iterations, int _samples, float _zMin
\hookrightarrow, float _zMax, float _rasterX, float _rasterY, float[]
\hookrightarrow _swimParams, float[] _out)\{
iterations = _iterations;
samples = _samples;
zMin = _zMin;
zMax = _zMax;
rasterX = _rasterX;
rasterY = _rasterY;
swim = new Swim();
swim. SetSwimParameters(_swimParams[0], _swimParams[1], _swimParams
↔ [2], _swimParams[3], _swimParams[4], _swimParams[5], (int)
\hookrightarrow _swimParams[6]);
out = _out;
\}
//Passthrough
@Override
public Float call() \{
return findInteractionVertex(iterations, samples, zMin, zMax,
\hookrightarrow rasterX, rasterY, swim, out);
\}
\}
/**
* Provides a copy mechanism from a pre-existing dataBank to a new one.
* Note that this does not natively append the new bank to the old event.
*
* @param event
* @param oldBank
* ©param newBank
*/

```
private DataBank copyBank(DataEvent event, String oldBankName, String
    \hookrightarrow newBankName) {
    DataBank oldBank = event.getBank(oldBankName);
    if(oldBank == null){
        return null;
    }
```

 DataBank newBank = event.createBank(newBankName, oldBank.rows());
 for(int \(i=0 ; i<o l d B a n k . r o w s() ; i++)\{\)
 for(int j \(=0 ; j<o l d B a n k . c o l u m n s() ; ~ j++)\{\)
 switch(oldBank.getDescriptor().getProperty("type", oldBank.
 \(\hookrightarrow\) getColumnList() [j])) \{
 case 1://Byte
 newBank.setByte(oldBank.getColumnList()[j], i, (byte)(
 \(\hookrightarrow\) oldBank.getByte(oldBank.getColumnList()[j], i)))
 \(\hookrightarrow\);
 break;
 case 2://Short
 newBank. setShort (oldBank.getColumnList() [j], i, (short
 \(\hookrightarrow)(o l d B a n k . g e t S h o r t(o l d B a n k . g e t C o l u m n L i s t()[j], i\)
 ())) ;
 break;
 case 3://Int
 newBank.setInt(oldBank.getColumnList()[j], i, (int)(
 \(\hookrightarrow\) oldBank.getInt(oldBank.getColumnList()[j], i)));
 break;
 case 4://Unused
 break;
 case 5://Float
 newBank.setFloat(oldBank.getColumnList()[j], i, (float
 \(\hookrightarrow)(o l d B a n k . g e t F l o a t(o l d B a n k . g e t C o l u m n L i s t()[j], ~ i ~ i\)
 \(\hookrightarrow\)))) ;
 break;
 case 6://Double
 \}
newBank.setDouble (oldBank.getColumnList()[j], i, (
\hookrightarrow double) (oldBank.getDouble(oldBank.getColumnList
\hookrightarrow () [j], i)));
break;

```
            }
        }
}
return newBank;
```

\}

